
Technical Report

CMU7SEI-89-TR-13
ESD-TR-: 89-021

Carnegie-Mellon University

Software Engineering Institute

Ada Adoption Handbook:
Compiler Evaluation
and Selection

Version 1.0

Nelson H. Weiderman

March 1989

ADA^/7

Technical Report
CMU/SEI-89-TR-13

ESD-TR-89-021
March 1989

Ada Adoption Handbook:
Compiler Evaluation and Selection

Version 1.0

Nelson H. Weiderman
Real-Time Embedded Systems Testbed Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position. It is pub-
lished in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Charles J. Ryan, Major.JJSAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1989 Carnegie Mellon University

This document is available through the Defense Technical Information Center. DT1C provides access to and transfer of scientific an
technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government agency person•
and their contractors. To obtain a copy, please contact DT1C directly: Defense Technical Information Center, Attn: FDR A, Camera
Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering, picas
contact NT1S directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents
1. Introduction 1

1.1. Purpose and Scope 1
1.2. Handbook Organization 3
1.3. Tips for Readers 4

2. Common Questions 5
2.1. Questions About Procedure 5
2.2. Questions About Compiler Technology 8
2.3. Questions About Evaluation Technology 11

3. Compiler Validation and Evaluation 15
3.1. Validation 15

3.1.1. Validation Procedures 17
3.1.2. Validation Summary Reports 18

3.2. Evaluation 19
3.2.1. Quantitative Criteria and Benchmarks 19
3.2.2. Qualitative Criteria and Checklists 20
3.2.3. Other Evaluation Techniques 21
3.2.4. Reevaluation 21
3.2.5. Tailoring Evaluations 21
3.2.6. Comparing Ada with Other Languages 23

4. Practical Issues of Selecting an Ada Compiler 25
4.1. Selection Process 25
4.2. Hardware Requirements for Evaluation 27
4.3. Software Requirements for Evaluation 28
4.4. Test Suite Requirements 29
4.5. Timetables, Dependencies, and Costs 30
4.6. Defining Requirements and Criteria 33
4.7. Portability Issues 33
4.8. Evaluating Vendors 34
4.9. Getting More Information 36

5. Compile/Link-Time Issues 37
5.1. Compiler Options and Special Features 37

5.1.1. Compiler Options 37
5.1.2. Pragmas 38
5.1.3. Attributes 39
5.1.4. Other Important Compiler Features 39

5.2. Compile/Link-Time Performance 40
5.3. Compiler Capacity and Limitations 41

CMU/SEI-89-TR-13

5.4. Human Factors 42
5.4.1. Informational Outputs and Diagnostics 43
5.4.2. Error Recovery 43
5.4.3. Documentation 44

5.5. Implementation Options 44

6. Execution-Time Issues 47
6.1. The Runtime System Model 47
6.2. Time Efficiency of Generated Code 50

6.2.1. Inspection 50
6.2.2. Testing 51
6.2.3. Optimizations Supported 52

6.3. Space Efficiency of Generated Code 54
6.4. Time Efficiency of the Runtime System 55

6.4.1. Tasking 55
6.4.2. Exception Handling 55
6.4.3. Input and Output 56
6.4.4. Elaboration 56

6.5. Space Efficiency of the Runtime System 57
6.6. Features of the Runtime System 59
6.7. Implementation Dependencies 60
6.8. Interrupt Handling 61
6.9. The Clock and Timing Issues 62

7. Support Tool Issues 63
7.1. Program Library System 63

7.1.1. Recompilation and Incremental Compilation Features 64
7.1.2. Sublibraries 65

7.2. Linker/Loader Support 65
7.2.1. Selective Loading 65
7.2.2. Other Linker/Loader Features and Options 66
7.2.3. Downloading for Cross-Development Systems 66

7.3. Support for Debugging 67
7.3.1. Effects of Optimization on Debugging 68
7.3.2. Debugger User Interface 69
7.3.3. Cross Debuggers 69

7.4. Target Simulator 69
7.5. Other APSE Tools 70

8. Benchmarking Issues 71
8.1. Types of Tests 71

8.1.1. Language Feature Tests 71
8.1.2. Capacity and Degradation Tests 72
8.1.3. Composite Benchmarks 72

CMU/SEI-89-TR-13

8.1.4. Synthetic Benchmarks 73
8.1.5. Application-Specific Tests 73

8.2. Factors Causing Variation in Results 74
8.3. Timing Anomalies 75
8.4. Timing Verification 75
8.5. Data Analysis and Reporting 76
8.6. Strategy for Benchmarking 77
8.7. Standard Benchmark Configuration Information 78

9. Test Suites and Other Available Technology 79
9.1. General Information on Evaluation and Test Suites 79
9.2. The Ada Compiler Evaluation Capability 79
9.3. The PIWG Benchmarks 81
9.4. The Ada Evaluation System 83
9.5. The University of Michigan Ada Benchmarks 85
9.6. Aerospace Benchmarks 86
9.7. Ada Software Repository 87
9.8. Other Sources 88

References 89

Appendix A. Test Suite Summaries 95
A.1. ACEC Test Groupings 95
A.2. PIWG Test Groupings 97
A.3. AES Test Groupings 98
A.4. University of Michigan Test Groupings 98
A.5. ACPS Test Groupings 99

Appendix B. Compiler Evaluation Points of Contact 101
B. 1. Professional Organizations 101

B.1.1. Ada Joint Users Group (AdaJUG) 101
B.1.2. SIGAda 101
B.1.3. ISO/JTC1/SC22/WG9 102

B.2. U.S. Government Sponsored/Endorsed Organizations 104
B.3. Sources of Evaluation Technology 107
B.4. Ada Information Sources 107

Appendix C. Accessing Network Information 109
C.1. Retrieving Ada Issues 109
C.2. Retrieving the Latest Validated Compiler List 110
C.3. Retrieving ASR Files 110

CMUSEI-89-TR-13 Mi

Appendix D. Acronyms 113

Index 115

iv CMU/SEI-89-TR-13

List of Figures

Figure 4-1: Hypothetical Milestone Chart 31
Figure 6-1: Three Models of Ada Runtime Configuration 49
Figure 6-2: Simple Test for Complex Types 50
Figure 6-3: Simple Test of Procedure 51

CMU/SEI-89-TR-13

vi CMU/SEI-89-TR-13

List of Tables

Table 3-1: Application Concerns (Hypothetical Example) 22

CMU/SEI-89-TR-13 vii

Acknowledgements
As part of the development of this document, the author received reviews and comments
from a wide spectrum of people:

• Ada technologists
• Ada users

• Developers of Ada compilers
• Developers of Ada evaluation technology

Many individuals from various organizations provided comments on this document. The au-
thor wishes to acknowledge the following people who gave so generously of their time:

David Badal, Lockheed Missiles & Space
Mike Burlakoff, Southwest Missouri State U.
Bard Crawford, TASC
Michael Deutsch, Hughes Aircraft
Les Dupaix, U.S. Air Force
Dan Eilers, Irvine Compiler
Charles Engle, U.S. Army
Stewart French, Texas Instruments
Edward Gallagher, U.S. Army
Tom Griest, LabTek
Lorraine Griffin, Ford Aerospace
Marlene Hazle, MITRE
Maretta Holden, Boeing Advanced Systems

Pat Lawlis, U.S. Air Force
Tom Leavitt, Boeing Military Airplanes
B. Craig Meyers, U.S. Navy
Hans Mumm, U.S. Navy
Rhoda Novak, Aerospace
Karl Nyberg, Grebyn
James Perry, GTE
Erhard Ploedereder, Tartan Laboratories
Richard Powers, Texas Instruments
Daniel Roy, Ford Aerospace
Dudrey Smith, Smiths Industries
Raymond Szymanski, U.S. Air Force

The author would also like to express appreciation to the following individuals at the SEI for
their reviews of early drafts of the report:

Neal Altman
Judy Bamberger
Mark Borger
Pat Donohoe
Larry Druffel
Dennis Doubleday
John Foreman
Ken Fowler
Mike Gagliardi

John Goodenough
Bill Hefley
Bob Kirkpatrick
Reed Little
Mark Paulk
Chuck Plinta
Jeff Stewart
Mike Rissman

The author learned a great deal from the contributors listed above, but takes full responsi-
bility for the opinions and the inevitable inaccuracies that may remain.

Additionally, Frost McLaughlin of the Software Engineering Institute Information Manage-
ment group and Wendy Rossi of the Real-time Embedded Systems Testbed Project have
provided invaluable help in the final editing stages.

Ada Adoption Handbook:
Compiler Evaluation and Selection

Abstract: The evaluation and selection of an Ada compilation system for a project
is a complex and costly process. Failure to thoroughly evaluate an Ada compi-
lation system for a particular user application will increase project risk and may
result in cost and schedule overruns. The purpose of this handbook is to convince
the reader of the difficulty and importance of evaluating an Ada compilation sys-
tem (even when there is no freedom of choice). The handbook describes the
dimensions along which a compilation system should be evaluated, enumerates
some of the criteria that should be considered along each dimension, and pro-
vides guidance with respect to a strategy for evaluation. The handbook does not
provide a cookbook for evaluation and selection. Nor does it provide information
on specific compilation systems or compare different compilation systems. Rather
it serves as a reference document to inform users of the options available when
evaluating and selecting an Ada compilation system.

1. Introduction

An Ada compilation system includes the software required to develop and execute Ada pro-
grams. Important components of the compilation system are the compiler, the program
library system, the linker/loader, the runtime system, and the debugger. Evaluation and se-
lection apply to the entire package, not just the compiler. In this report, the word "compNer"
is sometimes used for "compilation system" for the sake of brevity, but the context should
indicate the intended meaning. Another convention of this report is referring to the
Reference Manual for the Ada Programming Language as RM, rather than LRM or ARM.

1.1. Purpose and Scope
Department of Defense directives require the use of Ada for mission-critical,
embedded applications. This handbook presents information on strategies and
techniques for selecting an Ada compilation system that is appropriate for a
particular application.

Department of Defense (DoD) policy on the use of Ada is specified in DoD directives 3405.1
[37] and 3405.2 [38]. The first directive describes computer programming policy in general

and specifies that Ada "shall be the single, common, computer programming language for
Defense computer resources used in intelligence systems, for the command and control of
military forces, or as an integral part of a weapon system." The second directive specifies
the policy for weapon systems in particular. It requires the use of a validated Ada compiler,
the use of software engineering principles facilitated by Ada, and the use of Ada as a pro-
gram design language (PDL). Waivers are provided for in these directives, but will be in-
creasingly difficult to obtain.

CMU/SEI-89-TR-13

With regard to application areas not included in the paragraph above, DoD directive 3405.1
states: "Ada shall be used for all other applications, except when the use of another ap-
proved higher order language is more cost-effective over the application's life cycle, in keep-
ing with the long-range goal of establishing Ada as the primary DoD higher order language
(HOL)." By most standards, the requirements of embedded weapon systems are more de-
manding than those of management information systems (MIS). This handbook addresses
both application areas, but with an emphasis on embedded systems. When MlS-type ap-
plications have special requirements, they will be noted.

There are risks in using any new programming language, particularly when new software
engineering techniques are being adopted at the same time. But there are also risks and
costs associated with failure to adopt modern technology. In order to reduce the risk of a
new language, as well as the risk of immature compiler implementations, the selection proc-
ess must identify key criteria and test the candidate compilation systems against the criteria.
Even when there is only one compilation system available, or when the choice of compi-
lation system is mandated, the risks of using a particular system should be identified so that
the impact on costs and schedules can be better predicted.

The purpose of this handbook is first to convey to the reader the importance of evaluating an
Ada compilation system with respect to application requirements and second to provide the
necessary information and pointers to information to facilitate this evaluation and selection
process. The handbook is not meant to be a cookbook. There are no simple answers be-
cause each application is different. There is no test suite or checklist that is sufficient for
everyone or every project. The best that this handbook can do is identify the areas of impor-
tance to a reasonable degree of detail, provide the foundations to build an evaluation capa-
bility, and encourage the reader to follow some of the paths to more comprehensive infor-
mation.

The handbook may leave the reader with the impression that the evaluation of an Ada com-
pilation system is a daunting task. Since Ada was proposed with portability and uniformity in
mind, it might be supposed that all compilation systems are the same. The fact is that the
implementors were given freedom in many areas by the language designers, so that the
language could be tailored to application needs. This has brought about variations in imple-
mentations, but for good and understandable reasons. These variations are, in part,
responsible for the fact that Ada compilation systems are available for well under one
thousand dollars and for well over one hundred thousand dollars. The costs of a good eval-
uation and selection process are considerable, but the costs of an inadequate evaluation are
greater and can cause disastrous results for the system under development.

Information contained in the handbook is derived, in part, from the experience of the SEI
Real-time Embedded Systems Testbed (REST) Project. The project was initiated in
October, 1986, and as of early 1989 has had experience with three host systems, four target
systems, nine Ada compiler vendors, and five Ada test suites.

The handbook is written for anyone who may be in the position of evaluating or selecting an
Ada compiler for a project, or anyone who is managing a project for which an Ada compiler

CMU/SE1-89-TR-13

must be selected. The handbook assumes that the reader has a general working knowl-
edge of compilers, linkers, loaders, and Ada program library systems. The more general
information for project managers appears in Chapters 2, 3, and 4. More specific information
for lead technical personnel is contained in Chapters 5 through 9.

1.2. Handbook Organization

This section describes the organization of this handbook.

This handbook is organized as a series of chapters that provide information about the proc-
ess of evaluating and selecting an Ada compiler. It raises questions that should be an-
swered by those responsible for choosing compilers or reducing the risk of using a specific
compiler.

1. Introduction: Includes the purpose of this handbook and provides help in its
use.

2. Common Questions: Presents commonly asked questions, succinct an-
swers, and, where needed, pointers to more detailed information. Topics in-
clude both the technical and pragmatic issues of compiler selection. This
chapter can be used (among other purposes) as an executive summary for the
rest of the handbook and to review particular points.

3. Compiler Validation and Evaluation: Distinguishes between validation and
evaluation and provides an overview of the types of information that should be
part of a general evaluation strategy.

4. Practical Issues of Selecting an Ada Compiler: Discusses the recom-
mended steps for developing and executing a strategy for evaluating and se-
lecting an Ada compiler for a particular application.

5. Compile/Link-Time Issues: Presents selection criteria based on the options,
performance, capacity, and human factors of the compiler and linker.

6. Execution-Time Issues: Presents selection criteria based on the options,
performance, and capacity of the code generated by the compiler and the run-
time system provided by the compilation system.

7. Support Tool Issues: Presents selection criteria based on the program
library system, linker/loader, debugger, and target simulator.

8. Benchmarking Issues: Presents the issues surrounding the use of test pro-
grams in order to obtain quantitative information about an Ada compilation
system.

9. Test Suites and Other Available Technology: Provides an overview of the
tools and technology available today to assist in the selection of Ada
compilers.

The following appendices are also included:

A. Test Suite Summaries: Contains the categories of tests included in five major
test suites as described in their documentation.

B. Compiler Evaluation Points of Contact: Contains short descriptions as well
as names, addresses, and telephone numbers of professional organizations,
U.S. government organizations, evaluation technology producers, and other
Ada information sources.

CMU/SEI-89-TR-13 3

C. Accessing Network Information: Contains scripts for accessing relevant in-
formation about Ada and evaluation technology on the ARPANET.

D. Acronyms: Defines acronyms that are used in the handbook.

1.3. Tips for Readers

This section highlights techniques for quick and efficient use of this handbook.

In addition to the question and answer approach of Chapter 2, several other techniques
have been used to help the reader make maximum use of this handbook:

• Definitions: The terminology of evaluation and validation can be found primar-
ily in Chapter 3. Those familiar with these concepts may not need to read this
chapter carefully.

• Summaries: A summary begins each major section. Each summary is cen-
tered and italicized for easy identification.

• Action plans: Actions and strategies necessary to select an Ada compiler are
given in Chapter 4.

• Bold and bullets: Major points are emphasized by using bold headings within
bulleted lists. The major points are then followed by detailed discussions.

The information contained in this handbook has a short half-life. Examples are the descrip-
tions of current evaluation technology in Chapter 9 and the list of points of contact in Appen-
dix B. This handbook will be reissued periodically to present up-to-date information about
Ada compiler selection. It is important that users have the most recent information as part of
their decision-making process. Ada compiler technology, particularly in the realm of em-
bedded systems, is advancing rapidly.

The following topics are not covered (or are given only limited coverage) in this handbook:

• details of Ada language features

• details of using the Ada language
• details of specific test suites and evaluation technology
• details of specific Ada compilation systems

• comparisons of different Ada compilation systems
• language administration and policy issues

• government procurement regulations and issues
• issues concerning the decision to adopt Ada for use on a project

Readers interested in these topics are referred to the Ada Information Clearinghouse (see
Appendix B), to the Ada Adoption Handbook: A Program Manager's Guide [19], and to other
points of contact mentioned in the appendices.

CMU/SEI-89-TR-13

2. Common Questions

Thoroughly evaluating Ada compilers is more difficult and costly than one might
expect. However, an inadequate effort at this stage may be even more costly
to the program in the long term because it may adversely affect the progress of
the project for which the compiler was chosen. Questions about evaluating and
selecting an Ada compiler generally fall into three categories: questions about
procedure, questions about compiler technology, and questions about evalua-
tion technology.

This handbook provides the information that is needed to make well-informed decisions
about evaluating and selecting Ada compilers. Some typical questions are presented on the
following pages. Where needed, pointers to supplemental information contained in other
chapters of the handbook are provided.

2.1. Questions About Procedure

Question: What are some important sources of information to consult before beginning an
Ada compiler selection process?

Answer: Before starting a selection process the user should be thoroughly familiar with
some of the top-level issues of using Ada. For this, the reader is referred to the latest
edition of the Ada Adoption Handbook: A Program[B Manager's Guide [19]. The Ada
Programming Support Environment (APSE) Evaluation and Validation (E&V) Team has
produced a reference manual [45] and a guidebook [46]. The former gives a broad intro-
duction of the issues and definitions of evaluating APSEs (including compilers) and the
latter provides pointers to some of the existing E&V technology. An overview of the
issues has recently been published in IEEE Computer[20]. The AJPO's Information
Clearinghouse is a good source of information. On the ARPANET, the info-ada bulletin
digest is a source of anecdotal information. Finally, the references in this handbook
provide a number of valuable sources of information.

See: Section 4.9 and Appendix B.

Question: How much time should be allocated for doing a thorough, independent evalu-
ation of an Ada compiler?

Answer: The circumstances under which the evaluation takes place are the driving fac-
tors. In general, it will be much easier to evaluate a host-based compilation system than
a cross-development system. It will be much easier to evaluate a compiler for a system
with which the user is familiar than to evaluate a new system. It will be much easier to
evaluate a compiler if there are experienced evaluators doing the job. It will be much
easier if the compilers being evaluated are mature and stable than if they are new prod-
ucts consisting of new components. It will be much easier if compilers for only one tar-
get are being evaluated. The level of effort should also depend on the size of the pro-
gram for which the compiler is needed. As a general rule, expect to take from one to six
calendar months for a reasonably thorough first-time evaluation, depending on some of
the factors mentioned above.

See: Section 4.5.

CMU/SEI-89-TR-13

Question: If a compiler has already been specified for a program, is there any reason to
complete a rigorous compiler evaluation process?

Answer: Yes. Even if a program is required to use a specific compiler (for example,
standard military computers may have only a single Ada compiler) an evaluation should
be performed. If the compiler fails to meet minimum requirements for the program, then
alternative system designs, new compiler procurement, processor waivers, or language
waivers must be explored. If there are functionality or performance deficiencies, then
cost and schedule may have to be modified and workarounds need to be explored.

See: Section 3.2.

Question: What are the potential consequences of selecting a poor Ada compiler for a
particular application?

Answer: The costs of a poor selection can be many times the cost of a thorough evalu-
ation. A program should be cognizant of potential problems. For example, error-prone
or inefficient runtime systems are particularly difficult to work around and require high
quality and timely vendor support. Unsupported features of the Ada standard may make
it impossible to meet functionality requirements. Performance degradation under loaded
conditions may make it impossible to meet performance requirements. Changing com-
pilers in the middle of a project will also prove costly.

See: Section 4.5.

Question: What high-level procedures should be used to evaluate and select Ada compil-
ers?

Answer: The general process at the highest level is the same in all cases. First, the
criteria must be established. Next, the tests must be gathered or written to test the com-
piler against the criteria. Finally, the results must be analyzed to determine whether the
compiler meets the criteria. Within these broad parameters there are many alternate
paths. The breadth and depth of the methods may vary from one selection procedure to
another and from one project to another, depending on the application requirements.

See: Sections 3.2 and 4.1.

Question: How important is a compiler vendor after an acquisition is made?

Answer: Vendor support after acquisition is usually very important, especially at the
present time. Relatively new compilers rarely work without problems, and the respon-
siveness of the vendor to solving these problems in a timely fashion can make or break
a project. In some cases, the vendor may be called upon to tailor the compiler to appli-
cation requirements to make it more responsive to project needs.

See: Sections 4.8 and 6.4.

Question: What are the reasons for and implications of porting code between compiler
systems from different vendors and porting code between different targets?

Answer: First, an application may have to be ported from one processor to another if
there is a compelling performance gain in the new hardware or if there is a requirement

CMU/SEI-89-TR-13

to run on several different targets. This would generally happen late in the product life
cycle. Second, an application may have to be ported from one compiler for a given
processor to another compiler for the same processor. This would generally happen
early in the life cycle if a compiler were found to be deficient or vendor support to be
lacking. Third, porting may be required when code is reused from another application.
Finally, porting is required when two compilers are used in the development phase, one
for initial development and unit testing on a host-based system and the second for the
final target system. Changing vendors can be as disruptive as changing either host sys-
tem or target system (while keeping the same vendor). This is due to the idiosyncratic
nature of the total environment in which the compiler operates, as well as the
implementation-dependent choices the vendor has made with respect to machine-
dependent features. Installing, invoking the compilation tools, downloading, and debug-
ging are all quite vendor-specific.

See: Section 4.7.

Question: What kinds of compiler deficiencies are likely to show up in the later stages of
the development cycle? What will be the impact of these deficiencies on a large project?

