
COMPUTER COMMAND AND CONTROL COMPANY

C 2401 WALNUT STREET. SUITE 402 % PHILADELPHIA. PA 19103 1215) 854 0555

00

N
O4

FINAL REPORT:

AN INTELLIGENT
MA T i'ENIATICAL MODELLING SYSTEM -

MATIMOI)EL

Ma'hrch 1989
Submitted to:

Dr. A. Waksman (202-767-5027)
Air F'orce 01 lice of Scienfific Research (AFOSR/NM)
Dilcclorate of Mathematical and Ilforlnatio Science

Building 410
Biolling Air Iorce Base, I)C 20332-6448

Research spomsored by Ihe Air Force Office or Scientific Rcscarch (AFS(),
under Contlract F19620-89-C-01 16. The Uniled States Govemment is luthorized
to reprodice aid disu iic eprints for govrmiental purposes notwitlhsaiding

any copyright 11olatioll hercol.

DTIC-.-LECTE
MAY 11989 U

II

K

.' ,
u

{

MEURMT CLAS11.9..TUN RF THJS P A , 21:1

DOCUENTAION AGEForm Approved
REPOT DOCUMENTATION PAGE OMB No. 0704-0188

to. REPORT SECURIY CLASSIFICATION l b.ESTRICTIVE MARKINGS
Uc lassi ied e

2o. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for publiO rolease;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

Computer Command and Control Company w- rX - 9 - 0 5 3 u

6.. NAME OF PERFORMING ORGANIZATION I6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Computer Command & Control Co. (If applicable) Air Forc Office of Scientific Research

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

2401 Walnut Street, Ste. 402 Building 410

Philadelphia, PA 19103 Bolling AFB, DC 20332-6448

Sa. NAME OF FUNDING /SPONSORING I8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Air Force Office of Scientific F49620-88-C-0116
Research ___

Sc. ADDRESS(C/ty, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Building 410 PROGRAM IPROJECT ITASK IWORK UNIT

Bolling Air Force Base, DC 20322-6448 ELEMENT NO. NO. NO ACCESSION NO.
&110Q F I00/

11. TITLE (Include Security Classification)

An Intelligent Mathematical Modelling System - MATHMODEL

12. PERSONAL AUTHOR(S)
E. Lock, X. Ge,

N. Prywes

13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final L FROM 8/1/88 TO 3/31/8 3/31/89

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)

FIELD GROUP SUB-GROUP Mathematical Modelling Numerical AnalysisI I Specification Languages Logical Checking

I Symbolic Manipulation Code reneration

19. This is the final repoi' for SBIR grant number F49620-88-C-0116 from the Air Force Office
of Scientific Research (AFOSR). It reports:

1. Enhancement of the MATHMODEL system developed at the University of
Pennsylvania and its incorporation in Computer Command and Control Company's
(CCCC) MODEL system.

2. Demonstration of the unique capabilities through examples.

Developin mathernalical models of over 30 equations is reported to exceed $5,000 per
equation. It also requires a high level of expertise from the developers for formulating the
model, employing solutioni methods, testing it, and verifying its applicability. The
MATRMODEL system represents a new and radical approach of automation of mathematical
modelling with a potential for an order of magnitude reduction over current systems in cost and
rsuisite expertise.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRA T SECU"Y ASSIFICATION

MUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS (e

22a. NAME OF RESPON ISLE INDIVIDUAL 22b TELEPH O NE (,nclude Area Code) 22c? FFICE SYMBOL

DD form 1473, JUN 86 Previous editions are obsolete. C THIS PAGEW!bI00[E

MATHMODEL is directed to the key problems in the general application of large scale
mathematical models:

* Organization and the comprehension of large mathematical models,

" Programming and integration of diverse solution methods, and

" Generality and extensibility.

MATHMODEL has the following capabilities:

Language: a user can state piecewise assertions about the model in a very natural and
general way. These assertions describe identities, structural relations or optimizations in the area
to be modeled.

MATFIMODEL simplifies the modelling process by:

" filling-in implicit details,

" checking completeness of the model,

* decomposing the model into interrelated subsets of assertions,

" partitioning assertions into inter-related subsets,

" mapping these sets into respective solution methods,

" manipulating assertions into representations needed for selected solution methods,

" generating efficient programs,

" evaluating the overall model, and

" reporting the solutions.

MATHMODEL integrates advances from a number of Artificial Intelligence related areas,
i.e. specification languages, analysis of specification, symbolic manipulation, numerical
analysis, and automatic generation and optimization of programs.

Following an introductory section, the three project tasks are described. The report also
describes MATHMODEL's novel capabilites, how it works and how to use it. The report
concludes with discussion of the marketplace for MATHMODEL and plans for continuing
development in Phases 1I and Ill.

Accession For

d0

@ -~~~~J:.., 'cto

it
Z- . ,r

• \4-4

Table of Contents
1. INTRODUCTION AND SUMMARY 0

1.1. Objectives 0
1.2. Outline of the Report 2

2. OVERVIEW OF THE NOVEL CAPABILITIES OF MATIIMODEL 2
2.1. Overview 2
2.2. The Intelligent Capabilities of MATIIMODEL 4

2.2.1. Specification Language 4
2.2.2. Analysis 7
2.2.3. Symbolic Manipulation 9
2.2.4. Automatic Programming 10
2.2.5. Numerical Analysis 13

3. TASK 1: ENHANCEMENTS OF MATlIMODEL 13
3.1. Merger of MATIlMODEL With CCCC's MODEL 14
3.2. User Related Phases of MATIIMODEL 15
3.3. Implementation Related Part of MATHMODEL 21
3.4. Execution Related Phases of MATtlMODEL 26

4. TASK 2: DEMONSTRATING TIlE USE OF MATliMODEL 28
4.1. Objectives of the Demonstrations 28
4.2. Use of MATIIMODEL 28
4.3. Illustration of MATllMODEL Through Small Examples 32

4.3.1. Example of Use of MATHiMODEL In Large Scale Mathematical Modelling 48
5. TASK-3: INVESTIGATION OF TIlE MARKETPLACE FOR MATIIMODEL 51

5.1. Definition of the Initial MATliMODEL Product 51
5.2. Definition Of The Initial Marketplace For The MATiIMODEL Product 51
5.3. Marketing Strategy 52
5.4. Competitive Mathematical Modelling Systems 53

6. CONCLUSION 55
6.1. Accomplishments and Plans 55
6.2. Prototyping and Reusability Development Mode 57

7. REFERENCES 61

p

List of Figures

Page

Figure 2.1 Key Novel Capabilities of MATHMODEL 6

Figure 2.3 New Approach to Computing in MATHMODEL 12

Figure 3.1 User Related Phase of Compiler 17

Figure 3.2 Implementation Related Phases of the Complier 23

Figure 3.3 Criteria for Selecting Solution Methods 25

Figure 3.4 Execution Related Phases of MATHMODEL 28

Figure 4.1 The Overall Procedure for Using MATHMODEL 31

Figure 4.2 Runtime Error Messages and Their Reasons 32

Figure 4.3 VI Source Charges V2 and V3 Batteries 33

Figure 4.4(a) The User Specification for Question 1 34

Figure 4.4(b), Reports 35

Figure 4.5(a) The User Specification for Question 2 39

Figure 4.5(b) The Flowchart Report for Question 2 40

Figure 4.5(c) The Generated Program for Question 2 41

Figure 4.6(a) The User Specification for Question 3 45

Figure 4.6(b) The Flowchart Report for Question 3 46

Figure 4.6(c) The Generated Program for Question 3 47

Figure 4.7 Overview of Signal Processing System

With MULTIPING Component 50

Figure 4.8 Results of Evaluation of the MULTIPING

Shadow Projects 51

Figure 6.1 Prototyping and Reusability Process 59

1. INTRODUCTION AND SUMMARY

1.1. Objectives
Mathematical models are used in a wide range of applications. They are used to explore

social and physical systems. They have become essential in a great variety of design areas, from

aircraft to urban centers. They are also used for planning by large private and public

organizations. In many cases they are incorporated in operational systems in which they are used

to make critical real-time decisions, based on dynamic information received from sensors.

Finally, mathematical modelling has recently been used in expert systems. As the art of

mathematical modelling advanced, these models have become more realistic and detailed, and as

a result they have also grown greatly in size.

The development and use of mathematical models has been extremely costly in time and

funds. Fromm [Fromm 751 has surveyed 650 mathematical models with a median size of 25

equations. Only 6 of these had more than 1000 equations. The cost per equation was on average 3

man-weeks. The cost per equation increases greatly as the number of equations in a model

increases.

The cost problem has stimulated development of numerous mathematical modelling systems

over the last two decades. There has been a conflict between generality and specialization in these

systems. They have typically specialized in a particular application and/or solution method.

Then, as the application changed with time, they could not be easily modified to respond to the

new requirement.

The need for the new capabilities introduced in MATHMODEL has been expressed

frequently in the past, as illustrated by the following quotation [Waren 871:

We anticipate that a growing number of analysis and modelling systems of various kinds will

provide optimization as an integral component. As the degree of integration of the modelling and

optimization system improve, the ability of the unsophisticated user to employ nonlinear

optimization will increase dramatically. This change will require additional developments in

related areas such as the automatic detection of linearities and nonlinearities, automatic problem

classification, and automatic selection of the best solution algorithm. We expect that all of these

developments will be forthcoming and that artificial intelligence techniques may play an

2

important role.

Such a system, called MATHMODEL has been developed by X. Ge in his research at the

University of Pennsylvania. It is a very complex and large multi-phase system. It consists of 142

modules and 60,000 lines of PL/1 code. MATHMODEL is based on an old (1984) version of the

MODEL system, which automatically translates equational specifications into highly efficient

programs in PL/1.

This is the Final Report of an SBIR Phase I project supported by the Air Force Office of

Scientific Research under grant number F59620-88-C-01 16. Computer Command and Control

Company (CCCC) has a much more advanced and reliable version of MODEL that generates

programs in several languages (PLII, C and Ada) and that runs on several computers (IBM and

Digital). It also generates programs that can be executed in parallel on distributed computers.

Most important, CCCC's MODEL contains many more operations useful in mathematical

modelling (e.g. matrix algebra, relational algebra, etc.). This version is much more reliable and

robust and is well documented. The project has merged MATHMODEL's capabilities with those

of CCCC's MODEL and has transformed MATHMODEL into a greatly more effective tool for

mathematical modelling than any system developed to date (Task 1).

It has also demonstrated MATHMODEL's advantages through examples that show the ease

and high productivity in using it (Task 2).

It has also identified the market for MATHMODEL and developed a strategy for its

commercialization (Task 3).

To make MATHMODEL widely attractive, it will be necessary in Phase II to place

MATHMODEL into an environment with the following capabilities:

1. Use of a powerful workstation,

2. Prototyping and reusability through an incorporated database of models,

3. Use of graphics for input of models,

4. Generation of programs for parallel processing,

5. Generation of programs in Fortran.

Also the market scope will be expanded to include mathematical modelling related activities,

such as simulation and training. These capabilities will be a basis for a very powerful next

3

generation mathematical modelling system. It will serve in Phase !II to attract necessary

capitalization for commerical level offcrring and support of MATHMODEL in Phase Ill.

1.2. Outline of the Report

The report consists of six sections. The presentation in the remaining five sections is briefly

summarized below.

Section 2 Overview of the Capabilities of MATHMODEL. This section describes"what is MATHMODEL?" from the point of view of the prospective user.

Section 3 Task 1: Enhancement of MATHMODEL. This section describes "how
MATHMODEL works" after the merger of the version developed by X. Ge
with CCCC's MODEL

Section 4 Task 2: Demonstration of MATHMODEL Capabilities. This section
describes "how MATHMODEL is used" in the course of three short
examples. Larger examples could not be presented due to time and cost
limitations. However, a related larger example is described.

Section 5 Task 3: Investigation of the Marketplace for MATHMODEL. This section
describes "who are the prospective users of MATHMODEL".

Section 6 Conclusion. This section describes the technical environment for
MATHMODEL that will be developed in Phase III: computers, operating
systems, languages, databases, graphics, and their integration to provide an
order of magnitude improved mathematical modelling system.

2. OVERVIEW OF THE NOVEL CAPABILITIES OF MATHMODEL

2.1. Overview

MATHMODEL has been directed to automating the core of the difficulties in large scale

mathematical modelling:

1. The organization of large mathematical models as an aid to comprehension.

2. The integration of diverse solution methods.

3. Providing generality as well as ease in growth.

MATHMODEL takes over partitioning and organizing of the model. The organization

4

scheme is used to facilitate comprehension by the user. It also possesses intelligence to analyze

assertions and select for them preferred solution methods. The system is open-ended for the

purpose of enhancing it easily with new approaches and solution methods for them.

The innovations in MATHMODEL are illustrated by the following capabilities.

" Describing a model in terms of assertions: equations, optimizations and variables.

