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Transmitting antennas located near the earth have a problem
with electromagnetic scattering caused by the ground. Researchers
suggest that the inverse of this problem may be used to determine
the complex permittivity of the ground. That application is the
goal of this thesis.

The solution of the half-space problem was originally formuia-
ted in 1909 by Arnold Sommerfeld. Unfortunately, his formula-
tion was written in terms of a set of integrals that tend to have a
slow rate of convergence. Since then, researchers have sought
faster methods of computing fields in the presence of an arbitrary
infinite half space by making approximations to Sommerfeld’s
integrals to increase their convergence rate. Others have replaced
the ground with an equivalent image current.

Much of the work on this subject has been directed toward the
inverse scattering problem, i.e., inferring the dielectric properties
of the ground by measuring scattered fields, using time-domain
techniques or continuous-wave measurements.

In choosing one method over another, the parameters related
to the properties of the ground should be large enough or smali
enough to be measured with reasonable accuracy. The experi-
mental setup should be straightforward and simple, and the
analysis should not be overly complex.

Relating the input impedance of a dipole near the ground to
its permittivity was deemed a practical experimental technique.
The input impedance of a half-wave dipole is around 75 ohms,
well within the measurement range of modern RF impedance
meters, and the experiment requires only a one-port measurement
of a simpie antenna. The analysis involved was manageable. The
method chosen for theoretical analysis was an image approach
that replaces the ground with an equivalent image current located
on a line in complex space.

This study addresses the theory between the electric properties
of the ground to the input impedance of a horizontal electric di-
pole, including numerical computations, patterns of the input
impedance, practical considerations, and recommendations for
experimental methods of determining the ground permittivity
using this theory.
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1. INTRODUCTION

The problem of electromagnetic scattering caused by the ground has been
investigated by a great number of researchers over the past few decades. It is an important
problem because transmitting antennas are often located near the earth. Many have
suggested that the inverse of this problem may be used as a means of determining the
complex permittivity of the ground [1,2,3,4,5]. The latter application is the goal of this
paper.

The solution of the half-space problem was originally formulated in 1909 by Arnold
Sommerfeld [6]. His formulation is written in terms of a set of integrals now commonly
known as Sommerfeld integrals. Unfortunately, these integrals tend to have a slow rate of
convergence. Since that time, many researchers have sought faster methods of computing
fields in the presence of an arbitrary infinite half space. Some have made approximations
to Sommerfeld's integrals to increase their rate of convergence [7,8,9]. Others have
replaced the ground with an equivalent image current [10,11,12,13].

Many of the papers on this subject have been specifically directed toward the
inverse scattering problem, i.e., inferring the dielectric properties of the ground by
measuring scattered fields. Some suggested time-domain techniques [3,5]. Others
discussed continuous-wave measurements [1,2,4].

In choosing one method over another, a number of considerations need to be taken
into account. One, the parameters related to the properties of the ground should be easy to
measure, i.e., they should be large enough or small enough that they can be measured with
reasonable accuracy. Two, the experimental setup should be fairly straightforward and

simple. Three, the analysis should not be overly complex.




After weighing these factors, it was decided that relating the input impedance of a
dipoie near the ground to its permittivity would be a practical experimental technique. The
input impedance of a half-wave dipole can be expected to be around 75 ohms. well within
the measurement range of modern RF impedance meters. The experiment requires only a
one-port measurement of a simple antenna. The analysis involved is manageable.

The method chosen for theoretical analysis is an image approach developed by
Lindell and Alanen [13,14,15,16]. They replaced the ground with an equivalent image
current located on a line in complex space.

In Chapter 2, Lindell's image current is rederived for the special case of a horizontal
electric dipole (HED) over a ground with complex permittivity € = €€, and magnetic
permeability p = io. It is then applied to obtain an expiession for the input impedance of
an electric dipole of arbitrary length over ground.

Numerical results are given in Chapter 3, convergence of integrals is shown, and
the limitations of some assumptions will be addressed.

In Chapter 4, the relationship between the permittivity of the ground and dipole
impedance is discussed. Graphs are shown depicting the effects of dipole height and
length on the impedances.

Finally, Chapter 5 addresses experimental considerations.
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2. DERIVATION OF IMPEDANCE EXPRESSIONS

The derivation of the image current begins with the two-dimensional transform in

the x-y plane of Maxwell's equations. The source will be an infinitesimal HED with
current magnitude I, length L, direction k, and location at a height z = h above the ground.

Thus, after the transform of Maxwell's equations with respect to x and y, we have

2xE" - JKxE + jopuoH =0 ‘ z>0 2.1
2xH’ - jKxH - joeoE = IL%3(z-h) z>0 (2.2)
2xE{ - jJKxE; + jopoH; =0 z2>0 2.3)
2xH{ - jKxH) - jwe1E; =0 z>0. (2.4)

where K is the two-dimensional transform variable, the prime indicates the derivative with
respect to z, €] = €€, and a subscript of one denotes the earth. Note that the magnetic
permeability is assumed to be the same as that of free space, since that is usually the case in
nature. Equations (2.1) thru (2.4) can be uniquely expressed in terms of the transverse
components of electric and magnetic fields, represented here by e and h. Therefore, after

some manipulating and considering only the transverse fields, we are left with

e’ =jp(Ik2-KK)x2-h 2.5)
h’=—jé(£;k2—KK)x2-e (2.6)
ei =iph (ki - KK) x2 - hy @7

hi=—jrll-(_l';kf—KK)x2-e1. (2.8)
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The two-dimensional idem dyadic is 1;. Also, 1 = \) Ho/€o, N1 = \j Ho/€1, k = m\f—u_o;o
and k; = m\] Ho€) . For the sake of clarification, dyadics will be represented by double

underlined capital letters except at times when their meaning is better conveyed by writing

two vectors next to each other, e.g., VV.