Answer: Some deficiencies do not show up until the systems being developed reach a
certain size. These capacity problems are often difficult or impossible to correct or work
around. Some runtime system bugs do not manifest themselves until a system has
been running for a long period of time. For example, if a runtime system does not cor-
rectly allocate and deallocate storage for exceptions, the bug may not be detected until a
large number of exceptions have been processed. The impact on a project at this stage
can be devastating, because there is rarely time left in the schedule to adjust. Risk
reduction strategies for these situations would include early system testing and a strong
working relationship with the compiler vendor.

See: Sections 5.3, 6.2.3, and 6.5.

Question: How many vendors are currently producing Ada compilers? How many
compilers are available from these vendors? For which targets are cross-compilation sys-
tems available?

Answer: As of early 1989, there were nearly 50 Ada compiler vendors. The AJPO's
validated compiler list contained over 230 compilers. Cross compilers are available for
host-based systems as well as for an increasing number of bare targets.

See: Section 3.1.

Question: Can a fair comparison be made between Ada and other languages?

Answer: What can be compared is an implementation of Ada with an implementation of
another language. To make the comparison a fair one, it must be understood that Ada
does more consistency checking at both compile time and execution time than many
other languages. The tradeoffs must be recognized and acknowledged.

See: Sections 3.2.6 and 9.6.

CMU/SEI-89-TR-13

Question: Is the evaluation of Ada compilers substantively different from the evaluation of
compilers for other languages?

Answer: In many ways it is the same. The prospective users must determine the time
and space efficiency of the compiler and the code it generates, as well as the usability of
the compiler. What makes Ada evaluation more formidable is the complexity of the lan-
guage, the number of implementations, and the incorporation of executive functions
such as memory management and scheduling into the runtime system. Furthermore,
Ada's program library system, which provides separate compilation with full consistency
checking, provides an evaluation dimension not relevant in many other languages.

See: Section 6.1.

2.2. Questions About Compiler Technology

Question: Are there substantial differences among validated Ada compilers?

Answer: Yes. The fitness of a specific Ada compiler for use in a particular application
has very little to do with validation. Validation is a process which is meant to test
whether an Ada implementation conforms to the language definition specified in
ANSI/MIL-STD-1815A. Fitness for use has to do with compile-time and execution-time
performance, capacity, and user options, as well as many issues related to the user in-
terface, documentation, and support of the product. There are compilers that are more
suitable for educational purposes, some that are more suitable for MIS applications, and
some that are more suitable for real-time applications. As such, proper evaluation and
selection is a necessity.

See: Sections 3.1 and 3.2.

Question: Do all Ada compilers employ the same algorithms to handle the semantics of the
Ada programming language? What are the best sources of information about differences in
implementations?

Answer: No. There is a great deal of variation permitted by the Ada language standard
and a substantial performance impact on the users of Ada compilers. Implementors are
required to provide an appendix to their Ada reference manuals detailing their dif-
ferences. The ARTEWG (Ada Runtime Environment Working Group) is one source of
information on implementation dependencies [1]. There is also a new group that has
been established under Working Group 9 (WG9) of the International Standards Organi-
zation (ISO) umbrella called the Uniformity Rapporteur Group (URG). While the Ada
Rapporteur Group (ARG) deals with language interpretation and maintenance, the URG
makes recommendations about how implementations should handle certain implemen-
tation features. At the very least, evaluators should be aware of the kinds of issues
raised by these groups.

See: Section 5.5 and Appendix B.

CMU7SEI-89-TR-13

Question: How much optimization can Ada compilers be expected to perform? Are there
any disadvantages to a highly optimizing compiler?

Answer: The level of optimization provided by today's compilers varies greatly. Many
simple optimizations are routinely performed by some compilers, but there are many
complex optimizations that can improve performance. The Ada Compiler Evaluation Ca-
pability (ACEC) tests for 24 categories of optimizations. Depending on the compiler,
optimization levels can be requested with pragmas or compiler switches or optimization
may be provided automatically. While most users desire the most efficient code pos-
sible, highly optimized code may present its own new problems; for example, bugs may
be introduced by the more complex optimizations. Also, the debugger may react differ-
ently to highly optimized source code and may itself contain bugs. For example, if an
optimization keeps values in registers rather than storing them in memory, the symbolic
debugger must recognize the correct values at every point in the program.

See: Section 6.2.3.

Question: What are "Chapter 13" features? Why can they be important to the selection of
an Ada compiler?

Answer: The name of Chapter 13 in the Reference Manual for the Ada Programming
Language (RM) is "Representation Clauses and Implementation-Dependent Features."
It is concerned with representation of data, alignment of data in memory, packing of data
in memory, low-level I/O, data conversions, interrupts, machine code, language inter-
faces, storage allocation, and other low-level issues. For many applications, these is-
sues are irrelevant, but for embedded systems they are critical. For many years these
features were believed to be "optional" features of the language. The most recent Ada
Compiler Validation Capability (ACVC) test suite (Version 1.10, required for validation
after 7/1/88) has a number of tests against requirements in Chapter 13. However, there
is still not thorough coverage. The ARG is developing language commentaries explain-
ing what aspects of Chapter 13 must be supported by every implementation, but it is
unlikely that their work will be completed before the middle of 1989. Evaluators are ad-
vised to test for those features required by their application.

See: Section 5.1.4.

Question: What aspects of interrupt handling must be evaluated? Why are there few tests
for interrupt handling in the currently available test suites?

Answer: Interrupt handling is important to most embedded system applications, but not
to non-embedded systems. Interrupt latency and exit times, as well as the functionality
available in the interrupt service routine, should be determined. Such tests are difficult
to include in test suites because there are many options for handling interrupts and spe-
cial hardware is usually required to implement interrupts and to measure the time re-
quired to process interrupts. Interrupt handling is dependent upon target architecture,
compiler vendor, application, and programmer.

See: Section 6.8.

CMU/SEI-89-TR-13

Question: If a compiler generates reliable code that runs fast, why should any time be
devoted to evaluating other criteria for the compilation system?

Answer: The developer should be concerned not only with the final product, but also
with the process of developing the final product and the process of maintaining the final
product. For this reason the compile/link time, the support tools, and the human factors
must be given appropriate weight. In addition, vendor support must be considered, par-
ticularly for embedded applications.

See: Sections 4.8, 6, and 7.

Question: Is code expansion (i.e., the average number of bytes of object code generated
per line of source code) the best measure of the amount of space that will be required by an
application?

Answer: No. While code expansion- provides one indicator of eventual size, another
important space consideration is how well the linker excludes code that is not used. A
sophisticated linker should eliminate from the loaded code any parts of the runtime sys-
tem that are not used, as well as any parts of packages (including subprograms and
objects) that are exported but not used. While many of today's linkers do a good job of
this, there are still some compilation systems that generate tens or even hundreds of
thousands of bytes of code for the simplest of programs. Also important is whether the
compiler shares bodies for generic instantiations and how much space is required for
dynamically allocated objects.

See: Section 6.3.

Question: Is it sufficient to measure the compile/link time on a variety of large programs to
determine the compile/link time efficiency of the compiler? If not, what other factors are
important to consider?

Answer: What is more important than the size of the program is the rate at which the
compile/link time grows with the size of the program. Some compilers may perform ade-
quately for small programs, but degrade severely as program size increases. Converse-
ly, the processing overhead for small programs may be great compared to that of large
programs. It is important to know how compile/link time is influenced by unit size, num-
ber of variables, with and use clauses, subunits, generics, etc. Also important is the
cost of recompilation and relinking in the face of small changes. For example, after
changing a comment in a compiled unit, does it take just as much work to recompile the
modified unit? Does the compilation system avoid recompiling units that do not need to
be recompiled? What is the impact on compile time of hardware configuration (disk and
memory space, network overhead, etc.) or the number of files in the library?

See: Sections 5 and 7.1.

10 CMU/SEI-89-TR-13

2.3. Questions About Evaluation Technology

Question: Are evaluations of individual Ada compilers available, so that the work required
to evaluate Ada compilers would be reduced? What test suites are available?

Answer: Currently, very few evaluations of specific products are publicly available.
There are several reasons for this. First, they are obsolete almost from the moment they
are published because compilers are constantly evolving and improving. Second, they
must be carefully documented and defended from challenges from vendors with vested
interests. Notable exceptions are the evaluations of Ada compilers based on the Ada
Evaluation System (see Section 9.4) that the British Standards Institute is beginning to
publish. The major general-purpose test suites that are currently available are the
ACEC test suite, the AES test suite, and the PIWG test suite. Some application-specific
tests are available in the Ada Software Repository.

See: Section 9.

Question: Is it safe to take at face value the numbers that are being reported by compiler
vendors or independent groups trying to address performance issues?

Answer: No. Vendors put their products in the best possible light. For example, ven-
dors naturally choose favorable parameters for compiling, linking, and loading their pro-
grams when those parameters are not explicitly specified or ruled out in the instructions
for running the benchmarks. Independent groups, however well-intentioned, may not
always control all the appropriate sources of variation nor provide sufficient documen-
tation and disclaimers. Only by asking detailed questions about the configuration and
the circumstances under which the numbers were derived can one start to gain con-
fidence in what is measured. Even then, the questioner must be confident that the ques-
tions are being answered by informed and totally truthful sources.

See: Sections 8.2 and 8.3.

Question: What are the advantages and disadvantages of using a test suite that is avail-
able from a third party? What is the quality of these test suites? From whom are they
available?

Answer: The test suites that are generally available are described in Chapter 9. The
quality of these test suites is adequate if used by a knowledgeable tester who is familiar
with most of the pitfalls of benchmarking. The advantage is that the coverage is very
broad and detailed. (Almost every Ada feature is tested by these suites.) The suites are
often helpful in answering very specific questions or in comparing compilers. Some
have extensive tools for analysis of the results. They represent many work years of
effort and have been constructed to avoid many of the common pitfalls. The disadvan-
tage is that the tests do not necessarily test the features in the same combination or
under the same circumstances in which they will be used by a particular application.

See: Sections 4.1, 9, and 9.1.

CMU7SEI-89-TR-13 11

Question: What are the generic categories of test programs and what are the advantages
anri HicaHvantanec; <->f panh? and disadvantages of each?

Answer: One way that tests can be classified is by their granularity. There are fine-
grained test programs that test and measure individual Ada features, such as the time
and space for a subroutine call or the effect of a particular kind of optimization. On the
other hand, there are coarse-grained tests that test many features in combination. The
coarse-grained tests can be either synthetic (statistically constructed to look like a
"typical" application) or actual application code. Fine-grained tests do not show how
various features interact and are more subject to anomalous variations. Coarse-grained
tests only give a broad indication of quality and do not pinpoint the source of difficulties.
In the end, a combination of fine- and course-grained tests would seem to be advisable.

See: Section 8.1.

Question: Are benchmark test suites the best source of quantitative data for comparing
compilation systems?

Answer: The best software to use for comparing compilation systems is the operational
software itself. If operational software is not available during evaluation, then subsys-
tems or prototypes can be helpful. In general the better one understands any software
that is being used for evaluation (including test suites), the more meaningful will be the
results.

See: Section 8.

Question: What hardware, aside from the host and target systems, is required to perform
an assessment of Ada compilers?

Answer: For general purpose systems, no additional hardware is required. For em-
bedded systems, there should be some hardware mechanism, such as a logic analyzer
or in-circuit emulator, to verify software timings and to time those software segments,
such as first-level interrupt handlers, that are not easily timed using software techniques.

See: Section 4.2.

Question: What software, aside from that provided by the compiler vendor, is required to
perform an assessment of an Ada compiler?

Answer: For general purpose computing systems that are self-targeted, installing the
compiler is usually straightforward. On cross-development systems it is often necessary
to write some drivers for the target to adapt the runtime system and download software
for the particular board that is installed. Typically, the adaptation of these target resident
software modules is necessary to provide access to an on-board timer and a serial con-
troller for downloading and host-target cross I/O. For either type of system, an assess-
ment requires test software. It is often useful to have analysis software to reduce the
large amounts of data generated by benchmark programs to useful information that can
be easily interpreted.

See: Section 4.3.

12 CMU/SEI-89-TR-13

Question: What are some of the most important criteria when selecting a compiler for hard
real-time (deadline-driven) applications?

Answer: For hard real-time applications, some important criteria are usually determinis-
tic behavior, the modeling of time, interrupt handling, representation clauses and
implementation-dependent features, and time and space runtime efficiency. If the appli-
cation will use the Ada tasking model, then the tasking features will be important criteria.

See: Sections 3.2, 5, and 6.

Question: What are some of the most important criteria when selecting a compiler for C3I
and MIS applications?

Answer: I/O performance and functionality, standardized interfaces to commercial off-
the-shelf (COTS) software packages such as graphics, database, and windowing sys-
tems, and portability are likely to be rated as important criteria for these types of applica-
tions.

See: Sections 3.2, 5, 6, and 7.1.

CMU/SEI-89-TR-13 13

14 CMU/SEI-89-TR-13

3. Compiler Validation and Evaluation

There is an important difference between validation and evaluation. Validation
tests conformance to ANSI/MIL-STD-1815A. Validation cannot be relied upon
for determining whether a given Ada compiler is fit for use in a particular appli-
cation.

3.1. Validation

Ada compiler validation is the formal testing process whereby an Ada compiler
is certified by the Department of Defense to conform to the military standard
ANSI/MIL-STD-1815A. This is accomplished by successfully executing several
thousand test programs. Validation does not guarantee that the compiler (or
the code it generates) is error free and it certainly does not imply anything
about matters outside the realm of the standard (performance, capacity, and
certain functionality areas).

This section describes what can be expected of a validated Ada compiler. Further, it de-
scribes what some have mistakenly come to expect of validated compilers. Finally, it
presents what information can be gleaned from the validation process that is useful in deter-
mining the fitness of a compiler for use in a particular application.

The official procedures and guidelines for validation are contained in a 25-page document
called Ada Compiler Validation Procedures and Guidelines, issued 1 January 1987 [39]. It
is available electronically via the AdalC Bulletin Board or the ARPANET. See Appendix B of
this report for addresses and access information. Some changes to the validation process
were announced on 25 October 1988 and are contained in a press release available from
the Ada Information Clearinghouse. This announcement lengthened the amount of time that
a validation suite is in force from 12 months to 18 months. It also lengthened the time that a
validation certificate is valid from one year to the expiration date of the validation suite.

The Ada Compiler Validation Capability (ACVC) is a system used to test conformance to the
standard. A part of the ACVC, the Ada Validation Suite (AVS) is a suite of test programs
that are updated annually. The original philosophy and design of the testing capability was
described by Goodenough [22, 23] in 1981. ACVC Release 1.10 was made operational on
1 June 1988. This version will be operational until 1 December 1989 when Release 1.11 will
become the official version. Version 1.12 will be released for public comment and review on
1 June 1989, become operational on 1 December 1989, and will expire on 1 June 1991.
Subsequent test suites will follow a similar release schedule.

Tests in the ACVC test suite are divided into three major categories and six subcategories
[23]:

• N on-executable

• Class B: errors to be detected at compile time
• Class L: errors to be detected at link time

CMU/SE1-89-TR-13 15

Executable

• Class D: tests of the capacity of an implementation (need not be passed
for validation)

• Class A and C: other executable tests (the distinction between these two
classes is no longer relevant)

• Other

• Class E: tests whose PASS/FAIL criteria are special or that require spe-
cial processing of some kind

The test names incorporate the class name so that it is clear from the name whether a test
is expected to compile and execute. Executable tests are self-checking and print
PASS/FAIL messages in a standard format.

The ACVC has been an effective mechanism for promoting conformance of implementations
to the standard. Unfortunately, there has been a misconception that it should serve other
purposes for which it was not designed. It is important to understand that validation was
never intended to measure fitness for use. While the misconceptions surrounding the ACVC
have largely been dispelled, it may be worthwhile to revisit them.

First, the ACVC is not a guarantee of conformance to the requirements of the standard. As
Edsger Dijkstra has aptly pointed out, "Program testing can be used to show the presence of
bugs, but never to show their absence!" [13]. Even though there are several thousand tests,
most of the tests are small and few features are tested in combination with one another, so
many potential problem areas are untested. Second, the ACVC does not systematically
address capacity or performance issues. It contains a few tests for capacity and while the
total running time for the tests is an indicator of performance, it is not sufficient for evaluation
purposes. Third, the ACVC was not intended to address any issues of the programming
support environment or human factors issues. A fourth misconception has been that the
standard does not require a compiler to implement any of the representation clauses or
implementation-dependent features described in Chapter 13 of the RM. Version 1.10 of the
ACVC, in fact, includes many tests of Chapter 13 features, and more tests will be included in
future versions of the ACVC. In particular, the ARG is developing language commentaries
explaining what aspects of Chapter 13 must be supported by every implementation, but their
work is not likely to be completed before the middle of 1989. Thorough coverage by the
ACVC can therefore not be expected before Version 1.12. One rather subtle point regarding
the ACVC testing is that the vendor is required to test the compiler using only one set of
compiler options, when in fact the compiler may provide many sets of compiler options. The
vendor is required to make no assertions about whether all the tests are passed under all
switch configurations. If there are a large number of such options, it may be unrealistic for
the vendor to run all the tests in all configurations. The options and the interactions between
options have the potential to introduce errors in the generated code. Three possible ex-
amples are optimization options, debugging options, and runtime configuration options (see
Section 5.1).

16 CMU/SEI-89-TR-13

In summary, the ACVC is a suite of tests that attempts to determine conformance to the
language standard. It does not address, nor was it meant to address, evaluation issues
such as fitness for use in any particular application area, performance, capacity, or availa-
bility of implementation-dependent features or options.

3.1.1. Validation Procedures
The current procedure for a compiler vendor is to obtain the test suite, indicate its intent to
validate its compiler with one of the Ada Validation Facilities (AVFs) in the United States or
Europe, negotiate a formal agreement for validation services with the AVF, submit a decla-
ration of conformance and test results to the AVF, and resolve any test issues with the AVF.
Following this, the AVF prepares a validation summary report (VSR), monitors on-site test-
ing to duplicate previously submitted results, issues a validation certificate, and issues a
final VSR. The director of the Ada Joint Program Office provides overall direction and is
responsible for the Ada certification system. The Ada Validation Office (AVO) provides ad-
ministrative and technical assistance to the director and the AVFs. A compiler that is vali-
dated according to the procedure outlined above is called a "base compiler." A "derived
compiler" may be any of the following: a base compiler on an equivalent configuration
(same computer architecture and operating system), a maintained compiler on a base con-
figuration, or a maintained compiler on an equivalent configuration. For compilers that are
derived from a validated base compiler, there is a registration procedure which conveys vali-
dation status without the completion of all of the validation steps. The status of a derived
compiler as a validated compiler may be challenged, and if the challenge is sustained, the
vendor must correct deficiencies within 90 days or the compiler will lose its validated status.

The list of validated Ada compilers dated 1 February 1989 contained 164 validated base
compilers and 70 derived compilers from over 50 vendors. The current list, which is up-
dated monthly, is available through the Ada Information Clearinghouse and electronically on
the ARPANET. (See Appendix C for accessing information.) The list contains the vendor
and compiler names, the host and target systems, the ACVC version number, and the ex-
piration date for the validation. Over 50 of the compilers are targeted to processors that are
bare targets or targets traditionally used in embedded systems. These targets include in-
struction set architectures by Intel, Motorola, National Semiconductor, and Data General, as
well as several implementations of MIL-STD-1750A.

Validations eventually expire, so it is important to understand the status of a compiler being
used on a project when that compiler is no longer validated (either because the project
chooses not to upgrade to a newer version or because no subsequent compiler is available
from the vendor). To address this issue, there is the concept of a "project-validated
compiler." After a compiler has been baselined in accordance with applicable DoD policies
on software life-cycle management, it becomes a project-validated compiler for the lifetime
of the project.

CMU/SEI-89-TR-13 17

3.1.2. Validation Summary Reports
A validation summary report (VSR) is prepared by an AVF and contains results that are
observed from testing a specific Ada compiler or grouping of Ada compilers. This is an
important output of the validation process for users trying to evaluate Ada compilers. The
VSR includes the following components [39]:

• Declaration of conformance.

• Description of all ACVC tests that were processed on the base compiler.

• Table showing the class and category of all ACVC tests and their results (e.g.,
total number of class C tests passed, failed, withdrawn, or inapplicable, etc.).

• Description of the testing environment (e.g., designation of configurations
tested, testing completion date).

The VSR reflects any decisions made regarding disputed test issues. Finally, the VSR in-
cludes implementation-dependent options that must also be supplied in Appendix F of the
vendor's reference manual.

The declaration of conformance is the certification by the implementor and owner of the
compiler that they have implemented Ada as defined in the RM and that they have not
deliberately included any extensions to the Ada language standard. This declaration must
be submitted for the original base compiler, as well as for any derived compiler registration.

The implementation-dependent characteristics that must be included in the VSR and in Ap-
pendix F of the vendor's reference manual includes the following information:

• The form, allowed locations, and effect of every implementation-dependent
pragma.

• The name and the type of every implementation-dependent attribute.
• The specification of the package SYSTEM (see RM 13.7).
• The list of all restrictions on representation clauses (see AM 13.1).

• The conventions used for any implementation-generated name denoting
implementation-dependent components (see AM 13.4).

• The interpretation of expressions that appear in address clauses, including
those for interrupts (see RM 13.5).

• Any restrictions on unchecked conversions (see RM 13.10.2).

• Any implementation-dependent characteristics of the input/output packages
(seef?M14).

The validation summary report should be required reading for anyone selecting an Ada com-
piler for a project. The vendor should supply a copy upon request. Failing that, a copy can
be obtained from the Ada Validation Office. (Unfortunately these reports are not online and
the most recent reports may be difficult to obtain.)

It should be noted that there is currently little consistency among vendors in the quantity and
quality of information provided in their versions of Appendix F. Application experts should
examine them carefully to determine whether sufficient information is provided.

18 CMU/SEI-89-TR-13

3.2. Evaluation

Ada compiler evaluation is the process whereby a user determines the fitness
of an Ada compiler for use in a particular application environment. Evaluation is
a much broader investigation than validation and includes factors such as the
performance and capacity of the compiler and the generated code, the cost of
the compiler, quality of documentation and error messages, vendor support,
and quality and usability of the supporting tool set.

