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Transmitting antennas located near the earth have a problem
with electromagnetic scattering caused by the ground. Researchers
suggest that the inverse of this problem may be used to determine
the complex permittivity of the ground. That application is the
goal of this thesis.

The solution of the half-space problem was originally formula-
ted in 1909 by Arnold Sommerfeld. Unfortunately, his formula-
tion was written in terms of a set of integrals that tend to have a
slow rate of convergence. Since then, researchers have sought
faster methods of computing fields in the presence of an arbitrary
infinite half space by making approximations to Sommerfeld's
integrals to increase their convergence rate. Others have replaced
the ground with an equivalent image current.

Much of the work on this subject has been directed toward the
inverse scattering problem, i.e., inferring the dielectric properties
of the ground by measuring scattered fields, using time-domain
techniques or continuous-wave measurements.

In choosing one method over another, the parameters related V
to the properties of the ground should be large enough or small I J,
enough to be measured with reasonable accuracy. The experi-
mental setup should be straightforward and simple, and the ELECTE
analysis should not be overly complex. M

Relating the input impedance of a dipole near the ground to
its permittivity was deemed a practical experimental technique.
The input impedance of a half-wave dipole is around 75 ohms,
well within the measurement range of modern RF impedancemeters, and the experiment requires only a one-port measurement

of a simple antenna. The analysis involved was manageable. The
method chosen for theoretical analysis was an image approach
that replaces the ground with an equivalent image current located
on a line in complex space.

This study addresses the theory between the electric properties
of the ground to the input impedance of a horizontal electric di-
pole, including numerical computations, patterns of the input
impedance, practical considerations, and recommendations for
experimental methods of determining the qround permittivity
using this theory.
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1. INTRODUCTION

The problem of electromagnetic scattering caused by the ground has been

investigated by a great number of researchers over the past few decades. It is an important

problem because transmitting antennas are often located near the earth. Many have

suggested that the inverse of this problem may be used as a means of determining the

complex permittivity of the ground [1,2,3,4,51. The latter application is the goal of this

paper.

The solution of the half-space problem was originally formulated in 1909 by Arnold

Sommerfeld [6]. His formulation is written in terms of a set of integrals now commonly

known as Sommerfeld integrals. Unfortunately, these integrals tend to have a slow rate of

convergence. Since that time, many researchers have sought faster methods of computing

fields in the presence of an arbitrary infinite half space. Some have made approximations

to Sommerfeld's integrals to increase their rate of convergence [7,8,9]. Others have

replaced the ground with an equivalent image current [10,1 1,12,13].

Many of the papers on this subject have been specifically directed toward the

inverse scattering problem, i.e., inferring the dielectric properties of the ground by

measuring scattered fields. Some suggested time-domain techniques [3,5]. Others

discussed continuous-wave measurements [ 1,2,4].

In choosing one method over another, a number of considerations need to be taken

into account. One, the parameters related to the properties of the ground should be easy to

measure, i.e., they should be large enough or small enough that they can be measured with

reasonable accuracy. Two, the experimental setup should be fairly straightforward and

simple. Three, the analysis should not be overly complex.
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After weighing these factors, it was decided that relating the input impedance of a

dipole near the ground to its permittivity would be a practical experimental technique. The

input impedance of a half-wave dipole can be expected to be around 75 ohms, well within

the measurement range of modem RF impedance meters. The experiment requires only a

one-port measurement of a simple antenna. The analysis involved is manageable.

The method chosen for theoretical analysis is an image approach developed by

Lindell and Alanen [13,14,15,16]. They replaced the ground with an equivalent image

current located on a line in complex space.

In Chapter 2, Lindell's image current is rederived for the special case of a horizontal

electric dipole (HED) over a ground with complex permittivity E = £reo and magnetic

permeability p± = go. It is then applied to obtain an expiession for the input impedance of

an electric dipole of arbitrary length over ground.

Numerical results are given in Chapter 3, convergence of integrals is shown, and

the limitations of some assumptions will be addressed.

In Chapter 4, the relationship between the permittivity of the ground and dipole

impedance is discussed. Graphs are shown depicting the effects of dipole height and

length on the impedances.

Finally, Chapter 5 addresses experimental considerations.
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2. DERIVATION OF IMPEDANCE EXPRESSIONS

The derivation of the image current begins with the two-dimensional transform in

the x-y plane of Maxwell's equations. The source will be an infinitesimal HED with

current magnitude I, length L, direction k, and location at a height z = h above the ground.

