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CHAPTER 1

INTRODUCTION

During the design, maintenance, and operation of hydraulic

structures, large amounts of financial and temporal resource are

expended. An integral part of this process involves physical and

numerical simulation of the hydrodynamic characteristics of alternative

structural designs and operations. Such simulations are attractive

because they result in improvements to the design and operation/

maintenance aspects of projects without the costs that are associated

with field experimentation. For example, prototype construction of an

approach for a typical spillway at a Corps of Engineers flood control

reservoir might cost $1 million (Oswalt, 1988); furthermore, this cost

reflects only construction and does not include initial design and

engineering costs. Should the performance of a structural design prove

inadequate, additional costs on the order of the initial construction

costs would be incurred. A physical model study of multiple wall

designs for numerous project operations and hydrologic events would

generally cost approximately $150 thousand at the Corps' Waterways

Experiment Station.

Often the hydrodynamic flow fields produced by water and structure

interaction are complex. An example of such complexity is the flow

field produced by interaction between the approach, sump, and intake

geometries of a pump station and its inflow. Irregular approach

geometries often produce vorticity that can be advected into the pump

1
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sump approach. This vorticity, if not mitigated, may result in severe

damage to hydromachinery. As a consequence, this machinery may have to

be repaired, or even replaced, at a substantial cost. As an example of

these potential costs, the recent repair of the pumps at the Huxtable

Pumping Station was completed at a cost of $400,000. Thus, these

structures should be designed and operated to minimize damage to the

pumps and other project components.

Traditionally, the primary simulation tool available for investiga-

tion of complex flow regimes has been physical modeling. Employing

general similitude criteria, scale models are used to evaluate the

efficacy of alternative designs and operations of structures for proper

hydraulic performance. These models are, however, quite expensive and

the expertise to build such models of sufficient detail seems to be

declining. The advent of reliable two-dimensional numerical hydro-

dynamic models that solve the Navier-Stokes or Euler equations has

assuaged this problem somewhat in that the numerical models can be used

to screen potential design or operational schemes prior to physical

modeling.

Unfortunately, the need to design and operate hydraulic structures

cost-effectively necessitates the evaluation of three-dimensional fluid/

structure interaction. Consequently, the level of detail required in

these investigations demands the construction of evermore elaborate and

expensive physical models. Thus, the absence of three-dimensional

numerical tools to screen alternative designs places significant

financial burdens on investigations of this type. Obviously, three-

dimensional numerical hydrodynamic models capable of modeling near-field

fluid/structure interactions are needed. It is imperative, though, that
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these numerical tools be both accurate and efficient if they are to find

widespread application. Sadly, many hydrodynamic solution techniques

fail to satisfy either one or both of these constraints.

Accurate incompressible solution of the Navier-Stokes or Euler

equations requires mass conservation. Past research (i.e., Bernard and

Thompson (1984)) highlighted the importance of achieving mass conserva-

tion in such calculations. Achieving mass conservation is more diffi-

cult for incompressible flow computations than for compressible flow

calculations because the incompressible continuity equation has neither

a time derivative nor an advected gradient of density. Further, there

is no state equation relating pressure and density for incompressible

fluids. In addition, if the time derivative of density were to be

retained, the maximum allowable time step for the stable solution of an

incompressible flow field would be impractically small.

Errors in mass conservation for typical calculations of approach

flow fields to hydraulic structures (denoted by the divergence of the

velocity field) must be less than one percent in order to achieve

accurate incompressible flow simulations. Indicators such as the time

derivative of each of the velocities (from the momentum equations)

should also have maxima on this order. Further, the solution technique

chosen for a multi-dimensional hydrodynamic model should also be

efficient. This is imperative since the grid systems resolved by such a

code could typically have 50 to 100 thousand node points for a

three-dimensional problem.

The utility of any three-dimensional numerical hydrodynamic model

is based on its ability to consider the following: (a) the model must

compute non-hydrostatic pressure fields; (b) the model must handle
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non-uniform physical boundaries appropriately; (c) the model must

consider multiple initial and boundary conditions; (d) the model must

conserve mass both locally and globally and converge as quickly as

possible without sacrificing accuracy; (e) the code should simulate

three-dimensional, non-hydrostatic, incompressible flow in general

curvilinear coordinates for both steady and unsteady situations; and (f)

the code should also solve flow problems for both inviscid and viscous

flows. A primary use of the code could be the simulation of steady flow

phenomena in support of physical modeling activities related to

hydraulic structures at the U.S. Army Waterways Experiment Station.



CHAPTER 2

RESEARCH OBJECTIVE AND JUSTIFICATION

The primary purpose of this dissertation is to advance a numerical

methodology which would stand as the basis for three-dimensional (3D)

numerical hydrodynamic model development. The research does not attempt

to actually develop a three-dimensional code. Rather, state-of-the-art

two-dimensional (2D) numerical approaches are evaluated based on model

test case results, and the combination of such approaches which appears

to hold the most promise for three-dimensional development is

recommended.

The complexity of three-dimensional flow fields is generally such

that rigorous evaluation of any three-dimensional numerical solution

technique is difficult. Often the test cases used for 3D model verifi-

cation are nothing more than axisymmetric 3D or two-dimensional flow

fields. The approach followed in the development reported herein uses

simulated results of 2D flow fields of known solution as a basis for

recommending further 3D development. Such an approach is deemed equally

or more rigorous than actual 3D simulation since it allows intricate

evaluation and verification of model components for established

problems. Further, this approach expands the bulk of 2D modeling

knowledge by examining the efficacy of certain existing 2D formulations

and the creation of new ones (as needed).

Another focus of this research is the development of inviscid and

laminar viscous flow simulation tools. Although the flow fields near

5
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hydraulic structures are highly turbulent, incorporation of a turbulence

closure scheme is beyond the scope of the present research.

Model test cases were chosen based on the existence of their known

solution, the ease with which their major flow features can be presented

visually and analyzed, their acceptance as cases that numerical codes

must be able to simulate accurately, and the rigor required by an

algorithm for their accurate and efficient simulation. All the problems

chosen are steady-state scenarios. Both accuracy and efficiency (rapid

convergence) are stressed; however, when the two are in conflict, model

accuracy receives priority.

The results presented herein provide insight into the difficulties

associated with appropriately modeling hydrodynamic flow phenomena via

numerical methods. The results illustrate an algorithm which can be

used with confidence to simulate two-dimensional hydrodynamic flow

fields accurately (through use of a newly developed finite volume stag-

gered grid solution scheme) and efficiently (through the use of a multi-

grid method developed for use with the staggered grid solution scheme).

This dissertation describes the first use of the staggered grid

scheme presented herein with MacCormack's (MacCormack, 1969) explicit

finite difference solution scheme, Chorin's (Chorin, 1967) pressure

solution method, and a multigrid methodology developed specifically for

coupling with the other components. The insights obtained from the

multigrid investigation and development may be the most important of the

contributions made. Recommendations are presented for a direction for

future three-dimensional numerical model development. The recommenda-

tions of this study will help guide 3D hydrodynamic model development by

the Hydraulics Laboratory of the U.S. Army Corps of Engineers Waterways

Experiment Station.



CHAPTER 3

REVIEW OF NUMERICAL INCOMPRESSIBLE FLOW SOLUTION

3.1 OVERVIEW

This chapter provides an analysis of some aspects of the numerical

solution of the incompressible Navier-Stokes equations. Emphasis is

given to those methods which appear to be eligible for use in the

solution of hydrodynamic flow problems. Thus, both incompressible and

compressible flow solution schemes are discussed if the given scheme

appears to have potential for application, either by extension or

modification, to incompressible flows.

Discussion centers around only those points for which major

differences in modeling philosophy or new and innovative methodologies

exist in the numerical simulation of incompressible flow. The seven

points covered in depth include:

1. Finite difference solution vs. finite element solution,

2. Explicit vs. implicit methods,

3. Staggered vs. regular grid schemes,

4. Primitive variable solution vs. other formulations,

5. Solution scheme accuracy/mass conservation,

6. Poisson vs. Chorin pressure solution, and

7. Convergence acceleration.

Turbulence is not included because turbulence modeling is a topic

separate from the development and implementation of Navier-Stokes

solvers. In practice, it is usually necessary to use an empirical

7
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turbulence model to account for the effects of small, sub-grid scale

eddies upon the large-scale flow. This should be done, however, only

after the numerical scheme has been verified for laminar flow

applications. As Chen (1986) has stated, the

"accuracy of the turbulent flow prediction depends largely on the
quality of the turbulence model... . Accuracy... can be evaluated more
faithfully using laminar flow problems as numerical testing cases."

A number of additional topics germain to numerical solution of the

incompressible Navier-Stokes equations are omitted. An excellent review

of grid generation is provided by Thompson (1984). Further, Anderson et

al. (1984), Roache (1972), and Peyret and Taylor (1983) provide very

complete references for the general area of computational fluid dynamics

and numerical methods. Peyret and Taylor, as well as Lustman (1984),

discuss spectral methods. There are also a number of excellent over-

views of incompressible flow simulation including: Ferziger (1987);

Aref (1986); and Orszag and Israeli (1974). Johnson (1981) provides a

thorough review of the solution of the incompressible Navier-Stokes

equations for reservoir hydrodynamic modeling.

The next several sections of this chapter will present an evalua-

tion of each of the seven points listed above regarding incompressible

Navier-Stokes simulation. Following these sections, the points made in

each section will be summarized and a collective numerical methodology

identified for further study.

3.2 FINITE DIFFERENCE SOLUTION VS. FINITE ELEMENT SOLUTION

Numerical solution of fluid flow problems was first accomplished

via finite difference methods. Recently, however, finite element

methods have been proposed as an alternate or even preferred method of

solution (Gresho et al. (1981); Gunzburger et al. (1983); Bercovier et
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al (1981); Laval (1981) are examples). Baker (1983) gives a complete

overview of the method and its use in fluid problems. Additionally,

Chen (1982) and Yeh (1981) propose methodologies that appear to be

hybrid derivatives having properties of both finite difference and

finite element schemes.

Vinokur (1976) states that finite element methods are superior to

finite difference methods when complex boundaries are involved in the

simulation; he observes that finite difference methods are superior to

finite elements whenever complex equations are to be solved, such as the

Navier-Stokes equations. Further, Vinokur claims that finite volume

methods have advantages of both finite differences and finite elements.

Finite difference methods have often suffered a loss of accuracy when

irregular boundaries are discretized on rectangular grids. However,

Thompson (1984) notes that, with the advent of boundary-fitted grid

generation, finite difference methods have become practical even for

irregular boundaries. Further, Peyret and Taylor (1983) show that

certain finite element formulations may be equivalent to finite

difference schemes for relatively simple problems. Thus, there seems to

be no general reason for recommending finite difference or finite

element methods a priori.

3.3 EXPLICIT VS. IMPLICIT METHODS

Explicit methods are those in which a single flow variable,

pressure for example, is calculated at a new iteration or time step

using only information computed at the previous iterate or time step.

These methods are usually sequential in nature, allowing natural

sweeping activities within the flow field to take place. These methods

also often vectorize very naturally on supercomputer vector hardware.
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Implicit methods, on the other hand, solve for a flow variable as a

function of new and old flow information computed at the current and

previous time steps or iterations. These methods generally require

extensive matrix manipulation and inversion, but they allow the use of

larger time steps (in theory, infinitely larger; in practice, often 2 to

10 times larger) than do explicit methods. Thus, implicit methods may

be used to obtain steady-state solutions in fewer iterations than

explicit methods. However, implicit methods do require more arithmetic

operations for each iteration than explicit methods.

Review of both compressible and incompressible flow simulation

literature shows that alternating direction-implicit (ADI) methods are

widely used for numerical solutions of the Navier-Stokes equations.

These schemes are attractive because they produce banded matrices that

are invertible by well established sparse matrix techniques. Kwak et

al. (1984) employ the Beam-Warming ADI algorithm in their development of

the INS3D three-dimensional incompressible flow solver for simulation of

fuel flow in the Main Space Shuttle Engines. Chang et al. (1985) give

details of this simulation with the INS3D code, and Rogers et al. (1986)

add additional details of simulations of flow around multiple posts with

this code. The Beam-Warming scheme (see Beam and Warming (1976)) is an

implicit finite difference scheme that is second-order accurate in time

and space and employs approximate factorization (or flux-splitting).

Approximate factorization is a process whereby the formidable matrix

inversion process which would be involved in a non-iterative solution of

the Navier-Stokes equations is reduced to a series of tridiagonal matrix

inversion problems for which efficient solutions algorithms exist.

Briley and McDonald (1973) independently developed an algorithm similar
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to that of Beam and Warming. Several researchers now use the Beam-

Warming scheme including Kirtley et al. (1986) for hydroturbine flow

calculations and Choi and Merkle (1984) for a cascade geometry. Kim and

Moin (1984) also use a version of the scheme, coupling it with a

fractional-step method.

Although the Beam-Warming scheme has produced accurate results for

incompressible flow, approximate factorization is not without its

problems. Choi and Merkle (1984) note that the approximate factoriza-

tion methodology produces a contamination of the governing equations

that may dominate the other "real" terms of the equations for large time

steps and greatly slow convergence to the steady state. While the

authors present a pre-conditioning method which removes this concern, it

is presented for two-dimensional flow only. It is unknown how cumber-

some such pre-conditioning would be for the full Navier-Stokes

equations. Kwak et al. (1984) present an alternate methodology for

dissipating the contamination brought about, in part, by the approximate

factorization which uses second and fourth-order smoothing terms to the

factored Navier-Stokes equations. Although some information is

presented by Chang et al. (1985) on the appropriate selectlon of

coefficients governing the strength of these smoothing terms, their

selection may still involve trial and error. And, while the

factorization contamination can be minimized through appropriate

selection of the time step (Steger (1978)), this action may result in

the use of small time steps that negates the economy of using an

implicit scheme.

In addition to approximate factorization ADI methods, there are

other implicit methods that receive frequent mention in the literature.
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Mastin and Thompson (1978) discuss the use of point successive over-

relaxation (SOR) for implicit solution of the three-dimensional,

incompressible Navier-Stokes equations. These researchers use both a

one-step and a two-step method for computing new iterates of the

primitive variables. The two-step method resembles an implicit

predictor-corrector method. Patel and Thompson (1984) use an implicit

point-SOR scheme known as red-black or checkerboard SOR to increase the

vectorization potential of the computer code without the use of explicit

vector coding. The use of point-SOR is contrasted with the use of the

Gauss-Seidel method, both with and without relaxation added, for

implicit solutions. Several researchers including Chien and Schetz

(1975), Moitra (1982), Fuchs and Zhao (1984), Chen (1986), and Vanka and

Misegades (1987) report the use of a Gauss-Seidel technique. In

general, these researchers show that the method works well for their

given problems. However, simple Gauss-Seidel will not vectorize without

the use of computer-specific coding, a point which reduces the porta-

bility of such a code. As Vanka and Misegades (1987) show, however,

tailoring a particular code for a given machine can result in an

implicit Navier-Stokes solver which vectorizes very nicely on present

supercomputers.

In sharp contrast to the available information on implicit Navier-

Stokes solvers, the amount of literature abouL explicit methods is

small. Until the advent of vectorization capabilities on super-

computers, steady-state flow solutions were much more economical with

implicit methods than with explicit ones. However, given the very

natural way explicit schemes vectorize, their use has increased. If

care is taken, many explicit formulations will vectorize for numerous
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computing architectures, thereby increasing the portability of such a

code. Vanka and Misegades (1987) note that most of the first codes to

take advantage of the vectorization powers of supercomputers were

explicit. The works of Shang et al. (1980), Redhed et al. (1979), Chima

and Johnson (1983), and Smith and Pitts (1979) are examples of such.

Although there are a multitude of explicit finite difference

methodologies available, many of the explicit Navier-Stokes solutions

seem to utilize the predictor-corrector scheme of MacCormack (1969).

Bernard (1986) uses the MacCormack explicit scheme for solution of the

two-dimensional Navier-Stokes equations and recommends its use in three

dimensions. Further, MacCormack (1985) recommends his own scheme as the

basic foundation of Navier-Stokes solvers for the future. This is in

contrast to the use of Runge-Kutta explicit schemes by Chima (1986),

Moitra et al. (1986), and Jameson et al. (1981). These authors argue

that the Runge-Kutta scheme is more efficient than MacCormack's explicit

scheme. Further, they point out that a larger time step can success-

fully be taken with the Runge-Kutta than with the MacCormack approach.

However, these Runge-Kutta schemes require the addition of artificial

dissipation to remove point-to-point oscillations associated with their

use of central differencing for the advective terms. (MacCormack's

scheme may also require such a dissipation correction for high Reynolds

number flows, though potentially less than the Runge-Kutta scheme due to

the one-sided nature of the predictor-corrector scheme.) The Runge-

Kutta schemes also require more operational steps per iteration than

MacCormack methods.

Explicit methodologies are, of course, not without their

inadequacies. An obvious shortcoming of explicit schemes is their
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restrictive time step requirement (the "Courant" limitation; see Courant

et al. (1929)) which results in a large number of iterations being

required to drive a problem to steady-state compared to implicit

schemes. However, due to vectorization, the actual amount of computing

resources utilized to produce many iterations is much less than for

previous scalar machines.

MacCormack (1985) notes that for his explicit predictor-corrector

scheme some particular difficulties may arise. The scheme may, for

example, never reach machine zero convergence due to the nature of the

predictor and corrector steps. Each of these steps is a one-sided

finite difference operation (either forward or backward). As a steady-

state is approached a point may be reached where the solution oscillates

about the steady-state. This problem may be alleviated with an

appropriate amount of numerical dissipation.

3.4 STAGGERED VS. REGULAR GRIDS

A third consideration in the solution of the Navier-Stokes equa-

tions is the representation of pressure and velocity on a numerical mesh

or grid. Two basic types of grid representations exist: regular and

staggered. Regular grids are those for which all the flow variables are

defined at each of the node points of the grid. In this case, pressure

and velocity are defined at the same places on the grid. This type of

representation is widely used for compressible flow. Staggered grids

are those for which the pressure and velocity values are defined at

different grid positions.

The staggered Marker-and-Cell (MAC) grid was first discussed by

Harlow and Welch (1965) and was further considered by Hirt and Cook

(1972). The classical MAC method springs from these works. This type
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of grid, and adaptations thereof for generalized curvilinear coordinate

transformations, have found favor with many incompressible flow solvers

because they preserve the physical relationship between pressure and

velocity better than the regular grid structure for this type of flow.

However, several researchers continue to use regular grids for

incompressible flow solution (such as Rhie (1986)) in conjunction with

various levels of numerical dissipation.

Not withstanding the use of regular grids by some incompressible

flow researchers, Bernard and Thompson (1984) have shown that some type

of grid staggering is needed for stable solutions to the incompressible

Navier-Stokes equations at high Reynolds numbers in the absence of

artificial viscosity (the latter being required by many regular grid

solutions). These authors further state that, for orthogonal grids, the

MAC grid scheme is quite adequate; a recent three-dimensional incom-

pressible flow solution by Cooley (1986), for example, uses the MAC

grid. Ferziger (1987) points out the staggered grid has a number of

advantages over the regular grid in that the former, by locating flow

variables at the centers of control volumes, increases the accuracy of

the differencing formula. Further, the staggered grid scheme conserves

mass and momentum in a very natural way. In the past, these advantages

were offset by the difficulties that staggered grids had when variable

grid spacing or boundary-fitted grids are used; however, methods have

recently been developed to overcome these difficulties.

3.5 PRIMITIVE VARIABLE SOLUTION VS. OTHER FORMULATIONS

The Navier-Stokes equations, as expressed in their original form,

are in primitive variable form. This means that the flow variables will

be pressure and velocity. This type of solution is contrasted with
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those that solve the governing equations, in a modified form, for

vorticity and the streamfunction. Many early numerical solutions used

this latter methodology while following the lead of Fromm (1963). The

streamfunction-vorticity form of the Navier-Stokes equations can be

obtained easily by taking the curl of the governing primitive variable

equations. This approach is particularly appealing because , as Orszag

and Israeli (1974) state, vorticity is generated locally near boundaries

in high Reynolds number flows and is subsequently diffused and advected

away. Conversely, pressure is governed by an elliptic equation and is

affected instantaneously by all points in the flow domain. The

streamfunction-vorticity formulation conserves mass at all points in the

flow domain under all circumstances. Roache (1972), in fact, strongly

supports this formulation for the solution of the two-dimensional

equations of motion. Nonetheless, Orszag and Israeli claim that

primitive variable formulations are generally somewhat more accurate

than streamfunction-vorticity formulations because the latter

formulation requires the numerical approximation to more derivatives

than does the primitive variable approach.

The biggest shortcoming of the streamfunction-vorticity formulation

is that it requires specification of the streamfunction and vorticity on

boundaries. This is very difficult to specify for flow about obstacles

such as bridge piers and islands. Assignment of the streamfunction for

said piers would be tantamount to assigning the character of the flow in

the very region of interest. Three-dimensional generalizations of the

streamfunction-vorticity method have been developed using a vector

potential (such as Aziz and Hellums (1967) and Hirasaki and Hellums

(1970)). These methods, however, are again difficult to formulate at
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the flow boundary. Other three-dimensional formulations using a

velocity-vorticity method (i.e., Reizes et al. (1984) and Chien and

Schetz (1975)) suffer from similar difficulties.

3.6 SOLUTION SCHEME ACCURACY/MASS CONSERVATION

Accuracy is of extreme importance for numerical solution to a

system of partial differential equations. With the incompressible

Navier-Stokes equations, assurance of mass conservation (i.e., the

divergence of velocity is less than one percent for every grid cell) is

a fundamental concern. Many numerical schemes attempting solution of

the incompressible equations have had success in assuring conservation

of momentum. However, many of the same schemes "leak" in that they do

not conserve mass locally and/or globally. This lack of mass conserva-

tion is equal to allowing compressibility in the incompressible

calculation. The effects of compressibility should be kept low so that

the basic character of the flow field will be preserved. The acceptance

of compressibility introduces a finite sound speed into a flow field

that should have an infinite sound speed. If too much compressibility

is introduced via mass violations, pressure changes will not be

transmitted properly within the flow field.

Bernard and Thompson (1984) point out that the use of central

differences for representation of the advective terms in the governing

equations generally leads to point-to-point oscillations that contami-

nate and destabilize flow-field calculations. This is true whether the

grid scheme used is staggered or regular. Further, these oscillations,

while physically meaningless, do conserve mass and momentum and are,

therefore, a solution to the discretized equations in the strictest

sense. Several ways are available to mitigate these oscillations
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including the use of explicit artificial dissipation and/or upwind

differencing. However, Bernard and Thompson (1984) state that the best

method to overcome this problem is to use a discretization scheme which

ties the solution at each point in the flow field directly to analogous

variables at its nearest discrete neighbors. Thus, predictor-corrector

schemes, with their alternating use of one-sided differences, help

control oscillations. Note also that the use of staggered grids

promotes accuracy by representing velocity (or mass flux) and pressure

in their proper relationship (finite volume representation) for

incompressible flow.

3.7 POISSON VS. CHORIN PRESSURE SOLUTION

Another obstacle to the solution of the incompressible Navier-

Stokes equations involves the lack of a time derivative in the

continuity equation (which may negate the use of time-marching schemes)

and the lack of an obvious equation of state relating pressure to other

flow variables such as density. This situation has often been remedied

through manipulation of the continuity and momentum equations to produce

a Poisson equation relating pressure and the velocity field. The

mathematical details of this approach are presented in Chapter 4.

When using the Poisson equation approach, the pressure is obtained

from a Poisson equation based on some intermediate velocity field

approximation. The velocity field is then modified using the gradients

of this new pressure field. Some iteration is necessary at each time

step to converge the Poisson solution. The approach was originated by

Harlow and Welch (1965), and the basic concept has been subsequently

used by many incompressible flow researchers. The basic differences

between the treatments presented by these investigators have centered on
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two points: (a) simplification of the Poisson equation; and, (b) the

iteration scheme used to solve the equation. These points are discussed

below.