This section describes some of the criteria that can be used to evaluate and eventually se-
lect an Ada compiler so that the reader gains a general appreciation for evaluation issues.
Subsequent chapters give more detailed treatments of the evaluation issues. The criteria
are both quantitative and qualitative in nature. While it may be appealing to use only criteria
for which there is a numerical "score," it should be recognized that there are many criteria
for which a simple number is not sufficient. While scoring may simplify and accelerate the
process, the overall result may be inferior to one that includes qualitative information.

A comprehensive reference for criteria that may be used for evaluating software in general
and Ada Programming Support Environments (APSEs) in particular is the E&V Reference
Manual [45]. The following is taken from the executive summary:

The purpose of the E&V Reference Manual is to provide information that will help
users to: 1) gain an overall understanding of APSEs and approaches to their as-
sessment, 2) find useful reference information (e.g., definitions) about specific ele-
ments and relationships between elements, and 3) find criteria and metrics for as-
sessing tools and APSEs and techniques for performing such assessment. The
latter are found (or referenced) in a companion document called the E&V
Guidebook [46].

Some assessment criteria are more amenable to quantitative analysis while other criteria
are more amenable to qualitative analysis. Examples of quantitative criteria that are ad-
dressed in this handbook include performance efficiency (both at compile time and at run
time), capacity, and cost. Examples of qualitative criteria that are addressed in this hand-
book include correctness, completeness, and usability. The following sections address in
general how each of these criteria may be evaluated.

3.2.1. Quantitative Criteria and Benchmarks
Quantitative criteria are distinguished by the fact that they, can be easily measured with reli-
able, acceptable, and repeatable tests. Tests that measure the performance and efficiency
characteristics of an Ada compiler are often called benchmarks because they are a means
of easily comparing one system to another. An example of a performance criterion is
compile-time efficiency. Tests may be written to measure the time it takes to compile
various Ada programs under various conditions. A single test is not sufficient because one
would like to know whether the compile time varies with the size of the program, with the
Ada constructs used in the program, with the number of subunits used, with the compiler
options, the machine configuration, etc.

CMU7SEI-89-TR-13 19

Similarly, tests may be written to measure the time to link independently compiled modules
and the time or space efficiency of the code generated by the compiler. It may be desirable
to know how long it takes to execute an assignment statement, a subroutine call with three
integer parameters, or some representative section of code. It may be important to know
how much space is required for implementing these Ada statements or for certain data
structures such as records. Capacity tests may be constructed to determine how large a
program can be handled by an Ada compiler or how large a symbol table can be handled in
a given system configuration.

3.2.2. Qualitative Criteria and Checklists
Qualitative criteria are distinguished by the fact that they are not easily measured with reli-
able, acceptable, and repeatable tests. There are always methods of quantifying such infor-
mation, but the resulting numerical results are rarely more useful than anecdotal and sum-
mary information. Consider correctness as one example. There is no reliable method of
determining how "error prone" a compiler is. Indicators include trouble reports to the vendor
(rarely available), number of errors encountered running some series of test programs, or
inspections of the compiler's source code (rarely accessible). However, there is no test for
determining how many errors remain in any large software system and a compiler is a large
software system.

Completeness refers to the extent to which a component provides the complete set of
operations necessary to perform a function. If there were a master list of desirable functions
and a weight associated with each function, then it would be simple to define a metric for the
completeness of a particular aspect of a compiler. However, there is little agreement about
the functions and how they should be presented. In an Ada compilation system, there are
many implementation-dependent options and features. The standard says nothing about a
requirement for a debugger or the features it should have. It says nothing about the error
messages or their contents.

Usability is the effort required to learn, operate, prepare input for, and interpret output of a
component. Certainly this criteria depends on the background and experience of the user.
Ease of learning is often in conflict with ease of use. All human factors criteria are subjec-
tive because they involve human judgement and human preferences. For example, there
will never be general agreement on the type of human interface that is best for displaying
information on a bit-mapped workstation.

What all these qualitative criteria have in common is that they can be addressed with a
series of questions or checklists that make it easier to evaluate them. Questions about
debuggers-include whether breakpoints can be set on subprogram entry and exit. Ques-
tions about error messages include whether they provide easy identification of the source of
the errors. There is always a tradeoff between the ease of evaluating a simple yes/no ques-
tionnaire versus the more subjective questionnaire, but despite the problems, it is important
to gather subjective and qualitative information.

20 CMU7SEI-89-TR-13

3.2.3. Other Evaluation Techniques
Evaluators need not rely solely on information generated internally. Much information is
available from third party sources. The validation information discussed in Section 3.1 is
readily available. Vendors can be called upon to provide presentations about their products.
These presentations must be received with the foreknowledge that vendors will always
present their products in the most favorable light.

Perhaps the most useful source of third party information is available from other users of the
product. No good evaluation should be considered complete without extensive interviews
with current users. They have experienced firsthand the joy and pain of installing, testing,
operating, and using the product.

Another source of information is an evaluation service. The British Standards Institute (BSI)
has started a service to evaluate Ada compilation systems. As of early 1989, this service
has conducted two compiler evaluations. Their methodology is a useful source of informa-
tion and their evaluation reports are available for under $500. (See Section 9.4 and Appen-
dix B.) The BSI plans to expand their Ada compiler evaluation service to the United States.

3.2.4. Reevaiuation
There are three circumstances under which a project may wish to consider reevaluating a
compilation system. These are the need to upgrade the compiler to a new version, to
rehost, or to retarget. Each of these changes can generate a considerable amount of dis-
ruption for a project and should not be undertaken lightly. None of these circumstances,
however, warrants a complete reevaiuation and the cost in terms of time and schedule can
be much less than that of an initial evaluation. Upgraded compilation systems suggest
some reevaiuation of the areas changed the most. A rehosted system suggests major em-
phasis on the compile-time testing. A retargeted system suggests major emphasis on the
runtime testing and runtime system testing. It is probably a good strategy to keep the
results of the initial testing so that a subset of the tests can be rerun and compared with the
original results.

3.2.5. Tailoring Evaluations
It is highly unlikely that an evaluation of a compiler undertaken for one project will meet the
requirements of another project. The many dimensions of compiler evaluation will almost
invariably be weighted differently by different users with different application requirements.
Projects will certainly have different views of the importance of cost, compile-time perfor-
mance, execution-time performance, and configurability of the run time to their particular ef-
fort. This handbook gives many of the dimensions along which the compilation systems
may be evaluated.

Table 3-1 gives an example of how the major concerns might differ for two extremely differ-
ent applications, a hard real-time, embedded application (labeled "Embedded") and a non-
real-time management information system application (labeled "MIS"). While the ratings of
importance given in the table are arguable, it is clear that these two applications have differ-
ent requirements for an Ada compilation system and that what is optimum for one will not be

CMU/SEI-89-TR-13 21

Table 3-1: Application Concerns (Hypothetical Example)

Major Concerns of Application Developers

Attribute Embedded MIS

Compilation speed Important Important

Efficiency of generated code Very Important Important

Efficiency of runtime code Very Important Important

Machine-dependent features Very Important Less Important

Execution restart/recovery Very Important Less Important

Text I/O functionality Less Important Very Important

Interfaces to COTS software Less Important Very Important

Portability of application code Less Important Important

Determinism Very Important Less Important

Timer resolution/accuracy Very Important Less Important

Support tools Very Important Very Important

Availability of runtime source
code

Very Important Less Important

Vendor support Very Important Important

Recompilation avoidance Less Important Important

Compiler correctness Very Important Very'Important

22 CMU/SEI-89-TR-13

optimum for the other. Other application areas such as soft real-time, C3I, or educational
applications would have still other major concerns. For example, educational application
requirements would rank compile-time efficiency higher than either of the two applications
given as examples in the table.

Furthermore, the application area may dictate certain criteria. Embedded applications may
require extensive machine-dependent features, while MIS applications may not require any.
Hard real-time applications (those whose correctness depends on meeting severe timing
deadlines) may require highly precise timing capabilities, while soft real-time applications
(those whose time requirements are not mission critical) may be less demanding. Large
applications with hundreds of thousands of lines of code may be more concerned with
compile-time efficiency and recompilation characteristics, while smaller applications may not
need highly efficient compile-time performance.

Inevitably, users will tailor their programming styles to the characteristics of the Ada com-
piler. If select statements are inefficient, they will not use select statements. If exceptions
are expensive even when they are not raised, then they will avoid exceptions. If dynamic
memory allocation is expensive, then they will create internal development standards to al-
locate all data statically.

It is important to understand the tradeoffs between the application requirements and pro-
gramming style on the one hand, and the capabilities of the Ada compilation system on the
other. The evaluation process should consciously and overtly tailor the criteria to suit the
application and programming style desired. Perhaps there will be no compilation system
that meets all the requirements, but it is important for the requirements to dictate the com-
piler rather than the other way around. The steps recommended for conducting an evalu-
ation and selection are given in Chapter 4.

3.2.6. Comparing Ada with Other Languages
It can be expected that first-time users of the Ada language will have to justify its use rela-
tive to languages for which the functionality, performance, and risks are better known. While
this can be done, there are many caveats that must be observed. First, while two languages
can be compared on a feature-by-feature basis, it is more productive to compare the imple-
mentations of two languages and recognize that no matter how elegant or functional a lan-
guage may be, it is the actual language implementation that will determine the success or
failure of a project. Some of the following guidance is also relevant for comparing Ada lan-
guage implementations with respect to a given set of criteria, because the evaluator must
recognize that Ada functions are often more robust or are carried out in the language rather
than in the operating system.

Among the issues to be considered in fairly comparing Ada to other languages are the fol-
lowing:

• Compile-time checking: Ada provides consistency checking across
separately compiled units, which is not available is some languages. The cost
of this checking must be compared to the cost of separate tools to do this in
other languages or the additional integration time required in other languages.

CMU/SEI-89-TR-13 23

• Runtime checking: Constraint checking for subscripts and other variables is
done automatically in Ada. For fair comparisons, either the checking should be
turned off in Ada or added to the tests in the other language.

• Data representation: The size of variables may be different by default in two
different languages. Integers and floating point variables must be made the
same for a fair comparison. (This is also true for two Ada implementations.)

• Compiler and operating system options: Rarely do default settings of
various options make for fair comparisons. Experienced programmers must de-
termine how to set the parameters so that each language provides comparable
functionality (e.g., optimization levels) and ample resources (e.g., working set
sizes).

Recent studies (e.g., [8]) have demonstrated that the runtime performance of Ada compares
favorably with other languages such as FORTRAN, C, and JOVIAL. For comparable bench-
mark tests, roughly as many run slower in Ada as run faster in Ada. Three areas that have
been cited for increased speed in Ada are automatic in-lining of procedures, the ability to
use block move operations for slices of arrays, and the ability to perform optimizations
across separately compiled units because of information kept in the program library.

24 CMU/SEI-89-TR-13

4. Practical Issues of Selecting an Ada Compiler

After a certain amount of information about evaluation has been gathered, the
process of evaluation and eventually selection can start. An evaluation plan
should be developed to determine the process and the products of the evalu-
ation. The resources available for evaluation must be determined and set
aside. Timetables must be established for the process.

The purpose of this chapter is to identify some of the pragmatic issues for evaluation and
selection of an Ada compilation system. The first section identifies a general selection proc-
ess. This process must be tailored to individual requirements. The intent is to provide a
general structure that is not biased toward any particular host-target environment or any
particular application area. The remaining sections list some of the practical issues that
ought to be considered when planning for Ada compiler acquisition.

4.1. Selection Process
The following ten steps can be performed for any evaluation and selection process. Each
step may consist of many substeps. However, it should be noted that eliminating candidate
compilation systems may be much easier than confirming that a compilation system meets
all or most of the criteria. This suggests a two-stage evaluation and selection process
wherein the first stage quickly eliminates candidates from further consideration.

1. Gather general evaluation information: First, the evaiuator needs to get a
general understanding of the evaluation process. Reading this handbook will
provide a start in this process, but some of the references should be consulted
as well, and more detailed information should be collected about the compilers
available and the evaluation technology available.

2. Plan overall strategy, including budget, personnel, and timetables:
There should be an evaluation strategy based on the resources available. It is
desirable to have a formal written strategy, but at the very least an informal
strategy should be determined. If it is determined that insufficient resources or
time has been allocated, then the budget or schedule should be revised. The
overall strategy should, in particular, determine the level of effort to be ex-
pended on each of the following steps.

3. Understand project requirements: Criteria for compiler selection cannot be
established without a firm understanding of the problem to be solved. This
handbook can provide little help in this area because the domain-specific proj-
ect requirements are so varied.

4. Establish criteria based on the nature of the project: The criteria for selec-
tion are technological and non-technological. Technological issues such as
compile-time issues, execution-time issues, and support-tool issues are dis-
cussed in Chapters 5, 6, and 7. Some of the business criteria are discussed
in Section 4.8 of this chapter. Two alternative styles of specifying criteria may
be chosen. First, it is possible to specify absolute criteria, e.g., the compilation
system must support feature x or must not take more than y seconds to per-
form function z on a given system configuration. Second, it is possible to
specify relative criteria, e.g., a rating scale for each criterion to facilitate the

CMU/SEI-89-TR-13 25

comparison of different compilation systems. The style of evaluation depends
on the application. In fact, a mixture of these styles, with some absolute and
some relative criteria, is possible.

5. Plan tactics in three areas: Information about the compilation system comes
from benchmarks, checklists, interviews, and informal information gathering
from vendors and users. In each case the evaluator must decide how much
effort to devote and how to allocate that effort between already existing tech-
nology and hand-tailored technology. The plan is largely a decision about
reuse and about the tradeoff between searching for tests that address the cri-
teria of the previous step and developing unique tests. The former approach
maybe desirable if the existing tests are comprehensive, suitable for the appli-
cation domain, well cataloged, and well organized. The latter approach may
be suitable if there are highly specialized criteria or if the existing technology is
not well organized.

• Benchmarks: The results from running test programs and test
scenarios are the primary source of quantitative data. Benchmarks
should be selected based on application requirements. These tests
may be run and verified by the evaluator or may be accepted from
another source. In the latter case the evaluator should consider the
source of the information and the reliability of the information.

• Checklists: The answers to detailed questions about the compilation
system are the primary source of non-quantitative data. The questions
should be constructed so as to allow the minimum amount of subjec-
tiveness or judgement on the part of the evaluator. Simple yes/no ques-
tions have the advantage of limiting subjectivity, but have the disadvan-
tage of restricting the amount of information conveyed. Checklists may
be completed by the evaluator or some third party and the same caveat
applies here as applies to benchmark data.

• Interviews and information gathering: Interviews should be con-
ducted with users of the product that is being evaluated and information
should be gathered about the vendor of the compilation system. Unlike
the other two categories of information, this must be done firsthand.

6. Create or find an evaluation testbed: An evaluation must take place in an
environment where the product can be used. Reliance on paper evaluation is
risky. The first preference is to create a testing environment on the site at
which it will be used and conduct the testing with the people who will be using
the compilation system. The second preference is to find another site
(preferably other than the vendor's site) that can be used for a limited amount
of time to test the product. Only as a last resort should the choice of a product
be based on limited demonstrations. Several products should be tested in this
environment so that side-by-side comparisons are possible.

7. Perform the evaluations: After the proper environment has been estab-
lished, the testing can begin. The benchmark programs can be run and the
checklists completed. An evaluation log should be kept and any problems and
observations made during the evaluation that are not explicitly addressed in
the criteria should be documented.

8. Analyze the results: Once all the data have been collected, the information
must be organized to facilitate a decision. Benchmark data must be organized

26 CMU/SEI-89-TR-13

so that unusual or anomalous behavior is not inadvertently missed. Checklist
data should be organized so that information that discriminates among prod-
ucts stands out from information that does not discriminate among products.
Formal or informal weighting of the data should be used to separate the critical
criteria from the desirable criteria.

9. Select, procure, install, and accept the compilation system: Once all the
information has been analyzed, it should be possible to make a decision. Pro-
curement may be a highly variable process, depending on the organization
that is making the procurement. Installation, if the compiler has not been eval-
uated in-house, may require some tailoring to the particular host-target envi-
ronment. Finally, there may be some criteria that the user specifies to the
vendor in order to accept the product after some trial period.

10. Provide feedback to vendors: The strengths and weaknesses of the compi-
lation system should be communicated to the vendor. Not only will this repay
a vendor who may have provided an evaluation copy, but it will also accelerate
the progress toward production quality products for particular applications.

4.2. Hardware Requirements for Evaluation

The hardware that must be assembled for evaluation purposes includes a host
system and a target system, with the necessary interconnections. Certain test
equipment is also valuable for a credible evaluation.

The host and target hardware are often selected prior to compiler selection and are there-
fore not an issue. If an Ada development is only a small part of the total computational
needs of a project, and there is already an established infrastructure for using a given host
and its operating system, then the existing system is a natural and pragmatic choice for the
additional Ada development effort. There is much to be said for continuing to work in a
programming support environment that is familiar and comfortable. If, on the other hand,
there is no such history, or if there is a desire for a revolutionary change, or if there is no
Ada compiler for a given host, then other options must be explored. The time required to
select a host system is therefore highly variable.

The choice of a target architecture is often determined by military standards. The Navy
AN/UYK-43, AN/UYK-44, AN/AYK-14 computers and the Air Force MIL-STD-1750A ar-
chitecture are examples of these standards. While some military programs require a partic-
ular architecture, other programs have no architecture requirements at all. When there is
some discretion allowed, then the decision about the target system should be made with full
consideration of the Ada compilation systems currently available or likely to be available.
The state of the compilation systems available for a given target architecture may be much
more critical to the success of the project than the nuances of different instruction set ar-
chitectures. Standard architecture benchmarks such as Whetstone may show one architec-
ture to be slightly better than another, but the software may have a system impact far
greater than the architecture.

For cross-development systems, the download path may be a key bottleneck. If the host is
connected to the target by a 9600-baud serial link, the download time for a 64-kilobyte load

CMU/SEI-89-TR-13 27

image will be a little over a minute. For one-half a megabyte, the time will be nearly 10
minutes. Special hardware may be available for certain host-target combinations so that
this transfer can be done at much faster rates. Also, this bottleneck may be mitigated by
software that permits the sending of only that part of the download images that changes
from one run to the next and by placing the receiver, debugger, or parts of the runtime sys-
tem in ROM. The evaluator should carefully consider the impact of download times and
investigate alternatives to serial transfer.

Test equipment can be a critical hardware resource for time-critical applications. A logic
analyzer or microprocessor development system may provide critical timing information for
real-time systems that is not easily available from software timing. Another advantage to
hardware test equipment is that it is non-intrusive. The software will run exactly the same
whether timing information is being collected or not. This equipment is particularly helpful
for isolation of hardware faults and the measurement of interrupt latency times. For distri-
buted applications it is important to have the capability to correlate the timing information
from several independent sources.

4.3. Software Requirements for Evaluation

The software that is required for an evaluation is dependent on the hardware
configuration. Normally, the host operating system will not be an additional
item required. The target system, if different from the host, may require its own
operating system. Software may also be required to download code from the
host to the target. Timing software may be required that is more accurate than
Ada's clock.

The compilation system normally includes the following software components:

• compiler
• library manager

• runtime system
• linker

• downioader or loader

• debugger
• assembler
• simulator

The first five items are absolutely necessary to run Ada programs. The debugger is highly
desirable, and the assembler and simulator may be desirable for certain embedded applica-
tions.

The environment in which the software runs on the host system, commonly called an Ada
Programming Support Environment (APSE), may contain additional tools. These may in-
clude graphical design tools, static and dynamic analyzers, testing tools, pretty printers, etc.
These are quite important and the integration of the tools is a critical issue for performance
and productivity, but it is not within the scope of this report. However, it is important to

28 CMU7SEI-89-TR-13

compilation system evaluators to get a general feeling for the extent to which the tools listed
above cooperate with the tools of the operating environment. For example, is the Ada
library compatible with the file system of the operating environment and do all the com-
mands of the operating environment apply to the Ada library?

The environment in which the software runs on the target system (in the case where the
target is different from the host) may be supplied by the vendor (the so-called "bare target")
or may be an operating system or an executive. In either case, the vendor must tailor the
product to the target operating environment. Unfortunately, this is a burdensome task due
to the nuances of different single board computers. Even for a given architecture there are
different input/output and timer characteristics. Thus, the user may be faced with the task of
tailoring part of the target environment. For example, the downloader may have to be
tailored for a particular board or the timer interface routines of the runtime system may have
to be rewritten. The user should be certain to specify precisely the target configuration so
that the extent of the tailoring (if any) is known beforehand.

4.4. Test Suite Requirements

A test suite can be procured in a number of ways, depending on the test suite.
The cost of obtaining the test suite is often negligible compared to the cost of
setting up and running the test suite and correctly interpreting the results.
Therefore, it is important to have specific test objectives in mind before starting
out.

The decisions regarding test suites are the following:

• Should a test suite or suites be acquired, or should a test suite be built?

• If a test suite or suites are to be acquired, which one or ones should be ac-
quired?

• Of the test suite or suites acquired, should all or just some of the tests be run?
If the latter, which ones?

The advantages and disadvantages of several test suites generally available are discussed
in Chapter 9. Acquisition costs are generally very small and should not be a deterrent. On
the other hand, the cost of setting up and using one of the test suites can be substantial.
The questions above can only be answered by doing an evaluation of the test suites them-
selves, based on the level of effort and the criteria of the compiler selection process. If a
short and unsophisticated evaluation is planned, the PIWG tests may be sufficient. If a
more in-depth evaluation is planned, the ACEC or AES test suites may be more suitable.

CMU/SEI-89-TR-13 29

4.5. Timetables, Dependencies, and Costs

It is difficult to provide any guidelines or rules of thumb for the schedule and
budget required, in general, for an evaluation of a compilation system. Experi-
enced and knowledgeable evaluators will require less time than novices. If the
selection is dictated or there is only one compilation system for a military stan-
dard computer, the evaluation process may be significantly simplified. On the
other hand, if there are many variables (host, target, and compilation system)
and the risks of a wrong decision are high (as in the case of a major weapon
system), then a substantial evaluation effort is called for.