Thus, after the transform of Maxwell's equations with respect to x and y, we have

IxE' -jKxE + jcp0 oH = 0 z > 0 (2.1)

.xH' -jKxH - jweE = ILIS(z-h) z > 0 (2.2)

IxEj - jKxEI + jwooHI = 0 z > 0 (2.3)

IxHi - jKxHI - jWiEI = 0 z>0. (2.4)

where K is the two-dimensional transform variable, the prime indicates the derivative with

respect to z, el = erre, and a subscript of one denotes the earth. Note that the magnetic

permeability is assumed to be the same as that of free space, since that is usually the case in

nature. Equations (2.1) thru (2.4) can be uniquely expressed in terms of the transverse

components of electric and magnetic fields, represented here by e and h. Therefore, after

some manipulating and considering only the transverse fields, we are left with

e"=j (k2 - KK) x I.- h (2.5)

ha'=-jg k2 -KK) xI e. (2.6)

e j.1(L Ikt KK) x . h1  (2.7).1 2

hi = ( - KK) x I . ei. (2.8)
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The two-dimensional idem dyadic is It. Also, Tq = 111o, = k = tj4--o.,

and k1 = coqi- . For the sake of clarification, dyadics will be represented by double

underlined capital letters except at times when their meaning is better conveyed by writing

two vectors next to each other, e.g., VV.

Note that the above equations are of the same form as the telegrapher's equations.

U'(z) = - ZdI(z) + u(z) (2.9)

l(z) = - ydU(z) + i(z). (2.10)

This similarity opens the possibility of representing each medium by an equivalent

distributed impedance. If the voltage represents e and the current h, the corresponding

distributed impedance and admittance are dyadics given by

Zd = -jTi ( Itk2 - KK) x I z > 0 (2.11)

g=-i( jk2- KK) x 2 z>O. (2.12)
T1

A subscript of one is added when z<0. The product ofId and Yd is

Zd.Yd = - (k2 - K2 ) It --p2 b . z>O. (2.13)

Here, 13 is the z-component of the wave number, k, given by

3= "k 2- -K 2 , [31 =f 2 -Z2= V(er-')k 2 -[32  (2.14)

and K is the magnitude of the vector K. The branches of 13 and [1 are taken such that their

arguments are between -7t and 0. The reason for this choice will be made clear, as it will

insure that the electric field approaches zero as z-.oo in Equation (2.24).

Now that the equivalent impedance is known, the next step is to find a suitable

reflection dyadic.

+ (2.15)
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The inverse of a two-dimensional dyadic is the same as that of its associated matrix.

adj A
A- i = (2.16)

where adj(,) and det(4) are the adjoint and determinant of the associated matrix. Applying

(2.16) to the inverse dyadic in (2.15) and simplifying the result yield the following

reflection dyadic:

R = RTM KK/K2 + RTh adj(KK)/K 2 . (2.17)

RTM and RTE are the familiar reflection coefficients for the transverse magnetic and

transverse electric cases. They are given by

RTh= -41 =p - 4 (Er-1)k 2+p 2  (2.18)0+01 0 4, (ej,-1)k29

RTM Er - £ri- (Zl)k2+ (2.19)
FrP+Pl ED + ",-1)k 2+p2

The general form of this reflection dyadic was derived by Lindell in [13]. Here RTE has

been made more specific by setting i=p<. The adjoint operator and the denominator K2

make the reflection dyadic in (2.17) somewhat awkward to work with. Applying the

dyadic property

adj(KK) = K 2
b - KK, (2.20)

R can be written

R = RTE It + Ro KIk 2 , (2.21)

with Ro = k2 (RTM -RTE)/K 2 = 2(.r l)k2 = t- (RTM + Er- (2.22)
(0+01(Cr04) er r+1)
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This form isolates the transform variable K to a dyadic in only one of the terms. Thus, the

inverse transform of the dyadic part of R is accomplished by simply replacing KK with

-VtV t, where Vt is the x-y component of the vector operator V.

Substituting h" from (2.6) into (2.5), aHelmholtz-like equation is obtained.

e" + 02e = jwg.tolL( =tk 2 - KK)/k 2 S(z-h). (2.23)

From this, the electric field is found to be

-eo= ljto IL( - k- 2KK) . ( t e- j l3 z+hl + R e- j o z+h)) z > 0. (2.24)
23

Although h can be derived similarly, it will not be necessary to discuss both e and h. Note

that the first term above is that portion of the field associated with a dipole in free space and

is travelling away from the z = h plane. The second term is travelling upward and can be

thought of as a wave reflected from the earth.

This leads us to represent the electric field as the sum of the well-known free-space

field, EI, and the electric field scattered from the ground, E2.

E = El + E2  (2.25)

El = -jcoio J G (Ir+IJ).kI(x) dx (2.26)

where G(r) is the free-space Green's dyadic function (I-VV)G(d), and G(d)=(e-jkd)/4nd.

