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- MATHMODEL is directed to the key problems in the general application of large scale
mathematical models:

e Organization and the comprehension of large mathematical models,
® Programming and integration of diverse solution methods, and
® Generality and extensibility.

MATHMODEL has the following capabilities:

Language: a user can state piecewise assertions about the model in a very natural and

general way. These assertions describe identities, structural relations or optimizations in the area
to be modeled.

MATHMODEL simplifies the modelling process by:

o filling-in implicit details,
¢ checking completeness of the model,
¢ decomposing the model into interrelated subsets of assertions,
e partitioning assertions into inter-related subsets,
¢ mapping these sets into respective solution methods,
¢ manipulating assertions into representations needed for selected solution methods,
¢ generating efficient programs,
e evaluating the overall model, and
¢ reporting the solutions.
MATHMODEL integrates advances from a number of Artificial Intelligence related areas,

ie. specification languages, analysis of specification, symbolic manipulation, numerical
analysis, and automatic generation and optimization of programs.

Following an introductory section, the three project tasks are described. The report also
describes MATHMODEL’s novel capabilites, how 1t works and how to use it. The report
concludes with discussion of the marketplace for MATHMODEL and plans for continuing
development in Phases 1l and 11
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1. INTRODUCTION AND SUMMARY

1.1. Objectives

Mathematical models are used in a wide range of applications. They are used to explore
social and physical systcms. They have become essential in a great variety of design areas, from
aircraft to urban centers. They are also used for planning by large private and public
organizations. In many cascs they are incorporated in operational systems in which they are used
to make critical real-time dccisions, based on dynamic information reccived from sensors.
Finally, mathematical modclling has recently been used in expert systems. As the art of
mathematical modelling advanced, these modcels have become more realistic and detailed, and as

a result they have also grown greatly in size.

The development and use of mathematical modcls has becn extremely costly in time and
funds. Fromm [Fromm 75] has surveyed 650 mathematical modcls with a median size of 25
equations. Only 6 of these had more than 1000 equations. The cost per equation was on average 3

man-weeks. The cost per equation increases greatly as the number of equations in a model

increascs.

The cost problem has stimulated development of numerous mathematical modelling systems
over the last two decades. There has been a conflict between generality and specialization in these
systems. They have typically specialized in a particular application and/or solution method.

Then, as the application changed with time, they could not be easily modificd to respond to the

new requirement.

The nced for the ncw capabilitics introduced in MATHMODEL has been expressed
frequently in the past, as illustrated by the following quotation [Waren 87):

We anticipate that a growing number of analysis and modelling systems of various kinds will
provide optimization as an integral component. As the degree of integration of the modelling and
optimization system improve, the ability of the unsophisticated user to employ nonlinear
optimization will increase dramatically. This change will require additional developments in
related areas such as the automatic detection of linearities and nonlinearities, automatic problem
classification, and automatic selection of the best solution algorithm. We expect that all of these

developments will be forthcoming and that artificial intelligence techniques may play an




important role.

Such atéystcm, called MATHMODEL has been developed by X. Ge in his rescarch at the
University of Pennsylvania. It is a very complex and large multi-phase system. It consists of 142
modules and 60,000 lincs of PL/1 code. MATHMODEL is based on an cld (1984) version of the
MODEL system, which automatically translates equational specifications into highly efficient

programs in PL/1.

This is the Final Report of an SBIR Phase I project supporicd by the Air Force Office of
Scientific Research under grant number F59620-88-C-0116. Computcr Command and Control
Company (CCCC) has a much more advanced and reliable version of MODEL that generates
programs in several languages (PL/1, C and Ada) and that runs on several computers (IBM and
Digital). It also generates programs that can be executed in parallel on distributed computers.
Most important, CCCC’s MODEL contains many more operations useful in mathematical
modelling (e.g. matrix algebra, rclational algebra, ctc.). This version is much more rcliable and
robust and is well documented. The projcct has merged MATHMODEL’s capabilitics with those
of CCCC’s MODEL and has transformed MATHMODEL into a greatly more effective tool for

mathematical modelling than any system developed to date (Task 1).

It has also demonstratcd MATHMODEL’s advantages through examples that show the ease
and high productivity in using it (Task 2).

It has also identified thc market for MATHMODEL and developed a strategy for its

commercialization (Task 3).

To make MATHMODEL widcly attractive, it will be necessary in Phase Il to place
MATHMODEL into an environment with the following capabilitics:

1. Use of a powerful workstation,

2. Prototyping and rcusability through an incorporated database of modcls,
3. Use of graphics for input of models,

4. Generation of programs for parallcl processing,

5. Generation of programs in Fortran.

Also the market scope will be expanded to include mathematical modelling related activities,

such as simulation and training. Thesc capabilitics will be a basis for a very powerful next




gencration mathematical modclling system. It will serve in Phase Il to attract nccessary

capitalization for commerical level offerring and support of MATHMODEL in Phasc 1il.

1.2. Outline of the Report

The report consists of six scctions. The presentation in the remaining five sections is briefly
summarized below.

Section 2 Overview of the Capabilities of MATHMODEL. This section describes
"what is MATHMODEL?" from the point of vicw of the prospective user.

Section 3 Task 1: Enhancement of MATHMODEL. This section describes "how
MATHMODEL works" afier the merger of the version developed by X. Ge
with CCCC’s MODEL

Section 4 Task 2: Demonstration of MATHMODEL Capabilities. This section

describes "how MATHMODEL is used” in the course of three short

examples. Larger examples could not be presented due to time and cost
limitations. However, a related larger example is described.

Section § Task 3: Investigation of thec Marketplace for MATHMODEL. This section
describes "who are the prospective users of MATHMODEL".

Section 6 Conclusion. This section describes the technical environment for
MATHMODEL that will be developed in Phase III: computers, operating
systems, languages, databases, graphics, and their integration to provide an
order of magnitude improved mathematical modelling system.

2. OVERVIEW OF THE NOVEL CAPABILITIES OF MATHMODEL

2.1, Overview

MATHMODEL has been dirccted to automating the core of the difficulties in large scale

mathematical modelling :

1. The organization of large mathematical models as an aid to comprchension.
2. The integration of diverse solution methods.

3. Providing generality as well as ease in growth,

MATHMODEL takes over partitioning and organizing of the model. The organization




scheme is uscd to facilitate comprehension by the uscr. It also possesses intelligence to analyze
assertions and selcct for them preferred solution mecthods. The system is open-ended for the

purpose of enhancing it easily with new approaches and solution methods for them.

The innovations in MATHMODEL are illustrated by the following capabilities.

¢ Describing a model in terms of assertions: equations, optimizations and variablcs.
¢ Filling-in implicitly expresscd details of data and assertions in the model,

® Checking completeness of the modecl,

» Partitioning the modcl’s asscrtions into interrelated subsets,

¢ Mapping these sets into respective solution methods,

e Manipulating assertions into represcntations nceded for selected solution methods,
¢ Generating efficient programs for the model’s procedures,

¢ Testing and evaluating the overall model, and

® Reporting the reenlts of the ensuing computation,

MATHMODEL incorporates advances in a number of areas of Artificial Intelligence to make
fcasible the gencralized mathematical modclling system that can perform organization and
manipulation tasks and easily grow in its capabilitics. These areas include

 Specification languagcs,

¢ Logical analysis of the specifications,
¢ Symbolic manipulation of assertions,
* Numerical analysis,

* Automatic gencration and optimization of programs.




2.2, The Intelligent Capabilities of MATHMODEL
The intelligent capabilitics are classified below into five areas. They arc summarized in

figure 2.1,

2.2.1. Specification Language

Mathematical modelling languages have, in the past, been influenced by the formalism used
in solution methods [Dolk 86]. Instcad, MATHMODEL uses the recent advances in the area of
specification languages [Prywcs 75] [Backus 78) [Zave 85] [Sterli 86) to provide a simple
general purpose language that employs commonly used mathematics terminology and semantics.
The specification language has many advantages. It is independent of any computer
implementation. The main idca is that the user composcs a set of assertions that are considered as
axioms in the environment being modcled. The semantics of this language are the same as those
used in mathematics -- to {ind a solution (valucs of variabies) for which all the assertions are true.
The language also includes dcclarations of variables and their structurcs. To be close to
mathematical modelling, the assertions use the syntax of regular or Boolean algebra’s equalities
or inequalities (differential equations must be transformed into difference equations). The same
language is used solcly for all maintenance and documentation of the mathematical model; the

user would not cven need to know the programming language that is used in the implementation

of the computations.




Language --

Analysis -

Symbolic -
Manipulation

Automatic -
Programming

Numerical --
Analysis

Unrestricted form of equalities and inequalities,
Mix of array variables of different dimensionality
and dynamic sizes of dimensions (mixed shapes),
Arbitrary order of statements,

Generalized data bases and reports.

Tolerance of omissions. Automatic fill-in of:

declarations of data,

subscripts,

equations,

selection of numerical solution methods.
Checking:

completeness,

dimensionality of arrays,

sizes of the array dimensions,

data types,

circularity of definitions.

Organization:

finding causality,

identifying groups of statements that are
interdependent and must be solved
simultaneocusly,

selecting suitable solution methods,

combining automatically different solution
methods,

Manipulating the user’s form into a form
raquired by the solution method.

Avoiding the need to compose and test procedural
programs,

Generating a highly efficient program for
solving the problem given by the specification
(the generated program is reusable),

Prototyping,

Parallel processing.

Built-in six key methods for solving simultaneous
equations and optimization, linear or nonlinear,
Solutlion methods for array variables of mixed
shapes,

Open-ended system for adding built-in solution
methods.

Figure 2.1
Key Novel Capabilitics of MATHMODEL




MATHMODEL spccifications cmploy the following capabilitics:

Unrestricted form of assertions: Assertions can have the form

>(=)
<expression> = <expression>
<(=)

The uscr can express identlitics or constraints as relations between two expressions which
naturally represent concepts of the environment (for example, an expression of adding the income
variables of a govemment, plus deficit, is equal to an expression of adding of expense variables).
Variables defined or constrained by an assertion nced not be typed explicitly by the user, but the
type can be determined automatically based on analysis (sce subscction 2.2.2). Furthermore, for
example, a change to a modcl which redelincs the endogenous and exogenous variables, would
not require rewriting the asscrtions. Simplicity is a key to understanding. The assertions are stated
in terms of the application, and thcy are familar to the user. All subsequent automatic

manipulations needed for obtaining a solution, are reported to the user as related to the original

form.

Arbitrary order of statements: The underlying notion here is that the user may compose
assertions in the order that he or she thinks of them. The user need not indicate the organization
of the model by stating the asscrtions in a particular order or form. The automatic analysis
discovers which variables are not defined, or which are redundantly overdefined. The user needs
then to make indicated additions or corrections. MATHMODEL provides the uscr with a report
on matching each unknown variable with an asscrtion which defines it. This shows also the
completencss of the model in having all the variables properly defincd. Next, the clusters of
assertions that must be solved together are identificd. Causality dependencies are reported as well

(see subsection 2.2.2). Relieving the uscr of these organization tasks is an important help.

Mix of array variables of different shapes: Parlicularly in a large mathematical model, it is
very economical to have structured variables -- such as arrays. (Note that a user may visualize all
variables as virtual -- namcly as having infinite memory space, while actually an optimizer would
gencrate programs which minimize use of memory, sce subsection 2.2.4 for explanation). The
main advantage of using array variablcs is that a single equation may dcfinc an entire array

variablc with a large numbcr of elements. The entire model may include scalars or array




variables of differcnt data types, dimensionalitics and sizes of dimensions. The solution methods
can be employed automatically on interdependent assertions that involve mixed shapes of array
variables. The analysis (see subscction 2.2.2) finds the clusters of assertions that nced to be
solved simultancously. The assertions are then manipulated into the formats required by the
respective solution methods. The dilferent solution methods typically used in solving a large

scale mathematical modecl are intcgrated automatically into an overall solution.

