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Abstract

The paper studies the plate bending problem with hard and soft simple
support. It shows that in case of hard support, the plate paradox that is
known to occur in the Kirchhoff model is also presert in the three-dimensional
model and the Reissner-Mindlin model. The paradox consists o»f the fact that
on a sequence of convex polygonal domains converging to a circle, the solu-~
tions of the corresponding plate bending problems with a fixed uniform load do
not converge to the solution of the limit problem. The paper also shows that
the paradox is not present when soft simple support is assumed. Some practi-

cal aspects are briefly discussed.
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1. Introduction.

The Kirchhoff model of a plate is usually accepted as a good approxima-
tion to the three-dimensional model for thin plates. In the case of simply
supported polygonal plates, however, the Kirchhoff model is known to suffer
from unphysical phenomena that can lead to a large error of the model in some
situations. In particular, the following paradox, referred to as the plate
paradox below, occurs [2], [4]: Consider a sequence (wn} of convex polygo-
nal domains approaching a circle. For each n let wo be the transverse
deflection corresponding to the Kirchhoff model of the plate bending problem
where the plate occupies the region W is simply supported on awn and is
subject to a uniform load p(x) = 1. Further, let L be the solution to the
limit problem, i.e., that on the circle. Then as n—®, the sequence {wn}
converges pointwise, but the limit v, is different from QC. For example,
at the center of the circle the error of L is about 40%. Some other
related plate paradoxes are glven by Mazja [14], [14]. Practical implications
occur for example in the flinite element method when the domain is approximated
by a polygon with the side length h—0. For further aspects see also (8],
(181, (211, (231, (25].

It is often assumed that the plate paradox is caused by the assumption of
vanishing vertical shear strains that is implicit in the Kirchhoff model.

This was supported e.g. by a note (see [3]) that the paradox is not present
when the Reissner-Mindlin model instead of the Kirchhoff model is used. The
aim of this paper is to locate the source of the paradox more precisely: We
show that it is the way the boundary conditions are imposed in the Kirchhoff
model that causes the paradox, and not the overall assumption of vanishing

shear strains.

In the three-dimensional model of the plate, the boundary condition of




_

simple support is imposed typically by requiring that the vertical component
of the dispiacement (or at least its average in the vertical direction)

vanishes on the edge of the plate. On the other hand, in the Kirchhoff model

one efrectively imposes the more restrictive condition that all tangential
displacements must vanish on the edge. Of course, it is possible to impose
such "hard" boundary conditions also in other plate models, e.g. in the
Reissner-Mindlin model (cf. [22]) or in the three-dimensional model itself.

We show that in such a case, the plate paradox occurs in both the Reissner-

Mindlin model and in the three~dimensional model. On the the other hand, we

also show that the paradox does not occur in these models in case of "soft"

support where only the vertical displacements are restricted on the edge of
the plate. Hence, we are led to the conclusion that the paradox is caused by
the hard boundary conditions which are intrinsic for the Kirchhoff model.

Our results are based upon energy estimates relating the three-
dimensional model and the Reiscner-Mindlin model to the Kirchhoff model. Such
estimates can be derived by combining the energy and complementary energy
principles associated to the plate bending problem, and they were in fact
applied early by Morgenstern [16], [17], to prove that the Kirchhoff model is
the correct asymptotic limit of the three-dimensional model as the thickness
of the plate tends to zero. Although the assumption of a smooth domain is
implicit in Morgenstern’s work, one can easily extend the analysis techniques
of [16] to more general situations. In particular, we show here that in a
sequence of convex polygonal domains converging to a circle, the relative
error of the Kirchhoff model, when compared to the three-dimensional model

with hard support, is uniformly of order (')(hl/2

) in the energy norm, where
h 1is the thickness of the plate. Moreover, we show by similar techniques

that the gap between Reissner-Mindlin and Kirchhoff models is uniformly of




order O(h) under the same assumptions. Finally, we show that on a smooth
domain, the three models are at most O(hl/z) apart. Hence we conclude that
the plate paradox must occur in the hard-support models if h 1is fixed and
sufficiently small.

Let us mention that our results are in parallel with recent benchmark
calculations [7]. These calculations confirm in particular that the error of
the Kirchhoff model with respect to the three-dimensional model is primarily
due tc the assumed hard boundary conditions on simply supported polygonal
plates. For example, in case of a uniformly loaded square plate of thickness
h = side length/100, the relative error of the Kirchhoff model in energy norm
is ~11% when compared to the three-dimensional model with soft support and
~2% when compared to the hard-support model [7]. This example also shows
that the error of the Kirchhoff model may be quite large even for relatively
thin plates of simple shape.

The above results show that imposing various boundary conditions that are
seemingly close, such as the hard and soft simple support, can influence the
solution in the entire domain and not only in the boundary layer. Very likely
such effects occur also for other boundary conditions for both plates and
shells. Therefore, since any boundary condition is anyway an idealization of
reality, finding the "correct"” boundary conditions is an important and some-
times difficult part of building a dimensionally reduced model. For example,
it can‘happen that both the soft and hard simple support are poor approxima-
tions of the real "simple" support.

The plan of the paper is as follows. Section 2 gives the preliminaries
and basic formulations of the plate problems. Section 3 elaborates on the
variational formulations of the plate problems and precents various energy

estimates. Section 4 addresses the problem of the plate paradox. Finally,




Appendices A, B, C present some auxiliary results needed in Sections 3 and 4.

2. Preliminaries.

Consider an elastic plate of thickness h which occupies the region
Q = wx(-h/2,h/2) where w € R2 is a Lipschitz bounded domain. We assume
that the plate is subject to given normal tractions p (i.e., the load) on
éx{-h/Z} and wx{h/2} and that it is simply supported on &8wx{-h/2,h/2) in

such a way that if u = (ul,uz,us) is the displacement field, then
(2.1) u3(x) =0, x € dwx(-h/2,h/2)

and the other two conditions are natural boundary conditions describing homo-
genous (zero) components of tractions. This condition will be called later
the soft simple support. Assuming for the moment that no other geometric
boundary conditions other than (2.1) are imposed, the plate bending problem

can be formulated as: Find the displacement field u. which minimizes the

—0
quadratic functional of the total energy
3
(2.2) Fw = & | atdiv w2+ Z (e, .(w 1% dx, dx, dx
' = 2 = ijg = 1772773
Q i, j=1
-J pglug(+.2) +u (+,-2) Jdx dx,

w
in the Sobolev space [HI(Q)]3 under the boundary condition (2.1). Here

3 1 ui auJ
€ = {sij)i,J=1' clj = 5 5§3,5;;] is the strain tensor and A and u are the

Lame coefficients of the material, i.e.

’

A = Ev - _E
~vY(1-2v)’ ® 1+p’




where E is the Young modulus and v 1is the Poisson ratio, 0 < v < 1/2. Ve
also assumed that the surface traction p 1is symmetrically distributed with
regard to the planar surfaces of the plate, i.e., we consider a pure bending
problem.

So far we have assumed a special model of the simple support based on
simple geometric constraint (2.1). Of course, there are many other possibili-
ties. We will discuss later another model - the hard simple support and
discuss the effects of these models of the simple support on the sclution.

It is well known that if h/diam(w) 1is small, the three-dimensional
plate bending problem can be formulated in variuocs dimenczionally reduced
forms, see e.g. [1}, [11], [22]. We consider here two representatives of such
formulations which are used in practice; the Kirchhoff model and the Reissner-
Mindlin model (cf. [22] and he refences therein.

In gensral when w is fixed and h-—-0 then the three-dimensional for-
mulation and the dimensionally reduced models converge to the same limit,
provided that the load p 1is appropriately scaled (see below). Hence for
sufficiently thin plates the models give practically the same solutions. How-
ever, as will be seen later, what is "sufficiently thin" can depend strongly
on w, 1i.e., the convergence can be very slow in some situations.

In the Kirchhoff model, we approximate the three-dimensional soiution as

8w aw

Xg) # =xg mo=(x). %)) %y 5=

(x,,x
1 1 2

Y4 o (xl,xz),wK(xl.xz))

where Wy minimizes the energy

2
(2.3)  F (W) = 5| (waw)®+ (1-») 0% 2>d dx. - | fwdx.d
. KW —2 v \ %) v axiaXJ Xl X2 wxl X2
[A]

1, j=1 w

in the Sobolev space Hz(w) under the boundary condition




(2.4) w=0 on dw.

