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Abstract. The paper addresses the question of the optimal selection of the

shape functions for p-type finite elements and discusses the effectivity of

the conjugate gradient and multilevel iteration method for solving the

corresponding linear system.
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1. Introduction.

A natural way to treat the finite element method on a parallel computer

is to associate to every available processor a superelement. The main compu-

tational work is then on the superelement level and can be made completely in

parallel. The global part of the computation which is not well parallelizable

is then a relatively minor part of the entire computation.

The superelement can be for example constructed by the p-version of the

finite element method, by the domain decomposition technique where the super-

element consists of a grid of finer elements, etc.

The complexity of such a superelement approach (based on the p-version)

depending on the computer architecture was studied in [1], [2]. See also [31,

[4].

We can understand the superelement as a linear space S of trial func-

tion spanned by certain basis (shape) functions. The convergence and accuracy

of the finite element method then depend on the approximation properties of S

and is of course independent of the particular choice of the basis of S. On

the other hand, the computational effectivity of the finite element method

depends also for example on the effectivity of an iterative solver, the sensi-

tivity of a direct solver round-off errors, etc., which depends directly on

the choice of the basis functions.

The main mathematical tool of analyzing the performance of the numerical

method is the asymptotic analysis with respect to some parameters, such as

p--*o in the p-version, or h--40 in the h-version. Such an analysis is

effective in practice only if the asymptotic range encompasses the practical

values of these parameters. Unfortunately, this is not always the case. Let

us mention for example the p-version. Here the performance of certain itera-

tive method (see below) can be characterized by a parameter R(p) which is



2
known to grow asymptotically as R(p) - (1gp) However, as in practice one

mostly has p : 10, the asymptot)c analysis neglecting the precise behavior

of R(p) for small p is not sufficient. Although the asymptotic analysis

is still important, practical insight in the performance of a method can be

obtained only together with a proper computational analysis. The aim of this

paper is to make such a computational analysis and to get an insivht into

various aspects related to the choice of basis (shape) for p-type finite ele-

ment functions. We will restrict ourselves here only to the case of a scalar

equation in two dimensions and to a quadrilateral element.

A more general and thorough analyFis will be given in forthcoming papers.
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2. The quadrilateral superelement.

We will discuss the case of a unit-square superelement, which can also be

understood as a master element.

Let us consider the unit square Q (the master element) as shown in

Figure 2.1

A4  r 3  A 3

2 r4

2r

1 i2Figure 2.1. The master element

with the vertices A I and sides r I* Denote by f i I the set of shape func-

tions used In the finite element method. Then these functions are of three

groups associated with the vertices, sides and interior of the element. They

are called

1) nodal shape functions

2) side shape functions

3) internal shape functions.

1) The nodal shape function is associated to a vertex A of the ele-

ment 0. It is zero on the opposite sides of the vertex it is associated to.

2) The side shape function is associated to a side r and is zero on

all three other sides of the element.

3) The internal shape function Is zero on all four sides, i.e., it has a

character of the "bubble" function.

3



In addition to the above mentioned properties of the shape functions we

require typically that the basis is invariant under rotations of the coordi-
0

nates by kx9O , k = 1,2,3. We require, of course, that the span S of the

shape function have good approximation properties, too.

The shape functions are not uniquely determined by the above require-

ments. For example, we can add to any nodal or side shape function an inter-

nal shape function and still preserve all the properties mentioned above.

Usually the set of shape functions is a one parameter set (say with the

parameter t = 1,2...). In the case of the p-version t = p and In the

1
h-version we take t h We can now impose an additional constraint on the

set of shape functions, namely the requirement that the shape function are

hierarchic. By this we mean that if {@ It]} is the basis of S(t) for given

t then {@t+1]} {@ t]}, i.e., the set {f}[t+1] of shape functions can

be obtained by an augmentation of the set {o[t] . The property of hierarch-

icity is desirable if the computation is to be made with many values of the

parameter t, such as in adaptive computations.

4



3. Examples of shape functions.

In this section we will introduce some sets of the shape functions that

we will consider in the next sections.

A. The hierarchic set Q' of the p-version. This set is for example used

in the computer program PROBE.

1) The nodal shape functions. There are the usual bilinear functions:

N (9,n)-nN1C , ) = 1(

1

N3 (9,n) =(l+)(1+n)

N4 ( , ) 71)

2) The side shape functions. There are (p-1) shape functions associ-

ated with every side r , , = 1,2,3,4. These are defined as

N I 1,2...,p-1,

N. [2) 7) 1 -C1+9)(D (T), II ff

N[ 1 (g, ) (l)1 (1+ ),4 I 1,2,...p- ,
1 2

N (41(,l) I 1),

1 2 .. . .