Patankar and Spalding (1972) developed the SIMPLE (Semi-Implicit

Method for Pressure-Linked Equations) method for providing the updated

pressure field from a Poisson equation. The Poisson equation is

simplified by assuming that the influences of the local pressure on

other than its nearest neighboring velocity points is negligible. This

method is known to be accurate, but it converges slowly. The SIMPLER

(SIMPLE Revised) method by Patankar (1981) improves on the SIMPLE method

by keeping all of the terms neglected in the latter, with the result

that convergence is improved at the cost of additional computational

time per iteration. Neely and Claus (1985) present a derivation of

these methods which they state has the advantages of both. All of these

methods use under-relaxation in their solution for the pressure field

and solve a version of the Poisson equation. They differ from each

other in the number of terms kept in the Poisson equation and in the

exact numerical approach taken for solution.

There are many numerical methods for the solution of the Poisson

equation for pressure. Most are iterative due to the prohibitive nature

of direct solution for this equation. The methods mentioned above use

under-relaxation techniques; Bernard (1988) uses a conjugate-gradien%

method; Vanka and Misegades (1987) use a vectorizable Gauss-Seidel

scheme; and still others have used ADI-like schemes. Of these, the

conjugate-gradient method seems to be the most efficient, and it is also

vectorizable.
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The iterative nature of the majority of Poisson solution methods

has led several researchers to question its efficient use for three-

dimensional, steady-state simulations. An alternative to such

steady-state solution approaches is the introduction of what is called

"pseudo-compressibility". This concept, which is roughly equivalent to

introducing some compressibility into the incompressible continuity

equation through a time derivative for pressure, was first proposed by

Chorin (1967). The basic idea of the method is to consider the steady-

state incompressible flow solution as the limit as time approaches

infinity of the unsteady equations of motion obtained by coupling the

unsteady momentum equations with a modified continuity equation. This

modification, explained in Chapter 4, involves the addition of a time

derivative of pressure divided by a "pseudo-compressibility" coef-

ficient. As the steady-state is reached, this time derivative vanishes

and the original incompressible continuity equation is recovered. Thus,

at convergence, mass and momentum should be conserved and the governing

incompressible equations solved. Further, as noted in Chapter 4, this

method is approximately equal to the full Poisson solution.

Soh and Berger (1984) discuss the advantages of using this

formulation versus the full Poisson solution: (a) iterative solution of

the Poisson equation for pressure is avoided; (b) inclusion of an

explicit time derivative of pressure makes it possible to solve all the

governing equations by a time-marching technique while leaving the

spatial ellipticity of the equations intact; and, (c) the method is

easier to program than the iterative Poisson solution technique. It is

for reasons such as these that many researchers have used Chorin's

method for pressure including Kwak et al. (1984).
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Although there are numerous reasons supporting the use of pseudo-

compressibility for steady-state incompressible flow solutions, Chang

and Kwak (1984) present several consequences of its use. The method

introduces a finite sound speed into what should be an infinite sound

speed medium. The modified speed of sound is governed by the pseudo-

compressibility coefficient. Ideally, this coefficient should be chosen

so that the effective Mach number approaches zero. However, the authors

note that this action introduces contamination into their approximately-

factored numerical solution. If this coefficient is chosen so that the

introduced sound waves move too slowly, the flow field development will

be incorrect, especially for boundary layers, due to erroneous pressure

information. To remedy this, Chang and Kwak recommend a lower bound for

the pseudo-compressibility coefficient.

3.8 CONVERGENCE ACCELERATION

Solution of the incompressible Navier-Stokes equations for even

simple flow geometries can take many iterations to reach convergence.

For example, a two-dimensional potential flow test case for a simple

straight channel discretized on a 21-by-21 grid-point mesh takes over

1,000 iterations to converge to a mass violation of less than 10- 2 .

This translates to potentially large expenditures of computer resources

for three-dimensional simulations. A number of techniques exist for

acceleration of the convergence of these simulations to the steady state

including the use of local time stepping, optimum relaxation parameters,

grid stretching, and implicit rather than explicit schemes. One of the

most promising approaches is the multigrid method. The practical roots

of this method stem from the work of Brandt (Stuben and Trottenberg

(1982)), who first realized the practicality of such methods. These
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authors, as well as Brandt (1977; 1984) describe the details of the

multigrid method. An algebraic interpretation of multigrid has been

given by McCormick (1982).

The conceptual basis of the multigrid method is quite straight-

forward: convergence to the steady-state for most problems slows

greatly after the first few iterations, thereby prolonging the expen-

diture of resources. This happens because relaxation techniques

eliminate high frequency errors quickly and longer wavelengths (which

make up the bulk of the error after the initial iterations of a relaxa-

tion scheme) more slowly. Convergence can be accelerated through the

use of multiple grids of ever coarser resolution over a given flow

domain. Information on each finer grid is transported to the next

coarser grid, where the chosen relaxation technique can smooth the

errors of shorter wavelength relative to the coarser grid (but longer

relative to the finer grid). Corrections on each coarse grid, the

number of grids being dictated by the user, are then referred back to

the finer grids through some interpolation mechanism. The result of

this action is that the longwave error on the fine grid is smoothed on

the coarser grids more quickly resulting in accelerated convergence of

the solution on the finest grid. More information on this method is

available in Chapters 4 and 5 and in the references cited above.

The uses of multigrid, and the types employed in these uses, are

very broad indeed. The types attributed to Brandt include the

Correction Scheme, Full Approximation Scheme, Full Multigrid Method, and

the Algebraic Multigrid Method. Jameson and Yoon (1986), and Martinelli

et al. (1986), present a variant of the Brandt multigrid method that may

be somewhat easier to program and use than Brandt's full multigrid
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scheme. It uses interpolation to transfer all the coarse grid

corrections back to the finest grid rather than using interpolation

coupled with relaxation. Ni (1982) presents a further use of multiple

grids for convergence acceleration for the Euler equations. This method

employs a Lax-Wendroff scheme to provide the corrections to the finest

grid as computed on the coarser grids. Johnson (1982) has built on Ni's

work by simplifying the computations therein and by employing

MacCormack's explicit scheme in his computations (Johnson (1983) and

Chima and Johnson (1983)). This method, however, looks very much like

the correction scheme of Brandt and has not seen much, if any, use for

elliptic problems. This may be contrasted with Brandt's full approxi-

mation scheme, which has been used to solve elliptic problems (such as

the Poisson equation) and hyperbolic and mixed partial differential

equations as well.

The global use of multigrid and multiple-grid schemes for

convergence acceleration, as presented by many author is, is impressive.

McCormick has edited the proceedings of two international multigrid

conferences (McCormick and Trottenberg (1983); McCormick (1985)) held at

Copper Mountain, CO; a third proceedings of an 1987 conference is being

produced presently. Within this third proceedings volume will be a

bibliography of over 600 papers dealing with multigrid theory, applica-

tion, and innovation. These papers cover all types of applications from

aerodynamics to oil reservoir simulation to grid generation. Many

papers on mathematical theory are also presented. However, less than

25 papers specifically related to incompressible flow simulation are

mentioned. And many of these papers are very recent. Authors such as

Fuchs and Zhao (1984), Vanka and Misegades (1987) and Rosenfeld and



24

Israeli (1987) present papers on incompressible Navier-Stokes flow

simulation using multigrid techniques. Further, Ferziger (1987) lists

multigrid methods specifically as a special tool of choice for

convergence acceleration.

Multigrid methods can be vectorized. They can also be used with

both explicit and implicit finite difference methods and finite element

methods. The stiffness of most incompressible applications demands the

use of a technique of this type. Multigrid methods are not without

their shortcomings, however, since they seemingly must be "fine tuned"

for each application for which they are used.

3.9 SUMMARY OF METHODOLOGY CHOSEN FOR FURTHER EVALUATION

A summary of the points presented above is given below as support-

ing arguments for the technique to be further evaluated for

three-dimensional incompressible flow simulation. The overall strategy

includes the following:

1. Finite difference (finite volume) formulation,

2. MacCormack's explicit predictor-corrector solver,

3. Staggered grid,

4. Primitive variables solution,

5. Mass and momentum conservation locally and globally,

6. Pseudo-compressibility used for pressure solution, and

7. Multigrid method for convergence acceleration used.

Given this type of scheme, the governing equations are presented next.

The actual numerical discretization of these equations is presented in

Chapter 5.



CHAPTER 4

GOVERNING EQUATIONS FOR INCOMPRESSIBLE FLOW

4.1 OVERVIEW

Presented in this chapter are the governing equations for

incompressible flow of a Newtonian fluid. The fluid is understood to be

homogenous, thereby negating buoyancy effects upon its motion. In

addition, the free surface of the fluid is assumed flat (rigid lid

concept), an assumption which is usually valid for low Froude number

flows such as those approaching hydraulic structures. Given-these

assumptions, the governing equations expressing conservation of mass and

momentum are presented. Note that, in the absence of buoyant body

forces, the energy equation is completely uncoupled from the mass and

momentum conservation equations.

4.2 CONSERVATION EQUATIONS

The governing equations of motion (Navier-Stokes equations) for

incompressible flow, given the above assumptions, in cartesian

coordinates and primitive variables are:

ut + (uu)x + (uv)y + (uw) z -Px +VV2 u (4.1)

vt + (vu)X + (vv)y + (vw)z = -py + vV 2v (4.2)

wt + (wu)x + (WVy + (ww) z = z + VV2w (4.3)

In addition, the governing equation of mass conservation is

25
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ux + vy + wz = 0 (4.4)

where

x, y, z = cartesian coordinates

u, v, w = cartesian velocity components

v = kinematic viscosity

V2 = laplacian operator

p = dynamic pressure, divided by density

and the subscripts denote partial derivatives of the given index.

Equations 4.1-4.3 are transport equations relating to the conser-

vation of linear momentum. Equation 4.4 represents a constraint that

must be satisfied at each instant, that being the constraint of mass

conservation both locally and globally. These equations are the

Reynolds-averaged equations, and their solution results, naturally, in

the computation of mean velocities and pressure. It should be noted

that the pressure in these equations is actually the dynamic component

of pressure and does not include the hydrostatic component. This

presents no problem given that it is the pressure gradient, and not the

actual pressure, which is of prime import due to its role as an agent of

mass conservation in incompressible flow.

Bernard (1986) has shown that it is often advantageous to express

the advective terms in Equations 4.1-4.3 in an asymptotically

conservative form, thereby effectively adding a term of the form

u (ux + Vy + wz )
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(or its analogy) to the right-hand sides of each equation of motion.

Bernard notes that this formulation eliminates false source terms that

might enter into the momentum equations (equations of motion) as a

result of mass not being conserved through the chosen numerical solution

scheme.

In order to more accurately and efficiently provide computations in

regions with arbitrary geometries, such as in the vicinity of irregular

boundaries, a coordinate transformation is introduced which maps the

solution of the governing equations from a nonuniform physical domain to

a rectangular computational space. Thus, it is advantageous to write

the governing equations in terms of the generalized curvilinear

coordinates

:(x,y)

n Y I(x,y)

Given this transformation of coordinates, the two-dimensional analog of

Equations 4.1-4.4 above become

ut --Px~ V ) u5
T + (uU) + (uV) : V+ 2+ u(U + v) (4.5)

vt -p 2
+(vV) :1 + v( + V ) (4.6)

(U + V ) 0 (4.7)
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where the quantities U and V are volumetric flux components and J is the

Jacobian of the transformation as given by

U = ynu - xnv (4.8)

V = x&v - y u (4.9)

J=(x yn - y xn) 1  (4.10)

where

,x., y,, y are the metrics of the transformation whose

numerical formulations are defined in Chapter 5.

Note that J is actually the inverse of the volume of a given grid

cell (control volume) in the computational plane. Only the equations of

motion in two dimensions are presented since the bulk of this report

will consider their numerical solution and the implications of their

solution for three-dimensional solutions. All additional presentations

of the governing equations will be in two dimensions.

The cartesian velocity components, u and v, may also be expressed

as functions of the flux components shown above.

u = J(x U + xnV) (4.11)

v = J(y U + ynV ) (4.12)

Further, the first cartesian derivatives for any function f may be

expressed, via the chain rule, in the following transformed form
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fx = J(Yf - Y&f) (4.13)

fy = J(xf - xnf) (4.14)

which results from the fact that, in two dimensions,

X= Jy (4.15)

y= -JXn (4.16)

fX = -Jy (4.17)

ny =Jx (4.18)

The relationships in Equations 4.13 and 4.14 can then be used to

develop a transformed expression for the divergence of a gradient (such

being the Laplacian of a given function and the mathematical

representation of the viscous terms)

div(grad f) v2f = j (y f - x f ) + ( fy f (4. 19)a (Ynx n y a (  Y ) (.9

where the cartesian derivatives of the function f are retained strictly

for convenience. Equation 4.19 is then used with the velocity terms, u

and v, to compute the viscous terms in the governing equations.
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4.3 PRESSURE SOLUTION EQUATIONS

The incompressible equations of momentum and mass conservation, as

presented above, are elliptic-parabolic partial differential equations.

This contrasts with the compressible equations of motion which are

hyperbolic. A characteristic of the relations important in the solution

of the incompressible equations is illustrated in Equation 4.7 by the

absence of both a time derivative for either density or pressure and an

advective term for the gradient of the same. In addition, there is no

equation of state relating pressure and density for an incompressible

flow as there is for compressible flow. Thus, methodologies must be

developed which allow for the mathematical coupling of the pressure and

velocity fields. Two primary approaches exist, as discussed -in Chapter

3, to express pressure as a function of the velocity field: (a) the

solution of a Poisson equation for pressure; and (b) the use of pseudo-

compressibility. As will be shown in this section, (b) is actually a

specialized version of (a). The foundation of each of these methods

will be presented below.

4.3.1 Poisson Pressure Formulation

To illustrate the formulation of the Poisson equation relating

pressure and the velocity field, recall the equations of motion in

primitive vector form

ut u " Vu + Vp = VV2u (4.20)

where u is the vector of velocities and V is the gradient operator.

As a first step in this development, use a simple two-point

time-differencing scheme for the time derivative of velocity such that
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un+l + tVp = un _ At [un .Vun _ vv2un] (4.21)

Equation 4.21 can be simplified by using the following definitions:

= pAt (4.22)

fn un at (un . Vun _ vV2Un] (4.23)

Thus,

Un+l + V fn (4.24)

Now, taking the divergence of Equation 4.24, and recalling that the

desired pressure is that which results in a divergence-free velocity

field (mass is conserved) at the time level n+1, the following Poisson

equation results

V2 = V . fn (4.25)

Recalling that the vector f is one whose components are estimates of the

new nonconservative velocity components at the time step n + 1, the

divergence of f can be defined as

v . fn = V . u' (4.26)

where ul' is the provisional velocity defined by the right-hand side of

Equation 4.23. Thus, the pressure that is required at the new time step
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to insure mass conservation is related to a provisional velocity field

whose divergence may be nonzero (and thus, does not conserve mass).

Equation 4.25 is a Poisson equation which is usually solved by iterative

means. As was discussed in Chapter 3, many researchers have questioned

the efficiency of solving this equation by iteration at each time step

within the framework of a global solution scheme which is, itself,

iterative. These researchers have then often opted for use of the

method of pseudo-compressibility as initiated by Chorin (1967) for

steady-state computations.

4.3.2 Pseudo-Compressibility Formulation

Suppose, in the solution of the governing conservation equations,

that an explicit iterative scheme were used. Given the definitions

above for * and the vector f, Equation 4.24 could then be replaced by

um + Vm = fm-1 (4.27)

where m denotes the iteration count. It is necessary, as Equation

4.27 converges, that the divergence of the velocity field approaches

zero. However, there is no direct mechanism at each iteration to ensure

this action.

In order to ensure a divergence-free field at convergence, consider

the solution of Equation 4.27 through some iteration scheme. As the

solution approaches convergence, the left-hand side of Equation 4.27

approaches a steady-state such that

tm = fm-1 (4.28a)
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um + V m = um-1 + vo -1  (4.28b)

Taking the divergence of Equation 4.28b, and requiring that the velocity

field at iterate m be divergence-free, one obtains

V2 m = V • um-1 + V2 m-1  (4.29)

Thus, it appears that the Poisson Equation 4.29 must be solved exactly

for each sweep of the field given the known old pressure and velocity

fields. However, Equation 4.29 itself can be used to define an

alternative iteration solution procedure for 0 by employing successive

over-relaxation (SOR),

V2 = V + 2m-1 (4.30)

m = r + (1-0 i (4.31)

where w is a relaxation parameter.

The iteration scheme above is still no easier to employ than the

Poisson pressure solution discussed at the beginning of this section.

However, simplification of this alternative scheme is straightforward.

Recall that the Laplacian in Equation 4.30 can be expressed by the

five-point scheme

V2= 1__ - 2) + +. A (. j - 2$ij + $ ) (4.32)
Ax2 (i+yj + i-lJ Ay2
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Equation 4.32 is first substituted into Equation 4.30. The non-main
rn-1

diagonal elements of * and * are then equated in this new

expression. Assuming the spatial step sizes are equal for convenience,

this operation yields

*m = rm-1 A (V .um-1) (4.33)

Recalling the definition of phi, this yields

m m-1 Ax 2 m-1piJ : PiJ -- (v. u ) (4.34)

Rearranging (4.34) and dividing both sides by the time step gives

pm p m- 1 2

iJ - + Ax2 6 (V) = 0 (4.35)
At 4At 2  -

which is the explicit, first-order (in-time) approximation for the

equation

3p + B 2 (V • u) = 0 (4.36)

at

where

42t2
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Equation 4.34 is solvable directly for the new pressure for each control

volume as a function of the old pressure and velocity fields directly.

Further evaluation of the method shows that the coefficient B acts as a

"pseudo" sound speed which is introduced by numerical contrivance

alone. The physical sound speed is defined as

1/2

c !4 (4.38)

at constant entropy. Thus, if pressure (here the actual pressure rather

than the pressure divided by the density as utilized elsewhere) were a

function of density alone, and given that B is acting as a surrogate

sound speed, one could write

3_ ! d 0 2 (4.39)
at dp at at

which, when substituted into Equation 4.36 yields

02 3- + PS2 U) = 0 (4.40)

Bat+8 (v

Therefore, this method suggested by Chorin is nothing more than an

acoustic approximation to the compressible continuity equation. Given

the absence of an advective term for the density gradient in Equation

4.40, which would appear in the compressible equation, Equation 4.36 is

valid only when the density gradients in a given flow are very small;

i.e., when true compressibility is small, such as for low Froude-number

incompressible flows.
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From Equation 4.40 the origin of the name of this method, "pseudo-

compressibility" can be easily seen. At each time step or iteration,

the solution of Equation 4.40 (or, more straightforwardly, Equation 4.34

for pressure) is tantamount to accepting some amount of "compressi-

bility" in the incompressible flow solution. However, at the steady

state, the solution of Equation 4.34 should return the required

condition that the velocity field be divergence-free (Equation 4.7).

Use of the method may return some degree of hyperbolicity to the

governing equations prior to the steady-state. However, as the steady-

state is approached, the governing equations must return to their

elliptic nature for proper solution. The true advantage of the use of

this approach is that marching schemes can be employed within which no

additional iteration is required for pressure solution as would be the

case with a Poisson pressure solution. Use of this method, however,

places some stability limits on the calculations (as discussed in

Chapter 6). Further, it does not, unto itself, guarantee the

computation of a pressure field at each iteration which will ensure mass

conservation in contrast to the Poisson solution discussed above.

4.4 CONVERGENCE ACCELERATION METHODOLOGY

Chapter 7 describes a solution of the two-dimensional equations of

motion with an explicit marching scheme employing pseudo-compressibility

which requires many thousand iterations to achieve a steady state. A

three-dimensional calculation would require many more. To make these

calculations more attractive fiscally, an efficient method is sought to

accelerate the convergence of these calculations to the steady state.

Chapter 3 concluded that the most attractive convergence acceleration

methodology for solution of partial differential equations is the
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multigrid approach inspired by Brandt (1984). The actual multigrid

scheme utilized herein, which is founded on the work of Brandt (1984)

and Jameson and Yoon (1986), is described below for the solution of a

general system of partial differential equations. The mechanics of this

solution are presented in Chapter 5.

4.4.1 Approach Heuristics

The explanation of the multigrid approach is begun by expressing

the Navier-Stokes Equations (4.1-4.4) as a partial differential system

designated by

Lu = f (4.41)

where L is a differential operator and, in this case, nonlinear. A

numerical solution to this equation can be constructed through the

discretization of the solution space and the formulation of L as the

discrete operator L' . The numerical approximation to Equation 4.41

would then be

L'u' = f' (4.42)

where the primes all denote a numerical approximation. In general, some

error will be incurred in the numerical approximation of the u such

that

u = u + C (4.43)
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where c denotes the error associated with the unconverged numerical

approximation to u. It is this error e which must be reduced to

acceptable tolerances before the steady-state solution can be achieved.

The reduction of the error e for the Navier-Stokes equations is not

a simple task. Firstly, ! has within it various wavelengths of error,

some short and some quite long. It is well known that relaxation tech-

niques are quite good at smoothing error bands which are of high

frequency/short wavelength. These wavelengths are generally on the

order of the grid spacing. However, the same techniques are generally

not as good at resolving the longer wavelength errors. Thus, it is

these long wavelength errors that result in protracted iteration toward

the steady-state solution.

Multigrid techniques seek to enhance convergence by smoothin6

errors of longer wavelengths as well as the high frequency error. This

is done through the use of a number of grids of increasing coarseness

(i.e., decreasing number of grid points) as compared to the primary

solution space discretization (hereafter referred to as the finest

grid). To each of these coarse grids information from the previously

finer grid is transferred. The relaxation scheme of interest is then

applied on this coarser grid, thereby smoothing the short wavelengths of

error on said grid as discussed in Chapter 3. While the multigrid

concept may appear simple, the actual mechanisms associated with

implementing it correctly are somewhat more difficult. These steps are

overviewed below.

4.4.2 Steps for Multigrid Implementation

There are three main steps in a multigrid calculation: (a)

restriction; (b) relaxation; and (c) prolongation. Each of these steps
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may be applied numerous times during a given global solution. Given

below is an overview of the steps taken to implement multigrid.

4.4.2.1 Step 1. Following the initialization of the solution

domain, including grid generation and data input, one or more relaxation

sweeps are performed on the finest grid (grid k) using the MacCormack

explicit predictor-corrector scheme (discussed in Chapter 5). From

this, an updated approximate solution is generated. If this solution

meets some specified criteria for convergence, calculation ceases and

the solution is accepted as the approximation to the steady state.

4.4.2.1 Step 2. Assuming convergence has not been reached, the

updated solution is transferred to the next coarser grid (grid k+1).

This grid can have any spatial increment; however, a computationally

convenient coarse grid spacing is twice that of the previously finer

grid, and this convention is used herein. The updated flux and pressure

gradient information from the finer grid is transferred to the coarser

grid via a process generally referred to as restriction. Although a

number of restriction operators exist, integration based on the Gauss

Divergence Theorem (Kreyszig, 1979) is employed herein. The mechanics

of this operation are detailed in Chapter 5.

4.4.2.3 Step 3. In a manner analogous to Step 2, the finer grid

residuals are restricted to the coarser grid. These residuals are

defined as

r fk - Lkuk (4.44)

where

r : present residuals on finer grid k
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f1k = present right-hand-sides of differential system being solved
on grid k

u = present solution approximation on finer grid k

4.4.2.4 Step 4. Recalling that the purpose of the multigrid

approach is to accelerate finest grid solution convergence via error

smoothing, one would now like to solve directly for this error on the

coarser grid. Due to the nonlinear nature of the Navier-Stokes

equations, however, the L' does not operate directly upon E but upon

its alternate expression u - u'. Then, employing Brandt's (1984) Full

Approximation Scheme (FAS), the following system is relaxed on grid k+1

k+1 ' k+1 ' k+1 ( k+1 'k) ' k+1 'kL + u (I u r (4.45)
k Z k -

= fk+1

where

'k+ 1
u ' updated solution approximation on coarser grid k+1
,k+1
I k = restriction operator defining the finer-to-coarser grid

transfers of information

L = finite difference approximation to L on coarser grid k+1

and all other variables are as defined above.