Generalized databases and reports: A dcclaration of the schema of a database or a layout
of a report are part of the specification. To reference and update another database or produce a

different format of the report, only the declarations need to be modified, not the assertions.

2.2.2. Analysis

The analysis is responsible for constructing a complete and consistent mathematical model,
partitioning it and mapping it into respective solution methods. The automatically-conceived
organization is then reported to the user. Thesc analysis capabilities do not exist in the traditional
mathematical modelling systems [Waren 87). The analysis steps described below are generic and
are bascd on the mapping of the declarations and assertions into solution methods. The analysis
steps are open-cnded, casy to add-to as new solution approaches are added to MATHMODEL.

They constitute the major aspect of the innovative approach to mathematical modelling.

Under the title of analysis we group three inter-related activities: tolerance of omissions,
checking and organization. By tolcrance of omissions, we mean the parts of the modcl that the
user may omit and must be filled-in automatically. Forcing the user to be explicit about all the
details needed for performing the computation is tedious and laborious, which is onc of the
shortcomings of currcnt mathematical modcliing languagces. The filling-in of omissions is based

on checking and finding the organizational relations between parts of the mathematical model.

Tolerance of omissions: The tolcrance of omission of declarations of intermal variable
structures is probably one of the greatest labor saving features of MATHMODEL. Only the
declarations of input and output data are¢ mandatory; the other variable declarations are optional.
The analysis determines the necded precision from the declarations of input and output. From
this it derives the data types, length, and scale of the intemmal variables. Because of cfficiency
considerations, the precision is limitcd to that of multiple precision floating data types supported

by the object language. The dimensionality and sizes of dimcnsions are detcrmined from the




references to variables in asscrtions.

In variables of rclatively large number of dimensions, the usecr may omit referencing in

equations the subscripts of the lcft-most dimensions that apply to all variables in an assertion.

Next, if the mathematical model has variables of the same name which appear with the same
values in input and output, it is not nccessary to have assertions showing their identity. This is
important when using databascs of ten (or many more) data elements in a record, with only few of

the data elements being updated.

Finally, the user may omit selection of the solution mcthod to be employed in solving
simultaneous cquations and optimization subproblems, andfor omit choosing thc respective
solution parameters. The mathematical modcl is not computationally complete without them, If
the user omits specifying them, then they are determined automatically based on the analysis of

the respective assertions (section 2.2.3).

Checking: The same process that fills in tolerated omissions also checks consistency of
variable dimensions, sizes of dimensions and data types. If they are not used consistently, the user

is informed of the offcnding assertions.

The most important category of checking is related to the concept of complcteness of the
specification of the mathcmatical modcl. In the simplest terms -- there must be equations for
determining the values of all the unknown variables. All unknown variables must be referenced
by the assertions that define them. An optimization assertion may define more than one variable.
This analysis is called matching. It identifies a consistent sct of unknown variables defined
properly by respective assertions. The result of matching is reported to the user to help him/her in
comprehending the mathematical modcel. In certain instances, the user may wish to change the
matching in order to specd-up the solution or improve precision. Also, if a match is not feasible,

then the variables and assertions that cannot be matched are reported.

Organization of the mathematical model: The most fundamental partial ordering of the
assertions and variables of a mathemalical modcl is based on analysis of causality, i.e. the
dependencies of unknown variablcs on their defining assertions and dependencies of assertions on
their independent variables. This is represented in MATHMODEL by a directed graph. Every

variable and every assertion are rcpresented in the graph by a respective node. The dependencies
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are represcnted by cdges. An unknown variable nodc is not at the end of an edge from a dcfining
assertion (i.e. not matchcd with a defining assertion) indicates an incompleteness error. The graph
may contain cycles. The ordering by causality applies then only to groups of assertions and
variables in maximal strongly connected components (MSCC) in the graph. In the construction
and analysis of the graph, MATHMODEL finds the input/output or the single assertions that can
define variables, and the clusters of asscrtions and variables in MSCCs that must be solved
simultancously. Some clusters may also nest within another cluster. This ordering and grouping
of variables and asscrtions are rcporied (o the user. The user may optionally sclect the solution
methods to be employed. Otherwise, for each cluster, the assertions and variables in the MSCC
are analyzed to determine an appropriate solution method. The analysis determines the lincarity
or nonlinearity of thc assertions, their formats, whether they define or constrain variables, and

whether they involve boolcan or regular algebra.

At the end of the analysis, the mathematical model has been fully checked; all discovered
omissions have becn filled-in automatically or through interaction with the user. All the
assertions and variables have been partitioned into components for which a solution method has

been selected. At this point, the mathecmatical model is ready to be evaluated.

2.2.3. Symbolic Manipulation

Traditionally symbolic manipulation has been used to simplify a mathematical model and
improve its understanding. It can transform the equations into a form that gives an explicit
definition of an unknown variable. In a large modcl, an explicit definition may not be found by
the current methods of symbolic manipulation. Even if found, it would typically be lengthy.
Instead, the approach in MATHMODEL is to facilitate the understanding of the model by
providing the user with a solution, i.e. valucs of the variables. Thus, symbolic manipulation is
necessary to transform a sct of inter-related asscrtions into a form that is required in the selected
numerical solution method. The transformed assertions are of interest to the user for scveral
reasons. First, a uscr familiar with the solution mecthod may get better understanding of the model
by being shown how the assertions have been grouped and transformed into a familiar solution
method format. Second, a selected numerical solution method may not be able to produce a
solution. The reasons for failure (e.g. non-convergence, etc.) are meaningful to the uscr in the
context of the transformed assertions. The uscr may thus gain an insight of the reasons of failing

to find the solution from examining the transformed assertions. This understanding could lead to
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making appropriate changes in the specification (including changes in parameters of the solution
method) so that a solution may be found, or so that a solution may be found faster, with better
precision, etc. Diverse numerical solution mcthods require different formats of assertions.
Therefore specialized symbolic manipulations must be incorporated for each solution approach. A
symbolic manipulation proccdure must be added to the mathematical modelling sysiem for each

solution method added in the future.

2.2.4. Automatic Programming

Avoiding the need to compose and debug procedural programs: Traditionally, for a
given environment, an expert (analyst) composes a mathematical model. In many of the current
mathematical modelling systems, programs must be written to implement parts of the model.
This procedure is schematically shown as in figure 2.2. Of course, if the problem is very
complicated, there may be scveral levels of analysts, and several levels of programmers. A senior
analyst performs the global analysis and several junior analysts refine his/her work. The same

situation applies to programmers.

The procedure is different for MATHMODEL. After an analyst completes his/her work, the
system is invoked to generate a program. This is shown in figure 2.3. The feedback from

program output to the analyst may rcpeat many times for large and complex system development.
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Figurc 2.3

Ncw Approach to Computing in MATHMODEL
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Generating efficient programs: Efficicncy of computation of a solution is critical in large
scale mathematical modclling. The incfficicncy of many mathematical modelling systems has
frequently forced uscrs 1o use conventional programming approaches. Even though the cost of
computation has been decreasing greatly, the issue of efficiency remains paramount due to the
increasing size of mathematical models and increasing frequency of their use. Efficiency of

computation is particularly critical in mathcmatical models uscd for real-time decisions.

The gencral purpose nature required of the mathematical modelling language makes use of
pre-programmed solution mcthods very difficult. Recent advances in automatic generation of
optimized programs are uscd in MATHMODEL to provide highly efficicnt customized programs
for computation of mathematical models. The notion is to generate programs in a conventional
procedural language. The generated programs may be rcused, without regencrating them, to
repcat evaluation of a model for dilfcrent cxogenous or control variables. In generating
programs, MATHMODEL [Prywes 79] systcmatically examines every variable to minimize use
of memory space (maximize sharing of storage locations) and every iteration and control block to
minimize control statements and eliminate unnecessary copying. A more complete description of

the optimization can be found in {Lu 81}].

Testing: The proof of satisfaction of a mathcmatical model is in its testing; namely, in
providing a solution that thc user accepts as realistic and uscful. The analysis described above
checks only some necessary conditions. The testing of the mathematical model with real-life data

verifics that it meets the uscr’s intentions and that it is uscful for the purpose for which it was

developed.

Development of a mathcmatical model is a trial, error and refinement process in which the
mathematical modelling systcm and the user must interact. For this rcason it is necessary that the
generated program produce reports that inform the user of the reasons for failing to reach a
solution. To intcract with the system, the uscr needs not understand the generated program. The
user must, however, comprehend the numerical approach uscd, the assertions and variables that
are involved and how to overcome the encountered problems. To correct the reported problem the
user may wish to change the sclection of the solution methods, the initial values of variables, the

convergence conditions, etc. The testing may also reveal that the mathematical model is

redundant and incomplcte.
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2.2.5. Numerical Analysis

Built-in numerical solution methods are mandatory for an cffective mathematical modclling
system. They must apply to diverse kinds of assertions -- linear and nonlinear, simultancous
equations and optimizations and different convergence requircments. While pre-programmed
highly efficient procedures of solution methods can be used in some cases, the solution of
simultaneous equations and optimizations with mixed shape array variables mandate generating
customized programs for these cascs. Namely, it is not sulficient to wrile a pre-programmed
solution method; it is also nccessary to be able to use the method in non-standard combinations of
assertions and variable declarations. Both types of numerical solution methods -- pre-

programmed and custom generated -- are used in MATHMODEL.

Six solution methods have been incorporated in the MATHMODEL. They are for:

Simultaneocus Equations -- Gauss Elimination (linear)
-- Gauss-Seidel (nonlinear)
~=- Jacobi (nonlinear)

-~ Search (nonl;near)

Optimization -- Simplex (linear)
-- Search (nonlinear)

MATHMODEL is open-ended to add solution methods. There is much similarity among
some methods while others differ greatly. It is nccessary to be able 1o accomodate a variety of

new methods. For each new mcthod added it is necessary to be able to easily add capabilities in

three categories:

1. Checking that the selccted new solution method can be applied to a respective

subset of assertions and variables in the specification of a mathematical model.

2. Symbolic manipulation of respective assertions and variables to the form required
by the method.

3. Automatically generating the programs that employ the new method.

3. TASK 1: ENHANCEMENTS OF MATHMODEL
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3.1. Merger of MATHMODEL With CCCC’s MODEL

This task called for intcgrating the MATHMODEL system developed in research by Dr.
X. Ge at the University of Pennsylvania with CCCC’s MODEL system. The mergcr of these two
systems was intended primarily to lend to the research version, with its implicd unreliability and
incomplete portions, the robustmess and infrastructure of a commercial version. The merged
system has become a betier candidate for eventual offering commercially. In fact, the CCCC
version of MODEL has a number of additional features which are mandatory for mathematical
modelling. Thus, the merger enhanced MATHMODEL with these features, as well. These
enhancements are not all of pure technical internal nature. They also affect in a major way the

inherent use of MATHMODEL for mathematical modelling. They consist of the following:

¢ New operations - of matrix and relational algebras.
¢ Use of relational databascs.
¢ Use of pictorial specification of reports and displays

¢ Use of a database of specifications for reuse of commonly used data declarations and
assertions.

¢ Generation of tcst data for testing the gencrated programs.