Notice that taking the inverse Fourier transform of the first term of (2.24) yields only the

transverse components of E1 . Yet, the sole difference between E1 and the transverse fields

is that (2.24) produces the dyadic operator ( It + VtVt) instead of ( I-VV). This simple

relationship will be called on later to recover the z-component of E2 rather than carry

longitudinal components through the derivation.
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At this point, instead of taking the inverse Fourier transform of (2.25) (as is

normally done), the reflection dyadic will be represented as the Laplace transform of a

function:

00

R(f3) = f F(t) e- t dr. (2.27)
0

After inserting (2.27) in (2.25), changing the order of transformation, and taking the

inverse Fourier transform, the solution of E2 becomes

cc

E2 =-jo 0 JOIL f G(r+I(h-jt)).F(t).A dt , (2.28)
0

which implies that the ground can be replaced by an equivalent image current.

E 2(r) =-jq1o -1 G(r-z'I).I(z') dz'

I(z') = -jIL F(-j(z'+h)).i (2.29)

z' = jt - h.

What remains to the solution is to find an expression for the dyadic, F(t). If we solve

Equation (2.27) for F(t), we find that the inverse Laplace transform can be broken into

two parts:

F(t)= L-1IRTE)z - L-{(Ro) KK/k2 . (2.30)

The inverse transform of RTE can be found in the Laplace transform tables [18] or [19] to

be

L-I RE)=-2 J2 (kt4 iT)
L-tRTE) = (2.31)



-2 J2 (-jkz'+h- ) (.2
z'+h (2.32)

Thus, the contribution of the first term of R in (2.22) to the image current is

-21L J 2 (-jk(z'+h)4j i)
Iia(P) = z'+h z'+h x (2.33)

On inspection, it is noted that if z' in (2.32) is real the Bessel function will have a complex

argument and, therefore, become singular as z' approaches infinity. In fact, to insure

convergence, the argument of the Bessel function must be real. Hence, it is set equal to the

positive real variable p:

p = - jk(z'+h) . (2.34)

This forces z' to be a complex number given by

z'= - h + JP (2.35)

Using this definition of z', the electric field due to this image current can be written as

E2a = 2jqio f G(d) 2 dp p. (2.36)

0

The branch of the distance function, d, is defined as -1C < arg(d) < 0 to insure that the

Green's function asymptotically approaches zero allowing the integral of E2a to converge.

With this definition of the branch of d, the integral in (2.36) is fairly well behaved. In fact,

it decays exponentially after p is large enough to dominate the exponent of the Green's

function. Therefore, the integration can be performed numerically using a simple computer

routine. The numeric evaluation of this integral will be discussed in further detail in the

next chapter.
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The inverse transform of the second term of the reflection dyadic, Ro, is somewhat

more difficult than the first one. Because Ro is essentially RTM plus a constant, we will

begin by taking the inverse transform of RTM. As a matter of convenience, the transform

variable 03 will be replaced by qk 4C7i to give

RTM = rq - 4_2+ (2.37)erq - "q+l 2.7

where q can be thought of as a dimensionless, normalized propagation constant. After

rearranging (2.37) and applying the Laplace transform property of differentiation, RTM can

be expressed in the form

RTM  1-1- + . -(q - Jq2 )2 (2.33)

er+1 q2-y2  q24.2

Here, y is defined as l14J 1 The first term above corresponds to a delta function in the

spatial domain. The second is the transform of the hyperbolic sine. The inverse transform

of the third term can be expressed as the convolution of a hyperbolic sine and a Bessel

function.

f(p) L-I (RTM )
p

= e-' 8(p) - 'y-. sinh(7p) + 2ery f sinh(y(p-s)) J 2(P) dp. (2.39)

er+ 1 0 -P-

The above transforms and transform properties can be found in [17] and [18].

At first glance, the hyperbolic-sine functions make f(p) appear to diverge as p

approaches infinity. However, the second and third terms tend to cancel for large p,

causing f(p) to approach zero in the limit as p approaches infinity. Yet, these terms also

create significant round-off error making the form of f(p) in (2.39) impractical for
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numerical computanon. Hence, another representation of f(p) will be necessary. Taking

advantage of the property

00

f f(p)e - Y dp= (2.40)
o Er+1

f(p) can be written as

f(p) = E- 8(p) + fe(p) (2.41)
er+l

00

fe(p)= f e S((p) )ds. (2.42)
0

Here we introduce the function fe(p) as the nonsingular part of f(p). Note also that

(Er+ l)fe(p)/er is the inverse transform of R. For ease of numerical calculation, Lindell

[16] expressed the integral (2.42) as a couple of series expansions.

