M FNE (Dey

Navy Personnel Research and Development Center
San Diego, CA 92152-6800 TN 89-18

N I

BATMAN (Battle-Management Assessment System)

& ROBIN (Raid Originator Bogie Ingress):
Rationale, Software Design, and Database Descriptions

AD-A207 723

Approved for public release; distribution is unlimited.

__DTIC

7 ELECTE gm
v, HAY 001389

T
R et
Q&g lise

NPRDC TN 89-18

BATMAN (Battle-Management Assessment System)
& ROBIN (Raid Originator Bogie Ingress):
Rationale, Software Design, and Database Descriptions

Pat-Anthony Federico
Navy Personnel Research and Development Center

Steven H. Bickel
Randy R. Ulirich
Thomas E. Bridges
Brian Van de Wetering
Systems Engineering Associates

Reviewed and released by
E. G. Aiken
Director, Training Technology

Approved for public release;
distribution is unlimited.

Navy Personnel Research and Development Center
San Diego, California 92152-6800

April 1989

UNCLASSIFIED

uR:TY C.A

+CATION OF

HI§ PAL

AL L o T2

'
i

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

10. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

3 OISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release;

20 DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
* NPRDC TN 89-18

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION
2 Navy Personnel Research and
Development Center

6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Code 15

6¢ ADDRESS (City, State, and ZiP Code)

San Diego, CA 92152-6800

7b. ADDRESS (City, Stete, and 2W Code)

8a NAME OF FUNDING /SPONSORING
ORGANIZATION Chief of

Naval Operations

8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

(1f spplicable)

CNO (OP-11)

8: ADDRESS (City, State. and 2iP Code)

10 SOURCE OFf FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UN!™
Washington, DC 20350-2000 ELEMENT NO NO NO ACCESSION NO
63720N z-1772 ___|ET08

11 TITLE (Inciuge Security Classification)
BATMAN (Battle~Management Assessment System) & ROBIN (Raid Originator Bogie Ingress):
Rationale, Software Design, and Database Descriptions

12 PERSONAL AUTHOR(S)
Federico, P-A,, Bickel, S. H.

13a_TYPE OF REPORT
Technical Note

16 SUPPLEMENTARY NOTATION

, Ullrich, R. R., Bridges, T. E., & Van de Weterin
136 TiME COVERED 14 DATE OF REPORT (Year, Month, Day) § PAGE COUNT
srov 87 Apr 10 89 Apr 1989 April l

17

COSAT CODES

18. SUBJECT TERMS (Continve on reverse if necessary and «Jentify by block number)

FIELD GROUP SUB-GROUP Computer-based performance measurement, computer
05 09 simulation, wargaming, and battle management
12

119 ABSTRACT (Continue on reverse if necessary and identify by block number)

This technical note contains the rationale, software design, and database descrip-
tions for BATMAN (Battie-Management Assessment Systems) & ROBIN (Raid Origi-
nator Bogie Ingress). These software systems are being designed and developed to
assess how well individuals can allocate, deploy, and manage air, surface, and/or sub-
surface tactical assets during simulated sea battles in many warfare areas. Together
they form a desk-top, computer-based, performance-measurement system incorporating
high resolution graphics and low level modelling to fill the gap between board games
that are run in real or fictitious time with subjective assessment and inappropriate feed-
back and very expensive and manhour-intensive, mainframe-based simulators. Two of
the major contributions of these dual systems are a very friendly human-computer

interface and automated performance assessment.

DD FORM 1473, 8a Mar

20 O'STRIBUTION /AVAILABILITY OF ABSTRACT
Guncuassisicounumited 0 same as ReT.) OTIC USERS UNCLASSIFIED

['22a NAME OF RESPONSIBLE INDIVIDUAL
Pat~Anthony Federico

21. ABSTRACT SECURITY CLASSIFICATION

8 APR edition may be used untii exhausted RITY

All other editions are obsolete. UNCLASSIFIED

220 TELEPHONE (Inc/ude Ares Code) | 22¢. OFFICE SYMBOL

= ST .

F_THIS PAGE

FOREWORD

This advanced development was performed under project Z1772-ETO008,
Computer-Based Peformance Testing, sponsored by the Deputy Chief of Naval Opera-
tions (Manpower, Personnel, and Training). The general goal of this effort is to
develop computer-based simulations of operationally oriented job-sample tasks in func-
tional contexts, and determine if these state-of-the-art assessment schemes result in
better performance measurement than traditional testing techniques.

The part-time assistance of a number of former and present university students is
acknowledged in developing and evaluating several versions of BATMAN & ROBIN
software. These include Fred Buoni, Chris Cassella, Bill Kamm, Bill Limm, Nina Lig-
gett, Glen Little, Robert McCarter, Tony Meadors, Lorma Mildice, Dan Nadir, Alex
Olender, Regina Peck, Jeff Roorda, Chris Ryan, Karl Schricker, Ellen Schuller, Alice
Shimada, and Brian Smithey.

E. G. AIKEN

Accession For
NTIS GRA&T
DTIC TaB
Unannounced

a
Justification_

By.
Distr}ggp}on/
Availgbility Codes
Avaiiﬂéﬁa7or
Dist Special

Al |

Summary

This technical note contains the rationale, software design, and database descrip-
tions for BATMAN (Battle-Management Assessment System) & ROBIN (Raid Origi-
nator Bogie Ingress).

Part 1I: Rationale

Background

Customary methods for measuring performance either on the job or in the class-
room involve instruments which are primarily paper-based or procedures which are
judgmentally very subjective, e.g., check lists, rating scales, mastery demonstrations,
criterion- and domain-referenced tests, critical incidents, disguised or unobstrusive
observations. Many of these methods do not measure real-world, operationally
oriented, job-performance tasks with sufficient fidelity, reliability, and/or validity.
Consequently, evaluation at its best is somewhat suspect, and decisions based upon this
kind of assessment may be erroneous. Better testing techniques are needed for assess-
ing Navy trainees against performance criteria employing tasks functionally similar to
those encountered in operational contexts. One attempt to fulfill this requirement
involves the use of computer technology which is rapidly appearing in a number of
Navy training and testing environments. Although these systems have been used on a
small scale for various courses, widespread use necessitates advanced development of
innovative, state-of-the-art, computer-based testing systems.

BATMAN & ROBIN

BATMAN & ROBIN are being designed and developed to assess how well indi-
viduals can allocate, deploy, and manage air, surface, and/or subsurface tactical assets
during simulated sea battles in many warfare areas. Together they form a desk-top,
computer-based, performance-measurement system incorporating high resolution graph-
ics and low level modelling to fill the gap between board games that are run in real or
fictitious time with subjective assessment and inappropriate feedback and very expen-
sive and manhour-intensive, mainframe-based simulators. Two of the major contribu-
tions of these dual systems are a very friendly human-computer interface and
automated performance assessment.

Because of the nature of their software (i.e., highly structured, very modular,
practically object-oriented) and databases (i.e., independent of simulation programs,
platforms easily added or deleted, parameters readily alterable), BATMAN & ROBIN
could be used to complement (a) tactical training and testing; (b) assist tactical and
systems development, analysis, and evaluation; (c) and aid tactical planning and deci-
sion making. That is, BATMAN & ROBIN lend themselves to the incorporation of
higher fidelity computer models and classified databases. Consequently, these software
systems could also be employed as user friendly frontends to sophisticated simulation
models and complex databases.

vii

Improved capabilities and performance enhancements are presently being added to
BATMAN & ROBIN. The current software release is for demonstration, evaluation,
and feedback purposes only, i.e., beta testing. At this time, these systems are not to be
used for tactical training or testing as well as tactical planning or decision aiding. The
databases are sanitized or unclassified, and platform parameters and computer models
are only approximate.

Part II: Software Design

The second part of the documentation deals with BATMAN & ROBIN software
design philosophy, program composition, Sun graphic utilities, object-definition-
database and graphics editors, global data structures, and descriptions of software pack-
ages.

Part III: Database Descriptions

The third part of the documentation describes BATMAN & ROBIN’s object-
definition, graphic, scenario, and user-performance databases.

viii

1.0
2.0

3.0
4.0

5.0
6.0
7.0
8.0
9.0
10.0

Contents

Part I: Rationale

Background S |
BATMAN & ROBIN 2
2.1 INOtatioNal CONVENLONSveerieeieriuireeierseriniisssraeesssssessssssssrsrsssessssaesssnasssssesassssess 5

Part II: Software Design

PUrpose and SCOPEcccveecrererirencissnnsssssssssssssassssssnsssssssssssnssssasssssssssssssssosssssess 6
INtrOdUCHION ...ccvecericsecnsnicnnssnissnccssecsonsessassssasanssnsossnssssasssssssesssssssssasssssessasse 6
4.1 Design PhiloSOPhYocciiiiiininirrercreineets it 6
42 SOftWAre CAVEALScovueiiiiriiiirenercesaese ettt ssssse st st e be s et e sesvsesnsanesnans 7
43 Guidelines for Adding a Computer Modelcccoiniiiniinnininn, 7
Software Composition .8
Sun Graphic Utilities . . 9
Object-Definition Database Editor........c.ccceecenrcnccnnecssnccsenssrnecencese ceoesseannes 11
Graphics EQILOrccccceneecsnncassneesanseessnssscssssesasssassssssssssassssssasssssssasssassnsssasse 11
BATMAN & ROBIN Global Data Structures ——
BATMAN & ROBIN Software 16
10.1 Initialization and Control Packages......... erbestere et et er e et e b se st s sh e nesaeatsen e 17
10101 BatmMan ...ttt s e seentesessesaeseentene e euesuessessenssnessees 17
10.1.2 Frontend.........cciceeeiienieiiecincienesteeeiescsnsssse st s veee 17
10.1.3 INE_COM ettt et st se s sa s st sras st sas e sasasnnens 17
10,114 INGE_PAthc...eceieciiiieeccereet e eeesesie e s s stsesrerense b e et sneberest s e 18
10.1.5 REBAOD] w.c.ooeeveeereeeennseeeeeeess s seeseseensessesssssessssesssssssnessssssssssssssens 18
10.1.6 Scen_db_acCess.......c.covvueinirrenenrnenerienenricessiniensssssessssssessersssenesssnessns 19
10.1.7 USET_abD_aCCESS.....ccuevieinreiiienecreesereenssonescenessensestenisnssesssssssasessssessens 19
TO.1.8 USEI_fUNCS ...eooueniiiriniereetrrereie et et ensneseseseseestaaesestsnensssssesrasaseeses 20
10.2 Loadout PaCKAGESc..coceiriieriniiriineesineserteecr et ssnsseoressesasrsesecacscseens 20
10.2.1 LoadOUt_MAP ..cooveueereeireerinreceniietesnseseeaeeesesessesssaesessssessessenessesensne 20
10.2.2 Loadout_th........ooiiiiiieieneec et e 22
10.2.3 L0adOUL.......couiueniiiinieieeensereecencee et etsanss s sr b 22
10.3 Vector-Logic Grid Packages..........ccovecivinininininiiimninnceesenecens 24
10.3.1 GId ettt et er e e 24
ix

104

10.5

10.6

10.7

10.8

109

Deployment PACKagEeS.........cocuveveiveriiirnnccerininnessssscsiontssssessensstesseesseessasasassesses 24
10.4.1 Cf_panels_CTeate........ccoucueverireerinveniinsriinsiineis st ssssessassansesseses 26
10.4.2 Cf_panels_nNOtify.......cconinirenrireerenrenesnesenensnnscescssesiesaesssesseesessesencenes 28
JO4.3 ALCTE.....circttrctecette et snee e se s e e sesaneseseasassessasssstansane st suesssons 28
10.4.4 SymbOl_MAanaErcccceerienrenrerierirriererenresnesesseeseansesseesesassasseassensons 28
10.4.5 Find_symbols.......ccoocoicrinninienenenenenecnesrenasaesteessesesrnesesncoseesssesssees 29
BATMAN Simulation Packages............cccoceieecernerninnecnrirsnnescnsssessensesssessesones 29
10.5.1 THMCT.....oiiiiiieieitncericreeresssncsrnseneese st eaesaessestesesaessanssassssonesnanessosnss 29
10.5.2 ENGINC ..ottt veseneenesesesaessesassesesseesesnesssssssansesessnessasens 31
JO.5.3 DBLECL......ocricceieecneecetnreiere s sree e e ssss s e esss e s asesesnastanssseesesaneasassenses 33
10.5.4 Plat_detect_fUnCS......ccoouveeieeveceninenrecrenerensenessessesseessessessessnssassessnane 34
10.5.5 Plat_draw_fUnCs.......ccconuieeceniencerirereeresssesninresssseeseesesssssesssessessassesssess 35
10.5.6 Plat_LISt_fUNCS.....coviiereiruiiicerinteeereeeresseesesessessseessssasessssssesssresesssnesssaes 35
10.5.7 Plat_update_funcs.........cccocviereurienerereninincencssnieinssesenissssesessssesssenins 36
10.5.8 STALUS....coueiieiererencreccrrerinensesaeeresesessesesestessssessossssnssssensesssseseesssans 36
Performance Measures Packages............cccvveeeriiieiiniicienensenenneneesecsseneeenesnnens 37
TO6.1 SHAtS....coiiiiiiitiititirntrec et e senaeneee e st st esasas e asteasenssesestensenssesecsirens 39
10.6.2 Stats_ COMPULE_fUNCScccevrreerrenrererireesenseseseesseseesnseessenessesesssnenee 39
10.6.3 Stats_NOfY ...ceeeiiiniecinecccentencinee sttt ee e st saeee et snennesenenen 39
10.6.4 Stats_update_fUNCSccceeerererririienenreressenssesseseesesssseseesssssessnsseenes 39
JO.6.5 StatS_VETIfY c..oveeeioiiircctiineceie s seeste s eras e st asnesn s se st saeesesrenesanes 40
ROBIN PaCKaEScceerrereiriniineniiiinerieeressesesseeraessesessessssseessassessessessasssssnessene 40
10.7.1 RODID_NIL couveeeiriceeniieiciriceseesnsseesecses e etsssessessesnsensessensssssessonsesssrsons 40
10.7.2 RODIN_MANAGEooviiirreninirenienrrscnesenentanessesssessssassenentesesessasscsenes 40
10.7.3 RODIN_SSIZN....ccireiriiiiereieeteisererseseesrersesensesesennsssssaseessssassansasasseseases 42
10.7.4 RODIN_EiL.....c.ocooreerirrirerreceeieenrerte e sreeseesessesesaes e seassesessasnsaasseeses 42
10.7.5 RODIN_MAP....ccoicirirrerritirenrceeeereesesseassessessesessassensesessessasssssassesens 42
10.7.6 RODIN_DBIUC...cov ittt e ste e sres e sa et e sranbens 42
1077 RODIN_TEA.....ooiieicriiecseeteccnee et ne st s e sssaasassesssaasssnsasenens 43
10.7.8 RODIN_VECIOTScoovereirieiniieetninnestnseeetesesssessssssssessssssessesesassesenees 43
10.7.9 RODIN_VIEW ...ttt evercresae e sse e sesessessaasanssessssesesssnssssssnans 43
10.7.10 RObIN_AEfCONcovriiirirerirceeieirecteste st sraseesessasseseesas e ssasseseesassens 43
10.7.11 RODIN_IO....cciiirtiieiineerieerecree e renaeseesesessssensessssassessensesessesssnesassessens 4
World Database II PaCKagesc..cceueeeceuerirerminreninreierisesesecrisessesecsesessesessanes 4
10.8.1 MapAD ..ottt eessese e e st e e s e saas et stasaesaene e saens 46
TOOI PaCKaGEscccovivitieiuiireniiereeenesentnnntstereresenaesssesesestesesesesesassssesansanesesans 46
10.9.1 CaANVAS_WiN.....cuiviiieicriie st seeta e erensesassesesaesessssserseanas 46
10.9.2 COlOTS...ueeeiiintictereecrristeneeessesesasee e sessesensssessstasassssessasesesseseenesennes 47
10.9.3 Event_ctrl (PIayback)........ccoceueerreereremerenieneerseesssresserssnseeseeesnsessensenes 47
10.9.4 LiSt_MANAGET........c.cceeirrieiierireniereiesestseestsessssessssesesansasasessessasasassensnns 47
10.9.5 NUMDEI_PAd.......ccooiiiiieniieietere ettt evsse e stessasse e e snassesesannes 48
10.9.6 Panel_win...........coviveenieieiccineeeicesentseie et eonaeetsssssssente e seesesesseennes 48
10.9.7 POPUP_PANEL.......cooriiireccceireein et ereete e ssesasse e ssessteste e saetenseseanones 49
10.9.8 SCen_diSPlaycccvvvrveriiieeeieece ettt e st et 49
10.9.9 UHHHES...c.ccoirrrrriieeceeeeeie et st et sae s e s sterasseestesasassesssenenees 49
10.9.10 ZOOM.......oiioiiiee it resreesre s ste e s sretae e seesae e seensensstasas s sssebessensen 49
X

Part I1I: Database Descriptions

11.0 Purpose and Scope 50
12.0 Object-Definition Database 50
12.1 Platforms and Weaponsccoueinviniccenmseernincniiniiis s 50