In addition, the following cnhancements effect the environment in which MATHMODEL is used:

¢ Use of IBM’s computcrs in addition to Digital’s computers.
¢ Generating programs in C and Ada in addition to PL/1.

¢ Availability of multitasking to acceleratc solution of a model through
multiprocessing.

The synthesis of the above capabilities in MATHMODEL involves a large multi-phase
system comprised of 142 modules and 60,000 program lines. The remainder of this section
describes these phascs, which also provide a medium level view of how the MATHMODEL

system offers the capabilities enumerated in Scction 2.

MATHMODEL is divided into user implementation and execution phascs. These are

described in respective subscctions.
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3.2, User Related Phases of MATHMODEL

The user rclated part begins with the syntax analysis phase, assuring that the syntax is correct
before proceeding with the other phascs. The user specification is also transformed into an
internal form. This is followed by a matching phase where for each equation is found a
respective variable which is defincd by that equation. The matching also provides a basis in later
phases for aggregating all assertions into the smallest blocks which are scheduled most efficiently
in the gencrated program. Next, all information is accumulated in a graph. Using the graph,
MATHMODEL procceds with a phase that checks for ambiguity, completeness, and consistency,
resolves the contradictions and, in some cascs where it scems appropriate, complcles details
omitted by the user. At this point, the spccification has been thoroughly analyzed. This part
consists of 6 phascs. The input and output of cach phase, their order, and the types of reports or

error messages produced are shown in figure 3.1.

The user related phases arc as follows.

Phase 1: Syntax Analysis:

The syntax analysis is the {irst phasc of MATHMODEL. The input to this phase is the user’s
specification. Syntax errors in the specification are detected and reported in this phase. Alter
syntax analysis, the specification is stored for easy retrieval. Besides syntax analysis, this phase

also checks the local semantics. The objective is to find as many errors as possible in the early

phases.
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User Relatcd Phases of Compiler

17




18

Interestingly, the Syntax Analysis Program (SAP) itsclf is automatically generatecd by a
Syntax Analysis Program Gencrator (SAPG). The input to SAPG is a formal definition of the
MATHMODEL language. This approach makes it very easy to change the language dcfinition, or

test a new component of the language.

Phase 2: Bailding A Dictionary:
The dictionary is a table of contents of total information in the mathcmatical model. In this
phase, a shell is built for the dictionary which is completed in later phascs. Using a dictionary

greatly reduces later storing and scarching.

The dictionary consists of entries for cvery asscrtion, every variable, and every subscript. If
a name is ambiguous, such as when a variable is declared more than once, it is detected and an
error is flagged, if the ambiguity cannot be resolved logically. Other errors in the user
specification are dctected, such as a control variable with an undefined suffix. Each entry of the
dictionary contains many attributes, and these attributes hold the necessary information. Some
attributes are filled in at this phasc, whilc others arc completed in later phases of analysis as they

become available.

Phase 3: Matching Equations with Variables:

The basic notion is that the assertions must be solved in order to evaluate the dcpendent
variables. Thus there must be sufficient asscrtions Lo define one or a smalf sct (e.g. in non-linear
cquations) of solutions for thc unknown variables. Namely, if it is obvious at this phase that there
are an infinity of possible solutions, this is flagged as an error, and the user is requircd to add
more assertions, or to rcwrite the original assertions. To provide guidance in making the
correction, each assertion necds to be associated with the variables that it defincs. Thus,
identifying undefined variables gives the user a guideline on the need to compose additional
assertions. Defining dependent variables is also required to attain a highly efficient computation.
The matching provides a basis for dctemmining all the dcpendencies among variables and
assertions in later phascs. The matching must be performed in the first analysis phase, because

practically all the other analysis phascs depend on the results of matching.

MATHMODEL allows a user to usc an unrcstricted form of equations with arithmetic
expressions on both sides of the cqual sign. It is therefore not known from such an equation, by

itself, which variable is defincd by this equation. A global analysis of the equation-variable
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relationship is necessary to find the variable dcfined by each equation. The matching algorithm is

such a global analysis.

The input to the matching process is the sct of unrestricted form equations. The algorithm is

adopted from [Hopcro 73].

Phase 4: Symbolic Manipulation (Part I):

The capabilitics of symbolic manipulation can be classificd into those that concem an
individual equation and those that conccm multiple assertions that must be manipulated into the
required format for a specific solution method. The first class is performed here, and the second

class is performed later, after the solution mcthod has been selected.

This phase transforms unrestrictcd form cquations into an explicit form with the unknown
variable on the left hand side and an expression defining the variable on the right hand side. An

equation can be transformed into an explicit form if it satisfies the following two conditions:

e the equation is not a member of any system of simultaneous equations,

¢ the unknown variable term cither appcars only once or could be collected easily.

Phase 5: Array Graph:

In order to analyze and manipulate a specification, there is a necd to represent the user’s
stalcments in a convenient and acccssible internal form. An array graph is such an internal form.
An array graph, which is very similar to petri net or data flow graph, accumulates local
information from each individual assertion and data declaration statement. All the global

analyses, such as checking for consistency, complctencss, and ambiguity and scheduling, are

performed on the array graph.

A graph is a perfect medium to grasp the fundamental information of a specification. It uses
nodes for representing asscrtions and variables, and edges for representing the precedence
relationship among asscrtions and variables. However, because of the large number of variables
and assertions, a naive straightforward graph for representing cach element of a variable and each
instance of an equation by a node is practically infcasible. Cleverly, MATHMODEL uses one
node to express an array of variables or an array of equations. Similarly, an cdge represents
relationships among all the respective array elements. The information about a whole array of

variables or asscrtions, such as the dimensions of each node, the range of each dimension, and
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subscript expressions of cach asscriion, are rccorded as attributes in each node and edge. This

special graph is callcd an array graph.

In this phase, MATHMODEL analyzes each file declaration statcment, sets up a data node
for each data name, and builds edges among data nodes according to the hierarchical
relationships. It also analyzes cach assertion, scts up an assertion node for each one, and builds
edges between the data node and the asscrtion node according to the dependency relationships. In
addition, MATHMODEL sets up a data node for each control variable and builds the edge

between the control variable and the aifcctled variables.

After building the array graph, many crrors in the user specification can be recognized from
the structure of the array graph. For instance, an undefined variable can be easily identified
because this data node does not have an incoming edge from an assertion node. Using the

propertics of the array graph, this phase is able to find many types of crors in the user

specification.

Phase 6: Checking and Propagation

The purpose of checking and propagation is to

» recognize all missing attributes of nodes (which represent the tolerated missing

information),

¢ find the incomplete or missing information in a user specification by propagating

information from other assertions or variablcs,

¢ flag missing information that cannot be dcduced from another source as an

incompleteness error, and

¢ flag conflicting information as an inconsistency error.

The checking is performcd on the array graph and all deduced information is stored as

attributes of the nodes and edges of the array graph.

The checking consists of dimension propagation, range propagation, and data type
propagation.

Dimension propagation: although cach variable in the source or target data




has a clear dimension dcfinition. Many interim variables used in the
specification may not have such a definition at all. A user may also mistakenly
miss subscripts or intentionally omit subscripls in assertions to kccp the
specification shortcr and easicr to rcad. Dimension propagation checks the use of
subscripts, provides the omitted subscripts, identifics the misuse of subscripts,
and finally provides each variable and each assertion with a consistent dimension

definition.

Range propagation: cach dimension of each array variable or assertion
must have its range defincd (or more accurately, have its size defined). This
range may be dcfined from the source or target data dcclaration statement,
control variables, the actual size of the data, or from the range definition of other
nodes. A propagalion strategy is uscd to find a unique range definition for every
dimension of each variable or asscrtion. If any range is not defincd directly and
cannot be propagatcd from other ranges, or if the range has more than one
definition, MATHMODEL flags it as an crror. If the range can be propagated
from two differcnt sources, the compiler rcsolves the contradiction bascd on

efficiency considcrations.

Data type propagation: cach input or output variable has to have a data
type supplicd in the declaration. The interim variables may not have data types
declared at all. When using operations to manipulate these variablcs, there is a
problem of using data types consistently. For instance, it is meaningless to add a
character string to a decimal number, or to have a character string assigned to a
dccimal number. On the other hand, if one character string is equal to a variable
which docs not have a declarcd data type, it is reasonable to assume that the latter
has a character string data type as well. Data type propagation checks the
consistent use of data types in cach asscrtion and expression and defines a data
type for each variable which docs not have a cicarly declared data type dcfinition
when it can be propagated from another variable. It also flags errors if it finds an

inconsistency.
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When MATHMODEL cannot propagate the missing information or resolve
the conflicting information, it flags an error. In the crror message it gives the
reason for the error, the assertions involved in the error, and secks assistance

from the user.

3.3. Implementation Related Part of MATHMODEL

Using the previous resulls, the implementation related part can proceed. 1t first partitions all
assertions into the smallest blocks (each block is an MSCC) and organize then them in an
optimum order in tcrms of using memory and execution time for the respective generated
program. This leads to gencrating a schedule of computation events in the form of a flowchart.
Analyzing the blocks, it is possible to detect additional types of errors in each block which are
caused by circularity in the uscr specification. If no error is dctccted, a solution method is selected
for each individual block. The code generation phase finally transforms the events in the
flowchart, one after another, into respective sub-programs. It then merges the sub-programs
together, and produces a complcte conventional language program. This part consists of 4 phases.
The input and output of each phase, their connections, and the report and error messages

produced in each phase arc shown in figure 3.2,

The impl.mentation related phascs are discussed below.

Phase 7: Scheduling:

MATHMODEL allows a uscr to choose a rcpresentation for his problem in the most natural
and convenient way for that problem. But this usually does not correspond to the most
efficient way to perform the computation. The scheduling bridges this gap by taking a user
specification in the form of an array graph and producing from it an optimal flowchart in terms of

minimizing memory and exccution time in the generated program.,

Using the array graph as input, the scheduling produces a flowchart as output. The flowchart

corresponds to the exccution ordcr in the conventional language program that will be generated.
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Figure 3.2
Implementation Related Phascs of the Compilcr

The flowchart is rccursively defined as a sequence of lincar order elements that may be
nested. That is, at the highest level, it is a scquence of lincar order elements. In tumn, each clement
consists of a sequence of linear order elements, and so on. The element, on the one hand, is an
aggregation of statcments of the uscr specification. On the other hand, it represents a computation

event which will be translated into a picce of conventional language code in the latcr phase.
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The following are four diffcrent kinds of elements, their corresponding statements in the user

specification, and their meaning in terms of the computation events.

1. node-element: a node-clement is a terminal elcment. It represents an assertion or a

data statement. It may correspond to an assignment, or an 1/0 operation in the code

generation.

2. for-element: a for-element is a structurcd elcment which can be recursively
redefined as a sequence of other elcments. A for-element corresponds to a for-loop

in the generated program.

3. simul-element: as with a for-clement, a simul-clcment is a structured clement. A set
of simultanecous equations or an optimization with its related constraints constitute a
simul-element. This element corresponds to a computation event which includes the
solution method, the related parameters, and the mathematical formulas used in the
solution methods. The simul-element contains the attributes of initial value,
iteration number and other parameters for the solution method. If these are given in
the user specification, they are added into the simul-clement. Otherwise, they will

be decided and filled in by the compiler in the next phase.

4. cond-element: a cond-element is a structured clecment which corresponds to a
conditional equation. A cond-clement consists of one or two elements which

correspond to the ’then’ and “clse’ parts of a condition.