fc(p) -Ern (-I) p (2.43)
n=1

fE(p) 2 - y3e-V + 2"- sin(p+x/4) + 3(83,2 )2.cos(p+t/4)
erp3/2" F7 2e pt/22

15 23 9 4+ + - - sin(p+ir4)

105  91 59 7 4 (2.44)

2~392~- T~+ - 4 + -6) cos(p+ir/4).(4)

The series (2.43) is an exact representation of fr(p). However, it does not begin to

converge until 2n > p. Thus, (2.44), an asymptotic expansion of fE(p), serves as a better



means of calculating it for large p. Reference [15] describes a method that can be used to

obtain the full series representation of (2.44). It was found by trial and error that p = 5 is a

fairly good point to make the transition between (2.43) and (2.44).

Note that for the special case of er 1, fE(p) becomes fl(p) = -2I(p)/p. This is the

same as the inverse transform of RTE. It is also convenient to mention at this time that fE(p)

satisfies the differential equation

(E21d ljfE(P) f I (fp) + r SL(P)J (2.45)

This is seen by applying the transform property of differentiation in conjunction with the

inverse transform of (2.37).

The dyadic F(p) can now be expressed in terms of the two functions fI (p) and

fe(p).

L(P) = fl(P) I - F. I fe(p) VVk 2 . (2.46)

It follows that the scattered electric field is

E2• -jA G(p). t dx. (2.47)
f

0

Therefore, the image current is

=(fl(p)I + fe(p)VVk-2). i IL. (2.48)

If (2.48) is generalized, to allow the current to be a function of x, the image becomes
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Ii = f1(p)I(x)A - j( 1) fi(p)l(x)T . (2.49)
erk'/ iiii

where -jk4 ei dz = dp. Thus, the image current associated with an HED, depicted in

Fig. 2.1 (all figures appear at the end of each chapter), consists of a horizontal and a

vertical component both along the same line in the complex z-plane. As would be

expected, both components decay to zero as p becomes large.

Finding an expression for the input impedance of the HED defined in Fig. 2.2

using the image current above is a straightforward procedure using image currents. The

input impedance is defined by the stationary functional

Z=-L E • il(x)dx . (2.50)

0

The electric field, given in (2.26) and (2.47), can be plugged into (2.50) to give

Z = -i- I(x) t.G(Ir-r'l).I(x') dx' dx
2
0

JfI(x).G Ir-(r'-jp/4 l)1).F(p).kI(x') dp dx' dx (2.51)
20

Equation (2.51) implies that the impedance, like the electric field, can be expressed as the

sum of the free-space impedance and the change in impedance due to the ground. That can

be done, of course, only if the current distribution is not significantly changed by the

ground. The validity of this assumption will be discussed in Chapter 3. After evaluating

the dyadics and applying the differential equation (2.45), AZ can be written as

AZ k l(x~ 'K( (1 F er-I
AZ~~f = -- J~)~'K I-')I'xI('~K(Ix-x'I)-----(DO)Ix 'dx, (2.52)

where
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Ke(Ix-x'l) = j fE(p)G(D) dp (2.53)
0

Kl(Ix-x'l) = I fI(p)G(D) dp (2.54)
0

D(p) = (-) 2 +(h (2.55)

Do = D(p=O)= 4 (x-x')2 + 4h2 . (2.56)

If a sinusoidal current is assumed for the case of a half-wave-dipole, the impedance change

is

X/4
X")/4,

AZ =jkl I cos(kx)cos(kx')K(Ix-x'I)
-414

- sin(kx)sin(kx') (-Ke(x-x,) - - G(D) x' dx. (2.57)

er+ 1

A change of variables of e = klx-x'l and 4, = klx+x'l allows one of the integrals in (2.57) to

be done analytically leaving

ItI
AZ = jkf J(sinO + (x-O)cosO)K (lx-x'l)

0

+ (sino + (x-O)cosO) I Kf(lx-x'l) - Ir-IG(Do) dx'dx. (2.58)
(rer +I

The integrand of (2.58) is very well behaved, and is not difficult to integrate numerically.

For a dipole of arbitrary length, 2H, and current distribution, sin(k(H-Izl)), the

impedance change is
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kH.

AZ A! f(AKI(O/k) - B iKE(Ix-x'I) - ±G(DO)))dOk12 f -+1

00

2kH-

+ j CKI(/k) _ D1Kp(Ix-xi)--rG(Do) dO (2.59)
k12 f C(EEr+l

with

1o = sin(kH) (2.60)

A = -(cos2kH+Osin2kH+ 1)sinO+(O+(2kH-20)cos2kH)cosO+sin(2kH-O)

B = (cos2kH+1)sinO+(O+(2kH-20)cos2kH+sin2kH)cos+sin(2kH--O)

+ sin2kHcos(2kH--)

C = (2kH-20) cosO - cos2kH sin(2kH--)

D = (2kH-20) cosO + cos2kH sin(2kH--).

