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Abstract

The best serial algorithms for numerically approximating the solution of a linear partial

differential equation (PDE) exploit knowledge of the solution operator. This dissertation

describes how the solution operator also influences the behavior of parallel algorithms.

Approximating the solution at a single location in the problem d main is considered.

,We deriv.-a lower bound on the error in the approximation that is a function of the

amount of data used and the smoothness of the data functions. From this we2 derive a

lower bound on the parallel complexity of algorith s that approximate the solution. The

lower bound is a linear function of logtj- where cis an upper bound on the error. Thus
the parallel complexity increases astdecreases, independent of the number of processors

used. We. -con-ifruot an algorithm whose parallel complexity is of this form, proving

that the form of the bound is the best possible.

The execution time of parallel algorithms is a function of both the communication

costs and the parallel complexity. We describe bounds on the communication costs of
parallel algorithms that are functions of the distance between collaborating processors. If

the interconnection network of a multiprocessor is a d dimensional grid, then we prove

that the execution time of algorithms that approximate the solution is bounded from

below by a linear function of -7T where -y is a positive constant determined by the
smoothness of the data functions. Thus, for small , the communication costs are the

dominant constraints on the optimal performance.
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Chapter 1

Introduction

The best serial algorithms for numerically approximating the solution of a partial differ-

ential equation (PDE) exploit knowledge of the behavior of the solution of the PDE.

The design of parallel algorithms is a more complicated process than the design of se-

rial algorithms, and the performance of a parallel algorithm is strongly influenced by the

architecture of the multiprocessor used. This work describes ways in which the data de-

pendence of the solution of a well-posed linear scalar PDE determines bounds on the

effectiveness of parallel algorithms and architectures.

We assume that a Green's function of a particular form exists for the PDE. We assume

that the numerical methods use values of the data functions sampled at locations in their
respective domains, and calculate values of the solution at locations in its domain. We

assume that the data functions satisfy conditions suitable for bounding, a priori, the error

of an mth order accurate approximation to the PDE, for some fixed positive integer m.

We assume that the error introduced by a numerical algorithm is required to be less than

some given tolerance c for each solution value. These assumptions are described in more

detail later in this chapter. Given these assumptions, we describe the following result:

e We calculate a lower bound on the parallel complexity of any parallel algorithm that

satisfies the above assumptions. This lower bound is a linear function of log2 -1.

Therefore, the execution time required to approximate the solution of the PDE must

grow if the error bound decreases, no matter how many processors are available. We

also construct an algorithm whose parallel complexity has the same form, proving
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that the form of the lower bound is the best possible. Finally, we show that the

time spent moving data between processors can constrain the execution time even

more strongly than the lower bound on the parallel complexity. For example, if

the interconnection network of a multiprocessor is a d dimensional mesh, then the

execution time is bounded from below by a negative power of E, independent of the

number of processors that are available.

The dissertation is organized in the following manner. The rest of this chapter describes

our models for multiprocessor architectures, parallel algorithms, and numerical algorithms

for approximating solutions to linear PDEs. Chapter 2 describes the data dependency

analysis, and properties of the results that will be used in later chapters. Chapter 3

describes lower bounds on the execution time of parallel algorithms as the problem and

the multiprocessor grow in size. Chapter 4 describes the bounds derived in the two

previous chapters for example problems, and discusses generalizing the assumptions so as

to include a larger class of problems. Chapter 5 summarizes the work presented here, and

briefly discusses some generalizations of the results. Appendices contain details left out

of the main presentation.

1.1 Multiprocessor Architectures

We are primarily interested in MIMD 1 multiprocessors, and in modelling parallelism at

the level of concurrent execution of floating point operations. This bias is reflected

in the following multiprocessor model. Most of our results apply to a larger class of

multiprocessors and parallel algorithms, for an appropriate interpretation.

1.1.1 Multiprocessor Model

Each multiprocessor is made up of memory, processors, and unidirectional communication

channels. The multiprocessor is represented by a labelled directed graph 2, (VE). Each

I Multiple Instruction Multiple Data is one category of Flynn's multiprocessor taxonomy [Fly72].

If a multiprocessor is in MIMD, then the instruction a processor is executing and the data it is using
can be different from those of other processors at any given moment.

2See p.50 of [AHU741
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vertex, vi E V, of the graph is either a memory or a processor. Each edge, ej E E, is a

unidirectional communication channel between two vertices, permitting the source vertex

to send data to the destination vertex. The subscript of the source vertex of edge ej is

s(j). The subscript of the destination vertex of edge ej is d(j). A vertex v, is connected to

a vertex v2 if there exists an edge for which v, is the source and v2 is the destination. The

multiprocessor uses a fixed length floating point number representation for real numbers.
This representation is assumed to be sufficient to approximate the solution of a given

PDE to within some given error tolerance. The components of the multiprocessor are

characterized by their abilities to manipulate these floating point numbers.

Each memory vertex vi is labelled by two nonnegative numbers. The capacity ci is the
number of floating point numbers the memory can hold. The access time ai is the time

it takes to recall a floating point number from the memory.

Each processor is a serial processor, which we define to be a processor that calculates
floating point operations sequentially. Each processor vertex vi is labelled by a positive

real number indicating the time it takes to add two floating point numbers together,

f,,(+). This is used as the standard unit of computation. All floating point operations are
computed by the composition of operators from some given set of binary and unary floating

point operators. We assume that negation is the only unary floating point operation among

this set of primitives. We also assume that the execution time of any binary floating point

operation is greater than or equal to the execution time of a binary floating point addition.

Each edge ej is labelled by two positive numbers. The bandwidth bj is the number of
floating point numbers that can be transmitted over the channel during some given unit
of time r. The transmission time tj is the time it takes to send a single floating point

number from Vs.() to vd(,) using communication channel ej. These values may include

the overhead of starting a transmission between the vertices, and so bj may not be r/tj.
The values will depend on the communication protocol.

Many of the assumptions in this model are merely to establish a concrete model,

and are easily generalized. For example, the restriction to binary primitive floating point

operators is a reasonable assumption, but we only want to establish an upper bound on

the number of operands of the primitive floating point operators.
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1.1.2 Communication Capabilities

The performance of a parallel algorithm is strongly affected by the ability of the multi-

processor to move data between vertices. Define a path P to be a sequence of edges,

{ e-, II = 1, . . p}, such that the destination vertex of edge ej, is the source vertex for

edge ej,+,. Define the length of the path P, L(P), to be the sum of the transmission

times along this path,
P

L(P) = tP

L(P) is then the time required to send a single floating point number along the path.

Define the distance from vertex v, to vertex v2, D(vi, v2), to be the length of the path

of minimum length starting at v, and ending at v2. Define D(v,v) to be zero. D(vi,v 2)

is the minimum amount of time it takes to send a single floating point number from v1

to V2 .

The diameter of a subset of the vertices of the graph, V' C V, is the maximum

distance between two vertices of the subset,

diam(V') = max D(v, w)

v,WEV'

A center of this subset is a vertex that minimizes the maximum distance between itself
and other vertices in the subset,

C= {cc E V ' , maxD(c,w) = minmaxD(v,w)}
wEV' vEV' wEV'

The radius of the subset is this distance,

rad(V') = minmaxD(v,w)
vEV' wEV"

The radius satisfies

diam(V')/2 < rad(V') < diam(V')

If the vertices in a set V' are all collaborating in a calculation, then the radius is a lower

bound on the time spent moving data between vertices during the calculation.

Example: Assume that a calculation produces one floating point number,

that one vertex of a subset V' has been designated to hold this result, and that
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each vertex in V' is in sole possession of information crucial to the calculation.

Then a lower bound on the time spent in moving this information through
the communication channels is rad(V'). The vertex that has been designated

to hold the result cannot be closer than rad(V') to all of the other vertices

of the set, and some datum used by the result will take at least this long to

arrive at the designated vertex.

1.1.3 Example Architectures

Most multiprocessor architectures currently being investigated have fairly simple graphs,

with essentially homogeneous processor and memory capabilities. See Feng [Fen8l] for

a survey of some of the graphs that have been considered. The following examples are

common designs, each of whose behavior is representative of a class of architectures. All
of the examples can be described as undirected graphs. If an edge exists from v; to vj,

then an edge with the same parameters also exists from vj to vi. We will refer to this

pair as a single edge in the following discussion. Additionally, all processor, memory, and
communication channel capabilities are the same unless otherwise noted. The values for
the capacity, the access time, the floating point addition time, the bandwidth, and the

transmission time are denoted by c, a, f(+), b, and t respectively.

* Fully Connected. The most powerful communications network has a graph that is
a clique. That is, every vertex is connected to every other vertex. The diameter of

any subset of the multiprocessor is t.

* Star. One multiprocessor architecture suitable for small numbers of processors can
be modelled as N processors connected to a single memory in a star topology. That
is, there are N communication channels, and each channel connects a different

processor with the memory. The diameter of any subset of the multiprocessor

containing at least two processors is 2t.

e Distributed Shared Memorj. Both of the previous examples have the property that

all memories are equidistant from all processors. We will call an architecture with
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this property a shared memory architecture.3 While the two previous examples

satisfy this condition, they are expensive to implement for large numbers of proces-

sors. A less expensive shared memory architecture replaces the single large memory

in the previous examples with many smaller memories and a distinct interconnec-

tion network. The vertices of the network are themselves small capacity memories,
switches, that accept and retransmit data. Each processor and memory external

to this interconnection network has one edge into the network. The interconnec-

tion network provides paths from any processor to any external memory. Assume

that there are N processors and N external memories, where N = 2k for some
positive integer k. If the interconnection network is implemented as an Omega

network [HB84 [GGK*83], then there are .5 . N log 2 N switches, each of which has
4 impinging edges. The distance between any processor and external memory is

t. log 2 N. If all communication between processors is via external memory, then the

diameter of a subset of vertices containing at least two processors is 2t ' log 2 N. If
interprocessor communication is direct, then a subset of K processors can have a
diameter as small as t • log2 K.

d Dimensional Array. We call an architecture a local memory architecture if each
memory is connected to only one vertex, a processor, and each processor is con-
nected to only one memory. Thus, each processor has quick access to its local
memory, but at the cost of slower access to the others. A common example is a
d dimensional array of processor-memory pairs. Each processor is connected to up

to 2d other processors, forming a d dimensional array. Assume that the array has
equal length sides and N processor-memory pairs. Then the diameter of a subset
of K processors is no more than dt • (N'/d - 1), and no less than dt • (K/d - 1).

The maximum is the diameter of the multiprocessor. The minimum is achieved by
a subset of vertices and edges that is a d dimensional array with K /d processors

on a side.

3 Currently, the most common shared memory multiprocessor architectures can be described as N
processors and a single memory connected by a shared bus. The graph of this particular architecture
can't be represented using the above model, but the communication capabilities of this network can
be considered to fall somewhere between that of the fully connected network and that of the star
network.
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* Hypercube. If the dimension of an array of N processors with equal length sides is

log2 N, then the graph is of a log2 N dimensional binary hypercube4 . Each processor
has log2 N edges. The diameter of a subset of K processors is between t.log2 N and

t • log 2 K. The lower bound is associated with a subset of vertices and edges that

approximates a log 2 K dimensional hypercube, or whose complement approximates

a log 2 (N - K) dimensional hypercube.

The difficulty and cost of constructing multiprocessors based on these designs can vary
dramatically. As the number of processors grows, more and more of the examples become

infeasible. Ultimately, the three dimensionality of the physical world will limit feasible

architectures to something that can be embedded in some variant of a three dimensional

grid of processors. Both technological limits and basic physical laws constrain how small
the processors and memories can be [MC80], and the volume taken up by a multiprocessor

must increase as the number of devices increase. 5 Thus, the speed of light will constrain

the speed of communications between the devices in the multiprocessor [Kro85]. But

these limitations are not the only difficulties associated with these architectures. For

the distributed shared memory architecture example, increasing the number of processors

increases the minimum number of edges data must travel over when being sent between

any processor and external memory. This necessarily increases the communication time
when t is kept fixed. For fully connected, star, and hypercube based architectures, the

number of input/output ports on a single device grows as the number of processors

increase. This increases device size, cost, and complexity.

1.2 Parallel Algorithms

We model an algorithm as a partially ordered set of instructions of the form

y = ftop(XI,... -, X,,)

4 See Seitz [Sei85] for a description of a particular hypercube based multiprocessor architecture.
'Similar arguments constrain how small f(+) can be.
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flop is a floating point operation, y is a floating point variable, and {xl,... , x,,} are

floating point constants and variables. If a floating point variable is used by two differ-

ent instructions, and if one of the instructions changes the value of that variable, then

the partial order specifies a precedence relationship between them. These are the only
relationships established by the partial order. 6

This model of an algorithm ignores many of the details usually found in algorithms. In
particular, integer arithmetic and instructions controlling conditional execution are not rep-

resented. But the time spent executing floating point operations generally dominates the

total execution time of algorithms for numerically approximating the solution of PDEs.

Moreover, this model is sufficient for establishing the lower bounds described in sec-

tion 1.2.2.

We define the serial computational complexity of an algorithm, C., to be the time

spent calculating the floating point operations on some standard serial processor. We

will often simply refer to this as the serial complexity. See [Kro85l and [AHU74] for

other definitions of serial complexity. The standard processor is assumed to satisfy the

assumptions made in the previous section about the processors in the multiprocessor.

All sequential orderings of the instructions of an algorithm that are consistent with the

partial ordering will have the same serial complexity, and will produce the same results

when executed on a serial processor. Therefore, we will also refer to the partially ordered

set of instructions as a serial algorithm. By the assumptions made on the processor,

the serial complexity is a weighted sum of the number of floating point operations. The

weights depend on the specifics of the standard processor.

A parallel implementation of an algorithm on a multiprocessor specifies when and on

which processor each instruction is executed, where the data is initially assigned, where

each intermediate and final result is stored, and what communication takes place during

the execution of the algorithm. We will refer to this information as the scheduling of

the algorithm. A scheduling is well-defined if it is compatible with the partial order's

precedence relationships, and if all demands made on the processors, memories, and com-

munication channels are within their capabilities. We define a parallel algorithm to be

6Thus, the algorithm can be represented by a data flow graph. See [HB84, pages 740-7441.
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the union of a serial algorithm, a multiprocessor architecture, and a well-defined schedul-

ing. Thus, we associate a deterministic serial algorithm with each parallel algorithm. In

practice, the serial algorithm may be a function of the data. This can make determining

the serial algorithm difficult, especially for chaotic parallel algorithms [CM69] [Bau78I.

But we can still analyze characteristics of the parallel algorithm by establishing necessary

properties of the associated serial algorithm.

1.2.1 Parallel Algorithm Costs

We define the cost, Tp, to be the time it takes to execute a parallel algorithm on a multipro-
cessor. Unlike serial algorithms, the cost of a parallel algorithm is not well approximated by
a weighted sum of the number of floating point operations. Instead, there are two distinct
costs associated with an efficient parallel algorithm, parallel computational complexity

and communication cost.

Parallel computational complexity

The parallel computational complexity is the amount of time during which at least one

of the processors is busy calculating the instructions of the serial algorithm. We will also
refer to the parallel computational complexity as simply the parallel complexity, or the

parallel computation cost. See [Kro85] for other definitions of parallel complexity. If the

multiprocessor has N identical processors, then the parallel complexity, Cp, is bounded

from below by7

The serial complexity in this expression is based on using one of the N processors as the

standard serial processor. For this bound to be achieved, all of the processors must be
busy all of the time. Even if communication is free, i.e. a = 0, t = 0, and b = DO, few

algorithms have N independent operations to be calculated throughout their execution,

The partial order can be examined to determine the maximum number of independent

operations that can be calculated at any one point in the algorithm. The schedule may

further limit the parallelism.

r'z] represents the smallest integer greater than or equal to z.
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Measures of the parallelism in the parallel algorithm are the computational speed-up,

C,

and the computational efficiency,

Ep=S
N

The computational speed-up represents how much faster the parallel algorithm can be

executed than the serial algorithm when communication is free. It is always less than or

equal to N. If all the processors are identical, then the computational efficiency measures

the average amount of time each of the processors is busy computing. It is always less

than or equal to 1.

Example: Consider a multiprocessor with N/2 processors, each of which

calculates a floating point addition in time f(+). Then the summation of N

floating point numbers,
N

requires at least time f(+) [log 2 Ni. Add is a binary operation, and each time

step of length f(+) replaces M existing summands by at least M/2 results.

These results are the summands for the next step.8

The best serial algorithm has a serial complexity of f(+). (N - 1) on

one of these processors. Thus, the computational speed-up is bounded from

above by N/Flog 2 NJ for a parallel algorithm based on this serial algorithm.

The computational efficiency is bounded from above by 2/log2 N when N/2

processors are used. The poor computational efficiency reflects the fact that,

after each step, half of the processors active previously have no more work to

do. If fewer processors are used, then the computational efficiency increases.

But then the computational speed-up decreases and the parallel complexity

increases.

"See Lemma 1 in Kuck [Kuc78, page 95].
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Communication cost

The communication cost, Wp, is the amount of time during which data is being moved
between the processors and memories of the multiprocessor. This includes the time spent
accessing a memory location and packaging the data for transmission. The achievable

parallel complexity is constrained by the number of processors in the multiprocessor and by
the serial algorithm. The communication cost is additionally constrained by the graph of
the multiprocessor. For example, the maximum computational speed-up in the summation
problem is achieved by using N/2 processors for an N term sum. Since each processor

produces an intermediate result that is needed to compute the final sum, the radius of
the N/2 processor subset of the multiprocessor will bound the communication cost from

below.

Effective scheduling

Most other reasonable costs, like integer arithmetic or overhead for synchronization, are
easily included in the model as communication or parallel computation costs. An unrea-
sonable cost is incurred when the schedule unnecessarily augments the partial order of the
serial algorithm, adding extra delays. For a given assignment of instructions to processors
and data to memories, we define a well-defined schedule to be effective if:

e a processor executes an instruction whenever its operands are available, the processor
is not currently executing another instruction or communication request, and the
partial order of the serial algorithm is not violated by doing so.

* when a processor is blocked from executing any more instructions due to a lack of

data, and that data exists, the data is moved to the processor as quickly as possible.

We henceforth restrict ourselves to parallel algorithms with effective schedules. An effec-
tive schedule is not necessarily a good one, but having one ensures that some part of the

multiprocessor is actively computing or communicating at all times.
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Total cost

A lower bound on T. is 9

max{Cp,W,}

But a processor cannot calculate a floating point operation until the operands are available.
If the operands must be drawn from some other device, then the calculation of the

operation is blocked until they arrive. If the schedule is effective, then an upper bound

on the cost of the parallel algorithm is

TP _ C + W , .

We define the speed-up and the efficiency to be the corresponding measures for the total

cost of a parallel algorithm [Kuc78] , i.e.

CS
T,

and

Et =

respectively. N is again the number of processors.

Computation bound algorithms

A parallel algorithm is computation bound if the communication cost is no more than

the parallel complexity, Wp < Cp. If a parallel algorithm is computation bound for a

multiprocessor architecture, then the architecture is adequate in the sense that the partial

order of the corresponding serial algorithm determines the dominant part of the cost.
This condition is also a useful tool for deciding how many processors to use to solve a
problem. For a given multiprocessor architecture, it is common for the parallel complexity

to be decreasing and the communication cost to be increasing as the number of processors
9 We will use max{al,... ,a,} as an alternative notation for

min a
aE e a .,a..

Similar notation will be used for the minimum element in a set.
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used to execute an algorithm increases. This describes the behavior of a set of parallel
algorithms, one for each number of processors, and will only hold over a range of numbers
of processors. The largest number of processors for which the corresponding parallel
algorithm is computation bound represents an estimate of the number of processors to
use to minimize the cost. If Wp = Cp, then the cost of the corresponding parallel algorithm
is at most twice that of the optimal, and will usually be much better than that. A similar
estimate can be used to evaluate a type of architecture as both the problem size and the
number of processors grow.

Example: The summation problem can be scheduled so that the parallel
complexity achieves the minimum of f(+). flog 2 NJ by using " LN/2 ] identical

processors. This performance is guaranteed, modulo constants, for any pos-
itive N if the parallel algorithms remain computation bound. But the radius
of a LN/2J processor linear array is greater than or equal to t. [-N/4J, where
t is the distance between connected processors. Since the radius represents
a lower bound on the communication cost for this problem, the algorithm

cannot be computation bound if

N >4 -(+ [LtlogN + ( f +)]

For the parallel algorithm to be computation bound for arbitrary N, the radius
of the N/2 processors must be bounded by f(+) [log2 NJ for all N. No

d dimensional array multiprocessor will satisfy this condition for large N if t

and f(+) are bounded away from zero.

1.2.2 Lower Bounds

A serial algorithm describes a mapping from a set of data to a set of solution values
specified by the problem. Define a nontrivial solution value to be one that is the result of
a binary floating point operation. Define a set of solution values to be independent if no
two of them have the same absolute values for all possible data. Let the set of nontrivial

"°Lzj represents the largest integer less than or equal to z.
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independent solution values of an algorithm a be

U={ujj=1,...,N.,} I

where Nu is the number of these solution values. For this set to be independent, at
least N0, binary floating point operations are required to generate its values. This is

a consequence of our assumption that unary negation is the only unary floating point

operation.

Let the data that is required to produce these solution values be

G= {gkIk = 1,...,Na,}

That is, there is no g in this set that can be arbitrarily changed without changing at
least one of the solution values. N.,, is the number of these data. For a datum to

be required by a nontrivial solution value, some unary function of its value must be an
operand of a binary floating point operation. Therefore, at least [N,,,/21 binary floating
point operations are required to use all of this data. Since addition is the least expensive

binary floating point operation, we have proven the following lemma.

Lemma 1.1 A lower bound on the serial complexity of an algorithm a is

f(+) -maxN., [Na-9] }

For u) E U, define N0 (u,) to be the amount of data that is required by a to compute

U). Again, this means that there is no gk in this set that can be arbitrarily changed

without changing the value of uj. Each datum must be the operand of a binary floating
point operation, and this operation produces a result that will itself be the operand of

a binary floating point operation. Summing the number of operations indicated by this
argument leads to the result that the serial complexity of calculating u. is bounded from

below by f(+) • (N0 (us) - 1)." The next lemma is a direct consequence of this.

