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Abstract

The paper studies the plate bending problem with hard and soft simple

support. It shows that in case of hard support, the plate paradox that is

known to occur in the Kirchhoff model is also presert in the three-dimensional

model and the Reissner-Mindlin model. The paradox consists of the fact that

on a sequence of convex polygonal domains converging to a circle, the solu-

tions of the corresponding plate bending problems with a fixed uniform load do

not converge to the solution of the limit problem. The paper also shows that

the paradox is not present when soft simple support is assumed. Some practi-

cal aspects are briefly discussed.
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1. Introduction.

The Kirchhoff model of a plate is usually accepted as a good approxima-

tion to the three-dimensional model for thin plates. In the case of simply

supported polygonal plates, however, the Kirchhoff model is known to suffer

from unphysical phenomena that can lead to a large error of the model in some

situations. In particular, the following paradox, referred to as the plate

paradox below, occurs (2], [4]: Consider a sequence {w } of convex polygo-n

nal domains approaching a circle. For each n let w be the transverse

deflection corresponding to the Kirchhoff model of the plate bending problem

where the plate occupies the region w n  is simply supported on aw and is

subject to a uniform load p(x) m 1. Further, let w be the solution to thec

limit problem, i.e., that on the circle. Then as n--, the sequence {w }n

converges pointwise, but the limit w is different from w . For example,

at the center of the circle the error of w is about 40%. Some other

related plate paradoxes are given by Mazja [14], [14]. Practical implications

occur for example in the finite element method when the domain is approximated

by a polygon with the side length h-->O. For further aspects see also [8],

[18], [21], [23], [25].

It is often assumed that the plate paradox is caused by the assumption of

vanishing vertical shear strains that is implicit in the Kirchhoff model.

This was supported e.g. by a note (see [31) that the paradox is not present

when the Reissner-Mindlin model instead of the Kirchhoff model is used. The

aim of this paper is to locate the source of the paradox more precisely: We

show that it is the way the boundary conditions are imposed in the Kirchhoff

model that causes the paradox, and not the overall assumption of vanishing

shear strains.

In the three-dimensional model of the plate, the boundary condition of



simple support is imposed typically by requiring that the vertical component

of the displacement (or at least its average in the vertical direction)

vanishes on the edge of the plate. On the other hand, in the Kirchhoff model

one effectively imposes the more restrictive condition that all tangential

displacements must vanish on the edge. Of course, it is possible to impose

such "hard" boundary conditions also in other plate models, e.g. in the

Reissner-Mindlin model (cf. [22]) or in the three-dimensional model itself.

We show that in such a case, the plate paradox occurs in both the Reissner-

Mindlin model and in the three-dimensional model. On the the other hand, we

also show that the paraaox does not occur in these models in case of "soft"

support where only the vertical displacements are restricted on the edge of

the plate. Hence, we are led to the conclusion that the paradox is caused by

the hard boundary conditions which are intrinsic for the Kirchhoff model.

Our results are based upon energy estimates relating the three-

dimensional model and the Reissner-Mindlin model to the Kirchhoff model. Such

estimates can be derived by combining the energy and complementary energy

principles associated to the plate bending problem, and they were in fact

applied early by Morgenstern [16], [171, to prove that the Kirchhoff model is

the cornect asymptotic limit of the three-dimensional model as the thickness

of the plate tends to zero. Although the assumption of a smooth domain is

implicit in Morgenstern's work, one can easily extend the analysis techniques

of [161 to more general situations. In particular, we show here that in a

sequence of convex polygonal domains converging to a circle, the relative

error of the Kirchhoff model, when compared to the three-dimensional model

with hard support, is uniformly of order O(h /2 ) in the energy norm, where

h is the thickness of the plate. Moreover, we show by similar techniques

that the gap between Reissner-Mindlin and Kirchhoff models is uniformly of
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order O(h) under the same assumptions. Finally, we show that on a smooth

domain, the three models are at most O(h 1/ 2 ) apart. Hence we conclude that

the plate paradox must occur in the hard-support models if h is fixed and

sufficiently small.

Let us mention that our results are in parallel with recent benchmark

calculations [7]. These calculations confirm in particular that the error of

the Kirchhoff model with respect to the three-dimensional model is primarily

due to the assumed hard boundary conditions on simply supported polygonal

plates. For example, in case of a uniformly loaded square plate of thickness

h = side length/100, the relative error of the Kirchhoff model in energy norm

is -11% when compared to the three-dimensional model with soft support and

-2% when compared to the hard-support model [7]. This example also shows

that the error of the Kirchhoff model may be quite large even for relatively

thin plates of simple shape.

The above results show that imposing various boundary conditions that are

seemingly close, such as the hard and soft simple support, can influence the

solution in the entire domain and not only in the boundary layer. Very likely

such effects occur also for other boundary conditions for both plates and

shells. Therefore, since any boundary condition is anyway an idealization of

reality, finding the "correct" boundary conditions is an important and some-

times difficult part of building a dimensionally reduced model. For example,

it can happen that both the soft and hard simple support are poor approxima-

tions of the real "simple" support.

The plan of the paper is as follows. Section 2 gives the preliminaries

and basic formulations of the plate problems. Section 3 elaborates on the

variational formulations of the plate problems and prezents various energy

estimates. Section 4 addresses the problem of the plate paradox. Finally,
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Appendices A, B, C present some auxiliary results needed in Sections 3 and 4.

2. Preliminaries.

Consider an elastic plate of thickness h which occupies the region

= wx(-h/2.h/2) where w e 2 is a Lipschitz bounded domain. We assume

that the plate is subject to given normal tractions p (i.e., the load) on

wx{-h/2} and wx{h/2} and that it is simply supported on a8x(-h/2,h/2) in

such a way that if u = (UU 2, u 3 ) is the displacement field, then

(2.1) u 3x) = 0, x E awx(-h/2,h/2)

and the other two conditions are natural boundary conditions describing homo-

genous (zero) components of tractions. This condition will be called later

the soft simple support. Assuming for the moment that no other geometric

boundary conditions other than (2.1) are imposed, the plate bending problem

can be formulated as: Find the displacement field 20 which minimizes the

quadratic functional of the total energy

3

(2.2) F(u) = 1 I{Adiv u)2  1 [cij(u)]2 dx dXdx3

ij=i

- C.,h) +u3(',-)dx dx

1~l~3 3 ff

in the Sobolev space [H (0)]3  under the boundary condition (2.1). Here

3u 1 au Is the strain tensor and A and p are theS= ij i,j=1, 'ij = -- J

Lame coefficients of the material, i.e.,

A E_ E
(1+u -2v)' 1+v'
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where E is the Young modul,,s and v is the Poisson ratio, 0 : v S 1/2. We

also assumed that the surface traction p is symmetrically distributed with

regard to the planar surfaces of the plate, i.e., we consider a pure bending

problem.

So far we have assumed a special model of the simple support based on

simple geometric constraint (2.1). Of course, there are many other possibili-

ties. We will discuss later another model - the hard simple support and

discuss the effects of these models of the simple support on the solution.

It is well known that if h/dlamn(w) is small, the three-dimensional

plate bending problem can be formulated in variuos dimenzionally reduced

forms, see e.g. [1, [11], [22]. We consider here two representatives of such

formulations which are used in practice; the Kirchhoff model and the Reissner-

Mindlin model (cf. [22] and he refences therein.

In general when w is fixed and h--)O then the three-dimensional for-

mulation and the dimensionally reduced models converge to the same limit,

provided that the load p is appropriately scaled (see below). Hence for

sufficiently thin plates the models give practically the same solutions. How-

ever, as will be seen later, what is "sufficiently thin" can depend strongly

on w, i.e., the convergence can be very slow in some situations.

In the Kirchhoff model, we approximate the three-dimensional solution as

8wK awK

0 (Xl,2'x3 )  x3 ax 2 3 ax 1 2 K 2

where wK minimizes the energy

(2.3) F (w) = I I.(Aw)2 +(i-V) 2 a-2 w dXldX2- fwdXldX2K 21Z 5 a 122

in the Sobolev space H2 (w) under the boundary condition

5



(2.4) w = 0 on aw.