" Filling-in implicitly expressed details of data and assertions in the model,

" Checking completeness of the model,

* Partitioning the model's assertions into interrelated subsets,

" Mapping these sets into respective solution methods,

" Manipulating assertions into representations needed for selected solution methods,

" Generating efficient programs for the model's procedures,

" Testing and evaluating the overall model, and

" Reporting the rei',ts of the ensuing computation.

MATHMODEL incorporates advances in a number of areas of Artificial Intelligence to make

feasible the generalized mathematical modelling system that can perform organization and

manipulation tasks and easily grow in its capabilities. These areas include

" Specification languages,

" Logical analysis of the specifications,

" Symbolic manipulation of assertions,

" Numerical analysis,

" Automatic generation and optimization of programs.

I

2.2. The Intelligent Capabilities of MATlIMODEL

The intelligent capabilities are classified below into five areas. They arc summarized in

figure 2.1.

2.2.1. Specification Language

Mathematical modelling languages have, in the past, been influenced by the formalism used

in solution methods [Dolk 861. Instead, MATttMODEL uses the recent advances in the area of

specification languages [Prywes 751 [Backus 78) [Zave 851 [Sterli 861 to provide a simple

general purpose language that employs commonly used mathematics terminology and semantics.

The specification language has many advantages. It is independent of any computer

implementation. The main idea is that the user composes a set of assertions that are considered as

axioms in the environment being modeled. The semantics of this language are the same as those

used in mathematics -- to find a solution (values of variables) for which all the assertions are true.

The language also includes declarations of variables and their structures. To be close to

mathematical modelling, the assertions use the syntax of regular or Boolean algebra's equalities

or inequalities (differential equations must be transformed into difference equations). The same

language is used solely for all maintenance and documentation of the mathematical model; the

user would not even need to know the programming language that is used in the implementation

uf the computations.

6

Language -- Unrestricted form of equalities and inequalities,
-- Mix of array variables of different dimensionality

and dynamic sizes of dimensions (mixed shapes),
-- Arbitrary order of statements,
-- Generalized data bases and reports.

Analysis -- Tolerance of omissions. Automatic fill-in of:
declarations of data,
subscripts,
equations,
selection of numerical solution methods.

-- Checking:
completeness,
dimensionality of arrays,
sizes of the array dimensions,
data types,
circularity of definitions.

-- Organization:
finding causality,
identifying groups of statements that are

interdependent and must be solved
simultaneously,

selecting suitable solution methods,
combining automatically different solution

methods,

Symbolic -- Manipulating the user's form into a form
Manipulation required by the solution method.

Automatic -- Avoiding the need to compose and test procedural
Programming programs,

-- Generating a highly efficient program for
solving the problem given by the specification
(the generated program is reusable),

-- Prototyping,
-- Parallel processing.

Numerical -- Built-in six key methods for solving simultaneous
Analysis equations and optimization, linear or nonlinear,

-- Solution methods for array variables of mixed
shapes,

-- Open-ended system for adding built-in solution
methods.

Figure 2.1

Key Novel Capabilities of MATFIMODEL

7

MATHMODEL specifications employ the following capabilities:

Unrestricted form of assertions: Assertions can have the form

> (=)
<expression> = <expression>

The user can express identities or constraints as relations between two expressions which

naturally represent concepts of the environment (for example, an expression of adding the income

variables of a government, plus deficit, is equal to an expression of adding of expense variables).

Variables defined or constrained by an assertion need not be typed explicitly by the user, but the

type can be determined automatically based on analysis (see subsection 2.2.2). Furthermore, for

example, a change to a model which redefines the endogenous and exogenous variables, would

not require rewriting the assertions. Simplicity is a key to understanding. The assertions are stated

in terms of the application, and they are familar to the user. All subsequent automatic

manipulations needed for obtaining a solution, are reported to the user as related to the original

form.

Arbitrary order of statements: The underlying notion here is that the user may compose

assertions in the order that he or she thinks of them. The user need not indicate the organization

of the model by stating the assertions in a particular order or form. The automatic analysis

discovers which variables are not defined, or which are redundantly overdefined. The user needs

then to make indicated additions or corrections. MATHMODEL provides the user with a report

on matching each unknown variable with an assertion which defines it. This shows also the

completeness of the model in having all the variables properly defined. Next, the clusters of

assertions that must be solved together are identified. Causality dependencies are reported as well

(see subsection 2.2.2). Relieving the user of these organization tasks is an important help.

Mix of array variables of different shapes: Particularly in a large mathematical model, it is

very economical to have structured variables -- such as arrays. (Note that a user may visualize all

variables as virtual -- namely as having infinite memory space, while actually an optimizer would

generate programs which minimize use of memory, see subsection 2.2.4 for explanation). The

main advantage of using array variables is that a single equation may define an entire array

variable with a large number of elements. The entire model may include scalars or array

S 8

variables of different data types, dimensionalities and sizes of dimensions. The solution methods

can be employed automatically on interdependent assertions that involve mixed shapes of array

variables. The analysis (see subsection 2.2.2) finds the clusters of assertions that need to be

solved simultaneously. The assertions are then manipulated into the formats required by the

respective solution methods. The different solution methods typically used in solving a large

scale mathematical model are integrated automatically into an overall solution.

Generalized databases and reports: A declaration of the schema of a database or a layout

of a report are part of the specification. To reference and update another database or produce a

different format of the report, only the declarations need to be modified, not the assertions.

2.2.2. Analysis

The analysis is responsible for constructing a complete and consistent mathematical model,

partitioning it and mapping it into respective solution methods. The automatically-conceived

organization is then reported to the user. These analysis capabilities do not exist in the traditional

mathematical modelling systems [Waren 87]. The analysis steps described below are generic and

are based on the mapping of the declarations and assertions into solution methods. The analysis

steps are open-ended, easy to add-to as new solution approaches are added to MATHMODEL.

They constitute the major aspect of the innovative approach to mathematical modelling.

Under the title of analysis we group three inter-related activities: tolerance of omissions,

checking and organization. By tolerance of omissions, we mean the parts of the model that the

user may omit and must be filled-in automatically. Forcing the user to be explicit about all the

details needed for performing the computation is tedious and laborious, which is one of the

shortcomings of current mathematical modelling languages. The filling-in of omissions is based

on checking and finding the organizational relations between parts of the mathematical model.

Tolerance of omissions: The tolerance of omission of declarations of internal variable

structures is probably one of the greatest labor saving features of MATHMODEL. Only the

declarations of input and output data are mandatory; the other variable declarations are optional.

The analysis determines the needed precision from the declarations of input and output. From

this it derives the data types, length, and scale of the internal variables. Because of efficiency

considerations, the precision is limited to that of multiple precision floating data types supported

by the object language. The dimensionality and sizes of dimensions are determined from the

9

references to variables in assertions.

In variablcs of relatively large number of dimensions, the user may omit referencing in

equations the subscripts of the left-most dimensions that apply to all variables in an assertion.

Next, if the mathematical model has variables of the same name which appear with the same

values in input and output, it is not necessary to have assertions showing their idcntity. This is

important when using databases of ten (or many more) data elements in a record, with only few of

the data elements being updated.

Finally, the user may omit selection of the solution method to be employed in solving

simultaneous equations and optimization subproblems, and/or omit choosing the respective

solution parameters. The mathematical model is not computationally complete without them. If

the user omits specifying them, thcn they are determined automatically based on the analysis of

the respective assertions (section 2.2.3).

Checking: The same process that fills in tolerated omissions also checks consistency of

variable dimensions, sizes of dimensions and data types. If they are not used consistently, the user

is informed of the offcnding assertions.

The most important category of checking is related to the concept of completeness of the

specification of the mathematical model. In the simplest terms -- there must be equations for

determining the values of all the unknown variables. All unknown variables must be referenced

by the assertions that define them. An optimization assertion may define more than one variable.

This analysis is called matching. It identifies a consistent set of unknown variables defined

properly by respective assertions. The result of matching is reported to the user to help him/her in

comprehending the mathematical model. In certain instances, the user may wish to change the

matching in order to spccd-up the solution or improve precision. Also, if a match is not feasible,

then the variables and assertions that cannot be matched are reported.

Organization of the mathematical model: The most fundamental partial ordering of the

assertions and variables of a mathematical model is based on analysis of causality, i.e. the

dependencies of unknown variables on their defining assertions and dependencies of assertions on

their independent variables. This is represented in MATHMODEL by a directed graph. Every

variable and every assertion are represented in the graph by a respective node. The dependencies

10

are represented by edges. An unknown variable nodc is not at the end of an edge from a defining

assertion (i.e. not matched with a defining assertion) indicates an incompleteness error. The graph

may contain cycles. The ordering by causality applies then only to groups of assertions and

variables in maximal strongly connected components (MSCC) in the graph. In the construction

and analysis of the graph, MATHMODEL finds the input/output or the single assertions that can

define variables, and the clusters of assertions and variables in MSCCs that must be solved

simultaneously. Some clusters may also nest within another cluster. This ordering and grouping

of variables and assertions are reported to the user. The user may optionally select the solution

methods to be employed. Otherwise, for each cluster, the assertions and variables in the MSCC

are analyzed to determine an appropriate solution method. The analysis determines the linearity

or nonlinearity of the assertions, their formats, whether they define or constrain variables, and

whether they involve boolean or regular algebra.

At the end of the analysis, the mathematical model has been fully checked; all discovered

omissions have been filled-in automatically or through interaction with the user. All the

assertions and variables have been partitioned into components for which a solution method has

been selected. At this point, the mathematical model is ready to be evaluated.

2.2.3. Symbolic Manipulation

Traditionally symbolic manipulation has been used to simplify a mathematical model and

improve its understanding. It can transform the equations into a form that gives an explicit

definition of an unknown variable. In a large model, an explicit definition may not be found by

the current methods of symbolic manipulation. Even if found, it would typically be lengthy.

Instead, the approach in MATHMODEL is to facilitate the understanding of the model by

providing the user with a solution, i.e. values of the variables. Thus, symbolic manipulation is

necessary to transform a set of inter-related assertions into a form that is required in the selected

numerical solution method. The transformed assertions are of interest to the user for several

reasons. First, a user familiar with the solution method may get better understanding of the model

by being shown how the assertions have been grouped and transformed into a familiar solution

method format. Second, a selected numerical solution method may not be able to produce a

solution. The reasons for failure (e.g. non-convergence, etc.) are meaningful to the user in the

context of the transformed assertions. The user may thus gain an insight of the reasons of failing

to find the solution from examining the transformed assertions. This understanding could lead to

making appropriate changes in the specification (including changes in parameters of the solution

method) so that a solution may be found, or so that a solution may be found faster, with better

precision, etc. Diverse numerical solution methods require different formats of assertions.

Therefore specialized symbolic manipulations must be incorporated for each solution approach. A

symbolic manipulation procedure must be added to the mathematical modelling system for each

solution method added in the future.

2.2.4. Automatic Programming

Avoiding the need to compose and debug procedural programs: Traditionally, for a

given environment, an expert (analyst) composes a mathematical model. In many of the current

mathematical modelling systems, programs must be written to implement parts of the model.

This procedure is schematically shown as in figure 2.2. Of course, if the problem is very

complicated, there may be several levels of analysts, and several levels of programmers. A senior

analyst performs the global analysis and several junior analysts refine his/her work. The same

situation applies to programmers.

The procedure is different for MATHMODEL. After an analyst completes his/her work, the

system is invoked to generate a program. This is shown in figure 2.3. The feedback from

program output to the analyst may repeat many times for large and complex system development.

12

+- +-->I progran e I -- >+
envi- ---- >1 expert I. >I + -- I>-
ronment +-->I (analyst) I math. I +- I I

I -- 4 model +-->iprogramwmer-->+ I
I I 4 - 4 I
II I error
I I I detected V
I I V -------------
+< ------------------------ < -------- + I programs I
I +-------------+
i i
i V

I +--------------
------------------------------------ <---- prototypingi

solution I execution I
+-------------

I
V

Figure 2.2

Conventional Approach to Computing a Mathematical Model

+------------- +-----------------

envi- ---- >1 expert I ------------ >1 MATHMODEL I-+
ronment +-->I (analyst) Imathematical I I I

I ------------- + model +----------------+ I
I I error I
I I detected V
I V +-------------+
< ------------------------ 4< -------- + I programs I

I +--------------

I I
I V
I +-------------
+ ----------------------------------- <---- prototypingl

solution I execution I
+-------------

V

Figure 2.3

New Approach to Computing in MATHMODEL

13

Generating efficient programs: Efficiency of computation of a solution is critical in large

scale mathematical modelling. The inefficiency of many mathematical modelling systems has

frequently forced users to use conventional programming approaches. Even though the cost of

computation has been decreasing greatly, the issue of efficiency remains paramount due to the

increasing size of mathematical models and increasing frequency of their use. Efficiency of

computation is particularly critical in mathematical models used for real-time decisions.