12.2 Database ATIDULESc.ccvviierereeeieeeeeiereereenteeees s ssbeaesseessnsesecesssseseasssersnsneeseen 50

12.2.1 Platform Parameters..........cceeeeevreveerereeseneeresssssnsieresssssnsssresssssssassesossanns 51

12.2.2 Weapon Parameterscovccveeneniennenrnnnercntinineennencsnsnsssneninesnnssnes 55

12.2.3 Sensor Parameters........... reteeesetsanetaanuettteeaabrabteesasaasseaesesnsabeaeeessants 56

12.2.4 System-Configuration Parametersccoeviverncvnieivennnneisennennns 57

12.2.5 Performance-Measures Parameters.........cocccevuereeeererirersersensnseessenesnns 66

12.2.6 User-Database Parametersoceivvvevireiiersinieiioresienerecesessssssecesssssesss 66

12.3 Sample Platform-Configuration Parameters...........coocevererieneeeenenieninesesunneeseenees 67

13.0 Graphic Database..........cccceceececsnernsersrsesessessssaserssssrsssssessesssesasssssssssassenseses 67
14.0 Scenario DataDaseccccereecresseronssncessosssssosssssssssssessssasass tecsssssarassessessnssansans 67
14.1 BIUC-FOTCE FIE ...ttt s eeertaeeesecanes e sssnst e aeaessanstnsas sesensaneees vesnne 67

14.2 REA-FOTCE FILEovceeiiiiitiriieeieeeeeecsetesssrieeseseseessssssesebenssestesasessessssassessssseessons 69

14.2.1 Tactical-Situation Section............ 4reeesersasenstennetatataseeatestessesasessnsnnntrene 69

14.2.2 Red-Tracks Section...........coceuueees Feeerensaneseesossssnnsseessessssesssressesnnasesasenns 70

1423 Sample Red-Force filecccovvervimieniniiinnneneeseeneeneestesesessennsensessens 70

15.0 User-Performance Databasecccccrrsersecssoecorsossssssssssonssessssssssess cecreceeare .71
References... ceose ceesenaree 73

x1i

List of Tables
Table 1. Data Structure to File Mapping ...t cesesseessnans 12
Table 2. Performance Measures Data STUCIUTEScocvveiiiniiiineninnieiniees i siassienesas st enannes 37
Table 3. Object Identification NUIMDETS..........ccoviiniimnniiinmimeeicnesensseii st sss i sasesens 53

xii

List of Figures

Figure 1. BATMAN & ROBIN SOftWAre COMPOSIIONveveveeeernneseveeeenessseserssesssessssssesmenes

Figure 2. Sun Window and Panel TYPES........cccceuvinininirreneeneetrcrsecensessineresesassssesssessssesessssasanes
Figure 3. SunVIew NOUBFIET........ccivieiieniieiiriientirnirte ettt ssessvee e e s esasse et esssansesassessassenas
Figure 4. BATMAN & ROBIN Data Structure Organizationccceveueverenceeesnscsuseeseecsanes
Figure 5. PLATFORM Data StHuCIUTE..........ccceceruermererrerneenreresessasesessesssssesasees et enes
Figure 6. BATMAN & ROBIN Software Packagingcccoooueveiieicnininiecrennnesesennecicecrenenes
Figure 7. Tactical SHUAtION SCTEEMN........ccccevrvieiiireireriireeeeiee et eresaer s saesaeseasesesersessssersessesansan
Figure 8. Blue Force Loadout Panel ...ttt sssveessenansesnenin
Figure 9. DEplOYMENt SCTEEMNceviiiiiieeiititentett et eves et st er s s enebsann e ss et sasesenas
Figure 10. Deployment PANEL_WINS.........ccooimiiiiriniiiieeieseeteeieeeeeseaeesesvesaese e ssesasassessesasas
Figure 11. Interval Timer Kemel..........ccoviiiiimiiireiisceceeisiete et e sttt e eveaanes
Figure 12. ENGINE_NODE LiSt.........ccccoeciitiiiteiienieiiriniesrsinseranssessssesssssssessesssssssssessesesessessses
Figure 13. Interval Timer’s Relation to the Simulation Engine..........ccccooevivnmnicnneicnnnnrccrnecennn.
Figure 14. Performance Measures SCTEENc.cccvieviererireeritceiieineereetese st eres e eeenesee e eesesens
Figure 15. ROBIN Features to Package Mapccccovcieuiiiiicenecciieeeeretese e seeseses e
Figure 16. BATMAN & ROBIN Coordinate SyStemscccccceveverenurrerseernsesonensscsseresnssennens

xiil

BATMAN & ROBIN Rationale

Part I: Rationale

1.0 Background

Customary methods for measuring performance either on the job or in the classroom involve
instruments which are primarily paper-based or procedures which are judgmentally very
subjective, e.g., check lists, rating scales, mastery demonstrations, criterion- and domain-
referenced tests, critical incidents, disguised or unobtrusive observations, and multiple-
choice, completion, true-false, and matching formats. A number of deficiencies exist with
these traditional testing techniques: (a) biased items are generated by different individuals,
(b) item-writing procedures are usually obscure, (c) there is a lack of objective standards for
producing tests, (d) item content is not typically sampled in a systematic manner, (e) there
is often a poor relationship between what is taught and test content, and (f) the infusion of
halo, primacy, and recency effects, stereotypes, and implicit personality theories frequently
distort assessment.

Many of these methods do not measure real-world, operationally oriented, job-performance
tasks with sufficient fidelity and reliability. It is difficult for such instruments to estimate
some job-related performances in functional contexts with adequate validity to warrant
claims of correct assessment. Consequently, evaluation at its best is somewhat suspect, and
decisions based upon this kind of assessment may be erroneous. This could result in either
overtraining which increases costs needlessly, or undertraining which culminates in
unqualified graduates being sent to the fleets. Better testing techniques are needed for
assessing Navy trainees against performance criteria employing tasks functionally similar to
those encountered in operational contexts.

One attempt to fulfill this requirement involves the use of computer technology which is
rapidly appearing in a number of Navy training and testing environments. Although these
systems have been used on a small scale for various courses, widespread use necessitates
advanced development of innovative, state-of-the-art, computer-based testing systems.
Technological and operational problems associated with the pervasive implementation of
these systems to assess performance must be ascertained. However, there is no suitable
knowledge base which can be tapped by the Navy, or others, for developing, evaluating,
selecting, and using computer-based strategies incorporating graphic representations of job-
sample tasks. :

What is required is a theoretically and empirically grounded technology of producing
procedures for performance assessment which will correct deficiencies associated with
traditional testing techniques as well as provide a sufficient knowledge base for intelligently
using computer-based measurement. State-of-the-art, computer-based systems are needed
to support the preparation, administration, evaluation, and interpretation of operationally
oriented tests. Such systems could provide capabilities for creating and evaluating generic
testing strategies to assess student performance in functional contexts using computer-
based graphic simulations, models, or metaphors as well as accessing generalizable and
transferable software tools to implement prescriptive procedures to assist in the
development of job-sample tests. The development, evaluation, and implementation of

“

BATMAN & ROBIN Rationale

computer-based-test-production systems are needed to determine the degree of support
such technology can give to Navy instructional development personnel and training
managers. The use of automated aids, software tools, and general procedures should result
in noticeably increased effectiveness and efficiency in the performance-test-production
process.

Measurement strategies grounded upon graphic simulations of job-relevant tasks should
permit more accurate and valid evaluation of combat oriented performance since these should
reflect requisite readiness standards and criteria more closely than traditional testing
techniques. The capability to produce improved assessment strategies for use in Navy
readiness training should assist commands in avoiding the twin problems of over training and
under training. The development and implementation of computer-based-performance-
assessment systems should sustain and improve the evaluation and estimation of the
combat-effectiveness skills of individuals, teams, and crews. This is especially true in those
situations in readiness and school-house training and testing where exercising job-relevant
skills will be precluded because of the nature of the operational tasks themselves, i.e., they
involve hazards, they are drawn-out over time, and/or they occur infrequently. These
innovative techniques should culminate in better standardization in the output of Navy
training pipelines as well as diagnostic capability for job-sample measurement of the combat
effectiveness of individuals, teams, and crews.

Assessment strategies grounded upon computer-based graphic simulations of job-relevant
tasks should enable more realistic evaluation of operationally oriented performance and
transfer of training than is currently the case. It is expected that these state-of-the-art
systems for assessing students’ potential operational performance in functional contexts will
substantially improve the reliability and validity of Navy performance testing. Very few data
are available regarding the psychometric properties of testing strategies using computer-
based graphically represented simulations, models, or metaphors (Federico, 1989; Federico
& Liggett,1989; Liggett & Federico, 1986; Little, Maffly, Miller, Setter, & Federico, 1985).
Technical information is needed concerning the accuracy, consistency, sensitivity, fidelity,
and utility of these computer-based assessment schemes compared to more traditional
testing techniques.

2.0 BATMAN & ROBIN

Within this framework, the Battle-Management Assessment System (BATMAN) and its
counterpart, Raid Originator Bogiec Ingress (ROBIN), are being created as part of the
Computer-Based Performance Testing project. This advanced development work is
attempting to determine empirically whether some computer-based, graphically represented
job-sample tests significantly improve the state-of-the-art of operationally oriented
performance assessment. BATMAN & ROBIN were designed and developed as a desk-top,
computer-based, performance-measurement system incorporating high resolution graphics
and low level modeling to fill the gap between board games that are run in real or fictitious
time with subjective assessment and inappropriate feedback and very expensive and
manhour-intensive, mainframe-based simulators.

Such a system could complement traditional training and testing techniques by (a) serving as

e .

BATMAN & ROBIN Rationale

an original learning experience, (b) reinforcing instructional objectives that have already been
acquired from other media, (c) evaluating the understanding and use of warfare theories,
principles, rules, and procedures, (d) monitoring, diagnosing, and feeding back gaps in the
decision-making performance, (¢) providing insight into the complex cognitive processes
involved in managing battles, and (f) teaching trainees to play different adversarial roles with
multiple conflicting objectives.

ROBIN is a very user friendly, animated, computer-based, graphic simulation, model,
metaphor, or microworld. It was initially designed to allow the creation of a large number of
Red force raids involving different types, numbers, formations, flight paths, and tactics of
missile-launching threat bombers that are attacking a Blue carrier-based task force which
can be located in the many oceans of the world. Subsequently, ROBIN was enhanced to
include different classes of hostile surface and subsurface platforms which can be configured
as several surface action groups (SAGs) and/or wolf packs or plugs. ROBIN permits an
individual who is specifying a scenario or test item to designate the nature and number of
Blue force tactical resources. These will be available to the person who will be subsequently
performing in BATMAN by allocating, deploying, and managing air, surface, and/or
subsurface assets against multiple threats. In addition to a generator, ROBIN includes a
scenario viewer and editor. The viewer allows an individual who has created a scenario to
see it as a testee, student, or other user would see it in BATMAN. The editor permits the
random access of a scenario which has been generated and stored previously for any warfare
area and the modification of it without having to reproduce all of its facets. ROBIN gives the
individual who is generating the scenario the ability to place different planes and weapons on
large or small aircraft carriers, land bases, or battle ships so that these will be presented
later on to the person who is wargaming in BATMAN. ROBIN could also be used as a
scenario generator independently of BATMAN. That is, it could be adapted to frontend Navy
systems such as TACDEW, BFIT, NAVTAG, and REAS.

BATMAN is also a very user friendly, computer-based, animated, graphic simulation or
microworld. It was initially designed to assess how well individuals allocate, deploy, and
manage tactical aircraft for the outer air battle to defend carrier-based task forces against
incoming, missile-launching, Soviet bombers in various warfare theaters yielding many
different scenarios. In BATMAN the task force, consisting of a large or small aircraft carrier
or battle ship and their escort ships and submarines, has to be deployed in a warfare theater
against hostile platforms. Cyclic or flex deck flight operations have to be planned and
executed. Fighters and attack aircraft have to be (a) loaded out with weapons, (b) assigned
to combat air patrols (CAPs) and chainsaws, (c) placed on ready 5, 15, or 30 alerts, (d)
rendezvoused for in-flight refueling, (e) deck launched, and (f) returned to home base.
Tankers and early warning aircraft can be (a) placed on alert states, (b) prepositioned in the
defensive grid, (c) launched and recovered during the battle, and (d) controlled prior to, or
during, the simulated engagement. Fighters can detect and intercept threat aircraft and
missiles; attack aircraft can detect and launch weapons against hostile surface combatants.
Platform status or fixment, radar or sonar coverage, as well as other information, can be
displayed for the individual managing the battle in BATMAN. Multiple carrier-based, battle-
ship-based, or land-based task forces can be created in ROBIN and employed in BATMAN.
BATMAN measures performance automatically and objectively against sixteen criteria
which are immediately fedback to the individual at the end of each scenario, e.g., the average

-3-

BATMAN & ROBIN Rationale

distance from the defended point threat aircraft were detected, the percentage of hostile
bombers destroyed, the percentage of aircraft lost because of lack of in-air refueling. These
multivariate performance measures are saved in files by the system for subsequent
statistical analyses, and are available for both formative and summative evaluations of
performance (Bloom, Hastings, & Madaus, 1971). This automated assessment ability has
been expanded to permit performance measurement in multithreat scenarios, i.e.,
simultaneous surface, subsurface, and/or air warfare, involving as many as three Blue carrier-
based, battle-ship-based, and/or land-based task forces and several Red SAGs and wolf
packs as well as a very large number of long range bombers and tactical fighters.

The unclassified or sanitized database that BATMAN & ROBIN use to represent different
parameters or characteristics of Blue and Red air, surface, and subsurface platforms together
with their sensor and weapon systems is independent of the software used to execute the
simulation or wargame. This property permits individuals to add, delete, and change easily
and arbitrarily platforms and their corresponding systems employed in the wargame. Also,
this feature facilitates the adoption of existing classified databases. Currently, BATMAN &
ROBIN approximate attributes such as the quantities of fuel different Blue aircraft normally
carry, the amount they use at catapult launch, the rates of fuel consumption at "max
conserve” and full military power. Also, they model at a low level of fidelity radar and sonar
coverage for air, surface, and subsurface Blue platforms, and launch acceptability regions for
missiles together with their associated probability of kills. Red air platforms in BATMAN &
ROBIN have the capabilities to raid in stream or abreast, vary altitude and speed, place chaff
corridors, jam communications, and launch antiship missiles.

With the insertion of a classified database and higher fidelity simulation models, BATMAN
could be used to complement the tactical training and testing of individuals who are in the
pipeline for, or who already are, air warfare officers, air resources officers, tactical action
officers, tactical air and anti-air warfare commanders and coordinators, staff tactical watch
officers, crews of early warning, fighter, and attack aircraft, as well as others who must be
familiar with the conduct of the outer air battle or surface and subsurface warfare on ships,
planes, and submarines. By incorporating complex computer models and a classified
database, BATMAN & ROBIN could also be used to (a) develop and evaluate tactics
themselves, (b) aid tactical planning and decision-making, and (c) assist in the analysis and
appraisal of sensor, weapon, and communications systems. The human-computer interface,
the automated performance-measurement, the independent database, and the software
design contribute to the potential extrapolation and adaptation of BATMAN & ROBIN to
- uses which may be obvious to experienced naval officers as well as warfare and system
analysts, but not the originator.

BATMAN & ROBIN are still under deveiopment. Currently, more sophisticated underlying
operational models are being conceptualized and incorporated in BATMAN. These deal with
anti-air, antisubmarine, and electronic warfare as well as a communications network, the
Joint Tactical Information Distribution System. Approximately fifty more aircraft as well as
surface and subsurface combatants for Blue and Red forces, and twenty weapons of different
types, have been added to these systems bringing the total number of platforms and
weapons to about seventy and thirty, respectively. If the user desires, more platforms and
their corresponding weapons and sensors can be easily added, or some deleted, without

BATMAN & ROBIN Rationale

rewriting any of the simulation program because of the modular software and independent
database. Many other improved features and performance enhancements have been
incorporated into BATMAN & ROBIN to better meet Navy and Marine Corps needs. The
present software release is at testbed and transition sites for demonstration, evaluation, and
feedback purposes only. AT THIS TIME, BATMAN & ROBIN ARE NOT TO BE USED
FOR TACTICAL TRAINING OR DECISION AIDING. THE DATABASE EMPLOYED IS
SANITIZED OR UNCLASSIFIED; PLATFORM PARAMETERS AND COMPUTER
MODELS ARE ONLY APPROXIMATE.

Both BATMAN & ROBIN are written in the "C" programming language (Kemighan &
Ritchie, 1978) and run on SUN-4/260C families of computers under SUN’s 4.0 release of the
UNIX operating system (McGilton & Morgan, 1983; SunOS Reference Manual, 1988). The
software was designed and developed so that it is structured or layered using independent
modules and object-oriented programming concepts (Stroutstrup, 1988; Wilson, 1988) when
suitable. This was done wherever appropriate to instill the following salient features in the
software: generalizability, transferability, understandability, modifiability, extensibility, and
reusability. The use of generic structures, object-oriented techniques, program modularity,
mnemonic variables, and top-down design made it easier to accommodate these goals.
Flexibility (ease of changing, expanding, and upgrading) of the software was of paramount
importance in this endeavor. These important software features of BATMAN & ROBIN
make it feasible to (a) adapt them readily to generate scenarios involving many distinct
surface, subsurface, air, and land platforms; (b) use them in the training and testing of battle
managers in a number of different warfare areas, e.g., antisubmarine, terrestrial
environments; and (c) adapt them for aiding in the analysis and evaluation of weapon,
sensor, and communication systems assuming that sophisticated and validated computer
models and relevant and widely acceptable databases are used. BATMAN & ROBIN
employ a direct-manipulation, human-computer interface (Hutchins, Hollan, & Norman,
1986; Shneiderman, 1983) where graphic objects, e.g., aircraft or ship silhouettes, are
continuously depicted, moved, and queried by the operator physically moving and clicking a
mouse resulting in immediately visible impact on the icons.