Note that the above equations are of the same form as the telegrapher's equations.

U'(z) = - z4l(2) + u(2) (2.9)
[(z) = -yqU(z) +i(z) . (2.10)

This similarity opens the possibility of representing each medium by an equivalent
distributed impedance. If the voltage represents e and the current h, the corresponding

distributed impedance and admittance are dyadics given by

Zg=-jn (k2 - KK) x 2 z>0 (2.11)
ﬁ:ﬁ-(l;kz—l(l()xz 2>0. (2.12)

A subscript of one is added when z<0. The product of Zq and Y4 is
ZaYq=-k2-K)L=-P2L. >0 . (2.13)

Here, B is the z-component of the wave number, k, given by

B=Vk2-K2 , B1=Vek?-K2 =V (e~)k2-p2 (2.14)

and K is the magnitude of the vector K. The branches of B and B are taken such that their
arguments are between —%t and 0. The reason for this choice will be made clear, as it will
insure that the electric field approaches zero as z—ee in Equation (2.24).

Now that the equivalent impedance is known, the next step is to find a suitable

reflection dyadic.

R=(Zi-2Zi+2)"" (2.15)




The inverse of a two-dimensional dyadic is the same as that of its associated matrix.

A-i= X

where adj(A) and det(A) are the adjoint and determinant of the associated matrix. Applying

(2.16) to the inverse dyadic in (2.15) and simplifying the result yield the following
reflection dyadic:

R = R™ KK/K2 + RTE adj(KK)/K2. 2.17)

RTM and RTE are the familiar reflection coefficients for the transverse magnetic and

transverse electric cases. They are given by

ere BB _ B -V e DI+

S P 2.18)
B+Br B 4\ ek
g EBB1 _ B -V e DIP? (2.19)

eP+Br ¢B + \/ (e—~1)k2+p2 .

The general form of this reflection dyadic was derived by Lindell in [13]. Here RTE has
been made more specific by setting p=lo. The adjoint operator and the denominator K2
make the reflection dyadic in (2.17) somewhat awkward to work with. Applying the
dyadic property |

adj(KK) = K2I, - KK , (2.20)

5 can be written

5=RTE1.+ROKK/k2, (2.21)
. 2(8[ - l)k2 Er"‘l Er—l
with Rg = k2(R™ _ RTE)/K2 = = (RTM + —) i (2.22)
B+B1)EP+P1) & €r+1
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This form isolates the transform variable K to a dyadic in only one of the terms. Thus, the

inverse transform of the dyadic part of R is accomplished by simply replacing KK with
-V\V,, where V, is the x-y component of the vector operator V.

Substituting h” from (2.6} into (2.5), a Helmholtz-like equation is obtained.

e’ + B = jopolL( Ik? - KK)/k2 8(z-h) . (2.23)

From this, the electric field is found to be

e= —J;Dl:o IL(L - k2KK) - & - ([ e P2 R ePEh) 250, 224

Although h can be derived similarly, it will not be necessary to discuss both e and h. Note
that the first term above is that portion of the field associated with a dipole in free space and
is travelling away from the z = h plane. The second term is travelling upward and can be
thought of as a wave reflected from the earth.

This leads us to represent the electric field as the sum of the well-known free-space

field, E1, and the electric field scattered from the ground, Ej.

E=E|+E2 (2.25)

E| = -jolo J‘ G (ir+2)-%I(x) dx (2.26)

where G(r) is the free-space Green's dyadic function (l—VV)G(d), and G(d)=(e*%)/4nd.
Notice that taking the inverse Fourier transform of the first term of (2.24) yields only the
transverse components of E|. Yet, the sole difference between E and the transverse fields
is that (2.24) produces the dyadic operator (l‘ + VV)) instead of ( E—VV). This simple
relationship will be called on later to recover the z-component of E> rather than carrv

longitudinal components through the derivation.




At this point, instead of taking the inverse Fourier transform of (2.25) (as is
normally done), the reflection dyadic will be represented as the Laplace transform of a

function:

[ -]

R(PB)= [E@ePrdr. (2.27)
o

After inserting (2.27) in (2.25), changing the order of transformation, and taking the

inverse Fourier transform, the solution of E2 becomes

E2 =—joHolL [ G (r+2(h-jt))-EM) % dt, (2.28)
o

which implies that the ground can be replaced by an equivalent image current.

o0

Ex(r) = —joHo l[ G (r-z2)-I(z") dz'

1(z) = HIL Bz +h)X (229)

z=jt-h.