Here f 1is related to p as
Eh”

(2.5) £=p/D, D= —"—r
12(1-v°)

When comparing different plate models with fixed w and variable h we
will assume below that f (and not p) 1is fixed. This assures that the dif-
ferent models have the same (non-trivial) limit as h—0. For example,

defining the average transverse deflection in the three-dimensional model as

2
W, = 1 u,(+,x,)dx
0 h 3 '"3 3’
~h/2
one can show (under fairly general assumptions on w, see [10], [11], [18],
(17] and section 3 below) that Hwb-wKHLz(w)—eO as h--50.

In the Reissner-Mindlin model, one approximates EO by

(xl,xz.xq) ~ (-x eR,l(xl’xz)'-xaeR,Z(xl'xz)’wR(xl'x°))

l_lo ~ 3 o

where (wR.QR) minimizes the energy
2
(2.6) Fo(w,0) = 1 | (widiv )2+ (1-1) Z e, .(8)1%}dx, dx
R 7~ 2 - ’ ij - 1
w i, j=1

2

1 2 2
+§(K/h )J Ig-Zwl dxldxz— J fwdxldx2

W w

in the Sobolev space [Hl(w)]3 under the boundary condition (2.4). Here

K = 6(1—v)x0 where k. = 0(1) 1is an additional shear correction factor which

¢]

may take various values in practice.

We point out that the Kirchhoff approximation to Y, satisfies in addi-

tion to (2.1) the boundary condition




(2.7) (u1t1-+u2t2)(x) =0, x € dwx(-h/2,h/2),

where t = (tl.tz) denotes the tangent to d8w. This suggests that one should
also consider the original plate bending problem under such more restrictive
geometric boundary conditions. Below we will refer to the boundary conditions
(2.1), (2.7) and their counterpart in the Reissner-Mindlin model, i.e., (2.4)

together with

(2.8) 91t1-+w2t2= 0 on dw

as the hard simple support in contrast to the conditions (2.1), (2.4) which
will be labeled as soft simple support. Hence when using the Kirchhoff model
we have in mind the hard (and not soft) simple support. We will see later
that the incapability of the Kirchhoff model to represent soft simple support

can be a severe deficiency of the model on polygonal domains.

3. Variationai formulations of the plate bending problem. Energy estimates.

In the first three subsections below and in the related Appendix A, we
summarize first some basic characteristics of variational formalisms and
energy principles associated to the plate bending problem in its various
forms. These results are basically known, but we present them here for the
reader’s convenience. In subsection 3.4 we prove some energy estimates
relating the Kirchhoff model to both the Reissner-Mindlin model and the three-
dimensional model, using the results of the previous subsections.

We assume that the plate occupies the region Q = wx(-h/2,h/2) where w
is a Lipschitz bounded domain. Our particular interest is in the cases where

w is either a convex polygon or a smooth domain.




We denote by H (), resp. H°(Q), the usual Sobolev spaces with index
- k
s > 0. The seminorm and norm of the spaces [H°(w)] or [H(w)] are

denoted by |-°| and |+ , resp. |-l and |+

S,w S, W s, R By (+,+) we

s,
mean the inner product of [Lz(w)]k or [L2(Q)]k, and by <+,+> the pairing
of a space and its dual. The dual space of Hé(w) will be needed often below

1

and is denoted by H " (w).

3.1. The three-dimensional mocdel.
Let us denote by N the space of horizontal rigid displacements of the

plate:

N = {(a1x1+a3x2, a2x2-a3x1,0), @, € R, i=12,3}.

We define the space of (geometrically) admissible displacements in case of

soft simple support as

(3.12) U={ue (H'@I1®: u, =0 on 8ux(-h/2,h/2), (uwyv) =0 Vv e N}

3

and in case of hard simple support, as

1 3 - - -
U= {ue [H((Q)] : uy = t1u1«+t2u2 =0 on dwx(~h/2,h/2),

(3.1b)
(u,v) =0 V¥ v € N}.
(For simplicity, we remove here all the horizontal rigid displacements also in

case of hard support.) We let further H stand for the space of stress or

strain tensors defined as

= - 3 . -
H= (g = (ciJ)i,j=1 : Uij € LZ(Q)' Uij = aji)’

and introduce a linear mapping S : H—H representing a scaled stress-strain

relationship of a linear elastic material




- n-1 N
(Si)i,j =D "[A tr'(_r__)aij+p riji,

where A and p are the Lame coefficients and the scaling factor D is as

in (2.5). Then S 1is one~to-one and

-1 _D
(3.2) (s 1) = E[(lﬂ))‘ri

=1‘J ].

-v tr(;)a

J tJ

Moreover, S and S-1 are self-adjoint if H 1is supplied with the natural

inner product

3
gDy = ) (757
1

i, J=
Let us further define the bilinear forms

dly,v) = (g(g),Sg(x))R ,

B(e, 1) = (0,5 Ty,

and the linear functional

Qly) = % J f[v3(-,h/2)-*v(*,—h/z)]dxldxz,

w
where it is assumed that f e Lz(w), to imply that Q 1is a bounded linear
functional on U (by standard trace inequalities).

In the above notation, the energy principle states that the displacement
field Yy due to the load f = Dp € Lz(w) is determined as the solution to

the minimization problem: Find Y € U which minimizes in U the functional

F(u) = =d(y,u) -Q(u).

Nf -

The existence and uniqueness of Y is due to the following coercivity

inequality known as the Korn inequality (cf. [19]).




Lemma 3.1. If U is defined by (3.1a), there is a positive constant c¢ such
that

2

(3.3) 4(u,u) 2 cluly o

u € U o

We point out that the constant in (3.3) depends on w (and h), though
it is positive for any given Lipschitz domain. In Appendix B we show that the
constant in (3.3) remains uniformly positive over a certain family of domains,

a result needed in Section 5§ below.

Given f and the corresponding displacement field Y4y let % = Sgo
be the corresponding (scaled) stress field. The pair (y,¢) = (go,gb) is

then the solution to the variational problem: Find (u,v) € Ux¥ such that
(3.4a) Blo, 1) - (elu),2)y, =0, T X

(3.4b) (o,e(v)) = Q(y), v e U.

It can be easily verified following [S5], [9] (see Appendix A), that the solu-

tion to (3.3) exists and is unique.

We mention finally that according to the complementary energy principle,

% is found alternatively as the solution to the minimization problem [19]:

Find gb € X that minimizes in X the functional

| —

?(g) = B(Z'Z)

\V]

under the constraint (3.4b).
In Section 4 below we need the following corollary of the two energy

principles (cf. [186]).

Lemma 3.2. For any (g,g), € Ux}® such that satisfies (3.4b), the follow-

nQ

ing identity holds:

10




A ~u) + 3B(g -0, 05-0) = F(u) +§(g).

So7% Ho 252

N -

Proof. It follows from the energy principle that

A( v) = Q(vy), veuU,

HO.

and from the complementary energy principle that

3(50’£) =0, TeX: (E'i’(!))x =Qv), VvelU
Therefore in particular, d(go.g) = Q(u) and B(gb,c) = 3(gb,gb). and hence
Loty ~u,u -u) + 18(o -0, 0 —0) = (2d(u,u) - 4y, 0) + 1B(0, o))
Pt M i R IEAR Y I A et A
1
* (At 1) + 58(e. 25) - Blep. o))
= [3(w) +5(2)] + [y, u) - 38(e,,0,)]
= F(u) +5(a). o

3.2. The Reissner-Mindlin model.
In the Reissner-Mindlin model geometrically admissible displacements

(w,8) span the space Hé(w)xv, where either

(3.5a) v = (1 )1?
or
(3.5b) V=10 e H(WI?: to +t 0, =0 on &u}

corresponding to soft and hard boundary conditions, respectively. We let X

stand for the space of momentum and curvature tensors:

1901, 9210 My € L0 mpp = myyh

11




and supply X with the natural inner product

2
() = ) (m k).
i, J=1

Further, we introduce the linear-mapping T: X—»X as defined by

(TE)iJ =y tP(ﬁ)&iJ-+(1—v)kij, k € X.
The inverse of T 1is given by
Ty a1y v

and obviously T and T-1 are self-adjoint.