This documentation describes the software design and databases of BATMAN & ROBIN,
version 3.0. It is intended for software engineers familiar with Unix (McGilton & Morgan,
1983; SunOS Reference Manual, 1988), SunView (SunView Programmer’s Guide, 1988;
SunView System Programmer’s Guide, 1988), and the C programming language (Kernighan
& Ritchie, 1978). Part II of this document covers BATMAN & ROBIN’s software design,
including descriptions of the software’s data structures and packages. Part Il covers
BATMAN & ROBIN’s databases, including the Object-Definition, Scenario, Graphics, and
User databases. Follow on documentation will discuss the human-computer interface
(Federico, Bickel, Ullrich, & Bridges, in preparation) and simulation models employed in
BATMAN & ROBIN.

2.1 Notational Conventions

The following notational conventions are used throughout this document:

ﬁ

BATMAN & ROBIN Software Design
) Convention Meaning
Bold UNIX filenames, C package names, Object- Definition

Database parameters, and document section titles are

set in bold type to distinguish them from ordinary text. In
this documentation, “package” is used to refer to a
collection of related C functions and data types grouped
in one or more files.

Italics Ttalics are used for the names of C functions and
variables. In addition, italics are occasionally used to
emphasize particular words in the document.

ITALIC CAPITALS Italic capital letters are used for the names of C data
structures.

Part II: Software Design

3.0 Purpose and Scope

This part of the documentation provides an overview of BATMAN & ROBIN software. It
includes descriptions and diagrams of the system’s software packages, data flow, and data
structures, and can be used as an aid by those interested in modifying and enhancing the
system. The next section provides an introduction to the adopted software-design
philosophy, together with some guidelines to follow when attempting to modify the software.
The remaining sections in this part of the documentation describe each software component
of BATMAN & ROBIN, concluding with global data structures and specific packages.

Each software package description contains a list of the functions exported by the package,
thereby providing an overview of the package’s interface. For documentation on specific
functions, refer to the commented code in the BATMAN & ROBIN software library in the
directory: /nprdc/wargame/batman. Also, algorithms and interface specifications for each C
function can be found in the directory: /nprdc/wargame/batman/docs. The files in this
directory are named xxx.d, where xxx is the name of the corresponding C package.

4.0 Introduction

To help provide a better understanding of BATMAN & ROBIN software, this section
outlines the design philosophy and system guidelines.

4.1 Design Philosophy

The intent of the human-computer interface is to provide intuitive ease and flexibility in
constructing and gaming tactical scenarios. To achieve these goals and allow for future

BATMAN & ROBIN Software Design

system expansion, much effort has gone into creating generic data structures, modularized
software, object-oriented-programming style, and functional standards that provide a natural
mapping between the system’s human interface and the code-level design. These principles
of the interface and the software packages should be maintained by all persons interested in
contributing to this system.

4.2 Software Caveats
Before attempting to modify the software, be aware of the following:

* BATMAN & ROBIN are currently under development. Modifications and
enhancements are made continually. Changes made by others will not be
supported by the original developers. These include alterations to (a) the direct-
manipulation human-computer interface, (b) the format and contents of scenario
data files generated by ROBIN and executed by BATMAN, (c) the algorithms,
code, and databases involved in platform behavior, (d) the database editing tools,
(e) the windowing system’s structural design, (f) the code and databases used
for displaying maps, and (g) the grid coordinate system.

« BATMAN & ROBIN form a complex system. Tuning the software to run
efficiently with different databases and algorithms requires an understanding of
several components. Software modifications may appear feasible, but without
knowing the limitations of the graphics and computational structures, they may
become burdensome or impossible tasks. Many of these issues are beyond the
scope of this document and direct consultation with the developers is advisable.

* Contact NPRDC before changing BATMAN & ROBIN. Many modifications may
have already been scheduled for a future date, rejected because of limited
customer interest, or suspended because of technical problems in the system’s
design.

4.3 Guidelines for Adding a Computer Model

BATMAN & ROBIN software has been designed and developed as a generalizable, object-
oriented, modular system. This readily lends itself to the addition of other computer models
to increase the level of fidelity or functionality of BATMAN & ROBIN. To successfully
incorporate a new simulation model, some programming guidelines must be followed,
specifically:

* The added model must be written in a language compatible with the C
programming language and the Sun-4 series computers, such as FORTRAN 77 or
Pascal.

« The new model must consist of functions with well defined software interfaces
that are independent of, and compatible with, BATMAN's existing simulation
models.

* Any input data the added model requires must be completely separate from the

0t ——

BATMAN & ROBIN Software Design

existing BATMAN & ROBIN databases.

* Any output produced by the new model must be initialized and generated
independently from BATMAN’s output.

* The computer model must not require any user interaction, and it must operate
only on data from files or parameters passed to it from BATMAN.

» For the mouse to track smoothly, it must be serviced once every 15 milliseconds.
To accommodate this requirement, the model’s calculations must be sectioned
into reasonable pieces so it can return to BATMAN within this time interval.

* If the simulation model requires functional changes to the existing BATMAN
software, these changes must be coordinated with, and performed by, NPRDC.

It is recommended that the added computer model’s interfaces or hooks in BATMAN &
ROBIN software be written by NPRDC. Since NPRDC is intimately familiar with the
software, these interfaces can be implemented efficiently and effectively. Moreover, it
eliminates the need for the modeler to have extensive knowledge of the internals of
BATMAN & ROBIN.

Because the complexity of simulation models vary dramatically, NPRDC cannot be
responsible for the performance of BATMAN & ROBIN after these models have been
incorporated. The current version of the software has been highly optimized for speed.
Adding a compute-intensive model will likely degrade BATMAN's performance.

5.0 Software Composition

BATMAN & ROBIN are composed of four databases: Object-Definition, Graphics,
Scenarios, and Users; and three processes: BATMAN & ROBIN, Object-Definition, and
Graphics Editors. This software composition is illustrated in Figure 1.

Although BATMAN & ROBIN are truly one process, they are often conceptually considered
as two separate processes, as in Figure 1, since they serve specific purposes.

The Object-Definition Editor is used to create and modify the attributes of objects in the
Object-Definition Database, e.g., the fuel-consumption rates of air platforms. The Graphics
Editor is used to create and modify BATMAN & ROBIN’s icons. ROBIN is used to create
and modify simulated scenarios that BATMAN will later present to its users. The Sun
Graphic Utilities are used to provide a friendly interface to BATMAN & ROBIN. For a more
detailed description of the databases, refer to Part 1II: Database Descriptions.

BATMAN & ROBIN Software Design

Scenario
Database

Object-
D

finition
ase

Graphi]
pfgi'iorc Graphic Database

User
Database

Sun Graphic
Utilities

Figure 1. BATMAN & ROBIN Software Composition

6.0 Sun Graphic Utilities

For comprehensive understanding of BATMAN & ROBIN software, the reader must be
familiar with the SunView programming environment (SunView Programmer’s Guide, 1988;
SunView System Programmer’s Guide, 1988; Pixrect Reference Manual, 1988). The tools
provided by SunView are incorporated throughout BATMAN & ROBIN, and often dictate
the design of the system. This section will provide a brief overview of some of the SunView
features used by BATMAN & ROBIN.

BATMAN & ROBIN incorporate three SunView window types: Frame, Canvas, and Panel.
The Frame is a parental window serving as a border for the Canvasses and Panels. The
Canvasses are the background windows where the maps, grid, and platforms are drawn. All
other windows in BATMAN & ROBIN are Panels. The Panel is an operator-interface
mechanism that allows the programmer to create icon and pull-down menus, button
selections, and slider, text, and cycle items. Figure 2 provides an example of these window
types. Note that BATMAN & ROBIN do not use any SunView Sub-Frames because they
require an extra UNIX device.

When an application creates a SunView Panel, it must define the characteristics and location
of the Panel. Items can then be assigned to the Panel. Just like the Panel itself, each item
within the Pane] has its own characteristics and location. Each Panel item which can receive
user -input (e.g., a choice item labeled with an icon of an F-14 fighter) is assigned a notify
function that is executed when the Panel item receives the appropriate user input from the
mouse.

BATMAN & ROBIN Software Design

BATMAN & ROBIN 2 O rev 10, 02-24-83, EBeta Test

IR

dackfire Badger Bear Blackjack Blinder Mainstay hidee 1 ack

mode: chaff comjam
[TR | jam rad (481 48 [334 .

-88e -6ee ~488 -208 [208 488 608 aee 1g00

Figure 2. Sun Window and Panel Types

-10-

BATMAN & ROBIN

appropriate Panel-item’s notify routine. Figure 3 illustrates this process.

Panel notify functions.

functions. They must be linked with BATMAN & ROBIN’s

Application Code SunView
:’ """"""] y T TTTTTsTETEEs S EE SIS ST 1
1 i i
! Set Notifier T N |
]
1 | |
! (. 1
: -]
1 Notify function : ! :
! for Item 1 ‘\I\;\ 1
1 1 . |
i X i Panel Notifier .
1
' y !
1 Notify funtion I
) for Item 2 1
1 |

Figure 3. SunView Notifier

7.0 Object-Definition Database Editor

Software Design

The SunView notifier (SunView Programmer’s Guide, 1988) is a package of interrupt-driven
functions that manage window input and output, and execute user-specified processes. User
input, window drawing, and other window events are processed and routed to the
appropriate window by the notifier. If a Panel receives an input event, it will route it to the

This is an important concept since it greatly influences the structure of SunView applications.
Many of BATMAN & ROBIN’s features are partitioned into Panel create functions and

suntool, sunwindow, and pixrect libraries contain the SunView graphics and windowing

The Object-Definition database is implemented as an ASCI text file. Any word processor
that creates strict ASCII files can be used as the Object-Definition Database Editor. The
developers have used the vi editor, a standard Unix utility (Sun UNIX Commands Reference
Manual, 1988). The contents of the Object-Definition database are described in Part II of

this document.

8.0 Graphics Editor

The Graphics editor can be any method for creating icons or graphic objects. The graphics

-11-

BATMAN & ROBIN Software Design

supported by BATMAN & ROBIN are Sun standard rasterfiles (Pixrect Reference Manual,
1988). All icons and graphic objects should be black-and-white as well as one-bit deep
since BATMAN & ROBIN apply their own colors to these objects. Commercial Sun
rasterfile editors have been used, and a custom software program has been developed by
NPRDC to create icons. None of these programs are discussed in this documentation.

9.0 BATMAN & ROBIN Global Data Structures

Table 1 lists global data structures that are used throughout the BATMAN & ROBIN
software, and identifies the header file where each data structure is defined. Most of the
structures are used as scratch pads when scenarios are built with ROBIN, and all of the
structures are used for storage when scenarios are presented by BATMAN.

Table 1.

Data Structure to File Mapping

Data Structure File Contents
SCENARIO_HEAD scenario.h scenario-related data
THEATER scenario.h scenario log
PATH_FORCE force.h red-force resources
CONSOLE_FORCE force.h blue-force resources
STATUS_REC force.h sibling or sub resources
TYPE REC force.h platform type definition
PLATFORM platform.h one platform
PROJECTILE platform.h one projectile

CHAIN REC platform.h one chainsaw

CHAIN NODE platform.h one chainsaw node
DETECT_NODE platform.h one detection-unit
DETECT_PROJ platform.h detection-unit’s weapons

Memory pointers are used to tie these structures together, taking away the need for
duplicate copies of structures. For example, all PLATFORMs in the game, have a pointer
back to the force that they belong to, either PATH_FORCE or CONSOLE FORCE.

Figure 4 illustrates the organization of the these data structures during a typical BATMAN
scenario. The structures are built after the scenario to be presented becomes known. The
SCENARIO_HEAD structure is at the top and contains pointers to the THEATER,
PATH _FORCE and CONSOLE_FORCE structures. The SCENARIO_HEAD structure has
also become a depository for all miscellaneous global variables in BATMAN & ROBIN.

-12-

“ﬁ

BATMAN & ROBIN Software Design
0
. HEAD
PATH_ F-ONSOLE
FORCE FORCE |
(Red) {Blue)
T{EP(E:— T. T. T STATUS_ STATUS_
v FORM FORM| FORM REC REC T
o TFB
]] (TFA - (TFA -
vector { vector 1 vector 1
vector 2
) TYPE_ TFORM TYPE_
| ol o A T e T
MGasi FORM FORM
I vector | I vector 1 TYPE TYPE
- T Tl tpLaAT] -
REC REC
o ORM, %l‘iM FORM]™ | i gs)
TYPE [Tyee
- LATL PLAT LAT -
TYPE. T T T NEC ORM| FORM RM REC
s FORM FORM FORM .
[1 K]
vector 1 Lveaorl] llwml] bLAT AT PLAT 4 UR]-;:E'
FORM RM|" FORM "D

Figure 4. BATMAN & ROBIN Data Structure Organization

-13-

*

BATMAN & ROBIN Software Design

The THEATER record contains a log of all scenarios currently defined, and is discussed in
greater detail in the Scen_db_access subsection below.

The PATH FORCE contains the Red-force attack, and has a list of TYPE_RECs for each
different type of platform in the raid, e.g., a Badger aircraft. Attached to each TYPE REC is a
list of PLATFORMs of that type. There is one PLATFORM structure for each platform in the
raid. For example, if the attack force had four Badger aircraft, there would be one TYPE REC
for the Badger and four PLATFORMs, one for each Badger. Attached to each Red-force
PLATFORM is path information describing how the platform moves in BATMAN.

The CONSOLE _FORCE contains all Blue-force tactical resources that are organized into one
to three task forces: Task Force Alpha (TFA), Bravo (TFB), and Charlie (TFC). Each task
force, which can be centered on a large or small aircraft carrier, battle ship, or land base, is
then divided into sibling and sub platforms. Information specific to the sibling and sub
categorizations is contained in STATUS RECs. Each STATUS REC contains a list of
TYPE_RECs for each different type of platform in the group. Then, in a similar manner to the
PATH_FORCE structure, a list of PLATFORMs is attached to each of these TYPE_RECs.

One of the platforms in the sibling category must be a mother or home-base platform, e.g., an
aircraft carrier. Note that the three terms mother, sub, and sibling refer to generic platform
types. A mother platform is the primary one in a task force, carrying sub platforms, and
accompanied by sibling platforms. A mother platform may be a large or small aircraft carrier,
a land base, or something else, e.g., lowa class battle ship. A sub platform might be an
aircraft, e.g., F-14 or a weapon, e.g., Phoenix missile. A sibling platform might be a
Ticonderoga class cruiser or a Los Angeles class submarine.

Figure 5 illustrates a PLATFORM data structure containing data for an F-14.
This F-14 PLATFORM structure contains:

* pointers back to the appropriate TYPE_REC, STATUS_REC, and
CONSOLE_FORCE header,

« lists of the platform’s weapons (PROJECTILEs) and detection-units
(DETECT _NODEs and DETECT _PROJs),

* flight information for the platform (CHAIN_RECs and CHAIN_NODE:),

+ alent-level information for the air platform (ALERT_HEAD and
ALERT LEVEL:) - see section Alert below.

¢ Object-Definition and state variables, and

* apointer to the next F-14 PLATFORM in list.

-14-

BATMAN & ROBIN Software Design
CONSOLE
. FORCE -
I PLATFORM
ISR DU (mother)
S:TATUS_RE:C
" (subplats) -
‘TYPE_REC; PLATFORM | _PLATFORM:
(F-14) - (F-14 #1) . (F-14#2)
PROJEC PROJEC PROJEC ALERT. P ——
TILE TLE TILE HEAD and State Variables
(sparrow) (harpoon) (phoenix)
&)
DETECT._ DETECT_
NODE NODE CHAIN_ [ALERT LEVEL |
(air (surface REC
radar) radar) 15)
| ALErT LEVEL |
(phoenix) (first
| DETECT PROJ | [cHam Nor~ | EY)
| ALERT_LEVEL |
(harpoon) (lasy)
| pETECT PROI | | cHaN NoDE |

Figure S. PLATFORM Data Structure

-15-

e

BATMAN & ROBIN Software Design

10.0 BATMAN & ROBIN Software

The following sections provide an overview of the BATMAN & ROBIN software. For
purposes of this description, the software packages are organized into the following groups:
(1) Initalization and Control, (2) Loadout, (3) Vector-Logic Grid, (4) Deployment, (5)
BATMAN Simulation, (6) Performance Measures, (7) ROBIN, (8) World Database II, and
(9) Tools. Figure 6 illustrates this grouping.

Initialization and

Controlling Groups
jm—m—em— == -
i
1 1.
Initialization
and
Control
BATMAN Growps | 77777
' \
! i
: 2 !
Loadout
I oul r_ - J ,
! 3. |
! Grid '
! |
: 7 | ROBIN Groups
4 I eeaeemem o —— - - - A
t 4 0
1 " !
1 | !
1 4. ' . |
) Deployment " ROBIN !
! | !
[> \ !
| ’ i 1
| L/)
! i
: s. |
| BATMAN)
Simulation - \
t ~ 6. }
! Performance \
1 Measures I
1
|

8 9.
Database II Tools

|
]
|
: World
1
]

Figure 6. BATMAN & ROBIN Software Packaging

-16-

.

BATMAN & ROBIN Software Design

10.1 Initialization and Control Packages

The packages in this group setup the window environment, control the flow of BATMAN &
ROBIN, initialize scenario data structures, and provide an interface to the user database.

10.1.1 Batman

This package contains the main function, and is the primary initialization and control package
for BATMAN & ROBIN. This package also contains the declaration of the global
SCENARIO_HEAD structure. Many of the functions that exist in this package are global
utilities used by other BATMAN & ROBIN software packages.

Exported Functions:
main, start_next_game_phase, set_stored_func, reset_stored_func,
maincanvas_input_toggle, display changes, define_maincanvas_rect,

set_maincanvas_input_handler, and get_maincanvas_input_handler.