What remains to the solution is to find an expression for the dyadic, F(t). If we solve
Equation (2.27) for E(t), we find that the inverse Laplace transform can be broken into

two parts:
F= L-YRTE)L - L-1(Ro) KK/AZ2. (2.30)

The inverse transform of RTE can be found in the Laplace transform tables [18] or [19] to

be

2 5(kVert)

L-1{RTE} = (2.31)
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8
-2 .lz(-jk(z'+h)\J er—l)
= Z+h " (2.32)
Thus, the contribution of the first term of R in (2.22) to the image current is
or S k@b e1)
lia(p) = Z+h Z +h - X. (2.33)

On inspection, it is noted that if z' in (2.32) is real the Bessel function will have a complex

argument and, therefore, become singular as z' approaches infinity. In fact, to insure

convergence, the argument of the Bessel function must be real. Hence, it is set equal to the

positive real variable p:
p = - jk(z'+h) Ver1 . (2.34)

This forces z' to be a complex number given by

'e _he—P (2.35)

Using this definition of z', the electric field due to this image current can be written as

o0

E2s = 2jio fg(d) £ '{-Z%’L)dp : | (2.36)
0

The branch of the distance function, d, is defined as —t < arg(d) < O to insure that the
Green's function asymptotically approaches zero allowing the integral of E2, to converge.
With this definition of the branch of d, the integral in (2.36) is fairly well behaved. In fact,
it decays exponentially after p is large enough to dominate the exponent of the Green's
function. Therefore, the integration can be performed numerically using a simple computer
routine. The numeric evaluation of this integral will be discussed in further detail in the

next chapter.




The inverse transform of the second term of the reflection dyadic, Ry, is somewhat
more difficult than the first one. Because R is essentially R™ plus a constant, we will

begin by taking the inverse transform of RTM. As a matter of convenience, the transform

variable B will be replaced by qk\j g1 to give

eq ~ Vs

RT™ =
€eq - Vq2+1

, (2.37)

where q can be thought of as a dimensionless, normalized propagation constant. After
rearranging (2.37) and applying the Laplace transform property of differentiation, R™ can
be expressed in the form

el &P &P ——
R™ = - + (g -Vq2+1)2, (2.33)
el @R @p

Here, v is defined as 1/4 [€ ~1 . The first term above corresponds to a delta function in the

spatial domain. The second is the transform of the hyperbolic sine. The inverse transform
of the third term can be expressed as the convolution of a hyperbolic sine and a Bessel

function.

f(p) = L-1{R™)

p
= &L 5(p) - exy > sinh(yp) + 260y [ sinbero-sn Bl ap.  239)
e+l e+l g P

The above transforms and transform properties can be found in [17] and [18].

At first glance, the hyperbolic-sine functions make f(p) appear to diverge as p
approaches infinity. However, the second and third terms tend to cancel for large p,
causing f(p) to approach zero in the limit as p approaches infinity. Yet, these terms also

create significant round-off error making the form of f(p) in (2.39) impractical for
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numerical computanon. Hence, another representation of f(p) will be necessary. Taking

advantage of the property
- €1
[ tpyerP dp = &, (2.40)
0 €+l '

f(p) can be written as

1
£(p) = = 8(p) + fe(p) (2.41)
gc+1
ys/Io(s—p) 7
fe(p)=f YS(-LLS(EP) 2-—1(;“; ) (2.42)
(o]

Here we introduce the function fe(p) as the nonsingular part of f(p). Note also that

(er+1)fe(p)/ec is the inverse transform of R,. For ease of numerical calculation, Lindell

[16] expressed the integral (2.42) as a couplé of series expansions.

1 .
fe(p) = &R E (:’;J”—R-z() (2.43)
r

+: 1> 23 + 12 - -‘-‘; sin(p+n/4)
2 g

168 ¢

T

o5 (_ oL 59 71, -46-] cos(p+r/d) . (2.44)
g

253 p9ﬂ‘\' 2r 4

The series (2.43) is an exact representation of fe(p). However, it does not begin to

converge until 2n > p. Thus, (2.44), an asymptotic expansion of fe(p), serves as a better
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means of calculating it for large p. Reference [15] describes a method that can be used to
obtain the full series representation of (2.44). It was found by trial and error thatp = 5 is a
fairly good point to make the transition between (2.43) and (2.44).

Note that for the special case of € = 1, fe(p) becomes f1(p) = -2J(p)/p. This is the
same as the inverse transform of RTE. It is also convenient to mention at this time that fe(p)

satisfies the differential equation

2 ,,d? 1-€
((%'1)@- 1)fe(p)=— (fl(P) + ié(p)). (2.45)

This is seen by applying the transform property of differentiation in conjunction with the
inverse transform of (2.37).

The dyadic E(p) can now be expressed in terms of the two functions f)(p) and

fe(p).

F@ =f@] - "E:—lfe(P) VK2, 2.46)

It follows that the scattered electric field is

Ez=—jopoll G (r-{r'- —E—z)). F(p)-fdx. (2.47)
J{ 1T
()

Therefore, the image current is

li=F(p)RIL

= (fl(p)l Sl fe(p)VVk'z) RIL. (2.48)
= &

If (2.48) is generalized, to allow the current to be a function of x, the image becomes




jEr+1)
ekVerl

Ii = fL(P)I(x)% - fe(P'(x)2 . (2.49)
where —jk\/e_.-l dz = dp. Thus, the image current associated with an HED, depicted in
Fig. 2.1 (all figures appear at the end of each chapter), consists of a horizontal and a
vertical component both along the same line in the complex z-plane. As would be
expected, both components decay to zero as p becomes large.