Equation (2.60) shows that the expressions representing the coefficients A-D are long.

However, they are much more efficient than the alternative which is the double integration

of (2.58).

As the dipole height increases, the integral (2.58) can be approximated by an

algebraic expression. For large kh, D(p) becomes 2h -jpt4Iri. Hence, by applying the

integral identity

ff(p) e-P/4 T dp= - (2.61)

The new Green's function, KI, can be simplified to

K1 - l)ei2h kh c (2.62)
21th
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Since the Green's function Ke is no longer a function of 0, the double integration for the

currents can be performed analytically. The resulting expression is equivalent to the image

reflection coefficient approximation.

,TJh (--e -.2kh kh -e oo. (2.63)

/ ~ ~ 27k 1 + ||
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Re[z]

Im~z]

iP) 0

Ih

Figure 2.1. Image current due to HED over an infinite half space of
complex permittivity, C. The current lies in the complex
z-plane and has two parts: lix parallel to the dipole, and Iiz
oriented vertically.



z

Figure 2.2. Depiction of an electric dipole above an arbitrary ground
plane.
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3. NUMERICAL CONSIDERATIONS

In this Chapter, the graphical characteristics of some of the equations given in

Chapter 1 are presented. To begin, the transcendental function fe(p) is studied. This is

followed by a discussion of the integrand of KE(O) and its integration to infinity.

The function fF(p), represented by Equations (2.43) and (2.44), was coded as a

Fortran subroutine to be used later in calculating dipole impedances. As a test of the

subroutine, Figures 3.1 through 3.5 were generated and compared with those published by

Lindell [15,16. Figures 3.1 through 3.4 agree quite well with Lindell's. These graphs

demonstrate the general appearance of fE(p). Notice that for small er, the functions are

much larger near the origin. On the other hand, as the permittivity increases, the magnitude

of fF(p) is more evenly distributed along the p-axis. In fact, when er - 50 (Figure 3.2),

fe(p) is practically a line with a small downward slope.

Upon close inspection of Figures 3.1 through 3.5, one can see a very slight

discontinuity in the curves at p = 5. This is seen best in Figure 3.2 when Er = 10. It is

caused by the inexactness of the asymptotic approximation at the transition between

Equations (2.43) and (2.44). In the case of impedance calculations, this bump causes

negligible error. However, there may be some applications that require higher accuracy. If

this is the case, the transition between the two representations can be moved to a higher p,

or the method described in [15 could be used to generate the next few terms of the

asymptotic expansion.

Figures 3.5 through 3.7 show how the magnitude of fe(p) in affected by the

argument of Er. A quick comparison of Figure 3.5 and Lindell's [16] results (Figure 3.8)

shows a discrepancy for large arg(er). To determine which is correct, we need only inspect

Equation (2.44), the first few terms of which are
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3(8-3e2)fe(p) - - 2 ¥3 e- 1 + 2 r. .sin(p+n/4 )  rc os(p+ic/4)
rp /2"/x2r-P5/ 21c

15T 23T + T2 (3.1)
erp7122,x re er ) sin(p+n/4)

We see that the second term and higher-order terms tend to zero for all values of er as p

becomes large. The first term decays with an attenuation constant R e -2-= -

2t 0. If we take the extreme case of the permittivity being completely imaginary, we see that

"c = 0 and fe(p) approaches the expression

fe(p) - 2e2y3e -WP , Re(er) = 0. (3.2)

In fact, for this case, fe(p) approaches a helical form as p -4 -. Therefore, Figure 3.5 is

the more accurate graph. At first glance, it may be disturbing that the image currents do not

decay to zero as p-+-. However, fe(p) can be thought of as a distribution. In a

distribution sense, the limit as p approaches infinity can be treated as zero. This follows

from the Riemann-Lebesgue lemma [ 19].

The program used to generate fE(p) was then tested in the two integral properties

0 0 - 2 r
I fe(p) dp = - (3.3)0 er+l
00

00
I fi(P) e-p/ 4 I " dp = 1- (3.4)

o 1+ "r

The integrations were performed with an adaptive trapezoidal routine that was truncated

when the integrand became negligible. The results varied with the step size and the point of

truncation. It is apparent from the results of this test, shown in Table 3.1 (p. 23), that the

computation of fe(p) as well as the integration are being performed properly.



The image currents are obtained from f(p). The horizontal component of the image

current is equal to fl(p), while the vertical current is proportional to the derivative of fE(p).