"See Lemma I in Kuck [Kuc78, page 951.
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Lemma 1.2 A lower bound on the serial complexity of an algorithm a is

f(+). max (Na(uj) - 1)u) EU

For the rest of this section, assume that we know a lower bound on the serial complexity

of the form f(+) . Cs(Na(uj)) for all uj E U, where C,(N) N - 1.

For a parallel implementation of a, say that a processor collaborates in the computation

of uj if changing the results of all of the floating point operations calculated by that

processor can change the value of uj. Define Pa(uj) to be the number of processors

that collaborate in the calculation of uj for a given parallel implementation of a. For a

given multiprocessor, consider the subset of P=(uj) processors with minimum radius. Let

r(P0 (uj)) be this radius. Then the following lemma is a consequence of the discussion in

the example on page 4.

Lemma 1.3 For all u, E U, the communication cost of a parallel implementation of

an algorithm a on a given multiprocessor is bounded from below by r(P.(uj)).

This follows directly from the fact that information is needed from all Pa(uj) processors

in order to calculate uj.

The parallel complexity of calculating uj on a multiprocessor can be no faster than a

parallel implementation of summing its required data. The data can only be reduced by

a sequence of binary operations, and binary add is assumed to be the fastest nonunary

floating point operation. Thus, one lower bound on the parallel compelxity is f(+).

[log2 N.(uj)1, as in the example on page 10. This fact and inequality 1.1 on page 9

prove the following lemma.

Lemma 1.4 Assume that an algorithm a calculates u,. Then the parallel complexity

of a parallel implementation of a on a multiprocessor with identical processors is

bounded from below by

P'C(N(uj)) ,flog 2 N, (u,)1 }
f(+) max { (fu))

•P 
1 1 092 I II I I
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Define

Na,. = max Na(uj)
u, uEU

and

P',. = max Pa(uj)
U ,EU

Theorem 1.1 The parallel cost of a parallel implementation of an algorithm a on a

multiprocessor with identical multiprocessors is bounded from below by

max { r(P,.), f(+) [ ,C(N. , f(+) [log 2 N.,.l

Proof: The total cost is bounded from below by max{Cp, Wp,}. The result then follows

from Lemmas 1.3 and 1.4. I

Let r(p) be the radius of the p processor subset of a multiprocessor that has the minimum

radius.

Corollary 1.2 For a P processor multiprocessor with identical processors, a lower

bound on the parallel cost of any parallel implementation of a serial algorithm a is

ain max r(p), f(+) [C,(N ..) f(+). [log 2 N ,.] f(+) -- f(+) [ a }

Proof: For any parallel implementation of an algorithm a on this multiprocessor, P".. is

a member of the set {1,. . . , P}. Thus, the first three terms inside the max operator

follow from Theorem 1.1. The other two terms come from Lemma 1.1 and inequality 1.1.

1.3 Numerical Algorithms for PDEs

In Sections 1.3.1 through 1.3.4 we describe the class of linear PDEs whose solutions

we will be approximating and introduce some useful notation. In Section 1.3.5 we give

a simple example of such a PDE. In Section 1.3.6 we describe the type of numerical

approximations we are analyzing. We finish with a description of algorithmic features of
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these numerical approximations. Some of these assumptions are simplistic, but the results

derived in Chapters 2 and 3 carry over immediately for more realistic assumptions. This

is discussed briefly in Chapters 4 and 5.

1.3.1 Problem Description

Let Rd be the d dimensional Euclidean vector space. Let Q be a compact subset of R-d.

For any nonnegative integer k, let Ik be the k dimensional unit cube

Ik = [,11 X... X [, 11 C

1) We assume that we are approximating the solution of a linear scalar partial

differential equation defined on fQ whose solution operator can be represented

by an expression of the form

u(i)= l , (),)gi(i) di

for any i E Q. u(i) is the solution function, [ is a positive integer, the set

{d, Ii E { 1,..,i}} is made up of nonnegative integers, and the set of functions

{gi i E { 1,..., }} represent the problem data.

Thus, the solution function is the sum of I components of the form

= j 'I'd1i~ )g:(-t)d±

For the class of problems being considered here, the kernels {'Vi are linear functionals of

the Green's function for the PDE. See Section 1.3.5, Chapter 4, and Butkovskiy [But82]

for examples of this type of representation of the solution operator.

1.3.2 Kernel Assumptions

We assume the following properties about the functions {4i,} introduced in Section 1.3.1.
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Notation

For a given k, let B(i; 6) be the k dimensional open ball of radius 6 centered on ±. Define

the boundary of an arbitrary set X in Rk to be the set

{tIV6>0 (B(±;6)nX :0 and B( ;6 n kX00)}

That is, no ball centered on a point in the boundary does not contain points in both X

and 'kX. Denote the boundary by 0X. Define a function %I(i) to be a type 1 function

in the domain Ik if it satisfies the following 4 conditions.

a) 'P(.t) E L'(Ik), i.e. fl, JT(x)I dt is well defined and finite.

b) The boundary of the subset of Ik where %I(±t) is zero has measure zero in Rk.

c) '(k) is continuous everywhere in Ik except on a set that has measure zero in R.

d) If R is a set of measure zero in Ik, then fR IJI(±)I d± = 0

Assumptions

2) For each i E {1,...,l} and 2 E Q, 'Pj(i,.i) is a type I function in Id,. Further-

more, for each ie {1,...,i},

max f I'(,4)Id±

is finite.

1.3.3 Data Assumptions

We assume the following conditions on the data functions {gj}.

Notation

Let C'(Id,) be the set of all functions that have continuous mth order partial derivatives
on the set Id,. Let Iid,(m) be a set of d-vectors whose components are nonnegative
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integers that sum to m, i.e.

d.

Kd,(m) = ... , Id) and L"IL3 = m

Let 2 = (XI,... xe,). Let ; = --. x d'. Represent a particular mth order partial

derivative of a function g E Cm(Rd-) by12

,9 1A 4e1Ad

= Oxr a'd

where A E Kd,(m).

Let Vd, be the gradient operator for Qd. Thus,

Define VV[) recursively by
d, d, Vd

where 0 is the tensor product [Ha174]. If g E Cm(3Zdj ), then the elements of V(7)g(.)

are the mth order partial derivatives of g at i. Let V(m)g be a vector whose elements are

some ordering of the elements of V,(-)

Assumptions

3) For each i E {1,...,[}, we assume that g1 is known to be some member of a set

Gi defined in the following way. G, is the set of all functions g satisfying the

properties

i) 9(i) E Cml(Id,)

ii) IIVd' g(t)I(j < M(zi) for all ± E Id,

where mi is a positive integer, 11. 11() is a vector norm, and Mj(±t) is a bounded,

nonnegative, type 1 function.

The simplest example of a bound on the norm is a uniform bound.

2 This is the multiindex notation of Schwartz. See John [Joh82I.
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Example: A uniform bound on the mith order partial derivatives of gi has

the form
d_ !5 B VJW E Id,

where the norm is a vector norm for vectors of the appropriate length and B

is a nonnegative real number. For example, if di = 2 and mi = 2, then a

global bound based on the discrete infinity norm is

max 92 gi(i), 1 02gi(:), 0-2 29gi( < B1 ,x 11IaXI2 '9X2 <B

for all t E Id,.

1.3.4 Compatibility Conditions

The PDE will also be well-defined for data functions other than the given ones. We

assume the following sufficient conditions on permissible data functions for the PDE.

4) For each i E {,...,1}, we assume that any member of Gi is a permissible

data function for the ith component of a solution to the PDE. We also assume

that any combination of data functions from the sets {Gi} generate a possible

solution to the PDE, with one possible exception. The inclusion of a given data

function gi in a set of data functions may force the data function for a different

component, gj, to have given function and derivative values on the boundary of

Id,. We will refer to this as a compatibility condition.

Each set of compatible data functions drawn from the sets {G2} define a solution function

u. We will refer to the set of all solution functions generated in this fashion by U.

1.3.5 Example

Let
d 92

j=1 .
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Consider the following elliptic PDE in two space dimensions,

-A,,u = f (i) on B((O,O);1)

u(.)= h(_) on 9B((O, O);1)

Then

= J) G(i,i)f (t) di + J (G(_5, i) h(t) ds
B((O,O);) 8B((O,O);1) /

where 0G(i, i)/8n is the normal derivative of G with respect to t on the surface of the
unit ball. The Green's function G(E,±) has a logarithmic singularity at = , and is a

C O function elsewhere in B((O,0); 1). See Butkovskiy [But82, pages 131-132] for more
details.

To put this operator into the desired form, we first define the function G(i,i) to
be identically zero for i E ([-1, 1J x [-1, 1]) - B((O, 0); 1). The extension of the data
function f into ([-1, 1] x [-1, 11) - B((0,0); 1) can be done arbitrarily. As will become
clear in the next chapter, it is best for the analysis if the extension is as smooth as possible.

Note that 12 is mapped onto the region [-1,11 x [-1, 1] by the function

01(X1, X2) = (2. x - 1,2- x2 - 1)

OB((0,0); 1) can be divided into two submanifolds,

T 2 = {(XI,x 2) I X1 5 0, x 2 + x2 = 0}

and

T 3 = {(XI,X 2) Ix > 0,x + X = 0}

The unit interval is mapped onto T2 by the function

W(X) = (Cos( +7r x)), -sin( +7r - x)

Similarly, the unit interval is mapped onto T 3 by the function

03(X) = (cos(2 - x)), sin(2 - r. x))
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Therefore, the solution operator can be rewritten in the form
2, (jo))(fG((p1 (i(x)-)4di + J x( - ?r d x

u() = jG(,())f(p((p 2 (x))) h(P 2 (X))

+ G(,o 3 (x))) h(W3(x)).rdx

By the notation of Section 1.3.1,

Tj,(ij) = 4.G(i,p(i)) ,

4I' 2(i,X) = - (ir,,(X)) ,

T 3 (2,X) = G.( , (X))

gl(x) = f(), 92(X) = h(P 2(X)), and g3(X) = h(V(X))

If i E B((O,0); 1), then it is clear that each T' is a type 1 function in its domain. Note

that 92 and g3 must satisfy the compatibility conditions that

92(0) = 93(l)

and

g2(1) = 93(0)

If h is known to be differentiable, then compatibility conditions will also exist on the value

of the derivatives of 92 and g3 at x = 0 and x = 1.

1.3.6 Finite Approximations

Numerical approximations to the solution of the PDE replace the possibly infinite dimen-

sional problem with a finite dimensional problem. The dimensionality of the problem is
reduced by introducing error in the following sense:

* Only a finite amount of information about the solution function is calculated. Any

model of the solution based on only this information will only approximate the true

solution.
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e Only a finite amount of information about the data functions is used to calculate

the desired solution characteristics. We will refer to this as the data function

sampling. Unless this information completely characterizes the data functions, the

solution values that are calculated are also approximate.

The PDE is replaced by a relationship between the chosen information. The error in the

approximation to the solution is also a function of what this relationship is.

For the rest of this dissertation, we restrict ourselves to the case where

5) values of the data functions at given locations in their domains are used,

6) values of the solution function at given locations in its domain are approximated,

7) the error in approximating each solution value is bounded by some given value

E.

We assume that an algorithm a calculates the value of the solution function u at some set

of locations, Z = {ij Ij = 1,... ,N ,}. And, for each data function gi, the algorithm

uses function values at some set of locations Xi = {Xi,k I k = 1,... , Na,i}. For any
particular solution value u(,j), the algorithm will use values of gi at some set of locations

-ij = f{-i,j,kI k = 1,..., N,.a(ij)} _ Xi

in I.. Note the slight change in notation from Section 1.2.2. Instead of Na,j(u(ij)), we

use Nj(;Fj).

Intrinsic errors

Let u be some solution function in U, and let {gj} be the corresponding data functions

for u. Let ui(.,) = f, ,)gi(z)dt. For a given i, let G,,(g,) be the set of all

data functions in Gi satisfying the following properties.

e If g E Ga,ij(gi), then g has the same values as gi at the locations {Z,. 3 ,k}.

* If g E Ga.i,j(gi) and 1 E {O,...,mj}, then

for all i E 0 1 d, and all / E Kd,(l).
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That is, if g E G0 ,ij(gi), then g and gi have the same values at all sampling locations,

and g has the same function and derivative values as gi on the boundary of Id,. Since

compatiblity conditions only constrain functions on the boundary of their domain, and
since gi is necessarily compatible with the other data functions, each function in Ga,i,j(g,)

is also compatible with the other data functions.

If gi,1,gi,2 E Ga,i(gi), then the difference between the solution values associated with

these two data functions is

/ ,, ' (k j i )(g90 ) - gi,2 (")) d-t

It is impossible to distinguish gi from the other functions in Ga,,,j(g 1 ) merely given the
information {gj(xtd,k)}. Call the uncertainty introduced by the data function sampling

the data sampling error. Let U0,,i j(gi) be the set of values generated by these functions,

U,(gi) = {viIvi = j, i(,)g()d for g E Ga,i,j(gi)} (1.2)

Let D,ij(gi) be the maximum difference between these values,

Da,i,j(gi) - max )ivI - V21
Vi,,V,,2E Uo,.,,1(9,)- max lvi(d

9,,j,9,,2EG ,,,J (g,) If

Define the minimum worst case data sampling error for the ith component at -;j to be

the tightest possible bound on the data sampling error,

mmi max J'i'~i, -*)(g,(-) - 90W(X) di9aiEG.%,,,j(.9J 9,,2(EG&.,,,(g0)fdl0

This represents the amount of uncertainty in u(Zj) when only the ith component is being

approximated.

Lemma 1.5 The minimum worst case data sampling error for the ith component at

2j is greater than or equal to
D.,jj (g,)

2
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Proof: Assume that there exists a gi,. E G,,i,j(gi) such that

G,,, ( i) g ggdI

Then

max I '(,((, i)(g-(,) - g),2 ()i)) di

-- EGa,,j (g,) ,114s

+ max(,) I'd(f i)(g 1
' .(i)-g(±)) d±

Da,ij(gi) Da,,,(gi)
2 + 22 2

SD,ij(gi)

This is a contradiction. Therefore,

max > 'i((i,,i)(g 1 ,.(i)-g(i))di > D )
gEG..,,,(go) f i -d, 2

for all gi,. E Ga,i,j(gi), and

min max J 'i(ii,)(gi, (i) -gi- )) di > D i(g 1 )
gijEGa,iE ,.(g.) gi,2EG,,,(gi) I

We can similarly define a minimum worst case data sampling error for u at ,. Let

G'ai,j(gi) be the set of all data functions in Gi that have the same values as gi at the

locations {i,j,k}. Let U ,j, (g1) be the set of ith component values generated by these

functions. Let U,,j(u) be the set of all solution values whose data functions have the

same value as those for u at the sampling locations,

Ua~j(uL) = {I,, I vv v E U.tit3(gt)} l (1.3)

Let Da,j(u) be the maximum difference between these values,

D,,_(u) = max lVI - V21
vi ,v2 EUa,, (u)
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Then the minimum worst case data sampling error for u at ij is
min max IvI - v21

viEU.,j(u) t2EG,j(u)

Lemma 1.6 The minimum worst case data sampling error for computing u(;.J) is

greater than or equal to

i=0 2

Proof" For each i, Gaij(gi) c G 3a i,j(gi). Moreover, any combination of data functions

from the sets {G,j,(gi)} is compatible, since each function is compatible with the true

data functions. Therefore, if a function v has the form

V = Vi vi E Ua,,j(gt)
i=0

then v(i.i) E U,,j(u). In consequence,

D,i(u) = max lvi - V21= max IN V'2

j=O vi,i,v,,2EUa.,i,j(U)

> E D,,,i,j(g,)

i=O

The same argument used in Lemma 1.5 proves that

Da,j(u)
min max lvI - v2 1 > 2viu., (u,) v2EU.,(U) 2

Therefore,
min max IvI - v 2 1 ! Z 2

viEU8 ,,(u) 2EG,(u) i=O

Since these minimum worst case sampling errors are only functions of the sampling

locations and the PDE, we call them intrinsic errors. For arbitrary Gi, these lower

bounds on the intrinsic errors can be arbitrarily large. For a priori estimates of the error,

some assumptions about the data functions are necessary. Assumption 3 on page 19 is a

common type of assumption for piecewise polynomial approximation based methods, like

finite difference (RM67] [BL84] and finite element [SF73] methods.
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Modelling errors

Most numerical methods introduce more than the minimum worst case error when ap-

proximating the solution values. Tighter bounds can be derived by examining what model

a particular method uses to represent the data functions from the given values. For ex-

ample, standard Galerkin methods [Fle841 [SF73] [BTW84] explicitly introduce a model

for the solution and each data function, i! and {i}. Even when the solution is the only

function being explicitly modelled in the algorithm, the error introduced by the model can

often be interpreted as error imposed upon the data.

Each model of a data function introduces error into the approximate solution in a

fashion similar to the intrinsic error. For simplicity, assume that exactly one data function

model is used to approximate gi in the calculation of a given solution value u(ij). Call

this model gl,j. Then the minimum worst case error in computing the ith component at

2iIs3
max f iS,,((,- : )di

9EG .,, (9,) i

To bound the modelling error for the data functions satisfying the assumption on

page 19, any model g,j must satisfy

ItTijt0ij- g) di= o

for all polynomials g of order less than mi. This is a simple variant of Theorem 3.1

in [TW80, page 31]. It is sufficient if the model gij is an mith order accurate approxima-

tion to the data, i.e. all polynomials of degree less than mi are represented exactly.

1.3.7 Linear Algorithms and Serial Complexity

For an algorithm a, let gi be a vector made up of the values of gi used by the algorithm.

If a is linear, then the finite dimensional problem can be expressed by a matrix equation

of the form T
Afii= ,R,, , (1.4)

i=0

where ft is a vector containing the solution values to be approximated. If all elements of

i are nontrivial functions of the data, then A must be expressible as a square nonsingular
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matrix. If A is an N x N matrix and Ri is an N x Mi matrix, then N > N,., and

Ali = N.,i. The serial complexity of solving this matrix equation is a function of the

properties of the matrices, but

f(/).N + f()Z- N" + f(+).max - 1.5)
.7 t0

is a lower bound. The first two terms follow from the representation of the matrix problem,

and the last term follows from Lemma 1.2 on page 15. Here f(.), f(l), and f(+) are the
times to execute a floating point multiplication, division, and addition respectively. Note

that the second term is a lower bound on forming the right hand side, and the first

term is a lower bound on solving the matrix equation. This expression assumes that the
coefficients in Ri and A that are equal to 1 are either not known, or not taken advantage

of.

Explicit system

If A is a diagonal matrix, then this is an explicit method. N = N, for an efficient serial

algorithm. If we assume that il is ordered so that -ia is the approximation to u(5i), then
N=,2(ij) is the number of nonzero entries in the jth row of Ri. Each multiplication of a
row of Ri by §j requires N,(ij) multiplications and Na,i(i.) - 1 additions. Therefore,

the complexity of the straightforward method for calculating the solution of the matrix

equation is

E f ± (ff)" N+,(S) + f(+) . (NA,j(ij) - 1))) (1.6)
j=1 i=0

Again, the possibility of nonzero entries being known to have the value of 1 is ignored. If
the Ri matrices have special properties, then this serial complexity can be reduced. The

classic example is the fast fourier transform method, which reduces the setal complexity of
a matrix-vector multiplication for a particular dense matrix from 0(N 2 ) multiplications and
additions 3 to 0(NlogN) multiplications and additions. See [AHU74] for a description

13 For two real valued functions f and g, f(x) = e(g(z)) if there exist positive constants cl, C2,

and zo such that
for() l_ If(X) _5 210()l

for all x > zo [HS78].
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of this method.

Implicit system

If A has more than one nonzero element in at least one row, then this is an implicit

method. N,,(Ij) may no longer simply be the number of nonzero entries in the jth row

of Ri. For many PDEs, the best known serial algorithms are implicit. Some of the work
in good serial algorithms for solving the matrix equation is common to the calculation of

multiple solution values. The serial complexity of calculating a single solution value will

generally be larger for an implicit method than for a good explicit method, but the shared
work when calculating all of the solution values can make it the better algorithm.

For an implicit method, the serial complexity is a function of both evaluating the right

hand side and solving an equation of the form Ax = b. A general matrix equation solver
has a serial complexity of 0(N 3) multiplications and additions. But matrix equations

generated by piecewise polynomial models for elliptic PDEs can be solved using multigrid
algorithms in 1(N) multiplications and additions. Both methods have O(N) floating
point divisions. Other solvers for the matrix equation have complexities in between these

two extremes, and all depend on assumptions about the properties of A. We will use the

expression

to represent a bound on the number of multiplications and additions for some as yet
unspecified matrix equation solver. We will always assume that f E [1.31.

Other costs

This description of the serial complexity has ignored the cost of computing the elements

of the matrices A and {Ri}. This can be considerable, although it is usually a linear
function of the number of nonzero elements. Since it can be computed a priori, we will

continue to ignore it. It will not affect the lower bounds described in the later chapters.
But it can influence the comparison of different methods.
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Chapter 2

Information Requirements

Let Z be a finite set of locations in Q. For a PDE satisfying assumptions 1-4 in Section 1.3,
define A to be the class of serial algorithms that approximate the solution of the PDE
and satisfy the following condition:

e Each algorithm is based on a finite approximation satisfying assumptions 5-7 on

page 22.

Let A,(Z) be the subset of A satisfying the following additional condition:

9 Z is a subset of the locations where the solution function is approximated. And, for

all u E U, the error in approximating u(i) at each location i E Z is bounded by c.

As in Section 1.3.6, let Nj,(i) be the number of values of gi that are used by an algorithm
a when approximating u(i). Let N,(i) be the minimum number of values of gi required

by algorithms in A,({z}),
N,,i(2)= min Na,i()

aEA.({Z})

That is, all algorithms in A that approximate u(i) and satisfy an error tolerance of c must

use at least Nc,,(i) values of gi.

Lemma 2.1 Let f(+) be a lower bound on the execution time of a floating point

addition in a given multiprocessor. Then the expression

31
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is a lower bound on the parallel complexity of any parallel implemetation of an algo-

rithm a E A,(Z) on that multiprocessor.