Finding an expression for the input impedance of the HED defined in Fig. 2.2
using the image current above is a straightforward procedure using image currents. The
input impedance is defined by the stationary functional |

z=-;12-;E - RI(x) dx . (2.50)

[}
The electric field, given in (2.26) and (2.47), can be plugged into (2.50) to give

Z= Lkzﬂfj I(x) &-G(Ir-r')XI(x") dx' dx
I -
0

+ill_m2_ JI I(x)ﬁ-g(lr-(r'—ij er-l)l)-g(p)-ﬂ(x') dp dx'dx . (2.51)
o o .

Equation (2.51) implies that the impedance, like the electric field, can be expressed as the
sum of the free-space impedance and the change in impedance due to the ground. That can
be done, of course, only if the current distribution is not sighiﬁcamly changed by the
ground. The validity of this assumption will be discussed in Chapter 3. After evaluating
the dyadics and applying the differential equation (2.45), AZ can be written as

=J.I“7".J J I)I(x)K (Ix-xT)-T '(x)I’(#')(ixe(lx-x'ly%’ﬁcmo))ux'dx. (2.52)
(o]

where
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Ke(x-x') = | fe(p)G(D) dp (2.53)
(o]

Ki(x-x) = | f1(p)G(D) dp ' (2.54)
0

D) = o [(x-x")2 + (2h - —B— (2.55)

Y G
Do = D(p=0) = V(x-x")2 + 4h2 . (2.56)

If a sinusoidal current is assumed for the case of a half-wave-dipole, the impedance change

is

A/4
A4
AZ = jkn ]' f cos(kx)cos(kx")K1(Ix-x'l)
4
~A4
— sin(kx)sin(kx") (lKg(lx-x'l)—e—r:—l-G(Do)) dx'dx. (2.57)
€ &+l

A change of variables of 8 = kix-x'l and ¢ = kix+x'l allows one of the integrals in (2.57) to

be done analytically leaving

R
AZ =jkn [ (sin@ + (r-8)cos®)K(Ix-x'T)
o

+ (sin@ + ("—8)cosh) (L Ke(ix-x'l) — e-'-_-l- G(Do)) dx'dx . (2.58)
& e+l

The integrand of (2.58) is very well behaved, and is not difficult to integrate numerically.
For a dipole of arbitrary length, 2H, and current distribution, sin(k(H~lzl)), the
impedance change is




14
- 12 j (AK}(O/k) - [1 Ke(x-xl) - S G(DO)D
kly & Ertl
' 2kH . : .
+ 'le J (CKI(G/R) ~ D('— Ke(x-x'l) - E"—IG(DO) de (2.59)
kI € gr+1 '
with
lo = sin(kH) | (2.60)

A = —(cos2kH+0sin2kH+1)s5in8+(8+(2kH-20)cos2kH)cos0+sin(2kH-0)
B = (cos2kH+1)sin0+(8+(2kH-20)cos2kH+sin2kH)cos@+sin(2kH~0)
+ sin2kHcos(2kH-0)
C = (2kH-20) cos0 - cos2kH sin(2kH-0) |
D = (2kH-26) cos8 + cos2kH sin(2kH-6) .

Equation (2.60) shows that the expressions rcpfesenting the coefficients A-D are long.
However, they are much more efficient than the alternative which is the double integration
of (2.58).

As the dipole hc.ight increases, the integral (2.58) can be approximated by an

algebraic expression. For large kh, D(p) becomes 2h — ij €1 . Hence, by applying the
intcgml identty

f f1(p) e PNer T gp = "\Jj—_ (2.61)
1+V &

The new Green's function, Ky, can be simplified to

[1 -://___] s kh — oo, (2.62)
+
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Since the Green's function Ke is no longer a function of 6, the double integration for the
currents can be performed analytically. The resulting expression is equivalent to the image

reflection coefficient approximation.

AZ ~ —‘Jh—{ﬂ—i] ¢-iZkh kh — oo, (2.63)

2nkh | 144[g,
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* Be[z]

Im{z]

-h

2

Iix(p) p‘oo

Figure 2.1.  Image current due to HED over an infinite half space of

complex permittivity, €. The current lies in the complex

z-plane and has two parts: Iy parallel to the dipole, and I;;
oriented vertically.
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H H —‘] 21
€€y, WM,

VI U

€=€P€° Py U=UO

Figure 2.2.  Depiction of an electric dipole above an arbitrary ground
plane.
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3. NUMERICAL CONSIDERATIONS

In this Chapter, the graphical characteristics of some of the equations given in
Chapter 1 are presented. To begin, the transcendental function fe(p) is studied. This is
followed by a discussion of the integrand of K¢(0) and its integration to infinity.

The function fe(p), represented by Equations (2.43) and (2.44), was coded as a
Fortran subroutine to be used later in calculating dipole impedances. As a test of the
subroutine, Figures 3.1 through 3.5 were generated and compared with those published by
Lindell [15,16]). Figures 3.1 through 3.4 agree quite well with Lindell's. These graphs
demonstrate the general appearance of fg(p). Notice that for small &, the functions are
much larger near the origin. On the other hand, as the permittivity increases, the magnitude
of fe(p) is more evenly distributed along the p-axis. In fact, when e,'= 50 (Figure 3.2),
fe(p) is practically a line with a small downward slope. |

Upon close inspection of Figures 3.1 through 3.5, one can see a very slight
discontinuity in the curves at p = 5. This is seen best in Figure 3.2 when g, = 10. Itis
caused by the inexactness of the asymptotic approximation at the transition between
Equations (2.43) and (2.44). In the case of impedance calculatons, this bump causes
negligible error. However, there may be some applications that require higher accuracy. If
this is the case, the transition between the two representations can be moved to a higher p,
or the method described in [15] could be used to generate the next fe\y terms of the
asymptotic expansion. |