10.1.2 Frontend

This package provides routines that rapidly display digitized photos of Blue and Red tactical
platforms as a graphic introduction to BATMAN & ROBIN. The introduction is displayed if
either "-f" or "F" appears on the command line.

Exported Functions:

frontend_graphics.

10.1.3 Init_con

This package initializes BATMAN & ROBIN’s Console force data structures and panels.
(At this stage of development, the Console force has been the Blue force. It is planned to
increase the flexibility of BATMAN & ROBIN so that Red force can be a Console force too.
This other option will take some time to develop. It is intended to complete this other feature
in the near future.) The scenario number must be known before this package can be called,
and is used to retrieve the appropriate scenario from the Scenario Database. This package
reads in the scenario which specifies the types and numbers of platforms. Then, allocates
records and fills them in with information obtained from the Object-Definition Database. This
package will produce one CONSOLE _FORCE data structure, including all STATUS RECs,
TYPE RECs, PLATFORMs, and PROJECTILEs that belong to the task force (refer to
BATMAN & ROBIN Global Data Structures).

. The high-level algorithm for building the CONSOLE FORCE data structure is as follows:

Begin
Get appropriate scenario from scenario database
For (each task-force in the scenario)
Allocate space for a CONSOLE_FORCE data structure
Initialize appropriate fields of the CONSOLE FORCE

-17-

BATMAN & ROBIN Software Design

For (the sibling platforms that belong to the force)
Allocate space for a STATUS REC data structure
Initialize appropriate fields of the STATUS REC
For (each different type of sibling platform)

Allocate space for a TYPE REC
Initialize appropriate fields of the TYPE REC
For (each sibling platform of that type)
Allocate space for a PLATFORM data structure
Load PLATFORM with values from the Object-Definition
Database
Endfor
Endfor
Endfor
For (the sub platforms that belong to the force)
**** Same logic as sibling platforms ****
Endfor
Endfor

End
Exported Functions:

init_console_force, build_force_header, build_alert, build_status rec, build_type_rec,
build_sibling_plats, build_sub_plats, build _platforms, build loadour_projectiles, and
create_con_force_batman_panels and_windows.

10.1.4 Init_path

This package initializes the Path force data structures. (Currently, the Path force is the Red
force or raiding force.) The scenario number must be known before this package can be called,
and is used to retrieve the appropriate scenario from the Scenario Database. Also, it will
build a list of flight-path information for each platform. Therefore, this package will produce
one PATH_FORCE data structure, including all TYPE RECs and PLATFORMs that belong
to the raiding force (refer to BATMAN & ROBIN Global Data Structures).

This package is similar in function to init_con, but is slightly less complex since the
PATH_FORCE data structure is simpler than the CONSOLE_FORCE data structure. The key
differences between the two structures are that the CONSOLE_FORCE has STATUS RECs
distinguishing sub platforms from sibling platforms, the PATH_FORCE does not. Also, the
PATH_FORCE has flight-path information for the predetermined Red attack, the
CONSOLE_FORCE does not.

Because of these similarities with init_con, many of this package’s Exported Functions
have not been included in the following listing.

Exported Functions:
init_path_force.

10.1.5 Readobj

- 18-

e

BATMAN & ROBIN Software Design

This package contains routines that will read platform, weapon, and detection-unit data from
the Object-Definition Database. Both the init_con and init_path packages use these
routines to build the CONSOLE_FORCE and PATH_FORCE data structures.

Exported Functions:

rd_plat_def, rd_proj_def, build_projectiles, rd_detection_def, and build_detection.

10.1.6 Scen_db_access

This package provides routines to build the THEATER data structure, and modify the
scenario_index file of the Scenario Database. These routines are intended primarily for
ROBIN. For more information on the Scenario Database, refer to Part III of this document.

One THEATER record for each warfare-theater is subsumed under the the
SCENARIO_HEAD, and contains a log of all scenarios in that area. The data-dictionary
definition for a THEATER is as follows:

THEATER =

warfare-theater

num-scenarios-at-this-theater
list-of-the-scenarios-at-this-theater
title-for-each-scenario
list-of-red-platform-resources-for-each-scenario
list-of-blue-platform-resources-for-each-scenario

+4++++

To date, warfare-theaters are, but not limited to, the following areas:

warfare-theater =
Caribbean
Japan-sea
Bering-sea
Kamchatka-peninsula
South-east-asia
Arabian-sea
Persian-gulf
Mediterranean
North-atlantic
Murmansk

Exported Functions:

read_scenario_data, change_scenario_index_file, and get_next_scenario.

. 10.1.7 User_db_access

This package provides routines to interface with the Users Database. For more information
on the Users Database, refer to Part III of this document.

Exported Functions:

-19-

BATMAN & ROBIN Software Design

add_user, del_user, user_exists, and rewrite_user.

10.1.8 User_funcs

This package controls the human-computer interface when the user is performing one of the
following functions:

» Listing all users in the User Database.
e Adding a user to the User Database.
* Deleting a user from the User Database.

* Selecting a user to run BATMAN & ROBIN.

* Selecting to run BATMAN & ROBIN in "demo" mode.

Hence, this package contains Panel create and Panel notify functions to coordinate the above
activities. Access to these features is gained through the routine user funcs, exported by
this package. user_funcs will display a log of all users, and a Panel with the buttons: "Add
User", "Delete User”, "Demo"”, and "Exit". This routine remains active until principals, e.g.,
instructors, either select other individuals, e.g., students, as authorized users of BATMAN
& ROBIN, choose to run BATMAN & ROBIN in "Demo"” mode, or Exit from them.

Exported Functions:

user_funcs.

10.2 Loadout Packages

This group of packages creates the tactical-situation screen and handles weapons loadout
for Blue-force air platforms.

10.2.1 Loadout_map

This package creates the tactical situation-screen, illustrated in Figure 7. At this stage of
development, the tactical-situation display only contains the following:

- ¢ An orthogonal-projection map of the warfare-theater.
» Arrows representing air-threat axes.
» The location of Red-force surface and subsurface platforms.
* An icon for each Blue task-force.
* A message box with the defense condition or DEFCON.

* A Grid icon that, when selected, will leave loadout and advance to vector-logic
grid definition.

-20-

BATMAN & ROBIN Software Design

\\

A
Threat
Axeg C
Red-force L-‘— §
surface andg
Sub-gurface -“v
attack
AL
.88y /L .m/
TR d
$ k
TFA
i
ori
7
Deplo
""/
DEFCON a

Figure 7, Tactical Situation Screen

-21-

‘

BATMAN & ROBIN Software Design

* A Deployment icon that, when selected, will bypass grid definition and advance
directly to deployment of tactical assets.

(Further development of the tactical situation will include other relevant DEFCONSs besides
RED, rules of engagement (ROEs), electronic warfare information, additional intelligence,
sea state, and weather data. Incorporating DEFCONs WHITE and YELLOW into
BATMAN & ROBIN, as well as ROEs, implies that Blue and Red platforms must be
"smart", i.e., artificial intelligence techniques must be used to model these tactical situations

properly.)
The scenario contains all of the information necessary to construct this screen.

Exported Functions:

show_scenario_location_map, create_map_canvas_win_items, show_threat,
show_threat_axises_and_craft, show_warning_type, and display tf panel win

10.2.2 Loadout_tf

This package contains functions for creating and interacting with Blue task-force display
panels which contain large icons for the force’s home-base or mother and sibling platforms.
Refer to BATMAN & ROBIN Global Data Structures for a description of mother, sibling,
and sub platforms. Task-force display panels are created by traversing the list of
TYPE_REC: attached to the force’s sibling platform STATUS REC.

If the mother platform on a task-force display panel is selected, the user is "going aboard"
the mother with the intention of loading weapons onto the task-force’s air platforms. When
this happens, control is passed to the loadout package discussed below.

Exported Functions:

create_tf loadout_panel, return_to_map_panel, show_tf panel, and
create_cf panel_items.

10.2.3 Loadout

This package contains functions for creating and interacting with Blue loadout panels which
provide the human-computer interface for placing weapons on Blue air platforms. These
panels are created by traversing the list of TYPE_RECs attached to the force’s sub platform
STATUS REC.

Figure 8 illustrates a typical Blue loadout panel which is implemented with a PANEL WIN
(refer to Panel_win subsection below).

A Blue loadout panel contains the following six Panel Items:
1. An icon that returns to the Blue task-force display panel.

2. A paging icon used to display the next two sub platforms.

-22-

BATMAN & ROBIN Software Design

EATHAN & ROBIN 2 O rev 10, 02-24-89, Beta Test

2 F-MWZ Fa-182 E-2¢]

Mother platform
with resources

Sub-plat

Sub~plat
icon #1

icon #2

| Pager]
|

Return to
tagk-force —

&vni.blo-pmol-itu with weapons for both sub-plats as its chotccq

Figure 8. Blue Force Loadout Panel

-23-

R

BATMAN & ROBIN Software Design

3. A large icon of the mother platform with small icons for the sub platforms and
weapons that exist on it.

4. An item that will hold the first sub platform being loaded out.
5. An item that will hold the second sub platform being loaded out.

6. A variable panel-choice item with icons of all the possible weapons that can be
loaded out on either of the two sub platforms currently displayed.

Exported Functions:
start_subplat_loadout, create_loadout_panel_items,
display _resources_on_mothers_icon, notify_update_proj count, set_proj _num,
update_mothers_icon, load_next plat_types, get_next_type_pair,

load_projectile_records, and finished_loading_this_mother.

10.3 Vector-Logic Grid Packages
To date, grid is the only package in this group.

10.3.1 Grid

This package is responsible for allowing the user to define the range of the vector-logic or
defensive grid, and for updating the map and grid when the user chooses to zoom in and out.
The specifications for the grid are as follows:

* The simulation plane is assumed to be a Cartesian coordinate system with
Victor/Lima (V/L), the defended point, at the origin, (0,0). The grid is drawn with
its center at V/L.

» The vector-logic grid is displayed for a full 360 degrees.

* A fixed-range increment for grid labels, i.e., SO nautical mile tic marks.

» Angle or azimuth increments are expressed in integers, e.g., 15 degrees.
Refer to World Database 11 section below for more information on interacting with the maps.
Exported Functions:

display_grid_changes, copy_map_to_display pr, and draw_grid_on_pr.

10.4 Deployment Packages

The packages in this group coordinate deploying Blue task forces in a chosen warfare
theater, and setting initial alert levels for sub platforms. Figure 9 illustrates a typical
deployment screen that will serve as a useful reference for the following subsections.

-24-

BATMAN & ROBIN Software Design
5
st
/
CAP -
station) I l
Chain []
sav
1
PR X N A:éu
3 Am
TFA S
\ s a2
PANEL_WI 1
A1KA-8002 AL A: KA-6D
hir-1e o ira-1002 Sub- 2
e oo | prece *
e .00 . A: A-6
.' L A: EA-GB
' . 2
» 8 A7
7 oo Symbol M
?l’o" ‘ ANEL, wIN '.*u-".“.; ' ' \ 2*
. \A: F-4E
MNore] -
f plats

Figure 9. Deployment Screen

-25-

e
BATMAN & ROBIN Software Design

The deployment stage of the game is transitioned to by the start_next_game_ phase routine of
the batman package, mentioned earlier.

10.4.1 Cf_panels_create

This package creates the Console-force PANEL _WINs described below. Figure 10 identifies
the data structures where these PANEL_WINs are defined. For more information on
PANEL_WINs, refer to the Panel_win subsection.

* The Symbol PANEL_WIN contains items for viewing the tactical-situation
screen, zooming in or out, and moving and erasing platforms. This PANEL WIN
is placed flush to the left side of the deployment screen.

* The Task-Forces PANEL_WIN contains an icon for each Blue task force and the
Red force hammer-and-sickle icon.

* The Simulation PANEL _WIN, which is displayed flush to the right side of the
computer screen during BATMAN, contains the simulation clock, NTDS (Navy
Tactical Data System) icons for viewing selected portions of the battle, i.e., air,
surface, or subsurface warfare only, icons for making visible specified radar and
sonar coverage of Blue force, the icon for accessing zooming and panning, and the
icon for displaying the status windows of Blue air, surface, or subsurface platforms.

* Sibling Launch PANEL WINs, one for each Blue task force, contains an icon for
each sibling platform in the task force and an icon that returns to the Task-Forces
PANEL WIN.

* Sub Launch PANEL_WINs, one for each task force, contains an icon for each sub
platform in the task force, an alert icon, a chainsaw icon, a CAP station icon, and
an icon that returns to the Task-Forces PANEL_WIN.

» Alert PANEL WINs, one for each task force, contains a Ready 5, 15, and 30 icon
for each sub platform in the task force. For more information, refer to the Alert
subsection below.

While deploying tactical assets, all of the above but the Simulation PANEL WIN are
accessible. During the simulation, all of the above but the Symbol PANEL WIN, the Task-
Forces PANEL WIN, and the sibling Launch PANEL WINs are accessible. Therefore, the
sub Launch PANEL _WINs and the alert PANEL WINs are used in both deploying assets
and managing the battle.

Exported Functions:

init_symbol _icons, create_symbol_panel, create_tf panel_items,
create_main_panel_items, display plat_count, create if launch_panel items, and
create_subplar_panel_items.

-26-

ot

| «
BATMAN & ROBIN Software Design
CONSOLE_
FORCE
. . TFA TFA TFC
Symbol Task Forces Simulation e
Sibling Sub . . . Sub
PANEL_WIN PANEL_WIN PANEL_WIN STATUS_REC STATUS_REC STATUS_REC
Phother Launch Launch Launch
TYPE_REC PANEL_WIN PANEL_WIN PANEL_WIN
Mother
PLATFORM
ALERT_HEAD
Alert
° PANEL_WIN

Figure 10. Deployment PANEL_WINs

-27 -

BATMAN & ROBIN Software Design

10.4.2 Cf_panels_notify

This package contains the Notify routines for the Console-force PANEL WINs created by
the cf_panels_create package.

Exported Functions:

launch_panel_requested, symbol _panel_notify, if panel_notify, main_status_notify,
subplat_launch_notify, tf_plat_launch_notify, air_notify, subsurf notify,
surface_notify, air_radar_notify, surf_radar _notify threat toggle notify, and
subsurf_radar_notify.

10.4.3 Alert

This package contains routines to model alert or readiness states on mother or home-base
platforms. Four alert states are available: Alert 5, Alert 15, Alert 30, and NULL Alert, ie., a
sub platform that is already launched. The minutes to launch time are not simulated.

An ALERT HEAD structure (see BATMAN & ROBIN Data Structures section) is created
and maintained for every mother platform that is in the Console force. The types of platforms
in the Alert PANEL WIN are duplicates of those found in the respective sub Launch
PANEL _WIN. Platforms are moved among the readiness states with the function
find_plat_on_level, which returns the first sub platform at the specified alert, and
put_plat_on_level, which updates the sub platform’s Alert state. Only sub platforms on
Ready 5 can be launched. Platforms must be moved from lower to higher alert states for
launching, e.g., moved from Ready 15 to Ready 5.

Exported Functions:

put_plat_on_level, find _plat on_level, and create_alert panel win.

10.4.4 Symbol_manager

This package manages the placement, movement, and removal of object icons in the
maincanvas (where the maps are drawn) during tactical deployment. Object icons include
Console-force platform, CAP station, and chainsaw icons. The functions in this package are
generally called when a mouse selection is made in the maincanvas, e.g., specifying the
location to deploy an F-14. These calls have to occur within the right context. For example,
the graphic object in Sub-Lunch Panel_Wins is selected prior to indicating with the mouse
where this aircraft is to be placed within the maincanvas in order to initiate drawing the small
F-14 icon in the designed position.

Exported Functions:

free_chain_list, cap_requested, chain_requested, move_requested,
remove_requested, placed_on_chain, placed_on_grid, clear requested, and
clear_all_symbols.

-28 -

BATMAN & ROBIN Software Design

10.4.5 Find_symbols

This package contains utilities for locating object icons in the maincanvas given a mouse-
selected coordinate. They are generally used for move operations to determine if there is an
object icon at the mouse-selected location. These utilities are used during the deployment
and battle-management phases of the simulation.

Exported Functions:

find_plat, closest_mother, find_mother, find_refueler, find_a_dot, and
find_chain_dest.

10.5 BATMAN Simulation Packages
The packages described in this section control and perform the BATMAN simulation.

10.5.1 Timer

This package provides "set-up", simulation, and fixed-interval timers. The "set-up" timer
tracks the amount of time the user takes to loadout and deploy Blue forces. The simulation
timer tracks the amount of time the user is engaged in battle. The interval timer, while used
in other areas of BATMAN & ROBIN software, is described here since it plays such a
critical role in driving the simulated battle.

The interval timer provided by SunView’s notifier (SunView Programmer’s Guide, 1988) will
generate a software interrupt upon every lapse of a timer. It is based on the UNIX functions
setitimer and getitimer (SunOS Reference Manual, 1988), but is only accessible through the
notifier under the SunView programming environment. The interval timer is initialized with
the notifier function notify set_itimer func. The caller specifies the duration between
interrupts and an interrupt service routine.

BATMAN & ROBIN employ the interval timer to build a psuedo-UNIX kemel for running
non-user-input processes while an individual interacts with the system. This kemel will be
referred to as the Interval Timer Kernel (ITK), and is illustrated in Figure 11.

During the simulated battle, for example, the ITK can be processing a platform detection
algorithm while the user is moving the mouse to make a selection.