The finite difference operator on the coarser grid is exactly the

same as that on the finest grid. Thus, MacCormack's predictor-corrector

scheme is employed to solve Equation 4.45 for a new estimate of the

vector u on the coarser grid. The restriction operator I'k+ will be

defined in Chapter 5.
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Equation 4.45 can be expressed in words as follows: the new

approximate solution for the governing system of partial differential

equations can be solved for on the coarser grid k+1 using the same

relaxation scheme as was used on the finest grid (Lk). This scheme

operates first on the transferred (restricted) current finer-grid solu-

tion (uk) whose value is based on its restriction to grid k+1 through

the transfer operator I'k+1. This coarse grid solution is further

refined based on the residuals computed and transferred from the finer

grid, r,k. The results of these two operations are summed and serve as

the new right-hand side of the governing system of equations being

solved. The basic relaxation scheme then operates on this new system.

4.4.2.5 Step 5. Repeat Steps 2-4, transferring the new coarse

solution on grid k+1 to a still coarser grid (note that the resolution

on this grid is one-fourth as fine as on grid k) based on the operations

described in Step 2. Repeat these operations for as many coarse grids

(N) as prescribed by the user. In this fashion, the residuals from the

previous grid drive the solution on the next coarser grid.

4.4.2.6 Step 6. Having completed restriction and relaxation

operations on each coarse grid, transfer the coarse corrections to the

approximate solutions for each just finer grid (and, subsequently, the

finest grid) through a process called prolongation. The corrections are

prolonged (transferred) from grid h+1 (a coarser grid) to grid h (next

finer grid) based on the equation (Brandt, (1984))

,h ,h ,h ,h+1 ,h+1 ,h
u u + I u - 1 (4.46)-new - h+1 ~h ~

where the u' are the current values of the approximate solution on grids
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h and h+1; 4'new the updated approximate solution on finer grid h, and

the I' transfer operators. Note that I' + 1 is actually the same as the

restriction operator described above for Equation 4.45. Ih
h+1

conversely, is the prolongation operator which defines the transfer of

coarse grid corrections to a finer grid. This operator is also defined

in Chapter 5.

Note in Equation 4.46 that only the correction to the coarse grid

approximate solution is prolonged from grid h+1 to grid h. This is

shown by the subtraction from the current solution on grid h+1, which

was solved for in Equation 4.45, of the initial solution on said grid as

transferred from grid h in the restriction phase of Step 2.

4.4.2.7 Step 7. Repeat Step 7 for all grids, culminating in the

transfer of global coarse-grid corrections from all the coarser grids to

the finest grid (grid k). The value of ulk is then the value of u at• ew-

the new time step.

4.4.2.8 Step 8. Repeat the entire process, starting with Step 1,

for a pre-specified number of multigrid cycles or until convergence is

reached.

This procedure is similar to the V-cycle Full Multigrid approach

discussed by Brandt (1984). Within the prolongation process (Steps 6

and 7), Brandt first transfers coarser-grid connections to the next

finer-grid, then relaxes this modified finer-grid solution. This, in

turn, produces updated corrections for prolongation to the next level of

finer grid. The procedure used herein performs no such additional

relaxation within the prolongation process, choosing rather to prolong

via interpolation (discussed in Chapter 5) alone. This is similar to

the procedure of Jameson and Yoon (1986). This approach was chosen

based on its apparent simplicity compared to Brandt's scheme.



CHAPTER 5

NUMERICAL SOLUTION METHODOLOGY

5.1 INTRODUCTION

In order to simulate incompressible flows by means of a numerical

model, one must discretize the governing equations and program the rules

presented in Chapter 4. This chapter presents the methodology employed

for this discretization and the numerical solution to the incompressible

Navier-Stokes equations. The chapter begins with a detailed explanation

of the use of the predictor-corrector scheme of MacCormack (1969) to

solve the governing equations of mass and momentum conservation in

generalized two-dimensional curvilinear coordinate space. The incor-

poration of a multigrid scheme for convergence acceleration into the

solution scheme is then discussed. As the heuristics of this scheme

were presented in Chapter 4, the interworkings of the transfer

mechanisms, restriction and prolongation, and the computation of the

residuals will be detailed herein. Discussion of boundary conditions,

initial conditions, stability calculations, and convergence criteria is

presented in the next chapter.

5.2 PROBLEM DISCRETIZATION

Discretization involves the division of the flow field into a

finite number of individual cells whose boundaries may be permeable

(such as for inlets or outlets) or impermeable (solid walls). The

congregation of cells in this domain constitutes a finite volume grid

43
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that represents the physical domain. This domain may have any arbitrary

shape in the physical (cartesian) plane, such as in Figure 5.1.

However, it is transformed as discussed in Chapter 4 into a

Figure 5.1. Arbitrary physical domain

rectangle in computational (&,n) space as shown in Figure 5.2. The

transformation from physical to computational coordinates carries all

information pertinent to grid spacing in the physical plane; thus, the

computational grid spacing has no effect on the physical results. The

spacing is therefore chosen for convenience to be the following:

A& = An = 1 (5.1)

This results in a grid which, if orthogonal, is perfectly square in the

computational plane. It is in this plane that all calculations are

carried out.

The quantities reflecting velocity (u and v) and pressure (p) are

defined at the center of each grid cell as shown in Figure 5.2. The

flux U at point (i,J) is defined at the midpoint of the left (west)

face, and the flux V at the midpoint of the lower (south) face. Each

cell is identified through an integer indexing system (i,j) such that
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Figure 5.2. Computational do
m in with variable definition

the cell center coincides with a position in the computational 
plane

given by

=i + /2 (5.2)

n=J + 12 (5.3)

The values of x and y are specified at the grid cell corners 
such that

x(i,J) and y (i,j) are located at the lower left (southwest) corner of
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each (i,j) cell. Defining (e,w,n,s) to denote evaluation of certain

quantities or fluxes on the east, west, north, and south faces,

respectively, of the (i,J) cell, and allowing c to represent the

center point in the given cell, the metrics defining the changes in the

x-axis with respect to the computational coordinates are

n x(i+lj+l) - x(i,j+l) (5.4)

xe = x(i+l,j+l) - x(i+l,j) (5.5)
n

e 0.25 [x(i+2,j+l) - x(i,j+l) + x(i+2,j) - x(ij)] (5.6)

xn = 0.25 [x(i+l,j+2) - x(i+l,J) + x(i,J+2) - x(ij)] (5.7)n

c = 0.50 [x(i+l,j+l) - x(i,j+l) + x(i+lj) - x(i,J)] (5.8)

xc = 0.50 [x(i+l,J+l) - x(i+l,j) + x(i,J+l) - x(i,J)] (5.9)
n

Similar expressions apply for the y-coordinate metrics. Since the north

and east faces of cell (i,j) correspond to the south and west faces of

cells (i,j+l) and (i+1,J), respectively, these expressions also provide

for the metrics with respect to these latter faces as well. Only

certain of these expressions are required, however, for cells having

common faces with boundaries. Vertical boundaries will require computa-

tion of those metrics which are with respect to the n coordinate since

only those are needed to construct the U fluxes; conversely, only

t-related metrics are required on the horizontal boundaries. Thus, the
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required metrics for a vertical boundary are defined as

x = x(i,j+1) - x(ij) (5.10)

while for a horizontal boundary

N = x(i+l,j) - x(i,j) (5.11)

where analogous expressions exist for the y-coordinate metrics.

Given that the velocities (u,v) and fluxes (U,V) are defined at

different locations for a given cell, it is useful to introduce the

shift indices (r,s) which can be used to relate velocity and flux

components on the staggered grid cell shown in Figure 5.2. The shift

indices are pairs of integers with values of either zero or one in each

of the four possible combinations of the two. For example,

(r,s) = (1,0)

These pairs are changed systematically (such as every iteration) to

allow for a more symmetric computation in the predictor-corrector scheme

and to maintain computational stability.

For convenience, all quantities will be assumed to have the indices

(i,j) unless specifically stated otherwise. The fluxes through the

east, west, north, and south faces of each cell are U (i+1,j), U (i,j),

V (i,j+1), and V (i,j), respectively. Combining the shift indices with

Equations 4.11 and 4.12, the following relationships now are defined
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between the cell-centered velocity components and the face-centered flux

components:

u(i,j) =c [ xe(i,j) U(i+r,j) + xc (i,j) V(i,J+s) ] (5.13)

v(i,j) = J [ ye (i,j) U(i+r,j) + yn (ij) V(i,J~s) ] (5.14)

The r and s indices thus dictate whether these velocities will be

related to the U taken from the east (r = 1) face or the west (r = 0)

face. Similarly, V is taken either from the north (s = 1) or south

(s = 0) face.

For the numerical method presented herein, the cell-centered

velocities will always be computed from existing fluxes using the

space-shifting relations given by these equations. These velocity

components will be used then to find the cell-centered incremental

velocity changes in time. The velocity increments are then used to

calculate flux incremental changes on the cell faces by reversing the

shift operation given above such that

AU(i+r,J) = [yc Au(i,j) - xc hv(i,j)] (5.15)
1n

AV(i,J+s) = [xc Av(i,j) - ye Au(i,J)] (5.16)

Prior to presenting details of the predictor-corrector scheme, it will

prove useful to introduce the difference operators

D (Uf)ij = U(i+l,J) f(i+r,j) - U(i,J) f(i+r-1,J) (5.17)
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D (Vf)ij = V(i,j+l) f(i,j+s) - V(i,j) f(i,J+s-1) (5.18)

where f can represent either of the velocities u and v . Employing

the shift indices only in the advective terms, the transport equations

for momentum (Equations 4.5 and 4.6) take the discrete form

- D (Uf). + D(Vf) :f( D (U) + Dn(V)
JcAt i,j in i'j ij i,J

+ ()(5.19)
c

Using the difference operators given in Equations 5.16 and 5.17, and

letting the f function be identical to unity, the continuity Equation

4.7 becomes (with pseudo-compressibility incorporated)

a + 02 (D (U) + D (V)i1) 0 (5.20)J cAt iJ n i

5.3 PRIMARY SOLUTION STEPS

Given a set of shift indices (r, s), the predictor-corrector scheme

advances the fluxes U and V by one time increment (At) in the

following manner:

5.3.1 Step 1.

Use Equations 5.13 and 5.14 to compute u and v from existing

values of U and V

5.3.2 Step 2.

Use Equation 5.19 to compute Au and Av
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5.3.3 Step 3.

Calculate the flux increments AU and AV from Equations 5.15 and

5.16, respectively.

5.3.4 Step 4.

Compute new fluxes U and V by adding the respective flux

increments from Step 3 to the existing fluxes.

5.3.5 Step 5.

Adjust these newer U and V values by subtracting the existing

pressure gradient which, as yet, has not been updated.

5.3.6 Step 6.

Use Equation 5.20 to compute the incremental change with respect to

time in the pressure as a function of the adjusted fluxes from Step 5.

5.3.7 Step 7.

Adjust U and V a second time to promote conservation of mass by

subtracting the gradient of the pressure change computed in Step 6.

In order to accomplish Step 5, it is convenient to introduce the

scalar potential

€ p at (5.21)

Letting U' and V' be the non-mass conserving fluxes computed in Step 4,

their improved (with respect to mass conservation) components are found

from the relations

U = U' - (YW C1W _ xw Ow) (5.22)

- x - y

V = V, - (xs 0 s - ys s (5.23)



51

where the superscripts s and w denote derivatives taken on the south and

west faces, respectively. When the derivatives *x and ¢y are evaluated

by the chain rule (as shown in Equations 4.13 and 4.14) the results are

€x  J (y n* - Y& 0 ) (5.24)

Oy J (x € - xn&) (5.25)

In order to accomplish Step 7, the scalar potential is redefined as

01 = Apat (5.26)

where Ap is computed via Equation 5.20. The fluxes are then readjusted

via Equations 5.22 and 5.23. In this manner, this solution scheme uses

pseudo-compressibility to approximate as closely as possible the changes

in the fluxes which would have been dictated by the gradient of a

pressure field obtained through a Poisson equation solution. The

Poisson solution would have returned the exact pressure field that would

have been required to conserve mass for the given provisional fluxes.

This pressure field can be thought of as the pressure field that needs

to exist such that its gradient, when applied to the existing flux

field, will result in perfect mass conservation. The pseudo-

compressibility scheme outlined herein, while not as robust, first

applies the existing pressure gradient, then adjusts the pressure field

given the provisional fluxes and applies the gradient of the changes in

said pressure field. Initial simulations have shown this scheme
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converges more quickly than a single adjustment of the fluxes based on

the existing pressure gradients at the old time step.

The seven-step time marching procedure presented above is suitable

for implementation in a two-phase predictor-corrector scheme such as

that of MacCormack (1969). In the predictor phase, the seven steps are

followed as prescribed, using the existing values of U and V from

the previous time step n to calculate the provisional time-advanced flux

values with the provisional increments AUn and AVn given below.

Un  n_( n x n) _ (yn x  _ n)

* n n n n n xn

V + AVn _ (X n n y ) - (x;n - ,:n) (5.28)
V~ ~y ~x

The superscript n indicates the time step the solution is being

advanced from and the asterisk * indicates the provisionally advanced

time level. The constructs given in Equations 5.27 and 5.28 represent

the completion of the predictor phase of the scheme.

The corrector phase begins by first changing the shift indices from

(r,s) to (r*,s*) such that

r* = 1 - r (5.29)

s* = 1 - s (5.30)

The seven steps given above are then repeated exactly as in the

predictor phase, using U* and V* (rather than Un and Vn ) to compute
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the non-conservative flux increments AU and AV . This results in new

provisional fluxes U** and V** which are then used in Step 6 to

compute the incremental changes in the original pressures resulting from

the corrector fluxes. These pressure changes are then used in Step 7 to

compute new corrector provisional fluxes that should more closely

conserve mass. These new provisional fluxes, U*** and V*** (from

Step 7 of the corrector phase) are then used along with original flux

information at time step n to calculate the new fluxes at time step

n+1 as follows:

Un+l = 0.50 (Un + U ) (5.31)

Vn+1 = 0.50 (Vn + V*"') (5.32)

The new pressure at time step n+1 is defined as

pn+1 = 0.50 (2pn + Ap* +Ap **) (533)

where the Ap terms are the pressure changes from the old pressures as

computed from Step 6 of the predictor (*) and corrector (**) phases,

respectively.

The predictor-corrector scheme marches the fluxes through time to

the steady-state. The shift indices (r,s) must be cycled so that each

of the four possible combinations they may have is employed with equal

frequency. This is required to remove the asymmetric error and possible

instabilities introduced by use of only one combination of these

indices. Only the fluxes and pressure values are required for each
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calculation; the velocities are obtained from the known grid geometry

and the fluxes based on relationships presented above.

It remains to present the discrete numerical representation of the

V • (vf) operation that appears in the viscous terms of the momentum

equations. This operation is, in the absence of a free surface, simply

the Laplacian of the function f (where f represents either the u

or v velocity for respective momentum equations). The cartesian form

of this operator is very simple; however, the generalized curvilinear

form is much more involved. Therefore, the generalized curvilinear form

of the Laplacian is presented in Appendix B.

5.4 INCORPORATION OF MULTIGRID METHODOLOGY

There are several specific tasks that must be accomplished in each

time step (hereafter referred to as a multigrid cycle) in order to

incorporate a multigrid convergence accelerator. The process begins by

obtaining a new finest-grid solution based on the predictor-corrector

scheme presented above; this is Step 1 of the multigrid sequence as

presented in Chapter 4. In Step 2 of the multigrid sequence, informa-

tion on the finer (in the initial step, the finest) grid must be

transferred to a second grid whose resolution is one-half that of the

finer. This transfer mechanism is called restriction and is accom-

plished usually by simple point-to-point transfer (injection) or

interpolationi/averaging. The particular numerical scheme presented

herein makes use of a different, but straightforward definition of the

restriction operator I'k*1 (given in Equation 4.45) as explained below.

5.4.1 Flow Field Restriction Operator

Figure 5.3 illustrates the simplicity of this restriction operator

for the fluxes. As shown, fluxes are defined on the faces of each finer
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Figure 5.3. Restriction methodology for fluxes

grid cell. When the grid is coarsened to one-half its previous resolu-

tion, the coarse fluxes (U. and V.) are located at the midpoints of the

coarse cell faces. However, these coarse cell faces correspond to the

coupling through simple addition of two finer-grid cell faces. Thus,

the flux crossing a coarse cell face is nothing more than the summation

of the two finer-grid fluxes located on the finer-grid cell faces that
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are integrated to make up the coarser cell face. The restriction

operator is, then, a simple integration operator for the transfer of the

fluxes from finer to coarser grids. In more mathematical terms, this

integration method can be thought of as one based on the Gauss

Divergence Theorem (Kreyszig, 1979). The integration procedure as

outlined is equivalent to computing the surface integral along the faces

of the coarse-grid control volume of the velocity component normal to

each of these faces times the differential area each acts upon (this

product being, by definition, the finer-grid fluxes). This surface

integral, based on Gauss' theorem, is exactly equivalent to the volume

integral over the coarse control volume of the divergence of the

velocity field for each finer-grid control volume times the differential

volume of each finer-grid cell. Thus, the restriction operator used

herein for the fluxes conserves mass (and mass violations) on the

coarser grid exactly the same as on the finer grid. The transfer of

flux information from a given level of coarse grid to an even coarser

grid is also accomplished in this same way.

The restriction of pressure information is accomplished in a way

analogous to that for the fluxes. As shown in Figure 5.3, each coarser-

grid cell is made up of four finer-grid cells. At the centers of each

of these finer cells resides pressure information. In most multigrid

applications, this pressure information would be integrated in a fashion

equivalent to the arithmetic averaging of the four finer-grid pressure

values, and this value would be restricted to the coarser grid.

However, it is not the pressures themselves which are of greatest

importance to an incompressible flow calculation; rather, the pressure

gradient, and its contribution to mass conservation, is of primary
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concern. In an effort to accurately transfer the effects of the finer-

grid pressure gradient to the coarse grid, the third terms on the right-

hand sides of Equations 5.27 and 5.28 divided by the finer-grid time

step are computed. These respective terms represent the contribution of

the pressure gradient per unit time to each of the fluxes. Thus, these

terms may be thought of as the change per unit time in each of the flux

terms due to pressure alone. Each of these pressure terms is centered

at the same locations as the fluxes they impact; thus, the pressure

gradient is restricted in exactly the same manner as the fluxes.

A third flow component that is restricted from the finest grid to

all subsequent coarse grids is the additional shear force generated

along no-slip boundaries. The computation of this shear force on the

finest grid is discussed in Appendix B for generalized curvilinear

coordinates. Simply stated for cartesian coordinates, this shear force

is the product of the first derivative of velocity with respect to the

direction normal to a given boundary, absolute viscosity, and a differ-

ential unit area along the given boundary (i.e., the length of the side

of a given cell coexistent with a particular boundary). The forces

acting on the boundary cells on the finest grid are integrated in the

same manner as the fluxes. This integration occurs only along the

no-slip boundaries because these particular shear forces arise from the

viscous terms along no-slip boundaries. The remaining components of the

viscous terms (i.e., those arising from the treatment of all cells as

slip) are computed directly from the given velocity field on any grid as

discussed in Appendix B. The integration and restriction of these shear

forces from the finest grid to all subsequent coarse grids is employed

in lieu of computing these forces directly from the coarse-grid velocity
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field for two reasons: (a) these shear forces may be thought of as

external body forces acting on the flow domain. They are, however,

generated in the direct vicinity of the no-slip boundaries, their

computation being a function of velocity derivatives on said boundaries.

Computation of these forces directly from coarse grid information

results in the calculation of boundary velocity derivatives from field

information ever-distant from the boundary itself. This could introduce

shear forces out of proportion to the velocity field near the boundary;

and (b) experimental evidence showed very clearly that the convergence

acceleration obtained by restricting these shear forces from the finest

grid to all coarser grids is superior to that obtained when the shear

forces are computed directly from the coarse-grid velocity field. In

some cases, convergence was completely arrested when the shear forces

were computed directly from the coarse-grid velocity field. Apparently

this latter computation of the shear forces resulted in the generation

of errors on the finest grid, particularly in mass conservation, which

the numerical scheme could not dissipate.

5.4.2 Computation of Residual Information

The system of partial differential equations given in Equation 4.5,

and solved for on each coarse grid, is not the original system (i.e.,

Equations 4.5 - 4.7) but a modified system. These modified equations

arise because the intent of the coarse-grid computations is to calculate

corrections to the finest-grid solution rather than to calculate new

solutions themselves, thereby reducing the error associated with the

finest-grid solution. The intent of these calculations, then, is the

reduction of the residuals as computed by Equation 4.44. As shown in

Equation 4.45, the restricted finer-grid residuals make up the second
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term on the right-hand side of this equation for each coarser grid.

Thus, the calculation and restriction of the finer-grid residuals (Step

3 of the multigrid sequence in Chapter 4) represents an extremely

important facet of the multigrid approach.

The residuals for the system of partial differential equations

found in Equation 4.44 are calculated as the differences between the

known right-hand terms of the equations and their numerical approxima-

tions. Recall that the actual system of equations being solved herein

is the steady-state analogy to Equations 4.5-4.7 for which the time

derivatives of the velocities in the momentum equations are, by

definition, zero. Thus, L'kuIk in Equation 4.44 represents the

numerical approximation to the steady-state version of Equations 4.5-

4.7. Rearrangement of Equations 4.5 and 4.6 shows that Llku 'k could

also be thought of as the numerical approximation to the negative of the

time derivatives of respective velocities. Prior to reaching the steady

state, these values are obtainable directly from the relaxation of

Equation 5.19. Thus, the L'kutk terms for the momentum and continuity

equations are calculated as

-Au(534)
(AtJ)

-Av (5.35)AtJ( .5

(U + V ) (5.36)

where J is the Jacobian for each finer-grid cell as defined in Equation

4.10. Each of these terms is obtainable directly from the relaxation
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scheme. The actual computation of these terms is explained below.

Given a newly updated solution on a particular grid, this solution

is used as the initial input for one final relaxation sweep on that

grid. During this sweep, the relaxation scheme computes modifications

to the existing flux and pressure fields resulting in a new "interim"

solution. Note that Step 7 of the relaxation scheme, which involves

adjusting the fluxes by subtracting the gradient of the pressure changes

computed from Equation 5.20, is not performed for the residual calcula-

tions. Experimental results showed that the deletion of Step 7 during

residual calculation provided much improved convergence acceleration as

compared with results obtained through inclusion of the step. This was

particularly true for nonorthogonal-grid problems of the type presented

in Chapter 7. Two reasons for this observation were postulated: (a)

the pressure boundary conditions may be inappropriate; and (b) it may be

conceptually inappropriate to include Step 7 in the residual calcula-

tion. An evaluation of Equations 5.27 and 5.28 revealed that the

pressure information "outside" the field is required only in the

nonorthogonal-grid cases, such cases being the ones that had convergence

difficulties when Step 7 was included in the residual calculation.

However, reason (a) appeared somewhat unlikely as the cause of the

convergence difficulties because the fine grid-only simulations for the

nonorthogonal case converged, albeit slowly, to the correct solution.

The reason (b) statement is believed to be correct. The residual

calculation actually requires a numerical approximation to the partial

differential equations being solved. The computations within Step 7,

while part of the relaxation scheme, are not part of the actual equa-

tions being solved. Thus, the Step 7 computations may be inappropriate
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for inclusion in the residual calculations and are omitted therein.

Changes in the U fluxes (from the relaxation scheme) on the east

and west faces of a given cell are averaged to get a U-flux change at

the center of the cell; similarly V-flux changes on the north and south

faces are averaged as well. Equations 5.15 and 5.16 are then rearranged

similar to Equations 5.13 and 5.14 to calculate the changes in u and v

at the cell centers. These changes in u and v are then used to solve

Equations 5.34 and 5.35. The interim fluxes are then used to solve

Equation 5.36 in the form:

(U + V i'j  U(i+1,J) - U(i,j) + V(i,j+1) - V(i,J) (5.37)

The interim solution is then discarded and the initial solution

restricted to the coarser grid.

Having quantified the calculation of the L'ku 'k terms, it remains

to calculate the actual residuals and restrict them to the coarser grid.

Residual computation on the finest grid is trival because the fk terms

in Equation 4.44, which represent the right-hand sides of the partial

differential equations being relaxed on the given grid, are zero on the

finest grid. Thus, the residual terms are merely the negative of the

terms in Equations 5.34-5.36. This simplicity does not follow for the

coarser grids. As shown in Equation 4.45, the f terms on all coarse

grids are made up of residual and other components which are generally

non-zero. In this way, it is the residuals from computations on

less-coarse grids which drive the computations on a coarser grid.