Here f is related to p as

(2.5) f = p/D, D - Eh3
12(1-u

When comparing different plate models with fixed w and variable h we

will assume below that f (and not p) is fixed. This assures that the dif-

ferent models have the same (non-trivial) limit as h--40. For example,

defining the average transverse deflection in the three-dimensional model as

w0=1 u3 (',x3)dx 3,

-h/2

one can show (under fairly general assumptions on w, see [10], [11, [16],

(171 and section 3 below) that wO-WKII L 2(-- as h-0O.

In the Reissner-Mindlin model, one approximates % by

(xlx 2,x3 ) z (-x3"R,l 1',2 ,-3 R,2(l 2 ',R(1',2

where (w R, OF) minimizes the energy

2

(2.6) FR(w,9) = JJ{v(div )+ (-L') [e (0)] x1 dx2

R1 2 2[
i,j=l

+-(1c/h )1(ie I Vwl2dxdx-fwdx 1dx2

In the Sobolev space [HI()] 3 under the boundary condition (2.4). Here

K = 6(i-V)K0  where K0 = 0(l) is an additional shear correction factor which

may take various values in practice.

We point out that the Klrchhoff approximation to g satisfies in addi-

tion to (2.1) the boundary condition

6



(2.7) (u1t1 +u 2t2 )(x) = o, x E awx(-h/2,h/2),

where t = (t t 2 ) denotes the tangent to aw. This suggests that one should

also consider the original plate bending problem under such more restrictive

geometric boundary conditions. Below we will refer to the boundary conditions

(2.1), (2.7) and their counterpart in the Reissner-Mindlin model, i.e., (2.4)

together with

(2.8) a1t1 + 2 t 2
= 0 on aw

as the hard simple support in contrast to the conditions (2.1), (2.4) which

will be labeled as soft simple support. Hence when using the Kirchhoff model

we have in mind the hard (and not soft) simple support. We will see later

that the incapability of the Kirchhoff model to represent soft simple support

can be a severe deficiency of the model on polygonal domains.

3. Variational formulations of the plate bending problem. Energy estimates.

In the first three subsections below and in the related Appendix A, we

summarize first some basic characteristics of variational formalisms and

energy principles associated to the plate bending problem in its various

forms. These results are basically known, but we present them here for the

reader's convenience. In subsection 3.4 we prove some energy estimates

relating the Kirchhoff model to both the Reissner-Mindlin model and the three-

dimensional model, using the results of the previous subsections.

We assume that the plate occupies the region fl = wx(-h/2,h/2) where w

is a Lipschitz bounded domain. Our particular interest is In the cases where

w is either a convex polygon or a smooth domain.

7



We denote by H (o), resp. HS(Q), the usual Sobolev spaces with index

s s ks > 0. The seminorm and norm of the spaces [H (M)] or [H (w)] are

denoted by 1*1' W  and I' Wa,, resp. '-Isf and 11ll11S, By (.,.) we

mean the inner product of [L2(w)]k or [L 2()] , and by <.,.> the pairing

of a space and its dual. The dual space of H () will be needed often below
0

and is denoted by H ().

3.1. The three-dimensional model.

Let us denote by N the space of horizontal rigid displacements of the

plate:

N = {(a1X1 +a3X2, a2x2- 3 X,O), a. E R, i = 1,2,3Y.

We define the space of (geometrically) admissible displacements in case of

soft simple support as

(3.1a) U = {u EH ()] : u3 = 0 on awx(-h/2,h/2), (U,v) = 0 V V E NY

and in case of hard simple support, as

U = {U E [H ( : u3 = t u +t 2 u 2 = 0 on awx(-h/2,h/2),

(3.1b)
(uv) = 0 V v E NY.

(For simplicity, we remove here all the horizontal rigid displacements also in

case of hard support.) We let further H stand for the space of stress or

strain tensors defined as

= - = (0- ) 3 E L () 0- ) Y3
= i ij=l ij' ij ji

and introduce a linear mapping S : R--)f representing a scaled stress-strain

relationship of a linear elastic material

8



(ST). : D- [A tr(T)Sl+A Ti
= -' lj i

where A and p are the Lame coefficients and the scaling factor D is as

in (2.5). Then S is one-to-one and

(3.2) (S -1T) = D[ -v tr•T)]

Moreover, S and S 1 are self-adjoint if H is supplied with the natural

inner product

3

(T Z) (a-~ Ti.
( R ) Y (ij' ij)

i,j=l

Let us further define the bilinear forms

A(u,v) = ((u) ,SeCv)) u,v e U,

and

V -T (0% S -1 T)R 0,TE ,

and the linear functional

WD 1 [ f[v 3 (,h/2) v(.,-h/2)ldXldX

where it is assumed that f E L 2C), to imply that Q is a bounded linear

functional on U (by standard trace inequalities).

In the above notation, the energy principle states that the displacement

field u due to the load f = Dp e L 2M) is determined as the solution to

the minimization problem: Find g e U which minimizes in U the functional

(u) = AN(uu) -Q(u).
2 -

The existence and uniqueness of go Is due to the following coercivity

inequality known as the Korn inequality (cf. [19]).

9!



Lemma 3.1. If U is defined by (3.1a), there is a positive constant c such

that

(3.3) 4(u,u) 2 cllll2, ,  u E U. 0

We point out that the constant in (3.3) depends on w (and h), though

it is positive for any given Lipschitz domain. In Appendix B we show that the

constant in (3.3) remains uniformly positive over a certain family of domains,

a result needed in Section 5 below.

Given f and the corresponding displacement field -0, let !0 = Su

be the corresponding (scaled) stress field. The pair (W,c) = (U,2:0) is

then the solution to the variational problem: Find (U,L-) E UXH such that

(3.4a) B(0,T) - (cCu ) )= O, T E Y,

(3.4b) (0o,C(V)) = QCE), v E U.

It can be easily verified following [5], (9] (see Appendix A), that the solu-

tion to (3.3) exists and is unique.

We mention finally that according to the complementary energy principle,

z0 is found alternatively as the solution to the minimization problem [19]:

Find E0 e X that minimizes in R the functional

under the constraint (3.4b).

In Section 4 below we need the following corollary of the two energy

principles (cf. [161).

Lemma 3.2. For any (!,o-), e UxR such that o- satisfies (3.4b), the follow-

ing identity holds:

10



AN -uu -u) +-O - O-,o--) = (u) + 9(-).
2 0 -0 - 2 ==0

Proof. It follows from the energy principle that

(uO,_) = v Q(v), v E U,

and from the complementary energy principle that

-C To) = 0, T E R (T,C,(v)) = Q(v), V v E U.

Therefore in particular, A(uIU) = Q(u) and B() - R(aO,aO), and hence

WM -u_, 20-U) + =Z-Z EOO) iu )-54m])+pO

1 1

? = Yu u) + PAI u) + L., a-)]

SI fu+ V(C-)]+'~ u +-4(-a)

(go YO uzo - zo I

3.2. The Reissner-Mindlin model.

In the Reissner-Mindlin model geometrically admissible displacements

(w,_) span the space H 1c()xV, where either
0

(3.5a) V [H(w)]2

or

(3.5b) V:=( H1 2  t1 1 + t282 = 0 on 8a}

corresponding to soft and hard boundary conditions, respectively. We let X

stand for the space of momentum and curvature tensors:

X = {m = (m )2 m eL(W) m m
,- ij=l' ,j 2 ' 12 21

11



and supply X with the natural inner product

2

(r')x = (m'k ij)-

i,J=1

Further, we introduce the linear mapping T : X-X as defined by

(T)Ij = u tr(k)S ij+ (l-v)kij, k E X.

The inverse of T is given by

(3.6) (T1k) j= - tr(k)SJ
( I)ij 1-L iJ 11 - I-,

and obviously T and T-1  are self-adjoint.