We introduce finally the bilinear forms

4o(4,8:2,0) = (£(8),Te(p)) + (k/h%) (8-Tw,9-V2), w,z € H(w), 6,9 € V,

and
-1 2 2
BR(Q.z;ﬁ.g) = (m,T 5)K4-(h /x)(7,8), mkeX 7,§e€ [Lz(w)] ,
where g(g) = (eij(g))?,j=l and k are as in (2.6).

In the above notation, the Reissner-Mindlin formulation of the plate
bending problem, as stated according to the energy principle, is to find the

pair (wR,gR) € Hé(w)xv that minimizes in Hé(w)xv the functional
1
9R(w,g) = EIR(w,g,w,g)-<f,w>

for a given f € H-l(w).
The existence and uniqueness of (wR.QR) is the consequence of the fol-

lowing lemma, which is proved in Appendix B in a bit more general form (see

Lemma B.2 of Appendix B.)

Lemma _3.3. There is a positive constant ¢ such that

12




(£(0), Te(@))y + 0 - Tullg |, 2 cCligl} +ivl; ). 0 ¢ [H (W1 weHyw. o

Remark 3.1. Regarding the validity of Lemma 3.3 uniformly over a sequence of

domains, see Appendix B. (Such a result is needed in Section 5 below.) o

The analogy of the variational formulation (3.4) is stated for the

Reissner-Mindlin model as: Find (w,g,ﬂ.z) € Hé(w)xVxJ(x[Lz(w)]2 sucl. iL-at

(3.72) (g.r'llgx— (e(8),k)y =0, ke X,

2 2
(3.7b) (h /K)(L,g)-(g¢1w,C) =0, g« [Lz(w)] ,
(3.7¢) (me(p)ly+(2,9) =0, peV,
(3.7d) -(7.92) = <f,2>, z e Hé(w).

The (unique, see Appendix A) solution to this problem is ),

(W O+ g U
where me = Tg(gR) and IR = (K/hz)(gR-ZwR) have the physical meaning of
momentum and (vertical) shear stress field, respectively, both being scaled
by a factor D-l.

We note finally that the pair (ER'ZR) can be obtained alternatively as

the solution to the following minimization problem (the complementary energy

principle): Find (m

2 : 2
mer¥p) € Kx[L,(w)]™ which minimizes in Kx[L,(w)]™  the

functional
g (m,y) = 13 (m,7;m,7)
R'=2% 2 =2 =

under the constraints (3.7c) and (3.7d).

Upon combining the two energy principles we obtain in analogy with Lemma

3.2 the following:

Lemma 3.4. For any (w,8) € Hé(w)xv and for any (m,y) e Kx[Lz(w)]2 satis-

13




fying (3.7c) and (3.7d) the following identity holds:

1 1 .
4R (g 0g 8 vgW, 8g=0) * 5Bp (mp M, g i mp M 7p-y) = Fp(w,8) + Sp(m7). O

3.3. The Kirchhoff model.

Upon Introducing the space

W= {ze Hz(w) :z=0 on dw},

the plate bending problem according to the Kirchhoff model is formulated as:

Given f € W (= dual space of W), find wg € W which minimizes in W the

energy functional

9K(w) = (2(1")'Ti(1”))x"<f'">'

[\ T

where T and (-,')x are the same as in the Relssner-Mindlin model. The

existence and uniqueness of w

X in the consequence of the coercivity inequal-

ity

(2'(2”)'T3(Z”))x 2 cuwng’w, w e W,

which itself is an easy consequence of Lemma 3.3. Note that Wy is uniquely

defined in particular if f e H_l(w), and note also that the pair (wK,e

—K)’

where O = ng, minimizes the Reissner functional 9R over the subspace
Zc Hé(w)xv defined by

Z={(w,8) € WxV: 0= Zw}.

For the Kirchhoff model, the analogy of the mixed variational formulation

(3.7) is the following: Given f € W, find (w,8,

s

,¥) € WxVxXxV’ (where

V/ is the dual space of V) such that

1

(3.8a) (m,T k), - (e(0),k), =0, kekK,

14




(3.8b) @-WW,Z> =0, LeV,
(3.8c) (me(p))y+<z.,9> =0, ¢eV,
(3.8d) -<7,92> = <f,2>, z e W.

Lemma 3.5. The variational problem (3.8) is well-posed and the unique solu-

tion is (”'Q'E'Z) = (wK’gK’EK’ZK) where gK = ZHK, me = Tg(gK) and 1 s
defined by (3.8c), i.e.,
(3.9) _ U 9> = ~(mp,elp))y . peV.

Proof. If (w,g,g,z) = (HK’QK’QK’ZK)’ equations (3.8a,b,c) hold trivially.

Moreover, since Wy minimizes 9K in W, one has (mK’i(ZZJ)K =

(g(ZwK),Tg(Zz))x =<f,z> V z e W, so by (3.9), (3.8d) holds as well. The

well-posedness is proved in Appendix A. D

Remark 3.2. Note that although Wo 9& and My obviously do not depend on

the way the space V 1is defined in (3.5), certainly does (see below).

Ik

Hence in this (somewhat weak) sense the "soft" and "hard" formulations are

still separate even in the Kirchhoff model. 0

We need below the following specific result related to the case where w

is a convex polygon.

Lemma 3.6. Let Wg be defined as above assuming that w is a convex polygon
1

and that f € H (w). Further, let p e Hé(w) and V¥ € Hé(w) be such that

(3.10a) (%0,9€) = (4,6), € e Hy(w),
(3. 10b) (W,96) = <£,8, € e Hy(w).
Then p = % and ¥ = —AwK.

15




Proof. From (3.10a,b) it is obvious that ¢y = -Ap € Hé(w), so it suffices to

show that p = Wy First, since y € Hl(w) and since w is

gon, it follows from (3.10a) that p € Hz(w) and p € u3(&),

a convex poly-
©cw-UA,, A,

i i
being the vertices of w; 1i.e., p e W (cf. [13]). Moreover, since p = 4p

=0 a.e. on dw and since Jdw consists of straight line segments only, it
2 2

follows that é—% = é—% =0 a.e. on Jw. Therefore and noting also that
at an

=0 a.e. on dw if =z € W, 1it follows integrating by parts that

QJlQ)
| N

z 63 dz
(Vyp,Vz) = -(V(Ap),V2) = -v(V(Ap),Vz) - (1-) E P
- == == = - == a

X 62x2’ 52?
i, Jj=1 i J
[ 2
= (£(9p),Te(V2)) -J [vAp-*(l-v) Q—g]g%ds
- T an

dw

(e(Zp),Tg(Z;)), z € W.

Hence by (3.10b), (g(ZP).rg(Vz)) =<f,z>, Vz e W, so p minimizes ?K in

W and accordingly, p = Wy a

We can now prove the following result which will be needed in the next

subsection.

Lemma 3.7. Let w be either a convex polygon or a smooth domain, and let

(w,8,m,7) = (wK,e m ) € WxVxKxV’ be the solution to (3.8) for a given

%k Ixr %k
f e H—l(w). and with V defined by (3.5b). Then y, = -V(Aw.) e [Lz(w)]2

and (wK’gK'EK’ZK) is a solution to equations (3.7) with h =0 1in (3.7b).

Moreover, if w 1s a convex pclygon then "1K"o,w = "f"—l,w' where
I L2
oo S Tz
1 l,w
zeH_ (w)
0
and if w 1is a smooth domain, then "lKHO ® < C"fﬂ_l " where C depends

on w.
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Proof. If Tg € [Lz(w)]2 and f € H—l(w), it follows from a simple closure
argument that (3.8) remains valid if W 1is replaced by V and if on the left
side <+,+> 1is replaced by (+,¢). To prove that Iy = -Z(AwK), we inte-

grate by parts in (3.9) to obtain

Y 9> = -J Z(AVK)-gdxldx2

w
[ asz
+ vAw, + (1-v) ¢°n ds
K 2 |=
J dn
dw
i 62wK
+J (1-v)5§5€ p-t ds, eV
dw
62w
Here the first boundary integral vanishes because vAw+ (1-v)——§ =0 on dw
an

is the natural boundary condition associated to the problem of minimizing ?K'

and the second boundary integral vanishes since ¢-t =0, ¢ € V, assuming

that V is defined by (3.5b). Hence g = -Z(AWK). On the other hand from
(3.10) we have Iy € [Lz(w)]2 and because of the well-posedness of (3.8) we
see that indeed I = —Z(wa).