The time required for an evaluation is often dictated by the higher level considerations of a
program schedule. Every attempt should be made to ensure that sufficient time and budget
are allocated for the evaluation, but often the schedule must drive what can be accomplish-
ed. It is senseless to plan a six-month evaluation if only sixty days have been allocated to
the job. The ten steps outlined in Section 4.1 should each be allocated a proportion of the
time and budget, depending on the evaluation requirements. While these steps are
presented as sequential, some in fact can be performed in parallel. The planning steps
(steps 1 to 5) can for the most part proceed somewhat in parallel, although it is certainly
desirable to know the strategic directions and criteria before planning the tactics. Steps 6
through 9 must be performed sequentially for the most part. Figure 4-1 shows a hypotheti-
cal schedule for a rather thorough first-time evaluation.

30 CMU/SEI-89-TR-13

ID 1 ! i 1 ^ I s
CM

in 1 1
CM 1
*T j | 1 M ! ! 1 * I
o
CM 1 1 i

1 t
!

1 ! N
CM | i j | I
CM ! i ; t i
*— 14 N 1
CM 1 {

O t i
CM ! 1
O i i ! j 1

< o

•— 1 i 1 1 i
CO

! 4 i MM
O CD C-. i [i '! i

£ I 5 "

t" ! ! 1 !
(D i | 4 |
in i j 1

«c5
T— ! i
« ! i]

O CO
T— ! I 1

« 3 n | s !
2> co T- ! i. !
12 CM 1 1 j
>>E

T~ i s
T— i

JC CD

cu <»

> CO

1-
i 1

o < < 4" i 1
en •4

t

l 1
u o l »

th
et

l
p

ila
tl

CO

i

5 C °- 5 >. o
1^ _ 1 i

I o
ID < 4 s i
m i
rr i
CO | i
CM 1 i

i
•- * i

CO T3

c
a d

CD

o e
a M

c CO
CD
1-

I—
o

e 3 CD o c 2 K

(0
•
c
o

2
e
o

g

o
CD

'5"

<
CD
CD

JZ
\- <°.

c
o >
C
co

o
CO 2
CO >

UJ

e
g
CO
3

co > CO

Q.
E
o
o
CD

JZ

CD >
o
JC o
CO

0>
•

3

CO "O O
e
CO
o

co
E

CO

.2
(0
5
CD

c
co

UJ

CD

CD

rx
CD

Q.
CD

23
CD

s UJ
> eg

to
V) o

co

x: o
c 1 >

CD

c
u. 6 CD <

u.

CD o £} r- CD CD w s. T3

co
C3

o
Q.

0)

e
3

2 to
UJ

c
CO

0_

CD

CO

O

X) 6
CO
CD
E

o
CD
a.

CO
c
<

i
CD

> o
ct

~ cvi ci « IT) co r^ CO cri o

Figure 4-1: Hypothetical Milestone Chart

CMU/SEI-89-TR-13 31

The schedule and budget for the planning process are highly dependent on the level of ef-
fort allocated for the evaluation process. As a general rule of thumb, it may be prudent to
allow 25% of the total effort to the planning steps. Creating the testbed is highly dependent
on what is already in place and the degree of variability permitted in the decision. If the host
already exists, then little time is required to evaluate, select, procure, install, and check out
the host. If the target already exists in the testbed, then this is also a zero cost item. Bring-
ing an unknown target into a testbed and connecting it to an existing host system can take
many months of effort. Acquiring and installing the test software for the testbed will depend
greatly on the software chosen. At a minimum, the cost is nearly zero and the time is prob-
ably at least a couple of weeks. At the maximum, the cost is several thousand dollars and
the time required may be more than a month, including setup and checkout.

Performing the evaluation also is highly variable. Very little of significance could be accom-
plished in under two weeks' effort. More realistic is a couple of months to run the tests,
complete the checklists, and contact the vendors and users. Certainly something is to be
learned about the test technology by executing the tests, but there are no significant gains
after the second or third evaluation. Analysis of the results can be very time-consuming, but
can be facilitated by appropriate software. For example, the ACEC suite has a good pro-
gram for comparing the benchmark results from several compilation systems. This step de-
pends on the level of overall effort, but a couple of weeks is probably again a minimum.
Finally, if the data are well presented and analyzed, the selection takes minimal effort. How-
ever, the procurement, installation, checkout, and acceptance may take as much as several
months.

One strategy that has proved effective in at least one case is to defer the final selection of a
compilation system until top-level design is almost complete. Not only does this allow more
time for compilers to mature, but it also provides time for some prototypes or project-specific
tests to be developed and run on the candidate systems.

In summary, the scheduling and budgetary impact of compiler evaluation and selection is
highly dependent on the situation. It can take from one to six months or more to complete
with one to three people. The costs can vary from very little to tens of thousands of dollars
when personnel costs are factored in. What is important to understand are the tradeoffs
between the costs of doing a thorough evaluation and the long-term costs to a project of
choosing an unacceptable, or less than desirable, compilation system.

32 CMU/SEI-89-TR-13

4.6. Defining Requirements and Criteria

The requirements for evaluation and criteria for selection are extremely depend-
ent upon the application. Requirements that are appropriate for a particular
project must be developed by project personnel. This should be done with a
balance between high-level system criteria and low-level technical criteria.
There should also be a balance between development environment, runtime
environment, and business criteria.

This handbook does not attempt to define requirements and criteria for compiler evaluation
and selection because every application should have its own. Categories of criteria can be
specified safely, but it should be recognized that the depth and breadth of each category will
be different for each project and different depending on the time and resources available for
the evaluation and selection process. Chapters 5, 6, and 7, together with Section 4.8,
should provide the consumer with the bulk of the criteria categories that should be covered
by an evaluation. Chapter 9 gives pointers to some of the technology to help evaluate the
various criteria with respect to particular compilation technology.

One real danger of this step of the process is the overspecification of requirements. Rarely
will one know a priori all the functional, performance, and support requirements of a compi-
lation system. Unless there is a known model of the system to be built, with accurate data
on the loads to be put on the system, and known interactions between components of the
system, it seems silly to get down to the level of specifying how long each feature of the Ada
language should take at run time. It is better to base a selection on a high-level criterion
rather than a low-level criterion because the interaction of various features is unknown. For
example, it would be better to specify for an MIS application that a certain file-processing
program execute in a certain amount of time rather than to specify the requirements for each
atomic action, such as accessing each record of the file.

It is unlikely that all the criteria for selection will receive equal weight in an evaluation.
Those who are quantitatively minded will want to score each criterion for each candidate
compilation system (on a scale of 0 to 100, for example,) and then weight each criterion (as
a percentage of unity). Then when all the weighted scores are added, the score for the
compilation system will also be based on a scale of 0 to 100. For those who are subjectively
minded, the process can be more informal, with a subjective rating being given to each com-
pilation system based on all the criteria. There is no single correct way to perform a rating
of products and none should be imposed.

4.7. Portability issues

In the selection of an Ada compiler, one portability issue is whether the appli-
cation code can be ported to another host or target system. This might happen
when a system is modernized. Another issue is whether the existing code can
be ported to another compilation system for the same target.

In the lifetime of some programs, it may be more likely that there will be a need to change a

CMU/SEI-89-TR-13 33

compilation system (for a given target system) than there will be to change a host or target
machine. Many machine upgrades fall into the category of "upward compatible" upgrades in
which a processor is replaced with one that is faster or one that has an extended or reduced
instruction set. The reason that there is some stability in instruction set architecture (ISA) is
that so much depends on the ISA that a change in the ISA would mean changing almost
every other aspect of the environment. This is true of both a host system and a target sys-
tem.

A change of the compilation system, on the other hand, can be undertaken without changing
the entire supporting environment. A change of compilation system may be required for a
number of reasons including:

• requirement for additional performance

• requirement for additional functionality

• lack of support from the vendor

• lack of development activity on the part of the vendor

If the vendor ceases operation, then the user faces the prospect of maintaining the compi-
lation system without vendor support or porting to a new compilation system.

It must be recognized by the consumer that highly tailored compilers may be the only way to
satisfy performance constraints, but that each special feature that is included may detract
from the portability to a new system. Thus, the advice for the consumer is to understand
whether the performance required can be achieved with a given compilation system without
using implementation-dependent features. If it cannot, then the user must be aware of the
portability constraints, isolate the implementation dependencies into a few small packages,
and carefully document them so that any port would be made easier.

4.8. Evaluating Vendors

The guidelines for evaluating vendors of Ada compilation systems are not very
different from the guidelines used to evaluate vendors of other hardware and
software products. There should be some reasonable assurance that the com-
pany is financially healthy and that it will be able to service and support the
product it is selling. Responsiveness of the vendor to error reports as well as to
requests for tailoring the compiler should be consistent with the needs of the
project.

The following issues are important for the evaluation of an Ada compilation system vendor:

• Corporate structure: Is the developer of the product the same as the dis-
tributor of the product? If not, what is the relationship between the two compa-
nies? Is the distributor knowledgeable about the product? Is the entire compi-
lation system produced by one company? If not, how are problems reported
and fixed?

• Corporate performance: Has the vendor produced product releases on
schedule? Is the vendor responsive to requests for information? Does the ven-
dor provide an appropriate customer interface?

34 CMU/SEI-89-TR-13

• Product lines: How important are Ada compilation systems to the company's
overall business? Does the company specialize in a particular hardware
domain or provide rehostable and retargetable compilation systems?

• Corporate health: What is the primary business of the vendor? How long has
the company been in business? Is it profitable? Is the number of employees
increasing or decreasing? How many employees are working on technical de-
velopment? On supporting the product?

• Tailoring policies: Is the vendor willing and able to tailor the compiler for spe-
cific application requirements? If so, what will be the cost and schedule? How
do the changes affect the maintenance agreement?

• Support policies: Is there local product support? Is there a telephone hot-
line? What is the escalation policy for problems? How are problems reported
and tracked? What are maintenance response times? Are bugs fixed? How
often are there new releases? Is there an online database of reported prob-
lems? Is it available to customers? Is there a product newsletter? Are there
user groups? Are there electronic bulletin boards for customers? Can support
personnel be contacted by electronic mail systems? Are previous versions of
the product supported? What does the maintenance provide? Are there any
response guarantees for reported errors?

• Pricing policies: How much does the product cost? How does the price de-
pend on the characteristics of the host? The target? Are discounts available
for quantity purchases? What is the cost of maintenance?

• Runtime royalties: Does the vendor charge a royalty for each copy of an ap-
plication program (with the vendor's runtime system) that is deployed on a sep-
arate target system? If so, what are the procedures for accounting for and col-
lecting this royalty? Note: This royalty could be by far the largest component
of cost for applications that are duplicated in thousands of systems (such as
many weapon systems). It is important to understand the implications of these
royalties before selecting a vendor.

• Source code: Is source code available for the compiler and runtime system?
If so, what are the cost and licensing terms? If not, can the source code be put
in escrow so that if the company goes out of business, the application system
developer has recourse to solve problems and fix bugs?

• Contractual issues: Can the product be purchased or only leased? If it can-
not be purchased, is the license perpetual or for a fixed term? If fixed term,
what are the renewal terms? What happens in the event that maintenance has
been dropped?

• References: Has the compilation system been used to develop software sys-
tems similar to the applications being considered by the buyer? If so, is the
vendor willing to provide several references? Note: The buyer should insist on
talking to technical references, not just project managers.

It should be noted that the AES contains an extensive "vendor/implementor questionnaire"
that could be used for guidance in extracting important information about the vendor.

Vendors often emphasize future improvements to their products rather than their products
as they currently exist. Evaluators should be skeptical of promises and try to place more
weight on past performance. Significant improvements are difficult to achieve.

CMU7SEI-89-TR-13 35

4.9. Getting More Information

The appendices and the reference section of this handbook provide sources of additional
information. The most relevant and current information available in published form is con-
tained in two newsletters:

• Ada Information Clearinghouse Newsletter: Published roughly four times a
year by the Ada Information Clearinghouse for the Ada Joint Program Office,
this newsletter presents information on the AJPO, Ada usage, validated
compilers, and Ada policy and events.

• Ada-JOVIAL Newsletter: Published quarterly by the Language Control Facility
at Wright Patterson AFB for the Ada Joint Users Group (AdaJUG), this newslet-
ter provides articles, news, and announcements about both Ada and JOVIAL
tools and compilers. It contains up-to-date information about Ada compilers
and vendor points of contact.

Refer to Appendix B for addresses and contact information for the newsletters. For online
information that may be even more up-to-date than what is contained in the newsletters,
refer to Appendix C.

36 CMU7SEI-89-TR-13

5. Compile/Link-Time Issues
The time and space efficiency of the generated code on the target system is
often the primary criteria for Ada compiler selection. But there are other impor-
tant criteria as well. The functionality and performance of the compiler and
linker are selection criteria that cannot be overlooked.

The purpose of this chapter is to raise the compile/link-time issues of importance to a com-
piler buyer. Each of the issues is described in a general way and some of the major criteria
are identified. An exhaustive list of possible criteria is not given since such a list is highly
dependent on the application. Rather, the reader is given an appreciation for the issues and
provided references to more detailed information. Some compilers perform some linking
operations while others do not. Further information about linkers and loaders is contained in
Section 7.2.

5.1. Compiler Options and Special Features

Compiler vendors are free to provide a number of features and options not re-
quired by the standard. These include compiler switches, pragmas, attributes,
and other machine-dependent characteristics. All implementation-dependent
features must appear in Appendix F of a vendor's reference manual.

5.1.1. Compiler Options
The ANSI/MIL-STD-1815A defines the syntax and semantics of the Ada language, but the
compiler vendor is given latitude in providing options or features that are not required by the
standard. There are two primary ways that the user can specify directions to the compiler.
The first is through a directive to the programming environment when the compiler is in-
voked and the second is through a language construct called a pragma. It is possible that
compiler directives and pragmas may give conflicting information. It is therefore important to
consult the compiler documentation to determine which is the overriding direction.

The following list gives some of the compiler options that are often provided as directives
when the compiler is invoked:

• generation of source code and machine code listings

• generation of machine code output

• specification of program libraries to search for input

• control of the printing, selection, and disposition of diagnostics
• control of the level of debugging requested

• control of the level of optimization requested

• control of ability to suppress runtime checks
• control of conditional compilation
• ability to terminate after syntax checking
• ability to terminate after some predefined error limit
• ability to print timing information about the compilation

CMU/SEI-89-TR-13 37

5.1.2. Pragmas
Pragmas are used to convey information to the compiler. A pragma starts with the reserved
word pragma followed by an identifier that is the name of the pragma and optionally by
parameters. There are two kinds of language pragmas: those that are predefined in the RM
and those that are defined by the compiler vendor. There are 14 predefined pragmas de-
fined in Annex B of the RM. While it is true that RM 2.8(7) states "pragmas defined by the
language ... must be supported by every implementation," the fact is that the level of support
varies from implementation to implementation. For example, implementations differ in the
languages to which they interface, the number of priority levels they support, and whether
CONTROLLED or SHARED have any effect at all. In most cases, the validation suite veri-
fies only that the pragma is recognized by the compiler, not that it has any effect. Therefore,
it is extremely important in an evaluation effort to determine what pragmas are important.
For example, certain pragmas (such as INLINE) may be particularly important to particular
design approaches (such as object oriented design). The user documentation should be
checked to verify the level of support provided for all predefined pragmas. It is highly desir-
able for the implementation to follow the recommendation of RM 2.8(11) that
"implementations issue warnings for pragmas that are not recognized and therefore
ignored."

Pragmas that are defined by the vendor are provided by the implementations to provide
additional performance, to make the job of the implementor easier, or to allow use of addi-
tional functionality of the operating environment. For the sake of portability, a compiler may
ignore a pragma if it is not recognized. Implementation-defined pragmas must be described
in Appendix F of the implementor's reference manual. The existence of implementation-
defined pragmas is becoming increasingly more important for improving performance of
compilers and should be considered very carefully in evaluation efforts. However, these
pragmas are not generally portable, and they cannot be tested using standard benchmark
test suites.

The following list gives some of the areas in which compiler vendors provide
implementation-defined pragmas:

• provision of interfaces to operating system service calls

• provision of interfaces to Ada objects and routines from other languages
(import/export)

• choice of representation for predefined types in package SYSTEM

• ability to suppress all runtime checks
• specification of task scheduling discipline (e.g., time slicing)

• control of storage allocation for tasks

• ability to specify restricted use of interrupt service routines to permit fast inter-
rupt handling

• ability to share code for generic bodies under certain conditions
• machine-dependent specification of register conventions and calling conven-

tions

38 CMU/SEI-89-TR-13

It should be noted that vendors provide functionality in different ways and that what one
vendor provides by a language pragma, another vendor might supply as a compiler option
or a customized package.

5.1.3. Attributes
Attributes are basic operations applied to an entity given by a prefix. Like pragmas, there
are a number of attributes defined by the language standard (Annex A). Unlike pragmas,
attributes must have the effect described in the RM. Furthermore, the implementation may
provide implementation-defined attributes as long as the attribute designator is not the same
as any language-defined attribute. The implementation-defined attributes must be de-
scribed in Appendix F of the implementor's reference manual. Implementation-dependent
attributes are much less prevalent than implementation-dependent pragmas and primarily
address the problem of extracting, during run time, more information about the machine rep-
resentation of Ada objects.

5.1.4. Other Important Compiler Features
There are a number of other important compiler characteristics that should be evaluated by
a prospective user. It is not within the scope of this handbook to treat them in detail. Many
are only of interest for embedded real-time systems. It is important that the vendor provide
comprehensive documentation on the areas of interest for a particular application. The fol-
lowing list provides some of the areas in which there is a degree of variability from compiler
to compiler. All the information about these areas is required to appear in Appendix F of the
implementor's reference manual.

• Predefined language environment: Package STANDARD (defined in Appen-
dix C of the RM) contains all predefined identifiers of the language and any
implementation-defined types such as SHORTJNTEGER, LONGJNTEGER,
SHORT_FLOAT, and LONG_FLOAT. (Note that some implementations may
not use these names as their predefined types, although they ought to.)

• Specification of the package SYSTEM: This Ada package contains defini-
tions of certain configuration-dependent characteristics, such as the sizes of in-
tegers and floating point numbers and the resolution of the clock.

• Restrictions on representation clauses: Ada defines length, enumeration,
record representation, and address representation clauses. The extent to
which an implementation must support these features is currently changing as
the validation suite is being upgraded.

• Conventions used for implementation-generated names denoting imple-
mentation components in record representation clauses: RM 13.4(8) al-
lows the implementation to define these conventions.

• Interpretation of expressions appearing In address clauses: RM 13.5(3)
permits latitude for interpreting a value of type ADDRESS.

• Restrictions on unchecked conversions: Implementations may place
restrictions on sizes or types of objects to be converted.

• Implementation-dependent characteristics of input/output packages:
Some implementations aimed at specific application areas such as MIS may
provide more sophisticated I/O packages which still have implementation-
dependent characteristics.

CMU/SEI-89-TR-13 39

• Low-level input/output: RM 14.6 defines the requirements for low-level
input/output. Since the kinds and formats of the control information will depend
on the physical characteristics of the machine and the device, the parameter
types of the procedures are implementation-defined. Some implementations
may provide alternative packages that interface with operating system services
for this purpose.

• Machine code Insertions: RM 13.8 defines a mechanism for inserting ma-
chine code in an Ada program using a package MACHINE_CODE. An imple-
mentation is not required to provide this package.

5.2. Compile/Link-Time Performance

The amount of time and disk space required to compile and link Ada programs
is important for extremely large Ada projects. Many compile/link-time perfor-
mance issues cannot be simply resolved by buying a larger computer. The dis-
tinction between compiling and linking in Ada is often blurred because some
vendors postpone some operations such as generic instantiation until link time
while others perform link operations at compile time.

The amount of time (and space) that it takes to compile an Ada program is of paramount
importance during the development phase and may be less important during the mainte-
nance phase. As second and third generation compilers appear, expectations have been
raised for the performance of production quality compilers. Unfortunately, the evaluation
standards that are used are unsatisfactory for comparing performance. Typically, compiler
vendors will quote figures giving the speed of a compiler in terms of lines of code compiled
per minute. Very rarely do they quote the requirements for disk and memory for the compi-
lation.

Unfortunately, the "lines of code per minute" metric is not well defined and may vary greatly
depending on the definition and the programs being compiled. In fact, Firesmith [16] has
shown that the number of lines in an Ada program varies by a factor of six, depending on
the definition of a line of code. Among the factors influencing the "lines of code per minute"
metric are the following:

• The machine and operating system (this should always be stated).

• The definition of a line of code (usually defined as the number of carriage
returns or the number of Ada statements).

• The size of program (small programs may compile more slowly and generate
more code per line).

• The number of comments and blank lines (if carriage returns are used for lines).
• The type of statements (wide variation exists in the size of Ada components

and the difficulty of compiling those components).

• The compiler options selected (optimizations and debugging options generally
increase compile time).

• The number of subunits and generics (these, in particular, may have a great
impact on compiler performance).

• The definition of time (wall clock time includes I/O waits while CPU time does
not).

"40 CMU/SEI-89-TR-13

• The operating system parameters (e.g., working set size).

• The size and state of the program library (how fragmented).

Vendor claims about compiler performance should be viewed with circumspection. Even if a
vendor provides all the information listed above, it is difficult to evaluate unless compared to
other compilers under exactly the same conditions. The evaluator is strongly advised of the
need for controlled experimentation. Instead of being interested in a single number for time
characteristics, the evaluator should be interested in how the time characteristics vary with
respect to the parameters listed above. Furthermore, the programs that are used to dis-
cover these relationships should be typical of the programs that will be developed using the
compilation system.

Among the questions to be answered are the following:

• How does compilation time vary with size of program, complexity of program,
unit dependencies, and optimizations selected?

• Can the compiler be invoked simultaneously by more than one user?
• How does compilation time vary with system load (number of users)?

• How much disk and memory space is required for a minimal compilation?

• How much do disk and memory space requirements vary with the size of pro-
gram, complexity of program, and other factors?

• Does the compilation system clean up after itself with respect to temporary files
on disk?

• How much space is required for all the file objects derived from the source file
during compilation and to what extent can these derived objects be controlled in
size?

• Are there both batch and interactive modes and if so, how do they differ?

• Are there provisions to avoid unnecessary compilation or for incremental compi-
lation (see Section 7.1.1)?