Some plots of the vertical image currents for different values of er are given in Figures 3.9

through 3.12. Recall that in impedance calculations the vertical image current need not be

calculated qince fe(p) is differentiated a second time, and a substitution can be made for

f'(p) via the differential Equation (2.45) eliminating all terms containing derivatives of

fe(p).

The next step is the integration to compute the Green's function, K(0),

KE(Ix-xi) = J fE(p)G(D) dp (3.5)
0

D(P) = 7 -/xx) 2 -k l (3.6)

At first glance, it appears the integration to infinity could be the source of some difficulty.

When p becomes large enough to dominate D(p) in Equation (3.6), we see that G(D) can be

approximated by

G (D) -71 p large. (3.7)

Hence, when the approximation (3.7) applies, G(D) decays exponentially. The function

fE(p) also diminishes as p increases. It is apparent that the integration can be truncated after

(3.7) is valid and allowed to decay a few time constants.

For Er of small arguments, D(p) moves through a minimum slightly before G(D)

begins to decay, causing a spike in the integrand. This is illustrated in Figures 3.13

through 3.15. As the normalized height, h/X, of the dipole decreases, the spike tends to

increase. However, while the height is greater than zero the spike will remain bounded.
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Figures 3.13 through 3.20 are examples of the integrand. The first three are

identical to those published by Lindell [14]. The next five plots (Figures 3.16-20) were

added to show the effect of a change on the parameters 0, h/A, arg(eJ,), and IetI. Figure

3.16 shows that an increase in 0 moves the peak further from the origin. The

corresponding integrands of K1(9) are plotted in Figure 3.17. Note that the peaks in these

two figures occur at the same places along the p-axis. As shown in Figure 3.18, the peak

in the integrand decreases as h/A increases. Figure 3.19 shows that the peak is sharp only

for small arguments of Er. As seen in Figure 3.20, increasing the magnitude of er also

moves the peak further from the origin while smoothing it out at the same time.

It is clear by inspection of Figures 3.13 through 3.20 that the integration producing

KE(0) and K1 (0) can be truncated after a certain point, Po, with negligible error. In these

graphs we see that Po varies as 0, h/X, and Er change. Therefore, a valid means of

detecting the truncation point is needed. One solution to this problem is to test segments of

the integrand to determine whether that part of the integrand is more or less than, for

example, 0.01% of the integration to that point. This method was used with the adaptive

integration routine mentioned earlier and found to be very effective.

Another means of predicting a good truncation point was derived by equating the

magnitudes of two approximations for D(p), ID(small p)l and ID(large p)1. This leads to

+k2h2j Ikkh -plr4 I . (3.8)

As a result, the p satisfying (3.8) should be in the region slightly before G(D) decays

exponentially. It can be approximated by

PI k i I (8kh+O). (3.9)

If we allow G(D) to decay a few attenuation constants beyond pl and add 10 to it as an

extra precaution, we should be able to truncate the integration when
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p = r-lI (8kh + 0 3)+10. (3.10)

Using (3. 10) in place of infinity as a limit of integration proved to give good

results. In fact, Figures 3.13 through 3.20 were all generated using the aforementioned

adaptive trapezoidal routine with (3.10) as an endpoint. Note that the plots are all relatively

smooth, even in the region of the spike (Fig. 3.15), and in each case the integrand had

become small enough before truncation that it could no longer be read on the graph.

Equation (3.10) indicates that as ler, h, or 0 become large the integral for the

Green's function, Ke(O), takes longer to compute. Thus, direct computation of

impedances using Equation (2.51) becomes impractical when P1 is large. In the case of

large h, Equation (2.63) can be used. No asymptotic approximations were derived for

large ltrl or large 0. It is the opinion of the author that &(0) can be represented by an

infinite summation much as fe(p) was. Similar integrals were found in [20] and [21].

Unfortunately, no solution for integrals of form identical to I&(0) could be found.
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Table 3. 1. Percent error of adaptive trapezoidal integration routine when
applied to the integral identifies in Equations (3.3) and (3.4).