Restriction of the residuals is accomplished through volume

integration. The residuals are located at the centers of each finer-
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grid control volume. Four of these finer control volumes make up a

single coarser cell. For each of the residual terms, the values for

each of the terms at the centers of the four finer-grid cells are

integrated (summed) and stored at the spatial location corresponding to

the point where corners of the four finer-grid cells intersect.

5.4.3 Completion of Right-Hand Side Calculations

Having completed restriction of the finer-grid solution to the

coarser grid, an initial relaxation sweep on the coarse grid must be

made. This sweep is required to evaluate the first term on the right-

hand side of Equation 4.45. This term represents the coarse-grid

counterpart to the L'ku 'k terms defined above for the finest grid. The

relaxation scheme is employed on the coarse grid using the restricted

finer-grid solution as an initial flow-field estimate. The modifica-

tions to the finest-grid relaxation scheme are again utilized in these

coarse-grid calculations. This relaxation sweep is made while

neglecting any effects of the finer-grid residuals. This, in effect,

solves the system of equations represented by Equation 4.45 while

assuming its right-hand side to be zero. In this way, these calcula-

tions allow for the values the terms listed in Equations 5.34-5.36 that

would result on the coarse grid in the absence of finer-grid residual

effects. Note that the methodology used to compute the L'ku 'k terms on

the finest grid is followed exactly for computation of the L' terms on

the coarser grid. Coarse-grid time steps and Jacobians are substituted

for the finer-grid values in these calculations.

At the end of the fine and coarse-grid residual calculations, the

two terms on the right-hand side of Equation 4.45 are known. An

interesting consequence of the residual computation and restriction



63

operations discussed above is that, given the linearity of the continu-

ity equation, the two "residual" terms cancel each other exactly for

this equation. Thus, the residual computations and restriction

discussed for the continuity equation are not necessary and, conse-

quently, are not performed. The actual equations to be relaxed further

on each coarse grid for the momentum equations look like Equation 5.19

with two additional residual terms appended to the right side. The

continuity equation, Equation 5.20, is relaxed in its original form on

each coarse grid.

5.4.4 Coarse Grid Relaxation

Following residual computation and restriction, the predictor-

corrector (relaxation) scheme is then employed to obtain updated

coarser-grid estimates to the fluxes and pressures on the coarse grid.

This constitutes the initiation of Step 4 of the multigrid sequence

outlined in Chapter 4. This is accomplished in a manner similar to the

procedure presented for the finest grid in the seven relaxation steps

discussed previously in this chapter. There are two modifications to

the finest-grid relaxation sequence, both consequences of the pressure

restriction method outlined above. First, the restricted pressure

gradient information, when multiplied by the coarse-grid time step and

subtracted from the appropriate coarse flux, represents the adjustment

of flux listed in Step 5 of the relaxation scheme. Thus, on each of the

gvriel other th~n the finest, Step 5 of the relaxation scheme is

accomplished based on restricted pressure gradient information rather

than upon gradient information computed directly upon the coarse grid.

Second, given the particular restriction procedure, the coarse pressure

values can be thought of as initially being zero at the beginning of a
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relaxation sweep. Changes to the initial pressure field are computed on

each coarse grid in Step 6 of the relaxation scheme; Step 7 is then

performed on each coarse grid just as on the finest grid. However, at

the end of the predictor and corrector steps, changes to the initially

zero-valued coarse-grid pressure field have been computed. Equation

5.33 is then used to compute the change during the entire relaxation

sweep in the pressure field (assuming the initial pressure field, pn, to

be zero) rather than the new coarse pressure field itself. The gradient

of these coarse pressure changes is then computed and added to the

gradient information restricted from the finer grid. In this manner,

the impact of the changing pressure gradient upon the mass fluxes is

correctly transferred from grid to grid. For each coarse grid it is

assumed that A& and An are still identical to unity for computational

purposes. This assumption dictates a recomputation of the metrics and

Jacobians for each coarse grid. These values are computed in an analo-

gous manner to their finest-grid counterparts as given in Equations 5.4-

5.11, except that the index steps are increased to reflect the coarser

grid.

The new coarse-grid solution is then transferred via restriction to

a still coarser grid (Step 5 of the multigrid sequence) and Steps 2-4 of

the multigrid sequence are again employed. This continues until the

coarsest grid N, which is selected by the user, has undergone relaxa-

tion. One or several relaxation sweeps can be used on each grid,

including the finest, prior to restriction and movement to a coarser

grid. However, when relaxation is completed on the coarsest grid, the

coarse corrections must be transferred back to the next finer grid

through the prolongation process (Step 6 of the multigrid sequence).



65

This process is discussed below.

5.4.5 Prolongation Operator

A number of prolongation operators I'h in Equation 4.46, havehha1

been discussed in the literature. The numerical scheme used herein

results in a much simplified prolongation operator for the flux

correction transfers. Recall that each coarser-grid updated flux has an

analogous original coarse flux as restricted from the finer grid.

Subtraction of these two values results in a coarse-grid correction

which must be prolonged to the finer grid. Recall, however, that each

coarser flux actually consists of the integration of two finer-grid

fluxes. Thus, the coarser-grid correction can be transferred to the

finer-grid fluxes through a rule which apportions this correction based

on the percentage of the coarser cell face contributed by the faces of

each of the two finer cells. This, in effect, provides for the transfer

of the greater correction to the finer-grid flux that represents flow

across the larger finer-grid cell face.

The pressure prolongation operator is somewhat more computationally

demanding than that for the fluxes. At the center of each coarser-grid

cell, which is made up of four finer-grid cells, a pressure correction

is obtained. This correction represents a change to the original coarse

pressure over the entire coarser control volume. However, the pressure

correction in each coarser control volume influences not only the finer

cells within, but the finer cells sharing a common boundary point with

it as well. As shown in Figure 5.4, the four finer-grid pressures are

influenced directly by the four coarser pressures. Prolongation of the

coarser-grid pressure corrections was therefore affected through a

bilinear interpolation scheme that used the four coarser values as
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Figure 5.4. Relationships for pressure prolongation

knowns. This scheme is presented in Appendix C.

As each of the flux and pressure corrections is prolonged from

coarser to finer grids (Step 7 of the multigrid sequence), it is

interpolated to a spatial location already having some flow-field

information. If the prolongation step is applied from any coarse grid

to a finer grid that is not yet the finest, then the prolonged

correction is added to the correction already resident on that grid. If

the receiving grid is the finest, the prolonged corrections represent

the summation of the corrections computed on the coarse grids. These
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corrections are added as shown in Equation 4.46 to the existing solution

on the finest grid, thereby creating a new solution at the new time

step, n+1. At this point, one entire multigrid cycle has been

completed. This cyclic process continues until convergence is reached

or a maximum number of iterations is completed (Step 8 of the multigrid

sequence).

Given this overview of the numerical solution procedure, it is yet

necessary for several additional solution pieces to be discussed.

Criteria for defining the maximum number of coarse grids allowable, as

well as boundary and initial condition development and time step

computation, are discussed in the next chapter.



CHAPTER 6

ADDITIONAL NUMERICAL CRITERIA

6.1 INTRODUCTION

A very important aspect of the numerical solution of the

incompressible Navier-Stokes equations for approach flows to hydraulic

structures involves the assignment of appropriate initial and boundary

conditions. This chapter discusses the formulation and incorporation of

these conditions. In addition, the criteria that must be conformed to

for stable numerical solutions are presented. Finally, the criteria

used to determine the maximum number of coarse grids allowable is

explained.

6.2 BOUNDARY CONDITION IMPLEMENTATION

The numerical treatment of boundary conditions is just as important

as the discretization of the governing equations presented in the

previous chapter. While the governing equations serve to dictate the

transmission of information through space and time, the transport is

constrained by the boundaries. Regardless of the accuracy of the

numerical scheme, poor development and implementation of the boundary

conditions will result in poor results.

Bernard (1988) gives a categorization of boundary conditions that

will be adopted herein:

a. Definite Boundary Conditions: those that arise from some known

(or assumed) physical constraint.

68
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b. Indefinite Boundary Conditions: those that arise only because

the computational flow field is smaller than the physical flow field.

Boundary conditions for pressure generally fall into the former

category, while those for velocity and flux may fall into either

according to the problem being simulated.

To begin this discussion, the cells in the vicinity of a given cell

(labeled cc) are shown in Figure 6.1. Suppose that the east cell face

NW NN NE

WW CC EE

SW SS SE

Figure 6.1. Labeling system for cell-centered quantities

in neighboring grid cells

of cell (cc) coincides with the outlet boundary, but the north face is

in the field, as shown in Figure 6.2. The q -derivative of pressure on

the north face could then be computed as

nPn :, Pnn - Pe (6.1)
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NW NN NE

WW cc EE

SW SS SE

Figure 6.2. Schematic of a given cell (cc) whose east face
is coincident with a physical boundary

where the indices represent the cells shown in Figure 6.1. This compu-

tation is straightforward and requires information only in the field.

However, a problem arises when the E -derivative of pressure on the

north face is computed. One way to ca1-"ilate this derivative is

n
P 1/4 (pne - Pnw " Pe - Pww) (6.2)

which requires information "outside" the uU et boundary. This computa-

tion cannot be made until the exterior pressures are provided. Bernard

(1987) suggests that a different way to compute this derivative is
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n 1/2 (Pnn Pnw + c Pww )  
(6.3)

which he shows to provide superior results to Equations 6.2 and other

formulations for oth orthogonal and highly nonorthogonal grids.

Equation 6.3 is seen to be equivalent to Equation 6.2 if the following

definitions are used:

Pne 2Pnn - Pnw (6.4)

Pee 2Pec - Pww (6.5)

Equations 6.4 and 6.5 are approximately equivalent to a-numerical

representation of the second normal derivative of the pressure being

equal to zero one the boundary. This boundary formulation is employed

for all pressure boundary conditions. Analogous expressions for all

boundaries are employed. The pressure values outside the boundaries

would not be needed if the grid were orthogonal; however, few

curvilinear grids are completely orthogonal.

For cells adjacent to no-slip boundaries, the normal component of

the momentum flux through the boundary is computed based on the fact

that both velocity components on the boundary are zero. This condition

can be implemented by requiring that the velocity outside the boundary

be the negative of the corresponding field velocity just inside the

boundary. Thus, if the south boundary of the flow field where

designated no-slip, then

u(i:j-1) = -u(i,j) (6.6)
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v(i,j-1) = -v(i,j) (6.7)

where the cell (i,j) is the field cell just inside the south boundary.

However, evaluation of this condition revealed that the approach

produces an incorrect shear stress on the no-slip boundary when compared

with the analytical solution for Couette flow with a pressure gradient

(see Chapter 8). A second-order boundary condition for specifically

velocity on no-slip boundaries was developed as shown below for a south

boundary

u(i,j-1): (-6u(i,J) + u(i,J+1)) (6.8)
3

This condition assumes the south boundary has zero u and v

velocities. However, model tests cases having no-slip top boundaries

with non-zero u velocities (i.e., the Couette flow in the absence of a

pressure gradient case) are also simulated. Specific second-order

boundary conditions for these cases, along with the development of

Equation 6.8, are given in Appendix B.

This boundary information is required by the predictor-corrector

scheme of the solution of the transport equations for momentum. It

should be noted that the cells "outside" the boundary are not actual

cells in the flow field and the information within them (pressure and

velocities) is not physical. In fact, this boundary information is, in

every case, projected from a combination of information derived from

within the flow field. Still, for clarity, this information is referred

to as being outside the field.
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All of the boundary conditions discussed previously are definite

because they impose known or assumed constraints on the flow variables.

This is true as well for solid boundaries which have zero flux and for

boundaries for which the fluxes are specified functions of time. All

boundaries are definite with regard to flux in this report.

These same boundary conditions were utilized on all grids of the

multigrid sweep with appropriate modifications to reflect the increased

coarseness of the multiple grids.

6.3 INITIAL CONDITION SPECIFICATION

The specification of initial conditions for the simulations

presented herein, in contrast to the boundary conditions above, was very

simple. For all simulations the initial pressure field was set to zero.

The velocity field was initially set to a value which provided either no

flow or uniform flow throughout. The velocities "outside" the flow

field were initially set based on the desired value of the initial

fluxes on the boundaries. Thus, the initial boundary fluxes are

computed from the velocities just beyond their respective boundaries.

All fluxes on no-slip boundaries were set to zero. The boundary

conditions were then employed to ensure conformance by the initial flow

field.

6.4 STABILITY CRITERIA

The numerical solution scheme utilized herein is an explicit one

whose time step must be constrained to promote computational stablity.

Although no CFL (Courant, et al. (1929)) limit on the time step can be

computed directly for the incompressible solver discussed in Chapters 4

and 5, a heuristic computation can be made. Note that the change in any

function f in a time step due to velocity-related processes (advection
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and diffusion) should not be larger than the function's value at the

beginning of the time step. This, in turn, acts to keep the sign of the

function f from changing wildly in a time step, thereby promoting

stability. This can be expressed mathematically as

Af
T- = AtA < 1 (6.9)

where At is the time step of interest and A represents the coefficients

of the advective and diffusive terms related to the function f. Thus,

from Equation 6.9,

At T -j-~(6.10)

where the absolute value is taken to ensure a positive time step. For

the nonconservative form of the governing incompressible equations in

generalized curvilinear coordinates (Equations 4.5 and 4.6). Equation

6.10 transforms into the constraint that

at < 12 2 (6.11)
[2J(IUI + IVJ + vJ{y + x n + x + y 1)]

where the values in the [ ] brackets are those which multiply the

velocities u and v in the nonconservative form of these equations.

Because this formulation fails to account directly for non-linearities

in the governing equations, a factor of safety is multiplied by the time

step computed from Equation 6.11. This factor is always between 0 and

1, with the usual value being 0.9. This stability requirement is
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computed at each point in the field upon initialization of the flow

field only. The most constraining (smallest) time step computed in the

field is then used as the global time step for all iterations and field

locations for that grid. No local time stepping is used in these

calculations.

A second stability criterion for these calculations is required due

to the use of pseudo-compressibility. In Chapter 4 the B coefficient,

representing the pseudo-sound speed in these calculations, is introduced

from the original Poisson pressure solution. Equation 4.37 gives the

cartesian formulation of 0 . For stable calculations, a must be less

than or equal to this value. Transforming Equation 4.37 into

curvilinear coordinates, the stability criteria becomes

02 < [J2(x 2 + 2 2 2 2 At2 (6.12)

where all the variables are as defined previously. Equation 6.12 is

also multiplied by a coefficient between 0 and 1 to provide a stability

cushion for the calculation. Both of these coefficients are supplied as

input to the code. The limiting values of the time step and B

coefficient are recomputed for each of the coarser grids from the

initial restriction values imposed on each grid. This is done only once

for each coarse grid.

6.5 MAXIMUM NUMBER OF GRIDS ALLOWABLE

The number of grids used in a given simulation is also input by the

user. However, care must be taken that this number is compatible with

the number of grid points set on the finest grid. The level of resolu-

tion on a coarse grid is one-half that of the just-finer grid. Thus,
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each coarser-grid cell side would have cell sides encompassing two

initially finer-grid cell sides, and so on. This means that, in order

for the bookkeeping of spatial locations to be kept straight and for all

coarse-grid boundaries to coincide with the finest-grid boundaries, the

allowable number of finest-grid cell sides encompassed by each coarser

grid cell must be an integer multiple of the number of finest-grid cells

along both the C and n axis. Expresspd mathematically, the maximum

number of grids allowable given a certain number of finest-grid points

along the x (XPTS) and y (YPTS) axes is determined by the following

trial and error method

XMOD MOD[(XPTS - 1) (6.14)
[2NGRIDS- 1J

rMOD(YPTS - 1) 1(615)
OD NGRIDS - 1

where NGRIDS is the number of total grids one wishes to utilize; and the

term "MOD" represents the mathematical function that returns the modulus

of its argument. In order for the NGRIDS value to be allowable, the

XMOD and YMOD values must both be very near or equal to zero. This set

of operations is tried for several NGRIDS values, the largest satisfying

the above criteria being designated maximum. A maximum of 4 grids are

generally used in this effort even if the maximum allowable number of

grids as computed above is greater than 4. This is done strictly as a

matter of convenience.



CHAPTER 7

MASS CONSERVATION CASE STUDY

7.1 BACKGROUND

To illustrate the utility of the algorithm presented herein in

minimizing continuity violations, a case study involving mass

conservation is next presented. Prior to providing details of this

case, several items concerning the presentation format are explained.

The contents of the next few paragraphs are applicable not only to this

chapter but to the next chapter as well.

7.1.1 Convergence Histories

Plots of convergence histories are presented for each case study

simulated. The norms plotted are obtained for the U and V fluxes from

the absolute differences between the simulated and analytical solutions.

Both maximum-in-the-field and field-averaged values are presented in

tabular form for these flux norms. This is done to allow an evaluation

of how well the worst flux in the field is converging compared to the

field as a whole. Only the field-averaged norms are presented in

graphical form for the flux convergence histories.

The pressure norms are computed as the differences in the pressures

at consecutive time steps divided by the time step between the calcu-

lations. Both field-averaged and maximum-in-the-field values are

presented in tabular form.

The norms for the divergence of velocity are computed as the true

right-hand side of Equation 4.7 (actually, its two-dimensional analog).

77
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Only the maximum-in-the-field norm is presented in this report since it

is the cell-to-cell violation of continuity that contributes to error in

incompressible flow computations rather than a field-averaged value.

7.1.2 Speed-Up Factors

Given in tabular form for each case study are speed-up values that

represent the relative computer processing time required to reach some

level of convergence with no multigrid (one fine grid only) divided by

the processing time required to reach the same convergence level with

multigrid added. Relative computer processing (or run) time is defined

as the time (in computer processor seconds on a CYBER-205) required to

complete one multigrid cycle (or, for the fine-grid-only runs, one

iteration) multiplied by the number of cycles or iterations needed to

drive the convergence norms to some pre-defined tolerance. Note that

this tolerance is case-specific and is sometimes chosen based on the

norms of the converged fine-grid-only simulation.

Speed-up factor is presented as an index of the relative acceler-

ation of convergence associated with various multigrid scenarios. It is

presented because the speed-up factor as computed gives a straight-

forward evaluation of the computing resources saved by employing the

multigrid approach as compared to using a single grid alone. This

factor is not simply the ratio of the number of iterations required by

the fine-grid-only simulation to meet a specified tolerance and its

analogous multigrid counterpart; such would be true if incorporation of

the multigrid approach did not increase the number of operations, and

thus the computing time, required to complete one "time step" as

compared to the fine-grid-only solution. Indeed, multigrid does requ.re

an increased number of operations and computing time per iteration or



79

cycle. Therefore, the speed-up factor considers the actual computing

times required to reach a level of convergence for similar multigrid and

non-multigrid runs.

7.1.3 Interpretation of Graphical Presentations

For each of the convergence histories presented, data from every

10th iteration or cycle are presented. Symbols are plotted every 50th

iteration or cycle. The convergence trends are easily depicted, and the

data files housing the information are only 1/10th the size they might

otherwise be.

Within the legend on each convergence history there is a symbol, an

abbreviation for the norm being plotted (i.e., "DIV" denotes the diverg-

ence of velocity), and an abbreviation for the scenario generating that

history. The form of this latter abbreviation is "G/F/C" where G

denotes the number of total grids used in that simulation; F the number

of relaxation sweeps employed in each multigrid cycle on the finest

grid; and C the number of relaxation sweeps per grid employed on each

coarse grid for each multigrid cycle. The designation 1/0/0 is used to

denote the fine-grid-only (or no-multigrid) simulations. While it is

realized that the first 0 should, by the above convention, be a 1 (given

that the fine-grid-only simulations use 1 relaxation sweep per iteration

on the finest grid), this designation is used to more vividly set this

simulatinn apart from those incorporating some level of multigrid.

7.2 CASE STUDY DETAILS

To illustrate the mass conservation properties of the algorithm

presented herein, and to initiate examination of the multigrid approach,

results from two scenarios for a model case study are presented. The

model case involves steady, uniform flow, in the absence of any pressure
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gradient. In addition, the effects of the nonlinear advective terms in

the equations of motion (Equations 4.5 and 4.6) are considered

negligible. The calculations are made for one scenario on an orthogonal

21- by 21-cell grid (Figure 7.1a); and, for the second scenario, on a

purposely skewed, nonorthogonal 21- by 21-cell grid as shown in

Figure 7.1b. The gc'id is skewed 45 degrees representing an upper bound

on the amount of nonorthogonality this algorithm could be expected to

encounter and still produce accurate results. The top and bottom

boundaries in each of these scenarios were stationary and slip. A

uniform velocity profile with a value of one along the entire inlet and

outlet was specified for each scenario as shown in Figure 7.2. These

scenarios are analogous to potential flow situations.

The physical domain for each of these simulations is a box with a

height-to-length aspect ratio of one for the orthogonal grid, and two

for the skewed grid.

The solution procedure is asked to perform a straight-forward

activity in each case: given that the fluxes along the inlet and outlet

are all constant values (the solid boundaries, of course, have flux

values of 0), and that the initial estimates for the fluxes and

pressures are universally 0, produce the correct flow fields inside the

box. The flux components for the model cases above can be expressed

analytically as

U =0.05 (7.1)

V z 0.00 (7.2)

22=0.00(73x o~o(7.3)
ax

2 = 0.00 (7.4)
ay



Figure 7.7la. Orthogonal grid

j /,/

Figure 7.1lb. Monorthogonal grid

Figure 7.1. 21-by-21 orthogonal and nonorthogonal grids
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u = Const a
v= 0

Figure 7.2 Schematic of mass conservation test setup

where all variables are as defined previously. The variable p here

actually is pressure divided by density.

7.3 RESULTS OF POTENTIAL FLOW SIMULATIONS

7.3.1 Results for Orthogonal, 21-by-21 Grid

Table 7.1 gives a summary of the error norms for each of the fluxes

and the pressure as computed after a specified number of iterations or

multigrid cycles. The norms for the fluxes are computed as the differ-

ences between the computed and analytical values for each run listed.

The pressure norms represent the time derivative of pressure divided by

density which is introduced by the Chorin scheme. This value should, of

course, approach zero at the steady state. Both maximum-within-the-

field and field-wide norms (as designated by maximum and average,

respectively) are provided for the fluxes and the pressure time
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derivative. The addition of multigrid greatly reduced the error norms

of the computations as compared to the fine-grid-only solution.

Table 7.1
Summary of Convergence Norms for

Multiple Grid Runs: Potential Flow, 21-by-21
Orthogonal Grid Problem

Convergence Tolerance - 0.0001

Average Maximum
Run V-u ap/at AU AV -ap/at AU AV___
1/0/0 2.1e-O14 9.2e-16 2.1e-06 1.1e-15 2.3e-10 3.2e-06 4.3e-15
2/1/1 1.3e-05 1.1e-16 1.2e-07 1.1e-15 2.7e-11 1.9e-07 4~.2e-15
3/1/1 1.5e-12 1.5e-24 2.4e-15 1.9e-15 1.3e-18 9.8e-15 5.4e-15
2/2/1 6.7e-06 7.4e-18 6.4e-08 1.2e-17 1.8e-11 9.5e-08 5.6e-15
3/2/1 1.5e-12 1.8e-24 2.8e-15 2.1e-15 1.41e-18 9.8e-15 6.4e-15
2/2/2 8.6e-10 1.3e-20 8.3e-12 1.3e-15 3.1e-14 1.2e-11 5.6e-15
2/3/2 9.9e-12 3.7e-20 2.7e-14 1.7e-15 9.6e-16 4.1e-14~ 7.0e-15
2/3/3 6.3e-13 1.2e-22 2.0e-15 1.9e-15 1.1e-17 8.9e-15 4.9e-15
3/2/2 7.5e-12 8.4e-22 5.4e-15 2.41e-15 7.8e-17 1.9e-14~ 7.7e-15
3/3/2 5.1e-12 1.9e-20 3.8e-15 2.5e-15 2.1e-16 1.3e-114 7.3e-15
3/3/3 1.6e-11 6.1e-20 8.3e-15 2.2e-15 8.5e-16 4.0e-14- 9.2e-15
2/1/2 7.4e-09 8.14e-18 7.0e-11 1.4e-15 2.0e-13 1.1e-10 4.8e-15
3/1/2 5.6e-12 3.8e-22 4.8e-15 2.5e-15 3.14e-17 1.2e-114 1.3e-14~
2/2/3 6.0e-13 1.3e-22 2.9e-15 1.8e-15 1.1e-17 8.4e-15 5.2e-15
3/2/3 1.3e-11 3.1e-20 8.0e-15 2.4e-15 3.9e-16 3.2e-14 8.5e-15
2/1/3 7.8e-13 1.3e-22 2.0e-15 1.9e-15 9.3e-18 8.4e-15 4.9e-15
3/1/3 5.8e-11 1.5e-19 2.9e-14$ 2.0e-14~ 2.1e-15 7.6e-114 1.4e-13

Convergence histories for the divergence of the velocity field and

the average flux norms for each of the number-of-grids/number-of-fine-

sweeps/number-of-coarse sweeps combinations simulated are also given in

Figures 7.3-7.5. The computed flow fields generally approached the

analytical solution quite quickly for the multigrid runs. The scheme

produced no false fluxes as evidenced by the constant V-flux norms of

approximately zero. Observe that the residuals from the continuity

equation were generally the last (compared to the momentum equation

residuals) to reach any specified convergence tolerance. Once the

continuity violation had been reduced below 0.0001, no discernible

difference in the flux field from its analytical solution was observed.