We introduce finally the bilinear forms

2 V,
AR(we;z,9)) = (W(e),TW(p)) +(/h )(e-Vw,V-Vz), w,z e H (W),

and

-1 2 2DR ( _,;k,) = ( ),T-I)X+ (h /K)(T, ), m,k e X; 7,< E [L2(M)]

wher (}=(Ce)) 2

where c(-) = (i ,0 2 and K are as in (2.6).

In the above notation, the Reissner-Mindlin formulation of the plate

bending problem, as stated according to the energy principle, is to find the

pair (wReR) e H 1()xV that minimizes in H0C xV the functional

1

R (w, = 20R(w, 0; w, e) - <f,w>

for a given f e H- (w).

The existence and uniqueness of (wR,tR) is the consequence of the fol-

lowing lemma, which is proved in Appendix B in a bit more general form (see

Lemma B. 2 of Appendix B.)

Lemma 3.3. There is a positive constant c such that

12



_ _),_c(e)) +I>-VwI 2 c(110112 + 11w112  e 4E [H (W)1 2 , W E HCM). 0

Remark 3.1. Regarding the validity of Lemma 3.3 uniformly over a sequence of

domains, see Appendix B. (Such a result is needed in Section 5 below.) 0

The analogy of the variational formulation (3.4) is stated for the

Reissner-Mindlin model as: Find (w,e,m,7) e H1 ()xVxXx[L (w)] 2 suL. Lhat0 2

(3.7a) (mT-1 k)- (W(e),k)X = 0, k E X,

(3.7b) (h 2/K)(C,) -(6-Vw,) = 0, E [L2 ()]
2

(3.7c) (m, (()) + (7, V) = 0, ( e V,

(3.7d) -Civz) = <f,z>, z e H 1c().

The (unique, see Appendix A) solution to this problem is (wR, R'mR, !R)

where mR = Te( R) and 7R = (K/h 2)(eR-WR ) have the physical meaning of

momentum and (vertical) shear stress field, respectively, both being scaled

by a factor D-1.

We note finally that the pair (=mRj R) can be obtained alternatively as

the solution to the following minimization problem (the complementary energy

principle): Find (R,_R) e Rx[L 2()]2 which minimizes in Xx[L 2()]2 the

functional

RC, = 2R( - ; - ,

under the constraints (3.7c) and (3.7d).

Upon combining the two energy principles we obtain In analogy with Lemma

3.2 the following:

Lemma 3.4. For any (w,O) e H 1()xV and for any (m,y) e Xx[L 2 (w)2 satis-
0 2

13



fying (3.7c) and (3.7d) the following identity holds:

?R(wR_w, eR_e; wR_w,$R_e) ?R!I'R?;!_.!_! ;~')+Y "_ _ _R;WWPR 2 R( -,R R R[ = TR(W, ) + 'R(mY). o

3.3. The Kirchhoff model.

Upon introducing the space

W = {z e H2 (w) : z = 0 on 8W,

the plate bending problem according to the Kirchhoff model is formulated as:

Given f e W' (= dual space of W), find wK e W which minimizes in W the

energy functional

5KCw) : -(eVw),Tc(Vw)) -<f,w>,

where T and ("')X are the same as In the Reissner-Mindlin model. The

existence and uniqueness of wX  in the consequence of the coercivity inequal-

Ity

(c,(Vw),Tc(Vw))x >_ CllWll2, w E W,X2

which itself is an easy consequence of Lemma 3.3. Note that w X is uniquely

defined In particular if f E H 1(), and note also that the pair (w K),

where 9K = ZwK' minimizes the Reissner functional gR over the subspace

Z c H1(w)xV defined byZ H0

Z = {(w,O) E WxV : 0 = Vw}.

For the Kirchhoff model, the analogy of the mixed variational formulation

(3.7) is the following: Given f e W', find (w,8,m,7) e WxVx×!xV' (where

V' Is the dual space of V) such that

(3.8a) (m,T-I k) - ((),k)x = 0, k e ,

14



(3.8b) <e-Vw, > = 0, V E V',

(3.8c) (mC(0)) +<7 > = 0, V V,

(3.8d) -<T,vz> <f,z>, z e W.

Lemma 3.5. The variational problem (3.8) is well-posed and the unique solu-

tion is (w,O,m,) = (wK, K,K,_ K ) where K = K' k = TE(8K) and IK is

defined by (3.8c), i.e.,

(3.9) <!KE> = -(mK,c( ))X , e V.

Proof. If (w,O,m,7,) = (wK, KmKrK), equations (3.8a,b,c) hold trivially.

Moreover, since wK minimizes in W, one has (gK,c(Vz)) X

(C(wK),Tc(Vz))X = <f,z> V z E W, so by (3.9), (3.8d) holds as well. The

well-posedness is proved in Appendix A. 0

Remark 3.2. Note that although WK' 8K and mK  obviously do not depend on

the way the space V is defined in (3.5), IK certainly does (see below).

Hence in this (somewhat weak) sense the "soft" and "hard" formulations are

still separate even in the Kirchhoff model. 0

We need below the following specific result related to the case where W

is a convex polygon.

Lemma 3.6. Let wK be defined as above assuming that w is a convex polygon

and that f e H- Iw). Further, let p e H0 (w) and 0 e H (M) be such that

1(3.10a) (Vp,Vg) = (,g), C e H(W),

1(3.10b) (,V) = <f,C>, 9 e He % ).

Then p = wK and = AwK.

15



Proof. From (3.10a,b) it is obvious that 0 = -Ap e H1(w), so it suffices to
0

show that p = wK. First, since 0 e H Iw) and since w is a convex poly-

gon, it follows from (3.10a) that p e H2(w) and p e H 3(), w C w-UA., A.

being the vertices of w; i.e., p e W (cf. [13]). Moreover, since p Ap

= 0 a.e. on do and since aw consists of straight line segments only, it

follows that a2p - a 2p - 0 a.e. on 8w. Therefore and noting also that
at2 an2

8z-
- 0 a.e. on aw if z e W, it follows integrating by parts that

2

(V@,Vz) = -(V'= = -(VCAp),Vz)-(1-) Z8x
r rva°o

= (CCVP),Tc(Vz)) = - 'Ap+ (l-,) a2 ans

= (C(Vp),Te(Vz)), z e W.

Hence by (3.10b), (e(Vp),fc(Vz)) = <f,z>, V z e W, so p minimizes 5K in

W and accordingly, p = wK. 

We can now prove the following result which will be needed in the next

subsection.

Lemma 3.7. Let w be either a convex polygon or a smooth domain, and let

(w,G,"m) = (wK, 6K,!K,_K) E WxVx3(xV' be the solution to (3.8) for a given

f c H-I( ), and with V defined by (3.5b). Then !K = -V(AwK) e [L2 (w)]
2

and CWK,6K,mK,iK) Is a solution to equations (3.7) with h = 0 in (3.7b).

Moreover, if w is a convex polygon then IIIKIIO, = llfll_l,, where

=l sup <f, z>
_lfl- zeH 1 () l,w

and if w is a smooth domain, then _K 0,w : CI~fL 1  where C depends

on W.
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Proof. If 1K e [L2 (w)]2 and f e H- (w), it follows from a simple closure

argument that (3.8) remains valid if W is replaced by V and if on the left

side <.,.> is replaced by (-,.). To prove that -K = -V(AwK), we inte-

grate by parts in (3.9) to obtain

= -[J (AwK)."dxldx2

+ AW + (1-u) K] K-'n ds
law t an 2- -

I a~2W

+ (1-v)---K pt ds, V' e V.

aw

Here the first boundary integral vanishes because vAw+ (1-v) 2w = 0 on aw
an2

is the natural boundary condition associated to the problem of minimizing 9K'

and the second boundary integral vanishes since q-t = 0, W e V, assuming

that V is defined by (3.5b). Hence - = -V(Aw ) On the other hand from
LK - K

(3.10) we have -K e [L2 (w)]2 and because of the well-posedness of (3.8) we

see that indeed !K = -V(Aw:).