Proof: If i E Z, then A,(Z) C A,({5}). Therefore, Na,i(5) _ N,(i) for all i E Z when
a E A,(Z). From Lemma 1.4 on page 15, a lower bound on the parallel complexity of a

parallel algorithm a is

Therefore, a lower bound on the parallel complexity of any parallel implementation of any

algorithm a E A,(Z) is

f() maxc [10 2 (N 1 i)]

I

In this chapter we calculate upper and lower bounds on N,1(i) of the form

A,

when Ni) 6 0 and Mi(±) > 0 for all i E Id,. We then define optimal parallel
algorithms for the set A,(Z), and use the bounds on Ni,1(&) to prove the following lower

bound on their parallel complexity. If N,(Z) > C • -d,/m, for even one i E Z and one

i E {0,... , l}, then the parallel complexity of optimal parallel algorithms must increase

linearly as a function of di log 2 C
- 1 when the error tolerance goes to zero. We also show

that there is always a parallel algorithm based on an explicit linear algorithm whose parallel

complexity is within a constant factor of this lower bound.

2.1 Lower Bound

Assume that a E A. Let u E U be a solution function, and let {gi} be the corresponding

set of data functions. As in Section 1.3.6, define Ga,i,,(g,) to be the set of all data



2.1. LOWER BOUND 33

functions in Gi that have the same values as g, at the locations {±,i6k}, and have the

same function and derivative values as gi on the boundary of Id,. Define Da,ij(gi) by

Da,ij(gi) = max J Y ''(ij, -t) (g, 1 gi,2() d;'
9 ,.1,.i 2EG,.,.,(y,) d ,

Let 6 be the function that is identically zero on Id,. By our assumptions about the
data functions, i E Gi. Let A°,%({j,}) be the subset of A that satisfies the following

condition. If a E A({jii}), then D,i,(0) _ 2- E. Define Ni'(i 3 ) by

N,(ij) = min N,,ai(,j)
aEA0., (1J)

Lemma 2.2 For all i E {f,..., 1},

Proof: Let i' be some element of {0, . . , 1}. Assume that a E A, but that a A Ai,({;j }).

Therefore, D,i,,j() > 2.

By the definition of U and the assumptions on Gi,, there exists some solution function

u E U for which gi, = 0. By Lemma 1.6, the minimum worst case data sampling error in

approximating this solution function at ii is bounded from below by
D a,;,,(0) + D .,,,.(gj) (2.1)

2 2
.. 0

Since Da,i,,(gi) > 0 for all i, this bound is itself bounded from below by D",i,,,(O)/2.

Therefore, the lower bound on the error in expression 2.1 is strictly greater than C for this

solution function, and a V A,({ij}). Since a was an arbitrary algorithm not in A°Q,({13}),

this implies that A,({,j}) C A i,({ij}). It follows immediately that

Since i' was arbitrary, this proves the Lemma. I

In the rest of this section, we calculate lower bounds on the number of sampling

locations necessary to satisfy

Da,ij(6) < 2.

The major tool in this analysis is the following lemma.
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Lemma 2.3

D,,,j(6) = 2. max j W,(i,,)(dt.

Proof: If -ti,. E G .,j(6), then

for all t E Id., It is clear that (-Y.s) and its derivatives are zero at the same locations

that -t,. and its derivatives are zero. Therefore, (--E,.) e Ga,,j(O) and

max , f( 'I( )({i (±f ) - 'i,2(i)) di
-- ,jx ( i,(, t) ((,.( 1) -(-.(±))) d

>2 max di i£./£7.( )S

=2. max FJ ij ±)-yj.(i) di

Also,

max J y±i, i) I -/i,2(t)) d-
-- .1 , Y, EGa, J ( fi) , 112 1aia(i

< max / 'I'(i 1 ,i)-yj, 1(i)di + max J Fi(ij, ±)-:2±)dt

= 2. max Id (

I

We will calculate a lower bound on Da,,.j(6) for a given set of data sampling locations
by constructing a C' function ' E G,,j(O). We will show that this lower bound on the
intrinsic error is a function of m i and the distance between the sampling locations. From
this, we calculate a bound on the number of sampling locations we must use to satisfy a
given error bound. To quantify the measure of distance, we introduce the Voronoi diagram

of a set of sample locations.
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2.1.1 Voronoi Diagram

We briefly describe Voronoi diagrams, and mention some of their properties. See also

[GS85.

Discrete sampling locations

Consider a set of n distinct sampling locations {.ik} in Rd. The Voronoi diagram as-

sociated with these locations is a partition of Rd made up of n open sets {V(-k)} and

one closed set, B. A point is in V(±1 ) if it is closer to tj than it is to any other sample

location, i.e.

-= I I - 112 < II k - 112, Vk l}

I1 112 is the Euclidean norm for Rd. We will call V(ij) a Voronoi cell, and refer to ij

as the center of the cell. B is the complement of the union of the Voronoi cells. Every
point on B satisfies the condition that the nearest sampling location is not unique. That
is, each point is equidistant from at least two of the sample locations.

The Voronoi diagram can be constructed in the following fashion. Consider two loca-

tions in Rd, ii and t2. Partition this space into three subregions, the (d- 1) dimensional
hyperplane all of whose points are equidistant from both il and t2, and the two open half
spaces defined by this hyperplane. Let H 1,2(i 1 ) and H 1 ,2(i 2) be the half spaces contain-

ing il and t2 respectively. For a set of n locations {k}, consider a particular location

ii E {±t}. Identify the half spaces and bisecting hyperplanes constructed by a pairwise
analysis of ii and each of the other n - 1 locations. Then V(j 1) is the intersection of all

of those halfspaces that contain that location,

V(ij) -- n H,(2,)
k#L

Thus, V(.t) is a convex polygon. All other Voronoi cells are constructed in an analogous

way. See Figure 2.1 for an example Voronoi diagram in R2.

Smooth surfaces

We can also extend the concept of a Voronoi diagram to include a smooth surface. For

example, let S be a (d- 1) dimensional differentiable surface in , and let W be a set of
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Figure 2.1: Example Voronoi diagram in ?2.

sampling locations bounded away from the surface. Treat every point on S as a sampling

location. The Voronoi cell associated with a location ' E S is again the set of points in
Rd that are closer to ' than to any other sampling location,

VW ) = f{ I1Il ' - lI2 < Ili - YlI2, Vi E S U W, i 5At}

If ' is in the interior of S then V(') is a segment of the line that is normal to S at

'. The segment is only bounded if there is at least one sampling location in each half

space defined by the plane tangent to S at '. V(±') is not an open set in Rd, but it

is isomorphic to an open set in R1. And B is still a closed set. The Voronoi cells for

locations off the surface may no longer be polygons, but they are still convex. Note that

this Voronoi diagram is a limiting case of the previous construction.

Sampling in a bounded region

For a final generalization, consider a finite discrete sampling {fk} within a compact region

C C Rd whose boundary 8C is the union of a finite number of smooth (d-1) dimensional

surfaces. Define the Voronoi diagram for these sample locations by first assuming that
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every location on the boundary is also a sampling location, and then taking the intersection
of the resulting Voronoi diagram with C. The Voronoi cells for the interior locations are
naturally contained in C, so only the Voronoi cells with centers on the boundary are
altered by being restricted to C.

Definitions and notation

Consider a finite set of sampling locations f tk} in a compact region C whose boundary is
the union of a finite number of smooth (d-1) dimensional surfaces. Let W = {} UOaC.
Let V'(fv), ti E W, be the closure of V(ti) in Rd. The neighbors of a cell V(t ') are
those cells whose closures intersect with the closure of V(tb'), i.e.

tvf)I9,v)n flv 6 o,@EW, 1b 54,'1}

The neighbors of a sampling location tz' are those sampling locations ti' E W for which

V(tb) is a neighbor of V(@').

Let the boundary of a cell V(tV'), 0V(ta'), be the intersection of B with the closure of
V(zb'). Every point on the boundary of one cell is also on the boundary of a neighboring
cell. Thus, every location in the boundary of V(t') is equidistant from ti' and the center
of one of its neighbors, and is no closer to any other center. Let r(tb') be the maximum
distance between iii' and the points on the boundary of V(t'), i.e.

= max 11
37EaV(VD)

We will use this function as a measure of the distance between sample locations.

2.1.2 Error Function

In this section we construct a function r E G,i,j(O) using the Voronoi diagram corre-
sponding to a set of data sampling locations.

Error function in Id,

Let B(.; 6) be the closure of B(i; 6), the di dimensional ball centered on I with radius
6. Choose a location t. in the interior of Id, and a 6 > 0 such that B(±.;6) C Id, and
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Ti(2j,. ) is continuous and nonzero on B(.t.;6). Thus, since B(±,.;6) is a compact set,

ITi((j, ,)l has a nonzero minima in B(i.,6).

If such a ball does not exist, then uj(Fj) = 0 and N,,i(ij) = 0. This follows from

Iii being a type 1 kernel. The integral over the set of measure zero where %Pi is singular

or discontinuous has no contribution, and Ii is zero elsewhere. Thus, any error can be

tolerated in the data function. For now, assume that Ni(zj) # 0.

Lemma 2.4 If di > 0 and no sampling locations are located in B(i.; 6), then

D.,i,j(O) _> 2 . Ci. min 1i'(2j,,)I. min M 1(j). bm + di

tEa(t. ,6) xE1 t'6

where C, is a positive constant dependent only on m,, d,, and I 11(i).

To prove this, we need the following fact.

Lemma 2.5 Assume that di > 0. For any i. E Id, and 6 > 0 such that B(.t.; 6) C

Id,, there exists a function -t E C'(Id,) with the following properties.

1) -y E G,.

2) -y(i) = 0 for alli V B(i.; 6).

3) -(,) > 0 for all t E B(i.; 6).

4) There exists a constant Ci > 0 depending only on mi, di, and II I() such that

Jt y(±)dt > C,._m,+d. .min Mi(i)

The proof of Lemma 2.5 is a straightforward, but somewhat lengthy, construction. See

Appendix A for the details. The proof of Lemma 2.4 follows directly from Lemma 2.5.

Proof of Lemma 2.4: Let "yf. be the function satisfying properties 1-4 of Lemma 2.5 on

the ball B(g.t; 6). Since there are no sampling locations in B(-t.; 6), and since -y.( ) = 0

for i V B(i;6), -ft. is also a member of Ga,i,,(O). Since -y.(±) is nonnegative and

Ti('±, ±.) is of one sign in B(±.; 6),

( I.;) i (2,-)y±.(t)(E.; )
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Therefore, by Lemma 2.3,

Daij(O) > 2. - max f v i'J' ) 7(.t) dt

> 2. I(&, () .[
- EB(k.;6) IB(f.;6)

> 2 ,Ci- min C*i(Fj' m)m. min M 1(±).6 dj+ -j

This proves the Lemma. I

To decrease the error below the bound in Lemma 2.4, the data function must be

sampled in B(i.; 6). Assume that B(i.; 6) contains n data samples {xk}. As described

in Section 2.1.1, these locations and the boundary of the ball define a Voronoi diagram
in ;). Let W = {xJ. Construct a function r E G.,jj(0) in the following way:

a) For each Voronoi cell V(dv), zi, E W, identify a location VD on its boundary where

the function

119- 112 for 9 E 0V(fv)

reaches its maximum, i.e.

I17 - 112 = r (t)

b) Let W = W, W' 0, and Fold = 0.

c) Choose an element 3' E W that maximizes r(o) over the set W. Since z,' E

aV(fv'), it is no closer than r(tv-') to any of the other locations in W'V. Therefore
B(g';r(t/')) contains no sample locations. Let , be the function described in

Lemma 2.5 for the ball B(9,; r(tv')). Add iD' to W', and set rne, = rod + 'fI'

d) Let S(V) be the subset W such that I119 - tv11 < 3r(zi') if ii' E S(fv'). Remove
the locations in S(tb') from W. Set oid equal to ['new.

e) If W is the empty set, then stop. Otherwise, return to step c.
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Upon termination, W = 0 and

"(7),= '() (2.2)
V~EW/

Let n' be the number of elements in W'. The following three lemmas verify that the
construction is well-defined, and that F has the desired properties.

Lemma 2.6 The construction of F is a well-defined process.

Proof, For step a, we must be able to find a ,b for any Voronoi cell V(uv). Since the

function II1 - 1V11 2 is continuous for g E i9V(dv), and the boundaries of these Voronoi

cells are closed bounded sets, there exists some 9, such that 119Z - W11 2 = r(dv) for each

w EW.

For step c, we must be able to find a fv' E W4J that maximizes r(tb) over this set.
There are never more than n sampling locations in W, so the cell that maximizes r'?i))

in this set is well-defined.

Finally, step d always removes at least one element from W. Since it begins with n

elements, the construction terminates after no more than n additions to F. I

Lemma 2.7 The function F is the sum of a finite number of nonnegative C (Id,)

functions {-} each of which satisfies the following three conditions.

1) The support of 1k is wholly contained in B(..; b).

2) -Yk E G,,,j().

3) The support of -Yk is disjoint from the support of the other functions in the set.

Proof: F is the sum of the n' functions {/D' I aD' E W'}. By the argument in Lemma 2.6,
n' < n, and so is finite. From Lemma 2.5, we know that each -yD' is a nonnegative

C (Id) function, and a member of Gi.

We also know that -1,() = 0 if t B(gv;r(wb')) for each ' E W'. Since
qv is no closer than r(tb') to any other Voronoi cell center, and since all locations in

0B(t.; 6) are centers of Voronoi cells, , is no closer than r(av') to &&(1.; 6). Therefore
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B(,; r(ti')) C B(±.t; 6), and the support of each -y, is restricted to B(pgy; r(ii')). This

proves the preamble and statement 1.

From step c of the construction, we know that B(p,; r(fv')) contains no sample

locations that are strictly inside B(i.; 6). And, from the previous paragraph, we know

that B(q,; r(t ')) contains no sample locations that are outside of B(t.; 6). Therefore,

yv is zero at all sampling locations. Also from the previous paragraph, we know that each

-y, is identically zero outside of B( .; 6). Since -yo, is a C' function, all derivatives of -y,

are zero outside of B( .. ; 6), and -/,v satisfies any compatibility conditions associated with

the data function 0. Therefore "y, E G0,,,j(0) for all i' E W'. This proves statement 2.

Assume that E Id, is in the support of both -y, and -yo, for tij, zb E W'. Since

the support of each -ye is restricted to B(Vye; r(t-)),

II~~-Y~4112 < r(tv-,) + r(fv-4)

Therefore

Ik7 D; 11 YI2 < 2r(tib) + r(ti4)k

and
S2 < + 2r()

Without loss of generality, assume that -yD, was added to r first. Then r(ti4) < r(ti),

and IIytD :7II12 < 3r(tu). By step d of the construction, fi4 would have been removed

from W immediately after ya,, was added, and thus would never have been used. This

leads to a contradiction. Therefore we know that

0'-,112 > r(dv') + r(,i4)

and that B(gDy;;6) n B(g,,;6) = 0 for all tZv,ti4 E W'. This proves the last statement

of the Lemma. I

Lemma 2.8 IF is a nonnegative C'(Id,) function that is a member of Gaj,,(O), and

whose support is wholly contained in B(±.; 6).

Proof: By statements 1 and 2 of Lemma 2.7, F is the sum of a finite number of nonneg-

ative C' functions that are elements of Ga,jj(O), and that are identically zero outside
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of B(_i.; 6). Therefore F is also a nonnegative C o function, r(i) = 0 if - e {k}, and

F(.) = 0 if + B(i.; 6). All that is left to prove is that

for all i E Id,.

From equation 2.2,

(±) = Z -as ()
V EWF

for any multiindex s. By statement 3 of Lemma 2.7, the support of the functions {-y:}

are pairwise disjoint, and
ao/ +() for ic E B(v; r(t,')) , t' E W';

1- 0, otherwise,

for Ai E Kd,(mi). Therefore,

')i(i), = 0 otherwise.

Since 'e, Gifor all tii' E W', IIVt')r(±)II(i) < Mi(t) for all - E /d,. I

The next lemma implies that the support of r' covers a significant portion of B(i.; 6).
The proof is in AppendixB.

Lemma 2.9

B(i.;6) _ U B(z,;5r(zb'))
VfsEW'

The major result concerning this construction is the following theorem. It describes how

the lower bound we have constructed can vary as the sample locations vary.

Theorem 2.1 Assume that gi(ij) 0 0. If di = 0, then Ni(2j) = 1. If di > 0,
let B(i.;6) C Id, be a closed ball in which '1I(i,) is nonzero and continuous as

a function of t. If n sample locations lie in the open ball B(.t.; 6), then Da,ij(0) is

bounded from below by

m 6 m,+d, ifn =0;
2"Ci" min 11Iq ( ,)l. min Mi(id). E r +d,19 tg ., ) .tR(f. , ) r= m' ii n > 0.



2.1. LOWER BOUND 43

where

(_ ifn > O
k=1

and

O<rk< 6  for 1 <k<n

Ci is the constant from Lemma 2.5 for a di dimensional domain.

Proof: If di = 0, then Id, is a single point, and N,,i(2j) is either zero or one. Assume

that d. > 0.

If n = 0, then the Theorem follows directly from Lemma 2.4. If n > 0, then let {t4 }
be the sample locations used in the construction of F. Let n' be the number of sample
locations used. By Lemmas 2.3, 2.5, 2.7 and 2.8, and equation 2.2,

'( 2. ma I Vj ( z- )L ) -y ( i ) d

> 2. / 41';) i(i'J'') F
( ' 

i
) 

di" !

1

* 2, min I(ii)L J
k=1 k

-a((;6)±.;b) k=1k

By Lemma 2.9,
n'

k~ kk=1

Therefore,

Vol (B(.t.; 6)) U Vol (B(9;5r(i4)))
k=1

or
711

6 d, <E5t-)d

k=1

Setting rk = r(i ') for 1 < k < n' and rk = 0 for k > n' produces the desired bound.
This bound verifies the Theorem. I
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2.1.3 Bound on1V,,i(Fj)

Assume that an algorithm a uses a given number of sampling locations in Id,. Then

Da,ij(O) can be bounded from below by minimizing the error bound in Theorem 2.1.

There will exist a minimum number of sample locations that guarantees that Da,,jj(0)

is less than a given error tolerance. By Lemma 2.2, this number is a lower bound on

Lemma 2.10 If mi 1 and di > 1, then the problem

nmin E r 'k '

k=1

subject to
n

(d),
k=1

is solved when
d

rk ( -. ) Vk {1,...,n}

The minimum value of the objective function is

\nd, ,

Proof: Add the constraint that _-k 1 rk q for some given q > ( 6 / 5 )d,. By LaGrange's

method [Apo74] and inspection of the objective function, we know that the minimum of

the augmented problem must satisfy
n nl d.),rk +A. r =0 Vk

=1=1

The unique solution to this condition is

rk = (q/n)L Vk (2.3)
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The corresponding value of the objective function is

q.(q/n) !, (2.4)

Expression 2.4 is minimized by choosing q = (bl5) ' , .

For this value of q, expression 2.4 is a lower bound on the objective function for

any feasible set of {rk}. Since this lower bound is achieved for the rk values described in

equation 2.3, this must be the minimum value for the objective in the original minimization

problem. I
The following lemma is a direct consequence of Lemma 2.10 and Theorem 2.1, where

B(.t.; 6) satisfies the usual assumptions.

Lemma 2.11 If N$,i(0j) : 0, di > 0, and n > 0, then

2*C,. min min Mi(.i). (1•. • ( 4.6d,

is a lower bound on Da,ij(0) for any algorithm a E A with n sampling locations in

B(±.; 6).

Note that this lower bound comes from setting rk = . '/d for k E {1,.. . , n}. This

is not achieveable using only n sample locations, but it is approximated by equidistributing

the sample locations. In this case,
6 1

rk ;
n di

where h is the distance between sample locations.

Lemma 2.11 is sufficient to bound Ni(ij).

Theorem 2.2 Let /(t.; 6) C Id, be any closed ball in which 4i(;, x) is nonzero and

continuous as a function of i. If

Ci m rmin I'i(,) - min M,(±) 6 M.+d, >
- e. ,b) 2-0E (2. ,6)

then

Nh C j) 2 Ca. pin t t de n t l omin M , ) .,, I I .and ) d

where Cs" is a positive constant dependent only on m,, d,, and I i,
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Proof: By Lemmas 2.4 and 2.2, if

C. min 1Ti (2j,x) -" min M,(;-). 6 ,+d, >
xtEBtr. ,6)

then at least one sampling location is required in B(t;6) in order to satisfy the error

tolerance. Let C' = Ci (1/ 5 )m.+d. By Lemma 2.11, a necessary condition for an

algorithm a to satisfy Da,ij(O) < 2 e is that

C' " m in mi ,)) " min M i( -" <a (t.,6) AB(k.,-L)

or
C i " m in i )I . m i n M l(± ) .6m + d, (. ) < n , , (2 .5 )

S6B().,6) f

where n is the number of sample locations in B(i.; 6). Since the total number of sample

locations is greater than or equal to n, a V Ai() unless inequality 2.5 holds. Therefore,

0m6 -.Id, Mm +i~d'

g~ j(Z 3) > C : . m in mi n M 'i( :).i''j +- "' . n

The proof of the Theorem follows immediately from Lemma 2.2. I

Thus, for most problems satisfying our assumptions, Nj,,(i) grows at least linearly as a

function of E- d/m. when f -- 0. Note that the condition

C, rni~ I'L'~,~)I Mm Ai~Gj) b m,+d, >
Ci. m in ra)l- in M ( ,) ' '+  >

±EB(2.,6) 2B(2, )

always holds if

C 1. m in ain M j(t) .b '+d. > >

This follows from the fact that C' = C, .5 - (m+d ) . So the condition need only be checked

if

(C. min jqmm / (} - mi

in which case the lower bound on , in Theorem 2.2 is either 0 or 1.
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2.1.4 Generalizations

The lower bound in Theorem 2.2 can be very weak. In this section we discuss how to
calculate a tighter bound.