The ITK consists of a list of TIMER_NODEs, and the function that operates on this list,
timer_node_updates, which is the interval timer’s interrupt service routine. The data-
dictionary definition for a TIMER_NODE is as follows:

TIMER_NODE =

non-user-input-function-name

function-data
nume-itimer-interrupts-to-wait-before-calling
num-times-waited-so-far
num-times-to-call-function

pausable-flag

LIST NODE

++++4++

-29.

st
BATMAN & ROBIN Software Design

Sun Interval
Timer

Software interrupt
every n
milliseconds

For each interrupt,
Process all TIMER_NODEs

Interval Timer
Interrupt Service

Routine TIMER _ TIMER _ TIMER_

NODE NODE NODE

(timer_node_updates)

Figure 11. Interval Timer Kernel

The ITK will process every TIMER_NODE in the list for every interrupt generated by the
interval timer. The high-level algorithm for timer_node_updates is as follows:

Begin
If (not still servicing last interval timer interrupt)
Get first TIMER _NODE from list
While (not at end of TIMER _NODE list)
If ((game is not currently paused) or
(pausable-flag is not set))
Increment num-times-waited-so-far
If (num-times-to-call-function has been reached)
Delete this TIMER_NODE from list
Elseif (num-times-waited-so-far is greater than
num-itimer-interrupts-to-wait-before-calling)
Call non-user-input-function-name

-30-

BATMAN & ROBIN Software Design

Decrement num-times-to-call-function
Reset num-times-waited-so-far to zero

Endif
Endif
Get next TIMER_NODE from list
Endwhile
. Endif
End
Exported Functions:
set_the_notify_itimer, timer_node_updates, add_to_the_interval_timer,

remove_from_the_interval_timer, check_for_user _interrupts, start_setup_timer,
stop_setup_timer, start_elapsed_timer, stop_elapsed_timer, set_time_values,
calculate_time_stats, init_time_factor, and time_handler.

10.5.2 Engine

This package contains the data structures and code that drives the BATMAN simulation.
The controlling function is simulation_engine which operates from a circular list of
ENGINE _NODEs. Figure 12 illustrates this list, and the following is the data-dictionary
definition for an ENGINE_NODE.

ENGINE_NODE 1
engine-node-type R
function-name
function-data
LIST NODE

++ +

where:

engine-node-type =
clock
map-copy
update-plat
red-detect-build
red-detect-plat
blue-detect-build
blue-detect-plat
draw-plat
update-misc
display-changes

-31-

BATMAN & ROBIN Software Design

current-
engine-node

ENGINE_NODE

List

Figure 12, ENGINE_NODE List

ENGINE _NODEs are grouped into the above engine-node-types, and the list is maintained
so that all nodes of the same engine-node-type are contiguous. For example, there are
generally six ENGINE NODEs of engine-node-type draw-plat: a Red and a Blue air,
surface, and subsurface platform drawing ENGINE_NODE.

Before starting the battle simulation, the ENGINE_NODE list is initialized, and the "current-
engine-node” is set to an arbitrary node. The initial state of the list is approximate to the
illustration in Figure 12. Then, the simulation is started by adding a TIMER_NODE with
simulation_engine as its function to the Interval Timer Kernel’s list (see Timer subsection).
Then, upon every software interrupt generated by the interval timer, the ITK will call
simulation_engine. This continues until the simulation is terminated. Simularion_engine
refers to its circular list of ENGINE_NODE: to determine which functions it should call.

Each call to simulation_engine is only allowed to run for the amount of time specified by the

-32-

e —

BATMAN & ROBIN Software Design

msec_engine_update_interval parameter of the Object-Definition database (see Part HI of
this document). Imposing this time limit will periodically return control to the system so that
it can process user input. Therefore, it may take a few calls of simulation_engine before one
cycle of the ENGINE NODE list is completed. The high-level algorithm for
simulation_engine is as follows:

. Begin

Get the current time and start the engine timer

While (forever)
Call the function that resides in the current-engine-node
Set current-engine-node to next node in list
Get the current time
If (time elapsed between start and current is

greater than msec_engine_update_interval)
Break the loop

Endif

Endwhile

End

Figure 13 illustrates the interaction between the interval timer and the simulation engine.

The most powerful engine attribute is that the ENGINE_NODE list it operates from can
change during the simulation, dramatically increasing the engine’s functionality. The
ENGINE_NODE list changes depending on what the battle manager does. For example, if
the battle manager requests that the outer-air battle not be visible, this is handled by
removing the ENGINE_NODE that draws air platforms. If the battle manager requests that
the outer-air becomes visible, the node is simply added back to the list.

Exported Functions:
simulation_engine, check_for_simulation_termination, add_engine_node,
remove_engine_node, set_confidence, simulation_input_handler, and

setup_input_handler.

10.5.3 Detect

This package contains functions that compute positional relationships between platforms
and, using the detection-units aboard each of them, determines which Red threats a specified
Blue platform can detect. Currently, the Willard-Leuker space tree model is used to perform
these calculations. This model, as well as others, will be documented in BATMAN &
ROBIN: Human-Computer Interface and Simulation Models (Federico, Bickel, Ullrich, &
Bridges, in preparation). BATMAN & ROBIN can be adapted to use more complex detection
models than Willard-Leuker.

-33-

_

BATMAN & ROBIN Software Design
Event Stream Over Time
Mouse | 1 Mouse | J Bm | -4 Mouse L 4 A" - | Window
Move Move Selected Move typed Picked
Interval-Timer All TIMER_NODEs
Software processed
Interrupt
Call simulation_ Time-Slice
engine Up

Figure 13. Interval Timer’s Relation to the Simulation Engine

Each cycle of the simulation engine will build two Willard-Leuker space trees, one for Red
platforms and one for Blue platforms. These are coordinated by "red-detect-build" and "blue-
detect-build" ENGINE_NODEs, respectively (refer to Engine subsection above). After the
Willard-Leuker space tree is built, Red platforms are detected for a specific Blue platform
with the function detect plats. The sensitivities of the platform’s detection-units, which are
defined in the Object-Definition Database (see Part III of this document), are the primary
variables in determining which platform’s are detected.

Exported Functions:

build_secdata, free_secdata, build_space_tree, and detect plats.

10.5.4 Plat_detect_funcs

-34-

e —

BATMAN & ROBIN Software Design

These functions use a platform’s detection unit, e.g., radar or sonar, to locate hostile
platforms, and simulate firing weapons at the detected raiders. These features are
coordinated by "red-detect-plat” and "blue-detect-plat” ENGINE NODEs (refer to Engine
subsection above). Detecting threat platforms is accomplished by the derect plats function
from the detect package described above, and coordinated by routines in this package. Firing
weapons at the detected platforms is also initiated by routines in this package.

Each detection unit on a platform is given a detect_func and a weapons_release_func in
the Object-Definition Database (see Part IIl of this document) to control the unit’s weapon-
firing behavior. For example, a detection unit on a carrier to detect air threats would be
assigned a detect_func for detecting hostile air threats and a weapons_release_func that
would launch surface-to-air missiles at the raiders. The detect_funcs in this package are
detection, comjam_emission, and shoot_cvn_detection. The weapons_release_funcs in this
package are fire_projectiles, fire_crz_missiles, and shoot_mother_detection.

Exported Functions:

fire_projectiles, fire_crz_missiles, comjam_emission, interceptor_detection,
shoot_mother_detection, detection, and detect_platforms,

10.5.5 Plat_draw_funcs

This package contains functions to draw platforms, CAP stations, chainsaws, radar and
sonar coverage, chaff corridors, comjam emissions, antiship missiles, firing lines, and
explosions in the maincanvas during the simulation. Hence, this package can be viewed as a
toolbox of drawing functions that update the user’s view of the battle. Drawing platform’s is
coordinated by "draw-plat” ENGINE NODEs (refer to Engine subsection above). Other
drawing functions may be called depending on what happens during the battle simulation. For
example, an explosion is drawn when a platform is destroyed. Or, radar coverage for air
platforms becomes visible if the user requests it. When the user alters his view of the battle,
e.g., turning on surface-radar coverage, "update-misc” ENGINE NODEs are added to the
ENGINE_NODE list to depict the modified view.

Exported Functions:

draw_platforms, draw_radar, draw_detection, = draw_chaff, draw_missile,
draw_plat_ao_cj, draw_plat_mb_jammed, explosion, draw_shot _line, draw plat,
draw_chain_sym, and init_chains_on_map

10.5.6 Plat_list_funcs

This package contains routines to update a number of lists maintained during the simulation,
e.g., a list of destroyed Blue platforms.

Exported Functions:
add_to_launched_missile_lists, remove_from_not_launched_lists,
remove_from_launched_lists, add_to_chain_list, remove_from_chain_lists,

-35-

BATMAN & ROBIN Software Design

remove_from_draw lists, add_to_active_lists, remove_from_active_lists, and
place_plat_in_dead_list.

10.5.7 Plat_update_funcs

This package contains routines that control and update the movement and status of all Red
and Blue platforms during the simulation. This includes routines called by user input, e.g.,
request to land an air platform on a carrier (land_plat), and by the simulation engine, e.g.,
update a platform’s movement on a chainsaw (follow_chain_path). Each type of platform is
assigned default update functions in the Object-Definition Database (refer to Part III of this
document).

Exported Functions:

sink_ship, splash_aircraft, set_plat_vector, null_func, land_platform,
Jollow_chain_path, follow_tree_path, = move_to_point, missile_move_to_point,
land_plat, launch_missile, launch_plat, su_launch_to_chain, su_launch_to_point,

move_to_land, move_to_refuel, hover, update_plats_states_and_set_stats,
update_platforms, timed_update_platforms, timed_launch,
interceptor_change plat direction, change plat_direction, and

set_one_plat_radar flag.

10.5.8 Status

This package contains functions to construct and display individual, sibling, and sub platform
status windows. The STATUS_WIN structure, defined in this package, is used to implement
these three types of status windows. A STATUS WIN is on a Sun Pixrect (Sun Pixrect
Reference Manual, 1988), but contains additional information to provide more functionality for
BATMAN & ROBIN.

One STATUS_WIN, declared in the CONSOLE FORCE structure (refer to BATMAN &
ROBIN Global Data Structures above), is used to display the status of an individual
platform. Only a single platform’s status can be displayed at any one time. The individual
status window is currently displayed in the lower left comner of the battle display.

Sibling platform status windows provide the status of all sibling platforms in the designated
task force. Sub platform status windows provide the status of all sub platforms in the
designated task force. A STATUS_WIN structure is declared in each STATUS REC from the
CONSOLE_FORCE structure to hold these windows. The sibling and sub platform status
windows are currently displayed in the upper left corner of the battle screen.

The display of these three status windows is mutually exclusive, i.e., only one of them can be
displayed at a time. When the user requests to view one of these status windows, an
"update-misc" ENGINE_NODE is added to the ENGINE_NODE list to display the selected
status window (refer to Engine subsection above). When the user no longer chooses to view
the status window, the ENGINE_NODE is removed from the list.

Throughout BATMAN, Blue platform status is updated as follows: Each PLATFORM data

-36-

_

BATMAN & ROBIN Software Design

structure has a pointer to the force’s individual STATUS_WIN and the sibling or sub platform
STATUS_WIN to which it belongs. Then, during the batte, each active platform writes its
updated status into both the individual STATUS WIN and the appropriate “"multiple-
platform” STATUS WIN (either sibling or sub). The updates are done in the "update-plat"
stage of the simulation engine (refer to plat_update_funcs subsection above). The updates
are only visible if a status window is displayed.

Exported Functions:

show_single_status, hide_single_status, display status, highlight_status group,
unhighlight_status_group, draw_plats_status_labels, create_indiv_status window,
create_status_windows, and destroy_status_win.

10.6 Performance Measures Packages

The packages in this group compute and display objective, automatically recorded,
multivariate performance measures (sometimes referred to as statistics) for the most recent
BATMAN scenario. Performance measures can be viewed at the console, sent to a printer,
or written to a file. Figure 14 provides an example of a performance measures display screen.

The header file stats recs.h declares four data structures used by the performance
measures packages. Their names and purposes are listed in Table 2.

1

Table 2.

Performance Measures Data Structures

Data Structure Purpose

STATS_MANAGER_WIN Performance Measures Manager PANEL WIN

STATISTICS WIN Performance Measures PANEL WIN
STATS_FIELDS Hold data collected during simulation
STATS_HEAD Ties above three structures together

STATS_MANAGER_WIN provides a PANEL_WIN that allows the user to select the types
of platforms (air, surface, or subsurface) and point of view (Red or Blue) of the performance
measures display. STATISTICS_WIN provides a PANEL WIN to hold the performance
measures when they are displayed. One of its Panel Items is a large Pixrect where the
performance measures are written. STATS_FIELDS holds the data collected during the
simulated battle that will be used to compute the performance measures. STATS HEAD
brings the above three structures together in one place, with some other information global to
the performance measures packages.

-37-

FI....llllIlIIIIlllllIlIlIIlIIlIIIlllIlIIIIIIIIIII-------144
BATMAN & ROBIN Software Design

BATMAN & ROBIN 2.0 rev 10, 02-24-89, Beta Test
—— o

j12_8éig } - e

Warfare Theater: mediterranean

‘4L. ‘1*} {iP 24!‘ {d!b- fth 2‘1t.

A-M A-6 A-7 AY-8B E-20 KA-BD S-38 EA-68 F-14 F-4E FA-18 AM-11 CH-46 SH-2F SH-3H UH-1IN

2 2 2 2 2 2 2

1‘ i*. W o W W W

18 16 18 18 A
MiG-17 MiG-19 Mainstay Backfire
((Select Performance Msasures) ([Print Performance Measures }

Blue Air Perforsance

Blue Atr vs. Red Atr-Surface
Air-surface threats detectedcciievververnceneress 2,17 %
Average range at which threats vere first detected 189.00 na
Air-surface threats 0eStroyede.c.vcvvverscennoanes 8.80 X
Average range at which threats were destroyed Nak ne |
Air threat heads up €allscveniiiiinnicrascniensne.. 8,80 %
Air-gurface threat’s missiles detected 0.8 %
Average range at shich cruise missiles vere first detected NaN na
Alr-surface threat’s cruise missiles destroved 0.88 %
Average range at which cruise »isstles were destroyed NaN ne |—
Average distance between sigsiles detection and destruction NaN na
Ar-surface threat cruise missile heads up calls 0.00 %
Air threats destroyed prior to wespons release NaN %
R Air-gurface threats placed 1n blue force’s LARS 0.08%
Threat’s aissiles placed in blue force’s LARS 8.88 %
8lue force aircraft teft ondeck treessees. 71,88 %
8lue force strcraft lost due to no fue) ceen 6.25 %
- Missiles remaining on dlue air platforas NaN %
Blue force air platforas destroyedc.... ... 08.88%
Rea) time taken to set up defenseccn0enn. 2.35 BINY

Rea) time from beginning to end of scenario 1.98 »iny
Perceived confidence Tevel (B - 9)ccicvvvennccnsans (]

Average distance between tnreat detection and destruction . -~NaN ne
|
]

Figure 14. Performance Measures Screen

-38-

BATMAN & ROBIN Software Design

10.6.1 Stats

This package contains functions that initialize the STATS_HEAD structure, create the
PANEL WINs in the STATS MANAGER WIN and STATISTICS WIN structures, and
display or print performance measures.

Exported Functions:

create_stats_head, write_blue_stats, write_red_stats, print_blue_stats,
print_red_stats, display_the_stats, clear_all_stats, and free_stats_head.

10.6.2 Stats_compute_funcs

The functions in this package use the data collected during the simulated battle toc compute
the performance measures. The STATS_FIELDS structure holds the collected data. These
functions can be used to calculate the performance measures from either the Red or Blue
Force’s point of view. In general, one function is dedicated to calculating each performance
measure.

Exported Functiors:

compute_threat_core, compute_threat_headsup, compute_missile core,
compute_missile_headsup, compute_destroyed weapons_release,
compute_threat_in_lar, compute_left_on_deck, compute_lost_to_no_fuel,

compute_missiles_remaining, compute_plat_destroyed, compute_missile_launch,
compute_avg_launch_range, compute targets_destroyed, and divide.

10.6.3 Stats_notify

This package contains the Notify functions for the PANEL WINs from the
STATS_MANAGER_WIN and STATISTICS_WIN structures.

Exported Functions:

exit_stats_notify, return_manager notify, print_stats_notify,
show_blue_stats_notify, show_red_stats_notify, show_both_stats_notify,
blue_air_notify, blue_surf notify, blue_sub_notify, red_air_notify, red_surf notify,
and red_sub_notify.

10.6.4 Stats_update_funcs

This package contains functions that the simulation uses to send battle-related data to the

. STATS_FIELDS structure, thereby recording a history of the battle as it occurs. Many of the
functions from the simulation engine (refer to BATMAN Simulation section above) make
periodic calls to these functions.

Exported Functions:

stats_load_user_info, stats_load_plat_info, stats_load_confidence level,

-39-

15

BATMAN & ROBIN Software Design
stats_load_setup_time, stats_load_scen_time, stats_load_num_of plats,
stats_load_num_of targets, stats_plat_detected, stats_plat_destroyed,
stats_missile_detected, stats_missile_destroyed, stats_target_destroyed,
stats_plat_headsup, stats_missile_headsup, stats_destroyed_weapons_release,

stats_plats in_lar, stats_missiles_in_lar, stats_out of fuel, stats_plat_launch, and
stats_missile_launch.

10.6.5 Stats_verify

This package contains functions that write performance measures to a file in the user’s
directory. For more information on the User Database, refer to Part III of this document.

Exported Functions:

stats_print, init_stats_debug, and close_stats_debug.

10.7 ROBIN Packages

The packages in this group implement ROBIN, the system’s scenario generator. They are
responsible for providing a friendly interface to creating, editing, and viewing raids for
different warfare theaters as well as assigning tactical assets to Blue task forces.

Figure 15 provides a map between the features provided by ROBIN, and the primary
package providing that feature.