Having verified that !-K = -V(AwK) we conclude from Lemma 3.6 that
= 01 Io, = K

_ where 0 e H (w) satisfies (3. lOb), so IAI0 = IIfII-l, a

asserted. Finally, if w is a smooth domain, a standard elliptic regularity

estimate implies that I_41K0,w < Cllwlf3,, :5 C _11fI-i. 0

Remark 3.3. It is essential for our results in the next section that when w

is a convex polygon, IIIVK 110 is bounded by IjfII1, independently of w,

in contrast to the smooth domain where the constant depends on w. 0

3.4. Energy estimates in case of hard support.

Let us define the energy norms
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lu, (ill2  = fi (u_,u)+ (r,a), (u,o)f E Ux

and

2 _ wm)~12IIIw, ,m, 71R =H )xVxlx[L (W)]2

where the bilinear forms are as defined in subsections 3.1 and 3.2. Then by

Lemma 3.2 we have the identity

Il - , 0 111 2 = 111__, ZI=112 _ 2Q(u)

whenever u e U and a e R satisfies the constraint (3.4b). Similarly by

Lemma 3.4

(3.12) 2,,wR-w, W E 2I 2_ ,

where (w,O) e H (TxV and (m,7) E Xx(L (e)]2 satisfies constraints
0 2

(3.7c, d).

Let us first apply (3.12) to estimate the gap between the Reissner "quad-

ruple" (WR,mR,R) and the Kirchhoff "quadruple" (wK, K, mK,}K). By Lemma

3.7, the choice (w,e,m,,) = (wK,6K mK,K) is legitimate in (3.12) under the

assumpasusmptions that w is either a convex polygon or a smooth domain, f E

H- (1) and V is defined by (3.5b), i.e., the case of hard support. Upon

simplifying the right side of (3.12) we obtain in this case the identity

# 2 (h2 /KI~KI2II1wR-wK, - K !R ' !R - W 1 R = o,,

which together with Lemma 3.7 leads to the following

Theorem 3.1. Let w be either a) a convex polygon or b) a smooth domain, let

f H 1 ( and let (w mRP R ) -and (wK,K,K, K) be the solution to

(3.7) and (3.8), respectively, where V is defined by (3.5b). Then one has

18



in case a) the identity

IIIWR _wK, 6-_8K'm II2= C 2 / f 2

R wK' IR-R (/=)1f1 lW

where Ifm_1W is defined as in Lemma 3.7, and in case b) the estimate

HIWR -_WK, R --K' -!R--R - ' IR -_?1K112 =  C(h2 /K) Ifll2

where C depends on w. 0

Remark 3.4. It is easy to verify that

IIWR WK, R- _K' !R _!K' IR- _K 1112 >K -ER'

where ER  and EK  stand for the total energy of the plate in the Kirchhoff

model and Reissner-Mindlin model, respectively, i.e.,

K R wK'- K);(2 K-

S) = - f,wK>

ER = R(W R) = _ R

In particular, if w is a convex polygon, Theorem 3.1 and Lemma 3.6 lead to

the relative estimate

(E K-E R)/E K 5 C(w,f,)h2 /KO

where K0  is the shear correction factor, and

I) f.AwKf dx dx2C(co,f,u) = -61--_ wK d1d2
6(1-vI)

J w f dx 1dx2

For example, if w is the unit square and f(x) 1 1, then C(w,f,v)

3.440428/(-v).

Remark 3.5. In case of soft boundary conditions, constraint (3.7c) is more

19



restrictive and rules out the choice (m,a-) = (!K,IK) in (3.12). It is still

possible to find (eKiK) E Xx[L 2 ( )]
2  which is close to (rKYK) away from

the boundary and satisfies all the required constraings [16]. With such a

construction, it is possible to show that if both f and w are sufficiently

smooth then

IwR - wK, R - K' !R - R - K;='R - C(wfh,

For other estimates of this type see also [I], the references therein and

[20]. 0

We apply next (3.11) to bound the difference between the three-

dimensional solution and the Kirchhoff solution. To this end, we need to

construct a three-dimensional extension (uK,K) e UxR of the Kirchhoff

solution (wK,6_KmK). Following (16] we define uK r U as

12

(3.13) uK = (-X2e , x) , W +-x3€ ],
"KKX,1 3, K2

and K e H as

7K, ij = -ax3mK , i ,j = 1,2,

(3.14) zK,i3 = a 3- 1h i i = 1,2

cKt -x3 1h 2x3 f,

2 1where a = E/(1-u 2 ) and 0 E H0 (w) is so far unspecified. It is easy to

check that zK satisfies (3.4b) so far as U is defined by (3.1b), so (3.21)

applies with the choice (u,o-) = (uK,K) in this case. After a short compu-

tation, the right side of (3.11) can then be expressed as

2 - (1-u (0+_ V K2d 3(1-v) 2 1 2

-- 11.) 1 2 16 I 12
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+ 2 +u(I' )dx2d
5(1-() K WKf 1X 2

+ 1 2 h4 W f2 dx1 dx2
1680(1-u2)

Now if w is a convex polygon, the choice O = --- Aw Is legitimate and
1-V K

leads, recalling also that K 2  w fdx dx2 lfl2 (see Lemma 3.6
K 0 , W = K 1 2 -I

and Lemma 3.7), to the identity

II11K , KIII2 - 2Q(UK)  32-8u+3v 2
-1K 1  -= 160(1-u) Ilfl1 "

On the other hand if w is a smooth domain, we can still find for any 6 > 0

a 0 E H 1() so that
0

(3.15a) f (0 I+-Aw )
2 dx dx2 S C6LV2IAWKIAW2

and

(3.15b) IV01 2 dx dx2 < C- 1 V2 2AWK11 2

Since IAw Ki 1 C(w)lIfIIL 1 W we obtain in this case, choosing 6 =v' -2vh,

the estimate

2 27 _ _

1I K E "2  - 2 Q(UK ) S C( o) - 2 lif 121 2 17h 24  f 0 ,2

= 2 ' , 1680(1-v

We thus conclude the following:

Theorem 3.2. Assume that w is either a) a convex polygon or b) a smooth

domain, let f E L (), let (_0,_O) E UxX be the solution to (3.4) with U

defined by (3.1b), and let (UK,aK ) be defined by (3.13-14) where

(wK, K,mK,K) E WxVxXxV' is the solution to (3.8) with V defined by (3.5b)

and either V = -1-AWK (case a)) or 0 satisfies (3.15a,b) with 6 =

21



V1- h (case b)). Then one has in case a) the identity

1112 2 241f 2fIoUK'SOK1 2 = C1
(U)h 1 ffI 1  W + C2 ()hIf f Of

and in case b) the estimate

jj1 _L E _ 112 -) -,h2 j 1 12 C h4 li 12
< C(w) C3(h -l,W+ 2 O,'

where (jfff_1,W is defined as in Lemma 3.7 and

32-8v+3u2  17 v2
C (v) 160 C() - C (v) = "1 ) 2 1680(1-v2) 3 -

Remark 3.6. In case of soft boundary conditions it Is possible to show that

if w is smooth and f is sufficiently smooth, then

Il~o _UK  -KIII 2 < C(w, f) [1+C 3 (v) h

where !K is close to ZK away from the boundary strip a)x(-h/2,h/2) [111,
=KK

[161. 0

4. The plate paradox.

Let w0 c R2 be the unit circular domain with the center at the origin,

i.e.,

[01 2 2 2
w = {(xlX): r = x2+X 2 < I}.l2 1 2

[ni

Let further w , n = 1,2,..., be the sequence of regular (n+3)-polygons

such that

-In] w[n+l] -[n+1] [01
W(4) C W

and
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[n] [0]
W W as n--w

[0] in]
in the sense that for any x e w there is n(x) > 0 such that x E w

for all n > n(x). Finally let 0[n] = [n]x(-h/2,h/2) and 9[0]

[0]
W01x(-h/2,h/2).