The construction of F in the previous sections holds in any P(i.;6) satisfying the
usual conditions. In particular, if the error function is constructed in each member of a
set of nonoverlapping closed balls, then the lower bound on the error is the sum of the
errors from each ball.

For fixed i, let C(+; 6) be the open di dimensional cube centered on i with volume
6 d.. Let C(..; 6) be its closure. Let 6,, = 2' for some positive integer v. If i > 0, divide

Id, into 6b-', equal sized cubes. Let X = {±i} be centers of the cubes. Let nat be the
number of sampling locations in C(.t;6,) associated with an algorithm a. Construct a
new error function F' in the following way.

a) Let X' C X be centers of closed cubes over which Ti(ij, i) is nonzero and contin-

uous.

b) If Ti(zj,t) is positive on C(t;b6), then use the previous construction to define

a function r in the open ball B(ig;6,12). Call this function F. If Ti(Fj, t) < 0,
construct the same function r, but let r = -F. Note that F is a member of

Gi,.j(0) in either case.

c) Define F' to be

ki EX'

By the same reasoning used in Lemma 2.8, P' E G.,j,j(O). Thus, a new lower bound on

Da,i,.j()/2 is

c"'- ,+m, • (±5j, m M .rmin f n ) , , (2.6)
Ci ixn B 6.12) tE (21,6./2) l

where C' = Cf/2 'm+d-. Denote expression 2.6 by err.,,, ,(z) To bound N for this

construction, we need to solve the optimization problem

min _a t



48 CHAPTER 2. INFORMATION REQUIREMENTS

subject to

err.,i,,,AL(j) E (2.7)

The optimal sampling locations for the original construction were essentially equidis-
tributed. This construction recognizes that data from different regions of the domain may

have differing degrees of influence on the solution, and thus require different amounts of
data sampling. This lower bound is a function of the number of subcubes the original

cube is divided into, 2". But the solution to problem 2.7 is a lower bound on Ni(ij)

for any positive integer v'. Thus, the lower hound can be tightened by minimizing the
solution for fixed v over the the set of all possible v.

2.1.5 Summary of Lower Bound Results

The assumptions on the data functions described in Sections 1.3.3 and 1.3.4 are appro-
priate for an a priori error analysis of a method whose error is, at least partially, a function

of the values of the mith order partial derivatives of the data functions. If Ti(zi, i) and

Mi(i) are both nonzero over an open set in the domain, then the lower bounds derived
d_

here imply that the data sampling will increase at least linearly as a function of E ", when

the error tolerance decreases. Note that this bound is on the number of data samples
required when approximating a single solution value, and not just when approximating the

entire solution function. The construction of the error function described here also allows
us to localize the contribution to the error when sampling from any particular subregion.

2.2 Upper Bound

Upper bounds on Nc,i(ij) can be calculated from Nai(ij) for any particular algorithm
a E A,({ij}). In particular, for each i, let §i be some approximation to the data function
gi calculated from values of gi taken at a finite number sampling locations in Id,. Define
the approximation fi(ij) to be the sum of the components {ii(ij)1, where each fi,(2j) is

defined by

fl,(ij) = 1 ;(T, xv( ) d±
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Then this construction corresponds to an algorithm a E A(({ij}) if

I()- (i3)l c/i

for all i. We will call such an algorithm a Green's function method since it corresponds

to using the Green's function, and associated kernels, directly. Since

< l, l@,(g,(±)l -j )-d , (2.8)

the solution error can be bounded by a function of the data approximation error.

Most Green's function methods based on piecewise polynomial approximations to the

data will satisfy the error criterion if enough equidistributed data sampling locations are

used when calculating each component. To verify this, we describe a family of Green's

function methods based on a simple piecewise polynomial approximation, and calculate

an upper bound on the error for each member of this family. We then use this error bound

to calculate an upper bound on Nji(ij). Most commonly used algorithms, both Green's

function methods and others, will have similar results.

2.2.1 Simple Bounds

Consider a di dimensional cube C(.t.;6). Let h = 6/(m + 1). Let

X(,,k) = (±4) - - + kh
2

for 1 < s < di, where ( is the sth component of x.. Let ir, be the following set of

equally spaced locations in ( - b/2, ( .)a + 6/2],

{X(3,1), ..., X(,.,)}

Define r(di) to be the following set of mn' locations in C(.; 6).

r(d,) = I- X... X rd,

= {I(i), E 7r.} (2.9)
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Lemma 2.12 Let g be a function defined in a di dimensional cube C(i.;6). Define

r(di) to be the equidistributed locations in C(i.; 6) described by equation 2.9. Then
there exists a unique polynomial 4(i) of degree at most mi - 1 in each variable that
interpolates g at the locations in r(di). If g has mith order continous partial deriva-

tives in C(t.;6), then the error in the approximation is bounded from above by a term

of the form

C'm, ' max max '-g(W)

where C, is independent of 6 and tc..

This is a variation of the results in Chapter 5 of Prenter [Pre75]. See Appendix C for a

discussion of the proof.

Let gi be some element of Gi. Let C(-.; b) be some di dimensional cube in Id,. By
Lemma 2.12, there exists a unique polynomial that interpolates the function gi(±) at the
locations r(di) described above. Call this function pj(±). By the equivalence of finite
dimensional vector norms (Atk78, page 4141, there exists a constant C[ such that

Ci max ( IIV d, a ()

for all i E Id,, where Ci is defined in Lemma 2.12. Therefore, the error bound on the

approximation described in Lemma 2.12 becomes

Ig,(T) - p,(. < C" 6P, • max Mi(i) (2.10)

when i E C(..; 6).

Define an algorithm a in the following way. For each i > 0, approximate ui(ij) in the
following way.

a) Divide Id, into cubes of the form C(±i; 2-.), for some positive integer vj.

b) In each subcube C(.t; 2-"-,-), let p,,,il(x) be the approximation to gi(±) defined in
Lemma 2.12. Define ga,,,l to be pa,ij as a function of i E Id., a,,,(i) = Pa,,X-)

c) Approximate u1(ij) by the following expression,
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A simple upper bound on the error in this approximation to uj(i,) follows directly from

equations 2.8 and 2.10.

Lemma 2.13

Iuj(2j) - <i,(2) !5 * 2--" max M',(.) J ID~ i i, --)I dt

If i > 0, then the approximation requires 2 -',, 'd- subcubes, and a total of • 2'

sample locations. The upper bound on N,,j(2i) generated by algorithms of this type is

the following.

Theorem 2.3 For all i,

NV,,(() < C'(i).maxMMi"(). + 1
- I j,

for a finite constant C'(2j) independent of Mi and c.

Proof: Consider an algorithm a satisfying the conditions on page 50, where cubes of
the form C(.t; 2- v'.) are used to subdivide Id, when approximating the ith component.
Therefore,

d-d

N.,ij) = m4' 2("'-,)d, (2.11)

From Lemma 2.13, a sufficient condition to satisfy the error criterion is

C' 2 " max AM((t)J < 6
icE Idi ld,

for all i. Therefore,
d.

I (1 C" max Mj(:) J;) Ii(pId.) m,(212
E , d , < 2 v - A' d  ( 2 .1 2 )

for all i is also a sufficient condition. Define a so that

E ,, = 10o2+ 1 (2.13)

rn I
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for all i. Then the bounds in inequality 2.12 are satisfied, and a E A,({Sj}). Since

N0 ,i(ij) > N ,,(i) when a E Ae({i,}), the Theorem holds for

- dm'• (be';. ddL

This follows directly from equations 2.11 and 2.13. Since TI(2j,±) E L'(Id), this con-

stant is finite. I

As defined in Section 1.3.7, f(x) = E(g(x)) if there exist positive constants cl, c 2,

and x0 such that
C11g(X)l <5 1f(X)1 <5 c21g(X)l

for all x > xo [HS78]. Using this notation, Theorems 2.2 and 2.3 imply the following

corollary.

Corollary 2.4 If there exists a closed ball B(t.; 6) C Id, on which Mj(i) is nonzero,

and on which %i(ij, .t) is nonzero and continuous, then

N,,i()= e M-

as a function of 1/E.

Proof: If di = 0, then Theorem 2.2 states that N,,i(2j) = 1 for these assumptions, and

the statement holds. If di > 0, then Theorem 2.2 bounds N,,l(.j) from below by

N,,ij) >_ cj(£'j) •

where

c,(ij)= C . rin IP(2j,-)j" min Mi(-+).mi+d.
fEB(t.,6) EB(±.,6)

Theorem 2.3 bounds N ,(ij) from above by

Nfi(j) c2(ij) + 1

where d

c2(ij)= C'(2j) • max Mi (.t)
fEld,
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Let c2(ij) = c2(Pj) + 1. Then

C(i) ni< g(j) <

when 1/c > 1. This proves the corollary. I

2.2.2 Improved Bounds

The bounds in the previous lemma and theorem can be improved by allowing the sampling

frequency to vary over the domain. For example, define a Green's function method a

in the following way. Divide the domain Id, into cubes of the form C(t; 2-') as in

Section 2.1.4. Let X be the set of centers of these cubes. Divide each of these cubes
into cubes of the form C( i,;2- ' ,.') where v,L > v. Use the polynomial approximation

from Section 2.2.1 in each of these smaller cubes to define an approximation to gi in Id,.

Call this approximation §j. By Lemma 2.12 and inequality 2.10, an upper bound on the

error in using f'd, ki(j, id to approximate ui(ij) is

21EXC( ;2
-

(2;2)")IId

(2.14)

Denote this expression by err,,,u(2j).

For this construction, the number of sample locations in C(ij; 2-v) is

mi .2(1" )d

The total number of sample locations is

ti EX

To minimize the total number of sampling locations in Id, while still preserving the error

bound, solve the problem

min m . . X
tiEX
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subject to

erral) <

The minimization is taken over all legal combinations of the {vi} values. The solution to

this problem indicates how many subcubes to place in each of the larger cubes. This is

equivalent to specifying the number of sample locations to place in the larger cubes.

Using equation 2.14, we can close a gap left in the lower bound analysis. We have

no bounds on Nj,,( () for the case when Mi(±t) -.i(ii,t) = 0 for all i E Id,, but

neither function is identically zero. If v, = v for all 1 in equation 2.14, then an immediate

consequence of this construction is the following theorem.

Theorem 2.5 For any i, assume that either Mi(i) = 0 or Ti(j, i) = 0 in each

subregion C( t;2 - ") n Id,, t1 E X. Then

< mi, . 2"~d

Proof. Pick some e > 0. Let i' be some element of {0,..., 1). Define a to be an algorithm

that approximates u(2j) in the following way. Approximate ui,( ,) in the fashion described

above, using vi = v. Approximate the other components in the fashion described on

page 50, where va,i satisfies equation 2.13 for all i €- i'. Thus, lu,(ij) - ,a(ij)I <

E/t when i 5 i'. Assume that, for the given subdivision of Id,, either Mi(i) = 0 or

0 in each subregion C(±i; 2- ) n Id,, ;- E X. Then

[u(j- ii,i,(S,)I _< erra,,,u(ij) = 0

Therefore a E A,({i}) and

Na.i'(2j)= mi2

Since Na,,(2j) is an upper bound on N,,(ij), and since both c and i' were arbitrary, this

proves the Theorem. I

Therefore, Nc,(2j) is a bounded function of f if the assumption ;- Theorem. 2.r ho!ds for

any finite v.
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2.2.3 Summary of Upper Bound Results

Upper bounds on the amount of data needed when using simple piecewise polynomial

approximations to a data function have the same asymptotic behavior as the lower bound
calculated in Section 2.1. Therefore, only constants can be improved by using global ap-
proximation methods to approximate these data functions. For polynomial approximations

with local bases [SF73], like the example provided here, the contribution to the error from
a subregion is a function of the number of sample locations in that subregion. This allows

us to decrease the upper bound by adjusting the frequency of sampling in subregions.

2.3 Optimal Parallel Algorithms

In this section we calculate lower bounds on the complexity of parallel implementations

of algorithms in A,(Z). Assume that we have a fully connected multiprocessor with an
unlimited number of homogeneous processors and memories. Furthermore, assume that

it has infinitely powerful communication capabilites. That is, the memory access and
transmission times are both zero. Thus, the communication cost is always zero on this
architecture. Consider the class of all parallel implementations of algorithms in A,(Z)

on this idealized multiprocessor. Then the minimum parallel complexity achieved by this
class represents a lower bound on the parallel cost for all multiprocessors in the following

sense. Assume that the processors in a given multiprocessor are no faster than those in
the idealized multirpocessor. Then any parallel algorithm on the given multiprocessor can
be simulated on the idealized multiprocessor with no increase in the parallel complexity.
If some processors are faster, then the bound is recovered by scaling the complexity to

reflect this difference.

We will refer to the set of parallel algorithms that achieve this minimum as optimal

parallel algorithms. Note that the serial algorithms corresponding to optimal parallel
algorithms may not have good parallel implementations on a particular multiprocessor.

The finite number of processors and the cost of communication can change the behavior of

the parallel cost. In this section we describe what form this lower bound takes, and describe

a class of simple linear algorithms whose parallel complexity has the same asymptotic
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behavior as c - 0.

2.3.1 Lower Bound on Parallel Complexity

Lemma 2.1 provides a lower bound on the parallel complexity of an optimal parallel

algorithm. The following theorem then follows from Theorem 2.2.

Theorem 2.6 Assume that there exists some i E Z and some i E {1, ... ,} such

that di # 0 and the following condition holds. There exists a closed ball B(i.; b) C Id,

on which Pi(it) is nonzero and continuous, and on which M,(f) is nonzero. Then

the parallel complexity of an optimal parallel algorithm for A,(Z) is bounded from

below by an expression of the form

fA+V (Ci + C2 'o 1 ()

as e --+ 0. The constants cl and c2 are both independent of e, and c2 > 0.

Proof. Let

Eo= C;. min j1,(ji, )j. min M ;(-f) 6 m6+d.

By Theorem 2.2. if e < e., then

N, > C1. .min, ',(, Mfl, 6 +d (1\ -,

for all a E A,(Z). Therefore, if c < c., then

max [log 2 (Ni(Nf))1 > c, + .log 2 ,
fr=Z Mi (16)

where

cl max di 1o2 C . min jq (, )j- min Mi(±j).bm.+d.
g EZ rni 20(t.o, b) 269(2.., )

By the assumptions of the Theorem, cl is finite. The proof then follows from Lemma 2.1.

I

Corollary 2.7 Given the assumptions of Theorem 2.6, the parallel complexity of

parallel implementations of algorithms in A,(Z) grow at least linearly as a function

of log2(c- 1 ) when e decreases.
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2.3.2 Upper Bound on Parallel Complexity

In Theorem 2.3 we described an algorithm a E A,({) that approximated each compo-
nent of u(2) by an expression of the form

ii0 ,,() = j 'I, )=,( d±
ajidiaj~)d

(2.15)

when i > 0. Each function a,i,1() is the polynomial interpolant of g(±) in the di dimen-
sional cube C(;,;2- - i d, ) described in Section 2.2.1.

Let 7r(di) = {±i,k} be the set of sampling locations in C(-;,; 2 - -=,'d). Let lI,k() be

the unique polynomial of degree at most mi - I in each variable such that

{I, if - = -t,k

0,,k(X)= ift E 7rj(d), - #l,

Then ga,,,l(i) can be represented by

d'

k=1

See AppendixC and [Pre75 for a more detailed discussion of this representation of the
interpolating polynomial.

The expression for i!,d(±) in equation 2.15 becomes

dd

2a,, d, M .

= I Z,(z, ) g(i,) .1,k(j ) dJ1=1 C(±,;2_0-., di)  \k=t

d, d

2 ' Q ,t 'd , m . t , , , , f, , t .( : d
1=1 k=1 C(2j;2-'a,, d.

Each factor fC(2,;2 4,.d) Ti',(zi)lkk(x)di is independent of the data, and can be pre-
computed. Call it ra,,,,k(z). The expression for aj,,(2) is then

2"a, d, ,d,

= t r,ij,k(2) -gi(X..k) (2.16)
1=1 k=1
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The multiplications in expression 2.16 are al, independent, and the additions can be

calculated in parallel as in the example on page 10. Therefore, the parallel complexity of

evaluating this expression can be as low as

h- + f(+) - [1og 2 (MI' 2 (2.17)

when m' • 2Ld, processors are used. Let

C,(p) = Cj'(z).maxM,-(x).
rE l,

_ d, M ~ I (218
= 2'rn "max i, () l'C'" I(j,01di (2.18)

2E Id, Ild/

where C''(i,) is the constant defined in Theorem 2.3 and C' is the constant from equa-

tion 2.10 and Lemma 2.13. By the definition of a in Theorem 2.3, we know that

log 2 (mt .• 2 v.d1) iog2 (i,(). i) +

<max 10o2 t(i) + 10 2  +j.)I~ . (2.19)

Since TI is a type 1 kernel, C'j(i) is a finite ionnegative constant independent of E.

The approximation of u(&) requires the evaluation of an expression like expression 2.16

for each component. The final step of the approximation is

i=1

The parallel complexity of evaluating this sum can be as low as

f(+)- [log (2.20)

if [1/2] processors are used. The following lemma describes how small the parallel com-

plexity of algorithm a can be on the idealized multiprocessor.

Lemma 2.14 Ipproximatc i(z) to within an error tolerance of c in the following

way. Use the algorithm on page 50 of Section 2.2.1 to approximate each componeni
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uj(i) to within an error tolerance of c/l by satisfying equation 2.13. There exists a

parallel implementation of this algorithm whose parallel complexity is bounded from

above by an expression of the form

f~ ± ) + C4 log02

when f < 1. The constants c3(2) and c4 are independent of c, and c4 is nonnegative.

No more than

(+ 1) + 7
i=l

processors are required to achieve this bound. Each C,(j) is a finite nonnegative

constant independent of c.

Proof: Since the approximation of each component is independent of the others, the

parallel complexity of approximating the components can be as low as
max 1ax log 2 6 " () + 1 ' lo\

iE...1.)( [max+ogCt1+1. , 01lI~ )
d.

if [K 'i()" (C)_ -, + lj processors are used to calculate each component. Therefore,

T

processors are enough for this step of the parallel implementation. This follows from
equations 2.17 and 2.19. Using expression 2.20, the final summation of the components
need only have a parallel complexity of f(+) [log2 1] when [I/2j processors are used.
Enough processors are available from the previous step to satisfy this condition. Thus,
the Lemma holds if

c3(Z) flog 2[] + max (max {log2  + ±1, 10}) + 1iE 1 .....1}

and

C4 = maxI-
iE{1L.-I

I
The following theorem is an immediate consequence of this lemma.
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Theorem 2.8 Define an algorithm a E A,(Z) in the following way. For each 2 E Z,

approximate u(2) to within an error tolerance of e using the algorithm in Lemma 2.14.

There exists a parallel implementation of a whose parallel complexity is bounded from

above by an expression of the form

fA) + f+-" (c3 +- 10g2

The constants c3 and c4 are both independent of f, and c4 > 0. Let IZI be the number

of locations in Z. There exists an expression

+

that is an upper bound on the number of processors required to achieve this bound on

the complexity, where each C, is a finite nonnegative constant independent of f.

Proof: The approximation of each solution value u(i) for i E Z is independent of the

others. Thus, we can calculate each solution value on a different subset of the processors

in the idealized multiprocessor. The bound follows from Lemma 2.14 when

C3= max c 3(i)
iEZ

Ci = maxCj (i) for iG {1,... I}
2EZ

and c4 is the same as in Lemma 2.14. By assumption 2 on page 18,

rnaxf ftj'  ,t~d. < maxf fl I (2j, st)jdj < oo
E Z d I- E Q I d,

That Ci is nonnegative and finite then follows from equation 2.18 and the assumptions

on Mj( E). I

Corollary 2.9 The parallel complexity of an optimal parallel algorithm for A,(Z) is

bounded from above by an expression of the form

fA) + f+).(c 3 ± c4"log2 (!))

The constants c3 and c4 are both independent of c, and c4 > 0.
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Proof: The algorithm described in Theorem 2.8 is a member of A,(Z). Therefore, the
upper bound described in Theorem 2.8 is also an upper bound on the parallel complexity

of the optimal parallel algorithms. I

Note that using the algorithm in Section 2.2.1 for each component of each solution

value in {u(2) I i E Z} describes a finite complexity1 explicit linear algorithm of the type
defined in Section 1.3.7,

I

ft Rj~j(2.21)
i=l

Assume that the Jth element of the vector ii approximates u(ij) for ij E Z. Then, for
fixed i, the elements of the set {rj,1,k(i,)} are the nonzero elements in the jth row of R,.
The following corollary is an immediate consequence of this discussion and Theorem 2.9.

Corollary 2.10 There exists a finite constant C independent of c for which the fol-

lowing property holds: For any c > 0, there exists a finite complexity explicit lin-

ear algorithm a E A,(Z) with a parallel implementation whose parallel complexity is

bounded from above by an expression of the form

A.) + C.f(+)" log 2

Only a finite number of processors are required to achieve this bound.

2.3.3 Summary of Complexity Bounds

When the conditions assumed in Theorem 2.6 are satisfied, the parallel complexity of all
parallel algorithms must increase as the error tolerance decreases. And, as E -+ 0, there

is always a parallel implementation of an explicit linear algorithm in A,(Z) whose parallel

complexity is within a constant factor of the lower bound. The size of this constant factor
can be quite large. But the size of the factor can be reduced by using the generalizations

described in Sections 2.1.4 and 2.2.2.

'The finite complexity of this algorithm is easily verified directly. It is also a consequence of
Theorem 2.8. The serial complexity is bounded from above by the product of the parallel complexity
and the number of processors used. Both of these are finite.
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2.4 Conclusion

In this chapter we have described upper and lower bounds on N,,i(ij).

" If %P(zj, i) is not nonzero over some open set contained in Id, then Nc,,(ij) = 0.

" If N .(ij) 0 0 and di = 0, then N,(2j) = 1.

" If there exists a finite covering of the domain by di dimensional cubes such that either

( 0 or AMI(i) - 0 in each cube, then N,(2j) is bounded independent of

" If 'I(z, x) and Mi(±t) are both nonzero on any open set in the domain, then

N,,(i) = ( (M,

as a function of 1/f.