Once this level of convergence was reached, the gradient of' ie computed
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Figure 7.3a. Fine-grid-only and 8 of 16 multigrid simulations
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Figure 7.3b. Fine-grid-only and remaining multigrid simulations

Figure 7.3. Convergence history for divergence of velocity,
21-by-21 orthogonal grid, potential flow, multiple grid runs



85

CY
ZI

0o a = DELU. V/O
o 0 = DELU. 21V
o & = DEW, 31Vi
0 = DEiU.2/2/1

x = DEW. 3/2/1
* = DELU. 2/2/2

= DELU, 3/2/2
to = DEL, 2/3/2

= DEW. 3/3/3

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ITERATION

Figure 7.4a. Fine-grid-only and 8 of 16 multigrid simulations
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Figure 7.4b. Fine-grid-only and remaining multigrid simulations

Figure 7.4. Convergence history for U flux,
21-by-21 orthogonal grid, potential flow,
multiple grid runs
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Figure 7.5a. Fine-grid-only and 8 of 16 multigrid simulations

4 
E

- I = . I/u/0
o = DELV, 2/3/3

Z a = DELV. 3/3/2
-= DELV 2/1/2

x- = DEV YIV2
o = DELV -/2/3
v = DELV 3/2/3
a = DELV 2/1/3

0o = DELV, 3/'1/3

(5

-~I
0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

TERATION

Figure 7.5b. Fine-grid-only and remaining multigrid simulations

Figure 7.5. Convergence history for V flux,
21-by-21 orthogonal grid, potential flow,
multiple grid runs
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pressure field was approximately zero as well. Therefore, the

convergence tolerance for this scenario was set at 0.0001 to permit

comparison of the multigrid runs with fine-grid-only final results.

Note that several hundred iterations were required to drive

continuity violations to below the assigned convergence tolerance. Had

this problem required additional resolution, or the physical domain been

spatially larger, the number of iterations required to achieve

convergence could have become intractable without the multigrid

convergence acceleration.

The fine-grid solution (designated as 1/0/0) was observed to fluc-

tuate as it proceeded to the steady state as shown in Figures 7.3-7.5.

These fluctuations are typical of the MacCormack predictor-corrector

scheme. Due to the one-sided nature of the differences used in the

predictor and corrector, and the changing directions of these differ-

ences (four combinations of forward and backward differences that are

required to maintain computational stability for incumpressible flow),

the scheme approaches but may never actually reach the true steady

state. However, use of the multigrid approach clearly alleviates much

of this problem. The convergence histories for the multigrid runs are

much smoother than the fine-grid-only history.

Initial simulations showed that some small amount of dissipation

was required by the multigrid scheme to remain stable. This dissipa-

tion, which was simulated by computing the viscous contributions for

each control volume while assuming it to be a slip cell, was important

only in the first few multigrid cycles. Jameson and Yoon (1986) noted

that such dissipation is often required for their multigrid scheme in

order to smooth oscillations on the fine grid that result from the rapid
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modification of the fine-grid solution by coarse-grid corrections. The

"kinematic viscosity" used to simulate the results given in this section

was between 10-4 and 10-6.

Given in Table 7.2 is a comparison of the relative run times to

convergence for this flow scenario with no multigrid (1/0/0) and with

the multigrid algorithm added. The speed-up factors represent the ratio

of the relative run time for the fine-grid-only run divided by that of

the given multigrid scenarios. Addition of the multigrid scheme

significantly quickened the convergence of the model problem in most

cases. In four simulations, however, the multigrid scheme was only

mildly more efficient than the fine grid alone in reaching the assigned

convergence tolerance. In these cases only one additional level of

coarse grid was employed with the result that the overhead of setting up

multigrid operations was of the same order of magnitude as the reduction

in the number of iterations required to converge as compared to the

fine-grid-only run. Thus, care must be exercised in multigrid

implementation and utilization.

Table 7.2 shows that the use of multiple rather than single

relaxation sweeps on each grid provided for enhanced convergence in some

cases on the 21-by-21 grid the three-grid test cases. Brandt (1984)

recommends the use of such sweeps. However, while Brandt suggests that

3 may be the optimum number of relaxation sweeps on each grid, 2 such

sweeps could be more appropriate for this scheme based on the results

presented in Table 7.2.

The results presented above illustrate well a point to note: use

as many coarse grids as possible given the resolution of the finest



89

Table 7.2
Comparison of Convergence Properties for

Multiple Grid Runs: Potential Flow, 21-by-21 Orthogonal Grid
Convergence Tolerance - 0.0001

Relative

# # Fine I Coarse # Time to Con. Speed Up
Grids Sweeps Sweeps Iterations Tolerance Factor
1 N/A N/A 2000 46.6 1.00
2 1 1 365 27.1 1.72
3 1 1 120 11.1 4.20
2 2 1 300 28.8 1.62
3 2 1 120 13.7 3.40
2 2 2 220 23.7 1.97
3 2 2 120 15.7 2.98
2 3 2 240 31.1 1.50
3 3 2 100 15.2 3.06
2 3 3 150 21.2 2.20
3 3 3 100 16.9 2.76
2 1 2 260 22.3 2.09
3 1 2 60 6.5 7.15
2 2 3 170 20.3 2.30
3 2 3 70 10.3 4.53
2 1 3 185 18.1 2.58
3 1 3 90 11.3 4.14

grid. The maximum number of grids that could be employed for this

scenario was 3 for reasons explained in Chapter 6.

A final point to note concerns the stability of the global scheme

for certain multigrid simulations. Efforts were made in all cases to

run as close to the stability limit as possible (i.e., to within 90

percent of the limit). This limit, for this case study, is based on the

maximum 8 value defined by Equation 6.12. A time step value was first

computed using Equation 6.11; however, any time step of finite size

would have sufficed due to the absence of major advective or viscous

terms in the calculations. Given this time step and the grid

geometry, 8 was computed from Equation 6.12. However, for four

multigrid simulations (3/1/3; 3/2/3; 3/3/3; 3/3/2) this value had to be

reduced by a factor of from 2 to 4 in order to obtain improved
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convergence. This was necessitated by instabilities generated during

the start-up of the solution. The instabilities occurred in the first

50 multigrid cycles during which, due to the initial conditions imposed,

the continuity violations were very large. It is possible that if more

conducive initial conditions were used these instabilities might be

mitigated. It is also interesting to note that these instabilities

occurred generally for the three-grid/three-sweeps-per-coarse grid

simulations, those being the simulations which, by doing the most work

on the coarse grids, would return the biggest changes to the fluxes and

pressures in the first several cycles.

7.3.2 Results for the Nonorthogonal, 21-by-21 Grid

Results of the 21-by-21 nonorthogonal (skewed) grid simulations are

given in Tables 7.3 and 7.4; convergence histories for this scenario for

the divergence of velocity and the fluxes are given in Figures 7.6-7.8.

The angle of skewness simulated was 45 degrees. A kinematic viscosity

coefficient of 0.0001 was used for all the simulations on the skewed

grid. Convergence was defined as having been reached when the maximum

divergence was less than 0.001. This tolerance was chosen based on the

divergence norm for the fine grid-only solution at approximately 5,000

iterations, and the observation that, at this convergence level, no

discernible difference in the computed and analytical fluxes was

observed. At this convergence level, the computed pressure gradient was

approaching zero (i.e., less than 0.0001).

The fine-grid-only and the multigrid simulations did, except for

one simulation (2/1/1) that did not reach convergence, produce accurate

results. As shown in Table 7.3, the divergence and flux norms were

generally from quite to exceptionally small. This result adds validity
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Table 7.3
Summary of Convergence Norms for Multiple Grid Runs:

Potential Flow, 21-by-21 Nonorthogonal Grid
Convergence Tolerance - 0.001

Average Maximum
Run V-u ap/at AU AV ap/at 6U AV___
1/0/0 7.5e-04 4.4e-13 3.1e-06 5.6e-06 9.1e-09 8.7e-06 9.6e-06
2/1/1 6.le-03 5.7e-10 2.3e-05 4.0e-05 1.2e-06 5.5e-05 6.5e-05
3/1/1 4.5e-10 5.8e-17 1.3e-12 2.4e-12 1.2e-13 3.6e-12 4.1e-12
2/2/1 1.9e-03 2.9e-10 7.5e-06 1.3e-05 5.9e-07 1.9e-05 2.1e-05
3/2/1 1.3e-08 3.5e-16 5.1e-12 5.3e-11 2.8e-12 2.0e-11 2.6e-11
2/2/2 7.9e-06 1.3e-12 1.7e-08 2.9e-08 2.6e-09 5.2e-08 5.0e-08
2/3/2 7.3e-06 1.8e-12 2.8e-08 4.8e-08 3.6e-09 6.9e-08 7.8e-08
2/3/3 7.0e-08 2.1e-14 2.6e-10 4.5e-10 4.3e-11 6.8e-10 7.4e-10
3/2/2 9.8e-12 8.6e-19 3.e-14 5.3e-14I 2.0e-15 8.6e-14 9.6e-14
3/3/2 2.6e-09 1.2e-16 7.7e-12 1.4e-11 2.4e-13 2.14e-11 2.5e-11
3/3/3 3.4e-12 1.0e-19 6.9e-15 9-5e-15 2.3e-16 2.0e-14 2.7e-14
21/12 4.3e-05 1.6e-12 2.6e-08 4.3e-08 3.4e-09 1.2e-07 9.3e-08
3/1/2 4.0e-12 1.6e-19 3.7e-15 5..le-15 5.5e-15 1.6e-14 1.7e-14
2/2/3 2.0Oe-07 5.3e-14 7.4e-10 1.3e-09 1.1e-10 2.0e-09 2.1e-09
3/2/3 3.5e-12 5.1e-20 4.4Ie-15 6.1e-15 2.2e-16 1.3e-14 2.0e-14
2/1/3 1.7e-06 3.2e-13 6.3e-09 1.1e-08 6.6e-10 1.6e-08. 1.8e-08
3/1/3 1.1e-04 1.7e-13 9.9e-08 2.5e-08 1.2e-09 2.9e-07 1.Oe-07

Table 7.4
Comparison of Convergence Properties for

Multiple Grid Runs: Potential Flow, 21-by-21 Nonorthogonal Grid
Convergence Tolerance -0.001

Relative
#~ Fine # Coarse # Time to Con. Speed Up

Grids Sweeps Sweeps Iterations Tolerance Factor
1 N/A N/A 4500 104.4 1.00
2 1 1
3 1 1 350 32.3 3.23
2 2 1 950 91.2 1.14
3 2 1 375 42.8 2.44
2 2 2 600 64.8 1.61
3 2 2 300 39.0 2.68
2 3 2 525 67.7 1.54
2 3 3 425 59.9 1.74
3 3 2 350 53.2 1.96
3 3 3 270 45.4 2.30
2 1 2 750 64.4 1.62
3 1 2 160 17.4 5.99
2 2 3 450 53.6 1.95
3 2 3 250 36.8 2.84
2 1 3 550 53.6 1.95
3 1 3 800 100.0 1.04

*This simulation did not reach the convergence tolerance in 1000
iterations.
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Figure 7.6a. Fine-grid-only and 8 of 16 multigrid simulations
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Figure 7.6. Convergence history for divergence of velocity,
21-by-21 nonorthogonal grid, potential flow, mul t iple
grid runs



93

0

0 r

rZ-I L
-

0o 0 = DEWU. V0
07 o = DEW, 2/1
0 a = DEW. 3/V1

- = DELU, 2/1
x =DELU. 3/2/1
- = DELU, 2/2/2
v = DELU. 3/2/2
a = DELU, 2/3/2
w = DELU. 3/3/3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
ITERATION

Figure 7.7a. Fine-grid-only and 8 of 16 multigrid simulations

N

0

L-

9 = DELU, /0
o T o =DEW, 2//3
( a = DELU, 3/3/2

* = DEW. 21V2
x = DELU, 3V2
o = DEW, 2/2/3
v = DELU, 3/2/3
S= DELU 2/V3

= DELU, 3/V3
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

ITERATION
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Figure 7.7. Convergence history for U flux, 21-by-21 nonorthogonal
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to the belief that the algorithm presented in this report is capable of

conserving mass in generalized curvilinear space.

The results again indicate that the use of the multigrid approach

is warranted. In fact, the use of multigrid may be even more critical

for the nonorthogonal case than for the orthogonal case. As illus-

trated, the nonorthogonal scenario was much slower to converge than the

orthogonal scenario. Even after 5,000 iterations, the nonorthogonal

1/0/0 simulation had reached a continuity violation of 7.48E-04. This

is contrasted with the orthogonal 1/0/0 run that reached a continuity

violation of 2.14E-04 in 2000 iterations. The results also again bear

out the need to employ as many coarse grids as possible as shown by

the enhanced efficiency of the 3-grid runs over their 2-grid

counterparts.

The trends reported for the orthogonal case were generally observed

for the nonorthogonal case as well. However, there was some difference

in the ordering of the simulations having the greater speed-ups. Still,

the same three combinations of three-grid simulations (3/1/2; 3/2/3;

3/1/1) were optimal for both scenarios. Several of the three-grid

simulations (3/2/2; 3/3/2; 3/3/3; 3/2/3) had to have adjustments in

their 8 values that were twice that required to ensure stability in the

orthogonal runs. This points out that the nonorthogonal simulations

require more under-relaxation than their orthogonal cousins to remain

stable for the conditions simulated in this case study. Start-up

instabilities are also believed to be at the root of these concerns as

discussed for the orthogonal case; however, the nonorthogonality

definitely further exacerbated this problem.
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No effort was made to optimize 0 values for those runs requiring

their adjustment; rather, ever smaller values were simulated until

relatively good results were obtained. Thus, the ordering of the three-

grid speed-ups could have been slightly different perhaps. The 3/1/3

simulation refused all attempts to adequately accelerate this solution

to the correct flow field. As listed in Tables 7.3 and 7.4, results

were obtained for this run that were very poor compared to the other

three-grid runs. All attempts to modify the B value to improve these

results were unsuccessful. The reasons for the inability of this

particular simulation of converge quickly for all levels of

under-relaxation are not known.

7.4 INITIAL TRENDS FOR FURTHER EVALUATION

At least four initial trends are displayed in the results of the

orthogonal and nonorthogonal scenarios. These are: (a) the maximum

number of grids possible relative to the level of resolution of the

finest grid (as explained in Chapter 6) should be employed at all times

to maximize convergence acceleration; (b) some multiple number of

relaxation sweeps on both the finest and the coarser grids improves

performance of the multigrid scheme. While this actual number is not

clearly pointed to by the results, it is apparent that employing fewer

(or, perhaps, the same number of) relaxation sweeps on the finest grid

than on the coarser grids gives superior performance for this case

study. This is supported by the observation that, regardless of

specific ordering, the top four simulations in terms of speed-up had

fewer fine-grid-relaxation sweeps than the coarser grids did. The cause

for this trend is straightforward. The coarser grids have fewer control

volumes than the finest grids and, therefore, require fewer operations
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per relaxation sweep. Thus, the coarser grids are somewhat more

efficient in transmitting information throughout the field than the

finest grid alone is; (c) some dampening or artificial dissipation may

be required within the multigrid scheme to alleviate problems associated

with the interpolation of coarse-grid modifications to the finest grid;

and (d) some reduction in the a or time step values may be required in

viscous runs to overcome start-up instabilities for some multigrid

runs. Unfortunately, the case study presented in this chapter is not

rigorous enough to fully support the trends just delineated. Thus, more

"real world-like" case studies will be investigated using the trends

observed to date as baselines.



CHAPTER 8

VISCOUS FLOW RESULTS

8.1 CASE STUDY DETAILS

To illustrate the utility of the algorithm presented herein for

laminar, viscous flow, results from two model case studies are

presented. The model cases involve:

a. Couette flow, in the absence of a pressure gradient, at

Reynolds numbers of 100 and 400. The calculations are made on

orthogonal grids of differing resolution: one a 21- by 21-cell grid

(Figure 7.1a); the other 41-by-41 (Figure 8.1). The top boundary in

I I _I I I

-- ' k L , ,I T

;--1 _i'

Figure 8.1. 41-by-41 grid for Couette flow simulation

this case is a moving, no-slip boundary, while the bottom boundary is

stationary and no-slip. A linearly-changing velocity profile, with a

98
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maximum value of one the top boundary and a minimum value of 0 at the

bottom, is specified as constant on the inlet and outlet as shown in

Figure 8.2a; and,

b. Couette flow, in the presence of a pressure gradient, at a

Reynolds number of 100. The calculations for this case are made on the

same grids as listed above. The top and bottom boundaries for this case

are stationary and no-slip. A parabolic velocity profile, ranging from

zero on the top and bottom boundaries to one at the center of the flow

field, is specified as constant on the inlet and outlet as shown in

Figure 8.2b. This case will be referred to as stationary viscous

channel flow hereafter to differentiate it from scenario (a).

The physical domain for each of these simulations is a square box

of unit length.

The solution procedure is asked to perform a straight-forward

activity in each case: given that the fluxes along the inlet and outlet

were all constant values (the solid boundaries, of course, had flux

values of 0), and that the initial estimates for the fluxes and

pressures were universally 0, produce the correct flow fields inside the

box. Computational results for each of the simulations are compared to

the known analytical solutions for the given flow fields in order to

assess the efficacy of the former. As given by Streeter and Wylie

(1985), the flux components for the model cases above can be expressed

analytically as

u= a uy -- 2
y 2 2v ax ay y (81
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Figure 8.2. Case withu a pressure gradient
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V 0 (8.2)

2_ c (8.3)

_2 0 (8.4)ay

where

u0 = velocity of the top boundary (1 for scenario (a); 0 for
scenario (b));

= distance from the top to the bottom boundary;

= distance from bottom boundary to a given point in field;

Ay = vertical length of a given control volume face;

c = a constant (0 for scenario (a); nonzero for (b))

and all other variables are as defined previously. The variable p

here actually is pressure divided by density.

8.2 RESULTS OF COUETTE FLOW SIMULATION

8.2.1 Results for 21-by-21 grid, Re = 100

Table 8.1 summarizes the error norms for each of the fluxes, the

divergence of the velocity field, and the pressure as observed after a

specified number of iterations or multigrid cycles. The pressure norms

represent the time derivative of pressure divided by density that is

introduced by the Chorin scheme. This value should, of course, approach

zero at the steady state. As presented in the table, the addition of

multigrid greatly reduced the error norms of the computations as

compared to the fine grid-only solution.

Convergence histories for the divergence of the velocity field and

each of the average flux norms for each of the number-of-grids/number-

of-fine-sweeps/number-of-coarse sweeps combinations simulated are given
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in Figures 8.3-8.5. The computed flow fields generally approached the

analytical solution quite quickly for the multigrid runs. The numerical

Table 8.1
Summary of Convergence Norms for

Multiple Grid Runs: Couette Flow, 21-by-21 Grid Problem
Convergence Tolerance - 0.0001

Reynolds Number =100

Average Maximum
Run V.u a/at AU AV___ ap/at AU AV___

1/0/0 7.6e-05 2.0e-07 4.4e-07 3.8e-07 2.9e-06 8.6e-7 6.2e-07
2/2/3 6.2e-13 9.8e-16 5.7e-15 5.0e-15 5.1e-14 1.5e-14 2.3e-14
2/3/3 5.5e-13 1.0e-15 5.9e-15 5.3e-15 2.5e-14 1.5e-14 2.3e-14I
3/1/1 5.2e-13 8.5e-16 5.0e-15 4L.6e-15 4.0e-141 1.4e-14 2.0e-14
3/2/1 6.0e-13 7.5e-16 5.3e-15 4.8e-15 3.7e-14 1.4e-1L' 2.1'e-4
3/2/2 8.1e-13 1.0e-15 4.6e-15 4.6e-15 3.5e-14i 1.3e-14I 1.9e-114
3/2/3 5.8e-13 2.5e-13 6.0e-15 5.3e-15 4.9e-14 1.6e-114 2.3e-14
3/3/2 8.7e-13 1.3e-15 4.9e-15 4.6e-15 4.4e-14 1.4e-14- 2.1e-14

3/1/2 5.4e-13 1.4e-15 4.9e-15 4.5e-15 7.4e-114 1.3e-114 2.0e-114
3/1/3 1.6e-12 1.8e-15 6.4e-15 5.6e-15 5.4e-114 1.6e-114 2.4e-14
2/1/3 6.9e-13 1.3e-15 5.6e-15 5.0e-15 4.2e-14 1.4e-14 2.3e-14

solutions were also quite accurate. The computed differences between

the analytical and numerical fluxes were quite small; the divergence and

pressure time derivatives had similar trends. The residuals from the

continuity equation were indeed the last (compared to the momentum

equations residuals) to reach convergence tolerance. Once the contin-

uity violation had been reduced below 0.0001, no discernible difference

in the flux field from its analytical solution was observed. In addi-

tion, once this level of convergence was reached, the gradient of the

computed pressure field was observed to be approximately zero as well.

Several hundred iterations were required to drive continuity

violations to below the assigned convergence tolerance for the fine

grid-only simulation. This trend was observed as well for the mass

conservation simulations documented in~ Chapter 7.
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Figure 8.3a. Fine-grid-only and 5 of 11 multigrid simulations
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Figure 8.3. Convergence history for divergence of velocity,
21-by-21 grid, Couette flow, Re 1 100, multiple
grid runs



104

.-..0,

0 0 L = DELU. I/D/0
01" o = DELU. 2//2/3

a = DELU. 2/3/3
- = DELU, 3/1/1

x = DELU, 3/2/1
* = DELU. 3/2/2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ITERATION

Figure 8.4a. Fine-grid-only and 5 of 11 multigrid simulations

0

Ln
04
ZI

-J

0o o = DELU. /0/0
o =DELU. 3/2/3
, = DELU. 3/3/2
*= DELU. 3/3/3

= DELU. 3/1/2
= DELU 3/V3
= DELU. 2/1/3

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ITERATION

Figure 8.4b. Fine-grid-only and remaining multigrid simulations
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Figure 8.5b. Fine-grid-only and remaining multigrid simulations

Figure 8.5. Convergence history for V flux, 21-by-21 grid,
Couette flow, Re = 100, multiple grid runs
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The fine-grid solution (designated as 1/0/0) was observed to

fluctuate as it proceeded to the steady state. These fluctuations are

typical of the MacCormack predictor-corrector scheme for reasons stated

in the previous chapter. However, use of the multigrid approach clearly

alleviated much of this problem. The convergence histories for the

multigrid runs were much smoother than the fine grid-only history.

Given in Table 8.2 is a comparison of the relative run times to

convergence for this flow scenario with no multigrid (1 fine grid only)

and with the multigrid algorithm added. The speed-up factors given

represent the ratio of the relative run time for the fine grid-only run

divided by that of the given multigrid scenarios. The addition of the

multigrid scheme significantly quickened the convergence of the model

test case in most cases. In three cases, however, the multigrid scheme

was less than three times as efficient in reaching the assigned

convergence tolerance as the fine grid alone. In all three cases, only

one additional level of coarse grid was added with the result that the

overhead of setting up multigrid operations was a relatively large

percentage of the reduction in iteration time saved as compared with the

finest grid-only calculation. Thus, care must be exercised in the

implementation and utilization of multigrid.