Assume now that the unit load is imposed, i.e., f = p/D = 1 (see Sec-

tion 2). Then for fixed thickness h there exists the unique solutions

in] in] in] in]
% ' (wR 6 ) and wK  , n = 0,1,2,..., coiesponding, respectively,

to the three-dimensional, Reissner-Mindlin and Kirchhoff formulation of the

plate bending problem with either hard or soft simple support. In Section 4.1
we will show that wn] -->w wM01  and give explicit expressions for wK10

wwK K wK geK

and w0] This is the plate paradox in the Kirchhoff model pointed out in

[7], [3]. In Section 4.2 we will show that this paradox occurs also in the

Reissner-Mindlin model and in the three-dimensional formulation in case of

hard simple support. Finally in Section 4.3 we show that the paradox does

not occur in the Reissner-Mindlin and three-dimensional formulations where the

soft simple support is imposed. This was briefly noted in [3].

The results clearly show that seemingly minor changes in the boundary

in]conditions can lead to a significant change of the solution on Qn], respect-
in]

ively w , when n is large. In fact, we will see that there can be sig-

nificant changes already when n = 1.

The main question we will address below In this section is whether as

n--) co

U in] __ [0] for the three-dimensional formulation

[0](w 0 ) for the Reissner-Mindlin modelR '-R R '-R

and
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[n]--- w0] for the Kirchhoff model.wk  k

4.1. The plate paradox for the Kirchhoff model.
[ni [n]

We have shown in Lemma 3.6 that for n = 1,2,..., w = p and

-AwIn] = [n] where p and satisfy (3.10a,b).
k

e M] M] 1 [01
Theorem 4.1. Let p oE H be such that

(4.1a) (plv) = (0 ,), 1 H [0]

(4.1b) (CO ,V) = <f, >, e H (W

with f = 1. Then as n--->

I10[n] t[o]11 --o 0

En] [ [0]

1 [n ] - b o11H1 P- o0 0.

In] In) br n] [0]Here we understand n and V extend by zero from w to [

Proof. Let P denote the orthogonal projection of H(Wt 0 1 ) onto then 0
1 n [0])subspace H0' (w defined by

Hw : u = 0 on [0] In]
0

In] In] En]
and let [ and p denote the extension of i[n and p , respect-

ively, by zero onto w 01 . Then In] = p by (4.1b). From Theorem C.A

i(n]_ Em] 1 [0]
it then follows immediately that [ [ in H (w[]. From (4.1a) we

[n] p[ [i H1  [0]then see that p - p --)0 In C6w ) and therefore repeating theEn] m]1, [0]

same argument that p [n]_-p[ ] In H (W ).

Let us now characterize p[O] [0] and p ] more explicitly.= wK  = K  mp xl ty

To this end, note first that p[O] is the solution to the problem
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(4.2a) AAp [W ] = 1 on w[0

(4.2b) p = Ap[  = 0 on aw[o]

[0]
where D is given by (2.5). On the other hand, it is easy to see that p

is the solution of the problem

(4.3a) AAp 0 ] = 1 on w0]

(4.3b) p[O = 0 on aw[0 ]

roi 82p[L0]
(4.3c) PAp [0 + (l-) n2  =.

Here, (4.3c) is the standard boundary condition for the simply supported

circular plate [see e.g. [24], p. 554]. (4.2) and (4.3) show that

[W] [01 [w] r2  _[=1 4
= C1 +C2 r +C3 r

L[O]= [1[O +2 O]r 2 +Cc3[O r4 '

p 2 3

where r2 = x2 + x2

C3[M=] [0] 1
3 C3 64

and CVC2 are determined from the boundary conditions. By simple computa-

tion we get

(4.4a) 100](00),= )10 1 5+V(4.4a) P[O]o') ]W 14 1+i'

0){wK (0,0)

(4.4b) p (](,O) = (w] -
wK ('0= 6_4'

and hence for P = .3 we have

[0]wK
= 1.36,

wK (0,0)
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[0] nd [

i.e., the gap between wK and wK is 36% at the origin. Analogously

for u = .3

(01 [wI,
11w -wM]1K WK [0, 0]

w II 0 .287.
KiOwK [01O,to

Remark 4.1. We have assumed that w In] were regular polygons. As the proof

shows, (4.5b) holds also when {w n]} is an arbitrary sequence of convex

polygons such that w -n]__->w 11 in the sense described above.

It is essential, however, that w In] are convex polygons. If we replace

Inn] ^In] ^ In]w by [n where Wn are nonconvex polygons shown in Figure 4.1, then it

was shown in [15] that w] satisfies

' = nt[0]
aw [ 1 in [1o

W = 0 in
8n

and hence

(4.c) w (0,0) 0 .' 64'

0

I- n -POLYGON

Figure 4.1.

[n]A nonconvex polygon w
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4.2. The plate paradox for the three-dimensional and Reissner-Mindlin models.

We will analyze in detail the case of Reissner-Mindlin model only. The

case of the three-dimensional formulation can be dealt with analogously.

[n] b h
Theorem 4.2. Let h be fixed and sufficiently small, and let wR be the

[n]

Reissner-Mindlin solution on w corresponding to unit load f 1 on

n] and hard simple support on 8at
n  n = 0,1,2,... Then if mn] is

101extended by zero onto w0, one has

( n] ( 1 [0 1 2

R R 01

for all n 2 no, n0  large enough.

Proof. By Theorem 3.1 we have

n n  n] In] ( n] -- n]- n] (n] n] 2 < h2 /KIlfl{2

IwR wK ' 2R -K ' . -4 ' !R !K 111R /eI nI11 '

[01 ( 0] [0]_ -0 ] t1 0 ], ] -K0]0 2 < Ch2 / K jl f {{2

IWR WK ' -K ' T-R !K 'IR !K 11R 11

Note that {IfIl En] < C0  independently of n. Using Lemma 3.3, and Theorem
-1,w

B.3 we see that

[ n] [n] 2 [n] [n] 2 ] Ch2

w ~ ~ 1"R w.K 111 mnl1% 2 , n

IwRn-wK nlll1,[ -01, 11%(0 [12 1 5 Ch 2

where C is independent of n and h. On the other hand, we have by Theorem

4.1
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IIwn- IK [0]-40 as n--wO

and

[10 [01IIwK wK II >

This shows that for sufficiently small h there is a > 0 such that

IW 0  1  ] 1[n] > a > 0 for all n > n.w - wR I n] -'

Realizing that (in our case for f = 1)

E = in] E dxR -J ~ 1 R l129 [0] R w 0  
1  2'

En] = [wn]dxEd = [ 0 ] dxx

xj2K 12' RxJK 1 2'

we also have

"[0] [n]
0)wR n )dxldx2l a ( > 0 as n > no 0

Using Theorem 3.2 and analogous arguments we get

Theorem 4.3. Let h be fixed and sufficiently small and let n]=

(uIn] in] in]) be the three-dimensional solution of the plate bending01 'u02 'u03
problem on 0 [n] corresponding to the load p = D and hard simple support,

0,1,2,... Then If u nis extended by zero onto on[0]n ,12.. hni 03 is, one has

iuon ] _uI[0 1 - a > 003 03 ~1,0 0

I)[0 (ux[n 1 , h/2)+ u001 , x2 , h/2))dxldx2 1 _> a > 0

for all n 2_ no, n0  sufficiently large. 0

Theorems 4.2 and 4.3 show that the hnri q1mple support leads not only to
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the paradox in the Kirchhoff model but also in the three-dimensional formula-

tion and the Reissner-Mindlin model. (In Section 4.3 we will show that the

paradox occurs neither in the three-dimensional formulation nor Reissner-

Mindlin model when the simple soft support is imposed.)

The proof employed the fact that the Kirchhoff model approximates very

well the Reissner-Mindlin and three-dimensional formulations for the hard

support. This shows that the circular plate and polygonal plate solutions are

far apart in the entire region and not only in the area close to the boundary,

where boundary layer effects occur.

The above results show that plausibly unimportant changes in the boundary

conditions could lead to significant changes in the solution through the

entire region even if the three-dimensional linear elasticity model is used.

We expect that the paradox will occur also in nonlinear formulations. For

engineering implications of effects of this type we refer to [6].