We have also described upper and lower bounds on the asymptotic behavior of the parallel

complexity as the error tolerance decreases.

* If there exists at least one i E Z and one i E {I,. . . } such that i(ij, ,±) and
AlI(f) are both nonzero on any open set in the domain, then the parallel complexity

of parallel implementations of algorithms in A,(Z) must increase at least linearly as

a function of

f(+)'-di'log
2

when f -- 0.

* For an ideal multiprocessor with arbitrarily many processors and infinitely powerful
communication capabilities, the parallel complexity of an optimal parallel algorithm

is bounded above by a function of the form

f(+)- max log2  + c,
{1 I } i} n /

where c is a finite constant independent of c.



Chapter 3

Scaling

Current research into parallel processing and multiprocessors is driven by the need to

increase computing power. Two goals are achieved by increasing the computing power.

More problems can be solved in a given interval of time and problems whose solutions

have heretofore been too costly to calculate can now be solved.

In this chapter we examine an issue related to how effective multiprocessors are at

achieving these goals, scaling. A multiprocessor scales if increasing the number of proces-

sors enables it to solve larger problems efficiently. A lack of parallelism in the algorithms

or increasing communication cost can prevent this. We analyze this issue by using the

results of Chapter 2 to calculate lower bounds on the parallel cost of approximating the

solution of a PDE on a particular multiprocessor. We bound the parallel cost as the serial

complexity of calculating this approximation increases. We also examine the effect of

communication costs on this bound.

3.1 Definition of Scaling

Scaling a multiprocessor architecture increases or decreases the number of processors

and memories in the multiprocessor while keeping certain attributes of the architecture

fixed.' In particular, we define scaling for the example architectures of Section 1.1.3 in the

'See [LM87] for a discussion of parameterized architectures. These are families of architectures
whose individual members are specified by a particular choice of the parameters, like the number of

63
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following way. The graph of the scaled multiprocessor architecture is of the same type as

before scaling, and each type of component has the same parameters. For example, when

scaling a d dimensional array multiprocessor with Nd processors, the graph of the new

multiprocessor will still be a d dimensional cube. The graph labels indicating processor

and Lommunication abilities will also be unchanged. But the number of processors will

now be Md for some M 74 N. Thus, scaling defines a family of multiprocessors with

similar architectures. We will refer to a particular multiprocessor as an instance of this

architectural family and to the number of processors in an instance as its size. We will

use the term scaling up to mean increasing the size of a multiprocessor architecture.

Scaling a problem alters the problem specifications in such a way that the serial

complexity of the algorithms used to solve it changes. By the assumptions in Section 1.3.6,

the problem of approximating the PDE is a function of the number and location of solution

values to be approximated, the available data, and the bound on the error in approximating

the solution values. Therefore, to scale the problem, one or more of these parameters must

be changed. Scaling the problem defines a family of similar problems, all approximating the

solution of the PDE. We will refer to a given set of specifications as a problem instance.

The size of a problem instance is the minimum serial complexity of algorithms that solve

the problem instance. We will use the term scaling up to mean changing the problem

specifications in such a way that its size increases.

We say that a multiprocessor architecture scales for a problem if the minimum parallel

cost can be bounded independent of the problem size by scaling up the architecture. That

is, there exists a finite constant associated with the problem and the architecture with the

following property. For any given problem instance, there is always some instance of the

architecture that is large enough that the minimum parallel cost is less than this constant.

Given a reasonable assumption on how the size of a problem can grow, we will show that

no multiprocessor architecture scales for our problems.

processors. In general, we can define a scaling of a given multiprocessor by replicating the original
multiprocessor some number of times, and joining these pieces together in some consistent way.
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3.2 Problem Scaling Assumptions

We will not increase the size of the problem unless some advantage is gained by doing

so. On serial computers, there are only two possible reasons for increasing the size of
problem. First, we may be interested in approximating the solution more accurately,

jnd are willing to pay the price of a longer execution time. Second, the algorithm we
are using may not be optimal, and solving a problem instance with a larger size may take
less time than when solving the original instance. But, as the size continues increasing,
the increasing minimum serial complexity will force the serial complexity of all algorithms

to eventually increase. Thus, ignoring the vagaries of individual algorithms, the most
common reason for increasing the size of the problem is to improve the approximation to

the solution.

On multiprocessors, there is one additional reason to increase the size of the problem.
It may be that a problem instance with a larger size can be solved with a smaller parallel

cost than the original probem instance could be. This may be due to the vagaries of a

given parallel algorithm, or to a smaller minimum parallel cost. But, for a fixed error bound

c, there is a lower bound on the minimum parallel cost that is independent of the other
factors, as was described in chapters 1 and 2. Therefore, as the problem continues to scale
up, any decrease in the parallel cost will be limited by the lower bound, and any advantage

to scaling up the problem will suffer from a law of diminishing returns. Additionally, a
decrease in the minimum parallel cost is unlikely when scaling up the problem, and would

be difficult to predict. In practice, when a problem is scaled up, it is done in order to

improve the approximation to the solution.

Given the above discussion, we will assume that we are only interested in scaling up
a problem if the approximation to the solution is thereby improved. Our first assumption

specifies how we will measure this improvement. This assumption includes the most

commonly used techniques.

iJ) lihe probiern is scaled up, then some upper bound on the error in approximating

the solution of the PDE is decreased. We will assume two different types of error

bounds.

a) Let Z be a finite set of locations in Q2, and assume that the error bound to
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be satisfied is of the form

max ma<u2)-fti)I:
uEU jFE.Z

For each ij E Z and u E U, fi(ij) is an approximation to u(ij) calculated

from the data specified by the problem instance.

b) Assume that the error bound is on how well the solution function is ap-

proximated,
max max lu(;) - ii(2)[ <5uEU iEfi

For each u E U, the function 71 is an approximation to u satisfying the

following property. For each problem instance, f4i() is a function of a

finite set of values {fi(ij)}, where {ij} is the .rt cf locations specified by

the instance and each fi(ij) is an approximation to u(ij) calculated from

the available data. Furthermore, for each i E QT, fi(i) is a function of at

most c of these approximate solution values, where c is independent of the

size of the problem and i.

For case b, i! might be a piecewise polynomial representation of the function based on the

set of values specified by the problem instance. The assumption about how ft(2) is defined

is to ensure that approximating the solution at the locations specified by the problem
instance represents the major component of the cost of approximating the function.

We also want the increase in the size to be effective in decreasing the error. This

motivates the second assumption about how the problem scales.

2) There exists a monotonically increasing continuous function 77 with the following

properties.

a) 77(x) is finite and positive for finite x > 0, and 77(0) = 0.

b) Let s(p) be the size of a problem instance p. Let ep be the error bound

satisfied by the instance. Then,

Ep :57 (,))
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This insures that, in the limit as the size of the problem goes to infinity, the error in the

approximation goes to zero.

Unless the solution functions in U are at least continuous, or have some special struc-

ture, the error bound in case b of assumption 1 cannot be made arbitrarily small. Thus,
by assumption 2, the size of the problems we are interested in solving will be bounded

from above. If we assume that all functions in U are at least continuous, then this upper

bound no longer exists. We prove this in the following lemma.

Lemma 3.1 Assume that all u E U are continuous on the compact domain f2. Then,

for each e > 0, there exists a problem instance of finite size whose solution approxi-

mates the solution of the PDE to within this error tolerance for all u E U.

Proof: Assume that u E U. Since Q is compact, u is uniformly continuous on this

domain. Therefore, there exists a 6 such that

lu(i) - u(,')l < e/2

for all 2, 2' E Q for which 112 - V112 _< 6. And, since Q is compact, there exists a finite

set of locations Z, C Q such that

Q C U B(2j;b) (3.1)

Therefore, only a finite number of solution values are required to approximate the solution

anywhere in the domain to within an error tolerance of e/2.

By corollary 2.10, we know that there exists a finite complexity serial algorithm a
that approximates the solution at each location in Z, to within an error tolerance of e/2.

Denote the approximation to u(ij) by fia(ij). Thus, for any i E Q, there exists some

2j E Z, such that

lu(2) - fti (2)I -< i() - u(i,)I + iu( ) - fia(i 3 )1

< c/2 + E/2

This follows from equation 3.1. Therefore, there exists an algorithm with a finite serial

complexity whose solution approximates the solution of the PDE to within an error bound

of c. This proves the Lemma for both cases a and b of assumption 1. 1
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The complexity of the algorithm used to prove corollary 2.10 was bounded by making

some simplifying assumptions. For each j E Z , the algorithm a has the form

1 " 2( a ,+ P t) 
"
d 

d, 
r

i=1 I=1 k=

We assumed that the cost of calculating the coefficients {ra,,1,k(_5j) } is zero. But

Lemma 3.1 will hold as long as the cost of approximating each coefficient to within

an error tolerance of f is finite for each c > 0. In general, any of the traditional finite dif-
ference and finite element techniques can be used to generate finite complexity algorithms

that satisfy the same error criterion.

3.3 Architecture Independent Bounds

The next theorem essentially says the following. If the problem cannot be solved exactly

using a finite amount of information, then the parallel complexity must increase as the
problem size grows.

Theorem 3.1 Assume that there exists a i. E Q and some i E {1,..., } such that

di 0 0 and the following property holds: There exists a closed ball B(±.; 6) C Id,

on which %Y(£',i) is nonzero and continuous, and on which Mi(f) is nonzero. Also

assume that f(+) is bounded away from zero for all permissible multiprocessors archi-

tectures. Then the following conditions hold for case b of assumption 1, and for case

a when i. E Z.

" As the problem size increases, a lower bound on the parallel complexity increases.

" In the limit as the problem size becomes infinite, the lower bound on the parallel

complexity also becomes infinite.

Proof. By assumptions 1 and 2 on scaling, as the size of the problem grows, the error in
approximating the solution decreases. And the error bound goes to zero as the problem

size becomes infinite.
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For case a of assumption 1, the solution is approximated at some fixed set of solution

locations Z. The error bound is on the error in these approximations. If i. E Z, then

Theorem 2.6 says that the parallel complexity must at least grow like

f(+) .(C1 + c2 .1og 21 ))

for constants cl and c2. As e decreases, this bound grows. And, as f -* 0, this bound

becomes infinite.

For case b, the error in approximating the entire solution function is being bounded.

Assume that the error bound for a specific problem instance is f. Then

_ <

A problem instance specifies that a given finite number of solution values be approximated,

and these are used to define the function fl(2). Let c be an upper bound on the number

of solution values used to form the approximation i(5.. By assumption, c is a constant

independent of the problem size and c. Let Z. = {2j.} be the set of solution locations

used when approximating u(2.). Let N(2j,.) be the amount of data used to calculate

i(i,.). Then fi(i.) is a function of at least

.,1 E Z.

data.

By corollary 2.4, there exists a nonzero constant C such that C. E-I/m. is a lower

bound on the amount of data required to approximate u(i.) to within an error tolerance

of f. Therefore,

i.. EZ.

and

N(2j,.) > §
for at least one 2j,. E Z.. By Lemma 1.4, the parallel complexity of any algorithm

satisfying this error bound on the approximation to the solution will be bounded from

below by

f+) (-" log 2 (!) + log2 C - 10g 2 c)
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As before, this bound grows as e decreases, and the bound becomes infinite as c goes to

zero. This proves the Theorem. I

Since the parallel complexity is a lower bound on the parallel cost, the following

corollary is an immediate consequence of Theorem 3.1.

Corollary 3.2 When the assumptions of Theorem 3.1 are satisfied, the parallel cost

of approximating a PDE increases unboundedly as the problem size increases unbound-

edly, independent of the size of the multiprocessor architecture.

3.4 Effect of Communication Costs

3.4.1 Computation Bound Algorithms

By corollary 3.2, we usually can't bound the parallel cost as the size of the problem

increases. But a good multiprocessor architecture won't exacerbate this increase. In this

section we examine how the communication capabilities of a multiprocessor affect the

parallel cost as the size of both the architecture and the problem increase.

Using the notation of Section 1.2.1, the parallel cost Tp of a parallel algorithm is

bounded by

max{Cp, Wp} <_ Tp :_ Cp + Wp

CP is the parallel complexity, and Wp is the communication cost. If the algorithm is

computation bound, then Wp Cp, and the parallel cost is at most twice as much as it

would be on a multiprocessor with arbitrarily powerful communication capabilities. If the

communication and the computation overlap, then the parallel cost can be as low as Cp.

As in Section 1.2.2, let Pa,. be the maximum number of processors that collaborate

in the calculation of a single solution value for a parallel algorithm a. For a given multi-

processor, let r(p) be the radius of the subset of p processors with minimum radius. Note

that r(p) is a nondecreasing function of p. By Lemma 1.3, r(P,.) is a lower bound on Wp

for algorithm a. For the rest of this section, we will describe conditions on r(p) that de-

termine whether parallel algorithms on a multiprocessor architecture can be computation

bound.
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3.4.2 Sufficient Conditions on r(p)

Let N,. be the maximum amount of data used by algorithm a when calculating a single
solution value. Assume that we have an upper bound on the serial complexity of computing

a single solution value of the form 2

f(+) - . ( N.,.)

Assume further that this representation of the upper bound as a function of Na,. is

common to some set of serial algorithms.

Example: To calculate the solution using an implicit linear method, we

solve a matrix equation Ax = b. A is a nonsingular N x N matrix, where
N < N,.. A simple upper bound on the serial complexity of solving this
linear system using Gaussian elimination is

(f(+) + f(.)+ f(l)) " N 3

See Atkinson [Atk78, pages 441-443]. Using this,

C(Na.) < l+ ) N 3

In contrast, the explicit linear algorithm described in Section 2.3.2 has an

upper bound of

(f(+) + f(.)) .Na,.

on the serial complexity of computing a single solution value. For this algo-

rithm,

C,(N.,..) I + + Na,.

Until now we have concentrated on the cost of computing binary floating point op-
erations, since they determine how the data dependence effects the complexity. For this
analysis, we must also take into account the one unary operator we have assumed, nega-
tion. It can be included in our analysis easily enough given one simple assumption. We

2Note the change in notation. In Section 1.2.2, Cs(Na,.) referred to a lower bound on the serial
complexity.
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assume that no algorithm in the given set calculates unnecessary unary negations, i.e.,

that all expressions of the form -(-(f)) have been reduced to f. Calculating unneces-

sary unary negations can only add to both the serial and parallel complexities, and has no
redeeming properties. Given this assumption, the following lemma holds.

Lemma 3.2 All parallel implementations of algorithms in the given set satisfy

Pa,: <3 . C,(N,.) + 1

Proof: The expression f(+)- C,(Na,.) is an upper bound on the serial complexity of

using algorithm a to compute a single solution value. Since floating point addition is the

cheapest binary floating point operation, at most Cs(Na,.) binary floating point operations

are required to calculate a single solution value. Therefore, there are at most C,(ANa.)
intermediate results that might be negated. The N,,. data may also be negated in the

algorithm. By Lemma 1.2, Na,. < C,(N,.) + 1. Therefore, at most

C,(Na,.) + N... < 2 C,(Na,.) + I

unary negations will be calculated, and at most 3. Cs(Na,.) + 1 floating point operations

are required by the algorithm.

If a processor is collaborating in the computation of a particular solution value, then

it will compute a floating point operation whose result is required by that value. Since

there are no more than 3 • C,(A,.) + 1 of these values, there can be no more than this

many collaborating processors. I

Let P be the number of processors in a given multiprocessor. By Lemma 1.4,

CP > f(+). max { [C,. ., [log2 Na. }
Therefore, if

r(p) < f(+)r max 0' log 2 .} (3.2

for all

, { .. min {3-(TM.,(,.) + I, P}}
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then this aspect of the communication cost will not prevent parallel implementations of

algorithms in the set from being computation bound. This follows from Lemmas 1.4

and 3.2. Since r(p) is a nondecreasing function of p, and since the right hand side of

inequality 3.2 is a nonincreasing function of p, it is sufficient that r(p) satisfy

r(min{3. C,(N,.) + 1, P1) _ A+). log 2 N0 ,. . (3.3)

Theorem 3.3 Assume that C8 (Na,.) < a - N,,. for some set of serial algorithms,

where oo > -y > 1. Assume that no algorithm in this set calculates unnecessary unary

negations. Assume that

r(p) _ " log2 P]

on a given multiprocessor, where

A+)
2 + log2 (3a) + -y

Then r(p) will not prevent any parallel implementation of algorithms in this set from

being computation bound on this multiprocessor.

Proof: Again, let P be the number of processors in the multiprocessor. Assume that

r(p) = log 2 p, and that 3. C8 (N0 ,.) + 1 < P. Then

r(3 -C,(N,.) + 1) _ r(3a. N,. + 1)

- 3' [log 2 (3a. -' + 1)]

< 3. (1og 2(3a. N7.) + 2)

= /3. (I log 2 N,,. + log2(3a) + 2)

If N0,. = 1, then P,. = 1 and r(P0,.) = 0 for any /3. Assume that V_ > 2. Therefore,

log 2 N0 ,. > 1. By inequality 3.3, 3 must satisfy

.3 log2 N,.. + 1og 2(3o) + 2) < f(+) " log 2 N.

This is equivalent to

log 2 No.. < .Y. ( 2
' 0 9 '% 1 , - < - 1, .1 h ) 9 2 V , , -.
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and a sufficient condition is

3 < f(+)
2+log2(3a) + -

If P < 3. C,(N,.) + 1, then

3- 1og 2 P < 1og 2 (3. C(N,+ 1)

Therefore, r(P) <_ f(+) log2 N0 ,. for the same value of 3. I

This condition does not imply that parallel implementations of all such serial algo-

rithms will be computation bound. It does not even indicate that there exist any parallel

implementations that are computation bound. It simply says that the fact that p proces-

sors are collaborating in a computation does not prevent a parallel implementation from

being computation bound.

Note that a polynomial type bound on C,(Na,.) will exist for all reasonable parallel al-

gorithms, independent of the problem size. Most traditional methods generate algorithms

for which C,(Na,.) is less than an expression of the form a. N'. for all problem sizes.
And, by corollary 2.10, we can get within a constant factor of the lower bound on the

parallel complexity by using parallel algorithms for which a is finite and -f = 1.

Corollary 3.4 For fixed a and -y, there is a finite transmission time t dependent only

on a and -y such that the following property holds: If a multiprocessor is a member of

one of the following architectural families,

* Fully Connected

e Star

* Distributed Shared Memory

* lfypercube

and if each communication channel has a transmission time of t, then r(p) satisfies

the condition in Theorem 3.3. In these cases, r(p) grows slowly enough that no set of

parallel algorithms satisfying (',(A,.) <o a is prevented from being computation

bound by tho mere fact that p processors are collaborating in a computation. This is

indpendent of the raultiprorcssor and problem size.,.
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Proof: For all'of these architectural families, r(p) < t log 2 p. See Section 1.1.3 for the

discussion of this fact. Therefore, r(p) is sufficiently small if t < /3, where I is given in

Theorem 3.3. I

3.4.3 Necessary Conditions on r(p)

Consider a multiprocessor with P processors and a given problem instance. Let A(p) be

the set of all parallel algorithms that solve the problem instance on this multiprocessor,

and that use no more than p processors to calculate a single solution value. That is, if

a E A(p), then Pa, < p. For an algorithm a, let Cp(a) be the parallel complexity of

algorithm a. For each p, let

Cp(p) = min Cp(a)
aEA(p)

Since A(pi) C A(p 2 ) when pi < P2, Cp(p 1 ) >_ Cp(p 2). Therefore, Cp(P) is the minimum

parallel complexity for algorithms that solve this problem instance on this multiprocessor.

Lemma 3.3 A lower bound on the parallel cost in solving the problem instance on

this multiprocessor is

min max {r(p), Cp(p)}
PE{1....P}

Proof: Assume that

min max {r(p), Cp(p)l (3.4)

is a lower bound on the parallel cost for all algorithms in A(p'), but assume that

min max {r(p), Cp(p)} (3.5)PE{1 ..... P'+I}

is not a lower bound on the parallel cost for all algorithms in A(p' + 1). In particular, let

a be some algorithm in A(p' + 1) whose parallel cost is less than expression 3.5.
By Lemma 1.3, max {r(p' + 1), Cp(p' + 1)} is a lower bound on the parallel cost of all

algorithms a E A(P) for which N,. = p'+ 1. Therefore, ai E A(p'). But, by assumption,

the parallel cost of a is no smaller than expression 3.4, which is itself no smaller than

expression 3.5. This is a contradiction. Therefore, expression 3.5 is a lower bound on the
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parallel complexity of all algorithms in A(p'+ 1). Since r(l) = 0, expression 3.4 is always

a lower bound when p' = 1. The Lemma then follows from an induction argument on p'.

I

By the results in the previous section, we know that a logarithmic bound on r(p)

is usually sufficient to permit computation bound parallel algorithms to exist when p

processors are collaborating. For now, assume that r(p) _/3 . p ' for this multiprocessor.

For example, if the multiprocessor is a d dimensional array, then r(p) >_ (dt/2).(pl/d_ 1).

If/3 = dt/4 and I = ld, then r(p) > /3 . pO' when p" > 2.

Let c be the error tolerance specified by the problem instance. Let Z be the set of

solution values specified by the problem instance. Let

I
N, -- max - Nji)

iEZ

Lemma 3.4 If r(p) /3 • p', then a lower bound on the parallel cost in solving the

problem instance on this multiprocessor is

/ f (Ne.- 1)) A.+

Proof: By definition, Ne,. is a lower bound on Na,. for all a E A(P). Thus, by Lemma 1.4,

A)-N, - 1
f(+)

is a lower bound on Cp(p) for all p. If r(p) > /3 • p4, then the bound in Lemma 3.3 is

itself bounded from below by

min max /3.p',f(+) '
PE{1,.oo,} ~p)

One term in this expression is monotonically increasing as a function of p, and one is

monotonically decreasing. The minimum occurs at the value of p for which the two terms

are equal,
p f() A, 

I+ $

p-
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Setting p equal to this value in either of the two terms gives the lower bound in the
statement of the Lemma. I

If P is large enough, then the Green's function method described in Section 2.3.2 can

be used to describe an upper bound on Cv(p) for all p.