Table 8.2 also shows the use of multiple rather than single

relaxation sweeps on each grid enhanced convergence on the 21-by-21 grid

for the three-grid test cases. In fact, the same general scenarios

showed maximized speedup as did for the mass conservation scenarios

reported in Chapter 7. The optimum number of fine and coarse relaxation

sweeps is still not clear from these results. However, it is obvious
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Table 8.2
Comparison of Convergence Properties for

Multiple Grid Runs: Couette Flow, 21-by-21 Grid Problem
Convergence Tolerance - 0.0001

Reynolds Number = 100

Relative

# # Fine I Coarse # Time to Con. Speed Up
Grids Sweeps Sweeps Iterations Tolerance Factor

1 N/A N/A 1770 45.5 1.00
2 2 3 130 16.7 2.73
2 3 3 130 19.8 2.30
3 1 1 90 8.9 5.10
3 2 1 90 11.1 4.10
3 2 2 40 5.6 8.16
3 2 3 50 7.8 5.84
3 3 2 50 8.2 5.56
3 3 3 35 6.3 7.22
3 1 2 40 4.6 9.87
3 1 3 50 6.6 6.91
2 1 3 150 15.6 2.91

of that the use some level of multiplicity for either fine or coarse

relaxation is in order.

The results presented above again illustrate well the need use as

many coarse grids as possible given the resolution of the finest grid.

The maximum number of grids which could be employed for this scenario

was 3.

8.2.2 Results for the 21-by-21 grid, Re = 400

Results of the 21-by-21 grid simulations are given in Tables 8.3

and 8.4; convergence histories for these scenarios are given in Figures

8.6-8.8. For this test case, convergence was again defined as having

been reached when the maximum divergence was less than 0.0001. The

results indicate that the use of the multigrid approach is warranted for

this problem based on enhanced use of computer resources. Table 8.3

illustrates clearly the accuracy of the numerical scheme. The final

level of convergence for this case is somewhat poorer than that for the
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lesser Reynolds number case above; however, the convergence is still

outstanding. The results again bear out the need to employ as many

coarse grids as possible as shown by the enhanced efficiency of the

3-grid runs over their 2-grid counterparts. And, though not shown, the

pressure gradient was observed to be less than 10-5 for all runs which

had divergence norms of less than 10-4.

A number of interesting aspects of the simulation of this test case

are illustrated in Table 8.3. The simulations for the Re =400 case

converged somewhat more slowly than the Re =100 simulations. This is

also mirrored in Table 8.4 which shows that the speedups for the higher

Reynolds number case were generally lower than the same Re =100

scenario (as listed in Table 8.2). Most of the general trends listed

previously are exhibited for the higher Reynolds number case. Unlike

the lower Reynolds number case presented in the previous section, some

Table 8.3
Summary of Convergence Norms for

Multiple Grid Runs: Couette Flow, 21-by-21 Grid Problem
Convergence Tolerance - 0.0001

Reynolds Number =400

Average -- Max im:21
Run V*u aQ/at AU AV___ ap/at AU___ AV__

1/0/0 1.6e-06 2.2e-09 1.Oe-08 4.7e-09 ~4.7e-09 2.5e-08 1.1e-08
2/2/3 2.3e-12 2.4e-14 1.8e-14 1.6e-14 5.9e-13 5.1e-14I 5.2e-14
2/3/3 1.7e-12 1.2e-14 6.3e-15 5.5e-15 2.7e-13 2.4e-14 1.9e-14
3/1/1 4.8e-08 6.8e-11 1.1e-09 9-3e-10 2.1e-09 2.6e-09 3.7e-09
3/2/1 6.8e-13 4.7e-16 5.1e-15 4.7'e-15 2.7e-14 1.5e-14 2.'~e-14
3/2/2 1.2e-12 2.4~e-15 2.5e-14 2.2e-1~4 6.3e-14 5.9e-114 8.. '-14
3/2/3 4.0e-11 1.6e-13 8.4e-13 4.2e-12 9.6e-11 2.2e-11 2."7?-11
3/3/2 1.0e-12 6.3e-16 4.6e-15 4.3e-15 2.2e-14 1.4e-114 2.0,:-14
3/3/3 1.5e-12 2.0e-15 9.6e-15 8.8e-15 4.6e-14I 2.4e-14 3.9c '4
3/1/2 2.9e-08 4I.4e-11 6.3e-10 5.1e-10 1.3e-09 1.5e-09 1.9e-,?
3/1/3 1.9e-08 1.5e-11 1.9e-10 1.1e-10 5.4e-10 6.1e-10 6.4e-:.
2/1/3 5.0e-08 1.2e-10 2.6e-09 2.2e-09 3.2e-.09 5.9e-09 8.6e-C9?
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Figure 8.6b. Fine-grid-only and remaining multigrid simulations

Figure 8.6. Convergence history for divergence of velocity, 21-by-21
grid, Couette flow, Re = 400, multiple grid runs
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Figure 8.7. Convergence history for U flux, 21-by-21 grid,
Couette flow, Re = 400, multiple grid runs



111

0o

ZI

(A

U -

0

0 = DELV. I/0/0
o = DELV, 2/2/3
a = DELV. 2/3/3

= DELV, 3/1/1
= DELV, 3/2/1
= DELV, 3/2/2

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

[TERATION

Figure 8.8a. Fine-grid-only and 5 of 11 multigrid simulations

0

-j

("O

o.

Co
= DELV, 1/0/0

0 o= DELV. 3/2/3
- = DELV, 3/1'3

= DELV, 3/3/2
0= DELV. 3/3/3

* = DELV 3
v = DELV, 2/13

0 400 800 1200 1600 2C0C 2400 2800 3200 ",600 4000
fIERATION

Figure 8.8b. Fine-grid-only and remaining multigrid simulations
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Table 8.4
Comparison of Convergence Properties for

Multiple Grid Runs: Couette Flow, 21-by-21 Grid Problem
Convergence Tolerance - 0.0001

Reynolds Number = 400

Relative

# # Fine # Coarse # Time to Con. Speed Up
Grids Sweeps Sweeps Iterations Tolerance Factor

1 N/A N/A 2700 69.5 1.00
2 2 3 180 23.1 3.01
2 3 3 160 24.7 2.82
3 1 1 140 13.9 5.01
3 2 1 90 11.1 6.27
3 2 2 80 11.2 6.23
3 2 3 80 12.5 5.58
3 3 2 60 9.8 7.08
3 3 3 90 16.2 4.29

3 1 2 100 11.5 6.03
3 1 3 200 26.3 2.64
2 1 3 190 19.9 3.49

of the 3-grid, one relaxation sweep on the finest grid cases exhibited

poorer final convergence at 500 iterations than did the other scenarios

simulated. The rate at which these 3-grid scenarios reached a

divergence norm of 0.0001 was still, except for the 3/1/3 case,

relatively good. These 3-grid simulations were not, contrary to

previous results, the best of the best in terms of speedup.

The reasons for these 3-grid results are not completely clear. In

the case of the 3/1/3 run, the combination of higher Reynolds number, 1

relaxation sweep on the finest grid, 3 coarse-grid relaxation sweeps,

and the initial conditions used may have resulted in the generation of

subtle errors for this case that defeated some of the error smoothing

abilities of the multigrid scheme. As shown in Figure 8.6, the

convergence of the divergence for the 3/1/3 scenario was not arrested;

rather, it was continuing to converge at 500 cycles. The rate of
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convergence for this scenario, however, was much lower than several of

the other runs. This problem may be related, in part, to the start-up

problems discussed for the nonorthogonal case study in Chapter 7.

Recall that the 3/1/3 nonorthogonal mass conservation scenario required

an excessive amount of under-relaxation to achieve stable results.

Although not as severe, the orthogonal 3/1/3 case in Chapter 7 also

required some under-relaxation. For the nonorthogonal case, the speedup

was negligible; it was relatively good for the orthogonal case,

though. These results, and the fact that the Re = 100 Couette flow

results of the previous section required a small amount of under-

relaxation for the 3/1/3 case, suggest that the numerical scheme is not

as computational efficient or stable for this grid/sweep scenario as

others. The results also lead to the hypothesis that the combination of

maximum number of grids/one finest-grid relaxation sweep/maximum number

of coarse-grid relaxation sweeps may be an inappropriate scenario for

this scheme's formulation and the selected initial conditions. This

hypothesis will be investigated further in subsequent sections of this

chapter.

An interesting aspect of the results presented in Chapters 7 and 8

to this point is that, while the specific ordering of the better

scenarios in terms of speedup is different from case to case, the same

general grid/relaxation sweep scenarios have been optimal thus far. The

3/1/2, 3/2/3, 3/1/1, 3/1/3 (to some extent), 3/2/1, 3/2/2, 3/3/3, and

3/3/2 scenarios represent the extent of the 4 top speedup scenarios for

the case studies discussed to date. This information is hardly

definitive however.
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8.2.3 Results for the 41-by-41 grid, Re = 100

To shed further light on the trends given above, and to examine the

effects of increasing the number of coarse grids employed, the finest

grid's resolution was effectively doubled. A maximum of 4 grids was

then utilized. Results for these simulations are given in Tables 8.5

and 8.6 as well as Figures 8.9-8.11.

The results for this scenario are accurate. As shown in Table 8.5,

all of the runs converged very well with the possible exception of the

2/2/3 simulation. The need to use as many grids as possible is even

more vividly brought out by these results than those previous as

illustrated by the poor showing of the 2-grid runs. Additionally, the

4-grid runs were generally superior in terms of speedup than the 3-grid

simulations.

The level of speedup for this case is considerably higher than for

the previous 21-by-21 grid cases. This result points out the true

utility of multigrid lies in the convergence acceleration of large

problems being solved over a solution space discretized with many nodes.

This is very encouraging when considered in the future context of three-

dimensional solutions.

The need to highly under-relax for certain scenarios was observed

for this model case. The 3/2/3, 3/1/3, 4/1/2, 4/1/3, 4/2/2, 4/2/3,

413/2, and 4/3/3 scenarios for the 41-by-41 grid runs required varying

amounts of under-relaxation for computational stability and proper

convergence acceleration. The relaxation coefficient, which multiplies

the time-step calculation and was usually 0.9 for most simulations, had

values ranging from 0.55 to 0.20 for these runs. The reason for this

undoubtedly lies in the connection between the initial conditions
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Table 8.5
Summary of Convergence Norms for

Multiple Grid Runs: Couette Flow, 41-by-41 Grid Problem
Convergence Tolerance - 0.0001

Reynolds Number =100

Average _Maximum
Run V-u ap/at AU AV___ ap/at AU AV___
1/0/0 3.1e-05 3.5e-08 1.0e-07 3.e-08 7.7e-07 1.9e-07 7.2e-08
2/2/3 1.7e-04 1.4e-06 5.7e-07 1.2e-07 3.0e-05 1.1e-06 3.5e-07
2/3/3 1.0e-04 9.2e-07 3.e-07 7.6e-08 2.0e-05 6.1e-07 2.1e-07
3/1/2 4.3e-11 4.4e-13 1.3e-13 2.8e-14 9.3e-12 2.8e-13 9.1e-13
3/2/2 5.3e-11 3.e-13 5.5e-14 1.0e-13 6.4e-12 1.4e-13 1.8e-13
3/2/3 3.2e-12 2.4e-15 1.1e-14 9.7e-15 1.3e-13 2.9e-14 5.1e-14
3/3/2 3.0e-11 3.4e-13 8.2e-14 4.9e-14 7.3e-12 1.6e-13 1.0e-13
3/3/3 8.5e-08 4.2e-12 7.5e-13 9.4e-13 8.9e-10 3.1e-11 4.9e-11
3/1/3 1.9e-12 3.5e-15 1.3e-114 1.1e-14 1.3e-13 3.4e-14 5.9e-14
4/1/1 1.9e-12 1.0e-15 7.8e-15 6.5e-15 7.2e-14 1.9e-114 3.5e-14
4/1/2 1.5e-11 8.3e-14 1.3e-13 1.0e-13 1.1e-13 4.0e-13 5.0e-13
4/1/3 4.6e-10 6.0e-12 6.7e-12 5.1e-12 8.6e-11 2.2e-11 2.4e-11
4/2/1 4.2e-12 8.6e-16 7.5e-15 6.4e-15 6.3e-14 1.9e-14 3.5e-14
4/2/2 2.8e-12 1.2e-14 1.6e-14 1.4e-14 3.1e-13 4.3e-14 7.4e-1J4
4/2/3 7.7e-12 2.8e-14 3.e-14 2.8e-14 5.2e-13 8.6e-14 1.5e-13
4/3/2 4.5e-12 7.2e-15 1.2e-14 1.1e-14 2.4e-13 3.2e-14 5.4e-14
4/3/3 4.7e-12 1.3e-14 1.6e-14 1.4e-14 2.4e-13 4.2e-14 7.3e-14

chosen, the problem being solved, and the number of grids/number of

relaxation sweeps selected. This brings into question whether the

initial conditions being used thus far in this report, which set the

initial flux and pressure values in the field to zero, are worth

utilizing.

It is probably true that somewhat different results from those

shown could be obtained for differing initial conditions. The initial

conditions used herein, however, were chosen because they are simple to

utilize and require no pre-conditioning or pre-simulation. There is

something quite attractive about having algorithm which, for the simple

initial conditions employed, will quickly achieve the correct solution.
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Table 8.6
Comparison of Convergence Properties for

Multiple Grid Runs: Couette Flow, 41-by-41 Grid Problem
Convergence Tolerance - 0.0001

Reynolds Number = 100

Relative

# # Fine # Coarse # Time to Con. Speed Up
Grids Sweeps Sweeps Iterations Tolerance Factor
1 N/A N/A 6400 583.2 1.00
2 2 3 500 234.0 2.49
2 3 3 500 227.0 2.11
3 1 2 175 73.5 7.93
3 2 2 175 80.9 6.56
3 2 3 120 68.2 8.55
3 3 2 175 104.0 5.61
3 3 3 280 183.1 3.19
3 1 3 120 57.8 10.09
4 1 1 95 36.5 15.99
4 1 2 120 54.5 10.70
4 1 3 120 62.9 9.27
4 2 1 95 44.7 13.06
4 2 2 155 83.7 6.97
4 2 3 155 94.6 7.13
4 3 2 125 78.3 7.45
4 3 3 80 55.7 10.47

The need to under-relax, still, is a difficult one to broach.

Given that the zero-start is being used is for simplicity and effi-

ciency, the need to evaluate numerous under-relaxation coefficients

until enhanced performance and stability are reached undermines this

reasoning. It is interesting that the top two scenarios in terms of

speedup for each of the cases reported herein generally required no

additional under-relaxation; the coefficient value of 0.9 was sufficient

to achieve quite good results. Further, these optimum scenarios usually

were combinations of the maximum number of grids allowable, either one

or two finest-grid relaxation sweeps, and either one or two coarse-grid

relaxation sweeps. The validity of this assessment will be evaluated in

the next case study.
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The combination of maximum number of grids allowable, one finest-

grid relaxation sweep, and maximum number of coarse-grid relaxation

sweeps appears somewhat less efficient computationally than the other

grid/sweeps combinations. This supports the results of simulation this

scenario for other case studies. The 4/1/3 run had a median speedup

observed among those for the 4-grid simulations as shown in Table 8.6.

This suggests that this combination is not one of the more efficient for

the variety of cases studied herein.

8.3 RESULTS OF STATIONARY VISCOUS CHANNEL FLOW

In order to gain more insight into the proposed trends given above,

and to evaluate the efficacy of the numerical scheme for a differing

model test case, Couette flow with a pressure gradient was simulated.

The conditions simulated are discussed at the beginning of this chapter.

This model test case, with its two no-slip horizontal boundaries, a slip

inlet, and a slip outlet, behaves very much like riverine flow within a

straight reach.

8.3.1 Results of the 21-by-21 grid, Re = 100

Results of these simulations are given in Tables 8.7 and 8.8, and

in Figures 8.12-8.14. The conditions simulated were chosen based on the

trends listed above. Only the better 3-grid multigrid scenarios were

run along with the fine grid-only condition. Table 8.7 shows that, the

1/0/0 and multigrid runs produced excellent results. The divergence was

consistently very small for all runs, as were the deviations of the

predicted fluxes from their analytical counterparts. In addition, the

time derivative of pressure was very small.
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Table 8.7
Summary of Convergence Norms for

Multiple Grid Runs: Stationary, Viscous Flow,
21-by-21 Grid Problem

Convergence Tolerance - 0.0001
Reynolds Number = 100

Average Maximum

Run V.u ap/at AU AV ap/at AU AV
1/0/0 4.5e-06 7.6e-09 2.3e-09 2.9e-08 1.2e-07 5.2e-08 1.5e-08
3/1/1 6.6e-13 8.7e-16 5.1e-15 2.3e-15 2.8e-14 1.4e-14 1.4e-14
3/1/2 6.8e-13 1.le-15 5.0e-15 2.2e-15 2.9e-14 1.2e-14 1.3e-14
3/2/2 6.1e-13 1.4e-15 5.2e-15 2.3e-15 4.7e-14 1.3e-14 1.4e-14
3/2/1 4.8e-13 9.7e-16 5.4e-15 2.3e-15 2.6e-14 1.4e-14 1.5e-14
3/2/3 1.5e-12 2.4e-15 5.0e-15 2.2e-15 9.7e-14 1.2e-14 1.3e-14
3/3/2 2.6e-12 5.8e-15 5.2e-15 2.1e-15 1.4e-13 1.3e-14 1.4e-14
3/3/3 1.0e-12 2.1e-15 5.1e-15 2.1e-15 5.7e-14 1.3e-14 1.3e-14

3/1/3 8.5e-13 2.0e-15 4.7e-15 2.3e-15 5.4e-14 1.1e-14 1.2e-14

Given in Table 8.8 are the speedups for these simulations. The

same general simulations provided the better speedups just as in

pre-l :us 21-by-21 grid runs. The 3/3/2 run provided little convergence

acceleration for the computer resources utilized. This simulation, and

the 3/2/3 run, required some additional relaxation beyond that needed by

the other runs. Both used an under-relaxation coefficient of 0.8; a

value of 0.9 was used for the remaining runs. While these coefficients

are very similar, their difference does point toward the possibility

that the 3/3/2 run actually needed even more under-relaxation for

efficient convergence. No effort was made to optimize this under-

relaxation coefficient for the 3/3/2 or 3/2/3 runs.

Evaluating the analytical expressions in Equations 8.1-8.4 for the

conditions of this case, it was found that the ap/ax term (recalling

that p is actually pressure divided by density) for this problem should

be 0.0040. This value was reached for all simulations having continuity

violations of less than 0.0001. All of the simulations produced the
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Table 8.8
Comparison of Convergence Properties for

Multiple Grid Runs: Stationary Viscous Flow,
21-by-21 Grid Problem

Convergence Tolerance - 0.0001
Reynolds Number = 100

Relative
# # Fine I Coarse # Time to Con Speed Up

Grids Sweeps Sweeps Iterations Tolerance Factor
1 N/A N/A 1500 38.8 1.00
3 1 1 100 9.9 3.91
3 2 1 100 12.4 3.14
3 2 2 50 7.0 5.55
3 2 3 60 9.4 4.14
3 3 2 220 36.1 1.07
3 3 3 50 9.0 4.30
3 1 2 80 9.2 4.09
3 1 3 100 13.2 2.95

correct ap/ax term; the ap/3y term, which should be zero, was 10-7 (or

smaller) for these runs as well.
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The results of this section seem to agree with the hypothesis set

forth in the previous section that either 1 or 2 relaxation sweeps on

the finest grid are generally optimum when coupled with an approximately

equal number of coarse-grid relaxation sweeps. While this rule cannot

be definitively stated, it does stand as an excellent rule-of-thumb for

multigrid runs. It can be stated that use of this rule, while possibly

failing to provide the optimal convergence acceleration, would provide

reliable and excellent convergence acceleration in its own right.

The maximum number of grids allowable/1 finest-grid relaxation

sweep/maximum number of coarse-grid relaxation sweeps scenario (3/1/3)

had the second worst performance among the combinations tested. This

result is directly in keeping with the trend postulated in previous

sections. Such a combination should not be used with the numerical

scheme documented herein and the initial conditions employed.

8.3.2 Results for the 41-by-41 grid, Re = 100

For this scenario, the three best sweep combinations for the 3-grid

and 4-grid Couette flow simulations on the 41-by-41 grid (section 8.2.3

above) were run. While use of the 3-grid combinations does not conform

with the suggested utilization of the maximum number of grids allowable

for a given problem (4 being maximum for this scenario), their use only

provides additional investigation of this suggestion for a new physical

problem. Results for these runs, and the fine grid-only run, are shown

in Tables 8.9 and 8.10, and in Figures 8.15-8.17.

Table 8.9 again bears out the ability of both the fine grid-only

and the multigrid runs to produce very accurate answers. The analytical

ap/ax for this scenario, 0.0020, was achieved for all the runs in this

section. The 3-grid combinations all performed quite well. However, as
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Table 8.9
Summar? of Convergence Norms for

Multiple Grid Runs: Stationary, Viscous Flow,
41-by-41 Grid Problem

Convergence Tolerance - 0.0001
Reynolds Number = 100

Average Maximum
Run V-u apIat AU AV ap/at AU AV
1/0/0 7 -.6e-08 ;.5e-11 2.3e-10 6.1e-11 1.4e-09 5.1e-10 2.7e-10
4/1/1 3.1e-12 1.1e-15 6.3e-15 2.8e-15 1.0e-13 1.6e-14 1.8e-14
4/1/2 1.7e-09 6.8e-12 1.9e-12 1.6e-12 1.1e-10 5.5e-12 6.2e-12
4/2/1 3.5e-12 1.1e-15 6.6e-15 2.9e-15 7.3e-1'4 1.7e-14 1.9e-14
3/1/2 1.1e-10 1.2e-12 9.4e-14 4.4e-13 1.6e-11 2.6e-13 1.1e-12
3/1/3 2.0e-10 3.e-12 7.9e-12 6.J4e-12 2.9e-11 1.9e-11 2.6e-11
3/2/3 2.7e-12 2.1e-15 1.9e-14 8.2e-15 1.6e-13 4.7e-14 5.3e-14

Table 8.10
Comparison of Convergence Properties for

Multiple Grid Runs: Stationary Viscous Flow,
41-by-41 Grid Problem

Convergence Tolerance - 0.000 1
Reynolds Number =100

Relative
# Fine ICoarse # Time to Con. Speed Up

Grids Sweeps Sweeps Iterations Tolerance Factor
1 N/A N/A 4500 411.2 1.00
4 1 1 110 42.2 9.73
4 1 2 200 90.8 4.53
4 2 1 105 49.4 8.33
3 1 2 180 75.6 5.44
3 1 3 135 65.1 6.32
3 2 3 150 80.7 5.10

shown in Table 8.10, the 4/1/1 and 11/2/1 combinations were still

superior. This result, then, removes all question about the need to use

the maximum number of grids allowable for a given finest-grid resolution

to maximize convergence performance.

The 4/1/2 combination did not perform nearly as efficiently as the

4/1/1 or 4/2/1 combinations did. In fact, the 4/1/2 run required an

under-relaxation coefficient of 0.35 as compared with 0.9 for the other
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two 4-grid runs. Some effort was expended to optimize the value of this

coefficient for the 4/1/2 run. This result, coupled with previous

trends, suggests that the most reliable combination to use for excel-

lent, if not optimal, multigrid convergence acceleration is the maximum

number of allowable grids/one or two finest-grid relaxation sweeps/one

coarse-grid relaxation sweep combination. It is this suggested rule

which will be used as a basis for simulating more rigorous model test

cases in the future. As a final note to this chapter, it appears that

good, though not excellent, convergence acceleration can also be had

through the use of fewer than the maximum number of grids when coupled

with 1 or two finest-grid relaxation sweeps and 2 or 3 coarse-grid

relaxation sweeps, respectively. These combinations, however, will be

less efficient than the suggested combinations' results.



CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 CHAPTER SUMMARY

This chapter provides a series of conclusions on the efficacy of

the numerical scheme presented herein for the solution of the incom-

pressible Navier-Stokes equations. The prospectus for using this scheme

for future three-dimensioral calculations for approach flows to

hydraulic structures is discussed. Comments are included on the soft-

ware design of the algorithm, its interface with the CYBER-205, and

possible changes to the study results through use of a different super-

computer. Specific discussion of the components of the code, including

an overview of its formulation, subroutines, memory requirements, etc.,

are provided in Appendix A.

Following the discussion and conclusions section, recommendations

are made for additional research needed on the numerical scheme for both

two-dimensional and three-dimensional applications.

9.2 DISCUSSION AND CONCLUSIONS

A numerical scheme has been described that is used to integrate the

two-dimensional Navier-Stokes equations for steady-state, homogenous

incompressible flow on a staggered grid. The approach has been limited

to flows of low Froude number, thereby allowing the use of a rigid-lid

approach. This flow is analogous to that expected in the approaches to

many hydraulic structures. The explicit predictor-corrector finite

volume relaxation scheme of MacCormack (1969) is used. It is coupled

133
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with the pseudo-compressibility methodology of Chorin (1967), thus

negating the need to solve a Poisson equation relating the pressure and

flux fields. Results from the simulation of four model case studies are

presented which show the efficacy of the presented numerical method.

A multigrid convergence acceleration technique patterned after

Brandt (1984) and Jameson and Yoon (1986) was coupled with the basic

relaxation scheme to enhance code efficiency. Results for the four

model test cases conclusively showed the validity and attractiveness of

the multigrid approach. The flow fields generated through inclusion of

multigrid were as accurate as the finest grid-only calculations. These

model test cases were generally observed to converge to a pre-assigned

convergence tolerance in from 3 to 12 times faster than the finest

grid-only solutions. Although the multigrid scheme did require more

computer coding and produced up to a nine-fold increase in time per

cycle compared to the fine grid-only calculations, it converged to the

correct solution in many fewer iterations than did the non-multigrid

runs. It appears potentially beneficial to add some amount of

refinement to the finest grid so that more coarse grids could be

effectively used. This suggests that it might be possible to increase

convergence acceleration while increasing finest-grid refinement.

The optimal multigrid setup included utilizing the maximum number

of total grids allowable given the resolution on the finest grid. The

convergence was most faithfully accelerated by the use of one or two

relaxation sweeps on the finest grid in concert with the use of one or

two relaxation sweeps on each of the coarser grids. Sometimes extreme

under-relaxation of the 8 coefficient or the multiplier on the time step

produced faster convergence. However, this required a potentially
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laborious sensitivity analysis. This need to "calibrate" the model is

probably of questionable worth. Indeed, the combinations encompassed by

the suggested rule above were already very near the optimum combination

simulated for a given case.

Incorporation of the multigrid scheme into the basic relaxation

procedure was often tedious. The results confirm the utility of the

multigrid approach. Unfortunately, documentation of the multigrid

approach is often too general or esoteric to be of any use for many

numerical developers.

During the simulation of the Couette flow with a pressure gradient

case, it was found that a second-order boundary condition for velocity

was required to produce the correct shear stresses on the no-slip

boundaries. Such a boundary condition was developed and used throughout

simulations making up this report.

With a single exception, no effort was made to globally, or

generally even locally, optimize the value of the B coefficient in the

pseudo-compressibility calculations. It is possible that some increased

convergence performance could have been obtained had this been done.

However, this increased performance could have been offset by the

resources required to optimize B for each of the conditions simulated.

Thus, all runs utilized the largest B value that would provide

reasonable flow field results without additional investigation.

The initial conditions used herein, that of a zero pressure and

velocity field coupled with known fluxes on the boundaries, produced

large initial continuity violations for all cases simulated. This was

purposeful in that it was desired to show for every case that the model

could recover from very adverse initial conditions and produce accurate
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results. The use of differing initial conditions could have produced

simulation results and trends different from those reported herein.

However, it is advantageous to have a numerical scheme that is stable

enough to basically start itself up rather than having to be feed a

favorable initial condition set for adequate convergence. The use of

the zero initial conditions with the grid/relaxation sweep combinations

recommended above produces stable and accurate results relatively

efficiently.

Some combinations of grid/relaxation sweep were slightly unstable

and required under-relaxation. A few runs even appeared totally

unstable. This problem may be associated with the initial conditions

chosen. However, it is equally likely that the particular multigrid

scheme used herein produced errors on the finest grid that it could not

easily damp. Jameson and Yoon (1986) report a similar concern that led

them to incorporate a dampening term in their scheme. No effort to

develop a dampening methodology was made; however, it stands as a

possible research need.

At the beginning of this report it was stated that the pseudo-

compressibility method was to be used, rather than a Poisson solution,

because the latter was iterative while the former allowed direct

solution. It appears from the results presented in this report that the

pseudo-compressibility method produces excellent results. Still, as

vividly shown for the nonorthogonal grid case study, the skewness intro-

duced resulted in a much-prolonged convergence of the basic relaxation

scheme when compared to the analogous orthogonal case study. The uie of

a Poisson solver that is vectorizable, such as that used by Bernard

(1988), would possibly be of worth for nonorthogonal problems.
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Additionally, personal discussions with several numerical researchers

indicated that the given convergence tolerances used for the model cases

presented herein were usual'y reached in less than 500 iterations for

schemes similar to that investigated. The lone general difference

between their schemes and the one presented was their solution of a

Poisson equation for pressure rather than the present use of pseudo-

compressibility. Thus, the Poisson solution may be more rigorous than

the pseudo-compressibility methodology in removing mass violations

throughout the field for both orthogonal and nonorthogonal grids.

Investigation of this possibility will commence in the very near future.

It appears that all indicators are positive for use of the general

numerical scheme presented in three-dimensional calculations of approach

flows to hydraulic structures. The scheme is accurate and relatively

efficient for the model case studies. Further, it is relatively easy to

code and, being explicit, to trouble-shoot. The results presented stand

as a good foundation in support of further development of this scheme

for steady-state, three-dimensional incompressible simulations of

low-Froude number flows such as those often approaching hydraulic

structures. The final recommendation of the use of pseudo-

compressibility is qualified only in that more efficient solutions may

be available through the implementation of a Poisson solver for

pressure.

In the area of code development and formulation, no effort was made

to customize this code for use on the CYBER-205. Some 205-specific

vector functions were used, such as those computing the minimum and

maximum of a given multi-dimensional array (Q8SMIN and Q8SMAX,

respectively). Additional use of explicit vector syntax was made in
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several places to initialize arrays. This was, however, the general

extent of explicit vector functionality in this code. The result of

this was a code that was relatively portable but slower than optimum on

the CYBER-205. Portability was deemed the more important of these two,

however, because of the strong likelihood of code usage on other main-

frame supercomputers, such as a CRAY-2 or ETA-tO, by the US Army

Engineer Waterways Experiment Station. Thus, some performance was lost

on the CYBER-205 as a result. As an example, the step size (stride) for

the DO-loops controlling the coarse-grid relaxation sweeps was always an

integer multiple of two. The CYBER-205 does not vectorize DO-loops that

do not have unit (1) strides. Thus, none of the major loops in the

coarse-grid relaxation sweep portion of this code vectorized, These

loops would vectorize on a CRAY-2 or an ETA-tO, however. In addition,

the use of vector gathers and scatters on the CYBER-205 would alleviate

this problem as well. These functions are specific to the 205 and

would, therefore, negate the portability of the code. Thus, the

performance exhibited by the code as presented would undoubtedly

represent a lower bound when compareJ to its use on some other

supercomputers.

The code (as discussed in Appendix A) was constructed with both

portability and machine architecture in mind. Whenever possible both

were placated. Approximately four out of every 10 DO-loops in the code

vectorized on the CYBER-205. Most that did not either had non-unit DO-

loop strides by requirement (such as the coarse-grid relaxation coding

as discussed above), or were in the output portions of the code.

Several of the non-vectorizing loops had diagnostics within them that

were left in place throughout the simulations. This was necessary
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because there was no a priori knowledge of when the diagnostics would be

needed. Their presence had little impact on the overall run times for

the scheme in any case.

As a final note in this section, it is the opinion of the author

that the use of model test cases having known analytical or established

solutions was of great benefit. Many code inadequacies and modifica-

tions were discovered directly from comparison of the numerical

simulations with known values. The relative simplicity of the test

cases from a fluid mechanics point-of-view is considered a large plus in

that the features of the simulated flows, and the causes of those

features, were well understood. Further, the combination of test cases

had all the components of the more sophisticated problems, thereby

allowing a thorough checkout of the various coding sequences. It is

truly believed that test cases of these types should be attacked and

researched thoroughly prior to "real-world" calculations in order to

build the understanding and confidence needed to tackle these latter

problems.

9.3 RECOMMENDATIONS FOR FUTURE WORK

It has become apparent that there are many more areas to

investigate relative to the numerical scheme presented. Specific

recommendations are presented below.

Under-relaxation of the changes in coarse-grid pressure and fluxes

during prolongation should be investigated. This could aid in the

mitigation of error introduction from the coarse grids to the finest

solution.

There is very little in the literature concerning the nature of

MacCormack's predictor-corrector scheme for three-dimensional,
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incompressible simulations. More investigation into this is needed.

More rigorous investigation of the presented numerical scheme in

two dimensions is warranted as well. In particular, a driven cavity or

backstep case should be simulated. This will be done as a direct

follow-on to this report.

Investigation of additional boundary conditions should be

conducted. In particular, the fluid interaction with a no-slip boundary

should be explored more fully, and boundary conditions compatible with

staggered-grid schemes developed as needed.

Much more general research into the nature of multigrid solvers

relative to incompressible flow simulation is needed. Very little is

available in the literature on this subject. Information for both

two-dimensional and three-dimensional incompressible simulations would

be beneficial. It would also be helpful if documentation of multigrid

mechanics, rather than theory, were presented.

The smoothing properties of the presented scheme need to be

evaluated in some detail. Initial cursory evaluation suggested the

scheme to be a poor smoother. This would allow an examination of more

optimal convergence acceleration methodologies. It should be stressed

that the aim of the research presented herein was not to develop the

most efficient multigrid solver available; rather, it was to examine the

potential for speeding up the convergence of the presented relaxation

scheme that itself was known to be accurate for incompressible flow

simulation. Thus, future modifications of the numerical methodology

presented should be examined for enhanced smoothing and convergence

performance.
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Finally, the use of a Poisson pressure solver rather than pseudo-

compressibility is in order. This, too, is expected to be done in the

near-future.
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APPENDIX A

DESCRIPTION OF COMPUTATIONAL SOFTWARE

A.1 INTRODUCTION

This appendix provides an overview of the computerization of the

numerical algorithm described in the main text. This overview includes

synoptic discussion of each of the code's subroutines; a listing of the

input to the code; and a delineation of the output from each simulation

run. The appendix begins with a discussion of the basic formulation of

the computer code.

A.2 BASIC COMPUTER FORMULATION

The numerical algorithm presented in the main text was developed

using the FORTRAN 77 programming language; it was executed on a

CYBER-205 that had two vector pipelines. In order to maximize code

portability, few departures from standard FORTRAN 77 were made. A

notable exception to this was the use of namelists for specification of

input and output parameters. Additionally, explicit CYBER-205 vector

syntax and intrinsic functions were used in some cases. These were

usually limited in use, however, to cases of array initialization and to

searches of two and three-dimensional arrays for minima and maxima. No

vector gathers and scatters were used.

The code was developed in a modular fashion. A main routine was

developed that housed calls to the grid setup subroutines and housed the

master code iteration loop. Within this loop, the basic computational

subroutines were called such as the MAC subroutine that employed the
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basic relaxation scheme, the multigrid scheme, and made calls for

updated boundary conditions. Each of these subroutines is summarized in

a subsequent section of this appendix.

Note is the use of parameter statements throughout the code. This

allowed a relative conservation of computer memory during the load and

execution phase. As an example, the simulation of a given model test

case on a 21-by-21 grid required only 395 thousand words of central

memory to load and execute. An analogous 41-by-41 grid simulation

required 723 thousand words.

In terms of run times, a typical simulation of a Couette flow test

case on a 21-by-21 grid with no multigrid required 109 system billing

units (this is a CYBER-205 internal pricing measure; 61.5 seconds is the

analogous central processing time) to run 2000 iterations including

setup and output. Given processing costs of $500 per system billing

unit at Colorado State University, this run cost was approximately $15.

The addition of multigrid (with 3 levels of grids) to this problem

required 119 system billing units to run 500 iterations including setup

and output. This translated to a cost of approximately $17. A typical

simulation of the same Couette flow test case on a 41-by-41 grid with no

multigrid had a cost of approximately $29.

A review of the DO-loops in the code showed that approximately 38

percent of the loops in the code vectorized on the CYBER-205 using safe

vectorization. The primary reasons for the failure for vectorization

were: (a) use of non-unit stride for the loops controlling the coarse-

grid operations within the multigrid algorithm; and, (b) use of loops as

a part of a write sequence during intermediate or final output creation.

This level of vectorization obviously could have been enhanced on the
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CYBZR-205 through the use of vector gathers and scatters; however, such

use would have reduced greatly the portability of the code.

A.3 SYNOPSIS OF SUBROUTINE COMPONENTS

This section provides an overview of the interworkings of the

individual subroutines within the code. The routines are, following the

main program, listed in alphabetical order. Only a short overview is

provided for each routine. Detailed information on several components

of the code, such as relaxation, restriction, or prolongation, is

provided in the main body of this report.

A.3.1 MAIN Routine

This routine calls the main setup routines GRID, JACOB, INITIAL,

TIME, and RHS initially. The allowable pseudo-compressibility

coefficients are also computed for the finest grid only. Then, for a

user specified number of iterations (or multigrid cycles), the routine

calls the MAC subroutine that houses the relaxation and multigrid

algorithms. At the end of each of these iterations, convergence norms,

related to the divergence of velocity and the differences in the

computed fluxes and their analytical solutions, are computed. If the

solution has converged, subroutine OUTPUT is called to provide summary

information and data file creation. If the solution has not converged,

the iteration process is continued. If the solution fails to converge

in the alloted number of iterations, the intermediate solution is

presented by subroutine OUTPUT with a message that the solution failed

to converge. The MAIN routine also provides times of execution of the

main computational loop (i.e., central processing time for the per-

formance of N multigrid iterations while neglecting the time required

for setup and output) for diagnostic use later.
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A.3.2 Subroutine BCC

This routine updates the pressure change values residing computa-

tionally just beyond the physical boundaries on each of the coarse

grids. The routine extrapolates field values normal to a given boundary

to obtain the value just beyond. The routine calls no other subroutines

and is, itself, called from the multigrid section of the MAC subroutine.

A.3.3 Subroutine BCCV

This routine updates the u and v-velocity component values residing

computationally just beyond the physical boundaries for each of the

coarse grids. The routine uses a second-order extrapolation for both

slip and no-slip boundaries. The routine calls no other subroutines and

is, itself, called from the multigrid section of the MAC subroutine.

A.3.4 Subroutine CORPRE

This routine computes the flux-centered pressure derivatives which

are components of the momentum equations. These derivatives, which are

centered separately about the U and V flux locations, are then used to

compute the changes to these fluxes as a result of the imposed pressure

gradient. The same routine, which operates on the finest grid only, is

used to compute the effects of the gradient of pressure changes on the

respective fluxes. The subroutine calls no other routines and is called

itself by the MAC routine.

A.3.5 Subroutine CPGRAD

This subroutine computes the same information as subroutine CORPRE,

except that its calculations are made on the coarse grids. However, in

contrast to CORPRE, CPGRAD does not use the pressure calculations to

modify the existing coarse-grid fluxes. Rather, the pressure informa-

tion is then restricted from the present coarse grid to a yet-coarser
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one for later use. The routine is called from the multigrid section of

subroutine MAC and calls no routines itself.

A.3.6 Subroutine FPGRAD

This routine performs the exact same task as subroutine CPGRAD on

the finest, rather than coarser, grid. The routine is called from the

multigrid section of subroutine MAC and calls no routines itself.

A.3.7 Subroutine GRID

This routine computes the x and y locations of each of the node

points that make up a given numerical mesh. Generation of grids for 4

specific model test geometries (straight channel, half-cylinder in a

channel, converging-diverging channel, arbitrarly-skewed channel), each

having a user-specified number of points along the x and y axes, are

possible. Other arbitrary geometries are not available for generation

with this routine. The routine will also generate stretched grids for

the given examples. The routine is called by the MAIN program and calls

no subroutines itself.

A.3.8 Subroutine INITIAL

This subroutine provides the setup of initial conditions, boundary

values, and problem type. Several model test cases can be simulated

including two types of Couette flow; flow over a half-cylinder; flow

through a converging-diverging channel; and flow in a driven cavity.

The flow problem type is specified in the user input. Testing of the

latter three physical cases has been limited to date. The routine also

specifies which boundaries are slip and no-slip, and the constant boun-

dary flux values, based on the test case being simulated. The routine,

which calls no other subroutines, is called by the MAIN program.
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A.3.9 Subroutine JACOB

Using the node-point information computed in the GRID subroutine,

this routine computes the metrics and jacobians required in the trans-

formation from cartesian coordinates to generalized curvilinear

coordinates. The routine calls no other routines and is called by the

MAIN program.

A.3.10 Subroutine MAC

This is the main computational subroutine in this code. It is

called for every iteration or multigrid cycle from the MAIN program.

Within MAC, the primary predictor-corrector relaxation scheme is used to

compute modifications to the pressure and flux fields on both the finest

and, if applicable, coarser grids. The shift condition, which is used

within the predictor-corrector to modify the direction of its differ-

encing, is set and maintained within MAC. Within the routine, the

cell-centered velocity values are obtained from the existing flux field

and the known grid metrics. Following use of the relaxation scheme, the

fluxes and pressures are updated based on computed modifications to the

velocity and pressure fields. If multigrid is being employed, the MAC

routine computes coarse-grid metrics and jacobians, coarse allowable

time steps and pseudo-compressiblity coefficients, and residuals. It

then restricts these residuals and the existing-grid solution to a

coarser grid, and completes the relaxation procedure on this coarser

grid. This is done for a user-specified number of coarse grids. Upon

completing these operations on the coarsest grid, the MAC routines

performs a prolongation process to update the finest-grid solution. The

MAC subroutine calls subroutines BCC, BCCV, PBC, and VBC for computation

of updated boundary information. It calls subroutines CORPRE AND MULPRE
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inorder to modify the existing fluxes on the finest and coarser grids,

respectively, based on the effects of the pressure gradient resident on

the respective grid. MAC calls CPGRAD and FPGRAD to provide for

restriction of pressure gradient information from a finer grid to a

coarser one. Additionally, MAC calls the following: subroutine RHS to

compute the product of velocity and flux; subroutine RHSV to compute

the viscous terms on the finest grid; subroutine RHSVC to compute the

viscous terms on the coarser grids; and subroutine MACCO to compute the

initial residuals projected on a coarse grid through relaxation using

the just-restricted solution as an initial solution. This routine does

the bulk of the work in this code.

A.3.11 Subroutine MACCO

This routine uses the predictor-corrector relaxation scheme to

compute the residuals that would exist on a given coarse grid with the

solution restricted from the just-finer grid acting as its initial

solution. These residuals are then employed as part of the right-hand

sides of the equations relaxed on the coarse grids within the multigrid

section of the MAC subroutine. This routine, which is called by MAC,

calls subroutines BCC, BCCV and RHSVC.

A.3.12 Subroutine MULPRE

This subroutine computes the modifications to the coarse-grid

fluxes resulting from application of the pressure gradient on the given

coarse grid. In this connection, it performs the exact same function as

the CORPRE routine, except that the latter makes computations on the

finest grid only. This routine calls no other routines and is called by

MAC.
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A.3.13 Subroutine NEWTON

This small routine computes the base functions used in the GRID

subroutine for stretched coordinate generation using Newton-Raphson

iteration. A convergence tolerance of 1.E-12 is used to ensure appro-

priate grid generation resolution. A maximum of 2000 iterations is

allowed f'r convergence. This routine is called by subroutine GRID and

calls no other routines.

A.3.14 Subroutine OUTPUT

This routine performs two specific tasks: (a) it outputs a hard-

copy of several performance-related statistics, the final computed flow-

field solution, the values of the streamfunction at all node locations,

and run parameters; and (b) it generates up to 5 data files for ultimate

plotting and analysis. These data files house the computed flow field,

the streamfunction values, the x-y locations of the node points, the

norms of the calculations at every 10th iteration or cycle, and the

locations of those norms in the field. The routine is called by the

MAIN program; it calls no subroutines.

A.3.15 Subroutine PBC

This routine updates the computational boundary values for pressure

just beyond the physical boundaries on the finest grid only. It uses

the same numerical boundary condition for these updates as used by sub-

routine BCC. This routine is called by subroutine MAC and calls no

routines itself.

A.3.16 Subroutine PGDLOD

This routine uses bilinear interpolation to prolong pressure

corrections from a given coarse grid to its just-finer counterpart. The

routine is called by MAC, and it calls subroutine BCC to complete its

calculations.
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A.3.17 Subroutine RHS

This routine computes the product of a given flux and a given

velocity (i.e., each of the four possible combinations of the U and V

fluxes and the u and v velocities) for use in the relaxation of the

momentum equations. The routine makes use of the shift condition set

within subroutine MAC to relate these fluxes and velocities. The

routine is called initially by the MAIN program, and by the MAC routine

thereafter. RHS calls no other routines.

A.3.18 Subroutine RHSV

This routine computes the viscous terms for the Navier-Stokes equa-

tions based on the methodology shown in Appendix B for the finest grid

only. Shear stresses along no-slip boundaries are also explicitly

computed. This routine is called by subroutine MAC; it calls no

routines.

A.3.19 Subroutine RHSVC

This subroutines performs exactly the same function as subroutine

RHSV for the coarse grids only. It, too, is called by subroutine MAC

and calls no routines itself.

A.3.20 Subroutine TIME

This routine computes the allowable time step based on a heuristic

stability condition (as presented in Chapter 6) for the finest grid

only. The routine then seeks out the minimum allowable time step within

the field and assigns its value as the global time step for all cells

within the computational domain. The computed allowable time step is

multiplied by a user-specified factor, which ranges between 0 and 1, to

allow some control over the impacts of non-linear instabilities. This
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factor was generally set at 0.9. The routine is called by the MAIN

routine. It calls no subroutines.

A.3.21 Subroutine VBC

This routine updates the computational velocity values in cells

just beyond the physical boundaries using second-order relationships.

These calculations are made by this routine on the finest grid only.

Its coarse-grid counterpart is subroutine BCCV. This routine is called

by subroutine MAC. It calls no routines itself.

A.4 INPUT SPECIFICATION

All of the input to this code is incorporated into a namelist

entitled DATAIN. Within this namelist are logical, alphanumeric, and

arithmetic variables which control all phases of the model test case

selection; number of grid nodes; maximum number of iterations or multi-

grid cycles; etc. The namelist was located within the main job control

language used to execute the numerical modeling program. A short

description of the items within the namelist DATAIN is given below.

Four types of variables are within the namelist: floating-point (f);

integer (i); logical (1); and character (c). The logical variables were

either true for false.

BETAC - (f): Relaxation multiplier for pseudo-compressibility

coefficient calculation. Value always between 0 and 1; usually 0.9.

CFL - (f): Relaxation multiplier for time step calculation. Value

always between 0 and 1; usually 0.9.

DYFINE - (f): Size of smallest spatial step in vertical direction.

EPS - (f): Convergence tolerance for all norms. Value set to

1.E-16 whenever desire was to run a pre-specified number of iterations

for generation of a convergence history.
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ETYPE - (c): Six letter variable set to "NAVIER" to simulate the

Navier-Stokes equations; set to "EULER " to simulate the Euler

equations.

FIELDX - (f): Multiplies initial u-velocity boundary values to

allow differing initial u-velocity conditions to be set in the field.

Set to zero for all of the calculations reported in this report.

FIELDY - (f): Multiplies initial v-velocity boundary values to

allow differing initial v-velocity conditions to be set in the field.

Set to zero for all of the calculations reported in this report.