The general purpose nature required of the mathematical modelling language makes use of

pre-programmed solution methods very difficult. Recent advances in automatic generation of

optimized programs are used in MATHMODEL to provide highly efficient customized programs

for computation of mathematical models. The notion is to generate programs in a conventional

procedural language. The generated programs may be reused, without regenerating them, to

repeat evaluation of a model for different exogenous or control variables. In generating

programs, MATHMODEL [Prywes 79] systematically examines every variable to minimize use

of memory space (maximize sharing of storage locations) and every iteration and control block to

minimize control statements and eliminate unnecessary copying. A more complete description of

the optimization can be found in fLu 811.

Testing: The proof of satisfaction of a mathematical model is in its testing; namely, in

providing a solution that the user accepts as realistic and useful. The analysis described above

checks only some necessary conditions. The testing of the mathematical model with real-life data

verifies that it meets the user's intentions and that it is useful for the purpose for which it was

developed.

Development of a mathematical model is a trial, error and refinement process in which the

mathematical modelling system and the user must interact. For this reason it is necessary that the

generated program produce reports that inform the user of the reasons for failing to reach a

solution. To interact with the system, the user needs not understand the generated program. The

user must, however, comprehend the numerical approach used, the assertions and variables that

are involved and how to overcome the encountered problems. To correct the reported problem the

user may wish to change the selection of the solution methods, the initial values of variables, the

convergence conditions, etc. The testing may also reveal that the mathematical model is

redundant and incomplete.

14

2.2.5. Numerical Analysis

Built-in numerical solution methods are mandatory for an effective mathematical modelling

system. They must apply to diverse kinds of assertions -- linear and nonlinear, simultaneous

equations and optimizations and different convergence requirements. While pre-programmed

highly efficient procedures of solution methods can be used in some cases, the solution of

simultaneous equations and optimizations with mixed shape array variables mandate generating

customized programs for these cases. Namely, it is not sufficient to write a pre-programmed

solution method; it is also necessary to be able to use the method in non-standard combinations of

assertions and variable declarations. Both types of numerical solution methods -- pre-

programmed and custom generated -- are used in MATHMODEL.

Six solution methods have been incorporated in the MATHMODEL. They are tor:

Simultaneous Equations -- Gauss Elimination (linear)
-- Gauss-Seidel (nonlinear)
-- Jacobi (nonlinear)
-- Search (nonlinear)

Optimization -- SiNplex (linear)
-- Search (nonlinear)

MATHMODEL is open-ended to add solution methods. There is much similarity among

some methods while others differ greatly. It is necessary to be able to accomodate a variety of

new methods. For each new method added it is necessary to be able to easily add capabilities in

three categories:

1. Checking that the selected new solution method can be applied to a respective

subset of assertions and variables in the specification of a mathematical model.

2. Symbolic manipulation of respective assertions and variables to the form required

by the method.

3. Automatically generating the programs that employ the new method.

3. TASK 1: ENHANCEMENTS OF MATHMODEL

Is

3.1. Merger of MATtlMODEL With CCCC's MODEL

This task called for integrating the MATHMODEL system developed in research by Dr.

X. Ge at the University of Pennsylvania with CCCC's MODEL system. The merger of these two

systems was intended primarily to lend to the research version, with its implied unreliability and

incomplete portions, the robustmess and infrastructure of a commercial version. The merged

system has become a better candidate for eventual offering commercially. In fact, the CCCC

version of MODEL has a number of additional features which are mandatory for mathematical

modelling. Thus, the merger enhanced MATHMODEL with these features, as well. These

enhancements are not all of pure technical internal nature. They also affect in a major way the

inherent use of MATHMODEL for mathematical modelling. They consist of the following:

" New operations - of matrix and relational algebras.

" Use of relational databases.

" Use of pictorial specification of reports and displays

" Use of a database of specifications for reuse of commonly used data declarations and
assertions.

• Generation of test data for testing the generated programs.

In addition, the following enhancements effect the environment in which MATHMODEL is used:

e Use of IBM's computers in addition to Digital's computers.

* Generating programs in C and Ada in addition to PL/l.

* Availability of multitasking to accelerate solution of a model through
multiprocessing.

The synthesis of the above capabilities in MATHMODEL involves a large multi-phase

system comprised of 142 modules and 60,000 program lines. The remainder of this section

describes these phases, which also provide a medium level view of how the MATHMODEL

system offers the capabilities enumerated in Section 2.

MATHMODEL is divided into user implementation and execution phases. These are

described in respective subsections.

16

3.2. User Related Phases of MATIIMODEL

The user related part begins with the syntax analysis phase, assuring that the syntax is correct

before proceeding with the other phases. The user specification is also transformed into an

internal form. This is followed by a matching phase where for each equation is found a

respective variable which is defined by that equation. The matching also provides a basis in later

phases for aggregating all assertions into the smallest blocks which are scheduled most efficiently

in the generated program. Next, all information is accumulated in a graph. Using the graph,

MATHMODEL proceeds with a phase that checks for ambiguity, completeness, and consistency,

resolves the contradictions and, in some cases where it seems appropriate, completes details

omitted by the user. At this point, the specification has been thoroughly analyzed. This part

consists of 6 phases. The input and output of each phase, their order, and the types of reports or

error messages produced are shown in figure 3.1.

The user related phases are as follows.

Phase 1: Syntax Analysis:

The syntax analysis is the first phase of MATHMODEL. The input to this phase is the user's

specification. Syntax errors in the specification are detected and reported in this phase. After

syntax analysis, the specification is stored for easy retrieval. Besides syntax analysis, this phase

also checks the local semantics. The objective is to find as many errors as possible in the early

phases.

17

user specification

V

I1. syntax analysis I -- > syntax errors,
+---------- -- source listing

V
associative memory

V

1 2. building dictionary I -- > redundant or incomplete
------------------------- + variable definition errors,

I cross reference report
V

dictionary

V
------------------------- +
1 3. matching I ---- > unmatchable equation
-------------------------- errors, matching report

V
modified dictionary

V
-------------------------- +
1 4. symbolic manipulationl (part I)

V
explicit equations

V
------------------------- +
1 5. building array graph I ---- > ambiguous variable name,
------------------------- + missing assertions,

I missing declarations,
V variety of inconsistencies

array graph in referencing variables

V
-------------------------.4
1 6. checking I ---- > inconsistency in structure,
------------------------- + dimensionality, size or

I data type of variable
V declarations and references

modified array graph

Figure 3.1

User Related Phases or Compiler

S 18

Interestingly, the Syntax Analysis Program (SAP) itself is automatically generated by a

Syntax Analysis Program Generator (SAPG). The input to SAPG is a formal definition of the

MATHMODEL language. This approach makes it very easy to change the language definition, or

test a new component of the language.

Phase 2: Building A Dictionary:

The dictionary is a table of contents of total information in the mathematical model. In this

phase, a shell is built for the dictionary which is completed in later phases. Using a dictionary

greatly reduces later storing and searching.

The dictionary consists of entries for every assertion, every variable, and every subscript. If

a name is ambiguous, such as when a variable is declared more than once, it is detected and an

error is flagged, if the ambiguity cannot be resolved logically. Other errors in the user

specification are detected, such as a control variable with an undefined suffix. Each entry of the

dictionary contains many attributes, and these attributes hold the necessary information. Some

attributes are filled in at this phase, while others are completed in later phases of analysis as they

become available.

Phase 3: Matching Equations with Variables:
The basic notion is that the assertions must be solved in order to evaluate the dependent

variables. Thus there must be sufficient assertions to define one or a small set (e.g. in non-linear

equations) of solutions for the unknown variables. Namely, if it is obvious at this phase that there

are an infinity of possible solutions, this is flagged as an error, and the user is required to add

more assertions, or to rewrite the original assertions. To provide guidance in making the

correction, each assertion needs to be associated with the variables that it defines. Thus,

identifying undefined variables gives the user a guideline on the need to compose additional

assertions. Defining dependent variables is also required to attain a highly efficient computation.

The matching provides a basis for determining all the dependencies among variables and

assertions in later phases. The matching must be performed in the first analysis phase, because

practically all the other analysis phases depend on the results of matching.

MATiHMODEL allows a user to use an unrestricted form of equations with arithmetic

expressions on both sides of the equal sign. It is therefore not known from such an equation, by

itself, which variable is defined by this equation. A global analysis of the equation-variable

19

relationship is necessary to find the variable defined by each equation. The matching algorithm is

such a global analysis.

The input to the matching process is the set of unrestricted form equations. The algorithm is

adopted from [Hopcro 731.

Phase 4: Symbolic Manipulation (Part I):

The capabilities of symbolic manipulation can be classified into those that concern an

individual equation and those that concern multiple assertions that must be manipulated into the

required format for a specific solution method. The first class is performed here, and the second

class is performed later, after the solution method has been selected.

This phase transforms unrestricted form equations into an explicit form with the unknown

variable on the left hand side and an expression defining the variable on the right hand side. An

equation can be transformed into an explicit form if it satisfies the following two conditions:

" the equation is not a member of any system of simultaneous equations,

" the unknown variable term either appears only once or could be collected easily.

Phase 5: Array Graph:

In order to analyze and manipulate a specification, there is a need to represent the user's

statements in a convenient and accessible internal form. An array graph is such an internal form.

An array graph, which is very similar to petri net or data flow graph, accumulates local

information from each individual assertion and data declaration statement. All the global

analyses, such as checking for consistency, completeness, and ambiguity and scheduling, are

performed on the array graph.

A graph is a perfect medium to grasp the fundamental information of a specification. It uses

nodes for representing assertions and variables, and edges for representing the precedence

relationship among assertions and variables. However, because of the large number of variables

and assertions, a naive straightforward graph for representing each element of a variable and each

instance of an equation by a node is practically infeasible. Cleverly, MATHMODEL uses one

node to express an array of variables or an array of equations. Similarly, an edge represents

relationships among all the respective array elements. The information about a whole array of

variables or assertions, such as the dimensions of each node, the range of each dimension, and

20

subscript expressions of each assertion, are recorded as attributes in each node and edge. This

special graph is called an array graph.

In this phase, MATHMODEL analyzes each file declaration statement, sets up a data node

for each data name, and builds edges among data nodes according to the hierarchical

relationships. It also analyzes each assertion, sets up an assertion node for each one, and builds

edges between the data node and the assertion node according to the dependency relationships. In

addition, MATHMODEL sets up a data node for each control variable and builds the edge

between the control variable and the affected variables.

After building the array graph, many errors in the user specification can be recognized from

the structure of the array graph. For instance, an undefined variable can be easily identified

because this data node does not have an incoming edge from an assertion node. Using the

properties of the array graph, this phase is able to find many types of errors in the user

specification.

Phase 6: Checking and Propagation

The purpose of checking and propagation is to

* recognize all missing attributes of nodes (which represent the tolerated missing

information),

" find the incomplete or missing information in a user specification by propagating

information from other assertions or variables,

" flag missing information that cannot be deduced from another source as an

incompleteness error, and

* flag conflicting information as an inconsistency error.

The checking is performed on the array graph and all deduced information is stored as

attributes of the nodes and edges of the array graph.

The checking consists of dimension propagation, range propagation, and data type

propagation.

Dimension propagation: although each variable in the source or target data

21

has a clear dimension definition. Many interim variables used in the

specification may not have such a definition at all. A user may also mistakenly

miss subscripts or intentionally omit subscripts in assertions to keep the

specification shorter and easier to read. Dimension propagation checks the use of

subscripts, provides the omitted subscripts, identifies the misuse of subscripts,

and finally provides each variable and each assertion with a consistent dimension

definition.

Range propagation: each dimension of each array variable or assertion

must have its range defined (or more accurately, have its size defined). This

range may be defined from the source or target data declaration statement,

control variables, the actual size of the data, or from the range definition of other

nodes. A propagation strategy is used to find a unique range definition for every

dimension of each variable or assertion. If any range is not defined directly and

cannot be propagated from other ranges, or if the range has more than one

definition, MATHMODEL flags it as an error. If the range can be propagated

from two different sources, the compiler resolves the contradiction based on

efficiency considerations.

Data type propagation: each input or output variable has to have a data

type supplied in the declaration. The interim variables may not have data types

declared at all. When using operations to manipulate these variables, there is a

problem of using data types consistently. For instance, it is meaningless to add a

character string to a decimal number, or to have a character string assigned to a

decimal number. On the other hand, if one character string is equal to a variable

which does not have a declared data type, it is reasonable to assume that the latter

has a character string data type as well. Data type propagation checks the

consistent use of data types in each assertion and expression and defines a data

type for each variable which does not have a clearly declared data type definition

when it can be propagated from another variable. It also flags errors if it finds an

inconsistency.

22

When MATHMODEL cannot propagate the missing information or resolve

the conflicting information, it flags an error. In the error message it gives the

reason for the error, the assertions involved in the error, and seeks assistance

from the user.