Because implementors can partition the effort of pre-runtime activities differently among the
compiler, library manager, linker, and loader it is important for evaluators to understand and
compensate for the tradeoffs. If improved compiler performance is gained at the expense of
greater link times or vice versa, this should be made apparent in the evaluation results.

5.3. Compiler Capacity and Limitations

It is possible that some validated Ada compiler can compile only small pro-
grams. (In fact, some Ada compilers have been "crippled" so that they may be
sold for a lower price to educational institutions.) For large projects it is impor-
tant to know what the limitations of a compiler are in terms of number of state-
ments, units, and identifiers, as well as the maximum size of critical data struc-
tures.

The Uniformity Rapporteur Group (URG) of ISO WG9 has begun to define some standards
to which Ada implementations ought to adhere, including minimum capacities that ought to

CMU7SEI-89-TR-13 41

be provided by Ada compilers. What is desired is that none of the capacities are unreason-
ably small so as to hamper software development. While it is reasonable for vendors to sell
restricted versions of compilers for educational purposes, it is not reasonable to provide
highly restrictive versions for general use. The following list represents some of the more
important implementation limits that the user should find documented in the vendor docu-
mentation. In the absence of user documentation, the Ada Evaluation System (see Section
9.4) contains a battery of tests for reasonable limits on most of the entities listed below.

• lines in a compilation or compilation unit

• compilation units in a compile

• wlthed or used units in a compilation unit

• packages, subprograms, and subunits in a compilation unit
• characters in an identifier

• identifiers in a program

• entries in a task

• static nesting depth for subprograms, loops, blocks, packages, subunits,
accept statements, case statements, genetics, If statements, and aggregates

• static nesting depth of parentheses in expressions

• characters in a line

• dimensions and elements in an array

• elements in an aggregate

• formal parameters in an entry, subprogram, or generic declaration
• enumeration literals in an enumeration type definition
• alternatives in a case statement or select statement
• elsif parts in an if statement

• characters in a string
• bits in an object

• discriminants in a record type
• number of instantiations of a generic subprogram or package

5.4. Human Factors

The productivity of the user of a compiler is strongly influenced by the user in-
terface provided by the compiler. This includes how the compiler and associ-
ated tools are invoked, the quality of the error messages provided, the manner
in which the compiler responds to errors, and the quality of the documentation.
These qualitative issues can have a greater influence on productivity than
quantitative measures, such as compile time, do.

Human factors are often described in terms of ease of learning and ease of use. In order for
a system to be easy to learn, it should be similar to other systems that are already learned.
For example, if one is an expert using the DEC VAX/VMS operating system, then a compi-
lation system that uses the same mechanisms to invoke tools and specify parameters will be
easier to learn than one that uses UNIX conventions. The same is true of the style of the

42 CMU7SEI-89-TR-13

debugger, the file management tools, the diagnostics, and the user documentation. In order
for a system to be easy to use, it must be helpful in uncovering errors early in the devel-
opment process and provide succinct, but accurate information about the source of errors.
The following sections list some of the areas that must be considered in evaluating the user
interface of the compilation system.

5.4.1. Informational Outputs and Diagnostics
The compilation system provides information about the compilation as well as information
about errors.

• Compiler listing: Is a cross reference listing giving point of definition and all
uses available for all identifiers? Can the origin of withed objects be deter-
mined? Are all options in effect clearly listed? Is the version of the compiler
available on the listing? Is the total size of the code and data given?

• Assembler listing: Is it available? Is it interleaved with the source? Is it clear
and concise? Can a mapping of the data objects and subprograms be ob-
tained? Is linking information shown?

• Error reporting: How many severity levels are there for error messages?
How accurate are the error messages at identifying the source of the error?
How helpful are the error messages in fixing the error? Can more information
be obtained about the error either from the documentation or interactively? Are
error messages keyed to the RM?

• Warnings: Does the compiler provide warnings for implementation-dependent
features and non-portable code? Does it warn about potential runtime errors
such as infinite loops, uninitialized variables, and unreachable code? Are prag-
mas that have no effect flagged? Are unassigned out parameters, un-
referenced In parameters, and functions without a terminating return flagged?

• Interactive help: Can a user get help on the use of the language and the com-
piler interactively? Is the RM online?

5.4.2. Error Recovery
The maximum amount of information should be derived from each compilation. A user be-
comes very frustrated if only one error can be detected in each compilation. The purpose of
error recovery at the compile phase is to continue in the face of errors to the maximum
extent possible and recover the context so that errors are not propagated through the com-
pilation. Systems might recommend corrections to errors or even try to correct errors when
directed to do so.

• Error recovery: Does the compiler terminate analysis of errors upon en-
countering difficult errors? Is there any attempt to correct simple errors such as
misspelled keywords? Does a single syntax error prevent semantic analysis?
Does a single error often cause a cascading of subsequent errors?

• Handling multiple compilation units: Does the compiler continue a compi-
lation if errors are found in a previous compilation unit? Are all legal compi-
lation units added to the program library?

CMU/SEI-89-TR-13 43

5.4.3. Documentation
Good hardcopy and interactive documentation is indispensable for ease of use and ease of
learning. Some characteristics of good documentation follow:

• Contents: The documentation set should include a definition of the function-
ality of the Ada compilation system, a user's guide that describes how to use
the system and the informational outputs, and a description of the runtime sys-
tem and its characteristics.

• Organization: There should be tables of contents and indices for each docu-
ment supplied. A master index is useful when there are multiple volumes.

• Style: The documentation set should be clear, concise, complete, and written
in plain English.

• Implementation dependencies: The documents should use color,
changebars, or some other technique to clearly distinguish those features that
are implementation-dependent.

• Appendix F: After the index, this is the most important part of the documen-
tation. It should be complete and in the order specified in the RM.

• Capacities and limitations: Information about the compile-time and
execution-time capacities and limitations should be clearly stated.

• Implementation options: The documents should give as much non-proprietary
information as possible on the internal structure of the compiler and runtime
system and the choices made by the compiler vendor to enhance functionality
and performance. Performance characteristics of critical runtime operations as
a function of the variables that influence timing should also be provided.

• Error messages: There should be a clear explanation of each error message
reported by the compilation system with possible remedies.

• Installation Instructions: The documentation should have installation instruc-
tions with recommended system parameters for users and sysgen parameters
for the system.

5.5. Implementation Options

Many algorithms exist for accomplishing the requirements specified in the RM.
For example, the method of choosing which task to run from a group of ready
tasks is determined by the implementor. The actual algorithms are often diffi-
cult to determine by testing. The evaluator should attempt to learn how certain
critical operations are carried out in a particular compiler. This information
should be provided in vendor documentation, but often is not.

There are many instances where the algorithm for specifying how to implement a given Ada
function is left to the discretion of the implementor. Examples include which data structures
to use for composite data types, whether generic bodies use shared code or not, or how the
case statement is implemented. The URG of ISO WG9 is compiling a list of implementation
options along with current practice. Such a list provides the evaluator with a baseline for
comparing systems.

44 CMU/SEI-89-TR-13

Some of the choices have little effect on the performance of the Ada compiler either at com-
pile time or at run time. Other choices may have significant impacts. Sometimes the ven-
dors treat this information as proprietary since they may feel that a certain technique gives
them a competitive advantage. Certainly a highly optimizing compiler is valuable for real-
time applications. The job for an evaluator is to determine those features that are critical to
the application and then pressure the vendor to provide the information that will facilitate
making an informed decision.

Some of the important compile-time, implementation-dependent issues being considered by
the URG include:

• minimum requirements for arithmetic types

• minimum source line lengths
• file name conventions
• recommendations for pragmas SHARED, SUPPRESS, INTERFACE

The URG issues are most important to those applications that either have specialized or
unusual requirements or that will be ported to other compilation systems.

CMU/SEI-89-TR-13 45

6. Execution-Time Issues

The time and space efficiency of the code generated by the Ada compiler as
well as the time and space efficiency of the mntime system must be carefully
evaluated. Other considerations are runtime system capacity and
implementation-dependent functionality provided at run time.

6.1. The Runtime System Model
Three execution-time models can be defined for Ada programs. First, there is a
"host-based" environment in which the Ada code can make use of operating
system services. Second, there is a "bare machine" environment in which all
the execution-time software is provided by the compilation system. Third, there
is an "enhanced bare machine environment" in which some of the execution-
time services may be provided by a third party "executive." The issues are:
how well does the runtime system code match user requirements and how well
prepared are vendors of compilation systems to provide executive system func-
tionality and performance?

Two components must be considered in an evaluation of the runtime performance of an Ada
compilation system: the code that is generated from the application program and the code
that provides the environment in which the application program runs. The latter is called
"the Ada runtime system" and is provided by the Ada compilation system. The Ada runtime
system provides the resource management for the Ada program. Among other functions, it
must provide the following services: memory management, task management, time man-
agement, exception management, and I/O management. These services may be many
times more costly in performance (time and space) than the code generated by the appli-
cation program.

Further complication is that there is no clear-cut distinction made by implementors as to
what functions cause code to be generated and what functions cause runtime system calls.
For example, string concatenation can be done by in-line code or by a runtime system call.
These decisions impact the speed of the operation as well as the size of the runtime. There
are obvious tradeoffs between the size of the runtime with the size and efficiency of the
generated code. Therefore, it is important to distinguish in any evaluation between the gen-
erated code and the runtime system and the tradeoffs involved.

Ada compilation systems whose generated code runs on the host development system
("host-based compilers") usually make heavy use of the services provided by the underlying
operating system. In these cases, the runtime performance of the Ada system is unalterably
tied to the performance of the underlying operating system and the manner in which the Ada
system interfaces with that operating system. The compiler vendor generally has no choice
but to use the underlying operating system for these services and the evaluator usually has
no choice but to evaluate the compilation system in the context of the operating system.

Ada compilation systems whose generated code runs on targets different from the host de-
velopment system ("cross compilers") have two alternatives. Either the Ada compilation

CMU7SEI-89-TR-13 47

system can provide the entire runtime system or the runtime system can be provided to run
on top of an executive. In either case, the full semantics of the Ada language must be
provided. In the first case (a "bare machine environment"), the runtime system must be
tailored to a specific computer because of differences in memory, clocks, and interrupt struc-
tures. In the second case (an "enhanced bare machine environment"), the runtime system
must be tailored to the interfaces of the executive which, in turn, is tailored to a specific
computer system.

Some of the components that vendors distinguish are the following:

• executive or kernel

• memory management

• tasking management

• exception management

• interrupt management
• predefined library packages (I/O, SYSTEM, CALENDAR, etc.)

• vendor-supplied library packages (math, bindings for COTS databases and
graphics, etc.)

The advantages of a bare machine implementation are that the vendor has complete control
and can provide a highly optimized system. The disadvantages of a bare machine are that
the compiler vendor may have less experience in performing some of the executive func-
tions than an executive system vendor and therefore have a less mature product. For a
more complete exposition of the concept of a runtime environment and how this concept
differs in Ada as compared to other languages, the reader is referred to an article entitled "A
Framework for Describing Ada Runtime Environments" [2]. For information on selecting,
configuring, and using an Ada runtime system, as well as checklists and evaluations of spe-
cific Ada runtime systems, the reader is referred to [34]. Figure 6-1 gives a very simplified
view of the three models of Ada runtime environments.

Small, high performance, real-time executives have been in existence for a number of years,
both as commercial products and as company proprietary products. Ada runtime systems
for bare targets have been available for only a few years. Providers of real-time executives
are extremely cognizant of time-critical constraints of interrupt handling and resource man-
agement. Compiler vendors may have less experience in these areas and they have not
been effective in merging the experience bases of compiler writing with executive writing. It
is therefore important to evaluate the overall performance of the execution-time character-
istics of Ada programs. The remainder of this chapter gives some of the characteristics that
must be considered in an evaluation.

48 CMU/SEI-89-TR-13

Application

General
Purpose
Self-Targeted
Environment
(Host Based)

Bare
Machine
Environment

Enhanced
Bare
Machine
Environment

Full-Function

Runtime
System &
Predefined
Packages

^

Partial-Function
Runtime
System &
Predefined
Packages

Operating
System

Real-Time
Executive

Machine
V?

(A
V?. m w.

22 m
L_J Code supplied by user

SS3 Code supplied by the compilation system vendor

I Code supplied by the operating system or executive system vendor

7A /A Hardware

Figure 6-1: Three Models of Ada Runtime Configuration

CMU/SEI-89-TR-13 49

6.2. Time Efficiency of Generated Code

The efficiency of the code generated by the compiler may be investigated by
inspection and testing. Inspection of code generated by simple programs pro-
vides anecdotal evidence of the quality and efficiency of the code. Much infor-
mation can be gained from a few well chosen examples. Benchmarking, on the
other hand, can be used in a "black box" fashion for more exhaustive and auto-
mated testing. Numerous optimizations are available to improve the efficiency
of the generated code.

6.2.1. Inspection
Much can be learned by inspecting the assembly listing of the code generated by an Ada
compilation system for some simple Ada programs. This strategy can be used to obtain
approximate measures of the quality of the code generator and to determine the efficiency
of various Ada features. It can also provide insights to the overall code generation strategy
of the compiler. Required for code inspection are an assembly listing of the generated code,
knowledge of the instruction set of the target computer, understanding of code generation
techniques, and understanding of the requirements of the Ada language. This activity
should be undertaken only by experienced technical people.

The following examples were presented at AdaJUG by Robert Firth [17] in December 1988.
They were used to make some observations and recommendations about Ada code quality.
The first example, shown in Figure 6-2, is designed to test the code for several operations
on a simple record of three integer components. The operations are assignment, com-
parison, and aggregate assignment. By comparing the generated code with optimal as-
sembler coding, observations can be made about the ability to take advantage of word align-
ments, optimal use of the instruction set architecture (ISA), use of unnecessary variables,
use of unnecessary instructions, and unnecessary tests of impossible conditions.

type Triple is record
x,y,z : integer;

•nd record;
— static aggregate assignment

tconst : constant Triple :• Triple' (1,2,3);
tl,t2 : Triple;

tl ;m tconst; - record assignment

if tl«t2 then .. — record comparison

tl :* Triple'(tl .x,tl.y,tl.x); -- record construction

Figure 6-2: Simple Test for Complex Types

A second example was the "if X in 1 ..10 then ..." code fragment. Firth observed that one
compiler was generating a Boolean value unnecessarily, that there were numerous unnec-
essary instructions, and that the ISA was not used effectively. The underlying cause

"50 CMU/SEI-89-TR-13

seemed to be a series of expansions of higher-level abstraction idioms into lower-level ones,
with loss of efficiency at each stage.

A third example, shown in Figure 6-3, was used to observe the code generated by a simple
procedure that copies a constant value into its parameter. This example can be used to
observe conventions for parameter passing, stack handling, and register saving and restor-
ing. In this particular example it was observed that the nineteen instructions on one partic-
ular ISA could be reduced to three by a number of optimizations.

procedure
begin

X :- 1;
and P;

Figure 6-3:

P (X : in out Intagar)

Simple Test of Procedure

is

Inspection of generated code should not generally be used as an exhaustive testing tech-
nique, but it is effective for making limited but useful comparisons of different compilers for
the same ISA. Additional simple tests can be used for the code generated by exceptions,
generics, declarations, and many other Ada features.

6.2.2. Testing
The second method of determining the efficiency of the generated code is to develop black
box tests called benchmarks. This technique is less dependent upon the target machine
than is inspecting assembly code and offers a systematic and semi-portable way of observ-
ing efficiency. However, it is subject to the caveats described in Chapter 8. Testing can be
said to answer the "what" of the efficiency of the generated code, but does not answer the
"why," as inspection does.

Each individual Ada language feature takes a certain amount of time to execute if it is
treated in isolation. However, it is sometimes difficult to measure these times (because they
are so short) and the time in isolation may not be relevant when the feature is used in com-
bination with other language features. Also, the performance of each individual Ada feature
may be a combination of the performance of the generated code and the performance of the
runtime system. The more complex an Ada feature, the greater the chances that there will
be some effect by the runtime system. Among the features that are not likely to generate
calls to the runtime system are the following:

• arithmetic and logical expressions
• selection statements (if and case)
• loops
• subprogram calls
• selection from and assignment to composite data structures

CMU7SEI-89-TR-13 51

Each of the above operations has thousands of alternative forms depending on the number
of parameters, the size and complexity of the objects, and the levels of nesting. For ex-
ample, it makes little sense to ask how long it takes to complete a subroutine call unless the
number of parameters, their types, and their direction are also known. As a general ex-
ercise, the benchmarking of many forms of given Ada features quickly reaches a point of
diminishing returns unless the user can characterize an application very precisely. It is bet-
ter to get some general feeling for performance and perhaps use fine-grained tests for
troubleshooting or special investigations.

Among the features that are likely to generate calls to the runtime system are:

• dynamic storage allocation and deallocation

• elaboration of data objects

• task creation and termination

• rendezvous

• delay

• input and output
• exception handling

• interrupts

These features can also be measured with the so-called language feature tests, and the
number of parameters and combinations is just as great as those described above. The
difference in this case is that the features are more opaque to the user. Whereas in the
former case the evaluator could see precisely what is happening from an assembly lan-
guage listing of the program, in the case of these Ada features, such an investigation will
lead to a call to the runtime system. Unless the user has a source code license to the
runtime system, the code that is being executed is subject to scrutiny only if the machine
code is disassembled. Disassembled machine code is often difficult to interpret.

Fine-grained tests may also be useful for establishing whether the runtime system exhibits
deterministic behavior. To accomplish this, however, the instrumentation must include high
precision timing capability so that each instance of execution can be timed rather than
averaged (see Sections 8.3 and 8.4).

6.2.3. Optimizations Supported
Many different techniques are available to compiler vendors for improving the efficiency of
generated code. It is important for the evaluator to decide which of many potential optimiza-
tions are critical to the application and to test to ensure that these options are provided in
the generated code. There are many opportunities for optimization in Ada, as there are in
all programming languages. The RM gives the rules in Sections 10.6 and 11.6. Other sug-
gestions are provided by the Ada Implementers' Guide [24] and the Ada Rationale [26].
Since Ada is a complex language, a highly optimized compiler is very important for perfor-
mance.

52 CMU7SEI-89-TR-13

Among the optimizations that can be performed are the following:

• Dead code elimination: Code that is unreachable may be removed.
• Folding: Operations on operands whose values are known at compile time

can be performed at compile time.

• Common subexpression elimination: Expressions that have previously been
evaluated need not be reevaluated (can be performed within statements, within
control structures, or globally).

• Strength reduction: Replacing complex, expensive operations with simple,
less-expensive operations; for example, replacing multiplication with addition
especially in the case of loop indices used in array subscripts.

• Expression simplification: Application of valid mathematical or logical laws
such as associativity, commutativity, multiplication by 1, etc. to simplify arith-
metic and logical operations.

• Cross-jumping: Merging of common code sequences at the end of conditional
branches.

• Code motion: Moving common code sequences so that they are not repeated
in conditional branches and loops and so that they do not cause unnecessary
jumps.

• Peephole: Reduction of short machine code sequences by passing a "window"
over the final object code to eliminate or collapse adjacent instructions, and to
substitute more efficient instructions wherever possible.

• Habermann-Nassi transformation: Technique for reducing the number of
context switches required to execute a rendezvous.

• In-lining: Short subprograms may be placed in-line even without a pragma.
• Static elaboration: Certain objects whose characteristics are known at com-

pile time can be elaborated before execution time.
• Global optimizations: Because of information in the Ada program library, op-

timizations can be performed across compilation units.

These are by no means all the optimization techniques that can be performed and are listed
here only to provide a representative list. The ACEC test suite described in Section 9.2 has
the most comprehensive set of tests for evaluation of optimization techniques. The ACEC
Reader's Guide [47] lists over 20 optimizations that are tested for in the ACEC test suite.

It is not always clear to an evaluator what, if any, optimizations are important to the evalu-
ation process. Optimization tests are very fine-grained and may provide little useful infor-
mation that is not provided by a coarse-grained test. Unless the user has some idea of a
model for what optimizations could be performed on typical application code, the information
on what optimizations are performed may be useless. For example, the user may wish to
determine the optimizations that can be performed on a case statement. On the other hand,
the number of optimizations performed may provide a good indication of what the general
level of optimization is. Furthermore, certain optimizations such as Habermann-Nassi and
automatic in-lining may be isolated as particularly important to an application that makes
heavy use of tasking and small subprograms respectively.

CMU/SEI-89-TR-13 53

Some implementations provide pragmas that facilitate optimization. The user specifies by a
pragma that certain coding restrictions will be adhered to. This allows the compiler to gener-
ate code that is less general than if no restrictions were imposed. Examples are pragmas
for fast interrupts or for certain kinds of tasking paradigms.

6.3. Space Efficiency of Generated Code

The size of the generated code is usually measured in terms of bytes per Ada
statement. Since this measure varies greatly from statement to statement, it is
important to have a uniform and representative program for which this measure
is applied. One should be very wary of "code expansion" ratios unless one
knows what is being measured.

As was described in Section 6.1, the amount of memory required by a Ada program de-
pends on two things: the object code generated by the compiler and the runtime system.
Each of these is discussed in turn. While it may seem that the runtime space required is a
constant (and often is in practice), it need not be, and the ability to configure the runtime
system is one of the most important requirements of space-limited applications.

From the point of view of an evaluator, the space requirements are probably best measured
with a representative application benchmark. In that way, the evaluator can use the code
expansion metric with a fixed program over a set of compilation systems. Code size in units
of STORAGE_UNITs can be measured in a portable way using the difference between the
'ADDRESS attribute of two labels. One problem with this solution is that not all implemen-
tations support the 'ADDRESS attribute. A machine-dependent solution is to write a simple
assembly language function that returns the address of its caller. Both these methods are
provided to compute code expansion sizes in the ACEC. Another problem with this tech-
nique is that code motion optimization may move some code. This is not a serious problem
at present since few implementations support code motion, but it may prove to be more
troublesome as optimizations become more sophisticated. Finally, the evaluator must be
cognizant of the effects of elaborated data structures and elaboration code.

54 CMU7SEI-89-TR-13

6.4. Time Efficiency of the Runtime System

The runtime system is code which is not generated from the application pro-
gram. Rather, it is code that is needed by the generated code to perform func-
tions such as task management, memory management, exception manage-
ment, and input/output. The efficiency of the runtime system can be more im-
portant than the efficiency of the generated code, because the user may have
less control over it.