The header file robin_globals.h contains global variable used by all ROBIN packages.

10.7.1 Robin_init

This package contains functions that initialize ROBIN’s global variables, control the creation
of ROBIN’s windows and panels prior to a session, and remove ROBIN’s windows and
panels after a session.

Exported Functions:

create_robin_windows, init_robin_data, and end_robin_session.

10.7.2 Robin_manage

This package controls ROBIN’s administrative features including browsing scenarios, saving
scenarios to disk, deleting scenarios, and transitioning to the scenario editor. It also contains
a function that creates the manager PANEL_WIN.

Exported Functions:

display theater, redisplay, display manager panel, new_passwd_write, and
init_manager_panel.

-40 -

—

BATMAN & ROBIN Software Design
ROBIN
(robin_
manager)
. Assign tests
Browse (debgzr Save a Delete a and classes
Scenarios room._ Scenario Scenario (robin_
edit) assign)
Specify Specify S Raid
Specify DEFCON Red-Force Blue-Force Viewer
V/L (robin_ {robin_ (robin_ (robin_
defcon) red) blue) view)
. Sub- Task Task Task
P aggrms P?a‘?t"f)a:nes surface Force Force Force
Platforms Alpha Bravo Charlie
Lay
. Sub-
Tracks Air Surface
: surface Weapons
(robin_ Plaiforms Platforms
vectors) Platforms

-41-

Figure 15. ROBIN Features to Package Map

BATMAN & ROBIN Software Design

10.7.3 Robin_assign

This package provides routines that will assign in ROBIN specified sets of scenarios to
particular groups of students or system users. That is, scenarios or test items can be
clustered into sets or tests, and users or students are placed into groups or classes. Within
a set, scenarios can be administered either randomly or in a specified order to a group of
BATMAN users.

Exported Functions:

init_assignment_panel, read_assignment_data, write_asssignment_data,

10.7.4 Robin_edit

This package provides controlling routines for the scenario editor. It creates the editor
PANEL WIN and regulates transitioning to specific edit features such as placing the
defended point, V/L, specifying the Red-force raid, or allocating Blue-force assets. Only one
scenario may be edited at a time.

Exported Functions:

display editor_panel, redisplay_editor_panel, and init_editor_panel.

10.7.5 Robin_map

This package provides routines that interface with the World Database II maps, and are used
by both the robin_manage and robin_edit packages. For more information on the maps, refer
to the World Database II section below. Specific features provided by this package include
displaying all warfare theaters, interactions with the miniature world map that appears in the
upper left comer of the ROBIN manager, drawing the scale that borders the warfare theaters
in the ROBIN editor, and placing and drawing V/L within a warfare theater.

Exported Functions:

scale, map_copy, notify_threat, notify vl, notify_comjam_size,
init_scenario_location, free_sm_map_prs, and map_selected.

10.7.6 Robin_blue

This package contains the Panel creation and notify routines that allow the user to specify
the Blue force’s tactical assets. The user can define up to three task forces designated TFA,
TFB, and TFC. For each task force, the user indicates the air, surface, and subsurface
platforms and weapons loadout for the scenario. In BATMAN, these will become the Blue
force tactical assets that the battle manager has to allocate, deploy, and control.

Exported Functions:

notify_carrier_plane_done, notify_carrier_missile_done,
notify_display carrier_missiles, notify display carrier_planes, notify _blue_carrier,

-42-

HEE

BATMAN & ROBIN Software Design

notify_blue_done, notify_ship, notify plane, notify_projectile, display blue_ships,
init_blue mp_panel, display blue, display plane_input, display _ship_input,
display _proj_input, set_plane_on_carrier, set_missile_on_carrier,
init_blue_ship_panel, init_sub_plat_panel, and init_missile_panel.

10.7.7 Robin_red

This package contains the Panel creation and notify routines that permit the user to specify
the Red-force attack for its air, surface, and subsurface platforms. Currently, Red air

. platforms are divided into fighters and bombers. This package works closely with the
robin_vectors package described below.

Exported Functions:
notify_red_done, set_chosen_item, get new _swarm, set_new_swarm, set_red_menu,
set_lat lon_items, set_vector_changes, set_red_buttons, notify_erase,
notify_eraseall, notify_hide, notify_red panel, display_red_bombers,

display_red_fighters, display red_ships, display red_subs, display red panel,
toggle_robin_canvas_select, notify_main_menu, and init_red_panel.

10.7.8 Robin_vectors

This package contains routines for placing Red-force tracks including laying a new track,
extending an existing track, erasing defined tracks, hiding tracks from view, and laying chaff
and comjam on tracks. This package works closely with the robin_red package above.

Exported Functions:
set_drawing_off, destroy_draw _util_prs, init_draw _util_prs, get_list_head,
set_list_head, find_node, add_vector, clear_path_force values,
clear_all_scenario_values, draw_paths, hide_track, all_nodes_invisible,

all_nodes_visible, draw_plane, copy objct, remove node, vector selected, and
comjam_chaff selected. '

10.7.9 Robin_view

This package provides routines that will preview the Red-force raid showing how these
hostile platforms will maneuver during BATMAN and where they will lay chaff corridors or
jam communications. In order to allow concurrent user input during pre icws, the Interval
Timer (described in the BATMAN Simulation section) is used to divide processor time
between the viewer and user input.

Exported Functions:

notify_compression, notify_view_done, and notify_view.

10.7.10Robin_defcon

-43 -

ﬂ

BATMAN & ROBIN Software Design

This package is used to specify the DEFense CONdition (DEFCON) for the scenario. It
contains Panel create and notify routines for the available DEFCONs.

Exported Functions:
display_defcon.

10.7.11Robin_jo

This package contains functions that interface with the Scenario Database. For more
information on the Scenario Database, refer to Part III of this document.

Exported Functions:

write_blue, get parent, string_to_type_recs, String_to_node, string_to_vector,
file_write, and file_read.

10.8 World Database II Packages

The package in this group, mapdb, provides an interface to the World Database Il maps
developed by the Applied Physics Laboratory of Johns Hopkins University. The
specifications of these maps are as follows:

» The maps are rendered by an orthogonal projection of the globe onto a plane
tangent from a specified latitude-longitude coordinate, and viewed from a specified
range.

+ The resolution of the views range from 16 to 2048 miles in diameter.

» Land masses are drawn with a polygon filling algorithm that draws the largest
possible polygon first, and then fills in the details by drawing smaller and smaller

polygons.
+ The maps can be drawn with or without country borders.
» The maps can be drawn with or without latitude-longitude lines.

This document does not describe the map database or the software that controls it, only
BATMAN & ROBIN’s interface to it, i.e., mapdb.

In interacting with the World Database II maps, BATMAN & ROBIN use the coordinate
systems described below and illustrated in Figure 16.

+ The Global coordinate system is based on latitude and longitude. In ROBIN, all
raid information will be stored in this system as well as the center point of the
battle area.

BATMAN & ROBIN

©00) [

Software Design

Display Monitor -
Map Canvas is
drawn to BATMAN &
ROBIN’s window

MAP CANVAS -
Origin is in
upper left corner

MAP/SIMULATION
PLANE -
Origin is at
Victor/Lima

V/L

-
-
- -

GLOBAL -
Victor/Lima is
center point
of battle

Figure 16. BATMAN & ROBIN Coordinate Systems

-45-

BATMAN & ROBIN Software Design

* The Map Plane is a Cartesian coordinate system tangent to the globe at the
center point of the battle area with Y axis parallel to the longitude line of the
center point. The map is an orthogonal projection from the globe to this plane. X
and Y distances are in miles from the center of the earth along a plane through the
center, not along the surface. The tangent point of this plane will not change during
the simulation.

* The Simulation Plane is a Cartesian coordinate system with origin at the center of
the battle area. X and Y are in increments of .1 miles. The distance in miles is
linear on this coordinate system. This coordinate system is used for detection and
calculation of all platform movements during the simulation. Platform locations will
be stored in this coordinate system during the simulation and will be converted to
the other systems when needed.

* The Map Canvas is the coordinate system of the maincanvas containing the
visible portion of the Map Plane. The center of this coordinate system corresponds
to an offset from the origin of the Map Plane. This coordinate system is used to
draw all objects on the maincanvas, i.e., the battle area.

10.8.1 Mapdb

This package provides an interface to the World Database II maps. The routine
draw_map_on_pr will draw a map onto a Pixrect given a latitude-longitude coordinate, a
range, and boolean flags that indicate whether to include country borders and latitude-
longitude lines. The other routines exported by this package convert locations between the
above coordinate systems.

Exported Functions:

draw_map_on_pr, mp_to_mc, mc_to_mp, mp_to_sp, and sp_to_mp.

10.9 Tool Packages

10.9.1 Canvas_win

This package provides routines for creating and manipulating CANVAS WINs. A
CANVAS_WIN is based upon a SunView Canvas, but contains additional information to
provide more functionality. Its abstract data-dictionary definition is as follows:

CANVAS_WIN =

SunView Canvas +
visible-and-hidden-coordinates

A powerful feature of this package is that it provides a mechanism whereby a Canvas can
contain pseudo Panel-button items.

Exported Functions:

get_canvas_win, put_canvas_win, hide_canvas_win, show_canvas win, and

- 46 -

1Sy

BATMAN & ROBIN Software Design

canvas_win_event_proc.

10.9.2 Colors

This package provides functions that initialize and maintain BATMAN & ROBIN’s colormap
which resides on disk in the file specified by the colormap parameter of the Object-

- Definition Database (see Part III of this document). The SunView routines pr_putcolormap
and pw_putcolormap use this colormap to set-up its color palette.

. Exported Functions:

set_default_window_colors, set_pw_colors, set_pr_colors, make_colors, show_colors,
and str_to_color,

10.9.3 Event_ctrl (Playback)

This package provides an interposed event function, playback functions, and other
miscellaneous event-related functions.

The interposed event function (SunView Programmer’s Guide, Chapter 17 - Notifier, 1988)
provides capabilities to monitor all events as they occur and react to certain events in non-
standard ways depending on the application. Hence, it provides the programmer with some
flexibility in the way events are handled. BATMAN & ROBIN use this interposition feature
to screen for special interrupt events, e.g., ctrl-d, which dumps the current screen image to a
printer or disk.

Playback is a feature that initially records an user’s actions during a BATMAN scenario, and
subsequently and programmatically recreates the individual’s actions during the
management of the battle. This is accomplished by recording all user events that occur during
allocating, deploying, and managing tactical assets, and then regenerating those actions
during playback.

Exported Functions:

init_playback_play, generate_playback_interrupts, add_to_input_grabbers,
remove_from_input_grabbers, add_event_ctrl window, remove_event_ctrl_window,
save_playback_event, show_window, hide_window, and switch_to_sim_mode.

10.9.4 List_manager

This package provides standardized data structures and functions for manipulating doubly-
linked lists. Each LIST NODE contains previous and next pointers as well as a pointer to
some generic data:

LIST NODE =
ptr-to-previous_node +
ptr-to-generic_data +

ptr-to-next_node

-47 -

BATMAN & ROBIN Software Design

LIST HEAD =
first-node-in-list +
last-node-in-list

Exported Functions:

list_insert, list_delete, list_next, list_add, and list_first.

10.9.5 Number_pad

This package provides a pop-up number pad that is used for inputting integers into
BATMAN & ROBIN, e.g., specifying the number of Phoenix missiles to load out on each F-
14. The number pad is implemented with a PANEL WIN where each digit (0 - 9), the
backspace key, the enter key, and the display area are Panel items. If the enter key is
selected and the number in the display area is within a specified range, the number is
"accepted" and the number pad is automatically cleared from the screen.

Exported Functions:
init_pad, get pad_height, get_pad_width, and set_pad.

10.9.6 Panel_win

This package provides routines for creating and manipulating PANEL WINs. A
PANEL WIN is based on a SunView Panel, but contains additional information to provide
more functionality. Its abstract data-dictionary definition is as follows:

PANEL_WIN =

SunView Panel
visible-and-hidden-coordinates
0 {SunView Panel-items} N-1
number-of-items

0 {icon-pixrect} N-1

0 {x-location-of-icon} N-1

0 {y-location-of-icon} N-1
number-of-icons

+4+4+++++

A powerful feature of this package is that it can create a SunView Panel-choice item with a
variable number of options where each is labeled with an icon. For example, this feature is
used during weapons loadout (refer to figure 8 in the loadout subsection). The number of
different types of weapons that can be loaded out on an aircraft varies depending on the
specific platform. The panel_win package can be used to handle these situations without
requiring a different Panel-choice item for each air platform.

Exported Functions:
get_panel_win, put_panel_win, hide panel_win, show_panel_win,
create_variable_panel_item, set_variable_panel_items_icons,

down_click_event_proc, and colored_button_image.

-48 -

BATMAN & ROBIN Software Design

10.9.7 Popup_panel

This package provides a mechanism for displaying "pop-up" (overlaid) messages, which may
contain button and/or a password-request items. It can be used to display general or error
messages with a continuation button, "pseudo menus" where each option is a button, or a
simple password request.

One private PANEL WIN is used to store and display the popup messages. Upon each
request to display a message, the local PANEL WIN is cleared and then set-up with the

. specified attributes of the message. The "varargs" parameter passing mechanism is used to
specify a varying attribute list that defines the appearance of the message panel. Defaults
are used when required attributes are not specified.

Exported Functions:

init_popup, popup_panel, hide_popup panel, compare_passwd, get popup_ width, and
get_popup_height.

10.9.8 Scen_display

This package creates a Panel that displays a graphical summary of a scenario including the
warfare area as well as Red-force and Blue-force tactical assets. It is used in ROBIN by the
scenario browser and in BATMAN by the performance-measures packages.

Exported Functions:
load_plat pic, init_scen_display, create_scen_display window,
create_scen_display head, clear_scen_display, free_scen_display,

show_scen_display_win, and hide_scen_display win,

10.9.9 Utilities

This package contains utility routines for trigonometric calculations, database input and
output, memory allocation, image drawing, and several other miscellaneous functions. These
functions are used throughout the BATMAN & ROBIN software.

Exported Functions:

d_get_i, d_get_s, arctan, hypotenuse, distance, error_message, nexttok, one_fscanf,
add_to_pixrect_buffer, create_pixrect, create_alloc, set_preserved_mem, free_mem,
get_font, get picture, flip_picture, fix_string, write_string, write_label, pr duplicate,
free_alloc, free_pixrect, display _canvas_image, pr_vecbox, pw_vecbox,

10.9.10Zoom

This package handles the zoom feature available in ROBIN while defining or editing a
scenario and BATMAN while deploying or managing tactical assets. When activated, it
provides a special mouse cursor and input handler to inform the user that the zoom feature is
engaged. Then, when a new range is entered, the mapdb package (see above) is used to

-49.

s
BATMAN & ROBIN Database Descriptions

reset and draw the new view.
Exported Functions:

redraw_forces, zoom_input_handler, and zoom_notify.

Part II1: Database Descriptions

11.0 Purpose and Scope

This part of the document describes the BATMAN & ROBIN databases. It is intended
primarily for software-maintenance personnel. However, those individuals with a technical
background who want to understand the organization of the databases may also benefit from
reading this part of the documentation. At this time, the databases described herein are
completely unclassified and initially intended for development and evaluation purposes
only. These databases which are independent of the simulation software can be made

_-classified if so desired. The following sections describe the Object-Definition, Graphics,
Scenario, and User Databases.

12.0 Object-Definition Database

The Object-Definition Database contains operational attributes of air, surface, and
subsurface platforms, sensors, weapons, and miscellaneous system-configuration
parameters. BATMAN & ROBIN were designed and developed to be generic and adaptable.
That is, platforms, weapons, or system-configuration parameters may be easily added,
deleted, or modified without changing source code. Relevant parameters are stored in a
standard text file that can be altered with any text editor, e.g., vi. (It is intended to develop a
natural language or direct-manipulation interface for interacting with this database.) This
text file is referred to as the Object-Definition Database, and can be either classified or
unclassified depending upon the user’s needs.

12.1 Platforms and Weapons

In BATMAN & ROBIN an object-oriented programming approach was adopted to a feasible
extent to represent platforms and weapons. A platform, e.g., F-14 or Kidd, has the following
characteristics: it can move dynamically during BATMAN, detect other platforms, fire
weapons, and experience battle damage (Federico, Bickel, Ullrich & Bridges, in preparation).
There are also "restricted" platforms in this database, e.g., AS-4, which move dynamically,
experience damage, but cannot carry or fire weapons. Each weapon has an associated
"probability of kill" (Pk), which specifies the likelihood that it will destroy its target.

12.2 Database Attributes

The text file that contains the Object-Definition database must be named ".defaults", and
must reside in the user’s home UNIX directory. BATMAN & ROBIN read values that
represent attributes, characteristics, or parameters of platforms, sensors, and weapons from

-50-

”—

BATMAN & ROBIN Database Descriptions

the .defaults file with Sun’s "defaultstool” utility (SunView Systems Programmer’s Guide,
1988). Each line in the .defaults file consists of an object, parameter, and value, formatted in
the following way:

/object/parameter "value"

An object specifies the name of a platform, weapon, sensor, or system parameter, €.g., F-
14. A parameter represents an attribute of an object, e.g., altitude. A value assigns a
particular number or string to a parameter, e.g., 30,000 feet. The value must be enclosed by

. quotation marks. For example, the following line in the .defaults file would tell BATMAN &

ROBIN that F-14s should fly at 30,000 feet:

[F-14/altitude "30000"
The following .defaults entries provide further elucidation of how objects are defined in
BATMAN & ROBIN:

[F-14/class "platform"

[F-14/force_id "blue"”

[E-14/stats_type "air"

/F-14/long_name "Tomcat"

/F-14/altitude "30000"

These values define the "F-14" as a Blue air platform flying at 30,000 feet, which can be
referred to as "Tomcat".