REAL IMAGINARY % ERROR % ERROR
EPSILON EPSILON EQ. 3.3 EQ. 3.4

2 0 0.0656 0.1168
10 0 0.1048 0.0012
20 0 0.0835 0.0009
50 0 0.0758 0.0013

2 -0.5 0.2832 0.0009
10 -2.5 0.0296 0.0012
20 -5 0.0560 0.0009
50 -12,5 0.0732 0.0013

2 -1 0.2464 0.0006
10 -5 0.1117 0.0012
20 -10 0.0606 0.0009
50 -25 0.0647 0.0012

2 -2 0.1578 0.0009
10 -10 0.0366 0.0012
20 -20 0.0648 0.0011
50 -50 0.0705 0.0012

2 -4 0.0547 0.0018
10 -20 0.0515 0.0010
20 -40 0.0578 0.0013
50 -100 0.0183 0.0012

2 -10 0.0308 0.0014
10 -50 0.0166 0.0012
20 -100 0.0089 0.0013
50 -250 0.0074 0.0008
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4. IMPEDANCE CHARACTERISTICS

This Chapter discusses dipole impedance characteristics. Because the case of the

half-wave dipole is often discussed in the literature, it will be considered first. Equation

(2.58) is used to compute the effect of the ground. This is added to the thin-wire free-

space input impedance, 73.1 + j42.5 ohms. The integration in Equation (2.58) is

performed using the same adaptive trapezoidal routine as was used in the calculations of the

preceding chapter.

Figures 4.1 through 4.4 were generated to be compared with results already

published in [22], [23], and [16],respectively. The resistances compare well with those

published.The reactance, on the other hand, does not agree with that documented by

Lindell [161. The reason for this is not known. As one would expect, these figures show

that the ground has more of an effect on the input impedance of antennas at lower heights.

Note also that there are nodes at heights slightly before integer multiples of a quarter-wave-

length. Hence, heights of /8 or less will result in the largest change in impedance and thus

will yield the highest resolution when measuring permittivity.

As a study of the accuracy of the approximate impedance given in Equation (2.63),

Figures 4.5 through 4.7 were generated. Each figure shows the real and imaginary parts of

the input impedances calculated using both Equations (2.60) and (2.63). The RCM

(reflection coefficient method) gives accurate impedances at larger heights. As the relative

height, h/k, of the dipole decreases, the RCM impedance becomes less accurate, until at

low heights, it no longer even resembles the correct input impedance. Although the RCM

approximation may be useful in many applications, it is clear that it is not appropriate for

use in determining ground permittivity since the approximation seems to be valid only

when the impedance is least affected by the permittivity.
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Calculations were made using Equation (2.59). The results were plotted as the ratio

of change in impedance to free-space input impedance as a function of 2kH in Figures 4.8

through 4.15. The first four contrast impedances for different heights, while the last four

show the effect of changing er. In the plots, 2kH = 7 corresponds to a half-wave dipole

and 2kH = 21r to a full-wave dipole. The free-space values were determined using the

theoretical expression given in [24]. The first four of these figures reinforce the idea that

the impedance change in general increases as the height decreases for antennas of any

length. Notice that as the dipole approaches a wave length, AR/R and AX/X tend toward

zero. Also, the ratio of the imaginary parts approaches zero when 2kH is small. When the

relative changes in input impedances are zero regardless of ground permittivity, it is

difficult to infer a permittivity. Therefore, it would be best to use dipoles with 2H < 3X/4.

In the case of short dipoles, the effect of the half space can only be seen in the real part of

the impedance. This allows only one degree of freedom to determine both the real and

imaginary parts of the permittivity. It would be best to use antenna lengths that show

variations in both the real and imaginary parts of the impedance. Therefore, to obtain good

resolution between the input impedance and complex permittivity, the length of the dipole

should be in the region V4 < 2H ! 3X/4.

The next five figures, 4.16 through 4.20, are contour maps showing the

relationship between ground permittivity and input impedance at different heights above the

ground. After a quick inspection of these figures, one can see that the contours are larger at

lower heights. They are all well behaved. Once the input impedance is known, the

complex permittivity can be easily determined using a contour similar to those shown here.

Only at the lower heights does the contour begin to fold onto itself. If a measurement falls

into this region, another measurement can be taken at some other height or frequency to

isolate the correct permittivity.



46

o 0-

4.~

-,4

0 0 Q U

I-.



47

o o,-
'

o *

._o

oo
III I

! I I



48

Ln Ln 0

C>

>.- u

14 .
rl

0 0 in



49

I K
0

/

( ~

\ \ C#2

U
C -

0

4)

-< ~

0 ~

I
4
d

C I 4)~54)*~
L ~fl

bO~

~ 2 c
L cu~0O

4)

(.J ~
N 4)
a

U
I-

C

g a a a o aS C ~ 4 N

x



so

x~ I

N C

a- 0 a00o



51

-cc

* ~Cd

o'.C

Cde

.4L

aea



52

M-Z

xS -

a~~~~~ I- 'UA
C:



53

C'

LA Ai

0 -4 C

C; Sala

00

ci ci



54

/ IL

unu

o
x t

cvi
I~C



55

LU.

c I

o r
adU



56

U44

. .-

C t

U, iu



57

CNC

un. (A

Sad

10

c U

ci~ Si



58

o.

u N Q4)

! I I [ I 1 ! I ! ! -I ! !