3.3. Implementation Related Part of MATIIMODEL

Using the previous results, the implementation related part can proceed. It first partitions all

assertions into the smallest blocks (each block is an MSCC) and organize then them in an

optimum order in terms of using memory and execution time for the respective generated

program. This leads to generating a schedule of computation events in the form of a flowchart.

Analyzing the blocks, it is possible to detect additional types of errors in each block which are

caused by circularity in the user specification. If no error is detected, a solution method is selected

for each individual block. The code generation phase finally transforms the events in the

flowchart, one after another, into respective sub-programs. It then merges the sub-programs

together, and produces a complete conventional language program. This part consists of 4 phases.

The input and output of each phase, their connections, and the report and error messages

produced in each phase are shown in figure 3.2.

The impl.mentation related phases are discussed below.

Phase 7: Scheduling:

MATHMODEL allows a user to choose a representation for his problem in the most natural

and convenient way for that problem. But this usually does not correspond to the most

efficient way to perform the computation. The scheduling bridges this gap by taking a user

specification in the form of an array graph and producing from it an optimal flowchart in terms of

minimizing memory and execution time in the generated program.

Using the array graph as input, the scheduling produces a flowchart as output. The flowchart

corresponds to the execution order in the conventional language program that will be generated.

23

dictionary and
modified array graphI

V

I 7. scheduling I ---- > cycle error/warning
+ -------------------------- flowchart report

I
V

optimally efficient flowchartI
V

I 8. selecting solution I> inconsistency in optm.

methods i or in simultaneous
-------------------------+ equation systemsI

V
modified flowchart ----- > formatted report

I
V

I 9.symbolic manipulation I
I part II I ---- > symbolic manipulation

-------------------------- report

V
modified flowchart

V
--------------------------- constraints errors in
I 10. code generation I ---- > the compiler or

-------------------------- computing environment

V
the generated program

Figure 3.2

Implementation Related Phases of the Compiler

The flowchart is recursively defined as a sequence of linear order elements that may be

nested. That is, at the highest level, it is a sequence of linear order elements. In turn, each element

consists of a sequence of linear order elements, and so on. The element, on the one hand, is an

aggregation of statements of the user specification. On the other hand, it represents a computation

event which will be translated into a piece of conventional language code in the later phase.

24

The following are four different kinds of elements, their corresponding statements in the user

specification, and their meaning in terms of the computation events.

1. node-element: a node-element is a terminal element. It represents an assertion or a

data statement. It may correspond to an assignment, or an I/O operation in the code

generation.

2. for-element: a for-element is a structured element which can be recursively

redefined as a sequence of other elements. A for-element corresponds to a for-loop

in the generated program.

3. simul-element: as with a for-element, a simul-elcment is a structured element. A set

of simultaneous equations or an optimization with its related constraints constitute a

simul-element. This element corresponds to a computation event which includes the

solution method, the related parameters, and the mathematical formulas used in the

solution methods. The simul-elemcnt contains the attributes of initial value,

iteration number and other parameters for the solution method. If these are given in

the user specification, they are added into the simul-clement. Otherwise, they will

be decided and filled in by the compiler in the next phase.

4. cond-element: a cond-element is a structured element which corresponds to a

conditional equation. A cond-clement consists of one or two elements which

correspond to the 'then' and 'else' parts of a condition.

Two mutually recursive algorithms are used to produce a flowchart from an array graph. The

first algorithm finds and schedules all the MSCCs of the array graph. The second algorithm takes

each MSCC as a single node and performs a topological sort. Then, for each MSCC the first and

second algorithms are called again to decompose the array graph further. This process is used

recursively until a terminal node is reached. A straightforward sorting may cause the generated

program to be very inefficient. A global optimization technique is used in the topological sort to

minimize the use of memory space in the generated program, and consequently the execution

time is also minimized.

25

Phase 8: Selecting Solution Methods:

The scheduling in the last phase puts each system of simultaneous equations or each

optimization assertion and related constraints together in the form of a block. Each such block

forms a simul-elcment in the flowchart. This phase analyzes this simul-element in the flowchart,

and either applies the user specified solution method or automatically selects a solution method.

The method is selected based on distinguishing optimization from simultaneous equation

problems and linear from nonlinear problems. The criteria for selection of solution method is

shown in figure 3.3.

----------- --------------------------------------

I I linear I non-linear I
----------- --------------------- +-----------------
I optimization I Simlex I Search I
------------- +---------------------------------------
I simultaneous I Gauss I Gauss-Seidel I
I equations I Elimination +----------------+

I I Search I
+-------------+--------------------------------------

Figure 3.3
Criteria for Selecting Solution Methods

If there is more than one optimization assertion in one block, then the mistake is reported to

the user.

Phase 9: Symbolic Manipulation (Part II):

Some solution methods require a specific format for the assertions.

For the Gauss Elimination method, the equations have to be in the form of
AXfB

Here A is the matrix of coefficients; X is the vector of the unknown variables and B is the vector

of right hand side constants.

For linear programming, the format has to be

minimize (C X)
subject to:

A X <=B

Here X is the vector of decision variables; C is the vector of the coefficients for the objective

function; B is the matrix of coefficients of the constraints and B is the vector of right hand side

constants for the constraints.

26

For both search methods, an assertion

f (x) =g (x)

is transformed into

F(x) = 0

Here X represents all the variables (both dependent and independent) appearing in the assertion.

For Gauss-Seidel and Jacobi methods the user is required to write the equation with the

dependent variable on the left hand side. If the user does not write the equation in the correct

form, this will be flagged as an error.

A user may add new solution methods. If a new solution method does not need a new

format, then no new symbolic manipulation is needed. However, if a new solution method needs

a new format, such as the Newton-Raphson method for nonlinear equations, the symbolic

manipulation capabilities must also be added.

Phase 10: Code Generation:

After scheduling, a flowchart is produced. For each kind of elements in the flowchart, there

corresponds a specific piece of code. This correspondence can be summarized as follows:
e a node-element: assertion node: this corresponds to an assignment in the

conventional language program. However, since the same memory element may be
reused, the corresponding subscripts may have to be deleted in the generated
program.

o file node: if this is source data, it corresponds to opening the source file statement; if
this is target data, it corresponds to closing the file statement. The file node also
produces some declaration statements which provide the variables to be used in the
executable statements.

e record node: if this record is in a source file, it corresponds to reading a record from
a source file to a record buffer, if this record is in a target file, it corresponds to
writing the record buffer into the target file. The record node also produces some
declaration statements which declare the related buffers

field node: the code for a field node depends on whether the parent record node
should be packed or unpacked. If it does not need to be packed or unpacked, the field
node has no corresponding code. Otherwise, if this field is in a source file, it
corresponds to copying the value from the record buffer; if this field is in a target
file, it corresponds to copying the value to record buffer. The field node also
produces the declaration statement which declares the corresponding field variable.

Each for-element corresponds to a for-loop or a while-loop statement. If the range of the

corresponding loop is a constant, or is defined by a size-prefixed control variable, a for-loop is

used. If the range is defined by a end-prefixed control variable, a while-loop is used. The

27

contents inside the loop are from the constituents of the for-element.

Each simul-element corresponds to a linear program, a nonlinear program, or a system of

equations. The simul-element contains the solution method, the parameters, and the related

assertions. The solution methods allowed were shown in Figure 3.3.

The format of each of the above solution methods is different. They are classified as:

1. Using the assertions to generate the executable code directly; Gauss-Seidel, Jacobi,
and both search methods belong to this class,

2. Using the assertions to generate the necessary parameters which are used to call the
pre-progrimmed subroutines; Gauss elimination and simplex method belong to this
class.

3. Each condition-element corresponds to an if-then-else structure. The constituents
of the if-thcn-clse are from the constituents of the condition element.

The code generation phase simply takes elements from the flowchart one after another,

analyzes them, and produces a specific piece of code in a conventional language. The dictionary

and the syntax tree of each assertion provide an important information source for this phase.

3.4. Execution Related Phases of MATIIMODEL

After compilation, a conventional language program is generated. A conventional language

compiler and linker are used to produce an equivalent machine code program. After executing

this program, the variables in the target files have been evaluated.

28

The execution related phases are shown in figure 3.4.

the compiler generated
conventional language programI

V
+-------------------------
I 11. procedural languagel
J compile and link I
-------------------------+I

V
executable machine code

I
V

4----------------------------------

1 12. execution I ---- > run time error
-------------------------+ reportI

V
results

Figure 3.4

Execution related Phases of MATHMODEL

The following two cases may occur:

1. The variables cannot be evaluated, or

2. Although evaluated, the user does not like the results and wants to make changes to

the mathematical model.

These usually happen when:

" The mathematical model is wrong,

" The source files have mistakes,

* The parameters in the solution methods are not properly chosen.

In order to help the user to determine exactly what and where the problem is, the programs

produce runtime error messages. The runtime error messages include:

The block name, which indicates the place where the problem happened,

The position of the assertion

A hint to reset parameters.

29

4. TASK 2: DEMONSTRATING THE USE OF MATHMODEL

4.1. Objectives of the Demonstrations
The objective of Task 2 has been to produce evidence needed to convince potential users of

the advantages of MATHMODEL. Three approaches to meeting this objective are discussed in

the subsequent subsections, as follows:

1. Explaining the underlying methodology of using MATHMODEL. Mathematical

modelling has a discipline that the developer must follow, starting from the

establishing of requirements to providing answers to the questions asked of a

model. Explaining how MATHMODEL fits into this discipline is an important step

to meeting the above objective. This is described in Section 4.2.

2. Use of small examples. The example can be used for training purposes, to illustrate

the language and the operation of MATHMODEL. Three small examples are given

in Section 4.3. They are also intended to present and illustrate MATHMODEL to

the reader of this report.

3. Use of Large Examples. MATHMODEL may be used in large mathematical

modelling projects to develop one or several components - typically a procedure or

a task. This goes beyond the scope of this report. A summary of another project at

CCCC where such a development took place is provided in Section 4.4.

4.2. Use of MATtlMODEL

This section explains how to use the MATHMODEL system. Figure 4.1 explains seven

steps in using MATHMODEL. This is followed by descriptions of each of these steps.

Steps in Using the System:

1. A user formulates a mathematical modelling problem. He provides mathematical

formulas (equations, optimizations, inequalities, and equalities) to describe a

physical or social process and some data from observations or experiments in a

database. He needs to describe values of variables which represent the model.

2. The user represents the model as a specification, which consists mainly of the

30

mathematical formulas themselves.

3. The user submits this specification to MATHMODEL. It checks the input

specification for completeness, consistency, and ambiguity, partitions the user

specification into the smallest blocks, selects a solution method for each block, and

maps the user's assertions into each solution method. If any of these fails, error

messages are produced. Otherwise, a conventional language program is generated.

4. MATHMODEL produces documentation. A user can select various reports,

including: a listing of the specification, an equation-variable match report, a cross-

reference report, a subscript-range report, a flowchart report, a listing of the

generated program, and an error and warning report. Analyzing these reports, a

user may wish to go back to step 2 and modify the specification. If everything is

acceptable, he proceeds to the next step.

5. After having successfully generated a conventional language program, the user can

submit it to the conventional language compiler and load it in preparation for

execution. Before running the program, he must have his source data files.

6. After running the program and examining the results, the job is complete if the user

is satisfied with the results.

7. If the user is not satisfied with the results, he can alter the specification and return to

step 2.

MATHMODEL is designed to accept mathematical formulas directly. Therefore, using the

mathematical formulas, the user simply adds a header and data declarations to form a complete

specification. The header gives the module name, and source and target file names. The data

declarations give the structure cf the source and target files.

31

Source Data
<--+ Stp

Data Processing
/ I Requirements

I PROGRAM I

Stop 3
Target Data Key In

and run
MATEMODEL

0 Step 2 +-------------- -------- +
_ Compose MATHMODEL I Computation II I

I \ Statements +-------------- I I I
J_ /------------ > I Data 1--+ I

\ +--------------+ I ------------- > MATH- I
\ I Header I--+ 1 MODEL I

I I I SYSTEMI
-------------- I I

stop4 Analysis I I
Partition I I

Select solution mthodl I
Symbolic manipulation I I

----------------------------- < -------------------------- I I
and Program Documentation I I

I 3
v

PL/l
PROGRAM

+ I
I +---------------------

IvI V
I +------------------

I PROGRAM IStp5
I COMPILATION I Compile and
+--------------- Load

I I
Program
Module

Step 7 Step 6 I
JChange Specification run Program

I for a Revised \ I /
I Requirement +-------------+
< ------------------------------ I PROGRAM I

If target data ------------- +
is not acceptable /

Figure 4.1
The Overall Procedure for Using MATHMODEL

32

It is the user's responsibility to modify the mathematical model, correct the data, or change

the parameters. In the generated program, MATHMODEL includes code to produce a report that

provides the user with essential information on the problems encountered during execution and

how to overcome them.