The Object-Definition database is divided into six sections: platforms, weapons, sensors,
system-configuration, performance-measures, and users. Although the order of these
sections in the .defaults file is not relevant. It is recommended that BATMAN & ROBIN
users adhere to this convention.

12.2.1 Platform Parameters

Not all attributes need to be defined for every object, e.g, it is assumed that ‘fuel-
consumption characteristics are inappropriate for nuclear powered ships. The following
specify the possible platform parameters and acceptable values.

altitude, altitude_max and altitude_min: a platform’s default, upper, and lower bounds in
feet above or below sea level.

value: air platforms greater than zero, surface platforms zero, and subsurface
platforms less than zero.

as_missiles: the type and number of AS (AntiShip) missiles that a threat-air platform
carries.

-5]-

X

BATMAN & ROBIN Database Descriptions

value: a list of missiles separated by spaces where each missile is prefixed by a
positive integer which indicates how many of a certain type. If the missile is not
prefixed by an integer, then the number defaults to one. The following example
allocates two AS-4s and one AS-5 to the "Backfire" aircraft:

fbackfire/as_missiles "2 as-4 as-5"
change_direction_func: the name of the C function called when the user moves a platform.

value: interceptor_change_plat_direction for F-14s or F/A-18s;
change_plat_direction for other platforms.

class: specifies if the object is a platform or weapon.
value: platform.
draw_func: the name of the C function called to draw a platform’s icon.

value: draw_plat mb_jammed will not draw a Blue platform when it is jammed;
draw plat ao_cj will not draw a Red platform unless it has been detected; and
draw_missile will draw "restricted platforms".

extra_fuel: the amount of give fuel in pounds a tanker aircraft, e.g., KA-6D, usually carries.
value: a positive integer indicating the amount of give fuel.

force_id: whether a platform belongs to the Red or Blue force.
value: Red or Blue.

fuel_cons_hover, fuel_cons_intercept, fuel_cons_land, fuel_cons_launch,
fuel_cons_move_to_point, fuel_cons_follow_path, fuel_cons_refuel, fuel_cons_su_land,
and fuel_cons_su_launch: the fuel consumption rates expressed in pounds per hour of
platforms during different movement states.

value: equal to or greater than zero.
fuel_max: the maximum amount of fuel in pounds that an air platform can carry.
value: equal to or greater than zero.

fuel_types: tanking platforms that can refuel a particular platform. If it is a tanker, then this
lists the aircraft that it can refuel.

value: a list of platforms separated by spaces, €.g.:
/KA-6D/fuel_types "A-6 A-7 F-14 FA-18 A-4 F-4"

hit_tolerance_level: the amount of damage a platform can withstand before being destroyed.
This parameter is used in conjunction with a weapon’s damage pts to model platform
damage (see Weapon Parameters section).

-52-

BATMAN & ROBIN Database Descriptions

value: equal to or greater than one. Air platforms are generally assigned a tolerance
level of one; surface and subsurface platforms are assigned greater tolerance levels
depending on their displacement.

id_number: an unique number assigned to a platform that BATMAN & ROBIN use to
identify it.

value: refer to Table 3 for the range of valid Id numbers of different platforms.

Table 3.
Object Identification Numbers

Object Type Id Number

Blue Air 0-199

Blue Surface 200 - 399

Blue Subsurface 400 - 599

Blue Weapons 600 - 799

Blue Radars 800 - 999

Blue Sonars 1000 - 1199 :
Red Air 2000 - 2199 B
Red Surface 2200 - 2399

Red Subsurface 2400 - 2599

Red Weapons 2600 - 2799

Red Radars 2800 - 2999

Red Sonars 3000 - 3199

initial_state: the initial movement state of a platform.

value: su_launch is appropriate for Blue platforms, and launch is appropriate for Red
platforms.

large_picture: the large icon of the platform.
value: the name of the file that contains the graphic object.

launch_range: an AS-missile’s launch point or weapons release line from its target in miles.
This parameter is only used with cruise missiles.

value: a positive integer.
long_name: the NATO name for a platform, e.g., "BACKFIRE" for the Soviet TU-26.

value: depends on the platform.

-53.

[ey

BATMAN & ROBIN Database Descriptions

low_fuel: the amount of remaining or low fuel at which an aircraft calls for tanking or
refueling. :

value: a positive integer.
medium_picture: the medium-size icon of the platform.
value: the name of the file that contains the graphic object.

min_visible_cross_section: a platform’s cross-section used by the detection algorithm to
mimic sighting it.

value: a positive integer.

mother_types: the mother or home-base platforms that this platform can launch from or
recover to.

value: a list of platforms separated by spaces, e.g.:
/F-14/mother_types "Nimitz Base"
prefix: the label displayed below a platform’s icon during BATMAN or ROBIN.

value: any string the user desires with three or less characters.

radar_cross_section: a platform’s radar-cross section used by the detection algorithm.
value: a positive integer.
sensors: the sensors associated with a platform.

value: a list of sensors separated by spaces where each is a sensor object whose
parameters are (see Sensor Parameters section) defined somewhere else in the
Object-Definition Database. The following example allocates two sensors to each
F/A-18, whose attributes are expected to be defined later in the Object-Definition

Database:

[/FA-18/sensors "FA-18air_radar FA-18surf_radar"
/FA-18air_radar/range "100"

/FA-18air_radar/points "4"

/FA-18air_radar/azimuth "90"

etc.

side_picture: a side-view icon of a platform.

value: the name of the file that contains this graphic object.

-54-

ﬂ

BATMAN & ROBIN Database Descriptions

small_picture: a small icon of a platform.
value: the name of the file that contains the graphic object.

speed_def, speed_max and speed_min: the default, upper, and lower velocity bounds of a
platform in nautical miles per hour.

value: positive integers.

speed_follow_path, speed_hover, speed_intercept, speed_land, speed_launch,
speed_move_to_point, speed_refuel, speed_su_land, and speed_su_launch: the speed in
nautical miles per hour of a platform during each simulated state (DMI-SimMod).

value: a positive integer.
stats_type: a platform’s type used by the performance-measurement utility.
value: AIR, SURF, or SUB only

update_follow_path, update_hover, update_intercept, update_land, update_launch,
update_move_to_point, update refuel, update_su_land, and update_su_launch: the
names of the C functions that are used to update platforms at each simulated state.
CAUTION: Changing any of these parameters may cause BATMAN to behave
erratically or even crash. It is recommended that these parameters only be modified
by the maintenance programmer.

value: C function names.

visual_range: the approximate distance a platform’s pilot or captain can see in nautical
miles.

value: an integer equal to or greater than zero.
weapons: the types and number of weapons that a platform can carry.

value: a list of weapons separated by spaces where each type is prefixed by a
positive integer. If the weapon is not prefixed by an integer, then the number defaults
to one. For example, the following allocates two Harpoon missiles and one Rockeye
missile to the A-6 aircraft:

/A-6/weapons "2 harpoon rockeye"

12.2.2 Weapon Parameters

auto_loadout: whether a weapon should be automatically loaded out to a platform by the
system at initialization time, rather than manually by the person using BATMAN.

value: y (yes) or n (no); the default is n.

class: specifies if the object is a platform or weapon.

-55-

S

BATMAN & ROBIN Database Descriptions

value: weapon.

damage pts: the amount of damage a weapon will inflict on its target at impact. This
parameter is used in conjunction with a platform’s hit_tolerance level to model platform
damage (see Platform Parameters section).

value: an integer greater than or equal to zero.
id_number: a number assigned to a weapon that BATMAN & ROBIN uses to identify it.

value: refer to Table 3 in the Platform Parameters section for the range of valid
identification numbers of different weapons.

large_picture: the large icon of the weapon.
value: the name of the file that contains the graphic object.
medium_picture: the medium-size icon of the weapon.
value: the name of the file that contains the graphic object.
min_target_cross_section: the minimum size platform or target that a weapon can destroy.
value: a positive integer.
mnemon: the mnemonic name of a weapon which is used to identify it in BATMAN.
value: depends on the weapon.
prob_Kill: the likelihood that the weapon will destroy its target.
value: an integer representing a percentage between 0 and 100.
range: the maximum effective distance in nautical miles of a weapon.
value: a positive integer.

rounds_per_burst: the number of rounds fired in one burst by the simulated M-61 gun on F-
14 and F/A-18 fighters.

value: a positive integer.

12.2.3 Sensor Parameters

altitude_max and altitude_min: a sensor’s upper and lower bounds in feet above or below
sea level.

value: positive and negative (subsurface) integers.
azimuth: the azimuth of radar or sonar coverage in degrees.

value: a positive integer between 1 and 360.

-56-

BATMAN & ROBIN Database Descriptions

detection_func: the name of the C function called to detect platforms.
value: a C function name.
id_number: a number assigned to a sensor that BATMAN & ROBIN uses to identify it.

value: refer to Table 3 in the Plagform Parameters section for the range of valid
identification numbers of different sensors.

min_target_cross_section: the minimum cross-section size of a platform that a particular
sensor can detect.

value: a positive integer.

points: the number of points in the polygon that depicts radar or sonar coverage.
value: an integer between 4 and 16.

range: a sensor’s radar range in nautical miles.
value: a positive integer.

weapons_release_func: the name of the C function called to fire weapons at targeted
platforms.

value: a C function name.

12.2.4 System-Configuration Parameters

air_pic: the NTDS (Navy Tactical Data System) icons for Blue and Red air appearing in the
right strip in BATMAN used to view, or not view, the air battle.

value; the name of the file that contains the icon.

air_radar_pic: the Blue and Red NTDS air icons appearing in the right strip in BATMAN
used to turn air radar coverage on or off. ‘

value: the name of the file that contains the icon.

air_status_pic: the NTDS icon for Blue air appearing in the right strip in BATMAN used to
view the status of aircraft for TFA, TFB, or TFC.

value: the name of the file that contains the icon.

alert_pic: the icon used to access the placement of aircraft on Alert or Ready 35, 15, and 30.
value: the name of the file that contains the icon.

batman_intro_pic: the header or preceding display shown before BATMAN.

value: the name of the file that contains the graphic object.

-57-

ﬂ

BATMAN & ROBIN Database Descriptions

big_font: the large font used in BATMAN & ROBIN, e.g., in task force status windows or
boards.

value: the name of the file that contains the font.
big_us_flag: the American-flag icon used in the select "Performance Measures" interface.
value: the name of the file that contains the icon.

big_us_ussr_flag: the American/Soviet-flags icon used in the select "Performance
Measures" interface.

va'ue: the name of the file that contains the icon.
big_ussr_flag: the Soviet-flag icon used in the select "Performance Measures" interface.
value: the name of the file that contains the icon.

cap_pic: the CAP(Combat Air Patrol)-station icon appearing in the right strip during the
deployment phase of BATMAN.

value: the name of the file that contains the icon.

chain_pic: the chainsaw icon appearing in the right strip during the deployment phase of
BATMAN.

value: the name of the file that contains the icon.

checks_pic: reserved for future use.

clear_pic: the icon that depicts the screen-clear operation during deployment in BATMAN.
value: the name of the file that contains the icon.

colormap: the color map used in BATMAN & ROBIN which is viewed as a palette of colors
each represented by three numbers that specify the red, green, and blue hues.

value: an absolute pathname to the file containing the color map.
cr_cr_pic: reserved for future use.

data_path: the complete pathname to the directory that holds BATMAN & ROBIN
scenarios.

value: an absolute pathname to a directory.
debug_on: reserved for future use.

demo_scenario_number: the number of the scenario that is used currently in the BATMAN
& ROBIN demonstration.

value: the identification number of an existing scenario.

-58 -

ﬂ

BATMAN & ROBIN Database Descriptions

disclaimer_pic: reserved for future use.

disp_grid_in_batman: whether or not the vector-logic or defensive grid should be displayed
in BATMAN.

value: y or n.

disp_lat_lons_ir _batman: whether or not latitude and longitude lines should be displayed in
BATMAN.

value: y or n.
dis>lay_height: the vertical resolution of the display window in pixels.

value: a number between and including zero and 1152; reasonable values are 1132
and 1152.

display_left: the x location of the upper-left corner of the main or parent display window for
BATMAN & ROBIN specified as a pixel offset from (0,0).

value: a number between and including zero and 1152; reasonable values are zero
and ten.

display_top: the y location of the upper-left comner of the main or display window for
BATMAN & ROBIN specified as a pixel offset from (0,0).

value: a number between and including zero and 900; reasonable values are zero and
ten.

display_width: the horizontal resolution of the display window in pixels.

value: a number between and including zero and 900; reasonable values are 880 and
900.

fonts: the complete pathname to the directory that contains the fonts used in BATMAN &
ROBIN.

value: an absolute pathname to a directory.

grey25_pic: an icon that provides highlighting in ROBIN. When the user views warfare
theaters by selecting areas from the miniature world map in the upper-left corner of ROBIN,
the grey25_pic is used to highlight the user’s current selection.

value: the name of the file that contains the icon.
grey50_pic: reserved for future use.
grey75_pic: reserved for future use.
grid_max_radius: the maximum radius of the vecor-logic grid specified by the user.

value: a positive integer larger than grid_min_radius.

-59.-

BATMAN & ROBIN Database Descriptions

grid_min_radius: the minimum radius of the vecor-logic grid specified by the user.
value: a positive integer smaller than grid_max_radius.

grid_pic: the small icon used to access the specification of the vector-logic grid radius.
value: the name of the file that contains the icon.

hammer_pic: the Soviet hammer-and-sickle icon used to bring in the Red force in
BATMAN.

value: the name of the file that contains the icon.

heap_debug_level: a debugging tool used to flag memory allocation errors. It is intended to
be used by the software-maintenance engineer, and requires an understanding of the C
"malloc" function (Kernighan & Ritchie, 1978) and UNIX’s "dbx" source-code debugger (Sun
UNIX Commands Reference Manual, 1988).

value: set this value to zero under normal operation, to one to evaluate pointers to
malloced memory, or to two to evaluate all malloced memory and detect memory
overwrites.

hook_pic: an icon of the small box used to enclose the number of Red aircraft in a swarm at a
particular point in ROBIN.

value: the name of the file that contains the icon.

hori_explo_pic: the icon that depicts the destruction of air platforms in BATMAN.
(vert_explo_pic is used for surface and subsurface platforms.)

value: the name of the file that contains the icon.

horizontal_line: an icon of a horizontal line which can be clipped to form part of pop-up-
message windows displayed in BATMAN & ROBIN.

value: the name of the file that contains the icon.

horizontal_shadow: an icon of a horizontal drop-shadow line used to form part of the pop-
up-message windows displayed in BATMAN & ROBIN.

value: the name of the file that contains the icon.
host_passwd: reserved for future use.
in_color: whether BATMAN & ROBIN are to be run in color or black-and-white.
value: y for color; n for black-and-white.
itroff_command: the UNIX command used to print performance measures on a laser printer.

value: a valid UNIX print command, e.g., "psroff™.

BATMAN & ROBIN Database Descriptions

loadout_map_pic: the icon used to return to the warfare theater from loadout in BATMAN.
value: the name of the file that contains the icon.

loadout_next_pair_pic: the icon used to display the next pair of aircraft on a carrier or other
home base to be loaded out in BATMAN.

value: the name of the file that contains the icon.

loadout_pic: reserved for future use.

map_font: the font used to write latitude and longitude labels, e.g., 40.00n.
value: the name of the file that contains the font.

master_passwd_file: the file that contains the system-administrator’s password.

value: an absolute pathname to the file.

med_font: the medium-size font used in BATMAN & ROBIN.
value: the name of the file that contains the font.

missile_launch_pic: an icon that depicts when a Red aircraft is at its weapons-release line
in ROBIN.

value: the name of the file that contains the icon.

mother_names: a list of the mother or home-base platforms in the BATMAN & ROBIN
system.

value: a list of platforms separated by spaces, e.g.:
/sysparm/mother_names "Nimitz Tarawa Base"

move_pic: the icon that represents moving or changing positions of CAPs and Chainsaws in
BATMAN.

value: the name of the file that contains the icon.

msec_engine_update_interval: the amount of processor time in milliseconds dedicated to
each call of simulation_engine before it returns control to the SunView windowing and input
- system (refer to Engine subsection in Part II of this document).

value: the recommended value is 15.

msec_timer_step_size: the amount of time in milliseconds that BATMAN will run for each
time-warped unit of a scenario specified in ROBIN. This parameter is only used when the
simulation is not set to operate in real-time.

value: the recommended value is 1000.

-61 -

BATMAN & ROBIN Database Descriptions

nprdc_logo_pic: the NPRDC logo icon.

value: the name of the file that contains the icon.
ntds_blue_air_symbol: the NTDS icon for Blue- or Console-force aircraft.

value: the name of the file that contains the icon.
ntds_blue_sub_symbol: the NTDS icon for Blue submarines.

value: the name of the file that contains the icon.
ntds_blue_surf_symbol: the NTDS icon for Blue surface platforms.

value: the name of the file that contains the icon.
ntds_red_air_symbol: the NTDS icon for Red- or path-force aircraft.

value: the name of the file that contains the icon.
ntds_red_sub_symbol: the NTDS icon for Red submarines.

value: the name of the file that contains the icon.
ntds_red_surf_symbol: the NTDS icon for Red surface platforms.

value: the name of the file that contains the icon.

pic_path: the complete pathname to the directory that contains BATMAN & ROBIN icons
and graphic objects.

value: an absolute pathname to a directory.

playback_record_on: reserved for future use.

playback_play_on: reserved for future use.

playback_scenario_num: reserved for future use.

players_directory: the complete pathname to the directory that contains all of the user files.
value: an absolute pathname to a directory.

printer: the UNIX device name of the printer where performance measures are sent for hard
copy.

value: a valid UNIX device name for a printer, e.g., ps328bu.

radar_density_on: whether or not radar coverage will appear as shaded polygons. When set

to "y", this parameter will override radar_poly_on. See below.

value: y or n; if this value is n, then radar_poly_on must be set to y.