01 NI O N O m N N P m 0 )
I I)I i

4)<

x0



59

Lii

4 10
to

I I 0.

o o I N

III I !

II-



60

06

1.40

o LL

N 0 N 4 0 0

I I I I
I 00

- &**I
< 0



61

IU

6) X

cd N



62

in ..



63

0J a

0 0

u
Ln~

*4 0 d C U SC S S 4 C

N N N N -4 0 0



64

-dF -4

/ x



65

clfl



66

5. EXPERIMENTAL CONSIDERATIONS

In measuring the input impedance to determine ground permittivity, there are a

number of sources of error. These include: 1) impedance measurement; 2) frequency

measurement; 3) dipole height; 4) dipole length; 5) free-space impedance; 6) roughness of

the ground; 7) inhomogeneities in the ground; 8) change in the current distribution of the

dipole due to the ground; and 9) electromagnetic scattering from environment other than the

ground.

The first two sources of error are determined by the measuring instrument. If the

proper equipment is chosen, these errors can be relatively small.

The height of the dipole is critical, particularly at the lower heights. Figures 4.1

through 4.4 showed that the derivative of AZ with respect to the relative height, (hA), of

the dipole is large. Hence, even a small error in the height could cause a large error in the

permittivity. This source of inaccuracy can be lessened by not placing the antennas too

close to the ground.

An error in the measurement of the antenna length has a similar effect as an error in

the frequency. It changes the value of 2kH. An error of this sort may or may not be

critical depending on 2kH and the permittivity.

Accurate determination of the free-space impedance can also be a problem. To

circumvent this, it could be measured, or a contour map relating the permittivity to the

difference between input impedances at two different heights could be used.

The extent of the effect of ground roughness on these measurements is difficult to

quantify. Of course, it is more important that the ground be smooth directly under the

antenna than farther away.
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The effect of ground roughness on these measurements is twofold. It decreases the

certainty of the height measurement and changes the scattering properties of the half space.

For best results, the ground should be as smooth as possible with little or no vegetation.

Of course, it is more important that the ground be smooth directly beneath the dipole than

farther away.

Inhomogeneities in the ground could be the source of considerable error. Care

must be taken to insure there are no pipes or cables buried near the test area. Natural

inhomogenieties, such as stratification, can also distort measurements. If stratification does

not occur before one skin depth,

8=[l) ( (i+ 2)i ~ 51

its effect on the impedance will be small. A possible means of compensating for

stratification would be to take measurements at a number of different heights and

frequencies and use a parameter optimization routine along with the theory presented in

[25] to determine the permittivity and depth of each layer of earth.

In Chapter 1, it was assumed that the dipole current distribution is sinusoidal and

that the presence of the earth has no effect on that distribution. Of course, neither of these

assumptions is true. However, they do provide a good approximation. According to

Lindell [16], the fields scattered from the earth induce negligible change in the dipole

current if h>>8a/2, where 8 is defined to satisfy the equation

ka = 2kae -1kC a (5.2)

here a is the radius of the dipole. Figures 5.1 and 5.2 are plots of hk = Sa/2k for different

frequencies and radii. The regions above these curves correspond to h>882. Finally, the

measuring equipment and other objects should be placed as far from the antenna as

possible.
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Of all the possible sources of error, only the current distribution is unique to the
theory presented here. Most other experimental procedures wil be prone to the same or

parallel problems.
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6. CONCLUDING REMARKS

The theory between the electric properties of the ground to the input impedance of a

horizontal electric dipole has been presented. The necessary numerical computations were

discussed. Then patterns of the input impedance were illustrated with respect to the height

and length of the dipole. Practical considerations were discussed. Finally, recommenda-

tions were made for experimental methods of determining the ground permittivity using this

theory.

Attempts were made to experimentally validate the techniques mentioned herein.

However, these attempts were unsuccessful. The primary reasons for this are thought to

be parasitic reactances at the feed point and scattering from equipment used in the

experiment.

Despite the shortcomings of the present study, it is the opinion of the author that the

input impedance of a dipole should be a good-although perhaps not the best-means of

determining ground permittivity. One possible improvement to this technique would be to

use a slot antenna with a more directional radiation pattern. This would increase the

dependence of the input impedance on the properties of the earth while decreasing its

sensitivity to the measuring equipment nearby. The parasitic reactances would be

decreased.

An improvement that could be made to the theory would be the replacement of the

integral to infinity in Equations (2.53) and (2.54) by one or two series representations.

This would decrease the computation time enough to make it practical to iteratively

determine the current distribution on the dipole before using the stationary functional

(Equation (2.50)) to compute the input impedances.
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