I - 2 ~ -)~~.... .

where

( = (i P 1(t)dt

-1

i

and P (t) is the Legendre polynomial of degree J. The term (-I) is

needed In N and Ni(4] to obtain invariance with respect to the rotation
I I

5



of coordinates.

3) The internal shape functions. For p < 4 there are no internal

shape functions. -For p 4 there are (p-2 )(p- 3 )/2  internal shape func-

tions defined as

N [0](C,) = (1-e2 )(1-i 2)P (E)P ()), 0 < 1+ j P-4.i'j .. . j

For example, if p = 8 there are 47 shape functions consisting of 4 nodal, 28

side and 15 internal shape functions.

The set Q' is the minimal set which includes all polynomials of degree

p and which has the properties listed above. This guarantees the good

approximation properties of the span. Let us mention that this set does not

include all polynomials of degree p in both variables and n separate-

ly. The span is identical with the span of the serendipity elements and is

denoted by Q' as in [5]. The introduced set of the shape functions is
p

obviously heirarchal one with respect to the parameter p = degree. These

shape functions are sufficiently orthogonal in typical applications, so that

their use does not lead to large protleims 'ith rnund-off errors in connection

with direct solvers.

B. The hierarchal set Qp of the p-version. This set includes all polyno-

mials of degree p in each variabie. Hence it differs from the set Q' only
p

by using now (p-1)2  internal shape functions. The set Qp has thus (p+1) 2

2

shape functions in comparison with P -+p + 3 shape functions in the set

Q,.
p

C. The uasiorthoional set 0p of the p-version. Let tI

I 1 1,...,p-1, be polynomials of degree : p, such that 0i(-l) = (1)

0, and

6



+I

-I

+1

f +1 i(t)@j)dg = 0, 1 A J.

-1

This set is uniquely determined as the (finite elerent) eigenfunctlonz of the

eigenvalue problem: Find the pairs (A.",.) V xR, I = 1,....p-i, suchi i p

that

+1 +1

A (D v V

-I -1

where

V = {vjv is a polynomial of degree : p on [-1,11 and v(-1) = v(1) = }.p

The eigenvalues A'. are positive and distinct. Further, let ( i =

1,...,p- 1, be another set of polynomials of degree : p such that @.(-I)

- 1, q.(1) = 0 and
+1

v'd + Ai 1Pvdg = 0 V v E V

-1 I

where A are the eigenvalues mentioned above. The functions are

uniquely determined. To see it we w-Ite

1( I x ( + ( ,

= 1-

Then Vi( ) E V Is the (finite element) solution of the problem

7



(i'v'dC+A Vvd ( (v'+A 1 v)dE, v E V,
-1 1 -1

and since A 0 exists and is uniquely determined. Now we define

1) the nodal shape functions. They are the same as in the set Q'.
P

2) The side shape functions. The side shape functions associated with

F1 are

N-a(, ) = (l(C)pi(n), i = 1,2 . p- 1.

The shape functions associated with the sides r., j = 2,3,4, are defined

analogously. Hence as before we have (p-1) side shape functions associated

with every side r..

3) The internal shape functions, There are (p-i) 2  internal shape

functions as in the system Q . The shape functions associated with FI are

then

N [O](E, q) = 0k( )o (-0, k j = 1,. I p-1k, .

This system 0p has all properties as the system Qp except that the system

0 is not a hierarchal one. On of the hand, it has various useful orthogo-p

nality properties which will be mentioned later.

D. The h-version set H of the shape functions. Here the span S will be

2the set if plecewise bilinear functions on the uniform mesh with h = -. TheP

shape functions are the usual "hat" functions which obviously can be divided

into the groups of the nodal side and internal shape functions.

In addition we will consider the set H+ where the nodal shape functions

of the set H are replaced by those of the set Q'.
p p

E. The triponometric set T of the shape functions. For theoretical

Pa



reasons we will also consider the set of shape functions where only side shape

functions are present and defined by

N ( = cos I-- g sin h n(l-q), i =1,2 p- 1,

for side r and analogously for the other sides. Note that these functions

are harmonic.

9



4. The optimal selection of the shape functions.

Let the set {@i} of the shape functions be given. Then in the finite

element method we construct first the local stiffness matrix A = (a i, a.