6.4.1. Tasking
Tasking is the mechanism for concurrency in the Ada language. The performance of the
implementation of tasking will be of importance for those applications that choose to use
tasking and of little importance to those applications that choose not to use tasking. Among
the features critical to performance are:

• task creation and termination

• simple rendezvous (task synchronization)

• selective waits, conditional and timed entry calls

• delay statements

• abort statements
• priorities

Rendezvous can be accomplished with varying parameters, varying calling and accepting
alternatives, varying states of guards on selects, and varying synchronization conditions (the
order in which tasks get to their synchronization points).

Of particular importance to an evaluation of the tasking implementation is the performance
under load. How does performance degrade as more tasks become active in the system?
How does performance degrade when there are more tasks waiting on an entry? How does
performance degrade when there are more alternatives in a selective wait? How does per-
formance degrade with increased number and size of rendezvous parameters?

Other questions have to do with implementation dependencies. How many priority levels
are supported? How are alternatives selected from among the open alternatives? What
scheduling algorithm is used for tasks? How does the delay respond to a parameter that is
close to zero? What optimizations are performed with respect to tasking? The evaluator
should determine which questions are relevant for the application being developed and then
conduct tests to answer those questions.

6.4.2. Exception Handling
Exceptions are meant to be used for rare events. As such, the overhead for using excep-
tions should be low when the exceptions are not raised. Thus, the runtime system overhead
of entering and leaving a frame (block, subprogram, package, task unit, or generic unit) in
which an exception is defined should be very small.

The overhead of the following operations can be measured for both user-defined and
predefined exceptions:

CMU7SE1-89-TR-13 55

• declaring the exception
• raising the exception

• handling the exception

• propagating the exception

These operations are normally handled by the runtime system. They have many forms and
alternatives. Applications making heavy use of exceptions should carefully evaluate the
time and space of the exception mechanism.

6.4.3. Input and Output
I/O is provided in the language by means of predefined packages or vendor-supplied
packages. The predefined packages are SEQUENTIALJO and DIRECTJO (generic
packages) for I/O operations on files containing elements of a given type, TEXTJO for text
I/O, and LOW_LEVEL_IO for direct control of peripheral devices. Package
IO_EXCEPTIONS defines the exceptions needed by the I/O packages. Rarely will an appli-
cation use all these packages. For example, embedded applications may use only
LOW_LEVEL_IO. However, there are runtime overheads associated with all I/O operations
and these should be evaluated for the relevant packages. I/O performance is particularly
important to MIS applications.

Ada provides a FORM string parameter to CREATE and OPEN procedures that permits
users to specify values of such timing parameters in an implementation-dependent fashion.
The speed of programs using default values may not be optimal. The evaluator must be
concerned with setting these parameters in test programs to "reasonable" or "comparable"
values.

It should be noted that packages provided in the language standard were not expected to
yield high performance implementations. The intention was more to provide uniform ways of
performing a minimal set of I/O operations. As a result, I/O is implementation dependent
and there is considerable variation in I/O functionality and performance. For example, I/O
for unconstrained arrays and variant records is not always available. Parallelism of I/O in a
multitasking situation is implementation dependent. Finally, it should be noted that I/O
benchmarks may be influenced more by the timing parameters of I/O hardware and operat-
ing systems than by runtime software. Operating system effects include multiple buffers,
read-after-write checking, read-ahead, shared file access, disk allocation schemes, block
sizes, etc.

6.4.4. Elaboration
Elaboration is defined in RM 3.1(8) as the "process by which a declaration achieves its
effect." The time and space required to execute declarative items such as type declarations
and simple or complex object declarations can be measured with the same techniques used
for other language features as described above. The RM also states in the same paragraph
that elaboration "happens during program execution." However, it is well recognized that in
many instances, all the information that is needed to elaborate an Ada object is known at
compile time. Then valuable execution time can be saved if those declarations that can be

56 CMU/SEI-89-TR-13

elaborated at execution time are in fact "pre-elaborated." For example, arrays can be pre-
elaborated and initialized if the array dimensions and initial values are known at compile
time. This is a common, but by no means universal, optimization that can be performed at
compile time.

Library units must be elaborated in an order consistent with the partial ordering defined by
the unit dependencies. Pragma ELABORATE can be used to provide some user control
over the elaboration order defined by the partial ordering. Since the elaboration of a library
unit only happens once during program execution, it is not as easy to measure the time
required for elaboration of a library unit. This is because the operation cannot be placed in a
loop so the "dual loop" paradigm cannot be used for reliable timing measurements. Library
unit elaboration time may be highly variable from compiler to compiler and also from
elaboration to elaboration. If declarative items in the library unit have not been pre-
elaborated, the time on a host-based system may depend on the file system or the paging
system or both. The time required to allocate dynamic objects within library units is similar
to that required by explicitly invoking the "new" allocator. This can be time-consuming and
varies considerably between implementations.

The importance of elaboration to an evaluation is highly variable and depends on both the
application and programming style. One important consideration is how much of the
elaboration is done at compile time. For certain applications this can be an optimization that
overshadows some of the other optimizations because it is so pervasive. For real-time ap-
plications that need to restart often (forcing re-elaboration) or change modes by loading a
new program, the elaboration time may be critical and deserve careful attention. For non-
real-time applications, the elaboration time may be inconsequential. A heavily nested pro-
gramming style will force more elaboration at different points of program execution than a
flat program style where most of the elaboration activity will happen at the beginning of ex-
ecution. This means that the overhead of restarting a program may depend on the effi-
ciency of the implementation, the elaboration options provided, and the style of program-
ming. If elaboration is an important consideration, it should be systematically tested using
hardware monitors so that the design tradeoffs are understood.

6.5. Space Efficiency of the Runtime System

Memory space is required for the runtime system code (determined at load
time), for implicitly created entities, and for explicitly created entities. The
evaluator must be concerned with the amount of space required, the method of
allocation and deallocation, and the recovery of unused space.

Executing Ada programs require storage for code and data. The major areas of concern for
an evaluator are:

• static space for application code and data
• runtime system space

• space for implicitly created dynamic entities
• heap space for explicitly created dynamic objects

CMU/SEI-89-TR-13 57

Static space for application code and data is covered in Section 6.3. The other three cate-
gories are controlled by the runtime system. The space taken by the runtime system itself is
highly variable from compilation system to compilation system.

Storage requirements are especially important in embedded systems that do not have virtual
memory capability because the space taken by the runtime system is not available for appli-
cation code. A large runtime system may affect the program size to a much greater degree
than the size of the generated code. A full runtime system may require over 100K bytes of
storage, but a minimal one for a minimal function application program may require only a
kernel of 1K or 2K bytes. For space-critical applications, it is important to be able to con-
figure the runtime system either automatically or by hand. The straightforward method of
constructing a loadable program is to include the entire runtime system. If large parts of the
runtime system are unused, then this is extremely wasteful of space. Thus, it is necessary
to be able to include those portions of the runtime system that are used and to exclude
those parts that are not used. This is accomplished by a vendor-supplied "selective loader,"
as described in Section 7.2.

There are no automated or semi-automated ways to determine the size of the runtime sys-
tem. This information should be available from the load map produced by the linker or in the
vendor-supplied documentation.

Space is implicitly required for the following types of Ada operations:

• creation and initialization of tasks

• entry into a new scope
• handling of an exception

The runtime system must allocate and deallocate the space for these Ada operations as well
as for dynamic structures using allocators. The language does not define strict require-
ments for allocation and deallocation of space. Two possible hazards are the failure to
reclaim space and fragmentation of space. Programs compiled by some first generation
compilers were known to run out of space because certain Ada features allocated space
which was never returned to the free list. Since the ACVC does not systematically test for
performance or capacity, the test programs all ran to completion because they did not
exceed the storage limits, but real programs failed simply because they executed a simple
Ada feature multiple times. These problems can be uncovered either by running systematic
tests or by running large programs that continuously exercise a substantial subset of the
language. Some tests in the suites described in Chapter 9 do contain runtime capacity
tests.

Ada also permits objects to be explicitly created with an allocator and explicitly designated
as free with the predefined, generic, library procedure UNCHECKEDJDEALLOCATION (if
supported by the implementation). In addition to determining the efficiency of these opera-
tions for different kinds of objects, an evaluator should determine whether and under what
circumstances the implementation performs "garbage collection" (the recovery of unused
storage space). RM 4.8(7) states that "an implementation may (but need not) reclaim the
storage occupied by an object created by an allocator, once this object has become

58 CMU/SEI-89-TR-13

inaccessible." If there is no garbage collection, the user must restrict the amount of dynamic
storage allocated or provide a user-defined package for dynamic storage management. If
garbage collection is performed, it can be done dynamically (as each object is deallocated),
periodically (after a certain amount of time), or when the space pool is exhausted. Real-time
applications can rarely tolerate garbage collection at unpredictable times so the evaluator
should determine the impact of this runtime feature.

6.6. Features of the Runtime System

In addition to being fast and small, the Ada runtime system may have a number
of features that are required by certain application domains to meet functionality
or performance constraints.

There is an inevitable tradeoff between generality and performance. If the application
domain does not have severe performance constraints, then a general purpose runtime sys-
tem can serve the needs of a variety of applications. For embedded and real-time applica-
tions it may be necessary to sacrifice generality for additional performance. Some of the
functionality and performance features that may be useful for such applications are listed
below.

• Configurability: It is not the case that one runtime system is capable of ef-
ficiently supporting all application domains. Thus, to achieve maximum perfor-
mance it may be desirable to allow the user the flexibility of modifying the
character of the runtime system to suit application requirements. This is partic-
ularly important when application requirements change in the course of a proj-
ect. Among the characteristics that the user may wish to change are the timer
characteristics (SYSTEM.TICK), scheduling options, heap and stack sizes,
maximum number of tasks (if static), etc.

• Alternative tasking/synchronization support: It has been proposed, but by
no means universally accepted, that alternatives to the Ada tasking be provided
for applications having the most stringent timing constraints. Real-time execu-
tives have provided such operations for many years and it is a more familiar
paradigm for many real-time programmers. Operations include task creation,
deletion, suspension, and resumption as well as synchronization primitives im-
plemented as semaphores, mailboxes, or events.

• Distributed system support: There are a number of Ada implementations
that currently are supported on closely coupled (shared memory) distributed
systems. On the other hand, there are few, if any, runtime systems that provide
direct support for Ada programs running on a loosely coupled (non-shared
memory) systems. Runtime systems can provide support for federated sys-
tems in which separate Ada programs run on each node of a distributed system
or for a unified system in which a single Ada program runs on the entire net-
work.

• User "hooks": Some runtime systems provide a user the capability of gaining
control when certain operations are performed. This capability allows runtime
enhancements, performance monitoring, debugging, etc. For example, user
hooks could be provided for the task creation, task switching, or task deletion
runtime operations. This would give the user an opportunity to perform memory
management processing or to time the overhead of a task switch.

CMU/SEI-89-TR-13 59

• I/O support: Asynchronous I/O to physical devices must be supported for
many real-time applications. The runtime system should provide I/O support
that presents a device-independent interface to the user. The interface should
be configurable with respect to device types and provide the necessary mecha-
nism for applications to be notified of asynchronous I/O operation completion
and status.

• Co-processor support: The runtime system should make it possible to sup-
port special purpose co-processors for enhanced performance. Examples in-
clude floating point co-processors and memory management units. Either the
compilation system should support these co-processors directly or provide the
necessary "hooks" for the user to implement this support.

These, and many other features, are covered in much more detail in reports produced by
the ARTEWG [1, 2, 3].

6.7. Implementation Dependencies

Many options exist for implementing Ada runtime functionality. These are docu-
mented in ARTEWG's Catalog of Runtime Implementation Dependencies
(CRID) [1]. The evaluator should consult the CRID and determine whether any
of the implementation dependencies are critical to the application.

There are many places in the language definition where Ada implementors are free to
choose how to implement a language feature (as long as the feature conforms to the rules
of the language). Some of these choices (such as the evaluation of operands in an
expression) may have little effect on the overall time/space tradeoffs. Other choices (such
as sharing of code bodies for generics or automatic in-lining of procedures) may have a
significant effect on overall time/space tradeoffs. It is important that an evaluator know what
performance impacts the choices will have on the application.

Another source of information on implementation dependencies is the ACVC Implementors'
Guide [24]. This report was produced as part of the Ada Compiler Validation Capability and
it explains the consequences of the language rules. It was meant to provide guidance for
writing test programs, but has also served to provide useful information to designers of im-
plementations. Both the Implementors' Guide and ARTEWG's original CRID are organized
by RM section, making it easy to find implementation dependencies of interest. A newer
version of the CRID is organized by functional area and has a very large index so issues
can be located by Al number, RM section, pragma name, etc. These reports, along with the
RM, can serve as handy references for evaluators looking for insight into performance
anomalies.

Some of the important runtime implementation-dependent issues being considered by the
URG are the following:

• garbage collection policies
• scheduling policies, including time-slicing and non-blocking I/O

60 CMU7SEI-89-TR-13

• guidelines for DURATION and delay (0.0)

• guidelines for elaboration ordering

As is pointed out in Section 5.5, these types of issues are significant for evaluation if the
application has specific requirements in these areas or when portability is a primary con-
cern.

6.8. Interrupt Handling

Interrupt handling is heavily dependent upon the implementation. There are
many implementations and many options for optimization. The evaluator
should understand how interrupts are handled in a particular implementation
and determine whether this is sufficient for the application.

Handling interrupts in Ada is always machine dependent. Depending on the machine ar-
chitecture, the compilation system, and the system designer, there are numerous alter-
natives. Most of the alternative solutions are not portable between target machines or be-
tween different compilers for the same target. The language standard approach to inter-
rupts is to use task entries and address clauses. In this approach an address clause is used
to associate the interrupt address with the interrupt entry. Some systems do not provide this
functionality and instead use machine code insertions or a system call to load an interrupt
table with the address of an Ada procedure. These options and their variations are de-
scribed by Doug Bryan [7].

When applicable to the system being developed, the functionality and performance of inter-
rupts provided by the compilation system should be carefully evaluated. Because interrupt
handling is so machine-dependent, there is no portable code to test interrupt handling;
hence, it is largely ignored in the benchmark test suites described in Chapter 9. Among the
questions to be asked are the following:

• What language support is there for handling interrupts?
• Are there language pragmas for "fast interrupts" (giving the user the opportunity

to give up some tasking functions for improved performance)?
• How much time is required to get to the interrupt service routine from the time

of the interrupt?
• How much time is required to return to the interrupted program from the exit of

the interrupt service routine?

• Are the times above deterministic (i.e., does the operation take the same
amount of time each time it is executed)?

• How are nested interrupts handled?

• How do interrupt priorities relate to hardware priorities and Ada task priorities?

• Are there limits to what one can do in an interrupt service routine with respect to
accessing data and synchronizing with or activating other tasks?

• Is there sufficient support for representation specifications (Chapter 13
features) to allow access to hardware for interrupt service?

• How long are interrupts disabled by the runtime or generated code in the worst
case for each specific operation?

CMU7SEI-89-TR-13 61

6.9. The Clock and Timing Issues

For real-time embedded systems, the abstraction of time is of critical impor-
tance. The evaluator must determine how time is represented, what the resolu-
tion of the clock is, and what the costs of invoking clock services are.

Ada's abstraction for time is contained in a predefined package CALENDAR. This package
contains an implementation-dependent type called TIME. The package compares times and
performs arithmetic operations on times which are clearly meant to be of coarse granularity.
The constructors and selectors for time break time into years, months, days, and seconds
(and fractions of seconds). The function CLOCK returns the time of day. Package SYS-
TEM defines an implementation-dependent type called DURATION. DURATION is a fixed
point type whose values are expressed in seconds. The type must allow representations of
durations (positive and negative) of up to 86400 (number of seconds in a day) and the smal-
lest representable duration must not be greater than twenty milliseconds. RM 9.6(4) recom-
mends that the value should not be greater than 50 microseconds "whenever possible."
Since it takes 18 bits to represent the integer part and 14 bits to represent durations down to
61 microseconds, it can be assumed that the recommendation was based on the abilities of
32-bit architectures.

For many applications, the abstraction of time is not of critical importance. For printing the
time of day on a user console or measuring the time required to execute functions that take
seconds or more, package CALENDAR is quite sufficient. For real-time applications that
measure time in microseconds and milliseconds, the abstraction for time becomes ex-
tremely important.

For real-time applications the evaluator should determine the following characteristics of the
Ada implementation:

• The implementation-dependent representation for type DURATION.

• The implementation-dependent representation for type TIME.
• The speed at which the clock ticks. (This should be the same as

SYSTEM.TICK, but has been found to be otherwise in some implementations.)
• The maximum and minimum possible times between the expiration of a delay

and the rescheduling of the task executing the delay. (Note that this reschedul-
ing requirement says nothing about when the task will restart execution, since
its priority may be such that other higher priority tasks are eligible for execution
at the time the delay expires.)

• Any additional packages provided by the vendor to provide a more precise defi-
nition of time.

• The relationship between the Ada clock and the system (hardware) clock.

The application developer may be unable to use the Ada facilities for timing. In that case,
there is the option to write an interface to access a hardware clock that is provided with most
embedded computers. A hardware device can normally be programmed so that the Ada
interface can set the clock, interrogate the clock, start the clock to count down, and interrupt
when it reaches zero. Such clocks are often accurate to one microsecond or better. An
example of how Ada can be used to interface with a hardware clock is given in [6].

"62 CMU7SEI-89-TR-13

7. Support Tool Issues
An Ada compilation system includes more than just a compiler. There is a mini-
mal tool set without which the compiler becomes almost useless. This tool set
is often called a "minimal Ada programming support environment" or MAPSE.
Support tools should provide adequate functionality and performance, have a
good user interface, and be easy to use with one another.

This chapter will attempt to show the importance of evaluating four important support tools,
the program library system, the linker/loader, the debugger, and the target simulator. The
first three are normally considered to be part of a minimal tool set (MAPSE) and are essen-
tial for producing correct programs on the target. The fourth is considered to be an impor-
tant tool for cross-development systems. While these three tools represent only a small part
of a complete Ada Programming Support Environment (APSE), they are among the most
important tools and the ones most tightly coupled to the compiler itself. For a more com-
plete discussion of APSEs, the reader is referred to the original Stoneman requirement
[35] and a description of one of the early government funded environments [44]. For spe-

cific detailed requirements and criteria for evaluating these support tools, the reader is
referred to the SEI environment evaluation work [42] and the Ada Evaluation System [30].
Future versions of the ACEC will cover these areas as well.

7.1. Program Library System

Many of the functions of the Ada program library system are given by the lan-
guage definition. These functions support the separate compilation of program
units, which facilitates "safe" top-down and bottom-up programming. Because
Ada compilers must do a great deal of checking across compilation units, the
structure and performance of the library system is critical to compile-time per-
formance.

Ada programs may be broken down into separate modules to facilitate large development
efforts. However, unlike some other languages that permit independent compilation, each
Ada compilation depends on information in a program library so that knowledge about the
properties defined in other modules is available to the module currently being compiled. For
example, the number and type of parameters of a subprogram'call can be checked with the
definition of the subprogram that was previously compiled into the library. For a better un-
derstanding of the purposes and structure of the Ada library system, the reader is referred to
the Ada Rationale [26].

The purpose of evaluating program library systems is to determine how the library
mechanisms can affect programmer productivity. While the implicit library usage by the
compilation system is part of compile time evaluation (see Chapter 5), this section will try to
elucidate the evaluation issues with respect to explicit library usage.

The following facilities are not defined by the language, but are expected to be present in
the programming support environment:

CMU7SEI-89-TR-13 63

• Library creation and deletion: Although a library is normally created from
scratch (empty), facilities that create it with a program or family of programs
from another library are desirable. How long does creation take? How much
space is consumed by an empty library? Can a library be deleted without first
deleting all its contents?

• Inclusion of library units: There should be a command to include a unit of
one library in another library. Can this be done without recompiling the unit?

• Deletion of library units: There should be a command to delete a unit from a
given library. Is the space made immediately available for reuse? Does dele-
tion or updating of a unit "obsolete" executable files that use it?

• Completion check: There should be commands to check whether some units
of a program are obsolete or missing. Can valid compilation orders be pro-
vided? Can the system (re)compiie all the units of a program that would be
required by a set of source changes without the user's having to explicitly iden-
tify the impacted units? (i.e., perform the function of the UNIX command
"make")?

• Status commands: There should be commands that allow a user to display
global information about the current state of the library, such as the units in the
library and their dependency relationships, whether the units have been com-
piled, and which units need to be recompiled. If space is allocated to a library,
can the amount of available space be listed? How much space is allocated to
each unit? When was a unit last modified?

• Library structure: Does the librarian require the source to be in the same di-
rectory as the library files? How transparent is the library with respect to the file
system of the operating system? Is concurrent access by multiple users per-
mitted?

7.1.1. Recompilation and Incremental Compilation Features
Whenever any unit in the program library is compiled, it may invalidate those units that de-
pend on it. For example, if a subprogram specification is changed, all those units that use
that definition are subject to recompilation. However, it may not be not necessary to recom-
pile all the units that depend on the library unit, if they do not depend on the specific defini-
tion that was changed in the library unit. For example, if unit X only uses subprogram A
from a unit that exports subprograms A and B, then recompilation of X is trivial when only
the spec of B is changed in that unit. Thus, it is extremely important to determine the
granularity with which recompilation is required. The simpleminded and straightforward
solution is to simply mark a compilation unit as needing recompilation without regard to the
recompilation impact. A more sophisticated approach is required to determine the smallest
fragment of the program that requires recompilation.

Incremental compilation is the ability to use information about previous compiles to perform
new compiles at decreased cost. If an environment can recognize that the only change to a
source file is a comment, recompilation is again a trivial operation. If an environment can
recognize that the only change to a source file is the addition or deletion of a definition in a
package specification, then generally none of the other definitions should need to be recom-
piled. Changes to bodies of units should not force recompilations of other bodies or specifi-
cations. It should be noted that such avoidance of compilation and incremental compilation

64 CMU/SEI-89-TR-13

are not generally provided in today's compilers. Good intermediate representations such as
DIANA are needed to capture and reuse work that has been done by a compiler.