Lemma 3.5 Let Ngfm,. be the maximum amount of data used by the algorithm de-

scribed in Section 2.3.2 when calrulating a single solution value. If P > p. IZf, then

C,(p) < (f.) + f(+)). [Vf + f(+) 1og 2 p1

for p < Ngfm,..

Proof: For each solution value, the Green's function method can be represented by the

expression
I 2(m,+P) .d, -.d

1=1 k=1

where
S2v+P,)'-d. rnd < Ngf,

1*,

i=l1

The multiplications ar- all independent, and p processors can execute them in time less

than or equal to
f Ngfm,. (3.6)

once each processor has received the relevant data. The next stage is the summation

of these products. Partition the summands into p subsets of approximately equal size,

and distribute them among the processors. Summing the elements of each subset is

independent, and each processor can calculate the sum of its subset in time no greater

than
taf+ ." 

(3.7)

This leaves at most p partial results to be summed. As in the example on page 10, this

final summation can be scheduled so that the parallel complexity is at most

fA+) • 10g 2 P :,q
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If at most p processors collaborate in the calculation of a single solution value, then

this algorithm is a member of A(p). Thus, the sum of expressions 3.6, 3.7, and 3.8 is an
upper bound on C (p) for each p. Note that at most Ngfm,. floating point operations
can be calculated in parallel during the computation of a solution value. Therefore, this
upper bound is only interesting for p < Ngfm,.. I

We will refer to the parallel algorithms in A(P) that have the minimum parallel cost
as minimum cost parallel algorithms. Note that the optimal parallel algorithms in Chap-
ter 2 were minimum cost parallel algorithms for the ideal multiprocessor described there.
Lemma 3.4 describes a !ower bound on the parallel cost. Lemma 3.5 describes an upper
bound on Cp(P) when P is large enough. If we parallelize the Green's function method
by equidistributing the processors among the different solution value computations, then
at least LP/IZIJ processors will be collaborating. Let P' = LP/IZIJ. By Lemmas 3.4

and 3.5, if

. (f+- (N,. - 1))

> 2. min (f(.) + f(+))[ + f¢+. [log~p] , (3.9)
PE{1.-P) .)\ + I+) p I +f+ I

then the minimum parallel cost is more than twice the minimum parallel complexity. In
this case, either the minimum cost parallel algorithm is not computation bound, or the
minimum cost parallel algorithm does not have the minimum parallel complexity. In both
situations, the communication cost has become the dominant factor in determi,.,;ig the
behavior of minimum cost parallel algorithms.

Theorem 3.5 Assame that there cxists a Z. E Q and some s E {1,...,l} such that

d., 0 and the following property holds: There exists a closed ball 1(i:.; 6) C Id. on

which @i(,i.) is nonzero and continuous, and on which AI,(.) is nonzero. Assume

that f and u are positive constants, and that r(p) > - p" for all scalings of a given

multiprocessor. Then the following conditions hold for case b of assumption I, and

for case a when i. E Z.

I) There exists a problem instance and a multiprocessor instance such that the

minimum parallrl cost is greater than twice the minimum parallel complexity.
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This condition holds for all scalings of the multiprocessor larger than the given

instance.

2) Let R(p) be the ratio of the minimum parallel cost to the minimum parallel

complexity on a multiprocessor instance of size p. In the limit as the size of the

problem goes to infinity, maxp>l R(p) also goes to infinity.

Proof: Consider case a of assumption 1 first, and assume that i. E Z.. By Theorem 2.2,

there exists a constant cl such that

_dA-
N,. _> N ,,(i.) _ cl' -",

By Lumma 3.4, a lower bound on the minimum parallel cost is

This is bounded from below by

2I . Cl C m a +

when c1 -", > 2.

Let Ngfmi(2) be the amount of ith component data used by the Green's function

method from Section 2.3.2 to approximate u(i). For this algorithm, the error in approxi-

mating the ith component is less than c/([+ 1). By Theorem 2.3,

Ngfg,. < max Ngfm,,(2) < max (c2a()• ( +1

for functions c2,j(Z) that are bounded on Q. Therefore, there exists a finite constant c2

such that

gfm,.<c-2 - max )

when f < 1. If P = IZI Ngf,,,., then

CP(P) < Cp(Ngfm..) < (f() + f(+)) + f(+) log 2(Ng-m,.)
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This follows from Lemma 3.5. Therefore,

CP(P) <_ (f) + f+)) + f(+) og2 c2 + max -- .log 2
-

The lower bound on the parallel cost grows linearly in - ,+1 as - 0, while the

upper bound on Cp(IZI Ngfm,.) only grows logarithmically in C-1. Thus, there exists

some E. such that the parallel cost is more than twice Cp(IZI Ngfrm,.) when f < c..

As E -- 0, the ratio of the minimum parallel cost to the rrrmum parallel complexity is

bounded from below by

C3 log 2 f -1

for some positive constant c3. This can be made arbitrarily large for small enough c. This

has two implications.

First, for small E, the minimum parallel cost will be larger than twice the minimum

parallel complexity even when fewer than jZh.Ngfm,* processors are available. For example,

the upper bound on Cp(Ngfm,./2) is at most double the bound on Cp(Ngfm,.) for a fixed

E. In general, for fixed E < (., this analysis can be used to calculate a P, such that the

following property f,olds: If the size of the multiprocessor instance is greater than P , then

the minimum parallel cost is more than twice the minimum parallel complexity.

Second, let R(p) be the ratio of the minimum parallel cost to the minimum parallel

complexity on a multiprocessor instance of size p. Since

max R(p) > R(Z. INgfn,.)

p>1

we know that maxp>l R(p) -* oo when c -+ 0.

This proves the Theorem for case a. Case b is exactly the same, except that the lower

bound on N, is now a factor of 1/c smaller. This bound is derived in exactly the same

way as in Theorem 3.1 I

In summary, if r(p) > /3 . p"' for any positive #3 and p, then the communication costs

will eventually affect the achievable parallel performance. This condition holds for some

common architectures.

Corollary 3.6 Assume that the graph of a multiprocessor is a d dimensional array,

and that the transmission time t is bounded away from zero. Assume that thc PDE
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satisfies the conditions in Theorem 3.5. Then, for large problem sizes, the commu-

nication cost determines the minimum parallel cost as the multiprocessor is scaled

up.

Proof: As before, r(p) > (dt/2) . (pl/d - 1) for a d dimensional array. Therefore, if
p1/d > 2, then r(p) > (dt/4).pl/d. The result then follows immediately from Theorem 3.5.

I
As we mentioned in Chapter 1, the communication capabilities of large multiprocessors

are constrained by the three dimensionality of the physical world, and by the speed of light.
All multiprocessors can be modelled by a 3-dimensional array of processors with some finite

transmission speed. This motivates the next corollary.

Corollary 3.7 Assume that each processor is a cube with a fixed finite volume. As-

sume that the PDE satisfies the conditions in Theorem 3.5. Then, for large problem

sizes, the communication cost determines the minimum parallel cost as the multipro-

cessor is scaled up.

Proof: Assume that the volume of a processor is v in some standard unit. Then a set
of p processors will take up a volume of at least pv, and cover a region whose maximum

width is at least (pv) 1/ 3. Any message between processors must travel from a surface of

the sending processor to a surface of the receiving processor. Let the physical diameter
of the set be the maximum distance between two surfaces of processors in the set. Then

the physical diameter is greater than

(pv)/ 3 - 2v" 3 = (p - 8)1/3 v

As in Section 1.1.2, let the center processor be the one that minimizes the maximum
distance between itself and all of the others, where distance is now measured between
closest surfaces. Let the physical radius be the maximum distance between the center

and the other processors. Then half the physical diameter, minus half the width of the

center processor, is a lower bound on the physical radius, i.e.

(p- 8) 1/ 3 "v 1/ 3 _ V 1/ 3
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Since no message can travel faster than the speed of light, the radius of this set of

processors is at least
((p - 8)1/3 - ) / 3

2c

where c is the speed of light in these units. If / = v'/ 3/4c and p > 64 , then r(p) _

/3. p1/3. The result then follows from Theorem 3.5. I

Using current technologies, the speed of light is not the only restriction on transmission
speed, and r(p) > 3 _ p1/ 3 for 3 that is much larger than that calculated in this corollary.

3.4.4 Examples

The results of Section 3.4.3 described some effects of r(p) on the parallel cost of minimum

cost parallel algorithms. Similar results can also be derived for other algorithms with similar

properties. Assume that the serial complexity of computing a single solution value u(i.)

using an algorithm a is
a"- f(+)"- N,.

Here, Na,. is the maximum amount of data used in the calculation of a single solution
value. For example, a might be based on an implicit linear method or a Green's function

method, as in the examples on page 71. For the Green's function method, -y = 1. For an
implicit linear method, -y will normally be found in the interval [1,3].

A lower bound on the parallel cost of a parallel implementation of a is

maxa. . log 2 Na,. (3.10)

when p processors collaborate in approximating u(2.). The first term is a lower bound on

the communication cost, and the second and third terms are lower bounds on the parallel

complexity. For the ideal multiprocessor of Chapter 2, r(p) = 0. For a hypercube based

architecture, r(p) _ t. log 2 p. For a d dimensional array, r(p) (dt/2) (pd - 1). Note

that this lower bound on the parallel cost is the same for the ideal multiprocessor and the

hypercube when t = f(+).

Assume that t = fa+, c = 1, and ,NV,. = 1000. Figure 3.1 on page 83 and 3.2 on

page 84 are graphs of the lower bound on the parallel cost for a variety of architectures
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f(+ ) .......

10 1 ........-

10' 1 . . - l

100  101 102 103

P

Hypercube (-), 1-D (..), 2-D (...), 3-D (---)

Figure 3.1: Lower bound on parallel cost as a function of the number of collaborating
processors when N,. = 1000 and y = 1.

and two values of -y. Each figure is a graph of the the lower bound as a function of p,
where the bound is expressed in units of f(+). The solid curve represents a hypercube
based architecture, the dashed curve represents a 1-dimensional array, the dot-dash curve
represents a 2-dimensional array, and the dotted curve represents a 3-dimensional array.
Figure 3.1 assumes that - = 1, while Figure 3.2 assumes that -f = 2. From Lemma 3.2,

we know that the maximum number of processors that can be used to calculate u(i.) Is

bounded from above by 3. N, + 1. This limit bounds the range of number of processors
used in the two graphs.

In both figures the component of the lower bound representing the communication
cost is the dominant term for the d dimensional arrays when p is large. And, after this term
begins to dominate, the lower bound is an increasing function of p. Different assumptions

about a and t will change these curves, but the general behavior of the curves will be the

same if Ne,. is large enough.

The exact behavior of the lower bound is not useful information unless the lower bound
on the parallel complexity is a fairly good estimate of the true parallel complexity. Assume
that the number of processors that collaborate in the approximation of u(Z.) is equal to
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Figure 3.2: Lower bound on parallel cost as a function of the number of collaborating
processors when N,,. = 1000 and -y = 2.

the maximum number of collaborating processors, Pa,,.. Let P" be the smallest number

of collaborating processors for which the communication term is the dominant term in the

lower bound defined in expression 3.10. Assume that the parallel complexity of algorithm

a decreases monotonically as Pa,. increases, and that

a .f(+) . N "f
., a," (3.11)

Pa,.

is a good estimate of the true parallel complexity when P,, < P". Since the parallel

complexity will not increase as Pa,. increases, and since the lower bound on the commu-

nication cost does, the parallel algorithm will not be computation bound if Pa,. > Pw.

These conditions can be made to hold for the Green's function method and minimum

cost parallel algorithms, and this fact led to the proof of Theorem 3.5. Most commonly

used algorithms for the approximation of linear PDEs have a great deal of parallelism, and

parallel implementations will exist for which expression 3.11 is a good approximation to

the parallel complexity for a wide range of numbers of collaborating processors.

Note that P is fairly large, and that this aspect of the communication cost will not
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dominate until P,, processors are used. In particular,

for a d dimensional array. Thus, for a 1-dimensional array, P,, = (N .") when y =

For a 2-dimensional array, P,, = 0 (N.3,.) when ', = 1. For moderate sized multi-

processors and large problems, r(p) will not be a limiting feature. Other aspects of

communication cost may play a role though.

3.5 Conclusion

3.5.1 Summary

Any nontrivial problem instance will have a nonzero lower bound on the parallel cost that

is a function of the basic processor speed. For example, if more than one datum is required
to calculate some desired solution value, then Lemma 1.4 describes such a nonzero lower

bound. Therefore, an infinite number of processors is unable to solve a specific problem

instance arbitrarily fast unless the processor speed also becomes infinite. In this chapter
we have shown that an infinite number of processors of bounded speed are also unable to

bound the calculation time as the problem grows in size. This is not dependent on the

multiprocessor architecture or the parallel algorithm.

Define r(p) to be the minimum radius of p processor subsets of a multiprocessor

architecture. Then r(p) is a lower bound on the communication cost incurred when p

processors collaborate in the calculation of a solution value. To prevent the multiprocessor

architecture from degrading performance any further than already indicated, the growth in

r(p) as a function of p must be bounded. The bound on the growth of r(p) is a function

of the amount of parallelism in the algorithm used, but logarithmic growth is a sufficient

bound. For minimum cost parallel algorithms, a necessary condition is that the bound on

r(p) grow slower than any positive power of p. This is not achievable in multiprocessors

large enough to be constrained by the physical limitations of the three dimensional world.

Therefore, the communication cost constrains the minimum parallel cost of a problem

when its size becomes large.
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3.5.2 Generalizations

The results of this chapter are a consequence of the following fact. The amount of data
required to calculate a single solution value increases unboundedly as the size of the

problem increases. The assumptions of Sections 1.3 and 3.2 are sufficient to establish

this fact, but are by no means necessary. We must simply show that the error in the

individual solution values must go to zero in order for the error in the approximation to
go to zero, and that at least one solution value cannot be calculated exactly without an

infinite amount of data. This is a common situation, and these results will hold for other

reasonable assumptions as well.

If we restrict the class of algorithms more tightly, these results can be sharpened.

In particular, more detailed descriptions of the effects of communication costs can be

derived. For example, see Gannon and Van Rosendale [GV841. We used the Green's

function method to establish an upper bound on the minimum parallel complexity. This

analysis can also be used to bound the parallel cost of parallel implementations of a

Green's function method. For large numbers of processors, its minimum parallel cost is

also constrained by the communication cost, unless r(p) only grows logarithmically in p.
The behavior of the Green's function method's parallel complexity is similar to that of

more common methods, like multigrid IHT82] and particle methods [GR86], and the same

type of analysis will carry over immediately.



Chapter 4

Example Bounds

In this chapter we calculate upper and lower bounds on N(,i() for some simple example

problems. The bounds derived here will be somewhat tighter than those described in

Chapter 2 since the generality of Theorems 2.2 and 2.3 is not necessary. We then use

these results to discuss bounds on the parallel complexity and the parallel cost. We also

discuss an example problem that does not satisfy some of the assumptions in Section 1.3,

and describe how the analysis can be generalized for this case.

4.1 1-D Elliptic Example

Consider the problem
d 2U(X) = g1 (x)

dx

u(O) = g92 , u(1) = g 3

on the interval [0, 1], for some constants g2 and g. The integral representation of the

solution is

u(z) =jf I (z, x)g (x) dx + g2 .- z) + 93 -Z

where (1-).x ifx<z,
( x) z ifz<x.

87
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There are three components,

u1 (z) = j %Fl'(z,x)g1(x)dx

u2(z) = g2 (1- z)

and

u3(z) = 93 z 

Thus, d, = 1 and d2 = d3 = 0.

Let m be a positive integer. Assume that g, is some member of a set G1 that is
characterized by the condition that

Sd g(x) < m! Vx E[0, 1

if g E G1 . For example, xm E G1. Assume that g and g3 are only known to be real
numbers. That is, G2 = G 3 = 3 by the notation of Section 1.3.3.

4.1.1 Lower Bound on N,,i(.5)

Assume that .5 E Z. That is, we are interested in approximating u(.5). Since d2 = 0 and

g2 is not known to be bounded, the intrinsic error in approximating u2(.5) is zero if one
data sample is used and infinite if none are used. Therefore, N,,2(.5) = 1 if f is finite.
For the same reasons, N,.3(.5) = 1 if c is finite.

The graph of 'IF(.5, x) as a function of x is displayed in Figure 4.1 on page 89. The

function %Pj(.5,x) is continuous and positive in any interval of the form [a, 1 - a] when

c E (0,.5). Let

E(a) = C" min I 1 (.5. x.m!.(.5- a)"+
zE[Q,,1- ]

= , C ' ."m!'.(.5 - a)"+,
2

where C1 is the constant from Lemma 2.5. By Theorem 2.2, if f < c(c), then

Nei(.5) [ C; min c] (.5 x)j . m! (.5 - )m+1)

= (I i (.5 - )m+) (4.1)
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Figure 4.1: ''(.5, x) for -u., = f given Dirichlet boundary conditions.

By the proof of Theorem 2.2, C = (1/5)m+1 C 1. By the proof of Lemma 2.5 in

Appendix A,

Therefore, inequality 4.1 becomes

N !(5 [(I"+ . ( ___I)_ a .(.5 a)M+1' ) (4(9)\

Inequality 4.2 can be improved. The construction of F on page 39 was unnecessarily

conservative for the case d, = 1. A function -y of the type defined in Lemma 2.5 can be
placed between every two sample locations in the interval [a, .5 - a]. This defines a new

error function r whose support essentially covers all of [a, .5 - a]. For this construction

C = Ci, and the new lower bound is

N, 1 - I I . .(.5- )

This bound is maximized when a = 1/(2m + 4). The resulting lower bound on V,,,(.5)
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is

[- 2 mn+ 4.(m+l).(m+2))

when c < c(l/(2m + 4)).

We can show directly that
>V,(5 r! m/21 (4.4)

if > 0. First, assume that there are m' sampling locations, {xkl, where m' < [m/2].

Let P2m,(X) be a polynomial of the form

P2md(X) =- I f(X -Xk)
2

k=1

Then (dm /dxn)p 2,,(x) = 0, and P2m,' is zero at all sampling locations. If m > 0, then

91 +P2m, E G1 and g1 +P2m' is indistinguishable from g, at the sampling locations. Unlike

the discussion in Section 1.3.6, the data function g1 + P2,, need not be compatible with

any of the other data functions. Therefore, the intrinsic error associated with a given set

of sampling locations is at least as large as

I f 'I 1(5,X)P 2m(x)dx1 = IK* 01 V(.5x)(1(x-Xk )2) dx

Since %P(.5,x) is positive in (0,1), this lower bound on the intrinsic error can be made

arbitrarily large by making JKJ arbitrarily large. Therefore, the intrinsic error is infinite if

fewer than [rn/21 sampling locations are used. This proves inequality 4.4.

Inequalities 4.3 and 4.4 together describe a lower bound on N,,,(.5) for all f > 0.

We will refer to this bound by N,)(.5). Figures 4.2 to 4.5 on pages 91 and 92 contain

graphs of this lower bound as a function of c for m = 1,2,3, and 4, respectively. The

constant multiplying the cm term in inequality 4.3 is relatively small, but No,(.5) is still

guaranteed to be larger than 1000 when c is less than the values in the following table.

m 1 2 3 4

< 4.63 x 10- 6 2.19 x 10- 9 9.56 x 10- 13 4.16 x 10- 6
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Figure 4.2: Bounds on N~ 1 .)as a function of e for example 1-D elliptic problem
when m = 1.
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Figure 4..3: Bounds on 1V,(.5) as a function of c for example 1-D elliptic problem
wvhen m = 2.
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Figure 4.4: Bounds on N, 1(.5) as a function of f for example 1-D elliptic problem
when m = 3.
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Figure 4.5: Bounds on Nj(.5) as a function of f for example I-D elliptic problem
when m = 4.
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If the functions in G, are instead characterized by the condition

dm-g(x) < 100.m! VxE [0,1]

then the lower bound on N~,,(.5) is scaled by a factor of 1001/r. Under this condition,
the upper bound on f guaranteeing that N, 1 (.5) > 1000 is scaled by a factor of 100.

m 1 2 3 4
< 4.63 x 10- 4 2.19 x 10- 7 9.56 x 10- 1 4.16 x 10 - 14

4.1.2 Upper Bound on N,,l(.5)

For a given number of subintervals in [0, 11, let §1 be the approximation to g, described
in Section 2.2.1 on page 50. Let a be a Green's function method that approximates u(.5)

by
L(.5) = j 'Ih(.5,x).(x)dx + 5.92 + .5.9

Since u2 (.5) and u 3(.5) are computed exactly by a, an upper bound on the error in ap-

proximating u1 (.5) is also an upper bound on the error in approximating u(.5). Therefore,

if

Yl 1 (.5,x)L 1g (x) - 41(x)I dx < e

then a E A,({.5}) and N,,,(.5) < N,,o. Thus, we can improve the upper bound in

Theorem 2.3 by modifying the argument so that f is the bound on the error in the

approximation to ul(.5) instead of c/3.

The improved upper bound on N~,(.5) for this problem is

N,,(.5) < 2.- m ( . 1 (.5, x) dx (m!) . + 1

= 2.m.( .(m! ) + 1

where C1 is defined in Lemma 2.12. C1 can be shown [Atk78, page 1101 to be the

maximum value of the function
mn k

k= m+
M!
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for x E [0, 11. This function is maximized when x = 0, and

m!
(re+l1)-

m! (m + I)-

Therefore,

N ,,,(.5) < 2 . m .- l. (• I + 1

We will refer to this upper bound by N ,l)(.5). Figures 4.2 to 4.5 on pages 91 and 4.5

also contain graphs of this upper bound on Ne,(.5) as a function of c for m = 1,2,3,

and 4 respectively. Note that N,(.5) is no more than 1000 when 6 is greater than the

values in the following table.

m 1 2 3 4

f > 1.25 x 10 - 4 4.45 x 10- '  2.54 x 10- 9 1.97 x 10- 11

As before, if the functions in G1 are characterized by the condition

< 100. M! Vx E [0,1]

then the upper bound is scaled by a factor of 1001/r. Similarly, the lower bound on f

guaranteeing that N,,,(.5) < 1000 is scaled by a factor of 100.