4.3. The "nonparadox" in case of soft simple support.

We will prove in this section that in contrast to the hard simple support

the solution on w [n ] converges to the solution on w for both the

Reissner-Mindlin and the three-dimensional plate model. This is in obvious

contrast to the hard simple support. We will elaborate in detail on the case

of the Reissner-Mindlin model. The analysis of the three-dimensional model is

analogous.

Let us denote

[n+1]_ [n]
n W n ,2"...

D0 =W[M

)0 [01 [n]w -w , n=12..
n

see Figure 4.2.
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Figure 4 2.

The configuration of the domains 7) 1 2)1 Y

10] 3Let L =(L 2 (w ) , u =(w.6) e L and

YO e L w eH 1 w [1), 0_ (H 1(w 0 ))2
0

= u 1L w flOJ . e ((01 )2 )

= (u fuE L : H kw w, = E CH DO, e),9E( (H ) ,m w nnO,n 0 n

1 0)1 [] 0

fu {e L w e H6(wo ) w = 0 onn, m 0n

e E (H (w~m)2 9 (H (V )) j =m,m+1,..I

We have Y' c Y Y 0c 5 and

2n, m yn9 n, m C 1m

All the spaces are embedded In 9Y Further, let
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2 =fu 4 L : w E H1(W[nI] e [(H1(W[n])2
n

1 In]
n {u ez weH (c )I

and

0 2)

i=O
2).

where A is given in Section 3.2 for the region w and 4 has the same
i%~ E% n]

form but is integrated only over )i . Analogously we define "" etc.

We finally supply ?T with the norm

2
I l = Ri

1=0

To see that 1"11 is Indeed a norm, assume that u = (w,e) e 51 and 111U = 0.

Then since the first term in the expression for AR is the same as in the

case of plane elasticity (where 91,92 play the role of the displacements) we

have on 2)J, 61 = a +cjx 2 f 82 = b -c x1 and because 1e_-VwIoD J =0

we get c =0 . Hence w = dj +ajx + bjx 2 on ) and so because

w E H1 (W[01 )we get w =0 and a. = b = 0, J =0,1,2... (see also
0 J J

Appendix B). Hence u = 0 and accordingly, l[.[{ is a norm on Y V
En]

For u c Zn let 11uli2  rn] = 4< In (u,u). Then by Theorem B.1
R, w

(4.5a) lnf 1i10 - (a+cx 2 ), 2 - (b-CXl) I an) -5 C n lUll In]
abc 1,W R,w

(4.5b) Inf Iw-(d+ax1 +bx2+cx X2I )11 n] - Clnll In
abcd l, R, cw

In]
Here C depends in general on En

Assume now that for an n0 > 0
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(4.6a) 
f has compact support in

(4.6b)

I ]fdxldx2= fxldxldx2  I fx2dxldx2 I  fx1x2dxldx2 0

and that n > no, m > no. Then for u e 9 n, n >- no,

11 0fwdx dx2l = 1I fwdXdX2 <  C noU

and hence for n,m > no, there exist unique u(n) e Yn U(9n) E-- n n- n n

11(2n,m ) e n, m' U(n) e m such that

t0 _MY)Y)fd~tR(u(),V) fzdxdx, V v e (z,V) e .

W(0]J o]

and analogously for u(5 ), u(2n ), u( ). Obviuosly ( O ) = R0 and
n n,m n M

_ 
In ]  and u(2 m n) on wIn] and is zero on DO.

n -R -n,m - n n

Using Theorem C. 1 we get

4.7a)o] ) + P(O

MR 0 n  n

(4.7b) ll(yo)I1 2  = u(n)112 + 11 _(YO, Y )[2

(4.7c) IIP(YO, n)1l-- O as n--4a

(4.8a) u(n) = 0O )  + P n 0)

(4.8b) JIM(I n ) 1I 2= JIu(yO ) 1I2 + 11P(5 n ' Yo) I2

(4.8c) llp( nY. ) 1 )---O as n--+
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(4.9a) U(2n,m u( n ) 
+  (n,m' Yn

(4.9b) 11UC n,m ) 112 -u n ) 112 + llPC n,mYn ) 12

'4.9c) IIp(2n mY n )I-- 0 as m-- -.

(4.1Oa) u(5 m) = U1 n,m ) 
+ -P (  12 n,m )

(4.1Ob) uU( m)1 2 = U(In,Im) 112 + 11P(5m, 2n, m) 2

(4.lOc) 11_ (9'm 2n, m)11---0 as n---.

Let now c > 0 and n > max(n(c),n ). Then we have

2<

llCp~ yn )112 < c

llp(g"n , y,° ) 112 < c.

Using (4.7) - (4.10) we get

II -( yo ) i
2  + IIp( 5r., 0 ) 112 = l-( m) 112 = 1u(2 n, m) II2 + llP--p m'( n, m)112

1 u(in)ll + l1P(2n, m' "n ) 112 +  11P(5rn' "n-n )  2

= l1('n) -IP(YOP n ) 11 2 + li- (2n, mn 'n 1 2

+ I(5I 2 2

S m n, m

and hence for n,m - max(n(c),n O0

p(5 m, yo)l2 + {1P(,,O-Yn)l12 = 11P(,rn,m '5n)l 12 + llp(5',.fn,m)l12 < 2c

which yields

-102 n,n )l{2 5 2c.

Therefore
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u(!O ) -U(2n, n ) = u(YO)- +u+u(n ) -u(2n ) = P(LO'pn ) -P(yn, ,0)
0 n- 0 n n n, n - n - n' n

and hence

1 1/2 +  /<Ce/ 2 .

[n] [nI 0O
Because as we said above u(2 ) = u on w and = 0 on 0

n, n n
[n] [01g ---u in the space 'I or in any 9Jm for m fixed.

Remark 4.2. Note that until now we did not use Theorem B.3, we used only

Theorem B.1. o

So far we have assumed that f satisfies the conditions 4.6. Let us now

study the general case. Assume that f e L 2(WO0 ).

Let us first note that if u = (w,e) e 2 then w E H1 (W ) and
n,n' 0

(4. 11) 1lwll [nl =  I Iw n [ -  Cllull

1, 1,co

with C independent of n because of Theorem B.3.

For 0 < A < 1/2 we denote

RA = {(xlX2) x 2+x2 > I - A

2 2

8R& = {(x lx ) x 2 +x2 = I-A) .
A '2 1 2

Then

IIWioRA -< CAjjwjj ,01 <  CANluNI,

1W110, ,.A :S CA 1/2 [o1 1 C 1/2 1U11

Let now

0 on RA

on W -RA

and
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g, = (a+bx 1+cx 2+dx x2)OA '

where 0A  is the Dirac function concentrated on aRA  and a,b,c,d are such

that fA + g A  satisfies (4.6).

For n > nlA such that KA c w , let UA(n,n ) and U A(YO) be

the solutions when instead f the function fA is used. Then we get

)( HI CA 1/ 2

{!A (Yn, n) - q("n, n

II!!A (YO) - <(YO) 1 CA 1/2

where C is independent of n and A but in general depends on f. Hence

we can select A so that CA I/ 2 < c. Further we have shown

11"AC"'n, n ) - a~~l<

for all n a n 1 ) and therefore

1 1(2n, n  - !(Y0)1! < Cc

[0] [ ~ n n] w e
for all n 2 n (c). Since u(Y0 ) = 0 and uC* ) nu , we get0 -:-R -n,n -!R

[0u] .[n]
0R - n II-->O as n-*o.

Here uIn] = (wIn] n Is understood to be extended by zero on and
MR 'R ':-R n

{.lI is the norm in I (note that w n]e H 1 ( 0 ) but R I ( [0)
1 R 0-R

although nc (w [n Because the functions in H1(W [0 ] ) with compact
1[n])w suc ith cmpc

1 0 -[n] 1 [n]support are dense in H (w), there is w e H0 (W such that

[0] -[n] -[n] [n [n] we11w [ w 11_ : c for all n 2 n2(W. Hence with u = (W R )) we

get

-[In] [0]
II n - R II--.)0 as n---oo.