There are 6 solution methods built into the system. The possible execution error phenomena

and its possible reasons for built-in solution methods are listed in figure 4.2.

Numerical Phenomena Reasons
Methods

Gauss elimination can coefficient matrix
Elimination not continue singular

Simplex objective goes constraints are not
to infinity properly given

Jacobi not convergent iterations, relative
error are not properly
given, or the problem
does not converge

Gauss- not convergent iterations, relative
Seidel error are not properly

given, or the problem
does not converge

search not convergent iterations, relative
(nonlinear error are not properly
equations) given, or the problem

does not converge

search not convergent iterations, relative
(nonlinear error are not properly
programming) given, or the problem

does not converge

Figure 4.2
Runtime Error Messages and Their Reasons

If any of these errors occur, the generated program prints the error message to give the

position and reason for the error. According to the error message, the user might need to correct

the mathematical model, or change the parameters in the solution method, then recompile the

specification again. This corresponds to step 7 in figure 4.1.

33

4.3. Illustration of MATIIMODEL Through Small Examples

Three examples related to an electrical circuit arc used in this section to explain the power

and the concept of MATHMODEL. Complete MATHMODEL reports of the first example and

partial MATHMODEL reports of the other examples are also given below.

The circuit is shown in figure 4.3. It is designed for use on a V 1-volt source of electromotive

force in charging V2-volt and V3-volt batteries connected in parallel. The symbols VI, V2, V3,

RI, R3, I1, 12, 13 represent the values as shown on figure 4.3.

-- > I1 -- > 13
+-------- -+ == ------- +

Ri I R3
I I I
I I I

0 Vi 12 1 --- V2 --- V3
II -I

+-------------+-----------------------

Figure 4.3

V I Source Charges V2 and V3 Batteries

Create a mathematical model of the circuit to answer the following questions:

* Question 1: If the currents 11, 12 are given, find the values of RI and R2.

" Question 2: If the purpose is to maximize the output power,

W=v2*12+V3*13 ,

find the values of 11, 12 and 13. From them, find the values of RI and R3.

" Question 3: Suppose that

power=kl*W=k* (V2*12+V3*13), and
cost=k2*Vi*II+k3* (VI*Ii-W)

Here the cost has two terms. The first term is the power consumed, the second term is

the cost for cooling two resistors RI and R3; Maximize the cost/power. Then find the

values of RI and R3.

34

Question 1: Composition of the mathematical model:

According to the Kirchoff laws, we have

Il*R1=VI-V2;
II*Rl+I3*R3=VI-V3;
I11=2+13;

These three equations contain all the infomlation to answer question 1. They are submitted

to MATHMODEL to solve RI and R3 from given VI, V2, V3, 12, 13.

Figure 4.4 (a): The user specification for Question I

module: circuit;
source: param;
target: design;

1 param is file,
2 inr is rec,
3 (vl,v2,v3,i2,i3) are field(pic 'zzz9v.99');

1 design in file,
2 outr is rec,
3 (rl,r3,il,w) are field(pic 'zzz9v.99');

il*rl=vl-v2;
il*rl+i3*r3=vl-v3;
ii=i2+i3;
w-v2*i2+v3*i3;

3S

Figure 4.4 (b): Reports

.*** BOURC3 1,IIING

3UEL P3UOCIOMt WVflIC 7.6:K4 UIT3 SLOCS SThVC1UZ 0U VAX 11/750 OCYCUZ3 27. 1967 09:02:55.99

7114 some: at1 imp

* CIRCUIT W0U1Z 393CIZCILTZOCU

£ UZZ: crRcvrT:
S UURCI: P3383;

3 2ARMY: ZSSIM;

* 1111 D3BCRIPWZCS:

............ *n.....*......*.......................*..........

ON 1 3M in VTAL,

4 3 (Vi,V2V.22I3 An 3 r 130(P 1 '8u29V.99')

9 VA"cIIT OW0383 113

36

igure 4.4 (b) Continued

ASSERT334ION VARIABLE MVCEPOR0T "*

30S1 VTZOM RXLATED VAAASZ

£4836 VARIABLE1 DR7INED EXPLICITLY 333161.41
AK887 VRRIASIA1 321133 E31LICILY 338161.3
ARM3 VARIASLM DIVINED EXPLICITLY V38161.11
£4839 VARXAMIB DINEUD EXPLICITLY DESION.

***** CROSS 331233403S AND A!TRIEWE3 334 REPOR

3RAW DECLARED A!12I33128 STAEIN! VUBR REFERENCE

CIRCUITI MDUI NAME
138161 5 VIZ. TROI?, UNSORTED 3
21 5 VIEW.) FICTURE'33gY. 99' is VILEB 33813 S. 4, 7. a

22 4 VIRTZ. 1ICTURSZ*Z9W.9' IN FILE 143AM 4. 3.

is 4 VIEWI. PICTUR'a%39V.99' IN FILM 34AM 4. 7, 6, 9

Zk4 V30033, (5 13-MORAM, IN VILM 14AM a

CUM2 5 33003,(4 SUB-1MR8A), IN FILEK DE8I08 S

F4AM 4 VILE, SlOURCE, UNSORTED) 2
R1 5 VIEWD, VICTU'.XX~.99' is VILE 333208 5, 4. 7

335 FIRM, VICTUMREEiz933 IN FIX& 333161 5, 7

V1 4 VIEWD, FICTUR'gvZ3'..39 is FILE 14AMA 4, 6, 7

V'2 4 WIRTZ, VPICTUR'X129y.993 IN VILE F4AM4, .

V3 4 FIELD. VICTVUZ'uszgw.g 1N VILS P4AM" 4, 7, 3

w a VIEWo, 11cu3E'gft.33' IN VILE Danz= ,

71JO VZCU3! 331F! RT *

MET
mum6 LVL: DENScRIPTION EvEN!

CIRCUIT MOULE 3R1M 130033618 334313
14AM1 13I.2 OrEn film
XOR REC0RD IN FILE 14AMR READ 33003.3
V1 VIEWh IN RECORD 133
va VIELW IN RECORD T3R
V3 VIRM IN RECORD INA
12 FIRW IN R2COPRD INA
13 VIEWD IN RZCORD 133
A4843 EQUATION
w W1ILW IN RECORD 0OUT TARGET OF EQUATIOK: 44883
44883 EQUATION
I1 VIEWZ In RECORD OUT 14A0=! OP EQUATIOU: ARM3
Ames4 WQATION
RI VISTA IN RECORD CUTS. 14A08 OP EQUATION: 44884

ARAEWIN3?33004130?O EQUATION: 43

cum3 RECORD IN VILE 11361m WRITS RECORD
338161 VILE CWEM VILE

END

37

viguze 4.4 lb) Continued

no diamnsion, speifications

* CIRCUIT "OOVIA IPBCIPICATZOR

HOUMA: CIRCUIT:
SOR: PAlAM:
?hAM: DRO815:

* DATA DESCRIPTION:

* DROCRIPTION OF PARM *

1 FRMRA If FIlE.
slOasm KM is NOTOWNI

aR I i ECOR

2 V1i rIsm13 (PIC '2229V.Og'),
S SI V2i IEWD (PIC 1222T.991),
3 iS V3 s (110a preW P Zst~ pl
3 22 13 FIREW (PlC '22aitv.A'),
3 13 12 VIREW (tIC '2229T.99'):

1 Duslw re VlE.
StORAGE KUM 10 NSTOINi2.

It OUTS IS RECORD
I at is VIEWD (PIC '2229.99'),

3 II is VIEWh (via 18229W.991),
3 W 12 FIREW (PIC 'xms~v.99'):

'ABSERtICU(B) FOR VIIE(DZ$IGE) '

DUI.Ii -AM.22 *PARAN.IS

33815.31 -(PARRK.V1 -PAAN.V2 I/DES. Il

** O*PRNATTED MEORT **

33815.33 -IPAEAM.l -PAPAMYS -DEaIG.I1 *DzsIg.RI)IPARDM.13

U3515.1 *ApAN.v2 *PAA.12 4PARAM.V3 *PARAM.IS

* Eam ai VOAIIATTED REPORT

........~.....................tA aaaaaaa a.a~ a .. a.............

38

IL11/I PROGRAM

CIRCUIT: 110033 OPTIONS (vkN):
OML IMMIU CUM(l):
DO!. PAI3AMS ROOMn SUMi INPUT:

DCI. PIZM1*32U1 all(1) I231(' 0,):
DCI. P342 CUaa(35) VARYING 1323("1):

DO?. $W43 CSAR(35) 33130(A003(PARR23)
DCI. SV7 032126) 33130(2DDR(D3113))
DC&. 0382033 l.3CWD 3301. 003Y0 333(AxxIMMRlcORD_3223 (20)):
DCL $133D3123 313(1) 231(l'3):
CRNX F228(0382033) 0UTPUT:
DCZ. $PY.30330 CUNP4270) VAR:
DCI. 31F~ NILS 310030 00310:
DCL 331CM 323 32T(1) STATIC 3('3)
DCI. p3303 im 313(15.0) xxim():
DM? $P02_DCU320) 31141):
DC?. $110. AL03 31:SIX
DC&. (P Z9P.1. M*81:
DUCLAM

3 A1 V1C'sust3.99'.
3 33 PIl' 3333.93'.
3 21 vlC' 33333.99'.
3 W 12C'staft.991:

I 1FARM,
2 233.
3 VI 11033393o.99',
3 V2 PXC'zsxtY.$S',
3 V3 VIC'sattY.39',
3 12 PlC' 33.9v.99',
3 13 11C'ax.3Y.99':

DC I (30,3318033) 323(1) 2313(11'3):
DCL (130*3.03331 303w 33U.230) 313(1) 11 '')
ON 3301218(PAIMUw) 33023:

D3CI.383 PJ@_PZR a318 LJU VALU8 3333 Vim32 (31):
DCL 33103 = 33023: S AZ I=090)

IN C30093().w*l$_ TERM am3 0030- 2$:

I1 030093 ().*LI$_C M W ISOM DO:

I1 samor-m a2 3RO> TUX30 WyT 3313 11.(333.0) 3303 ($z33203301u):
330:
31.33 CAL 3331022.0

SUM,:
0933 1213(1*823) INPUT 3301. 33009D:

33AD 121.3(33321) INTO (32*23):

/* 9*/033103.W1**2M.322*23V. 22AR .V31*A.13;
/* 3*/D31103 21l2hc*N 12+W2223 23:
/* */D33103.31(P1U.V-PA2*M.V2) /03313.11:
I* 7 *D3.3((2*.I13.~3 030.!'3!33)/22.3
33133 1218t(0332033) 13ROM ($33"7):
CLO33 121* (033203):
333033:
WND CIRCUIT:

39

Question 2:

Question 2 can be solved by linear programming. It can be expressed as an optimization

function with some additional constraints (the constraints restrict the solution domain).

w = maximize(V2*12+V3*13) dec var 12, 13;
I2<=6;
13<=4;
12, 13>=0;

From this linear programming, the values of I1 and 12 can be solve. Substitute these valves into

the two equations in the solution for question 1 above, we can get a set of complete assertions for

question 2.