B(Oi, ) where B(u,v) Is the bilinear form on which the finite element

method Is based. The global stiffness matrix is constructed by the usual

assembly process. In this paper we will restrict our analysis to the case of

one superelement only. We will assume that the bilinear form is associated to

the Laplace operator, i.e.,

fa@. o a~i ao(4.1z) B(oi$Oa -n~ -4 +jd d d.

The stiffness matrix A is uniquely (up to permutation) defined by the se' of

shape functions. We will always assume that the shape functions are rescaled

(preconditioned) so that a1 ,i = 1 (i.e., all diagonal terms of A are equil

to one). This will sometimes be called trivial preconditioning.

Now we can formulate what we mean by optimal shape function selection

according to various criteria.

A. The criterion of the minimal condition number.

We will say that the shape functions are optimal if the condition number

of the local stiffness matrix (after trivial preconditioning) is minimal among

all choices of the shape functions (with the same span) which preserve the

categories of the nodal, side and Internal shape functions, the invariances

with respect to the rotation defined earlier. We can also impose additional

constraints as the hierarchy of of the shape functions.

The motivation of this notion is to get the most effective conjugate gra-

dient method (see section 6) or to maximize the numerical stability of the

direct solution method. The exact structure of these optimal shape functions

10



is not known.

Realizing that the performance of the conjugate gradient method depends

not only on the condition number (e.g., on the clustering of the eigenvalues)

we have

B. The criterion of the maximal decay number (i.e., reduction of the residuum

by one iteration) in the conjugate gradient method.

Here the obvious goal is to achieve the required accuracy with minimal

number of Iterations.

We can, of course, design other criteria of optimality. In this paper we

will mostly address the criterion A. We approach the optimization problem

formulated above via numerical experiments so as to obtain the information in

the practical range of p, say for 1 p 5 20.

11



5. Computational analysis of the set Q'.

p

We will first analyze the condition number of the (local) stiffness

matrix A when using the bilinear form (4.1). Since the first eigenvalue

A1 = 0 we define the condition number R(A) a and call A max  nd

Amin = A2 the dominant eigenvalues. To get a proper insight we will compute

the condition number of various combinations of the shape functions. The

results are shown in Table 5.1.

Table 5.1.

Condition number R of various portions of

the stiffness matrix of set set Q'.
p

Internals
+

Sides Sides L. -nals Internals
+ + +

p Nodals Internals Sides Nodals Nodals Sides

1 1.50 1.50 1.50

2 5.78 1.36 5.77 1.50 1.36

3 5.78 2.33 5.77 1.50 2.33

4 22.1 1.00 2.70 5.96 1.50 22.1

5 23.9 1.00 2.84 5.96 1.50 23.6

6 62.8 3.09 2.92 5.96 3.09 62.8

7 67.7 4.53 2.95 5.96 4.53 66.7

8 203.0 12.8 2.97 5.96 12.8 203.0

The first column in Table 5.1 depicts the condition number of the whole

3
stiffness matrix. The condition number R(A) grows as p (see Figure 5.1).

Upon comparing the columns of Table 5.1 we see that the dominating factor in

the growth of the condition number is the coupling between the side and

12
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Figure 5.1. The condition number R(A) for the set Q'.

p

internal shape functions. Other coupling such as sides-sides, sides-nodals,

internals-internals, are relatively much weaker except in the low range (1 

p 5 3) where there are no internals. We are then led to the conclusion that

in seeking for an optimal set of shape functions, the first step should be to

reduce this coupling between the side and internal shape functions. Below we

will remove the coupling completely by eliminating (condensation) the Inter-

nals (this can be done in parallel when many superelements are present).

Although this very likely does not lead to an exactly optimal basis, we

conjecture that we can in this way construct shape functions which are close

to the optimal ones (in the sense of criterion A).

The above mentioned elimination can be Interpreted as changing the side

shape function so that they are "harmonic" in the finite element sense. This

removes the coupling between internals and side shape functions but increases

the coupling between side shape functions. Of course, the hierarchy of the

shape functions is lost. Note that the nodal shape functions are bilinear and

13



hence harmonic, so they are orthogonal to the internal shape functions.

We will now address this decoupling in more detail. Given p we will

order the shape functions so that the Internals come first, i.e., we write

where

4g[1] = [,(1] . .1]

are the internal shape functions. The stiffness matrix can be written now in

a block way

A lAl A1
A = [T ~2

A12 A22

Here the block A corresponds to the internals. The decoupling is per-

formed by a transformation into the new basis

[11 [2]

where

-[21 [21 T -1 Ill]
(5 .1 A2 A 1I .