Figures 3.5 through 3.7 show how the magnitude of f¢(p) in affected by the
argument of €. A quick comparison of Figure 3.5 and Lindell's [16] results (Figure 3.8)
shows a discrepancy for large arg(e;). To determine which is correct, we need only inspect

Equation (2.44), the first few terms of which are
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W3 3(8-—38 )
fe(p) ~ - 2€ Y3 W 4 ———=sin(p+n/4) + os(p+1/4)
&P’ ‘[_ 2€> p \J
+—3—-1-5——— - 23% + —9-2- - 54- sin(p+n/4) . (3.1
€.p'2\2n 2 €

We see that the second term and higher-order terms tend to zero for all values of € as p

. . -1
becomes large. The first term decays with an attenuation constant t =y = Re(‘\/ er2 ~1 ) , T

2 0. If we take the extreme case of the permittivity being completely imaginary, we see that

© = 0 and fe(p) approaches the expression

fe(p) ~ Zc,ZYBe‘"’ , Re(e)=0. (3.2)

In fact, for this case, fe(p) approaches a helical form as p — o=, Therefore, Figure 3.5 is
the more accurate graph. At first glance, it may be disturbing that the image currents do not
decay to zero as p—oo. However, fg(p) can be thought of as a distribution. In a
distribution sense, the limit as p approaches infinity can be treated as zero. This follows
from the Riemann-Lebesgue lemma [19)].

The program used to generate fe(p) was then tested in the two integral properties

2

Ife(p)dp- 4 (3.3)
e+l

f f1(p) e PNE T gp = :NE (3.4)

l+‘\/—

The integrations were performed with an adaptive trapezoidal routine that was truncated
when the integrand became negligible. The results varied with the step size and the point of
truncation. It is apparent from the results of this test, shown in Table 3.1 (p. 23), that the

computation of fg(p) as well as the integration are being performed properly.
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The image currents are obtained from t¢(p). The horizontal component of the image
current is equal to f1(p), while the vertical current is proportional to the derivative of fe(p).
Some plots of the vertical image currents for different values of €, are given in Figures 3.9
through 3.12. Recall that in impedance calculations the vertical image current need not be
calculated since fg(p) is differentiated a second time, and a substitution can be made for
fe(p) via the differential Equation (2.45) eliminating all terms containing derivatives of
fe(p). _

The next step is the integration to compute the Green's function, Ke(8),

-]

Ke(Ix-x') = | fe(p)G(D) dp 3.9
o

D(p) = o [(x-x)2 + (2h - ==} . (3.6)
R G

At first glance, it appears the integration to infinity could be the source of some difficulty.

When p becomes large enough to dominate D(p) in Equation (3.6), we see that G(D) can be

approximated by
P T
G(D) = VeI 3—;——— , p large. (3.7)
Tp

Hence, when the approximation (3.7) applies, G(D) decays exponentially. The function
fe(p) also diminishes as p increases. It is apparent that the integration can be truncated after
(3.7) is valid and allowed to decay a few time constants.

For €; of small arguments, D(p) moves through a minimum slightly before G(D)
begins to decay, causing a spike in the integrand. This is illustrated in Figures 3.13
through 3.15. As the normalized height, h/A, of the dipole decreases, the spike tends to

increase. However, while the height is greater than zero the spike will remain bounded.
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Figures 3.13 through 3.20 are examples of the integrand. The first three are
identical to those published by Lindell [14]. The next five plots (Figures 3.16-20) were
added to show the effect of a change on the parameters 6, h/A, arg(e;), and lg,l. Figure
3.16 shows that an increase in 8 moves the peak further from the origin. The
corresponding integrands of K;(8) are plotted in Figure 3.17. Note that the peaks in these
two figures occur at the same places along the p-axis. As shown in Figure 3.18, the peak
in the integrand decreases as h/A increases. Figure 3.19 shows that the peak is sharp only
for small arguments of €. As seen in Figure 3.20, increasing the magnitude of &, also
moves the peak further from the origin while smoothing it out at the same time.

It is clear by inspection of Figures 3.13 through 3.20 that the integration producing
K¢(0) and K1(0) can be truncated after a certain point, py, with negligible error. In these
graphs we see that po varies as 8, h/A, and €, change. Therefore, a valid means of
detecting the truncation point is needed. One solution to this problem is to test segments of
the integrand to determine whether that part of the integrand is more or less than, for
example, 0.01% of the integration to that point. This method was used with the adaptive
integration routine mentioned earlier and found to be very effective.

Another means of predicting a good truncation point was derived by equating the

magnitudes of two approximations for D(p), |D(small p)| and lD(largc p)l. This leads to
N e2+k2h2| = |kh—jp1N e.——ll . (3.8)

As a result, the p satisfying (3.8) should be in the region slightly before G(D) decays
exponentially. It can be approximated by

p1= N er—ll (8kh+6) . 3.9)

If we allow G(D) to decay a few attenuation constants beyond py and add 10 to it as an

extra precaution, we should be aole to truncate the integration when
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p=IVertl @h+0+3)+10. (3.10)

Using (3.10) in place of infinity as a limit of integration proved to give good
results. In fact, Figures 3.13 through 3.20 were all generated using the aforementioned
adaptive trapezoidal routine with (3.10) as an endpoint. Note that the plots are all relatively
smooth, even in the region of the spike (Fig. 3.15), and in each case the integrand had
become small enough before truncation that it could no longer be read on the graph.