Having verified that I = ‘Z(AWK) we conclude from Lemma 3.6 that

I = Vy where ¢ e Hé(w) satisfies (3.10b), so = |If as

f 11(”0, w

asserted. Finally, if ® 1is a smooth domain, a standard elliptic regularity

-l,w

estimate implies that "ZKHO © < Cllwll3 © < Clllf‘ll_1 o 0

Remark 3.3. It is essential for our results in the next section that when w
is a convex polygon, "ZK“O © is bounded by Ilf‘ll_1 " independently of w,

in contrast to the smooth domain where the constant depends on w. n)

3.4. Energy estimates in case of hard support.

Let us define the energy norms

17




hu, ol = 4y, u) + B(

9
)

(u,0) € Ux¥H
and

m”’g'ﬂ'lmg = AR(w,g;w,g)-+3R(2.7;5,1), (w 8,m 7 7) € H (w)xVxKx[L (w)]

where the bilinear forms are as defined in subsections 3.1 and 3.2. Then by

Lemma 3.2 we have the identity

-l = B, ofi® - 20(u)

|||t_10-t_1, %

whenever u € U and o € ® satisfies the constraint (3.4b). Similarly by

Lemma 3.4

(3.12) fwg-w, 6p-6, mo-m, ¥y - 7IIIR liw, 8, m7II| - 2<f, W,

where (w,8) € Hé(w)xv and (m,7) € J(x[LZ(w)]2 satisfies constraints
(3.7c,d).

Let us first apply (3.12) to estimate the gap between the Reissner "quad-
ruple (w BR Mos TR and the Kirchhoff "quadruple (w GK,mK,arK
) is legitimate in (3.12) under the

). By Lemma

3.7, the choice (w,0,m 1) = (w 8.,,m

2 x I Tg

assumpasusmptions that w is either a convex polygon or a smooth domain, f €

H—l(w) and V is defined by (3.5b), i.e., the case of hard support. Upon

simplifying the right side of (3.12) we obtain in this case the identity

2 2
(/) gl

~ 2
g = vy, Op =8¢ MR~ Mg Zp~ Xy =

which together with Lemma 3.7 leads to the following

Theorem 3.1. Let w be either a) a convex polygon or b) a smooth domain, let

f e H-l(w) and let ( ) and (w e ) be the solution to

WR'Or' MR’ TR 8% B Tk
(3.7) and (3.8), respectively, where V 1is defined by (3.5b). Then one has

18




in case a) the identity

2 _ .2 2
g~ W, Op =0y Mo M, Yo -2l = (h /K)"fll_l,

where Hf"_l 3 is defined as in Lemma 3.7, and in case b) the estimate

2 .2 p)

where C depends on w.

Remark 3.4. It is easy to verify that

2
- - - - > -
me wK' gR 9K’ QR 2K’ ZR ZKmR - EK ER'

where ER and EK stand for the total energy of the plate in the Kirchhoff

model and Reissner-Mindlin model, respectively, i.e.,

__1

E

__1
ER = 9R(wR,e ) = §<f'wR>'

In particular, if w 1is a convex polygon, Theorem 3.1 and Lemma 3.6 lead to

the relative estimate

2
(EK-ER)/EK £ Clw,f,v)h /KO,

where « is the shear correction factor, and

0

1 j Aw f dxldx
“B(1- uTI

Clw, £,v) = 2

W f dxldx2

For example, if w 1is the unit square and f(x) = 1, then C(w,f,v) =

3.440428/(1-v).

Remark 3.5. In case of soft boundary conditions, constraint (3.7¢) is more
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restrictive and rules out the choice (E'Z) = {m ) in (2.12). It is still

I %k

2 . ~ o~
) € Xx[Lz(w)] which is close to (EK’7K
the boundary and satisfies all the required constraings [16]. With such a

possible to find (ﬂK‘yK

) away from

construction, it is possible to show that if both f and w are sufficiently

smooth then
W, W, 8.-68., m_-m.. 7o -%.l° € Clw, £)h
R Yk R IR T %R = 10,

For other estimates of this type see also [11], the references therein and

[20]. a)

We apply next (3.11) to bound the difference between the three-
dimensional solution and the Kirchhoff solution. To this end, we need to
construct a three-dimensional extension (QK,EK) € Ux¥ of the Kirchhoff

solution (wK’gK’mK’ZK)' Following [16] we define u, € U as

- _ 12
(3.13) U = ( XBGK,I’ XBOK.z' wK4-§x3w1,

and ZK € ® as

UK,ij = -axng'ij, i,g=12,
. 2 12 _
(3.14) %% i3 = a[ix3 8h ]7K,i’ i=1,2
_ (13 12
°k,33 " “[ 53" g" xa]f'

where o = E/(l—vz) and ¥ € Hé(w) is so far unspecified. It is easy to
check that o satisfles (3.4b) so far as U is defined by (3.1b), so (3.11)
applies with the choice (g,g) = (QK,gK) in this case. After a short compu-

tation, the right side of (3.11) can then be expressed as

2
2 _ (1-v) v 2 3(1-v) 2 2
Ny, ol - 200y,) = ——- J (Y+ 58w, ) “dx, dx,, + —7=h J | vy “dx, dx,,

w [~
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1 2 2
*5 1_v)h f (|1K| -*vAwa‘)dxldx2

w

2 1772

+-———lz————h4 J fzdx dx.,,.
1680(1-v")

Now if w 1is a convex polygon, the choice y = -Ig;AwK is legitimate and

2 2
leads, recalling also that ”7K“0,w = IwAwadxldx2 = ”f”-l,w (see Lemma 3.6
and Lemma 3.7), to the identity

2
) = 32-8v43v "”'?1 '

2
gy o i - 20 T60(1-v) »w

Yy

On the other hand if w 1is a smooth domain, we can still find for any & > O

a Y e Hé(w) so that

(3.15a) (y+ 2w )2dx. dx. € Cov=aw, |2
’ i-v K 1772 K'l,w’
w
and
2 -1 2 2
(3.15b) J 1 VY| dxldx2 <Céd v ”AwKul,w'
w
Since HAwKH1 © < C(w)llf‘”_1 ' we obtain in this case, choosing & = v1-2vh,

the estimate

2 4
2 v 2 17h >
flu,, o I~ ~2Q(u,) s Clw) Nl +——— ||
K= K viay Lo jeso(1-v2) O©

We thus conclude the following:

Theorem 3.2. Assume that w is either a) a convex polygon or b) a smooth

domain, let f € Lz(w). let ( ) € U« be the solution to (3.4) with U

o' %
defined by (3.1b), and let (!K'EK)
(w,,8

K’—K’QK’—K) € WxVxKxV’ is the solution to (3.8) with V defined by (3.5b)

be defined by (3.13-14) where

v

and either y = -T:FAWK (case a)) or y satisfies (3.15a,b) with & =
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v1-2vh (case b)}. Then one has in case a) the identity

2 2, .2 4,2
lllgo—gK,gO-ZKﬂl = Cl(v)h ilf’l]_l w+C2(v)h Hf'ﬂo’w

and in case b) the estimate

2 2 2 4, .2
uy=uy, o=l < C(w)[Cs(v)h-rh Illf‘[l_l,w+C2(v)h Ilfllo’w.

where ﬂf"_l © is defined as in Lemma 3.7 and

2 2
32-8v+3v 17 v
C,) = TGy ) = ————— G = : o
! 160(1-v 2 1680(1-v°) 3 vi-2v

Remark 3.6. In case of soft boundary conditions it is possible to show that

if w 1is smooth and f 1is sufficiently smooth, then
Mu.-u,, o -7 % < Clw, £)[14C.(»)lh
Y% Lo = ' 3

where gK is close to ZK

(181]. n]

away from the boundary strip dwx(-h/2,h/2) [11]

4. The plate paradox.

Let Wy C RZ be the unit circular domain with the center at the origin,

i.e.,
(0] _ S 2_ 2.2
= ((xl,xz) PP = XX < 1}.
Let further w[n], n=1,2,..., be the sequence of regular (n+3)-polygons
such that
;’(n] c w[n+1] c ;[nﬂ] - w[O]

and
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{n] [0]

w —w as n-— o

(0] {n]

there is n(x) > 0 such that x € w
(0] -

in the sense that for any x € w

for all n > n(x). Finally let at™ = M0l

0% (-hv2, h2).

x{-h/2,h72) and Q

Assume now that the unit load is imposed, i.e., f = p/D =1 (see Sec-

tion 2). Then for fixed thickness h there exists the unique solutions
[n] [n] _{n] {n]
Yy (wR 'QR ) and we s
to the three-dimensional, Reissner-Mindlin and Kirchhoff formulation of the

n=20,1,2,..., corresponding, respectively,

plate bending problem with either hard or soft simple support. In Section 4.1

we Will show that win]—awéw] # wéO] and give explicit expressions for wém]
and WLO]. This is the plate paradox in the Kirchhoff model pointed out in

[7], [3]. 1In Section 4.2 we will show that this paradox occurs also in the
Reissner—Mindlin model and in the three-dimensional formulation in case of
hard simple support. Finally in Section 4.3 we show that the paradox does
not occur in the Reissner-Mindlin and three-dimensional formulations where the
soft simple support is imposed. This was briefly noted in [3].