7.1.2. Sublibraries
Another feature that is desirable to promote programming-in-the-large with multiple groups
is the concept of shared libraries for different subsystems. This capability should permit
users to link two or more libraries so that when a compilation is started in one library, the
compiler can be steered to another library to find parent units. This feature does raise the
consistency problem in that when libraries are linked in this fashion, the recompilation flags
must be propagated across library boundaries when a unit is changed in one library and is
depended upon by a unit in another library.

7.2. Linker/Loader Support

The linker/loader support tools provide the capability of combining separately
compiled Ada units into a single module and preparing for execution by loading
the module into memory. This process should be efficient in both time and
space.

The linker/loader support tools may be provided by the underlying operating system on the
host or by the Ada compilation system. When they are provided by the underlying operating
system, they have the features and performance provided by the operating system vendor.
If they are provided with the compilation system, they may provide additional features and
performance. Some environments are so tightly integrated that the linking process is essen-
tially invisible because the programs are linked incrementally. With a host-based develop-
ment system the linker and loader may be tightly coupled, but in a cross-development sys-
tem the loader is necessarily a separate and highly machine-dependent step involving pro-
grams running on two machines.

7.2.1. Selective Loading
Ada permits developers to use object oriented techniques whereby similar objects and
operations are combined in a "package." For example, a package could consist of a library
of trigonometric functions or a set of graphics objects and operations. When a program unit
withs one of these packages, it is not necessarily the case that all the operations supplied
with the package are used. Therefore, it would be more efficient if the linker/loader included
in the load module only those subprograms that are actually referenced by the object pro-
gram. As an example, for very large packages such as a vendor supplied mathematics
package, the difference in the runtime code could be the difference between a 100-byte
routine for returning an absolute value and a 10,000-byte package for computing most stan-
dard mathematical functions. A similar consideration applies to the selective loading of only
those modules in the runtime system that are referenced by the object program. The ab-
sence of selective linking features tends to create load modules of hundreds of thousands of
bytes when only tens of thousands of bytes may really be required.

CMU/SEI-89-TR-13 65

7.2.2. Other Linker/Loader Features and Options
Other features that may be supported by the linker/loader are the following:

• Memory assignment: There may be a means of specifying the placement of
the code and/or data of the program in particular memory locations so that as-
signments to read-only memory (ROM) may be accommodated or so that code
segments or entry points can be aligned in memory.

• Partial linking: There may be a means of partial (incremental) linking for pro-
grams so that small changes at the highest level do not require relinking the
entire program.

• Dynamic loading/overlays: When the load module is too big for the available
memory, are there any automated capabilities to load portions of the program
as they are needed?

• Link-time optimization: Most optimizations take place at compile time, but the
separate compilation capability prevents the compiler from having complete in-
formation about the program. Additional optimizations are possible at link time.
For example, additional dead code can be eliminated.

• Linking to other languages: Support for interfacing with subprograms and
objects in other languages must be provided by the compiler using pragma
INTERFACE or by other import/export techniques supported by the implemen-
tation.

• Dynamic memory allocation: Is it possible to specify how much memory is to
be allocated to various dynamic structures such as the stack and heap?

• Library searching: Does the linker support library searching to satisfy external
references not resolved in the primary library?

In addition to these features, the following generic concerns should be considered in the
evaluation of a linker:

• performance
• capacity
• informational outputs, including the link map

• diagnostic outputs

• user interface

7.2.3. Downloading for Cross-Development Systems
For cross-development systems, the loading of an Ada program onto the target requires two
programs, a downloader running on the host system, and a receiver program running on the
target system. The cross-development package must also support triggering (starting) of
the execution of the application code on the target. The downloading process is often time-
consuming, complex, and error prone. The performance of this communications link can
have a significant impact on the ability to evaluate a compilation system (by running bench-
mark programs) and later to develop systems. In fact, the time taken to download a pro-
gram may, in some cases, be longer than the compile, link, and execute times combined.
Download time may also be increased by as much as a factor of two when
hardware/software monitors or microprocessor development systems are used because of
the need to download additional symbol table information and the formatting information as-

"66 CMU7SEI-89-TR-13

sociated with it. Download time may be decreased if static parts of the loadable image such
as the runtime system do not have to be reloaded for each program execution. This critical
download link depends primarily on the speed of the hardware connection, but must be con-
sidered carefully by cross developers. What is important to determine is whether the vendor
supports the exact target/link configuration to be used. If not, the user can expect to have to
customize the downloader and receiver to the particular configuration being used.

7.3. Support for Debugging

Debugging should take place at the highest abstract level possible, which
means that a debugger should be integrated with the compiler to provide
source code information to the user. Because debuggers may improve pro-
grammer productivity significantly, it is important to have at least a minimum
level of debugger functionality.

It is useful to distinguish three levels of debuggers. A machine-level debugger knows only
about machine addresses, machine instructions, and contents of machine locations. It is
useful to an Ada programmer only with the memory maps generated by the compiler and
linker and only for testing the generated code in assembly language format. A symbolic
debugger is essentially a machine-level debugger with symbolic information available so
that the programmer can refer to data objects by name rather than by machine location. A
source-level debugger allows the programmer to display source code and to enter all debug-
ger instructions in terms of source code instructions. The source-level debugger provides a
high level of abstraction to maximize programmer productivity.

There are no benchmark tests for debuggers. Since debugging is a highly interactive acti-
vity, there are two approaches that are used to evaluate the functionality and performance of
a debugging system. The first is a checklist of features and performance characteristics and
the second is a debugging "scenario" that permits the user to take a program and a set of
tasks to be performed and conduct a debugging session. The checklist is often filled out
using only the documentation, while the scenario must be conducted on the system being
evaluated. Both of these techniques are somewhat subjective, but the second is preferred
because it promotes exploration of the system and allows serendipity and discovery not fa-
cilitated by the "hands-off" approach.

Among the operations important in debugging are the following:

• Examining the control flow (break operations)

• after n statements executed

• at a particular statement
• at program unit entry or exit
• at the raising of an exception

• at a scheduling point

• on modification of a variable (tracepoints)
• on interrupt by the programmer

CMU7SEI-89-TR-13 67

• after the iteration of a loop

• Examining the program state

• data objects
• call history

• active tasks

• status of blocked tasks

• Changing the program state

• modify data object

• add, modify, delete code

• restart at designated instruction

• selectively step into or skip entire subprogram

• raise an exception

• Displaying debugging information

• displaying source code

• displaying assembly code

• displaying breakpoints

• displaying tracepoints

Debugging in a multitasking environment poses special problems and may require control of
time (because of conditional waits, for example). More complete checklists and example
scenarios can be found in [42]. As with most tools, a poor quality debugger can hinder
rather than facilitate progress.

7.3.1. Effects of Optimization on Debugging
Optimizers tend to confuse debuggers. The reason for this is that the optimizer may change
the order of operations in a program as long as it does not affect the semantics of the pro-
gram. Thus, the source level model of the semantics does not map onto the runtime
semantics. For example, an optimizer may move an invariant assignment statement outside
a loop. If the user sets a breakpoint on that assignment statement, it may be difficult or
impossible for the debugger to stop each time through the loop. Similarly, the values of
variables may be different from what may be expected by looking at the source code be-
cause the object code may hold temporary values in machine registers rather than storing
them into main memory. These problems may be solved in several ways:

• Disallow debugging for optimized programs.

• Limit the functionality of the debugger for optimized programs.

• Permit the debugger to have unpredictable behavior for optimized programs.
• Take extraordinary steps to ensure that the debugger works identically for op-

timized programs.

68 CMU/SEI-89-TR-13

None of these options comes without limitations and costs. It is important for the evaluator
to know which of the options the vendor has chosen, to understand the tradeoffs, and to
know the implications.

7.3.2. Debugger User Interface
Just as the user interface is an important part of the compiler, the user interface is also an
important part of the debugger. The debugger should be easy to use and easy to learn. It
should have documentation and online help facilities. It should have clear informational and
diagnostic messages. Links to the editor are also helpful.

7.3.3. Cross Debuggers
In a cross-development environment the debugger should execute on the host with a debug
kernel on the target. The debug requests and the debug output should be sent back to the
host where the user interacts with the debugger. The advantage of this is that the host with
its considerable resources can be used to do most of the work instead of the limited
resource target. The evaluator must determine the time and space implications on the tar-
get system of such a cross debugger. Other cross debuggers operate without a kernel on
the target system. Instead they use hardware to monitor the target system bus. This form
of debugger is the least intrusive and allows debugging of exactly the code that will exist in
the production system.

7.4. Target Simulator

Target simulators can increase programmer productivity when operating in a
cross-development environment.

Cross-development systems are more complex than host-based systems. Programmer
productivity can be lowered because of the time required to download programs and be-
cause of the vagaries of the hardware and the special hardware interfaces. A target simu-
lator allows the user to execute programs for the target on the host system and to shorten
the turnaround time for each run. While target simulators may execute at greatly reduced
instruction speeds, the turnaround time between consecutive runs may compensate for this.
It is important that a target simulator provide an almost exact duplicate of the environment
provided on the actual target. In particular, the simulator must simulate time precisely both
with respect to instruction speeds and clocks, it should have a debugging capability with
exactly the same features and user interface as the cross debugger, and it must have the
ability to simulate interrupts as they would occur on the real target.

The target simulator should do the following [43]:

• Accurately simulate both the functional and temporal behavior of the target's
instruction set architecture.

• Provide access to all memory locations and registers.
• Support typical features of symbolic debuggers.
• Perform timing analysis.

CMU7SEI-89-TR-13 69

• Support simulated input/output interaction.

• Facilitate setup and reuse of test sessions.

Users should have a high degree of confidence in the quality and correctness of the tool.

7.5. Other APSE Tools

There are a number of other APSE tools that could be considered useful and
deserving of evaluation along with the Ada compilation system. A primary con-
sideration, if present, is how well they are integrated with the compilation sys-
tem.

In addition to the compiler, debugger, and linker/loader, the Stoneman requirement [35] for a
Minimal Ada Programming Support Environment (MAPSE) calls for the following tools: text
editor, pretty printer, set-use static analyzer, control flow static analyzer, dynamic analysis
tool, terminal interface routines, file administrator, command interpreter, and configuration
manager. Since this early attempt at defining requirements of an APSE, it has become clear
that some of this functionality is more appropriately provided as an option of another tool
(pretty printers and set-use analyzer functionality can be provided by compiler options) or
incorporated into a more powerful tool (static control flow can be done with a browser and
dynamic analysis can be done with a debugger). Other tools may be important at the re-
quirements definition and testing phases of the life cycle. These include document
processing systems, spelling checkers, project planning aids, presentation graphics tools,
cost tracking and accounting systems, archival storage management systems, testing tools,
electronic mail systems, performance monitoring tools, accounting systems, etc.

What Stoneman does make clear is that a tool set should make it easy for a programmer to
move easily from one tool to another. This may be accomplished by a common represen-
tation for Ada programs such as the Descriptive Intermediate Attribute Notation for Ada
(DIANA), which stores all the syntactic and semantic information about a program unit.

It is beyond the scope of this handbook to provide guidelines for the evaluation of other tools
that should be tightly integrated to the Ada compilation system. The existence of a compre-
hensive integrated tool set may be part of the criteria for compiler selection. It certainly can
have an impact on programmer productivity. Another desirable criterion for an environment
is openness, the ability to add home-built tools or tools from other vendors. This criterion is
often in conflict with tight integration. For further information on general APSE evaluation
criteria, the reader is referred to the environment evaluation literature [15, 29, 42, 45, 46].

70 CMU/SEI-89-TR-13

8. Benchmarking Issues

Benchmarking is a black art. Benchmark design and development, as well as
the use of benchmark data, require careful and painstaking analysis by skilled
technical people. Simple acceptance of raw comparisons without an under-
standing of the tests and the testing environment is risky.

Benchmarking is perhaps the most widely used performance evaluation technique. It con-
sists of running a set of programs on a system to compare its performance with other sys-
tems. In the case of Ada, the purpose is to compare one Ada compilation system with
another Ada compilation system or possibly with the compilation system of some other lan-
guage. A problem that benchmark users should be aware of is that it is difficult or impos-
sible to isolate the compilation system from the other components of its environment,
namely the computing environment. This computing environment includes both hardware
and software that may be difficult to control. As is pointed out by Dongarra [14], "bad bench-
marking can be worse than no benchmarking at all."

Using benchmarks is like using statistics. If applied properly, they can enlighten. If used
improperly, they can confuse, obfuscate, and deceive. Shepherd and Thompson have
paraphrased the famous quotation attributed to Disraeli by Mark Twain ("There are three
kinds of lies: lies, damned lies, and statistics") in a technical memo entitled "Lies, Damned
Lies, and Benchmarks" [32]. Other technical papers providing insight into the potential and
problems of benchmarking include [9, 14, 18]. The purpose of this chapter is to highlight
what benchmark programs are and what they can and cannot do. It also provides some
guidelines for those who may have to conduct benchmarking activities.

This chapter deals primarily with runtime benchmarks. The issues of benchmarking
compile-time performance are covered more fully in Section 5.2.

8.1. Types of Tests

There are many kinds of benchmark tests. Users are not likely to have time to
run all the tests that are available. Some understanding of the advantages and
disadvantages is necessary in order to select those tests that provide the most
useful information. Benchmarks can be small programs that measure an indi-
vidual Ada feature (such as a subroutine call) or they can be large programs
that measure many Ada features in combination. Fine-grained benchmarks are
useful for pinpointing the strengths and weaknesses of an Ada compiler, while
coarse-grained benchmarks are useful indicators of the overall efficiency as de-
termined by the way in which individual features interact.

BAA. Language Feature Tests
Language feature tests are meant to isolate a single or a small number of features of the
Ada language. The idea is not to measure the time or space characteristics of the whole
program, but rather to isolate a small portion of the program for measurement. Most, but not
all, of the tests included in the test suites described in Chapter 9 are language feature tests.

CMU7SEI-89-TR-13 71

They attempt to measure how long it takes to execute a given Ada feature under various
conditions. For example, there may be tests to determine the overhead of invoking a sub-
routine. But the time it takes to invoke a subroutine depends on the number and the nature
of the parameters, so there may be dozens of tests that test many parameter combinations.
One suite of tests has subroutine overhead tests for the number of parameters (1, 10, 100),
the direction passed (in, out, in out), the type of parameter (integer, enumeration, string,
various records and arrays of integers, and various sizes of parameters (1, 5, 10, 20, 100,
1000 storage units). Other tests exist for arithmetic, loop overhead, accessing components
of record types, clock overhead, exception handling, task creation, and rendezvous. Just
about every section of the RM has an associated performance test in one of the available
test suites.

The advantage of language feature tests is that they may identify strengths or weaknesses
in the ways that individual language features are implemented. If an application will make
heavy use of a particular feature or set of features, then the user may wish to know which
compilers perform best on that feature set. The user may be in a position to influence a
vendor to make small changes in a compiler in areas where it is found to be deficient com-
pared to other compilers. The disadvantage of language feature tests is that they inade-
quately address the impact of features being used in combination with one another. Just as
correctness cannot be completely evaluated by a feature-by-feature test suite, neither can
performance be completely evaluated by a feature-by-feature test suite.

8.1.2. Capacity and Degradation Tests
Related to language feature tests are tests of the capacity of a system (hardware and
software) and tests to determine how a system reacts to increased loading. The former is
determined largely by memory capacity and by internal limits. Examples are dynamic nest-
ing levels and dynamic storage space. The latter has to do with how performance changes
when heavy loads cause queues to increase or available memory to decrease. Examples
are the effect on tasking operations of increased numbers of tasks and the effect on
dynamic memory allocation of memory fragmentation. Exploration of these issues may re-
quire running a series of tests rather than a single benchmark.

8.1.3. Composite Benchmarks
Composite benchmarks are programs that are designed to test many features in combina-
tion with one another. Composite benchmarks may be small or large and may be
application-dependent or application-independent. Generic tests such as the Sieve of
Eratosthenes, Quicksort, Ackermann's function, or computing pi, are typical of academic
programs written for numerical analysis or data structures courses. There is rarely any sci-
entific basis for their selection as benchmark programs, but they tend to be widely available,
which makes comparisons easy. Other tests tend to be larger and more application-
dependent. Examples include Kalman filtering applications, inertial navigation systems,
radar tracking systems, or aircraft simulations. For real-time applications, buffer, relay, and
monitor tasks serve as useful paradigms for composite benchmarks for tasking.

72 CMU/SEI-89-TR-13

The advantage of composite benchmarks is that they may test a broad cross section of lan-
guage capabilities (often they do not). They may also test just those features that will be
utilized in the application to be written (often they do not). The primary disadvantage is that
if the benchmark test produces a poor result relative to other systems, it is often difficult to
determine the reason. It may be due to a single feature of the language, to uniform in-
efficiencies, or to the way the compilation system handles features used in combination.
Fine-grained tests are needed to address these issues.

8.1.4. Synthetic Benchmarks
The general idea of a synthetic benchmark is to develop a skeleton application whose char-
acteristics are typical in some way. Two of the best known synthetic benchmarks are the
Whetstone [12] and the Dhrystone [41]. The Whetstone is constructed based on the static
and dynamic instruction frequencies of 949 programs. It is meant to be typical of scientific
numerical computation and is heavily weighted toward floating point operations. It is widely
accepted as a means of comparing architectures, languages, and implementations of lan-
guages. The Dhrystone is intended to reflect the features of modern programming lan-
guages (e.g., record and pointer data types) and is intended to be typical of systems pro-
grams. It was originally written in Ada and is synthesized from static and dynamic fre-
quencies of statements as determined by 16 different studies that analyzed large and small
programs from a variety of sources.

Synthetic benchmarks can have many of the advantages of composite benchmarks. They
test language features in a broad way, yet are in some sense more representative of a
larger application domain because they have been constructed scientifically (i.e., based on
many representative programs). The idea is to provide all the characteristics of many pro-
grams into a single program in exactly the proportions that they exist in some application.
The disadvantages of synthetic benchmarks are that they are seldom accepted as being
representative of any particular problem domain and they do not permit the user to isolate
particular sources of inefficiency.

8.1.5. Application-Specific Tests
The most representative benchmark program for any particular application is the application
itself. However, it is often difficult or impossible to benchmark a system with the real system
because the software is not yet written. There may also be software dependencies and
hardware dependencies that make it difficult to port the application to the system of interest.
The next best alternative is a benchmark program that has been specifically written to be
similar to the application program. What is needed is a program with the similar computa-
tions, similar input/output characteristics, a similar number of tasks, and similar interactions
among the tasks. This might be considered a tailored synthetic benchmark program.

The advantage of this type of benchmark is that it is more characteristic of the workload to
be performed than any other benchmark. The disadvantage is that it may have to be con-
structed from scratch which may be a more difficult task than using something that is al-
ready written. Furthermore, these benchmarks, are subject to the same disadvantages as
the composite and synthetic benchmarks, namely that they do not clearly identify sources of
performance problems.

CMU/SEI-89-TR-13 73

8.2. Factors Causing Variation in Results

Benchmark results may vary significantly depending on the hardware and soft-
ware environment in which they are run. Evaluators should be cognizant of the
various sources of variation and try to control them. They should also gain an
appreciation for the magnitude of the errors introduced by these sources of vari-
ation.

Benchmark programs often yield inconsistent or inexplicable results. These variations result
from the environment in which the benchmarks are run. Many of the environmental factors
may be controlled, but many others are difficult or impossible to control. Fine-grained
benchmarks are usually more susceptible to variation than coarse-grained benchmarks be-
cause small changes in the environment can cause large changes in the results. This sec-
tion will simply enumerate some of the factors that cause difficulty either in comparing two
systems, or in achieving repeatability on a single system. The reader is referred to papers
by Altman [4], Clapp, et al. [9], and Gentleman, et al. [21] for further details.

• Memory effects:

• Cycle stealing—Peripherals or other processors may "steal" memory
cycles and slow down the processor speed.

• Boundary alignment—Segments of code that are spread across memory
boundaries may run more slowly than segments of code that are for-
tuitously aligned in memory.

• Memory interleaving—Whether a double word operand is located on an
even-odd or odd-even location may make a difference.

• Multi-level memories—Cache, scratch pad, and paged memories operate
at different speeds and affect performance.

• Processor effects:

• Pipelined architectures—Instruction look-ahead and overlap can in-
fluence the execution speed of instruction sequences.

• Interrupts—Interrupts and interrupt service routines can influence perfor-
mance.

• Clocks—Hardware clocks vary in their timing resolution.

• Operating and runtime system effects:

• General overhead—The operating system may require processor time to
allocate and manage system resources such as the clock or memory.

• Periodic and asynchronous events—Operating system "daemons" to
handle events such as network activity may be activated at unpredictable
times and steal processor time.

• Garbage collection—The Ada runtime system may collect unused mem-
ory at unpredictable times.

• Multiprogramming—Other programs executing will influence the elapsed
time and possibly the CPU time.

74 CMU/SEI-89-TR-13

Program translation effects:

• Optimization—Variation is caused when parts of the benchmark are op-
timized away by the compiler at compile time or link time.

• Asymetrical translation—A compiler may translate the first instance of a
language construct differently from second and subsequent instances.

• Hidden parallelism—I/O from compilation may be performed in parallel
with execution of a test.

8.3. Timing Anomalies

Timing methodology is crucial to reliable benchmarking results. Most Ada
benchmark suites rely on software techniques for timing. Package CALENDAR
provides an implementation-dependent timing capability so that timing issues
must be carefully studied and understood.

Most benchmark programs use the Ada package CALENDAR rather than external timing
mechanisms or operating system timing mechanisms. The first possible problem for bench-
marking is the lack of precision of this clock. Many Ada implementations have a clock
resolution of 10 milliseconds or greater. This is not sufficient for the fine-grained
benchmarks described above. The solution to this problem is to use a "dual loop design."
In this technique, the software to be timed is repeated many times in a loop and then the
overhead of the loop is subtracted by timing a "control loop" [9]. This technique can be
refined by a "software vernier" which provides additional precision [47]. Another possible
problem is that the software implementing package CALENDAR may be subject to some of
the factors causing variation that are listed in the previous section.