Two mutually recursive algorithms are used to produce a flowchart from an array graph. The
first algorithm finds and schedules all the MSCCs of the array graph. The second algorithm takes
each MSCC as a singic node and performs a topological sort. Then, for each MSCC the first and
second algorithms arc called again 10 decompose the array graph further. This process is used
recursively until a terminal node is reached. A straightforward sorting may cause the generated
program to be very inefficicnt. A global optimization technique is used in the topological sort to

minimize ihe use of memory space in the gencrated program, and conscquently the exccution

time is also minimized.
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Phase 8: Selecting Solution Methods:

The scheduling in the last phase puts each system of simultaneous equations or each
optimization assertion and rclated constraints together in the form of a block. Each such block
forms a simul-element in the flowchart. This phase analyzes this simul-element in the flowchart,
and either applies the uscr specificd solution method or automatically selects a solution method.
The method is selected based on distinguishing oplimization from simultaneous equation
problems and linear from nonlincar problecms. The criteria for sclection of solution method is

shown in figure 3.3.

o ————— e e e +
| | linear | non-~linear |
B L L D e LT +
| optimization | Simplex } Search |
et E L Pt R L PP e Rt L L +
| simultaneous | Gauss | Gauss-Seidel |
| equations ) Elimination e +
| | f Search |
R e e LT e ettt R Lt ST +
Figure 3.3

Criteria for Sclecting Solution Methods

If there is more than one optimization assertion in one block, then the mistake is reported to

the user.

Phase 9: Symbolic Manipulation (Part 1I):

Some solution methods require a specific format for the assertions.

For the Gauss Elimination method, the equations have to be in the form of
AX=8B
Here A is the matrix of coeflicicnts; X is the vector of the unknown variables and B is the vector

of right hand side constants.

For lincar programming, the format has to be

minimize (C X)
subject to:
A X<=B

Here X is the vector of decision variables; C is the vector of the coefficients for the objective
function; B is the matrix of coelficients of the constraints and B is the vector of right hand side

constants for the constraints.
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For both search methods, an assertion
£(X)=g (X}
is transformed into
F(x) =0

Here X represents all the variables (both depcndent and independent) appearing in the assertion.

For Gauss-Seidel and Jacobi methods the uscr is required to write the equation with the

dependent variable on the left hand side. If the user does not write the equation in the correct

form, this will be flagged as an error.

A user may add ncw solution mcthods. If a ncw solution method does not need a new
format, then no new symbolic manipulation is needed. However, if a new solution method needs
a new format, such as the Newton-Raphson mcthod for nonlincar equations, the symbolic

manipulation capabilities must also be added.

Phase 10: Code Generation:
After scheduling, a flowchart is produced. For each kind of elements in the flowchart, there

corresponds a specific picce of code. This correspondence can be summarized as follows:

e a node-element: asscrtion node: this corresponds to an assignment in the
conventional language program. However, since the same memory element may be

reused, the corresponding subscripts may have to be delcted in the generated
program.

» file node: if this is source data, it corresponds to opening the source file statement; if
this is target data, it corresponds to closing the file statement. The file node also
produces some declaration statements which provide the variables to be used in the
executable statements.

e record node: if this record is in a source file, it corresponds to reading a record from
a source file to a record buffer; if this record is in a target file, it corresponds to
writing the record buffer into the target file. The record node also produces some
declaration statements which declare the related buffers

¢ field node: the code for a ficld node depends on whether the parent record node
should be packed or unpacked. If it docs not need to be packed or unpacked, the field
node has no corresponding code. Otherwise, if this field is in a source file, it
corresponds to copying the value from the record buffer; if this field is in a target
file, it corresponds to copying the valuc to record buffer. The ficld node also
produces the declaration statement which declares the corresponding field variable.

Each for-element corresponds to a for-loop or a while-loop statement. If the range of the
corresponding loop is a constant, or is defined by a size-prefixed control variable, a for-loop is

used. If the range is defined by a end-prefixed control variable, a while-loop is used. The
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contents inside the loop arc from the constituents of the for-element.

Each simul-element corresponds to a lincar program, a nonlinear program, or a system of
equations. The simul-clecment contains the solution method, the parameters, and the related

assertions. The solution methods allowed were shown in Figure 3.3.

The format of each of the above solution methods is different. They are classificd as:
1. Using the assertions Lo gencrate the exccutable code directly; Gauss-Seidel, Jacobi,
and both search mcthods belong to this class,

2. Using the assertions to gencrate the necessary parameters which are used to call the
pre-programmed subroutines; Gauss elimination and simplex method belong to this
class.

3. Each condition-clement corresponds to an if-then-else structure. The constituents
of the if-then-clsc are from the constituents of the condition element.

The code generation phasc simply takes elements from the flowchart one after another,

analyzes them, and produces a specific picce of code in a conventional language. The dictionary

and the syntax tree of each asscrtion provide an important information source for this phase.

3.4. Execution Related Phases of MATHMODEL
After compilation, a conventional language program is generated. A conventional language
compiler and linker are used to produce an equivalent machine code program. After executing

this program, the variables in the targct filcs have been evaluated.
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The execution related phascs arc shown in figure 3.4.

the compiler generated
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Figurc 3.4
Execution rclated Phases of MATHMODEL

The following two cascs may occur:

1. The variables cannot be evaluated, or

2. Although evaluated, the uscr docs not like the results and wants to make changes to

the mathematical model.

These usually happen when:
¢ The mathematical modecl is wrong,

e The source files have mistakes,

¢ The parameters in the solution methods are not properly chosen.
In order to help the uscr to determine exactly what and where the problem is, the programs
produce runtime error messages. The runtime error messages include:

The block name, which indicatcs the place where the problem happencd,
The position of the asscrtion

A hint to reset paramcters.
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4. TASK 2: DEMONSTRATING THE USE OF MATHMODEL

4.1. Objectives of the Demonstrations
The objective of Task 2 has been to produce evidence needed to convince potential users of

the advantages of MATHMODEL. Three approaches to meeting this objective are discussed in

the subsequent subsections, as follows:

1. Explaining ‘the underlying methodology of using MATHMODEL. Mathcmatical
modelling has a discipline that the developer must follow, starting from the
establishing of requircments to providing answers to the questions asked of a
modcl. Explaining how MATHMODEL fits into this discipline is an important step

to mecting the above objcctive. This is described in Scclion 4.2,

2. Use of small examples. The example can be used for training purposcs, to illustrate
the language and the opcration of MATHMODEL. Three small examples arc given

in Section 4.3. They are also intcnded to present and illustrate MATHMODEL to
the reader of this report.

3. Use of Large Examples. MATHMODEL may be used in large mathcmatical
modelling projects to develop onc or scveral components - typically a procedure or
atask. This goes beyond the scope of this report. A summary of another project at

CCCC where such a devclopment took place is provided in Section 4.4,

4.2. Use of MATHMODEL

This scction explains how to use the MATHMODEL system. Figure 4.1 explains seven
steps in using MATHMODEL. This is followed by descriptions of each of these steps.

Steps in Using the System:

1. A user formulates a mathematical modelling problem. Hc provides mathcmatical
formulas (equations, optimizations, incqualitics, and equalities) to describc a
physical or social proccss and some data from obsecrvations or cxpcriments in a

database. He needs to describe values of variables which represent the modcl.

2. The uscr represents the model as a specification, which consists mainly of the




mathematical formulas thcmselves.

3. The user submits this speccification 1o MATHMODEL. It checks the input
specification for completcness, consistency, and ambiguily, partitions the user
specification into the smallest blocks, sclects a solution method for each block, and
maps the user’s assertions into cach solution method. If any of these fails, error

messages are produced. Otherwise, a conventional language program is generated.

4, MATHMODEL produces documecntation. A user can sclect various reports,
including: a listing of the spccification, an equation-variable maich repor, a cross-
reference report, a subscript-range rcport, a flowchart report, a listing of the
generated program, and an error and wamning report.  Analyzing these reports, a
user may wish to go back to stcp 2 and modify the specification. If everything is

acceplable, he proceeds to the next step.

5. After having successfully gencrated a conventional language program, the user can
submit it to the conventional language compiler and load it in preparation for

execution. Before running the program, he must have his source data files.

6. After running the program and cxamining the results, the job is complete if the user

is satisfied with the results.

7. If the user is not satisficd with the results, he can alter the specification and retum to

step 2.

MATHMODEL is designed to accept mathematical formulas dircctly. Therefore, using the
mathematical formulas, the uscr simply adds a header and data declarations to form a complcete
specification. The hcader gives the modulc name, and source and target file names. The data

declarations give the structure cf the source and target files.
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| | PROGRAM | Step 5
1 | COMPILATION | Compile and
} Fommm e + Load
| 1
{ Program
{ Module
jStep 7 Step 6 |
|Change Specification run Program === 06—————-—-
| for a Revised \ | /
| Requirement T et LT +
e e e e | PROGRAM |
If target data 4-----—----——- +
is not acceptable / \

Figure 4.1
The Overall Procedure for Using MATHMODEL

K}
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It is the uscr’s responsibilily to modify the mathematical model, correct the data, or change
the parameters. In the generated program, MATHMODEL includes code to produce a report that
provides the user with essential information on the problems encountered during execution and

how to overcome them.

There are 6 solution methods built into the system. The possible execution error phenomena

and its possible reasons for built-in solution methods are listed in figure 4.2.

Numerical Phenomena Reasons
Methods
Gauss elimination can coefficient matrix
Elimination not continue singular
Simplex objective goes constraints are not
to infinity properly given
Jacobl not convergent iterations, relative

error are not properly
given, or the problem
does not converge

Gauss~ not convergent iterations, relative

Seidel error are not properly
given, or the problem
does not converge

searxrch not convergent iterations, relative
(nonlinear error are not properly
equations) given, or the problem

does not converge

search not convergent iterations, relative
(nonlinear error are not properly
programming) given, or the problem

does not converge

Figure 4.2
Runtime Error Mcssages and Their Reasons

If any of these errors occur, the gencraled program prints the error message to give the
position and reason for the error. According to the error message, the user might nced to correct
the mathematical modcl, or change the paramcters in the solution mcthod, then recompile the

specification again. This corrcsponds to step 7 in figure 4.1,
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4.3. Mustration of MATHMODEL Through Small Examples

Three examples related to an electrical circuit are used in this section to explain the power
and the concept of MATHMODEL. Complete MATHMODEL reports of the first example and
partial MATHMODEL reports of the other examples are also given below.

The circuit is shown in figure 4.3, It is designed for use on a V1-volt source of electromotive
force in charging V2-volt and V3-volt batteries connecled in parallcl. The symbols V1, V2, V3,
R1,R3,11, 12, 13 represcnt the values as shown on figure 4.3.

--> I1 --> I3
Lt - D L e R - ————- +
| Rl | R3 |
| | |
1 | |
o v I2 | --- V2 --- V3
| v - -
| | |
| ! |
e ket et Dl L e +

Figurc 4.3

V1 Source Charges V2 and V3 Batterics

Create a mathematical modcl of the circuit to answer the following questions:

o Question 1: If the currents I1, 12 are given, find the values of R1 and R2.

¢ Question 2: If the purposc is to maximize the output power,
W=V2*I24V3*I3 ,

find the values of I1, 12 and 13. From them, {ind the values of R1 and R3.

¢ Question 3: Supposc that

power=kl*W=kl* (V2*I24+V3*I3), and
cost=k2*V1*I1+k3* (V1*I1l-W)

Here the cost has two terms. The first tcrm is the power consumed, the seccond term is
the cost for cooling two rcsistors R1 and R3; Maximize the cost/power. Then find the

values of R1 and R3.