The results clearly show that seemingly minor changes in the boundary

]

conditions can lead to a significant change of the solution on Qth , respect-

(n]

ively w , when n 1is large. 1In fact, we will see that there can be sig-

nificant changes already when n = 1.

The main question we will address below in this section is whether as

o0 (0]

—u for the three-dimensional formulation

[0],9[01)

(w[n],e[n])—a(w on

R On R for the Reissner-Mindlin model

and
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Wnl_, o]

K K for the Kirchhoff model.

4.1. The plate paradox for the Kirchhoff model.

We have shown in Lemma 3.6 that for n=1,2,..., win] = p[n] and
-AwLn] = w[n] where p[n] and w[n] satisfy (3.10a,b).
Theorem 4.1. Let p'®), yl® ¢ H(l)(w[m) be such that
(4. 1a) (ZP[Q],Zg) = (w[m],E). £ e Hé(w[O])
(4.1b) W' ) = <t.80, £ enlw!h
with f = 1. Then as n—o
it -ylely o

H ( )

H'(w 77)
Here we understand w[n] and w[n] extend by zero from w[n] to w[O].
Proof. Let Pn denote the orthogonal projection of Hé(w[ol) onto the
subspace Hé’n(w[ol). defined by

Hl’n(wlol) = {u € Hé(w[O]) : u=0 on w[O]-w[n]}
“[n] “[n] . [n] [n]

and let y and p denote the extension of y and p , Trespect-
ively, by zero onto wlo]. Then &[n] = in[m] by (4.1b). From Theorem C.1

[w] (0]

it then follows immediately that w[“]-)w
(0]

in Hé(w ). From (4.1a) we

then see that p[n]-Pnp[m]

—0 in Hé(w ) and therefore repeating the

same argument that p[n]—ap[m] in Hé(w[O]). D
Let us now characterize p[O] = wéol and p[m] = wém] more explicitly.
To this end, note first that p[O] is the solution to the problem
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(4.2a) ap!® =1 on o!°

(o] (w]

(4.2b) ol®l = 4l =0 on 80!°!

where D 1is given by (2.5). On the other hand, it is easy to see that p[O]

is the solution of the problem

{4.3a) AAp[O] =1 on (o]

(4.3b) (0} _ % on 8w!®!
2 [0]

(4.3c) vap!® 4 (1-0) @ e =0
an

Here, (4.3c) is the standard boundary condition for the simply supported

circular plate [see e.g. [24], p. 554]. (4.2) and (4.3) show that

[o0] _ ~[w] [w)] 2 (=] 4
P = C1 +C2 r +C3 r,
(ol _ .[0] (o] 2, .[0] 4
Pl ..(:1 +C2 r+C:3 r,

where r2 = x?-+x ,

(o] _ C[0] 1

3 <

(o2}

and Cl,C are determined from the boundary conditions. By simple computa-

2

tion we get

(o] _ . lol _1 5+
(4.4a) P (0,0) = Wy (0,0) = 51 T3y’
(o] _ [e] _3
(4.4b) p (0,0) = wK (0,0) = 63"
and hence for v = .3 we have
w[OI(O,O)
K = 1.36,
wLm](0,0)
25




i.e., the gap between wéO] and wém] is 36% at the origin. Analogously

for v = .3

Remark 4.1. We have assumed that w
[n]

were regular polygons. As the proof

shows, (4.5b) holds also when {w
(nl

} is an arbitrary sequence of convex

—aw[ol in the sense described above.
{n]

polygons such that o

It is essential, however, that o are convex polygons. If we replace

w[n] by w[n] where w[n] are nonconvex polygons shown in Figure 4.1, then it
was shown in [15] that @™ satisfies
ael® =1 in WO
- ~[w]
[w] _ 8w 0 in aw[0]
an
and hence
(4.c) w[m](0,0) = é—. o
g
- n
¥

\

\/

Figure 4.1.
[n]

A nonconvex polygon w
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4.2. The plate paradox for the three-dimensional and Reissner-Mindlin models.
We will analyze in detail the case of Reissner-Mindlin model only. The

case of the three-dimensional formulation can be dealt with analogously.

Theorem 4.2. Let h be fixed and sufficiently small, and let wén] be the

{n]

Reissner-Mindlin solution on w corresponding to unit locad f =1 on
w[n] and hard simple support on 6w[n], n=20,1,2,... . Then if wén] is
extended by zero onto wlo], one has
(n] _ [0]
2 o>
Iwg " - wg "1 (o) 2> 0
, W

{n] [O]
IJ [ol{wR —wp ]dxldle 2a>0

for all n2n n large enough.

o’ 0

Proof. By Theorem 3.1 we have

(n}] _ _[n] [n]__gln] {n} _ _[n] [n] [n] 2 h /K"f"

Iwg ™ -wg " B T8¢ . mp T mmy w¥p " Mg S [n}’

-1, 0

(o1 _ fo] [0] gl0l (0] _ [0] [0]__7[01 2 Chz/nufﬂz

Iwg ™" ~vwg s 8 =8¢ . My mg oZg " N E -1 01

Note that |f} [n] < C0 independently of n. Using Lemma 3.3, and Theorem

’

B.3 we see that

(n] _ [n] 2 (n]l _gln] 2 2
[""R B SRR T S [n]] e
, W
(o1 _ fo] 2 (o] _,l0] 2 2
[""n T 1t ti%R gl [ol] = ch
,y W 1,(0

where C 1is independent of n and h. On the other hand, we have by Theorem

4.1
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llgu 4?” wreo as n—o
l,0
and
(o] _ [0]
e =M 1 101 > ©

1,

This shows that for sufficiently small h there is a > O such that

S0l _ _[n]

I R WR i (n] 2a>0 forall n> n,.

l,w
Realizing that (in our case for f = 1)

[n] _ [n] (o1 _ _j{.l[ol
ER = -f (nl R dxldx2 ER = JWR dxldxz,
w

[n}] _ (n] (ol _ _|.[0]
EK = j wx dxldxz, ER = JWK dxldxz,
we also have
IJ(W&OI [n])dx dx | 2a>0 as n > n, o]

Using Theorem 3.2 and analogous arguments we get
Theorem 4.3. Let h be fixed and sufficiently small and let gén] =

(u (n] [n] u[n]) be the three-dimensional solution of the plate bending

01 *Yo2 *Yo3
problem on Q[ n] corresponding to the load p = D and hard simple support,
n=20,1,2,... Then if ué;] is extended by zero onto Q[O], one has
[n] _ [0O]
lu ., —u "l 2a>0
03 03 1’9[0]
I ([nhx x,mQ)+J0“x ,bQ)dexl a >0
Y03 2 g
(0]
for all n2n n sufficiently large. o

o’ 0

Theorems 4.2 and 4.3 show that the hard simple support leads not only to
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the paradox in the Kirchhoff model but also in the three-dimensional formula-
tion and the Reissner-Mindlin model. (In Section 4.3 we will show that the
paradox occurs neither in the three-dimensional formulation nor Reissner-
Mindlin model when the simple soft support is imposed.)

The proof employed the fact that the Kirchhoff model approximates very
well the Reissner-Mindlin and three~dimensional formulations for the hard
support. This shows that the circular plate and polygonal plate solutions are
far apart in the entire region and not only in the area close to the boundary,
where boundary layer effects occur.