Equation (3.10) indicates that as !gfl, h, or 6 become large the integral for the
Green's function, Kg(0), takes longer to compute. Thus, direct computation of
impcdances using Equation (2.51) becomes impractical when py is large. In the case of
large h, Equation (2.63) can be used. No asymptotic approximations were derived for
large lefl or large 0. It is the opinion of the author that K¢(8) can be represented by an
infinite summation much as fg(p) was. Similar integrals were found in [20] and {21].

Unfortunately, no solution for integrals of form identical to K¢(8) could be found.
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Table 3.1. Percent error of adaptve trapezoidal integration routine when
applied to the integral identities in Equations (3.3) and (3.4).
REAL IMAGINARY | % ERROR % ERROR
EPSILON EPSILON EQ. 3.3 E 3.4
2 9. g.
10 2 Q.1248 @.0012
20 ) J.0835 92.0009
5¢ ) @.90758 0.0013
2 -3.5 2.2832 2.0009
19 -2.5 Q.0296 @.0012
29 -5 J.0560 @.0009
50 -12.5 3.8732 2.0013
2 -1 0.2464 0. 0006
10 -5 g.1117 @.0012
20 -19 3.0606 @.0029
50 -25 0.0647 2.2012
2 -2 0.1578 2 .0009
19 -10 0.2366 @.0812
20 -20 0.0648 9.0911
50 -5@ 2.2705 2.0012
2 -4 2.2547 0.0018
10 -20 @.0515 g.2010
20 -40 0.0578 @.2013
5@ -100 2.0183 0.2012
2 -10 2.0308 0.0014
10 -50 0.0166 g.0012
29 -100 2.0089 9.0013
50 -250 0.0074 0. 0008
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4. IMPEDANCE CHARACTERISTICS

This Chapter discusses dipole impedance characteristics. Because the case of the
half-wave dipole is often discussed in the literature, it will be considered first. Equation
(2.58) is used to compute the effect of the ground. This is added to the thin-wire free-
space input impedance, 73.1 + j42.5 ohms. The integration in Equation (2.58) is
performed using the same adaptive trapezoidal routine as was used in the calculations of the
preceding chapter.

Figures 4.1 through 4.4 were generated to be compared with results already
published in [22], [23], and [16],respectively. The resistances compare well with those
published.The reactance, on the other hand, does not agree with that documented by
Lindell {16]. The reason for this is not known. As one would expect, these figures show
that the ground has more of an effect on the input impedance of antennas at lower heights.
Note also that there are nodes at heights slightly before integer multiples of a quarter-wave-
length. Hence, heights of A/8 or less will result in the largest change in impedance and thus
will yield the highest resolution when measuring permittivity.

As a study of the accuracy of the approximate impedance given in Equation (2.63),
Figures 4.5 through 4.7 were generated. Each figure shows the real and imaginary parts of
the input impedances calculated using both Equations (2.60) and (2.63). The RCM
(reflection coefficient method) gives accurate impedances at larger heights. As the relative
height, h/A, of the dipole decreases, the RCM impedance becomes less accurate, until at
low heights, it no longer even resembles the correct input impedance. Although the RCM
approximation may be useful in many applications, it is clear that it is not appropriate for
use in determining ground permittivity since the approximation seems to be valid only

when the impedance is least affected by the permittivity.
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Calculations were made using Equation (2.59). The results were plotted as the ratio
of change in impedance to free-space input impedance as a function of 2kH in Figures 4.8
through 4.15. The first four contrast impedances for different heights, while the last four
show the effect of changing €. In the plots, 2kH = n corresponds to a half-wave dipole
and 2kH = 2= to a full-wave dipcle. The free-space values were determined using the
theoretical expression given in [24). The first four of these figures reinforce the idea that
the impedance change in general increases as the height decreases for antennas of any
length. Notice that as the dipole approaches a wave length, AR/R and AX/X tend toward
zero. Also, the ratio of the imaginary parts approaches zero when 2kH is small. When the
relative changes in input impedances are zero regardless of ground permittivity, it is
difficult to infer a permittivity. Therefore, it would be best to use dipoles with 2H < 3A/4.
In the case of short dipoles, the effect of the half space can only be seen in the real part of
the impedance. This allows only one degree of freedom to determine both the real and
imaginary parts of the permittivity. It would be best to use antenna lengths that show
variations in both the real and imaginary parts of the impedance. Therefore, to obtain good
resolution between the input impedance and complex permittivity, the length of the dipole
should be in the region A/4 < 2H < 30/4.

The next five figures, 4.16 through 4.20, are contour maps showing the
relationship between ground permittivity and input impedahcc at different heights above the
ground. After a quick inspection of these figures, one can see that the contours are larger at
lower heights. They are all well behaved. Once the input impedance is known, the
complex permittivity can be easily determined using a contour similar to those shown here.
Only at the lower heights does the contour begin to fold onto itself. If a measurement falls
into this region, another measurement can be taken at some other height or frequency to

isolate the correct permittivity.
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S. EXPERIMENTAL CONSIDERATIONS

In measuring the input impedance to determine ground permittivity, there are a

number of sources of error. These include: 1) impedance measurement; 2) frequency
measurement; 3) dipole height; 4) dipole length; 5) free-space impedance; 6) roughness of
the ground; 7) inhomogeneities in the ground; 8) change in the current distribution of the
dipole due to the ground; and 9) electromagnetic scattering from environment other than the
ground.