34

Question 1: Composition of the mathematicai model:

According to the Kirchoff laws, we have

I1l*R1=V1-V2;
I1*R1+I3*R3=V1-V3;
Il=I2413;

These three equations contain all the information to answer question 1. They are submitted

to MATHMODEL to solve R1 and R3 from given V1, V2, V3,12, 13.

Figure 4.4 (a): The user specification for Question 1

module: cixcuit;
source: param;
target: design;

1 param is file,
2 inr is rec,
3 (v1,v2,v3,12,13) are field(pic '2zz9%v.99');

1 design is file,
2 outr is rec,
3 (r1l,r3,i1,w) are field(pic 'zzz9v.99');

il*rl=vl-v2;
11*rl+i3*r3=vi-v3;
11=12+4i3;
w=v2*124v3*i3;
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MODEL PROCRESOR: VERSION 7.6:R4 WITR BLOCK STRUCTURE OM VAX 11/730 OCTOBER 27, 1987 09:02:55.69

Pile Name: Q1.1NP

LN

MODULR: CIRCUIY:
SOURCR: PARAM;
TARGRT: DRSIGN:

1 PARAM I PILR,
2 INR IS REC,

Figure 4.4 (b): Reports

asees  SOURCE LISTING sense

BRRABACACAARAAARRERRRAERORAROAORAARRRAANIAANAERRRSANRARERNAREERRERARAS

* .
. CIRCUIT MODULR SPRCIFICATION *
" -

ARG ARAERNAGRSAARANENAARAGRS

ANRRARRARAARAAARARRARACAARERARRRARAANRARNNSAARAAARRES

" -
. FILR DRSCRIPTIONS: .
. -

tedfdtants

ARRGAAARAARERSARAAREAASALORNLCAANNVANAMANEABRONSADRAARR RGN

ARERAREAASARRARGIRNARARAREARARARARRAANRARAAAANNRAACARDARACERCARANEARND

. .
* DESCRIPTION OF PARAM FILR *
. *

NARLAAARAARNRCARRAARARAACARNARARRERNANEGRARERAACANRNARAQGERANAGOSCERARORERD

3 (V1,V2,V3,12,1I3) ARR FPIELD(PIC ‘zxadv.99);

1 DESIGW 18 FILR,
2 OUTR IS RRC,

ABRRCRRREARASRGRRRARAOEANCIARNORARCEINALANACARARRANERAREAIRAAREARAANEAR

. .
. DRSCRIFTION OF DRSIGN FILR *
. 3

VERNRASARAARAARSAAAANERACRAARRSARARAAAACRACAAGARAROARASERNARERAdCERed

3 (R1,R3,11,W) ARE FIRLD (PIC ‘m229v.997);

I1'R1eV1-V2:
I1*R1$IIRI=VE-VS;
Iil=I2413:

WeV2*I24VICIY;




¥igure 4.4 (D) Continued
44den  GOURCE LISTING #éane
. SYSTEM GRWERATED STATEMRNT(8)#4easasadssasannsans
aedas  ASSERTION VARIABLE MATCR REPORT Weene

MAME DERSCRIPTION RELATED VARIABLES

AMSEE VARIABIE DEFINED EXPLICITLY DESIGN.R1

ARSR7 VARIABLE DEFINED EXPLICITLY DRSIGN.RI

AnSSS VARIABIR DEFINED EXPLICITLY DERSIGN. X1

AASSS VARIABLE DEFINRD RYPLICITLY DESIGH.W

t4esd  CROSS RRFERENCE AND ATTRIBUTRS REPORT ®asan
WHERE
KAME DRCLARERD ATTRIBUTRS BTATEMENT WOMBER REFRRENCE
CIRCUIY 1 MODULR NAME
DESION 3 VFILE, TARGET, UNSORTED 3
1 S FIZLD, PICTURR' xxz9v.99’ IN FILR DESICH 3, €, 7. [}
12 4 TFIELD, PICTURE’2239v.98’ IN FIIR PARAMN 4, 8, [ ]
I3 4 FIELD, PICTURR’ £x£9v. 99’ IN PILE PARAM 4, 7. ., L ]
Im 4 RRCORD, { 5 SUB-MEMBERS), IN FILE PARAM 4
OUTR S RRCORD, { 4 SUB-MEMBERS), IN FILE DESIGN s
PARAM 4 FILR, BOURCE, UNSORTED 2
n S FIRLD, PICTURR'Ezx9v.99' IN PILE DRSIGN 8, [ B 1
P 5] 3 FIELD, PICTURE'zxz9v.99’ IN PIILR DRSICH S, 7
vi 4 TIELD, PICTURR' xxzfv.99’ IN FILE PARAM 4, s, 7
v2 4 PFIELD, PICTURR'2zzdv.99' IN FILR PARAM 4, €, ]
v3 4 FIERLD, PICTURE'2229v.99' IN FPILE PARAM 4, 1, ]
) § FIRLD, PICTURE'x2zdv.99’ IN FILR DESIGN s, ]
adees  FIONCHART REPORT #édes
NEBT

MAME LVL: DEBCRIPTION RVENY
CIRCUIT MODULR NAME PROCRDURE ERADING
PARAM riis OPRN FILR
I RECORD IN FILE PARAM READ RECORD
i FIE1LD IN RECORD INR
va FIBLD IN RECORD INR
v FIRLD IN RECORD INR
12 PIRLD IN RECORD INR
I3 FIRLD IN RECORD INR
ALSSS RQUATION
\J F1BLD IN RECORD OUTR TARGRT OF RQUATION: AARSSH
AASSE RQUATION
1 FIELD IN RECORD OUTR TARGET OF RQUATION: AASSS
AASSE BOUATION
n FIELD IN RECORD OUTR TARGET OF EQUATION: AASSE
AnSS7T RQUATION
n3 PFIRLD IN RECORD OUTR TARGRT OF BQUATION: AASS?
OUTR RECORD IN PILE DESIGN WRITE RECORD
DRSIGN rIia CLO8R FILR




Figure 4.4 (b) Continued

a0aes RANGR TABLE #eeae

no dimension specifications

MODULR: CIRCUIT:
SOURCE: PARAM:
TARGET: DESIGN:

1 PARAM IS FIiE,
STORAGE NAME I8

1 DESIGN I8 FILE,
STORAGCE MAME I8
ORG I8 8AM,

44444 FORMATTED REPORT ¢wees

REARRELAARARAARAARARAAARNS
L ]

SRRRAECRAARAAARCACARROANRACAANERS

-
. CIRCUIT MODULR SPRCIFICATION .
L L
AEEARAAREAARRRGAGARRRANARAARARAGARAAPARANAARARAAAD AEARRRACAERAAD

RABARRBRARRGRARARAANGAACANARRRAAACARARRRARCARARAGANAACANANS

. .
. DATA DRESCRIPTION: .
- -

BRNNBAAARRAAARAARARANARAANECARANARQARAARAARARQORAAAAGARAOREAARAARAGRS

AEARRAAREAAARNRARSARRAAANRAAAARUEAAARRAARRNASARAAADAAARRASRNRARARAAAREAS
-

L]

” DESCRIPTION OF PARAM .
L] L]

nsTQOQ,

.

(PIC ‘2229v.99),

(PIC ‘xaz9v.997),

{PIC ’'xzEdVv.9P'),

{(PIC ’2329v.99'),

(PIC ’‘zzEdv.997):
shhann ARAARAARAARAROANARRARARSRAAARCAACARAAAAARAARARAAALAGRARRAARER
L L ]
" DRSCRIPTION OF DRSIGN .
L ] L]

BERGERRRRARREAAAARRAARSARRGARAARCAARRASAGARERARRAAAAAARASEARARGARRARS

NBTCHNM2,

2 OUTR I8 RERCORD ,
3 R1 IS FIRLD (PIC ‘szEz9v.99'),
3 RI I8 FISLD (PIC ’gx2dv.99'},
3 I1 I8 PIBLD (PIC ‘mxxdv.99’),
3 W 18 PIELD (PIC ’'zxsdv.99'):

/® ASSERTION(S) FOR FILE(DESIGN) */

148¢/

DRSIGN.X1 sPARAM.I2 +PARAMN.I3 ;

106%/

DESIGHN.RI = (PARAM.V] -PARAN.V2 ) /DESIGN.IL :

141%/

#8040  FORMATTRD REPORT #teen

DRSIGN.RI =(PARAM.V1 -PARAM.V3 -DRSIGN.I1 *DESIGN.R1 )/PARAN.IS :

/*9*/

DROIGR . W =PARAM.V2 ¢PARAN.I2 +PARAM.V3I *PARAM.IY :

ARARAARGARRARRACRAAARAARAARRARRAGGAARAAARAAROAAARARGARARARAAAAMARARASD
*

-
. BND OF FORMATTED RRPORT L]
L] L]

BARRBORAARSARARAARARGARCAAARAREEANAARASGAARARARAAAAAARSOGERAANRARRAASARER

37
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rigure 4.4 (o)

I.......................'....'........,
/e PL/T PROGRAM o/
’...l.....'......Q..Q."l...'.....'...,

CIRCUIT: PROCEDURE OPTIONS (MAIN) :

DCL $MALSTR CEAR(1):

DCL PARAMS RECORD SEQL INPUY:

DCL $FSTPARANS BIT(1) INIT('1’'D):

DCL ENDPILRIPARAMS BIT(1) INIT(’0'B):

DCL §TBA2 CRAR(3S) VARYING INIT('‘):

DCL $7X42 FIXRD BIN(31,0):

DCL §RVAI CHAR(1S) BASED (ADDR(PARAN)) :

DCL $RV37 CRAR{20) RASED (ADDR(DESICN))

DCL DESIGNT RECORD SEQL OUTPUT ENV(MAXIMUM_RECORD SIZR (28)):

PCL TSTORSIGNT BIT(1) INIT('1'D):

ORRN FILE(DRSIGNT) OUTRUT:

DCL $ERROR_BUF CHAR(270) VAR:

DCL ERRORF FILE RECORD OUTRUY:

DCL ERRORF_BIT BIT(1) STATIC INIT{'1'B):

DCL $ERROR FIXED BIN(15,0) INIT(0):

DCL $MOT_DOWE(20) BIT(1):

DCL §TMp VAL FLOAT BIN;

peL

”—
#RD_LP§, IR L) LABRL:
DRCLARE
1 DESIGN,
2 OUTR,
3 R1 PIC/zx3PV. 99,
3 RS PIC/zxxdv.99’,
3 I1 PIC'uzzSv.99',
3 W PIC'2ER9V.99';
DECLARR
1 PARAN,
2 INR,
3 V1 PIC’zR39V.99’,
3 V2 PIC’ xRV .99,
3 V3 PIC/2exdv. 99",
3 I2 PIC/z2EPV.99’,
3 I3 PIC zx29V .99
DCL (TROR, FELECTRD) BIT(1) INIT('1'M):
DCL (FALSR, WOT_SELIR, WOT_SELECTED) BXT{1) INIT('0’B):
ON RNWDFILE (PARAMB) BRGIN:
RNDFILRSPARAMS=’ 1'D;
rRé2=corY(’ *,38);
b H
ON UNDRFINEDFILE (ERRORYF) ERRORF BIT=’'0’'B:
DECLARR PLI§_CNVERR GLOBALREF VALUE FIXED BIN(31):
DECLARE RMS¢_RIK GLOBAIREF VALUE PIXRD BIN(31):
O BRROR BROIN:
IF ONCODE ()=RNS§_RLK THER GOTO $RD_LP§:
IF (ERROR=0 THEN CALL RESIGNAL():
IF OMCODR()=@LI§_CNVERR TERN DO;
SERROR=]
IF ERRORY_BIT ¢ JERROR>O THEW WRITE FILE (ERRORF) FPROM (§ERROR_BUF):
D;
BLSR CALL RRSIGMAL():
- H
OPEN FILR(PARANS) INPUT SRQL RRCORD:
CRRROR=Y ;
BRAD FILE (PARAMS) INTO (PARANM):

,.......l.0.'......Q.Qt'...t........Q./
/e PL/I PROGRAM "/
/......l.....QQ.QQ.............I...Q.Q/

/% 9 */DESIGN.WuPARAMN. V24PARAK. T24PARAM. VIPARAM. 13;

/% 8 */DRAICN.I1n@ARAM. IT24PARAM.213;

/* € */DRBIGN.R1=(PARAM.V1-PARAM.V2) /DRSION. I1:

/% 7 */DRSIGR.RIm( (PARAM.V1-PARAM.V]) -DROIGH . T14DESION. R1) /PARAM . 13

WAITE FPILR(DERIGNT) FROM ($RV3I7):

CLOSE PILR (DESIGNT):

ARTURN:

EWD CIRCUIY:
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Question 2:

Question 2 can be solved by linear programming. It can be expresscd as an optimization
function with some additional constraints (the constraints restrict the solution domain).

w = maximize( V2*I24V3*13) dec_var 1I2, I3;
I2<=6;

I3<=4;

I2,I3>=0;

From this linear programming, the values of I1 and I2 can be solve. Substitutc these valves into

the two equations in the solution for question 1 above, we can get a set of complete assertions for

question 2.