The above results show that plausibly unimportant changes in the boundary
conditions could lead to significant changes in the solution through the
entire region even if the three-dimensional linear elasticity model is used.
We expect that the paradox will occur also in nonlinear formulations. For

engineering implications of effects of this type we refer to [6].

4.3. The "nonparadox" in case of soft simple support.
We will prove in this section that in contrast to the hard simple support

(n] (0]

the solution on w converges to the solution on w for both the
Reissner-Mindlin and the three-dimensional plate model. This is in obvious
contrast to the hard simple support. We will elaborate in detail on the case
of the Reissner-Mindlin model. The analysis of the three-dimensional model is

analogous.

Let us denote

see Figure 4.2,
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Figure 4 2.

The configuration of the domains Dn, D Da.

01
Let L = (Lz(w[OI)B. u=(w,68) el and
o= tuel:wenw™), o ww)?
¥ ={uel: we HI(U[OI), w=¢0C on ﬂo, 0 e (Hl(wtol)z)}
n 0 n’ —
7 =uel:weBlW) oc ™ oecw®N? n=nn.
4 ={uel: we Hl(w[O]). w=0 on DO.
n,m (0] n

1, [m],,2

oe (Hw™)% 6e @02 j=mnm1,.. .}

J

We have ¥ c ¥, . c J and
n 0 0 n

L4 > ¥, & cJ

All the spaces are embedded in ﬂl. Further, let
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[n] [n].,2

={uel: we Hl(w ), 8 € (Hl(w )7}

(n]

— - 1
én-{uezn. we Hj(w )}

and
0 - 2>1
4p(w,8;2,9) = :E:AR (u,v)
i=0
D,

where J; is given in Section 3.2 for the region w and ARI has the same
[n]
form but is integrated only over ﬂi. Analogously we define Ag , etc.

We finally supply 31 with the norm

o«

lu" :E:JR (u,u).

i=

To see that || 1is indeed a norm, assume that u = (w,8) € ﬂl and {lu| =

D
Then since the first term in the expression for ARi is the same as in the

case of plane elasticity (where o 92 play the role of the displacements) we

1'
have on ﬁj, 91 = aL‘j -+ch2, e = bJ--ch1 and because "9"V“"0,DJ =0
we get ¢, =0. Hence w=d,+a X +b X on D, and b
g 3 3 1 §%2 3 so because
wE H (w[ol we get w =0 and a‘j = bj =0, j=20,1,2,... (see also
Appendix B). Hence u = 0 and accordingly, [+l is a norm on 71.
> (n]
For u e 2n let |lulf wrn] = 4: (4,u). Then by Theorem B.1

(4.5a) inf ue (a+cx,),0., - (b-cx. )|l < C flull

abe 2772 1 1'w[n] n R,w[n]
(4.5b) inf ||w- (d+ax, +bx_ +cx,x.) | < C |lul )

abed T TPLL L R L)

Here Cn depends in general on w[n].

Assume now that for an no >0
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[nO]

(4.6a) f has compact support in w ,
(4.6b)
[ o ]fdxldxz = J n ]fxldxldxz = = J n ]fxzdxldxz = [ n ]fxlxzdxldxz =
0 0 0 0
w w w w
and that n>n., m>n.. Then for ueJ , n 2 n_,
0 0 n ]
l[ fwdxldxal = IJ 0 ]fwdxldle < Cnonun,
(0] o]
w w

and hence for n,m 2 n there exist unique g(yn) € Yn, g(ﬂn) € ﬂn,

0’
ul¢ ) e £ , ul2)e? such that
n,m n,m n m

0
tR(g(?n),!) = J fzdx, dx,, VY v e (z,9) € yn

1772
Lol

_ . 1ol
and analogously for u(ﬂn). u(2n m), u(én). Obviuosly g(yo) =u

’ R
2(2 ) = g[n] and u(Z ) = u(Z2 ) on w[n] and is zero on DO.
n R n,m n n

and

Using Theorem C.1 we get

[0l

(4.7a) up = g(?o) = g(?n)-+g(yo,yn)
(4.7b) hu(g )12 = Nt )%+ lptgy, ¥ 1%
(4.7c) HQ(YO,YR)M—aO as n—ow
(4.8a) g(ﬂn) = g(?o)-+g(ﬂn,90)
(4.8b) ha(T 12 = 1u(£)0% + 1a(T_, 9,017
(4.8¢) Hg(ﬂn,fo)u—+0 as n—oow
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(4.8a) g(fn’m) = g(fn)-+g(2n’m,fn)
(a.9b) lute, D17 = 1 1% + ety g0
{4.9¢c) Hg(Zn'm,Yn)H—ao as m—oo.
(4.10a) wg) = ule, e L )
(4.10b) 1w 0% = hute, 1%+ e, 2 12

(4.10c) Hg(?m,fn’m)n—ao as n—m.
Let now € >0 and n > max(n(c),no). Then we have
2
Hg(yo»yn)" <€
(T ,¢01% < ¢
=*"'n’"0 )

Using (4.7) - (4.10) we get

2

.2 2 2 2
D )I% + 10T, $00% = Nu(T NS = Jute, D17+ eI .2 DI

2

2 2
"g(ynn| +ng(2n'm,9nﬂl +Hg(9n,$n_nﬂl

2 2 2
bue )IE - Ip(L, £ 0N + 2 ¢ )I

2
+lea g DI

and hence for n,m 2 max(n(e),no)

2 2 _ 2 2
Hg(gm,fo)ﬂ 4~Hg(9o.yn)ﬂ = Hg(fn,m.fn)ﬂ + Hg(gm,fn m)H < 2¢

which yields
lote. 212 < 2¢
=" n,n" "' n - '

Therefore
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u(fy) ~ulg ) = ug) ~ul) +ul® ) -ue ) = p(g. ¢ ) ~plL P

’ ’

and hence
lu(g) -ute I s el/2 . 3e < cel’?.

[n]

W

Because as we said above g(fn n) = g[n] on and 0

R
{n] [0]

Up U in the space 31 or in any ﬂm for m fixed.
Remark 4.2. Note that until now we did not use Theorem B.3, we used only
Theorem B. 1. G

So far we have assumed that f satisfies the conditions 4.6.

(o]

Let us now

study the general case. Assume that f e Lz(w ).

(ol

Let us first note that if u (w,8) € fn o’ then w e Hé(w ) and

(4.11) hwll = v s Cllul
1,w[n] 1.w[n]
with C independent of n because of Theorem B.3
For 0 < A < 1/2 we denote
R, = {(xl,xz) X{+x, > 1 A}
_ 2. .2 _ ,_
8R, = {(xl.xz) x{+x; =1 A}.
Then
I wil < CAjiwl < CAljull,
0,R, 1,w[O]
/
I¥ly or S 87201 o) s calPpun.
A l,w
Let now
. - {f on R,
A (0]
0 on w RA
and
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gy = (a+bx1+cx2+dx1x2)0A,

where OA is the Dirac function concentrated on aRA and a,b,c,d are such

that f, +g, satisfies (4.6).
A A

[n1 A]

DA such that ﬁA cw , let QA(fn,n) and gA(YO) be

the solutions when instead f the function fA is used. Then we get

For n >

172
II\_:A(Zn,n) "—’(fn,n)" < CAE,

1/2
HQA(YO)-Q(YO)H < CA ,

where C 1is independent of n and A but in general depends on f. Hence

we can select A so that CA1/2 < g. Further we have shown

HgA(Zn’n)-gA(YO)H < e

v

for all n nl(c) and therefore

ug(fn'n)-g(yo)ﬂ < Ce
for all n 2 n,(e). Since u(¥,) = u[ol and u(f ) = u[n] we get
| ) =70 =R = 'n,n =R
(0) _ (n]
HQR Yp |—0 as n—oo.
Here g&n] = (wén]'gén]) is understood to be extended by zero on ﬂg and
Il is the norm in 91 (note that wgn] € Hé(w[ol), but gén] ¢ Hl(w[O])
although B;n] c Hl(w[n])). Because the functions in Hl(w[OI) with compact
support are dense in Hé(wo), there is ;[n] € Hé(w[n]) such that
uw[ol-a[nlﬂ < e for all n 2 nz(e). Hence with ﬁ[n] = (;[n]’gén])) we
get
"Q[n]"géolﬂ—eo as n—oow.