Figure 4.5 (a) The user specification for Question 2

module: circuit;
source: param;
target: design;

1 param is file,
2 inr is rec,
3 (vl,v2,v3) are field(pic 'zzz9v.99');

1 design is file,
2 outr is rec,
3 (rl,r3,il,i2,i3,w) are field(pic 'zzz9v.99');

il*rl=vl-v2;
i1*rl+i3*r3=vl-v3;
ii=i2+i3;

w-maximize(v2*i2+v3*i3) variable i2,13;
i2<=4;
i3<=4;
12+i3<=6;
i2, i3>=0;

40

Figure 4.5 (b) The flowchart report for Questioni 2

WN
UaNN LVI.: bimzp!IO 33

lAMIT NOD18 lam WINSO X I

vi ,rawM IN RBMac MRm
V2 FUELD IN maccan INm
V2 113WD IS Xaccan INN

URTAM: S.IIZX (IMAUWC nhim!ICAI PRmOPAmaiNu or
Il FIRM IN mAccan calm
13 113WD IN maccan ci.
AMiga agumaza

F IELD IN RMacca OUTS TAGET Or ioQlAZc: LAA
L.10j "zURoaxiTw CouSTmxuy
tool 113Wb
Aaiiii INUQUALZ?1 COWiTmAIu!
082z FBLa
8AS12 lIagUA1J!Y OKiPLmAII
Pts' FIRM
AROa12 zIuaaiaiz.. COMEaRmAx

OW FIRM
AMANm zugavAzr Cmvjaur

Mns FIRM
1 UM inTHOD: MiNV181 ($,Mj1NAZ0C MTMTIL PROGAMINGa DOCK

Miiis 30uAl10U
21 FIRM iN cn caK m Uauaazc OrIAIK AMm

81.337 SQUAllow
23 FULD IN maccan cam TmARGX Or acualOw: ARig7
caum micoRD is rigna usryg WAT maCOR
DESIG Flm~ ciaM. Firm

gun

41

Figure 4.5 (c): The generated program for Question 2

CIRCUIT: PROCEDURE OPTIONS (MKIN);
DCL *M1ALSTR CHAR (1) ;
DCL PARA149 RECORD SEQL INPUT;
DCL $FSTPRAKS BIT(1) INIT('l'B);
DCL ENDFIIZ$PARARS BIT(1) INIT('0'B);
DCL $1B49 CHAR(21) VARYING INIT('');
DCL $7X49 FIXED BIN(31, 0);
DCL $RV5O CHAR (21) BASED (ADDR (PARAN))
del (Sne of-ass,$no-of var) fixed bin;
del simplez entzy((*,*) float bin(53), fixed bin, fixed bin, (*)fixed bin,fixod
bin, (*)float bin(53));
DCL $RV42 CHAR(42) BASED(ADDR(DESIGN))
DCL DESIGHT RECORD SUQL OUTPUT ENV(MAXIMUMRECORDSIZE (42));
DCL $rSTDESIGNT BIT(l) INIT(1'B);
OPEN FILE (DESIGNT) OUTPUT;
DCL $ERROR BUr CHAR (270) VAR;
DCL ERROR? FILE RECORD OUTPUT;
DCL ERROR? BIT BIT(1) STATIC INIT(11');
DCL $ZRROR FIXED BIN(15,0) INIT(0);
DCL $NOTK_DONE(20) B1TC1);
DCL $TMPVAL FLOAT BIN;
DCL ($RDLP$,$RL) LABEL;
DECLARE

1 DESIGN,
2 OUTR,
3 RI PIC'z9v.99',
3 R3 PIC'zzz9v.99',
3 11 PXC'zzz9v.99',
3 12 PIC'gzz9v.99',
3 13 PIC' zzz9v. 99f,
3 N PIC' zzz9v. 99';

DECLARE
1 PARAM,

2 INR,
3 VI PIC'zza9v.99',
3 V2 PIC'zz&9v.99',
3 V3 PIC'zzz9v.99';

DECLARE
1 INTERIM,

42

Figure 4.5 (a) Continued

2 WDl BIT(l),
2 D2 BIT(l),
2*0M3 BIT(l),
2 M4D*I T(1),
2 D5 SIT(1);

DCL (TRUE, SELECTED) SIT (1) INIT ('1'S);
DCL (FALSE,NOT-SILK, NOT SELEcCTED) SIT (1) INIT ('0'S);
09 ENDYILE (PARANS) BEGIN;
EUIILE$PARANB' 1'S;

$FS49-COPY(' ',21);
END;
ON UNDFINDFPILE (ERROEF) ERROEP SIT-' 0'S;
DECLARE PLI* CHVER, GLOBALREF VALUE FIXED SIN (31);
DECLARE 318$ ELK GLOSALEF VALUE, FIXED SIN (31);
On ERROR BEGIN;
IF ONCODE ()RMS$ ELIK THEN GOTO $RDLP$;
IF $ZRROR-0 TEN CALL ES tNAL 0;
IV ONCODEC) -PLI* CNVERR THEN DO;

$ERROR-l;
IF ERROEF SIT a $EEROE>0 THEN lIRITE FILE (ERROEF) FROM ($ERROR_ SUF);

END;
ELSE CALL ESIGNAL O;

END;
OPEN FrILE (PARANS) INPUT SEQL RECORD;
$ERROR-1;
READ FILE (PARJANS) INTO (PAA);

IF $RR-~0 TEN $EEROR-1;
*EEROR SUF-$RVSO;
$no of-aan4;
*no-of var-2;
begin;'
del $aoeff ($no of ass+l,$no of-var+1) float bin(53);
del $opezation($znoof ass+1) fixed bin(31,);
del $result(*no-of as's) float bin(53);
del ($iii, $iiii, $Lease) f ixed bin (31, 0);
do $Lii-1 to $noocf-ass+1;

Soperation ($111) nO;
do *iiii-l to *no-of var+l;

$coeff ($i±1, $iiii) mO;
end;

end;
*aoeff(1,2)u$aoeff (1,2)+PAEAN.V2;
*coeff (1,3) incoeff (1,3) +PARAM.V3;
*operation (2) r-i;
$*oeff (2,2)rn$coeff (2,2)-i;
$coeff (2,3)rn$coeff(2,3) -1;
$coeff(2,1)-$coeff(2,1)+6;
*peration (3)-1;
$coeff (3, 3) m$ooef f (3, 3) -1;
$aoeff (3, 1)in*ff (3, 1)+4;
$operation (4)i-1I;
$ooeff (4,2)rnc*off(4,2)-1;
$ooeff (4, 1)-$ooeff (4, 1)+4;
call sizplex(*coeff,$no-of-ass,$no-of-var,*operation,$ioase,*rsult)

43

Figure 4.5 (c) Continued

DESIGN. !3-$result (2);
DZSIG.W$result (3);

end;
/* 8 */DZSIGN. I1DESIGN. 12+DESIGU .13;
1* 6 */DZSI N.Rlin(P3AI.V1-PAPAX.V2) /DESIGN.I1;
1* 7 */D3SIGN.R3-((PARAN.V1-PjRAM.V3)-DESIGN.I1*DESIGN.R1)/DZSIGN.13;
WRITE FILE(DESIGNT) FROM ($RV42);
CLOSE FILE (DESIGN!);
RETURN;
END CIRCUIT;

44

Question 3:

To solve question 3, find the formula for the ratio cost/power first.

cost = k2*Vl*I1+k3*(VI*I1-W)
= (k2+k3)*Vl*I1-K3*W

cost/power = (k2+k3)*V*II/(kl*W)-k3/kl;

Using constants cl=(k2+k3)/Kl, c2=k3/kl; the above formulas can be written as:

cost/power = cl*Vl*I1/W -c2;

Since the purpose is to adjust the currents 12 and 13 to make cost/power maximal, the values of 12

and 13 do not depend on cl and c2. We can drop out cl and c2 to make the problem simple. The

final optimization problem can be written as (the constraints are added arbitrarily to make the

results meaningful.)

mu = maximize(VI*(I2+13)/(V2*12+V3*13)) DECVAR: 12, 13;
12, 13>=0.5;
12<=6;
13<=4;

If we put these assertions together with the two equations in the solution for question 1, we get

the specification for question 3.

45

Figure 4.6 (a) The user specification for Question 3

module: circuit;
source: param;
target: design;

1 pazam is file,
2 nr is rec,
3 (v,vl,v2) are field(pic 'zzz9v.99');

1 design is file,
2 outr is rec,

3 (rl,r2,il,i2,i3,w) are field(pic 'zzz9v.99');

il*rl-vl-v2 ;

il*rl+i3*x3=vl-v3;
ii=i2+i3;

w=minimize (v* (i2+i3) / (v2*i2+v3*i3)) variable i2, i3;
i2,i3>=0.5;
i2<=4;
L3<-4;
12+i3<=6;

46

Figure 4.6 1,b) The flowchart report for Question 3

huRM VILS Men Film
MMg 330039 In VULZ IPuiM ROAD AR00.9
vi FULD IN 33003 Zn.
V2 Tinto is 3300. zmg
V3 rXILD IN ReoMD zag

1 JIUS. SIMPL3 ($NAIXNSIe KURaMAICAL PROGRMMING BIDCZ
X2 VIVID is 330090OM
13 VIRW in m3e0= 09TR
Ahmed M09AT103

MW Tim IN RECORD ouMM Tine? Or WQATION: AAI29
ARX81 INBOUMzrr CONSinazaT

Ms5 VIIE
ASM1 InaaALITT OMaiTR~KN
0004 VIREW
A"910 znuQUAztv owefaWwxn
9,i Tinto

AASEII rMWQALIT COCWiAMT
SD13 112W

AASION ImmovU~TY CONStAm
$0$2 rzzn

13 =0MTOM: NIMPUR ($VANUL0. XXU&TatCIL PF40GAaMKu 210M
Aiim. RMUTION
11riz F ZIN gzOOan 09Th TilOST OFN EUMTXCM 17831
Amed EQUATION
al rz13W in Racon vT auROS tae. ON 309331 : Ahim
ARMS7 EQUATION
R3 VIEWD IN 330039 OUtm VARe., OF EQUMt1,09 AFiI7
phid ZmQUaff
W iu in Ancown ovTh TARG32 OFN QUAtICK: AROXid
(M.m AECORD IN ViLa)9U1C WRITE AECR
melon rzta con rizz

amD

47

Figure 4.0 (c) The gcncratcd program for Question 3

CIRCUIT: PROCEDURE OPTIONS (MAIN);
DCL $MALSTR CRAR (1);
DCL PARAMS RECORD SEQL INPUT;
DCL $FSTPARAMS BIT(1) INIT('1'B);
DCL ENDPILZ$PARAMS BIT(l) INIT('O'B);
DCL $FBS1 CNAR(21) VARYING INIT('');
DCL $FX5l FIXED BIN (31,0);
DCL $RV52 CHAR(21) EASED(ADDR(PARAM))
del $no-of-var fixed bin(31,0);
del search entry((*)float. bin(53),float bin(53),fixed bin(31,0)
,entry,.ntry, fixed bin(31,0), (*)float bin(53) ,bit(l));
;evaluatol: proc(xxx) returns(f lost bin (53));
dal xxx(*) float bin(53);
return((PARAN.V1 *(xxx(1) +xxx(2))/(PA3RAM.V2 *xxz(l) +PARA.H.V3 *Sm(2)
))**2);
end;
$insidel: proc ($xxx$) returns (bit (1));
dcl $xrvx$(*) float bin(53);

D5 =xxx (1) +xxx (2) <=6
D4 -xxx(2) <=4;
Dl -$2cx$(2) >-O.5;
D3 -xxx (1) <=4;
D2 mxxx(1) >=0.5;

dcl (D5 ,D4 .Dl ,D3 ,D2) bit(1);

return($0$5 &D4 GDl &3D$3 &$D$2)

'and;
DCL $R743 CHAR(49) BASED(ADDR(DEBIGN))
DCL DESIGNT RECORD SEQL OUTPUT ENV(MAXIMUMRECORDSIZZ (49)';
DCL $FSTDESIGNT BIT (1) INIT (''B);
OPEN FILE(DESIGNT) OUTPUT;

DCL $ERROR BUYP CHAR(270) VAR;
DCL ERROR? FILE RECORD OUTPUT;
DCL ERROR? BIT BIT(1) STATIC INIT('1'B);
DCL OERROR FIXED DIN(15,0) INIT(0);
DCL $NOT _DONE(20) BIT(l);
DCL $TNPVAL FLOAT BIN;
DCL ($RDWLl$,$RL) LABlEL;
DECLARE

1 DESIGN,
2 OUTR,

3 Ri PIC'zzz9v.99',
3 R3 PIC'zzz9v.99',
3 11 PZC'zzz9v.99t,
3 12 PIC'zzzgv.99',
3 13 PIC'zzz9v.99',
3 W PIC'Izz9v.99',
3 NU PIC'zzzgv.99';

DECILRE
1 PARAM,
2 INR,
3 Vl PIC'zzz9v.99',
3 V2 PIC'zzz9v.99',
3 V3 PIC'zzx9v.99';

48

Figure 4.6 (c) Continued

DECLIEE
1 ZNTERIM,

2 Dl BIT(1),
2 D2 BIT(1),
2 D3 BIT(l),
2 D4 BIT(1),
2 D5 BIT(l);

DCL (TRUE,SELECTED) BIT(l) INIT(11B);
DCL (FALSE,NOT SELE,NOTSELECTED) BIT(1) INIT('0'B);
ON ENDFILE (PAEANS) BEG~IN;
ENDFILE$PARANS' 1,3;

$FB5l-C01Y(' 1,21);
END;

ON UNDEFrINEDYILE (ERRORF) ERROEFBIT-' 0'B;
DECLAAE PLI$ CIIvzRR GLoBALP.E VALUE FIXED BIN (31);
DECLAEE RMS$_ELK GLOBALREF VALUE FIXED BIN (31);
ON ERROR BEGIN;
IT ONCODE ()-RMS$_RLK THEN GOTO $RD_1.2$;
IT $ERROR=0O THEN CALL RESIGNAL O;
IF ONCODEoa'PLI$_CNVEER THEN DO;

$ZRROR-1;
IF ERRORr BIT G $ZRROR>0 THEN wRITE FILE (ERRORr) FROM ($ERRoRBuF);

END;
ELSE CALL RESIGNAL O;

END;
OPEN FILE (PARANS) INPUT SEQL RECORD;
$ZPROR=1;
HEAD FILE (PAEANS) INTO (PAEAN);