Here M2  is a diagonal (normalizing) matrix to be defined shortly. In this

new set of shape functions the stiffness matrix takes the form

(5.2) ABABT T]
0 2AM

where

(5.3) B =0 0I 12 [A;T 2A- I 2

14



and

- T -1
(5.4) A = -AT A- A

X22 =22 -12 11 12'

By II and 12 we denote the identity blocks. A2 2  is the Schur complement

of A with respect to A We finally define the diagonal matrix

M= [ ]so that [A]ii = 1 for all I, i.e., .e set

(5.5) [M)i 1%-/2_a

i = ii i,j

Since the nodal shape functions are bilinear (and harmonic) there is no

coupling between the nodals and interiors. Therefore the transformation (5.1)

"[2]
changes only the side shape functions. The shape functions are such

that

([21
B( i , = 0

[1 ^[2]

for any V = 1, .. , P are discretely harmonic.

If A-I1 A in (5.4) is computed using the Cholesky decomposition A
11 12 11

LL then we obtain as a by-product new interior basis functions P which

are orthogonal, I.e., with [I] =LT I] we get

I ¢ € ^ It = i,'

and hence the stiffness matrix for these new internals is the unit matrix.

The system of the shape functions 0 = [0[l],@[2]] constructed above will be

denoted by Q' , and the system of shape functions [to ,2] will be
p

denoted by Q'.
p

Remark 5.1.. Note that A22 is the stiffness matrix that remains in the

finite element system where the degrees of freedom for the internal shape

functions are eliminated (condensed out). We will call the element where the

15



interior degrees of freedom are removed a condensed element. Thus in the

condensed element there are no internal shape functions. The side shape func-

tions are "discretely harmonic" with respect to the original internals, and

the condensed matrix is the Schur complement of the original stiffness matrix

with respect to its interior block.

Let us now consider matrix A as defined by (5.2) through (5.5). In

Table 5.2 we give the dominant (i.e., the smallest non-zero and the largest

eigenvalue of A11 and A2 2 = A22M2) as well as the condition number A

for p = 1...,8.

Table 5.2.

- - T
Dominant eigenvalues of A and A22 = M2A22M and Y(A)

for the shape functions of Q'
p

p) i(A Ai(A2 2  A max(A 11) max (A2 2 ) (A)

1 1.0 1.50 1.50

2 0.346 2.00 5.78

3 0.346 2.00 5.78

4 1.0 0.253 1.0 2.20 8.69

5 1.0 0.242 1.0 2.24 9.26

6 0.524 0.190 1.62 2.26 11.9

7 0.402 0.177 1.82 2.26 12.8

8 0.183 0.141 2.35 2.26 16.7

Comparing Tables 5.1 and 5.2 we see that removing the coupling between

the internal and the side shape functions reduces the coIu~ion numbel of the

stiffness matrix quite dramatically. We see that R(A) grows with p much

more slowly than X(A). Note also that since A has no contribution to

R(A) In view of Table 5.2, there is no reason for constructing better (e.g.,

16



orthogonal) internal shape functions [I at least in the range 1 : p : 8.

In this range the condition numbers of the set Q' and Q' are the same
p p

and also the condition number of the condensed element is the same as that of

p

So far we have not addressed the shape functions on the sides ri . To

assess their influence on the condition number let us construct orthogonal

1
normalized shape functions [s and the corresponding stiffness matrix A

namely such that (A]ij = 0 for I * j in the following cases:

a[21 A2]
a) Oi and are both internal shape functions;

b [2] is an internal shape function and [2] is the side shapeI

function;

c) i2 and 121 are both side shape functions corresponding to the
1

one side.

These shape functions are obviously decoupled in a maximaly orthogonal

way under the constraint imposed in section 2, namely preserving the groups of

nodal ride and internal shape functions.

We can construct the shape functions as follows. Let ; be the shape

functions already constructed. Let A0  be the matrix (of the same size as

the matrix A) such that

1) [A0]11 = 1 for all i;

2) (AO1ij = (A]ij for I * j in any of the cases a,b,c mentioned

above;

3) [A0 ij = 0 otherwise.

T
Let further A = CC be the Cholesky decomposition of A Then we

define the new shape functions

17



=c-T-.

The corresponding stiffness matrix is then

-1^ -T5.6) A c =C AC

These shape functions @ satisfy all desired properties as well as the

stiffness matrix A (with [A]. i = 1). This set i of shape functions will

be denoted by Q

Remark 5.2. For symmetry reasons it is obviously sufficient to compute the

new shape functions associated to only one side, say rI, and then to use

simple transformations to get the side shape funtions on the other sides.