Figure 4.5 (a) The user specification for Question 2

module: circuit;
source: param;
target: design;

1 param is file,
2 inr is rec,
3 (vl,v2,v3) are field(pic 'zzz9v.99'):;

1l design is file,
2 outr is rec,
3 (r1,r3,11,12,i3,w) are field(pic 'zzz9v.99');

1i*rl=vli-v2;
11*r14i3%r3=vl1-v3;
11=12+4413;

w=maximize (v2*i2+v3#*1i3) variable i2,i3;
12<=4;

13<=4;

12+13<=6;

12,13>=0;
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Figurc 4.5 (b) The flowchart rcport for Question 2
tated PFLOWCRART REPORT ofete
NERST
RAMR LVL: DEBCRIPTION RVENY
CIRCULY MODULE MAME PROCEDURE RRADING
PARAM rIiLR OPEN FILB
Im RECORD IR FILE PARAM RRAD RRCORD
vi PIELD IN RECORD INR
v2 PIELD IN RECORD IWNR
3 FIBLD IN RECORD INR
1 METIQD: SIMPLIRX ((MAINBLOCK MATHEMATICAL PROGRAMMING BLOCK
12 PIRLD IN RRCORD OUTR
13 FTIRLD IN RECORD OUTR
ARSSS EQUATION
A FIELD IN RECORD OUTR TARGET OF EQUATION: AASSS
AASS10 INEQUALITY CONSTRAINT
oen rIRLD
AASS11 INBQUALITY COMSTRAINT
w2 FIRLD
ARSS12 INEQUALITY CONSTRAINT
o FISID
AASSLS INRQUALITY CONSTRAINT
(.1 13 FIELD
AABS1LIAD INBQUALITY CONSTRAINT
[ 1 1) PIRLD
1 END METHOD: SINPIEX ($MAINBLOCK MATEEMATICAL PROGRAMMING BLOCK
AASSS ROQUATION
11 FIRID IR RRCORD OUTR TARGET OF RQUATION: AASSS
ARSSE BQUATION
n FIELD IN RRECORD OUTR TARGET OF RQUATION: AASS?
ARSS7 BQUATION
n FISLD IN RERCORD OUTR TARGET OF RQUATION: AABS?
OUTR RECORD IN FILR DESIGN WRITE RRCORD
DESICN rILR CIOSR FILR
RND




41

Figure 4.5 (¢): The generated program for Question 2

CIRCUIT: PROCEDURE ORTIONS (MAIN);
DCL $MALSTR CHAR(1);
DCL PARAMS RECORD SEQL INPUT;
DCL SFSTPARAMS BIT(1) INIT('1’'B);
DCL ENDFILESPARAMS BIT(1) INIT('0’'B):
DCL $¥B49 CHAR(21) VARYING INIT('’'):;
DCL 8FX49 FIXED BIN(31,0);
DCL $RVS0 CHAR(21) BASED (ADDR (PARAM))
dol ($no_of ass,$no_of var) fixed bin;
dcl simplex entry((*,*) float bin(53), fixed bin, £ixed bin, (*)fixed bin, fixed
bin, (*) £float bin(53));
DCL $RV42 CHAR(42) BASED (ADDR (DESIGN)) ;
DCL DESIGNT RECORD SEQL OUTPUT ENV (MAXIMUM RECORD_SIZE (42));
DCL SFSTDESIGNT BIT (1) INIT('1'B):;
OPEN FILE (DESIGNT) OUTPUT;
DCL $ERROR BUF CHAR(270) VAR;
DCL ERRORF FILE RECORD OUTRUT;
DCL ERRORF BIT BIT(1) STATIC INIT(’'1’'B):;
DCL SERROR FIXED BIN(15,0) INIT(0):
DCL $NOT_DONE (20) BIT(1);
DCL $TMP_VAL FLOAT BIN;
DCL ($RD_LPS, SR L) LABEL;
DECLARE
1 DESIGN,
2 OUTR,
3 Rl PIC'zz29v.99’,
3 R3 PIC'z2zz9v.99’,
3 11 PIC'z2zdv.99',
3 12 PIC'zzZ9v.99',
3 I3 PIC'zzzdv.99',
3 W PIC zz29v.99';
DECLARE
1 PARAM,
2 INR,
3 V1 PIC ' z2z9v.99',
3 V2 PIC'zz29v.99',
3 V3 PIC'zz29v.99';
DECLARE
1 INTERIM,
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Figure 4.5 (c¢) Continued

2 8$D$1 BIT(1),
2 8D$2 BIT(1),
2 $D$3 BIT(1),
2 $D$4 BIT(1),
2 $D8S BIT(1):
DCL (TRUE, SELECTED) BIT(1) INIT('1’'B):;
DCL (FALSE,NOT_SELE,NOT SELECTED) BIT(1) INIT(’'0'B);
ON ENDFILE (PARAMS) BEGIN;
ENDFILESPARAMS~'1'B;
$FB49=COPY (’ ’,21);
END;
ON UNDEFINEDFILE (ERRORF) ERRORF BIT='0'R;
DECLARE PLIQ_CNV!RR GLOBALREF VALUE FIXED BIN(31):
DECLARE RHSS_FIR GLOBALREF VALUE FIXED BIN(31);
ON ERROR BREGIN;
b ¢ ONCODI()-RHSS RIXK THEN GOTO $RD pA--H
IF $ERROR=0 THEN CALL RESIGNAL():
Ir ONCODE()-PLIS_CNVERR THEN DO;
SERROR=1;
I¥ ERRORF_BIT & SERROR>0 THEN WRITE FILE (ERRORF) FROM (SERROR_BUF') ;
END;
ELSE CALL RESIGRAL():
END;
OPEN FILE (PARAMS) INRPUT SEQL RECORD;
SERROR=1;
READ FILE (PARAMS) INTO (PARAM);
IF $ERROR=0 THEN SERROR=1;
SERROR_BUF=9RVSO0;
$no_of_ ass=4;
$no_of var=2;
begin;
del Scoeff(8no_of ass+l,$no_of var+l) float bin(53);
del §operation($no_of_assi+l) fixed bin(31.0);
del fresult($no_of ass) float bin(53);
del (8144, 81144, sicaso) fixed bin(31,0);
do $iii=1 to $no_of_ ass+l;
Soperation ($1ii)=0;
do §iiii=l to $no_of_var+l;
8coeff (8iii, b 84iiil)=0;
and;
end;
Scoeff (1,2)=8coeff (1,2)+PARAM.V2;
Scoeff (1,3)=8coaff (1,3)+PARAM.V3;
Soperation (2)=-1;
Scoeff (2,2)=8coeff (2,2)-1;
$coeff (2, 3)m8coaff (2,3)-1;
Scoeff (2,1)=8coaff (2,1)46;
Soperation (3)=-1;
8coeff (3, 3)=8coeff (3,3)-1;
8coeff (3,1)=8coaff (3,1)44;
Soperation (4)=-1;
8coeff (4,2)=8coeft (4,2)-1;
8coeff (4,1)=8coeff (4,1)+4;
call simplex(8coeff, $no_of ass,$no_of_ var, Soperation, $icase, $result)




Figure 4.5 (c) Continued

DESIGN. I2=Sresult (1)
DESIGN.I3=$result (2);
DESIGN.W=$result (3) ;
end;
/* 8 */DESIGN.I1=DESIGN.I24DESIGN.I3;
/* 6 */DESIGN.R1=(PARAM.V1-PARAM.V2) /DESIGN.I1;
/* 7 */DESIGN.R3=((PARAM.V1-PARAM.V3)-DESIGN.I1*DESIGN.R1) /DESIGN.I3;
WRITE FILE(DESIGNT) FROM ($RV42);
CLOSE FILE (DESIGNT);
RETURN;
END CIRCUIT;

43
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Question 3:

To solve question 3, find the formula for the ratio cost/power first.

cost = k2*V1*I1+k3* (V1*I1-W)
= (k2+k3)*V1*I1-K3*W
cost/power = (k2+k3)*V*I1l/(k1*W)-k3/kl;

Using constants c1=(k2+k3)/K1, c2=k3/k1; the above formulas can be wrilten as:

cost/power = cl*V1*I1/W -c2;
Since the purpose is to adjust the currents 12 and 13 to make cost/power maximal, the values of 12
and I3 do not depend on cl and c2. We can drop out ¢l and c2 to make the problem simple. The
final optimization problem can be written as (the constraints are added arbitrarily to make the
results meaningful.)

mu = maximize (V1*(I2+I3)/(V2*I2+4V3*I3)) DEC_VAR: I2, I13;
I2,I3>=0.5;

I2<=6;

I3<=4;

If we put these assertions together with the two cquations in the solution for question 1, we get

the specification for question 3.
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Figure 4.6 (a) The user specification for Question 3

module: circuit:;
source: param;
target: design;

1 param is file,
2 inr is rec,
3 (v,vl,v2) are field(pic 'zzz9v.99');

1 design is file,
2 outr is rec,

3 (r1,22,11,i2,i3,w) are field(pic "zzz9v.99’);

11*rl=vl-v2;
11%x14i3%23=vl1-v3;
11=12+13;

w=minimize (v* (12+13) / (v2*i2+4+v3*i3)) variable 12,i3;
12,13>=0.5;

12«<=4;

13<=4;