-62 -

—>
BATMAN & ROBIN Database Descriptions

radar_poly_on: whether or not radar coverage will appear as solid polygons. This parameter
is only effective when radar_density_on is set to n. See above.

value: y or n; if this value is n, then radar_density_on must be set to y.

real_time_based: whether or not BATMAN should be run in real-time, i.e., based on a 24-
. hour clock.

value: when y, BATMAN is run in real-time; when n, BATMAN’s timing is
controlled by msec_timer_step_size. See above.

red_bombers: the NATO names of the Red bomber aircraft in the Panel used to create the
raids in ROBIN. '

value: a list of Red bomber NATO names separated by spaces, €.g.:
/sysparm/red_bombers "Backfire Badger Bear Blackjack Blinder"

red_fighters: the NATO names of the Red fighter aircraft in the Panel used to create the
raids in ROBIN.

value: a list of Red fighter NATO names separated by spaces, e.g.:
/sysparm/red_fighters "MiG-17 MiG-19 MiG-21 MiG-23 MiG-25"

red_ships: the NATO names of the Red surface platforms in the Panel used to create raids in
ROBIN.

value: a list of Red surface NATO names separated by spaces, e.g.:
/sysparm/red_ships "Krivak Kashin Udaloy Sovremeny"

red_subs: the NATO names of the Red subsurface platforms in the Panel used to create
raids in ROBIN. :

value: a list of Red subsurface NATO names separated by spaces, e.g.:
/sysparm/red_subs "Charlie Delta-IV Echo Foxtrot Victor"
remove_pic: the erase-specific-platform icon used during BATMAN.
value: the name of the file that contains the icon.
robin_intro_pic: the introductory title to ROBIN.
value: the name of the file that contains the graphic object.

sm_blue_air_ntds: a small Blue-air NTDS icon which can appear in the upper left comer
when performance measures are displayed.

value: the name of the file that contains the icon.

-63-

BATMAN & ROBIN Database Descriptions

sm_blue_s_ss_ntds: a small Blue-surface/subsurface NTDS icon which can appear in the
upper left corner when performance measures are displayed.

value: the name of the file that contains the icon.
sm_font: the small font used in BATMAN & ROBIN.
value: the name of the file that contains the font.

sm_red_air_ntds: a small Red-air NTDS icon which can appear in the upper left corner when
performance measures are displayed.

value: the name of the file that contains the icon.

sm_red_s_ss_ntds: a small Red-surface/subsurface NTDS icon which can appear in the
upper left corner when performance measures are displayed.

value: the name of the file that contains the icon.

sm_world_pic: the miniature world map used to select warfare theaters in ROBIN.
value: the name of the file that contains the graphic object.

small_cap_pic: the icon displayed where the user positions CAP-stations during BATMAN.
value: the name of the file that contains the icon.

small_chain_dot_pic: an icon of a smalil dot representing the end-points of a chainsaw during
BATMAN.

value: the name of the file that contains this icon.

sonar_pic: one icon appearing in the right strip in BATMAN containing Blue air, surface, and
subsurface and Red subsurface NTDS symbols used to display sonar coverage.

value: the name of the file that contains the icon.
stats_title_font: the font used for the "Performance Measures" title.
value: the name of the file that contains the font.

status_pic: the icon used in BATMAN to display the status of a task force’s air or surface
platforms.

value: the name of the file that contains the icon.
string_pic: reserved for future use.

subsurf_pic: the Blue and Red NTDS subsurface icons appearing in the right strip in
BATMAN used to view, or not view, the subsurface battle.

value: the name of the file that contains the icon.

BATMAN & ROBIN Database Descriptions

subsurf_status_pic: the NTDS icon for Blue sub-surface platforms appearing in the right
strip in BATMAN used to view the status of sub-surface platforms for TFA, TFB, or TFC.

value: the name of the file that contains the icon.

surf_pic: the Blue and Red NTDS surface icons appearing in the right strip in BATMAN
used to view, or not view, the surface battle.

value: the name of the file that contains the icon.

surf_radar_pic: the Blue and Red NTDS surface icons appearing in the right strip in
BATMAN used to turn surface radar coverage on or off.

value: the name of the file that contains the icon.

surf_status_pic: the NTDS icon for Blue surface platforms appearing in the right strip in
BATMAN used to view the status of surface platforms for TFA, TFB, or TFC.

value: the name of the file that contains the icon.

task_force_pic: a generic task force icon appearing in BATMAN during aircraft loadout used
to view again ships in a task force.

value: the name of the file that contains the icon.

tfa_status_pic, tfb_status_pic, and tfc_status_pic: the icbns appearing in the right strip in
BATMAN used to specify which task force’s status to display.

value: the names of the files that contain the icons.

time_to_stop: the amount of simulated or warped time in minutes that BATMAN will run
before stopping.

value: a positive integer.

vert_explo_pic: the icon that depicts the destruction of surface and subsurface platforms in
BATMAN. hori_explo_pic is used for air platforms.

value: the name of the file that contains the icon.

vertical_line: an icon of a vertical line which can be clipped to form part of pop-up-message
. windows displayed in BATMAN & ROBIN.

value: the name of the file that contains the icon.

vertical_shadow: an icon of a vertical drop-shadow line used to form part of the pop-up-
message windows displayed in BATMAN & ROBIN.

"value: the name of the file that contains the icon.

vl_pic: the Victor-Lima (V/L) icon used to indicate the defended point.

-65 -

~ -
BATMAN & ROBIN Database Descriptions

value: the name of the file that contains the icon.

warn_message_font: the font used for the advisory or warning messages that are displayed
prior to BATMAN or ROBIN.

value: the name of the file that contains the font.
zoom_pic: the icon in BATMAN that represents the zoom function.

value: the name of the file that contains the icon.

12.2.5 Performance-Measures Parameters

heads_up_dist: the distance in nautical miles a Red-force platform must be less than to be
within "heads-up" range of a task force.

value: a positive integer.

stats_save_events: whether or not the consequences of users’ tactical actions during
BATMAN should be saved to compute performance measures.

value: y if the events should be saved; n if they should not be.

stats_save_results: whether or not the performance measures themselves should be saved
in the users’ directories.

value: y if performance measures should be saved; n if they should not be.

12.2.6 User-Database Parameters

button_color: the color of panel-buttons to add/delete users.

value: the form string for this parameter should be "color offset". Color is specified in
the "color map" file mentioned above; offset indicates a variation in color, e.g., "red 8"
would set button_color to the eighth variation of red.

player_panel_border_pic: an icon of a thin dark horizontal line used as a border between
the "operations” and "list of users” panels displayed when the user is adding, deleting, or
selecting users.

value: the name of the file that contains the icon.

uinfo_border_color: the background color of the screen when entering a new user’s name
and social security number.

value: a string of the form: "color offset". See button_color above.
user_bg_color: the color of empty slots in the "list of users" panel.

value: a string of the form: "color offset”. See button_color above.

-66-

BATMAN & ROBIN Database Descriptions

user_fg_color: the color of users’ names in the "list of users” panel.
value: a string of the form: "color offset”. See button_color above.
username_border_color: the border color around users’ names in the "list of users” panel.

value: a string of the form: "color offset". See button_color above.

12.3 Sample Platform-Configuration Parameters

The following example illustrates an F-14 fighter entry from the Object-Definition database
which appears in the .defaults file. For further elucidation it is recommended that software
maintenance engineers refer to a copy of the .defaults file.

/object/parameter "value"
/f14/force_id "BLUE"
/f14/stats_type "AIR"
etc.

13.0 Graphic Database

This database contains all the icons or graphic objects used in BATMAN & ROBIN. These
are in Sun raster-file format, and each exists in its own file (Pixrect Reference Manual, 1988).

14.0 Scenario Database

The scenario database is comprised of standard text files which are created by ROBIN and
used by BATMAN. The UNIX utilities "cat" and "more" can be used to view these files. This
database is stored in the directory specified by the data_path parameter from the Object-
Definition Database.

Each scenario is split into two files: a Blue-force file and a Red-force file. These contain all
the necessary data for the Blue and Red forces for a specific scenario. The format for
filenames is "red" or "blue" followed by a scenario number, e.g., the files for scenario 10
would be red.10 and blue.10. Scenario numbers range from 1-999.

In addition to these files, there are three support files used for scenario management:
blue.1000, red.1000, and scemario_index. These files are also located in the directory
specified by data_path. The blue.1000 and red.1000 files are used as templates to build the
blue.n and red.n files. The scenario_index file lists the defined scenarios by number.

14.1 Blue-Force File

The Blue-force file lists air, surface, and subsurface platforms as well as weapons that are
available for allocation, deployment, and management in a BATMAN scenario. This file is
read in by BATMAN to initialize scenario data structures.

The first field in this file is the task-force designator. BATMAN & ROBIN can handle a
maximum of three Blue task forces: TFA, TFB, and TFC. Following the task-force

.67 -

—

BATMAN & ROBIN Database Descriptions

designator line, is a list of the platforms in a specific task force. In each line, the number of
platforms is listed followed by their NATO names.

A few special rules apply when a platform is an aircraft carrier. First, there can be no more
than one carrier per task force. Second, the carrier platform line must contain a list of the
aircraft and weapons that are on-board. The format of the aircraft and weapons line must be
the same as the other platform lines. Finally, if there is a carrier in the task force, it must be
the first platform defined.

Following the carrier definition is a list of escort platforms in the task force. After all the
platforms for a task force are defined, the next task-force definition starts, if there is more
than one task force in a scenario. The following is an example of a Blue-force file with one
task force, i.e., TFA.

{
FORCE A
{
1cvn
{
24 f14
18 fal8
9e2c
6 ka6
9 a6
5 a7
5s3b
400 phoenix
50 sparrow
300 sidewinder
50 harm
0 harpoon
100 walleye

50 rockeye

-68 -

BATMAN & ROBIN Database Descriptions

50 mk82
}

2cgn

3cg

4dd

. 2ddg

S5ff

1 ffg

9 ssn

)

14.2 Red-Force File

The Red-force file contains a summary of the tactical situation, a list of the available Red
platforms, and track-movement definitions for each Red platform.

14.2.1 Tactical-Situation Section

In a manner similar to the Object-Definition Database, a tactical situation is described by a
set of parameters, each holding a particular value. This provides a uniform method for
describing a variety of battle scenarios. The following is a brief description of each parameter
from the Tactical-Situation section of a Red-force file.

DEFCON: reserved for future use.
Headlines: reserved for future use.
Intelligence_Information: reserved for future use.
Messages: reserved for future use.

Red_Platforms: indicates the name and amount of each Red platform defined for the
scenario.

value: a list of Red platforms separated by spaces, where each platform is followed
by a positive integer which indicates how many of a specific type. The following
scenario would have two Victor submarines and five Blackjack bombers:

Red_Platforms: Victor 2 Blackjack 5

-69 -

BATMAN & ROBIN Database Descriptions

ROE:s: reserved for future use.
Sea_State: reserved for future use.
Threat_Axes_and_Bases: reserved for future use.
Time_Warp: specifies a time-warp for the scenario.
value: a positive integer between and including one and 100.
Title: reserved for future use.
VI_lat and V1_lon: the latitude and longitude of V/L.

value: real numbers, e.g., (Vl_lat = 15.00, Vl_lon = -80.00). The latitude and
longitude of V/L will lie somewhere in the scenario’s warfare theater.

Warfare_Theater: the warfare area for the battle.

value: at this time the following theaters are available, but not limited to:
arabian_sea, bering sea, caribbean, japan_sea, kamchatka_peninsula, mediterranean,
murmansk, north_atlantic, persian_gulf, and south_east_asia.

Weather: reserved for future use.

14.2.2 Red-Tracks Section

This section contains a series of records defining the movement tracks for Red-force
platforms in a scenario. Unlike the tactical situation-display parameters, the Red-track
definitions are listed on contiguous lines without breaks or comments. Hence, it is difficult for
the user to decipher the contents of these records. This track data is primarily designed to be
read by BATMAN when the scenario is initialized, or by ROBIN when the scenario is
modified.

Platform-track data is represented by a tree structure with nodes and vectors. A node is a
location where one or more platforms of the same type move together. Each node may have
one or more vectors depicting segments of the movement path for an individual platform or
swarms of them. The last vector for a node is either the terminal point, or the position where
the swarm splits into subswarms or individual platforms.

14.2.3 Sample Red-Force file

The following is an example of tactical-situation section of a Red-force file:

Title : reserved for future use
Warfare_Theater : caribbean
VI_lat :15.00
Vi_lon :-80.00
-70 -

BATMAN & ROBIN Database Descriptions
Threat_Axes_and_Bases : reserved for future use
DEFCON : reserved for future use
ROEs : reserved for future use
Intelligence_Information : reserved for future use
Weather : reserved for future use
Sea_State : reserved for future use
Messages : reserved for future use
Headlines : reserved for future use
Time_Warp : 10
Red_Platforms : Victor 2 Blackjack 5 Charlie 10

swarm_track : beg_plat 7 end_plat 17 name Charlie start_time 0
track_vector: lat 16.23 lon -74.53 altitude -100 speed 20
track_vector: lat 15.37 lon -75.06 altitude -100 speed 20
track_vector: lat 14.90 lon -75.89 altitude -100 speed 20
track_vector: lat 14.97 lon -76.39 altitude -100 speed 20

swarm_track : beg_plat 2 end_plat 7 name Blackjack start_time 0
track_vector: lat 16.23 lon -74.53 altitude 20000 speed 400 chaff 1
track_vector: lat 15.37 lon -75.06 altitude 20000 speed 400 jam 62
track_vector: lat 14.90 lon -75.89 altitude 20000 speed 400 chaff 1 jam 15
track_vector: lat 14.97 lon -76.39 altitude 20000 speed 400

swarm_track : beg_plat O end_plat 2 name Victor start_time 0
track_vector: lat 14.97 lon -76.39 altitude -100 speed 20
track_vector: lat 15.21 lon -79.27 altitude -100 speed 20

15.0 User-Performance Database

The User-Performance database consists of multivariate performance measures stored in

-71-

—
BATMAN & ROBIN Database Descriptions

standard text files. Each BATMAN & ROBIN user is given their own UNIX directory which
contains identifying information and all performance measures for a user. BATMAN &
ROBIN can maintain more than names and social security numbers of users, e.g., number of
flight hours or other descriptive data.

-72-

—#——

BATMAN & ROBIN References

References

Bloom, B. S., Hastings, J. T., & Madaus, G. F. (1971). Handbook on formative and
summative evaluation of student learning New York: McGraw-Hill.

Federico, P-A. (1989). Computer-based and paper-based measurement of recognition
performance (NPRDC TR 89-7). San Diego CA: Navy Personnel Research and
Development Center.

Federico, P-A., & Liggett, N. L. (1989). Computer-based and paper-based measurement of
semantic knowledge (NPRDC TR 89-4). San Diego CA: Navy Personnel Research and
Development Center.

Federico, P-A., Bickel, S. H., Ullrich, R. R., & Bridges, T. E.(in preparation). BATMAN &
ROBIN: Human-computer interface and simulation models (NPRDC TN 89-XX). San Diego
CA: Navy Personnel Research and Development Center.

Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1986). Direct-manipulation interfaces. In D.
A. Norman & S. W. Draper (Eds.), User centered system design. Hillsdale NJ. Lawrence
Erlbaum Associates.

Kernighan, B.V. & Ritchie, D.M. (1978). The C programming language. Englewood Cliffs NI
Prentice-Hall.

Liggett, N. L., & Federico, P-A. (1986). Computer-based system for assessing semantic
knowledge: Enhancements (NPRDC TN 87-4). San Diego CA: Navy Personnel Research
and Development Center.

Little, G. A., Maffly, D. H,, Miller, CL., Setter, D. A., & Federico, P-A. (1985). A computer-
based gaming system for assessing recognition performance (recog) (TL 85-3). San Diego
CA: Training Laboratory, Navy Personnel Research and Development Center.

McGilton, H., & Morgan, R. (1983). Introducing the UNIX system. New York: McGraw-Hill.
Pixrect Reference manual. (1988). Mountain View CA: Sun Microsystems, Inc.

Shneiderman, B. (1982). The future of interactive systems and the emergence of direct
manipulation. Behavior and information technology, 1, 237-256.

Stroutstrup, B. (1988, May). What is object-oriented programming? IEEE Software, 10-20.
SunOS reference manual. (1988). Mountain View CA: Sun Microsystems, Inc.

SunView Programmer’s guide. (1988). Mbuntajn View CA: Sun Microsystems, Inc.
SunView System programmer’s guide. (1988). Mountain View CA: Sun Microsystems, Inc.

Wilson, R. (1988, November). Object-oriented languages reorient programming techniques.
Computer Design, 52-62.

-73-

DISTRIBUTION LIST

Distribution:
OP-01B2

OP-11B1

OP-11H

SPAWAR 159 (JTIDS)
SPAWAR 159-4 (JTIDS)
NPS (Code 55NA)
NPS (Code 55HA)
NPS (Code 55PD)
NADC (Code 40L)
NOSC (Code 4504)
NOSC (Code 432)
APL, WAL

DTIC (2)

Copy to:

OSD (C31) (T&T)
JCS (3-7) (JE&T)
NSWC (Code N-31)
NWC (Code 33T)
CNA