Remark 5.3. The above method of constructing maximally orthogonal functions

is universal in the sense that it obviously apply to any set of shape func-

tions. For example, we can construct in a similar way the sets Qp, Hp and

H . We can construct the shape functions. There are many other ways ofp

constructing maximally orthogonal systems of shape functions. For example,

the set 0 mentioned above is such as is easily checked.
p

Remark 5.4. The shape functions @ and ' are obviously not hierarchic.

For computational reasons it may be desirable to keep the new stiffness matrix

in the product form (5.2), (5.6), so that the non-hierarchic part (matrices B

and C- ) is separated from the hierarchic part (matrix A). In the many-

'-eent case (such as on grid of quadrilaterals), it is sufficient to compute

B and C-  on a reference element only. This sacrifices in general the

orthogonality but essentially preserves the good conditioning if the elements

are not too much distorted.

In Table 5.3 below we give the dominant eigenvalues and the condition

number R(A) for p = 1,... 8.

18



Table 5.3.

Dominant elgenvalues and condition number

0*

for the shape functions of Q'
p

p A min(A) A max(A) I (A

1 1.0 1.50 1.50

2 0.346 2.00 5.78

3 0.346 2.00 5.78

4 0.253 2.20 8.69

5 0.244 2.24 9.19

6 0.200 2.26 11.3

7 0.187 2.27 12.1

8 0.157 2.28 14.5

Comparing Tables 5.2 and 5.3 we see that the orthogonalization of the

side shape functions (i.e., the maximal orthogonalization) does reduce the

condition number but the effect is not large in the range 1 5 p 5 8, (at

most 13%).

19



6. Comparison of various sets of shape functions.

We will compare in this section the condition numbers of the stiffness

matrices for the sets of shape functions which were introduced in the previous

sections. Based on the analysis we made in section 5 for the system Q' we
p

restrict ourselves only to the case of condensed elements (see Remark 5.1).

As we have seen, this restriction is equivalent to the case where the sets

-0 * -0
Qp, I , Hp, etc., instead of H, Qp, H etc., are used. The shape func-
p p p p p

tion of the set T are harmonic functions. Hence we consider them as con-
p

densed shape functions (i.e., T = T ).P P

In Table 6.1 we present condition numbers of the condensed stiffness

matrices for various sets of shape functions for p = 4n+ 1, n = 1,....5 (as

before, the shape functions are normali'ed so that the stiffness matrix has

ones on the diagonal).

Table 6.1.

Condition number of the stiffness matrix for p = 4n+1, n = 1,....5

for various sets of shape functions.

1 2 3 4 5 6 7

p Q Q' Q 0 H H+0 T
- p p p p p p p

5 9.3 9.2 15.5 14.2 5.4 14.7 11.4

9 16.3 14.8 28.0 22.4 10.2 20.2 15.8

13 23.4 19.5 39.8 28.5 14.9 45.2 18.7

17 30.7 23.8 51.3 33.5 19.7 62.3 20.9

21 37.8 27.4 62.5 37.8 24.4 80.4 22.7

We see that the condition number of the condensed stiffness matrix grows

relatively slowly with p in all cases except for H+. It can be theoreti-

0
cally shown that in the cases 0 p, Q; and Tp the growth is asymptotically
at worst of order O((log p)2) I.e., there Is a constant independent of p

20



such that

(6.1) R(p) -C[(log p) 2].

We refer to [61, [71 for relevant cesults. Figure 6.1 shows the condition

2
number Y(p) In the lx(log p) scale (in the range 5 S p _< 21) for all

considered ases. For example, in the case of the set 0 p, R(p) can be

expressed rather accurately by

(6.la) R(p) z 5.6+3.5(log p)
2

in the range 9 < p 5 21, or by

(6.ib) Y(p) = 2.3+2.6 log p+3.O(log p) 2

in the whole range S S p S 21.

In the cazes Q' Q , H the growth of the condition number is
p p p

expected to be larger due to the nonorthogonality of the side shpae functions.

-+ 
0

This nonorthogonality is largest in the case H . Here one car, show that the
P

growth role is asymptotically at least i(p) - p and at worst Y(p) ~

2
p(log p)2. The impact of these nonorthogonalities is clearly visible in

Figure 6.1.
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Let us finally point out that in the practical range of p (see Table

6.1 and Figure 6.1) the element of the type Q' seems superior to Q -type
p p

element (with the same value of p) even if the side shape functions of Q

are orthogonalized (i.e., when the set 0 is considered) and those of Q'
p p

are not (i.e., when we use the set Q' ). In the orthogonalized cases the
p

condition numbers of the set Q' are about 30% less than of the set 0
p

It also seems from Figure 6.1 that the growth of R(p) for the set Q' and
p

0 is the same (i.e., R(p) = O(log p) 2) but this has not been proven theo-P

retically yet.