The first two sources of error are determined by the measuring instrument. If the
proper equipment is chosen, these errors can be relatively small.

The height of the dipole is critical, particularly at the lower heights. Figures 4.1
through 4.4 showed that the derivative of AZ with respect to the relative height, (h/A), of
the dipole is large. Hence, even a small error in the height could cause a large error in the
permittivity. This source of inaccuracy can be lessened by not placing the antennas too
close to the ground.

An error in the measurement of the antenna length has a similar effect as an error in
the frequency. It changes the value of 2kH. An error of this sort may or may not be
critical depending on 2kH and the permittivity.

Accurate determination of the free-space impedance can also be a problem. To
circumvent this, it could be measured, or a contour map relating the permittivity to the
difference between input impedances at two different heights could be used.

The extent of the effect of ground roughness on these measurements is difficult to
quantify. Of course, it is more important that the ground be smooth directly under the

antenna than farther away.
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The effect of ground roughness on these measurements is twofold. It decreases the
certainty of the height measurement and changes the scattering properties of the half space.
For best results, the ground should be as smooth as possible with little or no vegetation.
Of course, it is more important that the ground be smooth directly beneath the dipole than
farther away.

Inhomogeneities in the ground could be the source of considerable error. Care
must be taken to insure there are no pipes or cables buried near the test area. Natural
inhomogenieties, such as stratification, can also distort measurements. If stratification does

not occur before one skin depth,

5=[m\/-“25[\[(1_1_-“%j - IJ T - 5.1)

its effect on the impedance will be small. A possible means of compensating for

stratification would be to take measurements at a number of different heights and
frequencies and use a parameter optimization routine along with the theory presented in
[25] to determine the permittivity and depth of each layer of earth.

In Chapter 1, it was assumed that the dipole current distribution is sinusoidal and
that the presence of the earth has no effect on that distribution. Of course, neither of these
assumptions is true. However, they do provide a good approximation. According to
Lindell [16], the fields scattered from the earth induce negligible change in the dipole
current if h>>8,/2, where 8, is defined to satisfy the equation

ka = 2k8, ¢~ 1/k8a | (5.2)

here a is the radius of the dipole. Figures 5.1 and 5.2 are plots of h/A = 8,/2A for different
frequencies and radii. The regions above these curves comrespond to h>84/2. Finally, the

measuring equipment and other objects should be placed as far from the antenna as

possible.
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Of all the possible sources of crror, only the current distribution is unique to the

theory presented here. Most other experimental procedures will be prone to the same or
parallel problems.
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6. CONCLUDING REMARKS

The theory between the electric properties of the ground to the input impedance of a
horizontal electric dipole has been presented. The necessary numerical computations were
discussed. Then patterns of the input impedance were illustrated with respect to the height
and length of the dipole. Practical considerations were discussed. Finally, recommenda-
tions were made for experimental methods of determining the ground permittivity using this
theory.

Ancrﬁpts were made to experimentally validate the techniques mentioned herein.
However, these attempts were unsuccessful. The primary reasons for this are thought to
be parasitic reactances at the feed point and scattering from equipment used in the
experiment.

Despite the shortcomings of the present study, it is the opinion of the author that the
input impedance of a dipole should be a good—although perhaps not the best—means of
determining ground permittivity. One possible improvement to this technique would be to
use a slot antenna with a more directional radiation pattern. This would increase the
dependence of the input impedance on the properties of the earth while decreasing its
sensitivity to the measuring equipment nearby. The parasitic rcactances'would be
decreased.

An improvement that could be mgdc to the theory would be the replacement of the
integral to infinity in Equations (2.53) and (2.54) by one or two series representations.
This would decrease the computation time enough to make it practical to iteratively
determine the current distribution on the dipole before using the stationary functional

(Equation (2.50)) to compute the input impedances.




(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

(10

[11])

———-———_——

LIST OF REFERENCES

J. L. Nicol, "The input impedance of horizontal antennas above an imperfect plane
earth,” Radio Sci., vol. 15, no. 3, pp. 471-477, May-June 1980.

M. Mostafavi and R. Mittra, "Remote probing of inhomogeneous media using
parameter optimization techniques," Radio Sci., vol. 7, no. 12, pp. 1105-1111,
Dec. 1972.

A. G. Tijhuis, "Iterative determination of permittivity and conductivity profiles of a
delectric slab in the time domain,” /[EEE Trans. Antennas Propag., vol. AP-29, no.
2, pp. 239-245, March 1981.

A. G. Tijhuis and Cor Van Der Worm, "Iterative approach to the frequency
solution of the inverse scattering problem for an inhomogeneous lossless dielectric
slab," IEEE Trans. Antennas Propag., vol. AP-32, no. 7, pp. 711-716; July 1984.

C. L. Bennett, "Time domain invcrsc scattering,” IEEE Trans. Antennas Propag.,
vol. AP-29, no. 2, pp. 213-219, March 1984.

A. Sommerfeld. "Uber die ausbreitung der wellen in der drahtlosen telegraphie,”
Annal. Phys., vol. 28, pp. 665-736, 1909.