FNAME - (c): Up to 15 letter variable set to the file name to be

assigned to the output data file housing the final pressure, velocity,

and streamfunction values. This file name is placed in the first line

of the file holding the flow data. The file is then transferred from

the CYBER frontend at Colorado State University to a VAX 11/750 at the

Waterways Experiment Station, Vicksburg, MS. This file name is used by

the VAX as its new file name for the given file. This variable always

started with the letters "QD" to designate it as pressure and velocity

data (the Q vector housed these data values).

FNAME1 - (c): Same as FNAME, except that is was used to signify

the data file housing the x and y geometry for each of the node points

in the numerical mesh. Each of these files starts with the letters

"IXZ"I.

FNAME2 - (c): Same as FNAME, except that is was used to signify

the data file housing the pressure and flux norms for each of the cells

in the field. Each of these data files starts with the letters "QN".

FNAME3 - (c): Same as FNAME, except that is was used to signify

the data file housing the norms for the divergence of velocity for each
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of the cells in the field. Each of these files starts with the letters

"DVI".

ITMAX - (i): Maximum number of iteration or multigrid cycles to be

simulated. This number can not exceed 10000 at present without

re-dimensioning the code for an increased number.

IWSLP1 - (i): Initial i-location along a given section of a

horizontal no-slip boundary which is to be designated as slip. If this

number is greater than IWSLP2, the entire given boundary is designated

as no-slip.

IWSLP2 - (i): Ending i-location along a given section of a

horizontal no-slip boundary which is to be designated as slip.

IXBUMP - (i): Number of grid points along either the bottom or

bottom and top axes that reside directly on the half-cylinder simulated

in the converging-diverging channel and half-cylinder test cases. This

option, and the next two associated with it, have not been fully tested

as yet.

IXDOWN - (i): Number of grid points along either the bottom or

bottom and top axes which reside in the grid region just downstream of

the bump for the cases mentioned just above.

tXUP - (i): Number of grid points along either the bottom or

bottom and top axes which reside in the grid region just upstream of the

bump for cases mentioned just above.

JWSLP1 - (i): Initial J-location along a given section of a

vertical no-slip boundary which is to be designated as slip. If this

number is greater than JWSLP2, the entire given boundary is designated

as no-slip.
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JWSLP2 - i): Ending j-location along a given section of a

vertical no-slip boundary which is to be designated as slip.

NGRIDS - i): Number of total grids, including the finest, to be

simulated in a given multigrid scenario. The maximum number considered

in this report was 4; the maximum the code is presently designed to

consider is 5.

NPREIT - i): Number of iterations to skip, after the first

iteration, prior to printing intermediate or diagnostic information

(such as velocity, pressure, and flux information). The minimum value

of this variable was 1.

NPRNT - i): Variable controlling output of convergence history

information, allowed writing of data to output files every NPRNT

iterations. This value was always ?0 for the work reported in this

report.

NSWEEPC - (i): Number of relaxation sweeps to make on each coarse

grid per multigrid cycle.

NSWEEPF - i): Number of relaxation sweeps to make on the finest

grid per multigrid cycle.

OMEGAM - (f): Relaxation coefficient used to change portion of

coarse-grid correction actually imparted to the finest-grid solution.

This value was set at 1 throughout the present work.

QBSTEP - (1): If true, a backstep model test case is simulated; if

false, another case is simulated. This test case is just in the

formulation stages to date.

QBUMP - (M): If true, a half-cylinder model test case is

simulated. -his test case is untested to date.
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QCAV - (1): If true, a driven cavity model test case is

simulated. This test case is untested to date.

QCORST - (1): If true, the given model test case is initialized

through simulation of 50 iterations on a given coarse grid prior to any

other calculation. This option was of little benefit for the cases

simulated; however, it was very useful in code debugging.

QCOU - (i): If true, a Couette flow model test case is simulated.

QFREZ - (1): If true, the source term on the right-hand side of

each of the momentum equation involving the divergence of the flux field

is considered to be zero. This was used in initial code debugging and

for the potential flow calculations presented in Chapter 7 only.

QJUNK - (1): If true, a series of diagnostics from numerous

subroutines within the code is output in hardcopy form. This was used

for debugging only.

QMID - (1): If true, grid stretching across the horizontal axis

was accomplished, starting at the middle of the grid and moving outward

in both directions.

QMULT - (1): If true, the multigrid technique was employed for the

given simulation.

QNADV - (1): If true, all of the advective terms in the equations

of motion were considered to be negligible. This was used only for the

simulation of potential flow in Chapter 7.

QPRINT - (1): If false, the printing of intermediate solution

information every NPREIT iterations was suppressed regardless of the

value of NPREIT.
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QSLIP - (1): If true, the designation of some portions of no-slip

boundaries as slip is allowed; if false, all no-slip boundaries are

fully no-slip.

QVENT - (1): If true, a converging-diverging channel model test

case was simulated. This scenario has had no evaluation to date and is

extemely preliminary.

QZERO - (1): If true, the initial values of pressure and velocity

in the field were set to zero.

RHOZERO - (f): Initial density of water in units compatible with

the initial velocity specification (see UINIT).

SFLUX - (f): Multiplier for the U flux on the inlet and outlet

boundaries; its value was either 1 or 0, signifying either a flux or

zero-flux boundary, respectively.

TFLUX - (f): Multiplier for the V flux on the top and bottom

boundaries; its value was either I or 0, signifying either a flux or

zero-flux boundary, respectively.

UINIT - (f): Initial value of the u velocity on the inlet boundary

in either English or SI units.

VINIT - (f): Initial value of the v velocity on the inlet boundary

in the same units as UINIT.

XANG - (f): Angle, in radians, of skewness of a given grid. The

angle is measured from the vertical axis, moving clockwise.

XBOXLEN - (f): Physical length, in the same length units as those

of UINIT, of the domain being simulated, in the logical x-direction.

XBUMP1 - (f): X physical location of the upstream-most side of a

half-cylinder. The units of this length are those of XBOXLEN.
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XBUMP2 - (f): X physical location of the downstream-most side of a

half-cylinder. The units of this length are those of XBOXLEN.

XNU - (f): Value of kinematic viscosity of water in units

consistent with the designated velocity and characteristic length.

YBOXLEN - (f): Physical length, in the same length units as of

XBOXLEN, of the domain being simulated, in the logical y-direction.

YBUMPMX - (f): Physical height, in the same length units as

XBOXLEN, of a half-cylinder or physical protrusion.

A.5 OUTPUT SPECIFICATION

Several types of output are possible from this code. Within the

subroutine OUTPUT, basically two types are obtained: data files and

hardcopy information. Four of the five data file types are discussed

above in the input section. The fifth output data file, which always

begins with the letters "JN", is a junk file housing the locations of

the norms for every iteration. These five data files are extremely

important, for they house all the information needed for visualization

of the study results.

The hardcopy information presented by subroutine OUTPUT includes a

listing of the final velocity, pressure, and streamfunction field

values. Also listed are the final U and V flux values. Additionally,

several run diagnostics and descriptors are presented such as: number

of node points in each dimension; x and y spatial step sizes; number of

grids utilized; number of relaxation sweeps on the finest and coarse

grids; convergence tolerance; time step multiplier; total number of

iterations accomplished; central processing times required to reach the

convergence tolerance for each norm; the total central processing time

required to run the given number of iterations; the
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pseudocompressibility coefficient multiplier; the norms for each flux,

pressure, and the divergence of the velocity field at the final

iteration; the maximum streamfunction value, and its location.

Additional details, such as the test case being simulated, and the

Reynolds number and kinematic viscosity for the given run, are also

presented.

As a final check, at the end of every printed and stored output

data file, an additional namelist named DATAOT is printed. This

namelist houses approximately the same information as DATAIN above. It

is used as a check in the plotting routines to insure that proper files

are being input for the required graphical presentation.

With regard to graphical output, all plotting was done on the VAX

11/750 at the Waterways Experiment Station's Hydraulics Laboratory.

Plotting routines using the specific versions of DISPLAA and GCS, two

plotting routines available on the VAX, were used to generate plots of

convergence histories, vectors, contours, and grids. These routines are

somewhat specific to the VAX and lack the general portability to support

their presentation herein.



APPENDIX B

DETAILS OF VISCOUS COMPUTATIONS

B.1 INTRODUCTION

This appendix gives details of the numerical formulations for three

viscous-flow components: (a) the Laplacian formulation for the viscous

terms in generalized curvilinear coordinates assuming slip conditions;

(b) the additional viscous contribution to (a) resulting from the

effects of no-slip boundaries, and its restriction within the multigrid

methodology; and, (c) the formulation of the velocity boundary condition

resulting from the no-slip boundary interaction.

B.2 GENERALIZED LAPLACIAN FORMULATION

The viscous terms for the Navier-Stokes equations can be repre-

sented mathematically as the product of viscosity and the Laplacian of

the velocity field. This Laplacian can be expressed in generalized

curvilinear coordinates by recalling Equation 4.19

7 (vu) V2u a aS[ u - x u ] - [x u - y u ]  (B.1)nx n y an t y t x

where each of the terms are as explained in Chapter 4. The cartesian

derivatives shown are expressed in generalized coordinates through

Equations 4.13 and 4.14 such that the above expression becomes

V2
& L- [Yn (txu + n xU) - xn (&y u + ny u ] + (B.2)

L[x (y u + n ) - y (Exu + nU)
an y & y n & n5

165
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Equation B.2 can be better grasped by evaluating the gradient operator

( V ) in the Laplacian via the Chain Rule (Equations 4.13 and 4.14), and

the divergence operator ( V.) via the Gauss Divergence Theorem. This

results in an alternate expression for Equation B.1 of

V • (Vu) = E + F (B.3)
J 1n

where

E = J[y n(yn u - y& u) - x n(xun - xn u ) (B.4)

F = J[x (xu n - xu) - y&(y u -y u )I (B.5)

Again using the north, south, east, and west (n, s, e, w) notation

discussed in Chapter 5, Equation B.3 can be expressed as

V • (Vu) _E -E +F -F
J e w n s (B.6)

The terms E and F, which are proportional to normal derivatives of

the respective velocities (u and v) on the cell faces, represent compo-

nents of momentum flux due to shear stress. Re-introducing the double

subscript notation (cc,ee,ww,nn,ss,ne,nw,se,sw) of Chapter 6 to denote

coefficients and values of cell-centered quantities in cells adjacent to

the cell undergoing computations (cc), the following expressions are

presented:

e u -u (B.7)
ee cc

u n= -U (B.8)

e 0.25 (u - u + u - ) (B.9)
ne se nn ss
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u n 0.25 (u - U + U - u) (B.1O)ne n e ww

Analogous expressions for the south and west derivatives exist, of

course.

Incorporating Equations B.7-B.1O into Equation B.6, and using

Equations 4.15-4.18 to re-define the metrics, Equation B.6 takes the

form

V • (Vu) = A u + A u + A u + A u + A u +
J ee ee ww ww ss ss cccco ne ne

A u + A u + A u -A u (.1
nw nw nn nn se se sw sw (B.11)

The A coefficients are given by

Acc -(ae + aw + bn + bs) (B.12)

Aee = ae - gn + gs (B.13)

Aww = aw + gn - gs (B.14)

Ann = bn - ge + gw (B.15)

Ass = bs + ge - gw (B.16)

Ane = -ge - gn (B.17)

Anw = gw + gn (B.18)

Ase = ge + gs (B.19)

A = -gw - gs (B.20)

where

a J(xn + yn ) (B.21)

b : J (x&2 + y&) (B.22)

g = 0.25 J (xx n + yyn) (B.23)
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Each of these coefficient expressions are valid as shown only for

cells not adjacent to boundaries. Bernard (1988) has shown that, for

boundaries which have fluxes which are known at every instant (as is the

case for the work in this report), the Laplacian for a cell whose east

face lies along a boundary would be

V * (Vu) = -Ew + F - F (B.24)
Jw n s B2~

Likewise, if the north and east faces of a cell lie on boundaries, the

Laplacian is expressed as

V * (VU) -E - F (B.25)
J w s

Analogous expressions exist for cells whose south or west faces lie

coincident with known-flux boundaries. The jest of these expressions

is, then, that, for boundaries with known fluxes, the lack of a required

flux correction there dictates, in part, that there be no momentum flux

due to shear through the cell faces coincident with the boundaries.

Thus, the individual E or F expressions for the boundary sides are, by

definition, zero. The impact of this is the re-definition of the A

coefficient matrix above while taking into account the boundary

conditions. For example, for the case given in Equation B.25, the A

coefficients become

Ace : -aw - bs + 2gw + 2gs  (B.26)

Aee= 0. (B.27)

Aww = aw + 2gn - 2gs  (B.28)

Ann = 0. (B.29)
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Ass = bs + 2ge - 2gw  (B.30)

Ane = 0. (B.31)

Anw 0 0. (B.32)

Ase = 0. (B.33)

Asw = -2gw - 2gs  (B.34)

B.3 CALCULATION AND RESTRICTION OF NO-SLIP CONTRIBUTION

For cells adjacent to stationary, no-slip boundaries, the normal

component of momentum flux through the boundary is computed subject to

the constraint that both velocity components are zero on the boundary.

This factor is taken directly into account in the formulation of the

velocity boundary condition presented in the next section. A special

modification of this formulation for the case of of a moving top

boundary (as in the case of the Couette flow simulations) is also

presented. The consequence of these formulations is that velocity

values are assigned in fictitious cells just beyond the actual physical

boundaries for computational purposes. Since the velocity is uniformly

zero (or constant for the Couette case) for all cell faces tangent to

the boundary, the -derivatives for a north or south cell face

coincident with a boundary would be zero. Likewise, the n-derivatives

for an east or west cell face tangent to a boundary would be zero. This

greatly simplifies the shear-stress momentum flux through the given cell

face coincident to the boundary. Thus, for a cell whose south face is

tangent to a boundary, the component of Fs in the Laplacian reduces to

Fs = bs(u(i,J) - u(i-lj)) (B.35)

where the u(i-1,J) value is ficticious u-velocity computed as shown in
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the next section, and all other terms are as defined above. Similar

expressions are computed for each cell face tangent to a no-slip

boundary. The result of this computation is an additional term which is

added to the Laplacian computed in the previous section. This term

accounts for the shear force component generated on no-slip surfaces

which is in addition to the shear calculated in the previous section.

In order to simulate this additional shear force on coarse grids

within the multigrid cycle, these additional terms are computed on the

finest grid for every cell face coincident to a no-slip boundary. These

values are then integrated, just as the fluxes are as discussed in

Chapter 5 of the main text, along the number of finest-grid boundary

cell faces corresponding to a single coarse-grid boundary cell face.

This integration is done from the finest grid to each coarse grid. In

this way, the shear force generated on the finest grid by the no-slip

boundary/fluid interaction is transmitted to each coarse grid.

B.4 VELOCITY BOUNDARY CONDITION FOR NO-SLIP BOUNDARIES

Investigation of the Couette flow in the presence of a pressure

gradient case study, discussed in Chapter 8, revealed the need to

utilize a second-order velocity boundary condition rather than a first-

order one. The need for the second-order condition was signaled by the

incorrect computation of the shear stress, when compared to the

analytical solution, when using first-order approximations. The second-

order approximation was computed for the possibilities of east, west,

north, or south cell faces being coincident with no-slip boundaries. In

addition, the possibility of a moving top boundary, with an initial u

velocity of u0  and an initial v velocity of 0, was incorporated

into the boundary condition formulation. As each of these formulations
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was done in the same manner, the development of the boundary approxi-

mation for a north cell face residing on the top no-slip boundary is

given. Included is the possibility of a moving top boundary.

The formulation is begun by expressing the velocity at a given

location (i,J+l) as a function of other known values through the Taylor

Series expansion below

2
u(i,j+1) = U(i,j) + U (i,j) hy + u kl' (B.36)y 2

where each of the derivatives is evaluated at the point (i,j). Recall

that the top boundary, which is formally at (i,J+1/2), has a known

constant u velocity (uO) that is not necessarily zero. From-this, and

the equation above, the Taylor series expression for the velocity on the

top boundary in terms of the fictitious velocity "beyond" the boundary

u(i,j+1) is

u(ij+!) u (B.37)

= u(i,j+1) - uy 2 + uyy 8

where each of the derivatives is evaluated at (i,J+1). These deriva-

tives are formulated as standard second-order differences, the first

derivative being, of course, one-sided:

Uy -I- (3u(i,J+1) - 4u(i,j) + u(i,j-1) (B.38)

2Ay

u I (u(ij+1) - 2u(i,J) + u(i,j-1)) (B.39)Uyy AY 2

Inserting Equations B.38 and B.39 into B.37, the following is derived:

8u0 = 3u(i,J 1) + 6u(i,j) - u(i,j-1) (B.40)



172

Then, expressing this equation in terms of u(i,j+1), which is the

unknown fictitious velocity value stored just "beyond" the boundary, the

following boundary condition is obtained:

(8u0 - 6u(i,j) + u(i,j-1))
u(i,J+1) :3(B.4I1)

For cases where the velocity condition is one of zero velocity, this

expression simplifies to the boundary condition given in Chapter 6.



APPENDIX C

PRESSURE PROLONGATION PROCEDURE

C.1 INTRODUCTION

The pressure prolongation procedure makes use of bilinear interpo-

lation to transfer pressure changes from one coarser grid to its just-

finer counterpart. The formulation of the bilinear interpolation

procedure is explained below. This procedure is identical for both

boundary (those cells having faces coincident with physical boundaries)

and field points. The values of the fictitious coarse boundary pressure

changes are obtained through linear extrapolation. These values are

then employed as any field value in the formulation below.

C.2 BILINEAR INTERPOLATION SCHEME

The basic form of the bilinear interpolation scheme is given as

below with the pressure change on the just-finer grid listed as the

dependent variable.

Ap a'(At) + b'(An) + c'(At)(An) + d' (C.1)

where Ap is the change in pressure prolonged from the coarser grid to

the finer; A& is the change in computational space along the

coordinate from some reference point to the location on the just-finer

grid; An is the analogous change along the n coordinate; and a', b', c',

and d' are coefficients to be determined. The Ap value will be added

to the existing change in pressure on the just-finer grid to get the

total change in pressure at the given point on the just-finer grid.

This total change will then be prolonged to an even finer grid, or added
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to the existing pressure on the finest grid to form the new pressure

field.

Determination of the coefficients listed above begins by observing

Figure C.1. Shown in the figure are grid locations on both the coarser

NW NE

0 0

O 0

SW SE

LEGEND

0 - FINER-GRID PRESSURE/PRESSURE CHANGE LOCATIONS

* - COARSER-GRID PRESSURE CHANGE LOCATIONS

Figure C.. Fine-to-coarse transfer during prolongation

and finer grids. The locations on the coarser grid are those where the

coarser-grid pressure changes are known. The finer-grid locations are

those locations to which the coarser changes are to be prolonged. The

four coarser-grid locations are designated as southwest (sw), southeast

(se), northwest (nw), and northeast (ne). Using the (sw) corner as the
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arbitrary reference point, it is clear that the coordinates of each of

the coarser-grid points, in terms of A4 and An units, are as shown

below:

sw = (0,0) (C.2)

se z (2,0) (C.3)

nw = (0,2) (C.4)

ne = (2,2) (C.5)

Further, at each of these locations there is a known coarser-grid

pressure change value, designated hereafter as Apsw, APse, Ap nw, Apne

respectively. These values are then used to compute the a', b', c', and

d' coefficients in Equation C.1 as shown below.

At (0, 0), Ap is equal to Apsw Incorporating this into Equation

C.1 yields

d' : APsw (C.6)

At the southeast corner, Ap is equal to Apse Incorporating this

and Equation C.6 into C.1 yields

S(APse - Apsw (C7)
a-: 2

The value of Ap at the northwest corner is Apn w  . Plugging this

and Equations C.6 and C.7 into Equation C.1 gives

(Apnw - sw (C.8)
2

Finally, the value of Ap at the northeast corner (2,2) is Apne

Plugging this, and Equations C.6-C.8, into C.1 produces

(APne + Apsw - APse - APnw) (9)

Using the values for a', b', c', and d' as given above, Equation C.1
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becomes

Ap = 0.5 (APse - APsw)( A) + 0.5 (APnw - Apsw ) (An) + (C.10)

0.25 (Apne + APsw - APse - APnw) (A)An) + Ap sw

C.3 LOCATION OF FINER-GRID POINTS

Equation C.10 will provide the mechanism for prolongation only

after the location of the finer-grid pressure change locations are known

in relation to the reference point in the coarser-grid space: the

southwest (sw) corner. Investigation of Figure C.1 shows that, for all

finer-grid control volumes not having cell faces that coincide with

physical boundaries, the finer-grid pressure change locations are a.Aways

in the same four locations relative to the southwest corner on the

coarser grid. These are given below in (AF, An) coordinate units:

pt. 1 = (0.5,0.5) (c.11)

pt. 2 = (1.5,0.5) (C.12)

pt. 3 = (0.5,1.5) (C.13)

pt. 4 = (1.5,1.5) (C.14)

The boundary-tangent finer-grid cells also have cell centers that

have a nonstant relationship to a coarser-grid southwestern pressure

change. For example, the finer-grid cell having west and south faces

coincident with physical boundaries has relative coordinates of

(1.5,1.5). Similar relations exist for all other boundary-affected

finer-grid cells.



APPENDIX D

NOTATION

a : vertical distance from top to bottom channel boundaries

a' :constant in bilinear interpolation scheme

a : geometric term in generalized Laplacian

A matrix of the coefficients of the advective and
diffusive terms in the momentum equations

Acc coefficient matrix for centered term in the
generalized Laplacian

b geometric term in generalized Laplacian

b= constant in bilinear interpolation scheme

= speed of sound

c generic constant

c' = constant in bilinear interpolation scheme

d'= constant in bilinear interpolation scheme

DIV = norm of divergence of velocity

DELU norm of U-flux deviation

DELV = norm of V-flux deviation

E-ab = 10 raised to the power -ab

E = array of viscous components

f = generic scalar function

f= generic vector function

f' = forcing terms for a system of differential equations

F = array of viscous components
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g = geometric term in the generalized Laplacian

G/F/C = number of grids/number of fine relaxation
sweeps/number of coarse relaxation sweeps

i,j = node-point indices

hI+ = prolongation operator

Ih+1,Ik+l = restriction operators
h 'k -

J = jacobian of coordinate transformation

MOD = mod of a given function

NGRIDS = total number of grids utilized

p = dynamic pressure divided by density

r,s = shift indices

ri = vector of error residuals

Re = Reynolds number

t = time

u = x-component velocity

u = vector of cartesian velocities

u': intermediate vector of cartesian velocities

u ew = new estimate for the vector of cartesian velocities
after multigrid application

u0 = velocity of moving top boundary in Couette flow

U,V = volumetric flux components

v = y-component velocity

w = z-component velocity

x,y,z = cartesian coordinates

XPTS = number of grid points along x-coordinate

YPTS = number of grid points along y-coordlnate

= distance from bottom boundary to a given point in the
flow field

= : pseudo-compressibility coefficient
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error associated with numerical approximation

curvilinear coordinates

p density of water

= product of p and the time step

0' = product of Ap and the time step

v= kinematic viscosity

w= relaxation coefficient

Superscripts

e,n,s,w = east, north, south, and west faces of a given control
volume

h,k = grid level indicators

m = iteration count

n = time level indicator for a given flow variable

= intermediate predicted value

*,* - intermediate time-level values in predictor-corrector

sequence

Subscripts

nn,ss,ee,ww,se, = cell-center locations for control volumes adjacent to
ne,sw,nw,cc cell (cc) corresponding to north, south, east, west

southeast, northeast, southwest, north, and center,
respectively

( )t = partial derivative with respect to t

( )x = partial derivative with respect to x

( )y = partial derivative with respect to y
)yy = second partial derivative with respect to y

( )z = partial derivative with respect to z

= partial derivative with respect to

z partial derivative with respect to z
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Operators

_-- =partial derivative with respect to

a- =partial derivative with respect to
Dn with respect to

D = differential operator with respect to

D = differential operator with respect to ni
n

L = nonlinear differential operator

L' = discrete numerical approximation to L

A = change in a given variable spatially or temporally

V = gradient operator

V-u = divergence of u

• = dot product operator

V2 = Laplacian operator

= : absolute value operator
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