Remark 6.1. It seems that generally the condition number of the condensed

polynomials is better when less internal shape functions are present in the

original set. For example, let us modify the set Qp so that it includes the

internals of the set Qq (this set will be denoted 1 . •p,q).

Table 6.2 shows the condition number of the reduced stiffness matrix

corresponding to two adjacent sides and the node inbetween for p = II and

varying q. We see that the condition number grows monotonically with q.

This indicates that the coupling between the sides becomes stronger as q

grows.

Table 6.2.

Condition number of the set Qll,q reduced to

two adjacent sides and the node in between.

H(q) 3.59 5.82 8.01 10.1 12.2r 14.2 16.2

q 9 10 11 1 12 13 14 I 15

H(q) 18.2 20.2 22.1 t23.0 23.7 23.9 24.1
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The results shown in Table 6.2 are in constrast with the theory behind the

estimate (6.1) which is proven only if q a p, see [7].

Remark 6.2. So far we have assumed in all cases that the nodal shape func-

tions are bilinear. The practical reasoning behind this is that the span of

these shape functions contains the constant function, which makes it possible

to use the nodal block of the stiffness matrix as an effective precondition

for the iterative method in the many-element case. For more see [61, [7].

It is of interest to see how the couplings between the nodal and side

functions affects the conditioning of the condensed stiffness matrix. In

Tables 6.3ab we give some results indicating the strength of this coupling.

In Table 6.3a we show the condition number of the set Q' and of the same

set when the nodals are removed from the original set (this set will be
- *

denoted by Q',)" In Table 6.3b we show the condition number of Q and the

same set when the nodal are condensed out (eliminated). This set will be

denoted by Q 00 "

The columns 5 and 6 in Table 6.1 indicate how the condition number in the

h-version is affected when the nodal shape functions are changed from the

usual "hat" function to the bilinear one.
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Table 6.3a.

The condition number of the sets Q1 and Q'

S %Q'0

2 5.78 1.36

3 5.78 2.33

4 8.69 6.00

5 9.26 6.00

6 11.9 8.32

7 12.8 8.13

8 16.1 11.2

Table 6.3b.

The condition number of the sets Qp and Qp0"

P Qp Qp 0O

2 8.69 6.0

3 8.78 6.0

4 15.5 10.9

5 15.5 10.9

6 22.0 15.3

7 22.0 15.3

8 28.0 19.6

9 28.0 19.6

10 34.0 23.8

11 34.0 23.8

We see that in the practical range of p the coupling between the nodal

and the side shape functions may affect the condition number by a factor 1.5

to 3. The effect is strongest in the case of the h-version.

We underline that in practice when multi-element approach is used, we do

preconditioning by p = 1, i.e., we are condensing out the nodal shape
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functions and hence the second columns in Tables 6.3b essentially governs the

effectivity of the conjugate gradient method.

Let us summarize the main conclusions we have seen so far.

a) The main source of the large condition number of the stiffness matrix

of the p-type element with hierarchic shape functions (sets Q',Qp) is the
p p

strong coupling between the side and internal shape functions. This coupling

can be removed only by introducing a non-hierarchic set of shape functions.

b) The orthogonalization of the side shape functions (for the sets Q'
p

and Qp) improves the condition number, the more the higher the value of p.

In the range 1 : p : 10 the effect of orthogonalization is at most 40%.

c) The nodal functions contribute to the condition number by about 30%.

It is advantageous to remove them in the preconditioning phase.

d) The condition number of the condensed matrix improves in the practi-

cal range of p if there are less internal shape functions. Hence the set

Q' is preferable over the set Q
p p

e) The condensed h-type superelement (set Hh) behaves in a very

similar way as the Q p-element.

f) The condition number of the condensed Q - or H -type element grows

approximately linearly with (log p)2 as p--4w provided that the side shape

functions are orthogonal. In the range 1 : p S 20, deviations from this

theoretical growth are minor for all considered sets.
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7. Iterative methods.

In this section we will consider some aspects of the selection of shape

functions on the performance of two basic iterative methods, the conjugate

gradient method and the multi-level method.