4.1.3 Comparison of Bounds

The bounds in Sections 4.1.1 and 4.1.2 are not tight. But the ratio of the upper bound

V ,()(.5) to the lower bound N,)(.5) is bounded from above by the expression

R4)=2 (m 2) 2m!2
n ( m+ m (m +1)(m + 1

M + I M + I2m

for all c > 0. R(m) is a good approximation to the ratio for small c. Values of R(m) are

listed in the following table for m = 1,2,3, and 4.

rn 1 2 3 4

R(m) 28.0 15.2 14.8 15.7
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Thus, the upper and lower bounds differ by approximately one order of magnitude. Note
that, for large m, R(m) is approximately 1.5 . m. In fact, R(m) is an increasing function

of m for m > 3. For example, if m = 10, then R(m) is approximately 24.5, while if
m = 100, then R(m) is approximately 160.

4.1.4 Bounds on Parallel Complexity

By Lemma 2.1,

is a lower bound on the parallel complexity of any algorithm that satisfies an error tolerance
of e when approximating the solution value u(.5). In Section 4.1.1 we showed that

N,,2 = N,,3 = 1 if f is finite, and we calculated a lower bound on N,,(.5). Therefore, by
the notation of Section 4.1.1, a lower bound on the parallel complexity is

f [10o 2 (2 + NL)(.5))1 (45)

In Section 4.1.2 we described an algorithm that approximated u(.5) and satisfied an

error tolerance E. It used

2 + NV )(.5)

sampling locations, where

.V()(z) = 2.m. (,. j mii(zx)Idx) + 1

The same approach can be used to approximate u(z) for any other z e (0, 1), in which

case the total number of sampling locations is

N (U)(z)

As in the proof to Theorem 2.8, if an algorithm a approximates u(z) in this fashion for each

z E Z, then the computation of each value is independent, and the parallel complexity

can be as low as

f(.) + f(+). max [log 2(2 + N(U)(z))]

.~~~E f al I
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40-
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Figure 4.6: Bounds on minimum parallel complexity as a function of C for example
1-D elliptic problem when m = 2.

The calculation requiring the most sampling locations is the one which maximizes the

expression j (z,x)d = 1 _Z)

Since this is maximized when z = .5,

f(-) + f(+)" [1og 2 (2 + ,V(U)(.5)) (0.6)

is an upper bound on the minimum parallel complexity of optimal parallel algorithms,

independent of whether .5 E Z.

Assume that f(,) = f(+) and that m = 2. Then Figure 4.6 is a graph of the upper

and lower bounds on the parallel complexity of optimal parallel algorithms described in

inequalities 4.5 and 4.6. The parallel complexity is guaranteed to be greater than 10. f(+)

when c < 10', while the minimum parallel complexity of an optimal parallel algorithm

will be less than 10 . f(+) when c > 10 - .
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Figure 4.7: Lower bound on minimum parallel ,:ost as a function of e for example 1-D

elliptic problem when mn = 2.

4.1.5 Bounds on Parallel Cost

The bounds on the optimal parallel complexity in the previous section are very small unless

fis very small, but even the lower bound requires at least

processors in order to achieve this complexity. If fewer processors collaborate in the a pprox-

imation of u(.5), then the bounds on the parallel complexity will be larger. Additionally,

a parallel implementation on a real multiprocessor will also involve communication costs.

For example, Figure 3.1 on page 83 contains graphs of lower bounds on the parallel cost

as a function of the number of collaborating processors when (2+N ,(z)) > 000. As

was discussed in Section 4.1.1, if m = 2 and z = .5, then this is guaranteed to occur

when f < 2.19 x 10 - 9 .

By the discussion in Section 4.1.4, 2+N( L )(.5) is a lower bound on the number of sam-

pling locations required to approximate u(.5) when c is finite. Therefore, by corollary 1.2

• • m iol
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on page 16,
2 + N(,) (.5)

min max r(p), f(+). +) [10g 2 (2 + NL)(.5))]a p{1 {.. o [2+N) 5) Ig 2p ~(5)

is a lower bound on the parallel cost. Assume that n = 2 and that t = f(+) for all

multiprocessor architectures under consideration. Then Figure 4.7 on page 97 is a graph

of this lower bound for a variety of architectures. It is clear from the Figure that the

lower bound on the parallel cost is significantly larger than the lower bound on the parallel

complexity when the multiprocessor is a d dimensional grid and c is small.

4.2 1-D Hyperbolic Example

Consider the problem
02 82
-- u(x,t) - -7 u(x,t) = 0 for (x,t) E [0,11 x [0,.11

TjU(X, 0) = 91(X) for x E (0,11

U(x,) =0 for x E [0,1]

u(O,t) = 0 u(l,t) for t E [0,.1]

The integral representation of the solution is

u(z.t) = ,j 'IP(z,t,x)gl(x)d ,

where I

'1zt' X) 7 if 1Z - X1 : t;
0 otherwise

when zE (t, l - t). If z V (t, 1 - 1), then the definition of TI'(z, t, x) is similar, but the

support is contained in an interval of length less than 2t. Thus, there is one component,

and d, = 1.

Let m be a positive integer. Assume that g1 is some member of a set G1 that is

characterized by the condition that

d--.(x) < in! Vx 2 [0, 1]

if g E Gi.



4.2. 1-D HYPERBOLIC EXAMPLE 99

4.2.1 Lower Bound on N,,1(.5,.1)

Assume that (.5,.1) E Z. The graph of %k1(.5,.1,x) as a function of x is displayed

in Figure 4.8 on page 100. The function 1 1(.5,.1,x) is continuous and positive for

x E [.4,.6]. Let

E. = C1. rmin I' (.5,.1,x) .m !. .6 .4)
xE[.4,.61

m 1 (1\m+1- ____ "_ " . . -

By the same modification of Theorem 2.2 used in Section 4.1.1, if c < E., then

N~1 (5.l [c/.EI~ min (5.,~ . n.(6 -. 4)mIr 1~

= [(m 1 "2" ) ()l ( I

=M (( m  l )) .G (4.7)

since C' = C1 . As in Section 4.1.1, we also have the lower bound

N,,(.5,.1) > rm/21 (4.8)

if .> 0.

Inequalities 4.7 and 4.8 together describe a lower bound on Ne,i(.5,.1) for all f > 0.

We will refer to this bound by jV')(.5, .1). Figure 4.9 on page 101 contains the graph of

this lower bound as a function of f for m = 2.

.d(.5, .1) is guaranteed to be larger than 1000 when f is less than the values in the

following table.

n 1 2 3 4

< 2.50 x 10-6 3.34 x I0-' 3.75 x 10" 1  4.00 x 10- 18

And, as before, if the functions in G1 are instead characterized by the condition
dm g(x) < 1oo. M! Vx E[o, 1]dm  I

then the lower bound on Nf1 (.5, .1) is scaled by a factor of 100'/r. Similarly, the upper

bound on f guaranteeing that N ,(.5,.1) > 1000 is scaled by a factor of 100.
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Figure 4.8: %I'(.5, .1, x) for one dimensional hyperbolic PDE example.

4.2.2 Upper Bound on N,1(.5,.1)

Since we know that l1(. 5, .1, x) is zero when x V [4, .6], we can improve on the algorithm
described in Section 2.2.1. For a given number of subintervals in [.4,.6], let j, be the
approximation to gl described in Section 2.2.1. Let a be a Green's function method which

approximates u(.5) by

fi(.5) = 1(.5,.1,x)§I(x)dx

Then the upper bound in Theorem 2.3 can be strengthened since only one fifth as many
subintervals of length 2- --,j are required to cover [.4, .61 as are required to cover (0, 1].
The improved upper bound on No,(.5) for this problem is

N,(.5,.1) < Il (2.m (I i6n (.5,.:,x)ldx) (m!)' () + 1

52 -. m.) .(m!)M. +
5 (m 0 +)+

5"n l 1'0 " L
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Figure 4.9: Bounds on Ne,,(.5,.1) as a function of f for example 1-D hyperbolic
problem when m = 2.

We will refer to this upper bound by N(u)( 5 .1). Figure 4.9 also contains the graph of

this upper bound on N,,(.5, .1) as a function of e for m = 2.

N~,,(.5,.1) is no more than 1000 when f is greater than the values in the following

table.

m 1 2 3 4

> 2.00 x 10- 1 1.43 x 10-8 3.25 x 10-11 6.06 x 10- 1
3

If the functions in G1 are characterized by the condition

dm <(X) < 100M! VxE[0, 1]
dxV

then the upper bound is scaled by a factor of 10 01/ 'n, and the lower bound on f guaran-

teeing that N(,1(.5,.1) < 1000 is scaled by a factor of 100.
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4.2.3 Comparison of Bounds

The ratio of the upper bound N!''(.5, .1) to the lower bound N, 1 is bounded

from above by the expression

R(m)m=l4. 2  . m + (m!) + 1

for all c > 0. Values of R(m) are listed in the following table for m = 1,2,3, and 4.

m 1 2 3 4

R(m) 9.00 7.53 8.56 9.91

The upper and lower bounds are a little tighter for this example than for the 1-D elliptic

problem example, but they still differ by approximately one order of magnitude when

rn < 4. Asymptotically, R(m) is again approximately 1.5 .m, and R(m) is an increasing

function of m for m > 2. If m = 10, then R(m) is approximately 19, while if m = 100,

then R(m) is approximately 153.

4.2.4 Bounds on Parallel Complexity and Cost

A lower bound on the minimum parallel complexity of optimal parallel algorithms is

A(+) '19 N'L(5.))j
It is straightforward to show that N (' )j(.5,.i) is an upper bound on N,,I(z,t) for all

(z,t) E (0,1) x [0,.1]. Therefore, an upper bound on the minimum parallel complexity

of optimal parallel algorithms is

f(-) + fA+)" [.og2(NU)(.5, .1))]

Assume that f(-) = f(+) and that m = 2. Then the parallel complexity is guaranteed

to be greater than 10 • f(+) when c < 10- 10, while the minimum parallel complexity of

an optimal parallel algorithm will be less than 10. f(+) when f > 10- . If fewer than

N 1,,(.5,.1)/2 processors are available, or if the multiprocessor is based on a d dimensional

grid, then the actual parallel cost will be significantly larger than these bounds on the

minimum parallel complexity.
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4.2.5 Generalization of 1-D Hyperbolic Example

Consider the problem

t) _ 1 7u(xt)= for (x,t)E[0,11 X[0,.11

a-u(x, 0)= g(x) for x E [0,1]

u(x,O) = h(x) for x E [0,1]

u(0, t) = 0 = u(1, t) for t E [0, .1]

If z E (t, 1 - t), then the integral representation of the solution is

u(z,t) = ',(z,t,x)gl(x)dx + h(z - t) + h(z + t)

where tIl(z,t,x) is the same function described in Section 4.2.1. Thus, this solution

operator has three components:

ui(z, t) = 10 (z,t,x)gj(x) dx

u 2(z,t) = -h(z - t)
2

u3(z,t) = 12h(z + t)
2

This solution operator does not satisfy the assumptions of Section 1.3. Components 2

and 3 are restrictions of a common function to the zero dimensional manifolds x = z - t

and x = z + t. If h is smooth, then approximate values of h can be calculated without

knowing h at these two locations. For example, if c is large, but finite, then h(z) may be

an adequate approximation to both h(z - t) and h(z + t).

It is still straightforward to bound the parallel complexity for this problem. Assume that

h is not a linear function. Assume that z E (t, 1 -t). Define IV,2, 3(z, t) to be the minimum

number of sampling locations of h in [0, 1] required to approximate u 2 (z, t) + u 3 (z, t) to

within an error tolerance of c. The error is uncontrolled unless as least one sampling

location is used. Therefore, N,,2,3(z,t) 1 for all finite f > 0. Since knowing the values

h(z - t) and h(z + t) is sufficient,

Nc.2,3(Z, 0 !< 2
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These inequalities define upper and lower bounds on N,,2,3 (z, t). Thus, if (z, t) E Z and

z E (t, 1 - t), then upper and lower bounds on the parallel complexity are

[log, (I + .)1

and

f(.) + f(+)- [log,(2 + N(j)(.5,1))

respectively, where N$("(.5, .) and N(u)( .1) are defined in Sections 4.2.1 and 4.2.2.

Given assumptions on h, tighter bounds can be calculated.

4.3 2-D Elliptic Example

Consider the problem

- + a x,,x2) = g1 (xi,x 2) for (xI,x 2) E B((.5,.5);.5)

u(x 1 , x 2) = 0 for (x1,x 2) E 9B((.5, .5); .5)

The integral representation of the solution is

u(ZI, Z2) = J( z 2, , x 2 )g1 (x1 ,x 2 ) dxl dx 2

where ('(z1, z 2 , xI, x 2 ) is the function

1 .lg((.25 - (z 1 - .5) (xi - .5) + (Z2 - .5) (X2 - .5) )2

4 l .25. ((Z - I)2 + (z2 - X2 ))

((z, - .5) (X2 - .5) - (z2 - .5) (x1 - -5))2. . . . . 2. . I.

.25 ((z,- X) 2 + (Z2 - X2 ))

This can be put into the standard form by defining T1 to be zero when (zI, z2) or (xI, x 2)

are outside B((.5,.5); .5). The data function g1 must also be extended to the larger

domain of 12, but its values outside of B((.5, .5); .5) do not influence the solution function.

Thus, there is one component, and d, = 2.
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Let m be a positive integer. Assume that gi is some member of a set G1 that is

characterized by the condition that

max < M! V(x 1 , x 2) E [0,1] x [0,1]
FAEK2(m) Oix

if g E G1. For example, (x' + x') E G1.

4.3.1 Lower Bound on N,,1(.5,.5)

Assume that (.5,.5) E Z. If (x1 ,X 2) E B((.5,.5);.5), then

.1(.5, x1 , x 2) = L. iog (x1 - + .5)2

-- T,(.5,.5,r) ,

where r = (X- .5)2 + (x2 -. 5)2 The graph of Tl(.5,.5, r) as a function of r is
displayed in Figure 4.10 on page 106. The function Tj(.5,.5,x,xi2 ) is continuous and

positive in any subset of 12 that excludes the location (.5,.5). But the proof of The-

orem 2.2 is unchanged even if the location (.5,.5) is included. Therefore, consider the

closed ball B((.5, .5); a) for a E (0, .5), and define

f(e) = C1 . min .5,r)j . a
rE[O,al

By our generalized proof of Theorem 2.2, if c < t(a), then

N,,(5,.5) > Ce1 min I[T 1(.5,.5, r) 'm !'- a'+'

r 2 1;j
- c~. (log-!) .M! a-+2) . . (4.9)

By the proof of Theorem 2.2, C, = (1/5)m+2. C 1. And, by the proof of Lemma 2.5

in Appendix A,

7r m+1

m m!.m! m+2
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Figure 4.10: T1(.5,.5,r) for two dimensional elliptic PDE example.

Therefore, inequality 4.9 becomes

N , 1(.5,.5) _ 5 2.m- m! (m + 2) . ,m+ 2 -

This bound is maximized when a = 5.e - 1/(-+ 2 ). The resulting lower bound on No,(.5, .5)

Is r. 21 m+2) .. .., ,,5, .5) > • •2 (4.10)
11- 2. - -m m-, (m + 2)

when f < c(.5- e- 1 /(m+ 2)). The same type of argument used in Section 4.1.1 proves that

N,,(.5,.5) > Fm/21 (4.11)

if C> 0.

Inequalities 4.10 and 4.11 together describe a lower bound on N~,,(.5, .5) for all f > 0.

As before, we will refer to this bound by N,)(.5, .5). Figure 4.11 on page 107 contains

the graph of this lower bound as a function of c for m = 2.

N, 1(.5,.5) is guaranteed to be larger than 1000 when ( is less than the values in the

following table.
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Figure 4.11: Bounds on N,, 1(.5, .5) as a function of c for example 2-D elliptic problem
when m = 2.

m 1 2 3 4

< 1.29 x 106 8.62 x 10- 10 5.17 x 10- 13 2.66 x 10- 16

If the functions in G, are instead characterized by the condition

max --7-g(.) I< 100.mr! V(X,,X) E [0, 11 x [0, 1)
EK2(rm) --A

then the lower bound on N,1(.5,.5) is scaled by a factor of 1002/r. Similarly, the upper

bound on E guaranteeing that N(,1 (.5,.5) > 1000 is scaled by a factor of 100,

m 1 2 3 4

f< 1.29 x 10- 4 8.62 x 10- 8 5.17 x 10-11 2.66 x 10- 14

4.3.2 Upper Bound on N,(.5,.5)

For a given number of subcubes in [0, 1] x [0, 1], let § be the approximation to g, described

in Section 2.2.1. Let a be a Green's function method which approximates u(.5, .5) by

fi(.5,.5) = j ',(..5,X 1, 2)1(x 1,x 2)dx dx 2
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The upper bound in Theorem 2.3 is

N,,1(.5,.5) _< 4 - 2 . 0 j'I(.5,.5, x1, X2)l dx, + 1

322

By the proof of Lemma 2.12 in Appendix B and the discussion in Section 4.1.1, we know

that 1 +2m
(m + 1)m

Therefore

M.5. _ +;1) \ 32 "( () + 1

We will refer to this upper bound by N ,j')(.5,.5). Figure 4.9 also contains the graph of
this upper bound on No,(.5, .5) as a function of f for m = 2.

N,,1(.5,.5) is no more than 1000 when f is greater than the values in the following
table.

m 1 2 3 4

> 2.97 x 10- 3 5.56 x 10- 4  1.80 x 10 4 8.37 x 10- 5

If the functions in G, are characterized by the condition

max OT q.i)j < 100.M! V(X1,,X2) E [0, 1] x [0, 1]
FAEK2(-') --D

then the upper bound is scaled by a factor of 10 02/m, and the lower bound on E guaran-
teeing that No,i(.5) < 1000 is scaled by a factor of 100.

4.3.3 Comparison of Bounds

The ratio of the upper bound N '(.5,.5) to the lower bound N(L)(.5,.5) is bounded
from above by the expression

R(m) = 400 .m. (!)2.(m+2 + 14 m+l
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for all e > 0. Values of R(m) are listed in the following table for m = 1,2,3, and 4.

m 1 2 3 4

R(m) 5.26 X 107 6.44 x 106 4.95 x 106 5.60 x 106

The upper and lower bounds are much worse for this example than for the one dimensional
examples. They now differ by approximately seven orders of magnitude when m < 4.
Techniques for improving the bounds are described in Section 4.3.5. Asymptotically,

R(m) is approximately 29.3. M 4 , and R(m) is an increasing function of m for m > 3.

4.3.4 Bounds on Parallel Complexity and Cost

As in Section 4.2.4, a lower bound on the minimum parallel complexity of optimal parallel

algorithms is

A+) [log 2 (N ( )(. , .5))1

It is aga;n straightforward to show that N(U)(., .5) is an upper bound on N,,(z,z 2 )

for all (zl,z 2) E B((.5,.5);.5). Therefore, an upper bound on the minimum parallel
complexity of optimal parallel algorithms is

A- + f(+) - [log 2(N1Y)(.5, .5))1
Assume that f(,) = f+, and that m = 2. Then the parallel complexity is guaranteed

to be greater than 10 . f(+) when f < 10-10 , while the minimum parallel complexity of

an optimal parallel algorithm will be less than 10 . f(+) when f > 10- . As before, if
fewer than No,(.5,.5)/2 processors are available, or if the multiprocessor is based on a
d dimensional grid, then the actual parallel cost will be significantly larger than these
bounds on the minimum parallel complexity.

4.3.5 Improving the Bounds

The bounds calculated for this problem describe nontrivial constraints on the parallel cost
of computing the solution, but the discrepancy in the upper and lower bounds is very
large. There are several ways to improve these bounds. For concreteness, we will limit

the discussion of the amount of improvement to the case m = 2.
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a) YI(zl, Z2 , x 1 , x 2) is identically zero when (xI, x 2) is outside the ball B((.5, .5);.5),

and sampling locations outside the ball are not really needed. Thus, when construct-

ing the upper bound, gi only needs to be approximated in subcubes that intersect

the ball. This decreases the upper bound by a factor of approximately 7r/4 when

the subcubes are small. This is the same approach used to improve the estimates

for the example 1-D hyperbolic problem.

b) The generalizations described in Sections 2.1.4 and 2.2.2 base the sampling fre-

quency in any subregion R on the value of I in that subregion. If the volume of

R, VoI(R), is small and T'(.5,.5,x1 ,X 2) is continuous in R, then

jI,,,,55,X1,X ) d I,(2_ min Tj(.5, .5, x, ,x2)) " VoI(R)
R (xl ,. 2 )ER/

Since I is a type 1 function, the upper and lower bounds on the sample size are

only functions of %I over regions where it is continuous. Thus, the upper and lower

bounds will be similar functions of Ti.

We can estimate the amount of improvement that is possible from using these

generalizations. Assume that T'(.5,.5, xI,x 2) = 1 when (xI,x 2) E B((.5,.5); .5),

and is identically zero outside the ball. Now the upper and lower bounds depend on

T, in exactly the same way. If m = 2, then the ratio of the bounds for this problem

is approximately 1/27 times the ratio of the bounds for the original problem.

c) The calculation of the lower bound on the number of sampling locations was very

rough. In particular, in Lemma 2.11 the optimal placement of the sampling locations

for this construction was simply shown to satisfy
1 5

rk _ -

in a d dimensional ball B(±.;6). Here rk is the maximum distance between the

kth sampling location and the boundary of its Voronoi cell, and n is the number of

sampling locations in the ball. While the analysis described here was not sufficient to

prove it, we expect that the optimal sampling locations in B(.t.; 6) will be essentially

equidistributed. In this case
6

rk ;: rLl/dl
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for all k. For this type of distribution, the error function F can be constructed so

that almost every sampling location ti "contributes" a function -y,7 to F. Lemma 2.9

can then be modified to state that the support of this new F essentially covers the

entire ball, and the resulting lower bound is increased by a factor of 5m+d . Thus,

when m = 2, the lower bound for the example 2-D elliptic problem is increased by

a factor of 625.