IF $ZRRORO0 THEN $ERROR=1;
$ERROR_ BUF-$RVS2;
$no of_var-2;
begin;
del Sinitial ($no-of-var) float bin (53);
dol ($result($no-of-var),$eps) float bin(53);
del ($iii,$tim..) fixed bin(31.0);
do $iii-1 to $no-of-var;

end;
$times-3 00;
$4psamO0l;

call search($initial,Seps, $timea, $evaluatel, $inaidel,$ncf-var,
$result,11'b);
DESIGN.I2-$result (1);
DESIGN. 13=$rosult (2);
DESIGN.KU-$mvaluatel ($result);

and;
/* 8 */Z GNIl-DESIGN. 12+DESIGN. 13;
/* 6 */DESIGN.Rl1(PARAMJ.Vl-PARAM.V2) /DESIGN. Ii;
/* 7 */DESIGN.3((PAEAN.V1-PARAN.V3)--DESIGN.Il*DESIGN.Rl)/DESIGN.13;

/* 14 */DESIGN.W4IARAN.V2*DESIGN. 12+PARAN.V3*DESIGN. 13;
WRITE FILE(DESIGNT) FROM ($RV43);
CLOSE FILE (DESIGNT);
RETURN;
END CIRCUIT;

49

4.3.1. Example of Use of MATHMODEL In Large Scale Mathematical Modelling

An important advantage in using MATHMODEL in development of large scale

mathematical models is the capability to generate individual model components which can be

plugged in the larger model. Large scale mathematical models are generally constructed over a

prolonged period with numerous participants acting semi-independcntly. Use of MATHMODEL

can fit into this mode of development. MATHMODEL generates programs for respective

procedures or tasks used in the large scale model. Demonstrating this capability is beyond the

scope of this project. However, we cite the following relevant experience with use of CCCC's

MODEL in a separate project. This consistcd of activity sponsored by the Naval Surface Weapon

Center (NSWC) as part of DoD STARS project. This, so called "shadow" project, consisted of

repeating the development of a large signal processing system illustrated in Figure 4.7. The

r-quirement was to develop procedures to be plugged in for the Multiping Processing Function

shown centrally in Figure 4.7. Three parallel efforts were conducted and the labor invested was

recorded. The three efforts used different development tools: GE used manual development,

NSWC used a Computer Aided Software Engineering (CASE) system called EPOS and CCCC

used MODEL. The comparative labor costs are shown in Figure 4.8. Use of MODEL has a

significant advantage by a ratio of nearly 3:1 over the other modes of development.

so

Figure 4.7: Overview of Signal Processing System With MULTIPING
Component

MPCP ON INS VAX

,IL1P#4* COMPUTER PROCMs Aimpcp) . * :

FTTERFACE MAN4AGEMENT FUNCIION 11IMF)

1/0~ handling
*dais routing

tram I~P , ~ - Mfjj 71PING PROCESSING PUNCTON (MPPF) 10ie~so~t
&LCF.TMCP pkg*MPPF control track filler Ifack C

track predict track merge
W'i.. fe - association f orce track to diwrile LFRS~~' ~ * rrnw track OO

......... ...i

51

Figure 4.8: Results of Evaluation of the MULTIPING Shadow Projects

Stars Shadow Project Metrics

TOTA I., LA B O R

(includes Adninistiation, Requirements, Detail Design, 'icsting and Integration)

Man Days Ada SLOC SI OC/Mar Day

GE 1440 3400 2.36

NSWC 578 2100 3.63

CCCC 155 1400 9.03

Extrapolation of ialor and SLOC to Implement Entire Syslcnl

Equivalent
Implemcnted % Actual Projected Projected

CMS 1,OC Inplemented Labor Labor I .0C

GE 740(0 10) 1440 1440 341)0

NSWC 5000 68 578 850 31X)

CCCC 2100 28 155 553 5000

All Data Taken fronl NSWC 3/6/89 Presentation

52

5. TASK-3: INVESTIGATION OF THE MARKETPLACE FOR

MATHMODEL
The marketplace for MATHMODEL is wide and varied. In the following we consider only

the initial product and the respective marketplace that will be addressed immediately in Phase III.

There is a potential to expand the initial product and marketplace greatly.

5.1. Definition of the Initial MATIIMODEL Product

The initial MATHMODEL system that will be offered to users in Phase III is envisaged to

consist of the following:

MATHMODEL as described in Section 2.

Platform: Digital VAXstation with large color screen. VMS
operating system.

Languages: PL/1, Ada, C and Fortran

Price: $50,000 - $100,000
Includes $20,000 - $40,000 for

a) workstation
b) software from cooperating vendors

for graphics, documentation and
library.

5.2. Definition Of The Initial Marketplace For The MATIIMODEL Product

We divided the mathematical modelling users into three classes:
1. Those being trained in applied mathematics: This is a very large market that

includes college students. There are a number of systems in existence and being
developed for this market.

2. Mathematicians seeking analytical insight into problems in mathematics. This class
of users requires sophisticated symbolic manipulation. They have been using
MACSYMA [Moses '71]

3. Large scale model developers drawn from a US community of I million engineers,
physical scientists, economists, business specialists and other social scientists.
Nearly 10%, of this community, or 100,000 developers use mathematical models
for forecasting, simulation and complex operational decisions.

MATHMODEL is oriented to the last class, and particularly to large scale model developers.

The initial market size is further constrained as follows:

Application Areas:
* Mathematical modelling in engineering and physical

S3

sciences.

" Simulation systems.

" Training systems.

Our investigation showed that if we limit the application areas to only mathematical

modelling then the economic justification for the product is marginal. It will therefore be

necessary to cover the closely related application areas of simulation systems and training

systems.

The overall user community in the US is estimated from census data:

Analysts $150,000
Engineers $750,000
Physical Scientists $200).000

$1,100,000

Only 10% of these are directly active in the above application areas. Considering, that the

MATHMODEL product will be offered in a personal workstation:

The marketsize is in the order of 10,000 units.

The total value will be in $.5 - 1.0 billion.

Of this over 60% will be attributed to MATHMODEL and the remainder to the workstation

and associated software

5.3. Marketing Strategy

Introducing new technology has historically been a slow process. The company is currently

introducing the MODEL program generation system into the large software project marketplace.

A similar strategy can be followed in offering MATHMODEL. MATHMODEL is a complex

product. It requires direct selling. Early establishment of the high quality of a product is critical

to successful market penetration. It requires first rate technical support in terms of

documentation, training and consulting.

It will be necessary to address very specific market segments in order to maximize the

effectiveness of resources in selling the product. The target clients should have all of the five

attributes:

1. Aerospace, defense, engineering organizations;

54

2. Large scale mathematical modelling, simulation and trainer development projects;

3. Projects currently funded, and in the early stages of development;

4. Currently utilizing VAX or IBM hardware;

5. Currently using CAD/CAM and/or CASE products.

Initial marketing will be oriented to proving the advanges of MATHMODEL. This can be

accomplished by selling a Transfer of Technology package which derives revenue during the

customers' evalution period. This package will include formalized training sessions and

consulting assistance, in order to convince clients of MATHMODEL's capabilities within their

environment.

The marketing channels will be as follows:
1. Direct selling activities: Most of the selling will be done with direct salesmen

accessing both the prime and sub-contractors on large scale projects.

2. Indirect sales through distributors: This will be directed mainly to foreign markets.
We have a distribution agreement with a German organization which provides
support to the client. Training will be conducted by CCCC in all aspects of the
product technology.

3. Outside cooperation in selling activities:
a. In conjunction with hardware manufacturers: IBM and Digital have been

particularly supportive in this area, providing leads and setting up seminars.
MATHMODEL will be presented at sales meetings, leading to joint sales
calls with IBM's and Digital's representatives.

b. Alliance with Software Vendors: With the completion of the interfaces,
opportunities will arise that will enhance our selling effort.

5.4. Competitive Mathematical Modelling Systems

The current mathematical modeling systems have been developed for specific classes of

users and applications. For this reason, most of them incorporate one or a few solution methods

needed for the respective applications. Also their input languages and organizations are narrowly

oriented to the respective solution method used. They are typically closed systems, difficult to

expand capabilities. As the application areas change and the respective mathematical models

increase in size and detail, changes in the mathematical modeling system become mandatory. The

history of these systems is that of continuous modification which require major redesign at great

expense.

The reviewed mathematical modeling systems illustrate the above points.

55

TROLL [Troll 761 is oriented to regression, data analysis, and solution of linear and

nonlinear equations. TROLL is open-ended in the sense of adding solution methods for regression

and simultaneous equations. However, a major change would be required to incorporate other

approaches to solutions, such as optimizations. The input language is specific to the above

solution approaches and symbolic manipulation is not provided. There have been major

investments in improving efficiency, especially due to the interpretive methods used. The

original capabilities have proved to be inadequate and the system evolved in a major way.

LINDO [Schrag 861 is a linear, integer, and quadratic programming solver. It is convenient

for a user to type in small problems interactively. It does not support simultaneous equations.

The user can compose or use a library of Fortran subroutines to organize data or produce reports.

This capability makes it versatile but difficult to use. It is not an open-end system and would be

very difficult to add radically different solution methods.

GINO [Liemnan 861 is an interactive optimizer implemented on IBM PC. It is a successor of

UNDO for solving nonlinear programming problems. The Generalized Reduced Gradient

algorithm is built-in. A user has to provide Fortran subroutines to evaluate the objective and

constraint functions. The gradient algorithm requires specification of partial derivatives. They

can be provided optionally by the user through Fortran subroutines, or the derivatives can be

estimated by the system numerically. The system does not support simultaneous equations. It is

not an open-ended system and would be very difficult to add new solution methods.

EMP [Schitt 88] is an interactive system that supports model building, numerical solution

and data processing of mathematical programming (both linear and nonlinear) problems. Linear

constraints are entered by specifying constraint coefficients in an array. All other aspects are

defined by user-provided Fortran statements. The system helps a user select solution methods. It

is an open system with many built-in solution methods.

GAMS [Meerau 831 is a widely used system. It solves linear and nonlinear optimization

problems. It has the capability to accept the modeler's form of the problem as input and

translates it into the form required by the algorithms. For nonlinear programming problems, the

system computes the first derivatives numerically.

MINOS [Waren 871 is specially built for large sparse nonlinear programming. A user has to

provide Fortran subroutines to calculate the nonlinear constraints. MINOS is currently the most

56

widely used large scale nonlinear programming solver. It requires that the variables be sorted by

the user so the nonlinear ones appear first. The user-provided Fortran subroutines must compute

only those parts of the nonlinear constraints that depend on the nonlinear variables. This

restriction makes MINOS difficult to use. MINOS has been merged into GAMS as a nonlinear

problems solver. It is based on the Generalized Reduced Gradient method.

GXMP [Dolk 861 is an modeling system for linear programming. The system accepts

mathematical formulas as input. It incorporates a symbolic manipulation which transforms a

user's form into a form required by solution method. It is an open system with many solution

methods.

TSP [Drud 831 is a time series processor which has been used widely since the late 1960s. it

is possible to redefine the endogenous and exogenous variables without rewriting the equations of

the model. TSP has a primitive capability to handle symbolic expressions, but a user has to know

the internal structure to use this capability. It lacks solution of optimization problems. The system

suffers from low efficiency primarily due to use of a command language.

STS-SYSTEM [Schlei 801 is used for system simulation with special emphasis on

econometric methods. It is the integration of database management, statistical parameter

estimation, and documentation by a simple command language. The command language makes it

a prescriptive approach. It incorporates analysis for reordering and renormalization of equations.

STS-SYSTEM utilizes symbolic manipulation.

CAMP [Sagle] offers a simple and coherent tool for planning. It covers different facets of

the planning activity: data management, linear programming, statistical analysis, graphics, and

word processing.

6. CONCLUSION

6.1. Accomplishments and Plans

MATHMODEL has the potential for becoming the next generation of mathematical

modelling systems and providing an order-of-magnitude improvement over current methods.

Mathematical modelling is at the core of technical developments and planning. An improved

mathematical modelling system has the potential of producing better products and systems and

57

improving overall US competitiveness.

In Phase I, we overcame the problems of reliability and documentation, common in research

projects, and we also added essential operations on entire variable structures (arrays, files, etc.).

This was achieved by combining the original University of Pennsylvania version of

MATHMODEL with CCCC's MODEL. We also investigated demonstrating MATHMODEL in

ways that would convince potential users of its advantages.

However, to be accepted widely, it is necessary in Phase II to make MATHMODEL much

more attractive to its community of users, as follows.

Users have shown considerable preference for using a personal workstation. We propose to

concentrate initially on Digital's VAX workstation, which is widely used. Digital is providing

VAXstations with increasingly higher speeds and with vcctorizer attachments. The VAXstation

has a mature software foundation.

Next, users insist on a man/machine interface that reflects a systematic methodology and

discipline. The essense of mathematical modelling may be expressed by the words prototyping

and reusability. Namely, a model is expanded progressively from a core to more detailed

sections. Each step involves formulation and testing in a trial and error process. Each step reuses

external models as well as the previously developed components. It is necessary to develop the

graphics and databases to support this methodology. This will require an innovative approach to

specifying models. It will use recent advances in graphics and Computer Aided Software

Engineering (CASE).