A. The con.|uRate gradient method. We consider the case of only one element

of type Q' or Q with nonorthogonal shape functions. The multi-element
p p

conjugate gradient method is analyzed in (2], [7], where also various aspects

of parallel implementation are addressed. Table 7.1 shows the average conver-

gence role (the decay factor) of 10 iterations using the condensed matrix when

random initial solution was used. More precisely, Table 7.1 reports p 1 0

(energy norm of the error after 10 steps/energy norm of the Initial

1/10
error}

Table 7.1.

The average convergence rate of the

conjugate gradient method for the condensed sets Q and Q

p P10 (Q )  P10 ( Q )

4 .251 .380

5 .328 .400

6 .398 .503

7 .465 .468

8 .419 .577

9 .450 .492

10 .442 .580

11 .470 .525

The non-monotone behavior of p10  and pp(Q ) shown in the Table

is due to random choice of the initial error. We see that the set Q' per-
p

forms better thatn Qp as expected from the previous study of the condition
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number study in the previous section. Note that for p : 3 the conjugate

gradient method converges in less than ten steps in both cases.

In Table 7.2 we compare the average convergence rate after ten iterations

to the theoretical worst-case rate, see [8],

Pn{[rR-jn Viin

-7__ i. )7+ J

where R is the condition number of the stiffness matrix.

Table 7.2.

The actual average convergence rate and the theoretical (worst) rate

after 10 iterations for the condensed set Q' and Q
p p

p 10 ( ) 10 p 10() p pQ~
6 .398 .590 .503 .695

11 .470 .679 .525 .758

We see that the conjugate gradient method converges significantly faster than

it would be in the theoretical worst case. It Is likely related to the clus-

tering of the elgenvalues of the matrix. In Figure 7.1a, respectively 7.1b,

we have depicted the density (histogram) of the elgenvalues of the condensed

element of the set Q respectively the set 0 for p = 21. We see that

the spectrum is sparse at its ends, most of the elgenvalues being clustered

around the point A = 1.0. (For example, 56 of the 83 are non-zero eigen-

elgenvalues of the system 021 are located on the interval [0.9, 1.1].) The

clustering is more pronounced in the case 0 (where the side shape functions

are orthogonalized) in comparison with the case of the set Q . Apparently,

this explains why the actual rate of convergence reported in Tables 7.1 and

7.2 is better than that for the worst possible spectrum.
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Let us finally mention that the above qualitative nature of the spectrum,

i.e., the clustering around the point A = 1 with sparse spectrum elsewhere

is characteristic to all elements (i.e., sets of shape functions) we consi-

dered. The clustering gets relatively stronger when p grows or when the

side shape functions are orthogonalized.

B. Multi-p iterations. The multigrid method is widely used in connection

with the finite difference method (see e.g. [9]). The same formal idea can be

used for the p-method when exploiting the hierarchic character of the bases

functions, see also [3].

We will now address the multi-p iterative procedures also in combination

with inner type iterations. We will address only the bases functions of the

set Q' which were introduced in section 3. Mostly we will consider only the
p

case p = 8; the cases p < 8 will be mentioned only briefly. First, let us

introduce some basic notions.

1) The hierarchies. Let us describe the hierarchies we will later use.

The hierarchy consists of the sequence {pi} of levels (degrees) which will

be iterated one at a time In the sequel.

H1 = (87654321}

H2 = {8421}

H3 = {8642}

H4 = {87531).

By iteration on the level P' we mean iteration of all shape functions of

degree : pi while the shape functions fo degree p > pI are kept "frozen."

2) As in the classical multigrid we have to deal with cycles. We will

use three different cycles.

\CYCL(H ): It consists of repetition of the hierarchies. For example,
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\CYCL(H ) = {876543218765... 2187...).

/CYCL(HI ): It consists of the repetition of the hierarchies in the

opposite order. For example /CYCL(H2) = {1248,1248,....

\/CYCL(H ) It consists in the repetition of the hierarchies in the

combination form \and/. For example, \/CYCL(H 3 ) = {8642468642...

On every level p we will perform s "inner" SOR(M) iterations with

the overrelaxation parameter w. Obviously w = 1 coincides with the Gauss-

Seidel iteration. The ordering is as mentioned in section 3.

Table 7.3 shows the asymptotic convergence rate p in the H -norm

(i.e., the decay of the error measured in the H -norm when performing one

entire iteration cycle) for p = 8, s = 5, w = 1.8 and w = 1.

,able 7.3

The rate of convergence p for

various cycles and hierarchies (p = 8, s = 5).