Hence using Theorem B.2
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in] [0] 2 [n] [0] 2 0 as n--- .
]WR -WR HI (in] li[n]

Summarizing we have proven

Theorem 4.4. Let f e L(w ) and let u n ] = (w ' R n respectivelyL2 "RWR ' R )' rsetvl
[0u0 [0 in]
] = (wR  e 0]) be the Reissner-Mindlin solution on w , respectively

(0]
W , for the soft simple support and fixed h. Then

In] -01 1 -n] [01 -- 0 as n--. 0lR  - R  ]HI1(Win] )+[£ -' % 1H1(Win] )

We see that in contrast to the hard support there is no plate paradox

when the soft support is imposed. Hence the ,cft simple support is physically

more natural than the hard simple support.

Remark 4.3. In Theorem 4.2 we assumed that f e L 2[ O) while the solutions

u01 in] -1 (0]
and % were defined for any t e H ( O ), respectively

f e H 1 (W[n]) If f has compact support then Theorem 4.4 holds also for

f c H_ 1 ( ). We can weaken the assumptions on f in Theorem 4.4, e.g., so

that f e Hm(w[O0), a > -1/2, but the proof will not hold for f E H- (W[O ).

0
[ni]

Remark 4.4. We have assumed that win] is the sequence of regular polygons.

This assumption was used only when using Theorem B.3. Hence Theorem 4.4 holds

for any regular family of domains (see Appendix B). If f satisfies (4.6)

then there is no need for the regularity (see Remark 4.2) of the family of

domains under consideration and Theorem 4.4 holds in the full generality. 0

Remark 4.5. We have assumed in Theorem 4.5 that h > 0 is fixed (i.e., inde-

pendent of n). We could also consider a two-parameter family of problems

where both n and h vary. Then, for n fixed and h--O, uIn] in]
we bK

(and hence for h---)O the difference between soft and hard support disap-
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pears). Hence combining the results of this section with Section 4.2, we see

that

(n) Cn)lim lim n) lim lim 1n ) 3

n~w h4O h4O n~w

In the quite analogous way as we have proved Theorem 4.4 we can prove

[0] [n]Theorem 4.5. Let h be fixed and u respectively u , be the solu-

t0] [n]tion of the three-dimensional plate problem on Q20, respectively Qn

with simple soft support. Assume that the load p e L (w[O ). Then

[_01 [n] 0

as n--4. 

Remark 4.6. Remarks 4.3- 4.5 are valid also for the three-dimensional plate

model. 0

4.5. Some additional considerations.

As we have seen the Kirchhoff model (biharmonic equation) leads to para-

doxical behavior for the hard simple support. The same mathematical formula-

tion describes also other problems and hence leads to the same paradoxical

behavior.

As an example, we mention the problem of reinforced tube shown in Figure

4.3a,b. The reinforcement is attached by an unextendable tape to the exterior

surface. Here we have the paradox consisting of the fact that the stress

caused by hydrostatic pressure is different for the polygonal and circular

outer surfaces.
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Figure 4.3.

Reinforced polygonal and circular tubes.

Analogous examples can very likely be found In other fields than elasti-

city where the problem reduces to the biharmonic (or polyharmonic) equation.

We have shown the paradoxical behavior for n-->o and h relatively

large compared with i/n (see Remark 4.5). Hence the question arises how

large will be the difference between the hard and soft support in three-

dimensional formulation for n fixed and h-40. To this end we consider a

square plate with side length = 1. In Table 4.1 we give the values of

E E -E M 1 1/2
i ESOF7 I  ] (h)

and

E HAR.iS.Et1/7=_C)

Here by ESOFT and EHARD we denoted the (3-dim) plate energy for the soft

and hard support and by EK the plate energy of the Kirchhoff model for

Poisson ratio v = 0 (see also [7]).
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Table 4. 1.

h h=0. 1 h=O0.O01

11 34.68 11.69

20.21 2.03
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Appendix A. Well-posedness of variational problems (3.4), (3.7), and (3.8).

We make use of the following basic theorem, see [18].

Theorem A.1. Let H be a Hilbert space and S be a bilinear form on HxH

which satisfies

(A.O) S(u,v) = B(v,u), u,v e H,

(A.1) I2(u,v)I : COU HI1vIIH* u,v e H,

(A.2) sup S(uv) cIlu{IH V u e H,
vEH

IIVIH=1

where C and c are positive constants. Then if F is any bounded linear

functional on H, there is a unique u e H satisfying

(A.3) B(u,v) = F(v), v e H. 3

In applying Theorem A.i to problems (3.4), (3.7), and (3.8), we choose

the following notation:

a) Three-dimensional model (Eqs. (3.4)).

H = Ux,

(, = o T)R- (C(U),T)- Ca, (v)) ,

F(vr) = -Q(v).

b) Reissner-Mindlin model (Eqs. (3.7)).

12
H = H 0 C)xVxJ(x[L2(Ml

•B(w,e,m,7;z,,k,C) = (m,T-Ik) ( (O),k)x

- (c(P), M)R (-Vw, )- (q-Vz,y) + (h 2 /0(7,),
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F(z,_,k,_) = -<f,z>.

c) Kirchhoff model (Eqs. (3.8)).

H = WxVx(xV',

2Rw_,m.;z,(p k,_) = (mT-Ik)- ((0),k)X

- (C ((P) , M) - <O-Vw, _>-<(_-vz, "X>,

F(z,_,k,_) = -<f,z>.

Then in each case, S is symmetric, F is a bounded linear functional

on H, and the variational problem takes the general form (A.3). Thus it

suffices to show that (A.i) and (A.2) hold.

Theorcm A.2. Assume that & is a bounded Lipschitz domain and that the para-

meters v,h, and K satisfy

0 S P < 1/2, R <5 h S R-1, K < _ <5 --1

where h > 0 and K_ > 0 are given. Then in each of the above three cases

there are the constants C = C(h,K-) and c = c(o,h,K) such that (A.1) and

(A.2) hold.

Proof. In view of (3.2) and (3.6) the mappings S -1 X- R and T - I : X---)

are uniformly bounded in the assumed range of u. It then follows easily that

the assertion concerning (A.I) holds, so let us concentrate on showing that

(A.2) is true.

a) The three-dimensional model.

Let (u,o L ) e UxR be given and let

( o)ij = ltr(o.)i i,j = 1,2,3.0iJ 3 =ij'

2 2 1 2
Then 11 = ll=-!01I2+111t r (() 11,2 and it follows from (3.2) that
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CA. 4)
1oS o); D 2 +2 h3  2

_ s= 0(C1+V)ll_- ollR (l-2v) I!01} > 11 _-E 0  11 , (0 S v 5 1/2).

We make use the following lemma which is related to the well-posedness of the

Stokes problem. For the proof, cf. (121.

Lemma A.1. There exists Y0 e U and a constant C depending on w and

such that the following inequalities hold:

1lxolli, < C111 tr(o=)11o 0n

(div yo, tr((r)) a_ 1tr((r)JOP,2 0

With Y0 as in Lemma A.1 we now set (v,T) = (-u-8,Y'O-62 c(u)) where

a is a constant to be specified shortly. Then applying (A.4), the inequality

Ct2 2('1,2) Re (s/2)IIT 1IIR+ (l/
2 s)llr 2 3t, (s > 0), and Lemma 3.1, we have that

2(u,oG;v,'r) = (rS1r+ (tr(oi),dlv v0

o-o

+a (o-O, (Y)) +a 2 1 (U112 a2 (rS-l1C~)

12 l2 321 26 21 2'

-> min 3_h 8-c -a -a-3C4 a 2ci a1 + II0II ).

Thus, choosing a to be a sufficiently small positive number, we have found

(v,t) e UxR such that 1v,r11H < CIIu_,0IH and B(u,or;v,) clIu,o-j 2  where C

and c depend only on wa and h. Hence, (A.2) Is true in case a) with c

depending on w and h.

b) The Reissner-Mindlin model.