12+13<=6;
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Figurce 4.€ {b) The flowchart report for Question 3
hAdas 'm’ mw’ aRane
WEST
RAME LVL: DRACRIPTION BVENT
CIRCUIT MODULR NAME PROCRDURE EEADING
PARAM ) 2 ¢¥ 3 OPEN FIIR
INR RECORD IN FILE PARAM READ RECORD
i FIRILD IN RECORD INR
2 PIRLD IN RECORD INR
3 FIZLD IN RECORD INR
1 METHOD: SIMPLEX ($SMAINBLOCK MATHRMATICAL PROGRAMMING BLOCK
I2 FIELD IN RECORD OUTR
13 PIRLD IN RECORD OUTR
ARSSS BQUATION
o TIBLD IN RECORD OUTR TARGET OF RQUATION: AASSS
AASS1Y INEQUALITY CONSTRAINT
§08s PIELD
ANBS12 INRQUALITY COWSTRAINT
o 7IBLD
ARSS10 INEQUALITY CONSTRAINT
mn FIELD
ARSSIL INBQUALITY CONSTRAINT
;-0 2] TiRLD
AASSL0AB INRQUALITY CONSTRAINT
o2 FIRLD
1 BND METHOD: SIMPLEX ($MAINBLOCK MATREEMATICAL PROGRAMMING BLOCK
ARBSS EQUATION
1 FIELD I¥ RRCORD OUTR TARGET OF EQUATION. AASAS
ANSSE BQUATION
nl PIRLD IN RRCORD OUTR TARGET OF RQUATION: AASSE
ANSST BQUATION
n3 FIELD IR RRCORD QUTR TARGRET OF RQUATION: AASS)
ANSS14 SQUATION
L FIRLD IN RRCORD OUTR TARGRT OF BEQUATION: AASS1d
OUTR RRCORD IN PILE DROICN WRITE RECORD
PRIION rIie CLOSE PILE
RMD
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Figure 4.6 (c) The generated program for Question 3

CIRCUIT: PROCEDURE OPTIONS (MAIN):;
DCL $MALSTR CHAR(1):;
DCL PARAMS RECORD SEQL INPUT;
DCL $FSTPARAMS BIT(1) INIT('1'B);
DCL ENDFILES$PARAMS BIT (1) INIT(’'0’'B):
DCL $FrBS1 CHAR({21) VARYING INIT('’):
DCL $FXS1 FIXED BIN(31,0):
DCL $RVS52 CHAR(21) BASED(ADDR(PARAM)) :
dcl $no_of var fixed bin(31,0);
dcl search entry((*)float bin(53),float bin(53),fixed bin(31,0)
,entry,entry, fixed bin(31,0), (*)float bin(53),bit (1))’
Sevaluatel: proc($xxx$) returns(float bin(53));
decl $xxx$(*) float bin(53);
return ( (PARAM.V1 # ($xxx$ (1) +$xxx$(2) )/(PARAM.V2 *$xxx$ (1) +PARAM.V3 'Sxxx$(2)
))**2);
end;
$insidel: proc(Sxxx$) returns(bit(l)):
del 8xxx$(*) float bin(53);
$D$5 =8xxx$ (1) +5xxx$§ (2) <=6 ;
8DS4 =$xxx$ (2) <=4 ;
8DS1 =$xxx$§(2) >=0.5 ;
$D$3 =9xxx$ (1) <=4 ;
$D82 =8xxx$ (1) >=0.5 ;
del ( $D8S ,8DS4 ,$DS1 ,S8DS3 ,5D$2 ) bit(l);

return{ $D$5 &$DS4 &SDS1 &3D$3 &$DS2 );
end;
DCL $RV43 CHAR(49) BASED (ADDR (DESIGN))
DCL DESIGNT RECORD SEQL OUTPUT ENV(MAXIMUM RECORD_SIZE (49)):;
DCL $FSTDESIGNT BIT (1) INIT('1'B):;
OPEN FILlE (DESIGNT) OUTPUT;
DCL SERROR_BUI‘ CHAR (270) VAR;
DCL ERRORF FILE RECORD OUTPUT;
DCL ERRORF BIT BIT (1) STATIC INIT('1'B);
DCL SERROR FIXED BIN(15,0) INIT(0);
DCL SNOT_DONE (20) BIT(1);
DCL $TMP_VAL FLOAT BIN;
DCL ($RD_LPS, $R L) LABEL;
DECLARE
1 DESIGN,
2 OUTR,
3 R1 PIC'zzEl%v.99',
3 R3 PIC'zz2zdv.99',
3 I1 PIC'zzZOv.99',
3 12 PIC'zz29v.99',
3 I3 PIC'z2z29v.99’,
3 W PIC 2229v.99',
3 MU PIC’zzedv.99';
DECILARE
1 PARAM,
2 INR,
3 V1 PIC’zz29v.99',
3 V2 PIC'z2z9v.99',
3 V3 PIC'zz29v.99';




Figure 4.6 (c) Continued

DECLARE
1 INTERIM,
2 $D$81 BIT(1),
2 8D82 BIT(1),
2 8D83 BIT(1),
2 $D84 BIT(1),
2 $D8S BIT(1):
DCL (TRUE, SELECTED) BIT (1) INIT('1'B):;
DCL (FALSE,NOT SELE, NOT SELECTED) BIT (1) INIT(’'0’'B):
ON ENDFILE (PARAMS) BEGIN;
ENDFILESPARAMS=’'1'B;
S$FB51=COPY (' ',21);
END;
ON UNDEFINEDFILE (ERRORF) ERRORF BIT='0'B;
DECLARE PLIS_FNVERR GLOBALREF VALUE FIXED BIN(31);
DECLARE RMS$_RLK GLOBALREF VALUE FIXED BIN(31);
ON ERROR BEGIN;
IF ONCODE () =RMS$ RLK THEN GOTO $RD_I.P$;
IF SERROR=0 THEN CALL RESIGNAL():;
IF ONCODE()=PLI$_ CNVERR THEN DO;
SERROR=1;
IF ERRORF_BIT & $ERROR>0 THEN WRITE FILE (ERRORF) FROM (SERROR_BUF) ;
END;
ELSE CALL RESIGNAL():;
END;
OPEN F1LE (PARAMS) INPUT SEQL RECORD;
SERROR=1;
READ FILE(PARAMS) INTO (PARAM);
IF $ERROR=0 THEN $ERROR=1;
$ERROR_PUT=$RV52;
$no_of_var=2;
begin;
del $initial ($no_of_ var) float bin(53);
del ($result ($no_of var),Seps) float bin(53);
del (8iii, Stimes) fixed bin(31,0);
do 8iii=1 to $no_of_var;
Sinitial (8iii)=1;
end;
$times=300;
$eps=0.01;
call search($initial, Seps, $times, $avaluatel, $insidel, $no_of_var,
Sresult,’1’'b);
DESIGN.I2=$xesult (1) ;
DESIGN.I3=S8result (2):;
DESIGN.MU=Sevaluatael (Sresult);
end;
/* 8 */DESIGN.I1=DESIGN.I2+DESIGN.I3;
/% 6 */DESIGN.R1=(PARAM.V1-PARAM.V2) /DESIGN.I1;
/* 7 */DESIGN.R3=( (PARAM.V1-PARAM.V3)-DESIGN.I1*DESIGN.R1) /DESIGN.I3;
/* 14 */DESIGN.W=PARAM.V2*DESIGN.I24PARAM.V3*DESIGN.13;
WRITE FILE (DESIGNT) FROM ($RV43);
CLOSE FILE (DESIGNT)
RETURN;
END CIRCUIT;
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4.3.1. Example of Use of MATHMODEL In Large Scale Mathematical Modelling
An imponant advantage in using MATHMODEL in development of large scale
mathematical models is the capability to gencrate individual model components which can be
plugged in the larger model. Large scalc mathematical models are generally constructed over a
prolonged period with numerous participants acting scmi-independently. Use of MATHMODEL
can f{it into this mode of devclopment. MATHMODEL generatcs programs for respective
procedures or tasks used in the large scale modecl. Demonstrating this capability is beyond the
scope of this project. However, we cite the following relevant experience with use of CCCC’s
MODEL in a scparate project. This consistcd of activity sponsored by the Naval Surface Weapon
Center (NSWC) as part of DoD STARS projcct. This, so called "shadow" project, consisted of
repcating the development of a large signal processing sysiem illustrated in Figure 4.7. The
r:quirement was to develop procedures to be plugged in for the Mulliping Processing Function
shown centrally in Figure 4.7. Three parallel efforts were conducted and the labor invested was
recorded. The three efforts used different development tools: GE used manual development,
NSWC used a Computer Aided Software Engineering (CASE) system called EPOS and CCCC
used MODEL. The comparative labor costs arc shown in Figure 4.8. Use of MODEL has a

significant advantage by a ratio of nearly 3:1 over the other modes of development.
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Figure 4.7: Overview of Signal Processing System With MULTIPING
Component
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Figure 4.8: Results of Evaluation of the MULTIPING Shadow Projects

Stars Shadow Project Metrics
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5. TASK-3: INVESTIGATION OF THE MARKETPLACE FOR
MATHMODEL
The marketplace for MATHMODEL is wide and varied. In the following we consider only
the initial product and the respective marketplace that will be addressed immediately in Phase IIL

There is a potential to expand the initial product and marketplace greatly.

5.1. Definition of the Initial MATHMODEL Product
The initial MATHMODEL system that will be offered to users in Phase Il is envisaged to

consist of the following:

MATHMODEL as described in Section 2.

Platform: Digital VAXstation with large color screen. VMS
operating system,

Languages: PL/1, Ada, C and Fortran
Price: $50,000 - $100,000
Includes $20,000 - $40,000 for
a) workstation

b) software from cooperating vendors
for graphics, documentation and
library.

5.2. Definition Of The Initial Marketplace For The MATHMODEL Product

We divided the mathematical modeclling users into three classes:

1. Those being trained in applicd mathematics: This is a very large market that
includes college students. There are a number of systems in existence and being
developcd for this market.

2. Mathematicians secking analytical insight into problems in mathematics. This class
of users requires sophisticatcd symbolic manipulation. They have been using
MACSYMA [Moses '71]

3. Large scale model devclopers drawn from a US community of 1 million engincers,
physical scientists, economists, business spccialists and other social scientists.
Nearly 10%, of this community, or 100,000 developers use mathematical modcls
for forecasting, simulation and complex operational decisions.

MATHMODEL is oriented to the last class, and particularly to large scale model devclopers.
The initial market size is further constraincd as follows:

Application Areas:
¢ Mathcmatical modclling in engincering and physical
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scicnces.
e Simulation systems.

¢ Training systcms.

Our investigation showed that if we limit the application arcas to only mathematical
modclling then the economic justification for the product is marginal. It will therefore be
necessary to cover the closcly rclated application arcas of simulation systems and training

systems.

The overall user community in the US is estimated from ccnsus data:

Analysts $150,000
Enginecrs $750,000
Physical Scientists 200,000

$1,100,000

Only 10% of these are dircctly active in the above application areas. Considcring, that the
MATHMODEL product will be offered in a personal workstation:

The marketsize is in the order of 10,000 units.
The total value will be in $.5 - 1.0 billion.

i Of this over 60% will be attributed to MATHMODEL and the remainder to the workstation
and associated software

5.3. Marketing Strategy

Introducing new technology has historically been a slow process. The company is currently
introducing the MODEL program gencration system into the large software project marketplace.
A similar strategy can be followed in offering MATHMODEL. MATHMODEL is a complex
product. It rcquires direct sclling. Early establishment of the high quality of a product is critical
to successful market penetration. It rcquires first rate technical support in terms of

documentation, training and consulting.

It will be nccessary to address very specific market segments in order to maximize the

effccliveness of resources in sclling the product. The target clients should have all of the five

attributes:

1. Aerospace, defense, enginecring organizations;
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2. Large scale mathematical modelling, simulation and trainer development projects;
3. Projects currently funded, and in the carly stages of development;

4. Currently utilizing VAX or IBM hardware;

5. Currently using CAD/CAM and/or CASE products.

Initial marketing will be oriented to proving the advanges of MATHMODEL. This can be
accomplished by selling a Transfer of Technology package which derives revenue during the
customers’ evalution period. This package will include formalized training sessions and
consulting assistance, in order to convince clients of MATHMODEL's capabilities within their

environment.

The marketing channcls will be as follows:

1. Direct selling activitics: Most of the sclling will be done with direct salesmen
accessing both the prime and sub-contractors on large scale projects.