\CYCLE /CYCLE \/CYCLE \CYCLE
w = 1.8 W = 1.8 w = 1.8 W = 1.0

H 0.425 0.537 0.323 0.686

H2  0.514 0.507 0.535 0.820

H3  0.463 0.363 0.497 0.731

H4  0.445 0.355 0.449 0.731

The value w = 1.8 is close to the optimal for p = 8 and all hierarchies.

As ar illustration we show in Table 7.4 the dependence of p on w, for

\CYCL(31 ) and s = 5.
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Table 7.4.

The rate of convergence p for \CYCL(H ) s = 5, p = 8.

w p ( p

0 1.0 1.6 0.446

0.2 0.947 1.7 0.428

0.4 0.891 1.8 0.425

0.6 0.829 1.825 0.426

0.8 0.761 1.85 0.435

1.0 0.686 1.875 0.505

1.2 0.603 1.9 0.583

1.4 0.516 2.0 1.00

Table 7.4 has shown the performances of various cycles for w = 1.0 and 1.8

and for p = 8. The results for p < S are analogous. As a typical case, we

show the convergence rate for \CYCL(H1 ) with s = 5, w = 1.8 and w = 1.0.

Table 7.5.

The rate of convergence p for \CYCL(H ) with s = 5, ci = 1, 1.8

p 4 5 6 7 8

= 1 0.380 0.411 0.499 0.516 0.686

= 1.8 0.325 0.323 0.369 0.331 0.425

So far we presented the results only for s = 5. In Table 7.6 we show the

dependence of the rate p on s in the case \CYCL(H ) for p = 8 and

=l1.8.
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Table 7.6.

The rate of convergence p for \CYCLE(HI), w = 1.8, p = 8.

s 1 2 3 4 5

p 0.890 0.748 0.514 0.508 0.426

s 6 7 8 9 10

p 0.379 0.298 0.258 0.220 0.196

Above we have shown the rate p for the multi-p iteration. In Table 7.7 we

show the rate p for the SOR iteration for p = 8.

Table 7.7.

The convergence rate p for SOR(c), w = 1.0, 1.8 and p = 8.

SOR(i.0) SOR(1.8)

p 0.966 0.943

From Tables 7.6 and 7.7 we easily conclude that the multi-p iteration is more

effective (smaller number of operations) than the SOR Iteration for p = 8.

The overrelaxation clearly improves the performance. The \CYCL(H ) is most

effective. Nevertheless we conclude that the multi-p approach is less effec-

tive than in the classical multigrid method for the finite different equa-

tions, at least in the form as we have used. The section of the shape func-

tions could obviously also be geared to the optimal performance of the multi-p

method, but the problem seems wide open.

We further conclude that this conjugate gradient method applied to the

condensed elements is clearly superior.

Let us now briefly compare the two iterative .ettods we have addressed.

The conjugate gradient method is very effective when using the condensed ele-
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ments and possibly orthogonalized shape functions. The error decays (in the

energy norm) by one iteration by a factor 2 or more (for Q' element with
p

p < II).

The multi-p method with the hierarchic Q' shape functions does not use
p

the condensation which was based on the elimination procedure which is rela-

tively expensive especially for high p. On the other hand, it leads to the

need of more iterations when counting the inner iterations of the entire

cycle. The combined overrelaxation scheme behaves similarly. Nevertheless,

counting all operations of a cycles in comparison with the direct Gauss-Seidel

or overrelaxatlon the multi-p performance is somewhat better.

The conjugate gradient method is very good if condensation is made.

Without condensation the rate is xot good (e.g., for p = 8 we get p =

0.93). Among the schemes studied we recommend the conjugate gradient method

with condensation and with preconditioning with p = 1 in the multielement

case.
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8. Conclusions.

The selection of the shape functions is of major importance for the per-

formance of the solver based on iterative methods. Neither the theory nor

practice of the optimal selection of the shape functions is available yet.

We have seen that the condensation approach which has obvious advantages

from the point of parallel computations is a very effective tool for keeping

the condition number under the control and Is especially advantageous for the

conjugate gradient method. The set Q' of the shape functions performs

better than Qp In the practical range of p. Although we addressed only the

case of one element only a very similar situation occurs for the mesh of

elements where p = 1 preconditioning is made. For the analysis of the per-

formance of the conjugate gradient method on complex meshes we refer to [2]

where the parallel computation aspects are especially addressed.

For the theoretical analysis we refer to [7].

We discussed only quadrilateral elements. We expect that the triangular

elements will lead to a similar performance, but extensive tests are not

available yet.

Finally we would like to underline that we addressed only two-dimensional

cases. One cannot extrapolate from these results the behavior of three-

dimensional elements.
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