P. Parhami, Y. Rahmat-Samii, and R. Mittra, "An efficient approach for evaluating
Sommerfeld integrals encountered in the problem of a current element radiating over
a lossy ground." IEEE Trans. Antennas Propag., vol. AP-28, no. 1, pp. 100-104,
Jan. 1980.

W. C. Kuo and K. K. Mei, "Numerical approximations of the Sommerfeld integral
for fast convergence,” Radio Sci., vol. AP-13, no. 3, pp. 407-415,
May-June 1979.

E. F. Kuester and D. C. Chang, "Evaluation of Sommerfeld integrals associated
with dipole sources above the earth,” Univ. of Colorado Electromagnetic Lab. Rep.
No. 43, Jan. 1779.

P. R. Bannister, "Summary of image theory expressions for the quasistatic fields of
antennas at or above the earth's surface,” Proc. IEEE, vol. 67, no. 7,
pp. 1001-1008, July 1979.

S. F. Mahmound and Ahmed D. Metwally, "New image representation for dipoles
near a dissipative earth 1. Discrete images 2. Discrete and continuous images,"
Radio Sci., vol. 16, no. 6, pp. 1271-1275, Nov.-Dec. 1981.




(12]

[13]

[14]

(13]
(16]

(17
(18]
(19]

[20]

[21])

(22]

(23]

(24]

(25]

73

J. R. Wait, "Image theory of quasistatic magnetic dipole over a dissipative halt
space,” Electron. Lett., vol. 5, no. 13, pp. 281-282, May 20, 1969.

I. V. Lindell and E. Alanen, "Exact image theory for the Sommerfeld half-space
problem, Part III: General Theory." IEEE Trans. Antennas Propag., vol. AP-32,
no. 10, pp. 1027-1032, Oct. 1984.

I. V. Lindell and E. Alanen, "Exact image theory for the Sommerfeld half-space
problem, Part I: Vertical magnetic dipole.” /EEE Trans. Antennas Propag.,
vol. AP-32, no. 2, pp. 126-133, Feb. 1984.

I. V. Lindell and E. Alanen, "Exact image theory for the Sommerfeld half-space
problem, Part II: Vertical electric dipole." [EEE Trans. Antennas Propag.,
vol. AP-32, no. 8, pp. 841-847, Aug. 1984.

L. V. Lindell, E. Alanen, and Kani Mannersalo, "Exact image method for impedance
computation of antennas above the ground." IEEE Trans. Antennas Propag.,
vol. AP-33, no. 9, pp. 937-945, Sept. 198S.

G. E. Roberts and H. Kaufman, Table of Laplace Transforms. Philadelphia: W.
B. Saunders Co., 1966. -

M. Abramowitz and L. A. Stegan, Handbook of Mathematical Functions. New
York: Dover, 1965, p. 102S.

A. Papoulis, The Fourier Integral and its Applications. New York: McGraw-Hill
Book Co., pp. 277-278, 1962.

A. P. Prudnikov, Y. A. Brychkov, and O. 1. Marichev, Integrals and Series,
vol. 2: Special Functions. New York: Gordon and Breach Science Publishers,
1986, p.189.

1. S. Gradshteyn and 1. M. Ryzhik, Tables of Integrals, Series, and Products.
Academic Press, Inc., 1980.

G. J. Burke, E. K. Miller, J. N. Brittingham, D. L. Lager, R. J. Lytle, and J. T.
Okada, "Computer modeling of antennas near the ground,” Electromagnetics,
vol. 1, no. 1, Jan. - March 1981.

I. V. Lindell and E. Alanen, "Applications of exact image theory in antenna and
field calculations in the presence of a dissipative half space," Conference
Proceedings — 15th European Microwave Conference, Tumbndge Wells, England:
Microwave Exhibitions & Publ. Ltd., Sept. 9-13, 1985, pp. 427-432.

C. A. Balanis, Antenna Theory. New York: Harper & Row, pp. 292-295, 1982.

E. Alanen, 1. V. Lindell, and A.T. Hujanen, "Exact image method for field
calculation in horizontally layered medium above a conducting ground plane,” /EE
Proc., vol. 133, part H, no. 4, August 1986.




DISTRIBUTION

HQUSACE
ATTN: CEEC-E (2)
ATTN: CERD-L

. ATTN: CEIM-SL (2)

. USAEHSC, ATTN: Library 22060
ATTN: DET IN 79906

US Army Engineer Districts
ATTN: Library (41)

US Army Engineer Divisions
ATTN: Library (14)

US Army Engineer District, Omaha 68102
ATTN: Chief, Engr Div '

US Army Engr Div, Huntsville 35807
ATTN: Chief, HNDED-SR

USA Natick, R&D Ctr 01760-5017

Naval Air Systems Command
ATTN: Library

Hanson AFB, MA 01731
ATTN: HQ AFSC
ATTN: ESD/OCR-3

Naval Civil Engr Lab
ATTN: Library 93041

Harry Diamond Labs 20783
ATTN: SLCHD-NW

ATTN: SLCHD-NW-E
ATTN: SLCHD-NW-EP (10)
ATTN: SLCHD-NW-EH
ATTN: SLCHD-NW-ES
ATTN: SLCHD-CS

Defense Nuclear Agency 20305-1000
ATTN: DNA-RAAE

Defense Technical Info. Center 22314
ATTN: DDA (2)

U.S. Govt Printing Office 22304
Receiving Sect/Depository (2)

88
4/89