Hence using Theorem B.2
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Jnl_ (ol 2 [n] _ L0l 2

! I +1e !
R R Thlinly 7= =R Tultndy

—0 as n—oo.

Summarizing we have proven

[0]) (n] _ (w[n] e[n])

Theorem 4.4. Let f € Lz(w and let Up R 8 ) respectively
(ol _ (w&ol,géol), be the Reissner-Mindlin solution on w[n]. respectively
w[O]. for the soft simple support and fixed h. Then
(n] _ [0O] (n] _ (O]
lwe, " = wo i +le, -6, " —0 as n—oo. 0
R R Hl(w[n]) R R Tl

We see that in contrast to the hard support there is no plate paradox
when the soft support is imposed. Hence the scft simple support is physically

more natural than the hard simple support.

[0l

Remark 4.3. In Theorem 4.2 we assumed that f € L2(w ) while the solutions

gI[{O] and g;n] were defined for any t € H—l wlo]

1

(

), respectively

f eH (w[n]). If f has compact support then Theorem 4.4 holds also for

1, (0]

f e H (w ). We can weaken the agsumptions on f 1in Theorem 4.4, e.g., so

that f e H%w!%)) L, 10!

, @ > -1/2, but the proof will not hold for f € H ).

@]

[n]

Remark 4.4. We have assumed that w is the sequence of regular polygons.
This assumption was used only when using Theorem B.3. Hence Theorem 4.4 holds
for any regular family of domains (see Appendix B). If f satisfies (4.6)
then there is no need for the regularity (see Remark 4.2) of the family of

domains under consideration and Theorem 4.4 holds in the full generality. o

Remark 4.5. We have assumed in Theorem 4.5 that h > 0 1is fixed (i.e., inde-

pendent of n). We could also consider a two-parameter family of problems

where both n and h vary. Then, for n fixed and h—0, g;n]—ag;n]

(and hence for h-—»0 the difference between soft and hard support disap-
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pears}. Hence combining the results of this section with Section 4.2, we see

that

lim lim g;") # lim lim gé“). o

n»w h-0 h+0 n-w

In the quite analogous way as we have proved Theorem 4.4 we can prove
Theorem 4.5. Let h be fixed and g[O], respectively g[n], be the solu-
tion of the three-dimensional plate problem on Q[O]. respectively Q[n],
with simple soft support. Assume that the load p € L2(w[0]). Then
0
a0
1,Q

as n—oo. o

Remark 4.6. Remarks 4.3~ 4.5 are valid also for the three-dimensional plate

model. a]

4.5. Some additional considerations.

As we have seen the Kirchhoff model (biharmonic equation) leads to para-
doxical behavior for the hard simple support. The same mathematical formula-
tion describes also other problems and hence leads to the same paradoxical
behavior.

As an example, we mention the problem of reinforced tube shown in Figure
4.3a,b. The reinforcement is attached by an unextendable tape to the exterior
surface. Here we have the paradox consisting of the fact that the stress
caused by hydrostatic pressure is different for the polygonal and circular

outer surfaces.
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& ©

Figure 4.3.

Reinforced polygonal and circular tubes.

Analogous examples can very likely be found in other fields than elasti-
city where the problem reduces to the biharmonic (or polyharmonic) equation.

We have shown the paradoxical behavior for n—®o and h relatively
large compared with 1/n (see Remark 4.5). Hence the question arises how
large will be the difference between the hard and soft support in three-
dimensional formulation for n fixed and h—0. To this end we consider a

square plate with side length = 1. In Table 4.1 we give the values of

lE -E 11172
[ SOFT "‘J‘D] = n(h)

IESOFT'
and
['EHARD'EK' 172
= £(h).
Tl |
Here by ESOFT and EHARD we denoted the (3-dim) plate energy for the soft

and hard support and by EK the plate energy of the Kirchhoff model for

Poisson ratio v =0 (see also [7]).
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Table 4.1.

% = 0.1 h = 0.01
n 34.68 11.69
3 20.21 2.03
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Appendix A. Well-posedness of variational problems (3.4), (3.7), and (3.8).
We make use of the following basic theorem, see [18].

Theorem A.1. Let H be a Hilbert space and 3 be a bilinear form on HxH

which satisfies

(A.0) B(u,v) = B(v,u), u,v € H,
(A.1) |B(u,v)| < ClIuI|HIIVIlH, u,v € H,
(A.2) sup B(u,v) 2 c||u||H V u € H,
veH
IIVIIH=1

where C and c¢ are positive constants. Then if F 1is any bounded linear

functional on H, there is a unique u € H satisfying
(A.3) B(u,v) = F(v), v e H.

In applying Theorem A.1 to problems (3.4), (3.7), and (3.8), we choose

the following notation:

a) Three-dimensional model (Eqs. (3.4)).

b) Reissner-Mindlin model (Egqs. (3.7)).
H = H(w)xVxKx[L, ()]
0 2 !

B(w,0.m7:2.9,k,¢) = (n,T k), - (c(8),k),

—(g(g),ﬂ)x-(g-Zw,S)"(Q-Zz,z)4'(h2/n)(z,§),
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F(z,g,ﬁ,g) = —<f,2z>.

c) Kirchhoff model (Eqs. (3.8)).
H = WxVxXxV’,
B(w.0,m,7;2,9,k,8) = (0,7 k), - ((0), k),
- (elg)im)y - <6-0w, &> - <¢-Fz, >,

F(Z,g,E,g) = =<f,z>.

Then in each case, B 1is symmetric, F 1is a bounded linear functional
on H, and the variational problem takes the general form (A.3). Thus it

suffices to show that (A.1) and (A.2) hold.

Theorem A.2. Assume that ® is a bounded Lipschitz domain and that the para-

meters v,h, and

I

satisfy

0O<v<1/2, hshsh?! kKs<ks<x!

where h >0 and k > 0 are given. Then in each of the above three cases

there are the constants C = C(h,x) and ¢ = c(w,h,k) such that (A.1) and

(A.2) hold.
Proof. In view of (3.2) and (3.6) the mappings S_1 : H—-H and T—1 : K— X

are uniformly bounded in the assumed range of v. It then follows easily that
the assertion concerning (A.1) holds, so let us concentrate on showing that

(A.2) is true.

a) The three-dimensional model.

Let (u,0) € UxX Dbe given and let

= 1 =
(g_'o)iJ = §tr(g)61J. i,j=1,2,3.

Then ligly = e - oyl

1 2
=0“R4-§utr(g)uo’n and it follows from (3.2) that
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(A.4)

(0,57 0)yy = H(1ww)lg - gl + (1-20)lggl 2 2 Bolo - ol

We make use the following lemma which is related to the well-posedness of the

Stokes problem. For the proof, cf. [12].

Lemma A.1. There exists ¥,y € U and a constant C1 depending on w and h

such that the following inequalities hold:

S C,ltr(g)|

I¥ols 0,0

{(div v

Yo tr(@) 2 It o o

With Yy as in Lemma A.1 we now set (y,1) = (—u-Sgo.v—aze(u)) where

8 1is a constant to be specified shortly. Then applying (A.4), the inequality

2'*(1/25)"1

(), T5)5 S (572}l

2"3. (s > 0), and Lemma 3.1, we have that

Bu,g;v,T) = (0,5 '9),+ 33(tr(g),aiv v )

+8(g-0, ely, )) +8° l|e(u)||u-6 (¢,S 1e(u))

v

12 2 =0'H’ |6

1 -3 2 2 1 2 2
[——h C,3 C35 ]Hc I, + [—6-C46 ]Htr(g)"o, +cC 6 Hu”1 0

1 2 2
min{-l-ih ~C,8-C,3 ,56 3C,8%,c,8 }(llull1 ot lIUIIR

v

Thus, choosing & to be a sufficiently small positive number, we have found
(¢,T) € Ux¥ such that "!'£"H < C"!'E"H and 3B(u,g;v.T) 2 cﬂg.gﬂﬁ where C
and c depend only on w and h. Hence, (A.2) is true in case a) with c¢

depending on w and h.

b) The Reissner-Mindlin model.