2. Indirect sales through distributors: This will be directed mainly to foreign markets.
We have a distribution agreement with a German organization which provides
support to the client. Training will be conducted by CCCC in all aspects of the
product technology.

3. Outside coopcration in selling activities:

a. In conjunction with hardware manufacturers: IBM and Digital have been
particularly supportive in this arca, providing leads and setting up seminars.
MATHMODEL will be prescnted at sales meetings, leading to joint sales
calls with IBM’s and Digital’s representatives.

b. Alliance with Software Vendors: With the completion of the interfaces,
opportunities will arise that will enhance our selling effort.

5.4. Competitive Mathematical Modelling Systems

The current mathematical modcling systems have been developed for specific classes of
users and applications. For this reason, most of them incorporate one or a few solution methods
needed for the respective applications. Also their input languages and organizations are narrowly
oriented to the respective solution method uscd. They are typically closed systems, difficult to
expand capabilitics. As the application areas change and the respective mathematical models
increase in size and detail, changes in the mathematical modeling system become mandatory. The
history of these systems is that of continuous modification which require major redesign at great

expense.

The reviewed mathematical modeling systcms illustrate the above points.
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TROLL [Troll 76} is oricnted to rcgression, data analysis, and solution of linear and
nonlinear equations. TROLL is opcn-ended in the sense of adding solution methods for regression
and simultaneous equations. However, a major change would be required to incorporate other
approaches t0 solutions, such as oplimizations. The input language is specific to the above
solution approaches and symbolic manipulation is not provided. There have been major
investments in improving efficiency, especially due to the interpretive methods used. The

original capabilities have proved to be inadequate and the system evolved in a major way.

LINDQ [Schrag 86] is a lincar, integer, and quadratic programming solver. It is convenient
for a user to type in small problems interactively. It does not support simultaneous equations.
The user can compose or use a library of Fortran subroutines to organize data or produce reports.
This capability makes it versatile but difficult to use. It is not an open-end system and would be

very difficult lo add radically different solution methods.

GINO [Lieman 86] is an interactive optimizer implementcd on IBM PC. It is a successor of
LINDO for solving nonlinear programming problems. The Generalized Rcduced Gradient
algorithm is built-in. A uscr has to provide Fortran subroutines 1o evaluate the objective and
constraint functions. The gradient algorithm requires specification of partial derivatives. They
can be provided optionally by the user through Fortran subroutines, or the derivatives can be
estimated by the system numerically. The system does not support simultaneous equations. It is

not an opcn-endcd sysiem and would be very difficult to add new solution methods.

EMP [Schitt 88] is an interactive system that supports model building, numerical solution
and data processing of mathematical programming (both linear and nonlincar) problems. Linear
constraints are entered by specifying constraint coefficients in an array. All other aspects are
defined by user-provided Fortran statements. The system helps a user select solution methods. It

is an open system with many buiit-in solution methods.

GAMS [Meerau 83] is a widcly uscd system. It solves lincar and nonlinear optimization
problems. It has thc capability to accept the modeler’s form of the problem as input and
translates it into the form required by the algorithms. For nonlinear programming problems, the

system computes the first derivatives numerically.

MINOS [Waren 87] is specially built for large sparse nonlincar programming. A user has to

provide Fortran subroutines to calculate the nonlincar constraints. MINOS is currcntly the most
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widely used large scalec nonlinear programming solver. It requires that the variables be sorted by
the user so the nonlinear ones appear first. The user-provided Fortran subroutines must compute
only those parts of the nonlinear constraints that depend on the nonlincar variables. This
restriction makes MINOS difficult to use. MINOS has been merged into GAMS as a nonlinear

problems solver. It is based on the Genceralized Reduced Gradient method.

GXMP [Dolk 86) is an modeling systcm for linear programming. The system accepts
mathematical formulas as input. It incorporates a symbolic manipulation which transforms a

user’s form into a form required by solution method. It is an open system with many solution
methods.

TSP [Drud 83] is a time scries processor which has been used widely since the late 1960s. It
is possible to redefine the endogenous and exogenous variables without rewriting the equations of
the model. TSP has a primitive capability to handle symbolic expressions, but a user has to know
the internal structure to use this capability. It lacks solution of optimization problems. The system

suffers from low efficiency primarily due to use of a command language.

STS-SYSTEM ([Schlei 80] is used for system simulation with special emphasis on
econometric methods. It is the integration of database management, statistical parameter
estimation, and documentation by a simple command language. The command language makes it

a prescriptive approach. It incorporates analysis for rcordering and renormalization of equations.
STS-SYSTEM utilizes symbolic manipulation.

CAMP (Sagie] offers a simple and cohercnt tool for planning. It covers different facets of

the planning activity: data management, lincar programming, statistical analysis, graphics, and
word processing.

6. CONCLUSION

6.1. Accomplishments and Plans

MATHMODEL has the potential for becoming the next generation of mathematical
modelling systcms and providing an order-of-magnitude improvement over current methods.
Mathematical modelling is at the core of technical developments and planning. An improved

mathematical modclling systcm has the potential of producing better products and systems and
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improving ovcrall US compelitivencss.

In Phase 1, we overcame the problems of reliability and documentation, common in research
projects, and we also added essential operations on entire variable structures (arrays, files, etc.).
This was achicved by combining the original University of Pennsylvania version of
MATHMODEL with CCCC’s MODEL. We also investigated demonstrating MATHMODEL in

ways that would convince potential users of its advantages.

However, to be accepted widely, it is necessary in Phase 11 to make MATHMODEL much

more attractive to its community of users, as follows.

Users have shown considecrable prefercnce for using a personal workstation. We propose to
concentrate initially on Digital’s VAX workstation, which is widely used. Digital is providing
VAXstations with increasingly higher speeds and with vectorizer attachments. The VAXstation

has a mature software foundation.

Next, users insist on a man/machine interface that reflects a systematic methodology and
discipline. The essense of mathematical modclling may be expressed by the words prototyping
and reusability. Namely, a model is expanded progressively from a core to more detailed
sections. Each step involves formulation and testing in a trial and error process. Each step reuses
external models as well as the previously developed components. It is necessary to develop the
graphics and databases to support this methodology. This will require an innovative approach to

specifying models. It will use recent advances in graphics and Computer Aided Software
Engincering (CASE).

At the end of Phase 11, we can have a technically complete a commercial product. We will
still need, to provide in Phase 1lI, commercial level training, documentation and marketing and to
conduct beta testing. There is enormous interest in automation of mathematical modelling and
we expect an abundance of offers 10 cooperate with us in Phase III in the initial marketing

introduction.

The opportunity is then 10 provide an order-of-magnitude improved next generation
mathematical modelling system. Mathcmatical modclling is at the core of ncw technical
developments and ccomonic planning. Wec arc aware of very large systems that are becoming

obsolete and for which there is scant documentation. The Department of Defensc, for example,
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has these problems. Using MATHMODEL will reduce the required expert resources, which are
scarce, and will cut the large costs and long dcvelopment terms.  An improved mathematical
modelling system has the potential of producing better products and systems and improving

overall US competitiveness.

CCCC is continuing to enhance the MODEL system and these enhancements will be
available to MATHMODEL as well, at no additional direct investment. Of particular rclevance

to MATHMODEL are the following capabilities:
¢ To generate the programs in Fortran

¢ To generate programs which use vectorizers to speed up evaluation of mathematical
models.

6.2. Prototyping and Reusability Development Mode

This mode of dcvelopment is naturally itcrative. Sometimes it is referred to as spiral,
referring to repetition of a sequence of steps as the model grows. It can be contrasted with the
so-called waterfail mode where the development goes through a lincar sequence of phascs. The
portability and reusability mode is illustrated in Figure 6.1. Starting with a mathematical
modelling requirement, one can select for first attack any part of the model. The core of the
model can be the most difficult or the central requirement. It can then be expanded progressively
to include the less critical or less central parts. Thcere is no need for a user to observe sequential
order of events in the modcl. Starting with the core model, the development consists of
conceptualizing the key objects, namely the variables, and composing respective equations.
MATHMODEL is then used at each step to check the logic and generate programs. The core can
then be tested independently. If necessary, MATHMODEL can also be used to generate test data.
In subsequent steps, objects and equations are added progressively. MATHMODEL generates
new programs for each stcp that synthesize all the previous steps. At first, the user sccks only
model correctness, with little regard for elcgance of representations and efficiency of
computations. Once the user is satisficd with the results of the test, he/she can review the model
to improve it’s representation and efficicncy. New programs are then gencrated.  Finally, this

portion of a model can be "plugged-in" to operate with the rest of the larger model.
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The problem of reusing fragments of mathematical models is very similar to the problem of
reusability of software, which has been widcly researched. In the following, we borrow existing

concepts and modify them for mathematical modclling.

Mathematical model reusability is the underlying technique for two types of development
activities. First, implementation of a new modecl would involve selection of building blocks from
a "warehouse" of existing model fragments. Second, enhancing an existing modecl, such as
increasing the throughput or expanding the scope, would involve adding or modifying individual

"plug-ins", similiar to expanding a hardware system.

We refer to the first mode as "modelling-in-the large”, where the plug-in is an entire task or
procedure in the total model programs. The second mode is "modelling-in-the-small”, where

fragments of models are combined to crecate a proccdure or task for an expanded modcl.

Both modes have been demonstrated in Phase I and reported in the Final Report. Our
reusability approach is based on retaining in the "warehouse” (database) blocks of equations.
Each equation expresses a rule applied to the model’s variables. The language of equations is
general purpose and can be used to express the concept embedded in any model fragment. Each
equation is a self-contained rule and produces no "side effccts” as in procedural programs.
Therefore, understanding equations is much easicer than understanding an equivalent program.
Equations may be in any arbritary order. We can use MATHMODEL to automatically integrate
the selected equations blocks into a corresponding procedural program. MATHMODEL can
translate the equation blocks into an integrated program. The generated programs are cfficient,
competitive with manually developed equivalent programs. In this way, MATHMODEL solves
the problem of fitting together blocks into an effective integral entity.

There are other advantages. MATHMODEL generates declarations of interim variables that
provide the precision required in the output. A mathematical model includes declarations of input
and output. The precision of interim variables is derived from the declarations of output.
MATHMODEL also performs logical checking of the submitted equations and declarations.
When it discovers an incompleteness or inconsistency, it either makes a correction or it instructs
the user on how to make the neccssary correction. The user may have (0 compose some custom
equations not found in the "warchouse” in order to make the indicated correction.

MATHMODEL generates 100% of the procedural program and there is no need for the user to
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make any additions or modifications to the code.

In order to apply this concept of reusability, it is nccessary to create a "warchouse” of blocks
of equations for old modcls. For instance, a signal analysis "warchouse" would include equation
blocks for different algorithms for Fast Fouricr Transforms, noise discrimination and analysis of

signals. The blocks may be structured as "parts”, that fit into "assemblics”, etc.

The dcveloper of a mathematical model will draw a block diagram on the screen of a
terminal, similiar to those used in hardware systems, showing the ncw architccture of the
mathematical model. The boxes in this diagram must be rclated to the respective equation blocks.
The connccting lines in this diagram must be related to the variables that flow between the

respective blocks. The diagram would be drawn with the aid of a graphics workstation

To construct a system or to cnhance its functionality, the block diagram is uscd to select
automatically the blocks of equations from the "warchousc”. The blocks of equations, together
with declarations of inputs and outputs, are then submitted to MATHMODEL to generate the
desired programs. Any desircd modifications are performed by modifying, adding or deleting

equations and then repeating the gencration of a new programs that reflect the changes.
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