Improvements a-c can theoretically decrease the ratio by a factor of

r 1 1
- - - - - ;z 4.66 x4 27 625

when m = 2. The ratio of the improved upper bound to the improved lower bound is
approximately 300. Note that the majority of the change reflects an increase in the lower

bound. Thus, for this problem, the upper bound is a much better estimate of the true

value of N,, 1(.5, .5).
To improve the bounds further requires improving the constants C1 and C1. For

example, C, is primarily a function of the type of error function used in the construction

of the lower bound. The error function described in Chapter 2 is very conservative for
dimensions greater than or equal to 2. It is a C o function, and is zero at many locations

other than those required by the analysis. Thus, we expect that this constant can be
increased.

4.4 Summary

The results of Chapters 2 and 3 were sufficient to establish the behavior of Ni(5) as

a function of c, and to bound the parallel complexity and cost of minimum cost parallel

algorithms. For the one dimensional example problems described in this chapter, we were
able to substantially tighten these bounds by taking advantage of the specifics of the

problems. But, even without using the improvements described in Section 4.3.5, we were

able to calculate nontrivial bounds on the intrinsic cost of the two dimensional example

problem. These bounds become even more striking as the assumptions on the function

sets {G,} become weaker.
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The problem assumptions made in Section 1.3 are not satisfied by all classes of linear

PDEs. Section 4.2.5 described a problem where certain components can be approximated

without using sampling locations in the domain of the component. This is typical of

hyperbolic PDEs. But, as demonstrated, the analysis could be generalized by treating

these components separately. While this particular example was trivial, a similar approach

will work for more general cases.



Chapter 5

Conclusions

The cost of calculating a numerical approximation to the solution of a partial differential

equation is constrained by the amount of data it must use in order to calculate an accurate

enough approximation. For the simple assumptions about the data function and the

partial differential equation described in Section 1.3, these constraints limit how quickly

the approximation can be calculated. As c, the bound on the error in the approximation,

decreases, there exists a lower bound on the parallel complexity that must increase at

least linearly as a function of

Moreover, this bound is tight in the sense that there exists a family of explicit linear

algorithms with parallel implementations whose parallel complexity grows no faster than

this.

The number of processors used to calculate the approximation must increase as the

error bound decreases if the lower bound on the parallel complexity is to be achieved. This

usually entails an increase in the communication cost. But the communication cost does

not change the asymptotic behavior as long as the parallel algorithm remains computation

bound. This is not always possible for small error tolerances when the approximation is cal-

culated on a multiprocessor whose radius grows faster than logarithmically. In particular,

the parallel cost of optimal algorithms on d dimensional grid architectures is determined

by the communication capabilities of the architecture rather than by the minimum parallel

complexity. But, for a given processor speed, there exists a logarithmic bound on the

113
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radius of a multiprocessor that ensures that the communication cost associated with the

radius will not influence the behavior of the parallel cost of optimal parallel algorithms.
As mentioned in Section 3.5.2, the assumptions used to prove these results are merely

sufficient, and not necessary. We contend that they are reasonable assumptions for a priori
estimates on the error for mth order accurate approximations, m < oo, to the solution of

many important classes of linear scalar partial differential equation. And the results can

be extended to any problem with a solution operator that can be represented as a sum

of integral components if at least some of the components satisfy the assumptions. A

simple example of this was described in Section 4.2.5

The assumptions and analysis described in the previous chapters are also reasonable

for other classes of problems.

* Very little changes for systems of linear partial differential equations. Many linear

problems also have integral representations for the solution operator for each element

of the solution vector, where the kernels satisfy the usual assumptions.

* For nonlinear problems the solution operator will not have such a simple representa-

tion. But most numerical approximations to nonlinear problems can be interpreted
as solutions to a sequence of linear problems. Thus, the results carry over immedi-
ately if these linear subproblems satisfy the assumptions. The only difficulty is that

the solution u is not necessarily smooth when the data is smooth. Thus, the num-
ber of solution values required to represent the solution function can be arbitrarily

large. For most practical applications the solution is smooth almost everywhere, and

discontinuities are limited to a finite number of bounded smooth lower dimensional

surfaces. The additional cost is then in capturing or tracking these surfaces. This
is also approximated by the calculation of a finite number of values dependent on
the error bound.

" The data functions are discontinuous for many applications. But, similar to the

discussion of nonlinear problems, the data is generally smooth on all but a finite

number of bounded smooth lower dimensional surfaces. The analysis follows through

as before as long as the solution is also smooth except on a finite number of bounded

smooth lower dimensional surfaces for this type of data.
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* The analysis only depends on the solution operator having the required integral for-

mulation. Thus, the results are not restricted to linear partial differential equations.

i.



116 CHAPTER 5. CONCLUSIONS

• I • m



Appendix A

Construction of the Error

Function in Id,

In this appendix we prove Lemma 2.5:

Assume that di > 0. For any i.. E Id, and 6 > 0 such that B(i.; b) C Id,,

there exists a function -y E C'( Id.) with the following properties.

1) -y E Gi.

2) -y(x) = 0 for all x i B(xt.; 6).

3) y(i) >0 for all t B(.t.; 6).

4) There exists a constant C, > 0 depending only on mi, d, and I" II(,)
such that

((t) (Y dy > Cj ' 6 m + di . rin Mi(i )

where B(i.; 6) is the closure of B(i.; 6).

We will prove the Lemma by constructing a spherically symmetric function in B( .; 6)

whose integral is the limit of integrals of functions that satisfy conditions 1-3. We begin

by proving a condition on the radial derivative that insures membership in G,.

117
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A.1 Sufficient Bounds on Directional Derivatives

Functions in Gi are characterized by the bound

and membership in C m'(Id,). A sufficient condition for g to be in G; is described by the

following lemma.

Lemma A.1 Let g be a C"O(Id,) function with the following property. There exists

a constant 6 > 0 , a location t. E Id, and a function §(r) such that

1) g(i) = 4(jit - i.112) in the di dimensional open ball B(t.;6).

2) g(i) = 0 if i V B(..; b).

Assume further that § satisfies the condition that

09s'98 NO() = 0

for all s E {1,...,mi - 1}. Then there exists a constant Ci > 0 depending only on

11 11(i), mi, and di such that g E Gi when

max I-§(r) < C5 mi Mi( )

Proof: By the equivalence of norms over finite dimensional spaces JAtk781, we know that

there exist positive constants cl and c2 such that

C1 JjV ,)g(z)jj. < I d(')g ( ) < C2 , (A.1)

where I(xi,... , x,)1,, = maxtE{1.4} Ixtj. Therefore, if

C2

then
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Since g E C°(Id,), g is also a member of Cm.(Id,) for any mi. Therefore, to prove the

result, it is sufficient to find a constant Ci such that

g i m( VAS E Kd, (ni) , Wi E Id,aiA C2

when
-!§(r) < C in n Mi(;) Vr E [0,6]
arm' I(,.;6)

When di = 1, it is clear that choosing C, = 1/C 2 verifies the Lemma. For the rest of this

proof, we will assume that di > 1.

If t B(±.;6), then Oa'g(i)/e9 _ 0 for all At E Kd,(m 1 ), and any C, > 0 will

suffice. Assume that ; E B(i.;6). Let be some element of K'd,(mi). By a repeated

application of the chain rule,

ar8

where IJa,(±)1 _< Mi! (11 - ±.II2) - I. Replace each expression of the form

by its Taylor expansion around r 0,

Os mn,-1( I a.12  Ot (11± x2)m3 iOr - 1=- (t - s)! "r (mi - s)! oF (

(11 i - ±.112 ) - s a m .'
(m - S)! a , '

where , E (0, 11t- i.1121. Equation A.2 reduces to

a, = m, OP - i.112)m,(1 am,
-~ll - i112) =a,() (iin- s)! o-(m _( s)

Thus,

-- N112 - -t11) <  m,. m ! max amI
->[0,11-t- .1 arm'
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for all A E Kd(mi). Therefore, if

< m M,( ) Vr E [0,6
1, r ig I C2 • M i • M i! (. ;

then
_ - M() Vt E Id,

C2

Thus, choosing

C 2 Mi •Mi!

verifies the Lemma when di > 1. I

A.2 Error Function

Let M! = C-" minteB(t.;6) Mi(i), where Ci is the constant referred to in Lemma A.1.

Let (i) = i(i - i.112), where

()i. - r j ' ) , for -6<r < 6;

0, for Irl > 6.
For this function,

-Mi, for 0<r <6;
5Tr-j(r) = +Mi', for -b < r < 0;

0, for 6 < Irl
and

a
s

-rj(0 ) =0 for 0 <s <mi

Define Pci by'

2, if di = 1;

2 '- I . r, if di = 2 or d= 3; (A.3)ti= (di - 3)" - i-I " Ki-, If di > 3.
(di - 2)" -

Then

f (a)yd( = ,di, f (r)r -s dr

K 1 ) 6,.+d. (A.4)

'This form of the definition of tci is taken from [GZ88]. It is called CK there.
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A.3 Convergent Sequence

The function -y is not in Cw(Id). All derivatives are discontinuous at r = 6, and the mth

order derivatives don't exist at r = 0. But it is the limit of a sequence of C- functions
that are in Gi.

Lemma A.2 There exists a sequence of function {Y,} such that each -Ik satisfies

conditions 1-3 of Lemma 2.5, and for which the sequence

{ jld 7k(X d±}

converges to ft, -(i) di as k --+ oo.

Proof: For 0 < v < 6/2, let r/qjr) = (r - v) */( -2. vj). Define the function j,(r)

by

6 2)m o) for -vl -5 r <

= 6--v ml ,, (r)), for vi < Irl _< - vi;
0, for 6 - vL < rl.

Thus,

=0
Or

when r E [-vi, vi] and 0 < s < mi, and

0, for Irl < vi;
(m ) + Al', for -b + v < r < -j;

or (m' I-AI, for v < r < 6 - vi;

10, for Ir1 > 6- v.
Let p(t) be a spherically symmetric nonnegative C"O(R) function whose support is in

the interval (-1,1), and whose integral over this region is 1. For 0 < V2 < vj, define

5',,,(r) by mollifying ',, (r) in the following way, 2

S= J ,(t) p(rt)dt

-T (t)P((r - t)V2) dt
00 V2

2 Mollifiers and their attributes are discussed in (Ric78].
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By integration by parts,

o p((r - r)/,2) ( t) dt

for s E {1,... mi- 1}. Therefore, $, (r) is a C-(R) function satisfying

-2L (r) M i  Vr E R
Dr

as ~ Vs> 0T-r ,,(o) = o 0

and
2--,,(=) 0 Vs > 0 when Irl > 6

Thus, ,,(') = i , (lIx--.i2) is a member of Gi by Lemma A.1. Since j, (r) = 0

if Irl >_ 6 and ,,(r) _ 0 if Irl _ 6, y , (±) also satisfies conditions 2 and 3 of

Lemma 2.5.

First we show that f,(i) di converges to f,. -/(i) dt as v, -. 0. Pick some

e > 0. Then

St,,(t) di = ,i - ,(r)rd - I dr

= i Vd - 2 .v((i) mdd
- (d(62. )m<• (0)

+ (• I (r)) - r d - ddr)

= Ki. vd, .b -- 2

+± 2-Y T1)b]-(2 -jv, + V) d.- r)

where ,i is defined in equation A.3. Therefore,

+ (y,. V 1 m) .jr) (i( 6-2.di r i _ d,( Vi dr)
+ (62vlm+ • fb(r) • 6-.v • I r d+ -1 dr

6 0 6
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Since

converges uniformly to 0 on the interval [0, 6] as v, --+ 0, it is clear that

converges to 0 as v, --+ 0. Thus, there exists a v',. such that

2YI0 i- ()d (A.5)

when vi < vi,.

Next we show that fld, -t, (.)dt converges to fid -1, (t)di as V2 -- j v. The

difference between the two integrals is bounded by

l i (.)d - 7 ,()d± -t If j , (r)rd.-e dr -  j6 ,,(r) r d ' -1dr

< Ii (,f,(r)-j,,(r)'rd-Idr

Define the function f by

By the Schwartz inequaRity,
J fj~,1 r) - rI~ l dr K 2 r -r ~~2 iI 1 6 d

r- '--1 d," < K, - , -l) K112 Ill r' ,-111 2

2di - 1
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By Theorem 2 on page 94 of Richtmeyer [Ric78], the mollified function j%,.(r) converges
to ,, in the L norm as V-2 -- 0. Thus, there exists a V2,, such that

f 2d,-1 1
Ilvi-iv.I 12 2 262,1 Ki

when V 2 :< V2,., and

By equations A.5 and A.6,

Since e was arbitrary, this implies that there exists a sequence {(Vli, V2,i)} such that

as* o . I

A.4 Proof of Lemma

The proof of Lemma 2.5 follows directly from Lemma A.2.
Proof: By Lemma A.2, there exists a function . satisfying conditions 1-3, and whose
integral is at least half as large as the integral of -. Thus, by inequality A.4,

,, (.t) di > - i- . -- bm d
--d 2 mi! di mi + di)

1 C,. rin Mj()t a(t.;,) 1 I ) ,.+d,

2 mi! di mi + d,)
Therefore, the bound in the Lemma exists for

10 1 (1 12i rni! di mi + di

If di = 1, then ic = 2 and C, = 1/c2, where c2 was defined in inequality A.1. In this

case,

C2 mi! mi +1
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If di > 1, then C, = (C2 - i-m,!)' and

Ki1 1 l l1
ci=2'-C2 'm,*rn 3milM!\dT --m, +d,/
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Appendix B

Covering Lemma

This appendix describes the proof of Lemma 2.9. To recap, there is a set of n sampling

locations, W, in the open ball B(t.; 6). These are used to generate a Voronoi diagram

as in Section 2.1.1. A function is constructed within the ball that is zero at all of the

interior sample locations and on the boundary of the ball. The construction partitions the

sample locations into sets {S(ii')} satisfying the condition

S(ii') = {II111g - w11 2 < 3r(ti') where 119V - tI'112 = r(t'))

for a subset W' of W satisfying

r(dv') > r(tv) VzD E S(fv'), Vib E W'

The statement of the Lemma is the following: ,

B(..;b) U B(z,;5 r(t'))
, E W'

B.1 Covering Interior Voronoi Cells

Lemma B.1 The closure of the union of all Voronoi cells whose centers are in W is

contained in

U B( ,; 4r(i'))
tIYEW/

127
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Proof: The construction of F is finished when W is empty. Therefore, all locations in W

are in one of the sets S(tY') for t' E W'. If ti3 E S(tiv), then

1l - bll2 < 3r(t/')

No point on the boundary of a Voronoi cell V(t7) is farther away than r(di) from

w. Therefore, the closed ball B3(ib;r(D)) contains the closure of the V(d7). Denote the

closure of V(ti) by V(t7). If i E B(ai-;r(ti)) and tf E S(tT'), then

11 9,Y- X12 9VI~D - wV11 2 + 11I -V X2
< 3r(tdv') + r(t.)

Since ti E S(tz') was removed from W7 after ti' was added to W', r(tv) < r(tZ') and

V'(aD) C B(a;r(di) C B(q,,;4r(i,')) (B.1)

Therefore, B(o,; 4r(tz')) contains the closure of

U V (f-),
tES(tb')

and

U B(gj; 4r(t3'))
' E W'

contains the closure of all Voronoi cells with centers in the interior. I

B.2 Covering Boundary Voronoi Cells

Lemma B.2 The closure of the union of Voronoi cells with centers on the boundary

of B(i.; 6) is contained in
U

W'EW'

Proof: Every location on the boundary of B(i.; 6) is a Voronoi cell center. Each cell is

a line segment with one end in the interior of B(±t.; 6) and one end at the cell center.
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Since all points in B(i.; 6) except t. have a unique nearest point on the boundary, a cell
center ' E 8B( ,; 6) has no neighbors on 0B(±i; 6) if the interior endpoint of V(') is
not 2.. But any interior sample location is closer to t. than a location on the boundary.
Therefore, -;. is contained in the closure of some interior Voronoi cell, and every location

in 8B(i.; b) is a neighbor of some interior sample location.
All points on the boundary of a Voronoi cell V(tiv) are halfway between tD and its

neighboring sample locations. Since r(ti3) is the maximum distance from av to V(t7),
the closed ball fP( 1 ;2r(1 i)) contains all neighbors of ti,. If a boundary location V1 is a

neighbor of an interior sample location ai, then B(ii; 2r(fv)) contains -'. It also contains

the point that is on the boundary of both V(tD) and V(2'). Since the closure of V(.')
is the line segment connecting this boundary point with ', and since B(17v; 2r(17v)) is a

convex set,

'( ') C D(a,2r(tv)) (B.2)

As before, r(tb') >_ r(tb) for all fv E S(tb'). By expression B.1, B(!ip,; 4r(lb')) contains

B(v; r(t-)) for every tv E S(@'). Therefore,

for every iv, E S(@"). Thus, by expression B.2, B(g,,; 5r(t')) contains the closure of
all Voronoi cells with centers on the boundary that have a neighbor among the sampling

locations in S(@'). Since all boundary locations are neighbors to at least one interior

sampling location,

U B(y; 5r(ti,'))
tUIEW'

contains the closure of all Voronoi cells with centers on the boundary. I

B.3 Proof of Lemma

Proof of Lemma 2.9: Every point in B(i.; 6) is in the closure of

U V
V Ec9B(.f. ;,)UW
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By Lemmas B.1 and B.2,

U B(97,; 5r(t-v'))

contains the closure of these same Voronoi cells. Therefore

B(~.~6) c U B( 5,;sr(f'))
VEWI

|a



Appendix C

Bound on Interpolation Error

In this appendix we prove Lemma 2.12. Let 6 be a positive constant. Let i. be a location

in Rd. Let h = 6/(m + 1). Let

6
X( 5 ,) =(~4 -j + kh

for 1 < s < di, where (i.), is the sth component of i.. Let ir, be the following set of

equally spaced locations in [(i.), - b/2, (i.). + 6/2],

11(,09,...,I X(,m)}

Define 7r(l) to be the following subset of R1,

r(l) = xr... x"'r,

= {~±I~() 1~E~E ,s {1,...,}} (C.1)

Then ir(d) is a set of equidistributed locations in the d dimensional cube '(i.;6).

Lemma 2.12 can be restated in the following form:

Let g be a function defined in a d dimensional cube C(x.; 6). Define 7r to be

the equidistributed locations in C(,.; 6) described in equation C.1. Then there

exists a unique polynomial §(i) of degree at most m - 1 in each variable that

interpolates g at the locations in ir(d). If g has mth order continous partial

131
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derivative in C(.; 6), then the error in the approximation is bounded from

above by a term of the form

Cd" 6M. max max -g(±).t -(g. ;6) CKd(,m

where Cd is independent of 6 and i..

C.1 Proof of Lemma

Proof of Lemma 2.12: Existence and uniqueness is proven in Prenter [Pre75, pages 118-
121] for d < 2. The proof for d > 2 is a straightforward generalization. The error bound
for d = 1 is also a standard result [Pre75l [Atk78]. To establish the error bound for d > 2
we modify an argument in Prenter [Pre75, pages 123-1251.

Assume that 9 E 7r(l) for some 1 > 0. Let l.,(p),(x) be the unique (m - 1)st degree

polynomial in one variable such that

(X) 1, if z =t.,( .( ) 0, if x 7r, x (),

when s < 1. Then a polynomial interpolant to a function g in Rd at the locations in ir(d)

is

(Idg)(') =g(d) d (C.2)VE-r(d) ( =

This is the unique polynomial interpolant of degree less than or equal to m - 1 in each
variable. We will refer to this as the d dimensional LaGrange interpolating polynomial. The
locations in 7r(d- 1) also specify an interpolating polynomial on the (d- 1) dimensional

hyperplane (-)d = Z,

(Id-1(z)g)()= y Z) -1H
fEir(d-1) 8=1/

It is the unique interpolating polynomial of degree less than or equal to m - 1 in the first

d - 1 variables, and of degree zero in the dth variable.
Assume that the error bound holds for d - 1. The interpolation error at a location

V E C(i.; 6) is bounded by

1g(V) - (Idg)(W)l < 19(V) - (Id-,((-t')d)9)(W)l + j(Jd-,((W)d)9)(-;') - (ld9g)(-t')1
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The first term is the error of an approximation to g in the hyperplane (i)d = (V')d. The

second term is the difference between the approximation using data in the hyperplane and

the approximation using the given sampling locations.

(Idg)(') can be rewritten as
d-1

*ffE(d-i) g(E w ))

Therefore,

I(Id-I((W)-I)g)(W) - (14g)(V')l

~Eir~d1) L\ wd 1=

(C.3)

Since

is the univariate interpolant to g(y, (V)d),

g(9, (')d) - E g(9, w) !d,w((f)d) < C, .C . maxweird ,-6/2,(f.).,+6/21 8M:

(C.4)

for each 9 E 7r(d - 1). The following bound is proven by an argument described on page

41 of Prenter [Pre75];

Y max Il,X(.,k)(w)I < 2m

k=l UE((8')V(A"m+I)J

for all . E {1,...,d}. Therefore,

d- 1 d-2

I .,().((X).) = E.II,()((')) E -,(('_)

VEir(-1) 8=1 Qi(d-2) \.=1 w r d1
d-2

'(d-2) s=1

< 2m(d-1) (C.5)
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Combining inequalities C.4 and C.5 allows us to replace inequality C.3 by

j(/d-1((V')d)9)() - (Idg)(')l < 2 m(d-1) . C1 "'. " .2max I g(±) (C.6)

The function (Id- ((')d)g)G ') is an approximation to g in a (d-1) dimensional cube

embedded in the hyperplane id = V, Therefore, by assumption, there exists a constant

Cd-1 such that

Ig(') - (Id-1((V')d)g)(')j 5 Cd- 1 6" . max max g-*E~f.6)AEo- ,- i
(2)d=(V')d

< Cd-1 6'  max max g(.) (C.7)-!E0(9.;6) TAKd_, (,M) ato-

The bound on the error in the approximation is then

g(V') - (Idg)(i")l < (2m(d-1) C1 + Cd-)" max max Kd(,)-

by inequalities C.7 and C.6. The Lemma is proven for d dimensional cubes when

Cd = 2 m-(d-1) " C1 + Cd-1

The lemma follows for all d > 0 by induction. I
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