1 2Given (w,6,m,_) e Hl(w)xVxXx(L2(w]]
2
, let (z,(,k,) =
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(-w,-_,m-8c(e),--6C(-Vw)) where 8 is a constant to be specified. Then

-1 2
rcting that by (3.6), (iT i) _ Ilmll./(l+u), and recalling Lemma 3.3, we

have

__ = C TiM) + (h 2 /K)II_ 2

+ 5 l () 12 _ -~,_1 CO)+30-W 2x ,co) -8 - x ,0- W

- 5(h 2/I)(_,_-Vw)

(i~.L;21 _ 1 2 1 2

+ (h2/K)(1-C 2 3h2/ )II/IIJ 2,

1 2 , 2

a min{ 1- -C ,c1, h 2/KC1-C h 2h/K)}x
+V 1 1 2

X×lw, 0, M, _I1.

Thus if 8 is small enough we have found (z,_,k, ) e H such that

llz,fkIl H .. Clw,6,m,_llH and S(w,e,m,,;z,W,k, ) 1- cllwemll 2 where the

constants depend only on w,h and K. These prove the assertion in case b).

c) The Kirchhoff model.

Given (w,_,m,3_) e H, let (z,(,k,C) = (-w,-6-om-(),'-_), where

0 e V and <0 e V' are defined so as to satisfy

II0oI11,W = llTllv'-; <T,'eo> = 11 2ll~'

IIC IIV ,  = le-Vwlll,; <o-Vw,C> = E_-VwII2 ,

which obviously Is possible. As in case b), one then finds that for a suffi-

ciently small 6, flz,4p9tSiiH Caw,_,myl H  and B(w,_,m,)-;z, ,k,4 ) >_

cllw,_,rn_)lIH where C and c depend only on w, and so the assertion

follows in case c). 0
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Appendix B. The Korn inequality.

Let w , a bounded Lipschitz domaln and dafine tne sem:.,orm

2 1/2

l (1 = j] Icj(e)1 2dxdx2 , 6_e (HE(w))

where c (6) = -ax-+-I and let
ii- 218xi axil
2= 2 2 1_1H2

UJR, 0 2 lIE( )+I_-VWl1o, , u = (w,e), w H (w), _ E (H 1w))2 .

Theorem B.1. There is a constant C depending only on w such that for any

e c: [H lI(w)] 
2

(B.1) Inf{lll -a-bx 112 +1le-c+bxlll} < 2CIE(
abc 1 21,w 2 11 ECw)

(B.2) inf 11w- (a+bx1+cx2+dxlx 2 )I H1 < CUIR,.
abcd H (w)

Proof. Inequality (B.1) follows immediately from the Korn inequality for

plane elasticity, see [19]. Inequality (B.2) follows from (B.1). o

Lemma B.2. There exists a constant C depending on w such that for any

(w,e) e [H 1(w)]
3

11wll 2, +111 2ll , <5 N l!1.l 2  + w 2 d s).

Proof. We apply the standard contradiction argument. If the assertion is not

true, there is a sequence {Wn,8n} such that

11 wn , enl 1, w =  1

and
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IIlIEw) -40,

li- -Vw 11 -- O, F w2 ds--)0-n =n 0, j e
8w

as n--->w. Then by Theorem B.1, {0} contains a subsequence (which we

denote once more by {0 n1) such that -n --)(a-bx 2 ,c+bx1 ) in H1(w). Further,

since li8n - VW n Ow --+O there Is another subsequence (once more denoted by

{0_n Wn)) so that Wn--4w in H (w). Hence b = 0 and w = ax1+ cx2 + d.

Because w ds-O we get a = c = d = 0 which contradicts the assumpton

11wnO111l w = 1. 0

We immediately get

Theorem B.2. There exists a constant C depending only on w such that for

any q = (w,) e H 0 Cx[H 1wlI
- 0

(B.3) 11 iw2  +lIii <, C ! 21, w -lw- R,

Let us now consider a family 9 = {w} of Lipschitz bounded domains. The

family will be called regular if there is a (uniform) constant C so that

(B.3) holds for all w e 9.

Let us now consider a special family of domains. Let w[0 ] be a unit

circle and wn] be a sequence of regular n+ 3-polygons such that

-In] -[n+l] -[n+1] [0l

and

[n [0] as n--4co

In the sense that for any x e [0] there Is n(×) > 0 such that x e [n]

for all n > n(x). We let 90 = {w[0 ]' [1 'w[2]'.'..
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Theorem B.3. The family 90 is a regular family of domains and hence there

exists L > u such that

UWll2 in] +  116112 2liwi 1 ,16 n1 Clul
1, - I, W R,w[n]

,1 [n] 1 [n] 2

for any u = (w,6) E (w )x[H (W )] ., n = 0,1,2,...

Proof. For n > n the [n] are star shaped domains and

8(In ] = {(xl,x ) x = Pn ()cos 6,

x2 =Pn(e)sin 0 0 5 0 2},

where p (G)-->1 and p'(@)--*0 uniformly. Let Q be the one-to-one map
n n n

of W In onto [0] defined by

Qn (p()cos 6,p(e)sin 9) = (p(O)cos 6,p(O)sin 0) for p(e) 1/2,

= p(O)-(l/2)+1]cos i ,

p n ()-(1/2

W()_0/2) + sin ) for p(O) > 1/2.

If Q (xlx = (C1,) then we have I1n] E 1 n] ( X
n 1'2 '~'2 1 1 (, 2) ~2 2 =

[n] ) x E]](1 ) and I). E - C3 g a n]
X1 = x1 , a 2 1  ax ., . -*.

8X1  [n]
-- a 1 ,j = 1,2 as n-- w, uniformly with respect to (Xlxx) E W n

IJ' 1 2

[0] 1 En] 1, n] 2
and ( e W[. Let u = (w,e) E H0  )x(ct )) and let

u = (w,6), g(Ci,92 ! = !(X1(91, 2),x2(C1,92

Thn~ 1  [01 1 [0] 2
Then c H0(w )x(H([) 2 ) and by Theorem B.2 we have

- 2 2 - 2S 01 + 110 11 -( C1 R, 0
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and also

i,10 1 11 All [n]~~(1)
Ilell =- tli l a 1 )

l,( 0 1  1,w[n]

luR, [0] = !1__ R, w [n] Q( 1) ll l ( 1 , =[n l ' 1lEi 1 [n]

as n--4 c. Hence

IlW112 [n](1+0(1)) + 11611 2 [nl(l+a(1))

_< Ctlu 2 [n] +"(1 )(11w112 [n] + i ! 1 2  11R, ., wl,W 1 ,( n W

From this we see that for n > n0  the family is a regular one. Using Theorem

B.2 we then see that the whole family 9 0  is regular. D3
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Appendix C. A projection theorem.

Theorem C.I. Let H be a hilbert space, let {H } and {K n be sequencesn n

of closed subspaces of H such that Hn c Hn+I and Kn 2 K n+, n = 1,2..

and let

H0 = Qif and K0 C- Kn "

n n

Further, let Pn and Qn respectively P 0 ,Q0 be orthogonal projections

onto Hn and Kn respectively H0 ,K . Then for any u e H

{{ P n u - Po0U{{1 -- ) O,

nI n U - Q n 0

as n--* w.

Proof. Observe fir'st that Q n+1lU1 = IIQ n+1Q nul _ flQnull, so IIQ UI-q > 0

monotonical ly. Further

2 2 2 2
IQ n u - Qn+jU11 = IIQnU11 2(Q n Qn+jU ) + I{Qn+j = IIQ n U11 - n+jU11

so Q nu} is a Caucby sequence. So Qn u--v and v E Kn for all n. Hence

v E K0 and since (v,w) = lim (Q nu,w) = lim (u,Qn w) = (u,w) for all
n- nno

w E KO , it follows that v = 03u.

Let us now consider the projection operator I- Pn = Q. Then Qn

1 1 1 1
projects H onto H and H 1  H Hence Q U = u--u-v Fn*n w n+l" Hec u -n N n

So Pn u---> v e H0 and by the same argument as before, v = P0 u. 0
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