At the end of Phase 11, we can have a technically complete a commercial product. We will

still need, to provide in Phase III, commercial level training, documentation and marketing and to

conduct beta testing. There is enormous interest in automation of mathematical modelling and

we expect an abundance of offers to cooperate with us in Phase III in the initial marketing

introduction.

The opportunity is then to provide an order-of-magnitude improved next generation

mathematical modelling system. Mathematical modelling is at the core of new technical

developments and ecomonic planning. We are aware of very large systems that are becoming

obsolete and for which there is scant documentation. The Department of Defense, for example,

. m ! =MOM"

58

has these problems. Using MATHMODEL will reduce the required expert resources, which are

scarce, and will cut the large costs and long development terms. An improved mathematical

modelling system has the potential of producing better products and systems and improving

overall US competitiveness.

CCCC is continuing to enhance the MODEL system and these enhancements will be

available to MATHMODEL as well, at no additional direct investment. Of particular relevance

to MATHMODEL are the following capabilities:
" To generate the programs in Fortran

" To generate programs which use vectorizers to speed up evaluation of mathematical
models.

6.2. Prototyping and Reusability Development Mode

This mode of development is naturally iterative. Sometimes it is referred to as spiral,

referring to repetition of a sequence of steps as the model grows. It can be contrasted with the

so-called waterfall mode where the development goes through a linear sequence of phases. The

portability and reusability mode is illustrated in Figure 6.1. Starting with a mathematical

modelling requirement, one can select for first attack any part of the model. The core of the

model can be the most difficult or the central requirement. It can then be expanded progressively

to include the less critical or less central parts. There is no need for a user to observe sequential

order of events in the model. Starting with the core model, the development consists of

conceptualizing the key objects, namely the variables, and composing respective equations.

MATHMODEL is then used at each step to check the logic and generate programs. The core can

then be tested independently. If necessary, MATHMODEL can also be used to generate test data.

In subsequent steps, objects and equations are added progressively. MATHMODEL generates

new programs for each step that synthesize all the previous steps. At first, the user seeks only

model correctness, with little regard for elegance of representations and efficiency of

computations. Once the user is satisfied with the results of the test, he/she can review the model

to improve it's representation and efficiency. New programs are then generated. Finally, this

portion of a model can be "plugged-in" to operate with the rest of the larger model.

MATHEMATICAL MODELLING REQUIREMENTS

CORE FUNCTIONALITY

Describe KEY OBJECT
KEY EQUATIONS

EXPAND/REUSE

Add OBJECTS
EQUATIONS

TEST

IMPROVE EFFICIENCY

Reduce OBJECTS
EQUATIONS

~FORECASTING
t ~ SIMULAT0N

ANALYSIS

INTEGRATE

PLUG COMPATIBILITY

Figure 6.1: Prototyping and Reusability Process.

60

The problem of reusing fragments of mathematical models is very similar to the problem of

reusability of software, which has been widely researched. In the following, we borrow existing

concepts and modify them for mathematical modelling.

Mathematical model reusability is the underlying technique for two types of development

activities. First, implementation of a new model would involve selection of building blocks from

a "warehouse" of existing model fragments. Second, enhancing an existing model, such as

increasing the throughput or expanding the scope, would involve adding or modifying individual

"plug-ins", similiar to expanding a hardware system.

We refer to the first mode as "modelling-in-the large", where the plug-in is an entire task or

procedure in the total model programs. The second mode is "modelling-in-the-small", where

fragments of models are combined to create a procedure or task for an expanded model.

Both modes have been demonstrated in Phase I and reported in the Final Report. Our

reusability approach is based on retaining in the "warehouse" (database) blocks of equations.

Each equation expresses a rule applied to the model's variables. The language of equations is

general purpose and can be used to express the concept embedded in any model fragment. Each

equation is a self-contained rule and produces no "side effects" as in procedural programs.

Therefore, understanding equations is much easier than understanding an equivalent program.

Equations may be in any arbritary order. We can use MATHMODEL to automatically integrate

the selected equations blocks into a corresponding procedural program. MATHMODEL can

translate the equation blocks into an integrated program. The generated programs are efficient,

competitive with manually developed equivalent programs. In this way, MATHMODEL solves

the problem of fitting together blocks into an effective integral entity.

There are other advantages. MATHMODEL generates declarations of interim variables that

provide the precision required in the output. A mathematical model includes declarations of input

and output. The precision of interim variables is derived from the declarations of output.

MATHMODEL also performs logical checking of the submitted equations and declarations.

When it discovers an incompleteness or inconsistency, it either makes a correction or it instructs

the user on how to make the necessary correction. The user may have to compose some custom

equations not found in the "warehouse" in order to make the indicated correction.

MATHMODEL generates 100% of the procedural program and there is no need for the user to

61

make any additions or modifications to the code.

In order to apply this concept of reusability, it is necessary to create a "warehouse" of blocks

of equations for old models. For instance, a signal analysis "warehouse" would include equation

blocks for different algorithms for Fast Fourier Transforms, noise discrimination and analysis of

signals. The blocks may be structured as "parts", that fit into "assemblies", etc.

The developer of a mathematical model will draw a block diagram on the screen of a

terminal, similiar to those used in hardware systems, showing the new architecture of the

mathematical model. The boxes in this diagram must be related to the respective equation blocks.

The connecting lines in this diagram must be related to the variables that flow between the

respective blocks. The diagram would be drawn with the aid of a graphics workstation

To construct a system or to enhance its functionality, the block diagram is used to select

automatically the blocks of equations from the "warehouse". The blocks of equations, together

with declarations of inputs and outputs, are then submitted to MATHMODEL to generate the

desired programs. Any desired modifications are performed by modifying, adding or deleting

equations and then repeating the generation of a new programs that reflect the changes.

p

62

1. REFERENCES
1. T. Agerwala, Arvind, "Data Flow Systems," Computer, February, 1982.

2. J.R. Allen and K. Kennedy, "Automatic Loop Interchange," Proc. of the ACM
SIGPLAN Symposium on Compiler Construction, SIGPLAN Notices V19 #6, June
1984.

3. E. Ashcroft, Z. Manna, "The Translation of Goto Programs to While Programs",
Proceedings, IFIP Congress 1971, North-Holland Publ. Co. Amsterdam, pp.
250-255, 1972.

4. E. Ashcroft and W.W. Wadge, "Lucid, A Nonprocedural Language with Iteration,"
Communications of the ACM, V20 #7, July 1977.

5. J. Backus, "Can Programming be Liberated From the Von Neumann Style? A
Functional Style and its Algebra of Programs," Communications of the ACM, V21
#8, August, 1978.

6. B.S. Baker, "An Algorithm For Structuring Flowgraphs," Journal of the ACM, V24
#1, January 1977.

7. R. Balzer, "Transformational Implementation: An Example," IEEE Transactions on
Software Engineering, V7 #1, January 1981.

8. J Baron, B. Szymanski, E. Lock and N. Prywes, "An Argument for Nonprocedural
Languages," Proc. Workshop Role of Languages in Problem Solving-], 1985.

9. S. Basu and J. Misra, "Proving Loop Programs," IEEE Transactions on Software
Engineering, VI #1, March 1975.

10. R.K. Boxer, "A Translator From Structured FORTRAN to Jovial/J73," Proc. of the
IEEE National Aerospace and Electronics Conference (NAECON-83), 1983.

11. J.M. Boyle and M.N. Muralidharan, "Program Reusability Through Program
Transformation," IEEE Transactions on Software Engineering, V I0 #5, September
1984.

12. E. Bush, "The Automatic Restructuring of Cobol," Proc. of the IEEE Conf. on
Software Maintenance, November 1985.

13. T. Cheng, E. Lock and N. Prywes, "Use of Very High Level Languages and
Program Generation by Management Professionals," IEEE Transactions on
Software Engineering, V 10 #5, September 1984.

14. Computer Command and Control Company, "The MODEL language Usage and
Reference Guide -- Non-Procedural Programming for Non-Programmers," 2401
Walnut, Philadelphia, PA 19103, 1987.

15. Digital Equipment Corporation, "VAX-Il FORTRAN User's Guide," Software
Distribution Center, Digital Equipment Corporation, Maynard, MA 01754, 1979.

16. C.G. 1-aust, "Semiautomatic Translation of Cobol into Hibol," (MS Thesis)
MIT/LCS/TR-256, March 1981.

17. R.W. Floyd, "Assigning Meaning to Programs," in Proc. Symp. Applied Math., vol.
19, pp. 19-32, 1967.

18. M.J.C. Gordon, "The Dcnotational Description of Programming Languages, An
Introduction," Springer-Verlag, 1979.

a-•| | I

63

19. C.A.R. Hoare, "An Axiomatic Basis for Computer Programming," Communications
of the ACM, V12 #10, October 1969.

20. C.R. Hollander, "Decompilation of Object Programs," Stanford Electronics Lab TR
54, January 1973.

21. G.L. Hopwood, "Decompilation", Ph.D. Thesis, University of California, Irvine,
1978.

22. B.C. Housel 111, "A Study of Decompiling Machine Languages Into High-Level
Machine Independent Languages", Ph.D. Thesis, Purdue University, August 1973.

23. B.C. Housel and M.H. Halstead, "A Methodology for Machine Language
Decompilation," IBM Research Report RJ1316 (No. 20557), 17 pages, December 6,
1973.

24. S. Katz and Z. Manna, "Logical Analysis of Programs," Communications of the
ACM, V19 #4, April 1976.

25. D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure and M. Wolfe, "Dependence Graphs
and Compiler Optimizations," Proc. 8th ACM Symp. pp.207-218, 1981.

26. K.S. Lu, "Program Optimization Based on a Non-Procedural specification," Ph.D.
dissertation, Department of Computer Science, University of Pennsylvania, 1981.

27. Z. Manna, "Mathematical Theory of Computation," McGraw Hill Book Company,
1974.

28. J. McCarthy, "Recursive Functions of Symbolic Expressions and Their
Computation By Machine," Communications of the ACM, V3 #4, April, 1960.

29. J.R. McGraw, "The VAL Language: Description and Analysis," ACM Transactions
on Prgramming Languages and Systems, V4 #1, January, 1982.

30. M.J. O'Donnell, "Equational Logic as a Programming Language," The MIT Press,
1985.

31. H. Partsch, R. Stcinbruggcn, "Program Transformation Systems," Computing
Surveys, V 15 #3, September, 1983.

32. L. Paulson, "Compiler Generation from Denotational Semantics," in Methods and
Tools for Compiler Construction, ed. by B. Lorho, pp. 219-250, 1984.

33. K.M. Pitman, "A FORTRAN to Lisp Translator," Proc. of the 1979 Macsyma
Users' Conference, June 1979.

34. U. Pleban, "Compiler Prototyping Using Formal Semantics," SIGPLAN Notices,
V19 #6, Montreal, June, 1984.

35. N. Prywcs and A. Pnueli, "Compilation of Nonprocedural Specifications into
Computer Programs," IEEE Transactions on Software engineering, V9 #3, May
1983.

36. C. Rich, H.E. Shrobe, R.C. Waters, G.J. Sussman and C.E. Hewitt, "Programming
Viewed as an Engineering Activity", MIT, Cambridge, MA, MIT/AIM-459,
January 1978.

37. J. Samet, "Experience with Software Conversion," Software -- Practice and
Experience, V1 I #10, 1981.

Bt

64

38. D. Schmidt, "Denotational Semantics A Methodology for Language
Development," Allyn and Bacon, Inc., 1986.

39. M. Shaw and W.A. Wulf, "Abstraction And Verification in ALPHARD: Defining
and Specifying Iteration and Generators," Communications of the ACM, V20 #8,
August 1977.

40. L. Sterling, E. Shapiro, "The Art of Prolog," Tire MIT Press, 1986.

41. B. Szymanski, E. Lock, A. Pnueli and N. Prywes, "On the Scope of Static Checking
in Definitional Languages," Proc. of the ACM A inual Conference, San Francisco,
CA, pp.197-207, October 1984.

42. B. Szymanski, N. Prywes, "Efficient Handling of Data Structures in Definitional
Language," Science of Computer Programming, pp.221-245 No. 10, October 1988.

43. R.C. Waters, "A System for Understanding Mathematical FORTRAN Programs,"
MIT, Cambridge, MA, MIT/AIM-368, August 1976.

44. R.C. Waters, "Expressional Loops," Proc. 10th ACM Symposium Principles of
Programming Languages, pp. 1-10, ACM, 1983.

45. R.C. Waters, "A Melhod for Analyzing Loop Programs," IEEE Transactions on
Software Engineering, V 1i #11, November 1985.

46. R.C. Waters, "Program Translation Via Abstraction and Reimplementation," IEEE
Transactions on Software Engineering, V 14 #8, August 1988.