Given ("'9'2-1) € Hé(w)xVxKx[Lz(w)lz. let (z.g,ﬁ,g) =
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(-w,-8,m-3¢(0),7-~8(6-Yw)) where & is a constant to be specified. Then
ncting that by (3.86), (g,T_lm) 2 Hmui/(1+v), and recalling Lemma 3.3, we

have
B(w,0,m,7:2,9.k,8) = (n,T 'm), + (%)l 2
+8lc(@)12-8(m, T e(8)),, + sll6 - I
-S(hz/x)(z,g-Zw)
1

2.1 2.1 2
(335~ C18)Imly + 580£(8) 15 + 5518 - Twlg

v

+ (8%/6) (1-C,30° /) 1702

2

1 -c,5.¢,8, h2/k(1-C_8h2/k)} x

2 min{ 1 5

2
xlw,8,m, 7.

Thus if & 1is small enough we have found (z,¢, k, {) € H such that

v

Iz, ¢k, &l < Cllw,@,m, 70, and B(W,8,m,7;2,9,k.§) 2 clv,6,m, l"i where the

constants depend only on w,h and k. These prove the assertion in case b).

c¢) The Kirchhoff model.

Given (”'g»ﬂ'l) € H, let (z,9,k,§) = (-w,-g-ago,g-ag(g),y-a

4 SO)’ where

’

P € V and are defined so as to satisfy

$o €
ol = ¥l <2,9,> = H7H2
ol1,0 = 1y <L ¢g Ly

-— - . - - - 2
= 18- Tul; i <O-Tw.Lp> = I8 - Tulg

1Zohy

8

which obviously 1s possible. As in case b), one then finds that for a suffi-

ciently small 3, |z,¢,k, &l s Ciw,6,m, 7/, and B(w,8,m,7;2,9,

=

) 2
cﬂw,g,ﬂ,lug where C and ¢ depend only on w, and so the assertion

follows in case c). a
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Appendix B. The Korn inequality.

Let & ixc a bounded Lipschitz domain and define ‘he semi.orm

2 1/2

= 2 1 2

19lpwy = {I Z ICU(Q)I dxldxz} , 8 € (H(w)",
w i, j=1

ax ax

a6 ae
where ¢, .(8) = l[——1—+—-—‘j and let
J i

= le|

Ew) +ue-zwu§.w. u= (o), wel(w, 8e W)

Theorem B.1. There is a constant C depending only on ® such that for any

o e (H(w)12

2 2 2
(B.1) 1nf{||91 a bx2"1.w+"92-C+bx1"1,w} < CIEIE(&))
abc
(B.2) inf ||w- (a+bx, +cx. +dx,x. )| < Clul .
abcd 172 12 ) R,©

Proof. Inequality (B.1) follows immediately from the Korn inequality for

plane elasticity, see [19]. Inequality (B.2) follows from (B.1). a
Lemma B.2. There exists a constant C depending on w such that for any

(w,8) € [H (0)]°

2 2 2 2
“""1.(.,“"9"1,«,5C“H'R,w*[ w-ds}.
a

w

Proof. We apply the standard contradiction argument. If the assertion is not

true, there is a sequence {wn,gn} such that

hup 8y, = 1

and
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19, =0

le_-vw |.. —o0, J w2ds— 0
-N = N 0,(.0 n
ow

as n—w. Then by Theorem B.1, (gn} contains a subsequence (which we

denote once more by {gn}) such that gn—e(a-bx c+bx1) in Hl(w). Further,

2!
since nen-anHO w—aO there is another subsequence (once more denoted by

{6 ,w}) so that w —w in Hlfw). Hence b =0 and w = ax, +cx., +d.
-n’ n n 1 2

Because Iﬁids—eo we get a =c =d =0 which contradicts the assumpton

w80, = 1. o
We immediately get

Theorem B.2. There exists a constant C depending only on w such that for
any u= (w,0) € H(I)(m)x[Hl(w)]2

2

2
(B.3) Wiy ,+lely , s Clulg .

Let us now consider a family ¥ = {w} of Lipschitz bounded domains. The
family will be called regular if there is a (uniform) constant C so that

(B.3) holds for all w e %.

Let us now consider a special family of domains. Let wlol be a unit
N

(n]

circle and w be a sequence of regular n+ 3-polygons such that

‘;[n] c ‘;[n+1] c a[n*‘l] c w[O]

»

and

w[n] (0]

W as nN—o

(0] [n]

in the sense that for any x € w there is n(x) > 0 such that x € w

for all n > n(x). We let 90 = {wlol,wlll.wlzl,...}.
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Theorem B.3. The family ?0 is a regular family of domains and hence there

exists C( > U such that

i ener® s clul®
w

’ ’

for any u = (w,08) € Hé(w[n])xlﬂl(w[n])lz., n=20,1,2,...

Proof. For n > n, the u[n] are star shaped domains and

(n]

w = {(xl,xz) : X, = pn(e)cos 0,

1
= < <

X5 pn(e)sin 6, 0 <e6 < 2n},

wvhere pn(e)—al and pﬁ(e)—eo uniformly. Let Qn be the one-to-one map

of w[n] onto wlo] defined by

Qn(p(e)cos 0,p(0)sin 8) = (p(8)cos B,p(0)sin 8) for p(8) £ 1/2,

_ 1 ele)-(1/2) 1 cos 6.
Zp 195—11/25 os

[[1 ple)-(1/2) 1]51n 6] for p(8) > 1/2.

Pn (6)-(1/2)

If Q (x,,x,) = (£.,€,) then we have £,k = E[n] E[n] £ (x,,x%x,)

n 1’72 1’2 1 2 271727

66.
[n] _ [n] [n] i [n]

X, = (€1,62 'y Xy = (§1,€2 and Ei =X 5;3 —aéij, X5 —aéi,
axi [n]
553 —aaij, 1, =1,2 as n—w, uniformly with resrect to (xl.xz) € 0w
and (El.iz) € wlol. Let u= (w,0) € Hé(w[n])x(}{l(wrn]))2 and let

u=(v,08), €, &) = ulx,(§,8,),%,(£,8,)).

(0] [o],2

Then u € Hé(w )x(H (v ) ) and by Theorem B.2 we have
-2 2 -2
fiwil + el < Clul
l,w[ol - 1,w[0] R,w[O]
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and also

= [iwll (1+a(1)),
1'm[n]

ES
er-.
o

|

(1+a(1)},

X
"

fiell
= w[o] - {n]

, W

+a{1) (vl

lul = |ul +lo} )
. (0] [n] = w[n]

1’w[n]

(1+a(1))

a® (ret1)) + el
1 1

y W , W

< C[|gl2
R,w

caM W e ia®

1w l,w[n]

[n)

From this we see that for n > n, the family is a regular one. Using Theorem

B.2 we then see that the whole family 90 is regular. n]
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Appendix C. A projection theorem.

ieorem C.i. Let H be a hilbert space, let (Hn} and {Kn} be sequences

of closed subspaces of H such that Hn c Hm and Kn 2K n=1,2,...,

1 n+l’

and let
HO = UHn and KO = '-‘Kn'
n n
Further, let Pn and Qn' respectively PO’QO be orthogonal projections
onto Hn and Kn respectively HO,KO. Then for any u € H

it Pnu - Poull——> 0,

fl Qnu - QOUII —0

as n—o o,
< 3 €41 - 2
proof. Observe first that ||Qn+1u|| "Qn+1Qnu" < IIQnuII, so IIQnull—)q 20
monotonically. Further
_ 2 2 _ 2 2
I u-Q , ul = 1o ui® - 2(Qu.Q, ) +1Q,, 1% = I ui® - 1Q I,

S0 {Qnu} is a Cauchy sequence. So Qnu——-w and v € Kn for all n. Hence

v e KO and since (v,w) = lim ( u,w) = lim (u,Q w) = (u,w) for all
new 0 n-o n

W € KO, it follows that v = Qou.

Let us now consider the projection operator I—Pn = ér' Then én
1y
1

1 1 x _ 1
projects H onto Hn and Hwa Hn+ Hence Qnu— u Pnu—*)u v € an.

1

So Pnu——>v € HO and by the same argument as before, v = Pou. o
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on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

(o} To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

(o} To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

o} To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

o] To be an international center of study and research for foreign
students in numerical mathematics who are supported by .foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor 1. Babuska, Chairman,
Laboratory for Nuaerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.