The dual loop design depends heavily on the assumption that the loop instructions in the
test loop take exactly the same amount of time as the loop instructions in the control loop.
Unfortunately, this may not always be the case because of the variations described in the
previous section (particularly memory alignment variations). Because the dual loop design
requires the subtraction of two large numbers of nearly the same value, a small relative error
in either of the numbers may cause a large relative error in the difference. The problems of
dual loop benchmarks are fully documented [5]. In its worst manifestation, this anomaly will
result in negative values being provided for the time required to execute certain features of
the language.

8.4. Timing Verification

Software timing techniques are not always reliable. Two techniques are avail-
able to verify software timings. The first is to use a high precision hardware
clock with an Ada interface package. The second is to use direct hardware
monitoring with, for example, a logic analyzer or in-circuit emulator.

Many of the sources of timing variation mentioned in Section 8.2 are not introduced by soft-

CMU/SEI-89-TR-13 75

ware timing techniques but are real effects that modify the time it takes to execute instruc-
tion sequences being measured. These variations due to real effects will be measured by
both hardware and software techniques. To isolate software timing variations, software
timing results should be verified with hardware when time and resources permit. Hardware
clocks are generally at least three orders of magnitude more precise than software timers.
Whereas the Ada package CALENDAR may provide a timer resolution of 10 milliseconds,
hardware clocks may provide a timer resolution of 1 microsecond. This permits the user to
time a language construct directly instead of using the dual loop design. It also allows the
user to measure the distribution of the times required to execute a language construct rather
than just computing an average. One would hope that it always takes the same amount of
time to execute an Ada language feature, but because of operating system and runtime sys-
tem effects, this may not be the case. In order to use a hardware clock, the user must
purchase the timer hardware (if it is not already on the processor board) and write the
drivers to start and read the clock. One model for interfacing Ada with a high precision timer
is given by Borger [6].

A second method of verifying timing data is to use hardware monitoring devices. Both logic
analyzers and microprocessor development systems (MDSs) with in-circuit emulators (ICEs)
provide capabilities that are helpful to real-time embedded programmers. They differ in cost
and sophistication. A logic analyzer is a monitoring and storage device while an MDS is a
programmable device that can, with an ICE, be used to both monitor and control the activi-
ties of the target system within its embedded environment. These devices are becoming
increasingly more flexible and sophisticated; they can be used to debug on the target using
Ada source code.

A logic analyzer can be used to store samples of data from a hardware source such as an
address bus. It can be triggered to start and stop sampling using a variety of criteria. In
particular, it can be triggered to take a sample once a certain address appears on the ad-
dress bus. Once the data has been captured, the timing characteristics can usually be
measured down to the nearest 50 nanoseconds or better. The logic analyzer permits the
user to compute times that are impossible to determine using software techniques. For ex-
ample, no software technique can be used to determine the time interval between an inter-
rupt signal and the start of the interrupt service routine. Thus, for interrupt handling and
real-time programming and debugging, the logic analyzer or MDS can be an indispensable
tool.

8.5. Data Analysis and Reporting

When using suites of benchmark programs, the user may be faced with huge
amounts of data. It is extremely useful to have programs that analyze and dis-
play the data in a helpful fashion, but these tools cannot substitute for sound
engineering analysis. This is particularly important in discovering the weakest
and strongest points of each compiler. Some of the benchmark test suites discussed

in Chapter 9 have as many as 1000 individual tests, each providing the time and space
required to execute the test. Obviously, this presents a formidable data reduction task. The

76 CMU/SEI-89-TR-13

numbers by themselves represent an overwhelming quantity of data and a paucity of infor-
mation. What is extremely helpful is some means of making some sense of the information,
especially for comparing one system with another system. In particular, it is useful to know
the overall performance of a compilation system compared to that of other compilation sys-
tems, as well as results from tests that fall outside nominal expectations compared to test
results of other systems. The AC EC provides some of this kind of software.

Good analysis tools make it is easier to conduct sound engineering analysis of the tradeoffs
involved in the selection and use of compilers. The analysis must bring out the fact that
there is no single rank-ordered list of compilers for a given application. Each Ada compiler
offers something different and should be judged on the basis of its strengths and
weaknesses rather than against a rigid set of criteria. For example, a compilation system
that scores highly on most criteria and has only one fatal flaw may be unacceptable com-
pared to a compiler that scores less highly on all criteria. Test suites and analysis software
may give the impression that evaluation is based on apples-to-apples comparisons, when in
fact the compilation systems being compared are not all addressing the same problem and
should not all be judged using the same yardsticks.

8.6. Strategy for Benchmarking

Benchmarking should be done very selectively. Because so many programs
are available, planning is necessary to choose the most salient benchmarks for
a particular application. Most times the user is well advised to augment the
selected benchmarks with tailored application profiles that will more closely rep-
resent the application than any of the publicly available benchmarks.

In their paper, "Computer Benchmarking: Paths and Pitfalls," Dongarra et al. [14] provide the
following advice: "If a performance evaluation is to be effective, it will include:

• Accurate characterization of the workload.
• Initial tests using simple programs.
• Further tests with programs that approximate even more closely the jobs that

are part of the workday."

While the primary concern of their paper is benchmarking hardware rather than software
systems, the advice is still relevant for Ada compilations systems. It should be recognized
that benchmarking is only one aspect of compiler system evaluation and should not be the
only criterion.

CMU/SEI-89-TR-13 77

8.7. Standard Benchmark Configuration Information

Certain key information should be provided whenever benchmark figures are
presented. If any of the information is missing, the user of the benchmark data
should request it. If the information cannot be provided, the consumer should
treat the results with extreme skepticism.

The following information on standard benchmark configurations includes both compile-time
and execution-time benchmarks:

• For the host system (for compile-time benchmarks):

• the host machine (including model number, memory size, memory
speed)

• the peripherals (disk type, capacity, interface, and speed)

• the operating system (including version number)

• relevant configuration parameters for host operating system

• For the target system (for runtime benchmarks):

• the target configuration (including number of processors, cycle speeds,
memory sizes, cache sizes, existence of floating point co-processors,
number of wait states for the memory)

• the target operating system (if any, including version number)

• For all benchmarks:

• compiler system vendor
• time and date of test
• version number of the compiler and runtime system

• switch settings for compilations
• option settings for linking/loading
• test suite version number

• test name
• list of all modifications made to test
• list of all special environmental considerations (network interfaces dis-

abled, daemons disabled, other processing loads, co-processor
enabled/disabled, etc.)

• information on the timing mechanism and units of measurement (e.g.,
CPU time or elapsed wall clock time)

In short, the supplier of benchmark data should provide all the information that is necessary
to reproduce exactly the same results using exactly the same configuration. If this condition
is not met, then it is not safe to assume any particular configuration information. The bench-
mark results should be considered suspect until independently verified and documented.

78 CMU/SEI-89-TR-13

9. Test Suites and Other Available Technology

There is no single appropriate test suite or checklist for all possible uses of an
Ada compilation system. Different technology tests different aspects of a com-
pilation system. Some test suites place more emphasis on runtime perfor-
mance while others may place more emphasis on the support tools provided
with a compilation system. However, it will rarely be the case that an evaluator
will have to start from scratch. Much technology exists for evaluating the quality
of Ada compilation systems. It should be noted, however, that for embedded
systems there is little automation and gathering results may be tedious and
time-consuming.

9.1. General Information on Evaluation and Test Suites
The generic issues of benchmarking are discussed in Chapter 8. This chapter gives brief
descriptions of some of the existing benchmarking technology along with its strengths and
weaknesses. In general, the technology described in this chapter has the following charac-
teristics:

• There are more fine-grained language feature tests than there are composite or
synthetic benchmarks.

• The fine-grained tests are subject to the timing anomalies described in Chapter
8.

• The tests have tended to address portability to a larger extent than real-time
performance.

• With a few exceptions, the test suites provide little or no analysis capability.
• None has any graphical output of comparative results, with the exception of the

printer histogram plots of the ACEC. In short, there are many Ada test pro-
grams, many checklists, and many test suites, but very little in the way of ad-
vice for applying this technology and almost nothing in the way of analyzing
vast quantities of raw data.

The remainder of the chapter focuses on five of the better known benchmark test suites
(ACEC, PIWG, AES, University of Michigan, and Aerospace), one software repository
(ASR), and other sources of evaluation information. For each of these, the major strengths
and weaknesses of the technology involved are noted. For summaries of each of the test
suites as described by their own documentation, see Appendix A.

9.2. The Ada Compiler Evaluation Capability

The ACEC is the test suite developed by the U.S. government for evaluating
compiler systems. It has been available from the government since September
1988. The test suite will be expanded over the next year. Primary strengths:
extensive coverage of language features and analysis tools. Primary
weaknesses: relative newness and lack of support.

The Ada Compiler Evaluation Capability (ACEC) is a comprehensive test suite for assessing

CMU/SEI-89-TR-13 79

the performance characteristics of Ada compilers. It was developed by Boeing Military Air-
planes for the APSE Evaluation and Validation (E&V) Team of the Ada Joint Program Office.
According to the ACEC User's Guide [48], "the ACEC shall make it possible to:

1. Compare the performance of several implementations. The Operational Soft-
ware shall permit the determination of which is the better performing system
for given expected Ada usage.

2. Isolate the strong and weak points of a specific system, relative to others
which have been tested. Weak points, once isolated, can be enhanced by
implementors or avoided by programmers.

3. Determine what significant changes were made between releases of a compi-
lation system.

4. Predict performance of alternate coding styles. For example, the performance
of rendezvous may be such that designers will avoid tasking in their applica-
tions. The ACEC will provide information to permit users to make such deci-
sions in an informed manner."

The ACEC consists of 240 test programs comprising over 1000 tests and some support
tools to analyze test results. The main emphasis of the ACEC is execution performance, but
it also addresses compile-time efficiency and code-size efficiency. The test suite includes:

• language feature tests

• composite benchmarks
• optimization tests

• sorting programs

• example avionics application

Files of raw output from the test programs can be formatted by a support program named
FORMAT and then used as input to an analysis tool called MEDIAN. This program can be
used to perform a statistical analysis of the ACEC results collected from several target sys-
tems. The output of MEDIAN takes the form of statistical summaries and histograms which
can be used to compare the performance of different target systems.

The ACEC has been available from the Data Analysis Center for Software (DACS) since
September 1988. Sample command files for VAX/VMS and UNIX systems are provided with
the current release; users will have to adapt these if they wish to run the ACEC on other
host machines. The principal documents describing the ACEC are the Reader's Guide [47],
the User's Guide [48], and Version Description Document [49].

For a more complete description of the ACEC, the issues involved in using it, and the
taxonomy of coverage, the reader is referred to a series of questions and answers published
in the Ada-JOVIAL Newsletter [28].

As of this writing, the current release of ACEC is Version 1.0. Plans for the next version
(subject to government funding availability) include adding new tests in response to user
feedback and evaluating the quality of diagnostic messages, debuggers, and library system.
There is also a desire to provide more analysis capabilities for single systems.

80 CMU7SEI-89-TR-13

• Strengths:

• depth of coverage for language features and runtime optimization (goes
well beyond that of other test suites)

• well documented structure and taxonomy

• extensive documentation

• code size measurements
• good timing techniques with statistical model and indication of accuracy

• cross-system analysis software

• expectation of further development

• Weaknesses:

• no support provided by government or contractor (at present)
• need for further automation in analysis subsystem

• weakness of first version's systematic coverage of compile-time perfor-
mance

• first version's lack of coverage of diagnostics, debuggers, or library sys-
tem

• export control—available only to qualified DoD contractors

The ACEC goes well beyond the PIWG and Michigan suites in its range of tests, its timing
techniques (described in the User's Guide), and its provision of an analysis tool for results.
In particular, the MEDIAN analysis program can compare ACEC test results from different
machines. Furthermore, it contains a better sampling of coarse-grained MCCR application
benchmarks than do either of the other two suites.

9.3. The PIWG Benchmarks

The PIWG benchmarks are constructed and maintained by a volunteer sub-
group of SIGAda. They have been in the public domain since 1986, are up-
dated periodically, and are widely quoted by compiler vendors. Primary
strength: wide distribution and availability. Primary weakness: lack of docu-
mentation and support.

The PIWG benchmarks are a suite of Ada performance measurement programs put togeth-
er by the Performance Issues Working Group (PIWG) of the Association for Computing Ma-
chinery (ACM) Special Interest Group on Ada (SIGAda). The principal focus of the tests is
the measurement of the execution time of individual features of the Ada language. Ex-
amples of the kinds of tests in the PIWG suite are:

• clock resolution
• task creation and task rendezvous

• dynamic storage allocation
• exception handling
• representation clauses and operations on packed and unpacked arrays

CMU/SEI-89-TR-13 81

• procedure calling overhead

• runtime checks overhead
• composite benchmarks (including Whetstone and Dhrystone)

• Hennessy benchmarks

• compilation speed and capacity tests

There are 136 tests in the suite, plus command files for running the tests. Tests are de-
signed to be as machine-independent as possible and to run without modification. Machine-
dependent CPU time routines are available for several implementations. Many of the tests
are adaptations of the Ada benchmarks developed at the University of Michigan. A user can
adapt the command files to run selected groups of tests and route the output to an output
file. Each test program will print out a short description of the test and the measured execu-
tion time. The only documentation currently available is the "read me" file provided with the
suite.

The PIWG suite is largely the work of dedicated volunteers, so enhancements and additions
do not necessarily occur on a predictable basis. A new version of the suite is generally
released once a.year; as of this writing, the currently available version is designated
TAPE_12_12_87. The principal distribution media are tapes and diskettes, but the suite is
also available from the Ada Software Repository (see Section 9.7). Users who obtain the
PIWG suite are encouraged to run the tests and submit the results to PIWG; they are also
encouraged to suggest enhancements or contribute new tests. A PIWG workshop is held
annually and there are PIWG meetings held during the year, usually in conjunction with
scheduled SIGAda meetings. There is also a PIWG newsletter which publishes PIWG test
results submitted by users. PIWG activities are announced in Ada Letters and each issue
lists the names and addresses of current PIWG officers. Contact information for PIWG is
contained in Appendix B.

The PIWG suite is emerging as a kind of industry standard. It has become a generally
accepted means of providing a good first cut at Ada real-time performance measurement.
The tests can easily be run on systems with text I/O capabilities. As more users acquire and
run the tests, a large database of results is being accumulated by PIWG. A special issue of
Ada Letters will contain a rationale for the design of the PIWG suite. Results based on
approximately 150 test reports will be presented. A PIWG database of test reports is under
development.

• Strengths:

• widely distributed and used (becoming an industry standard)
• not time-consuming to run

• available online for those with ARPANET access

•free

82 CMUSEI-89-TR-13

Weaknesses:

• little documentation and support

• focus mostly on fine-grained runtime performance tests

• lack of analysis tools

• lack of coverage of diagnostics, debuggers, or library system

9.4. The Ada Evaluation System

The AES is the test suite for compilation system evaluation developed by the
British government. It has been available since September 1987. Further de-
velopment of the test suite is in progress. Primary advantages: broad
coverage of compilation system issues, including checklists. Primary
d isadvantages: cost and lack of analysis tools.

The Ada Evaluation System (AES) is a comprehensive, automated test suite for evaluating
various aspects of a minimal Ada Programming Support Environment (APSE), where a
"minimal" APSE means one that contains an Ada compiler and program library system, a
linker, a loader, a symbolic debugger, and runtime libraries. The test suite measures such
features as:

• compiie-time and execution-time performance
• quality of the generated code
• quality of the error and warning messages produced by the compiler, linker, and

program library system

• capabilities of the debugging system

The AES was developed by Software Sciences Ltd. for the United Kingdom Ministry of
Defence. It is distributed by the Information Technology Department of the British Stan-
dards Institute. The software consists of a suite of test programs and a test harness to run
the tests. The test harness allows a user to run all or portions of the test suite and have
reports on the results generated automatically. There are over 200 tests grouped into 19
main categories; some examples of these groups are:

• Group A - Compiler performance tests
• Group G - Compiler capacity tests

• Group L - General tasking tests

• Group O - Optimization tests

• Group Q - Runtime limit tests

• Group V - Benchmark tests
• Group W - Symbolic debugger tests

For evaluation of aspects of a compilation system not readily subject to automation (e.g.,
quality of diagnostic and informational messages), evaluation checklists and assessment
guidelines are provided for users.

CMU/SEI-89-TR-13 83

Two versions of the AES are available: one for DEC VAX/VMS systems and one for IBM
MVS systems. The AES can be used to evaluate any compiler or cross-compiler hosted on
these machines. It can also be re-hosted on other systems; the AES documentation con-
tains re-hosting guidelines for users. Documentation comprising five user manuals is sup-
plied on the distribution tape. The manuals are: User Introduction (2 volumes), User Guide,
Re-Hosting Guide, and Installation Guide. Paper copies of the Installation Guide and a list
of the latest fixed and outstanding bugs are included with the distribution tape.

The British Standards Institute aims to provide a comprehensive Ada evaluation service
based on the AES. Users can buy a simplified version of the AES for about $1,800 and do
their own evaluation of a compilation system. As an alternative, for about $21,600 BSI will
do a full evaluation using their Assessor Support System version of the AES. BSI will also
undertake formal evaluations of compilation systems and issue reports. Reports may be
obtained by subscribing to the evaluation service (about $3,600 annually, for 12 reports).
Single copies may also be purchased for about $450.

Further development work on the AES is planned by the British Ministry of Defence. The
areas to be covered by this work are still under consideration. For more information on the
AES the reader is referred to the British Standards Institute (see Appendix B).

As of this writing, the currently available AES is Release A, Version 1.22.

• Strengths:

• breadth of coverage (more than just runtime efficiency)

• interactive user interface
• automatic generation of reports from test results

• extensive documentation

• macro capability for test generation
• checklists for diagnostics, library systems, vendor evaluation, etc.
• availability of example evaluation reports

• Weaknesses:

• requirement of considerable setup time
• lack of U.S. support at present

• depth of coverage in runtime performance

• subjective nature of checklists
• cost

84 CMU/SEI-89-TR-13

9.5. The University of Michigan Ada Benchmarks

The University of Michigan was among the first to attempt to put Ada bench-
marking on a sound scientific and theoretical basis. Their CACM article is ex-
cellent reading for benchmarking practitioners. The University of Michigan work
has been largely superseded by the PIWG activities described in Section 9.3.
Primary strength: timing mechanism based on sound theoretical principles.
Primary weakness: no further development or support.

The University of Michigan Ada benchmarks concentrate almost exclusively on the runtime
performance of individual Ada language features. The suite contains over 150 different test
programs to measure the execution times of task creation and rendezvous, clock calling
overhead, procedure calling overhead, exception handling, and dynamic storage allocation.
There is no composite benchmark, since the approach adopted by the Michigan team was
to develop a set of benchmarks rather than one or two synthetic composites. Also, because
the emphasis is on runtime performance, there are no compilation speed or capacity tests.
The suite is largely similar to the PIWG suite and in fact forms the basis of much of the
PIWG suite. It also contains some tests not included in the PIWG suite, such as tests for
the presence of garbage collection and manipulation of variables of type time and duration.

The only documentation available on the Michigan suite is the August 1986 CACM article by
Clapp et ai [9], which describes the rationale for the tests, summaries of their operation, and
the theoretical basis of the measurement techniques used in the tests. Sample results for a
number of machines and analyses of the results are also included in the article. There is
also a follow-up letter in the February 1987 issue of CACM. For further contact information
see Appendix B.

As of this writing, the currently available version of the Michigan suite is the original one
described in the CACM article.

The Michigan suite is not as streamlined and flexible as the PIWG suite, probably because it
was not originally designed with wide distribution in mind. However, the tape containing the
suite does contain command files for compiling, linking and running the tests. Users may
find it easier to use PIWG, supplemented with the Michigan tests that are not included in the
PIWG suite.

• Strengths:

• excellent theoretical underpinnings
• still many requests by evaiuators

• Weaknesses:

• lack of current support by the University of Michigan
• lack of further development activity
• lack of analysis tools

• lack of coverage of diagnostics, debuggers, or library system

CMU/SEI-89-TR-13 85

9.6. Aerospace Benchmarks

The Aerospace Corporation has recently completed a suite of tests and an as-
sociated user's guide. The tests are written in three languages (Ada, JOVIAL,
and FORTRAN). Another report gives detailed results and analyses comparing
Ada with JOVIAL. Primary strength: only test suite that allows comparison of
language implementations. Primary weakness: availability and support still
under consideration.

The purpose of Ada Compiler Performance Test Suite and Test Evaluation Capability
(ACPS) [27] is to "assist users in evaluating the performance of runtime environments pro-
vided by Ada compilation systems." The test suite contains feature tests as well as com-
posite tests. A unique feature of this suite is that there are Ada, JOVIAL, and FORTRAN
files so that the three languages can be compared on machines that support these lan-
guages. The suite also provides software to "gather and report performance statistics in a
format common to all three test languages." The suite can be used to gather compile-time
and execution-time statistical information such as elapsed time, CPU time, code and data
size, virtual and physical memory usage, and the like. The base Ada test suite is comprised
of 868 tests in 459 programs.

A draft Aerospace report compares two Ada compilers, a FORTRAN compiler, and a
JOVIAL compiler using the ACPS [8] on the same machine architecture. Results are
presented using histograms showing the number of tests that are faster by a certain percent
in each language implementation. The study showed that for those language features that
are available in each language, VAX Ada was faster than VAX FORTRAN in about as many
cases as FORTRAN was faster than Ada. Among the reasons cited for Ada tests running
faster were automatic in-lining of procedures by the Ada compiler and the use of the ma-
chine architecture for handling slices with single instructions rather than loops. The Ada
compiler was cited as slower in tests using the compiler's inefficient mechanism for access-
ing global variables. For the most part, the histograms showed bell-shaped curves indicat-
ing that as the ratio of execution times increased there were fewer tests in that category.
However, there were a substantial number of tests for which an Ada test ran more than five
time slower or a FORTRAN test ran five times slower than its equivalent. The reasons for
these anomalies must be very carefully examined by evaluators interested in cross-
language analysis.

• Strengths:

• some tests written in three languages (Ada, JOVIAL, and FORTRAN)
• well documented structure and taxonomy

• some analysis software available

• Weaknesses:

• still uncertain in availability and support
• written primarily for VAX/VMS-hosted systems

• relatively new and untested

86 CMU7SEI-89-TR-13

9.7. Ada Software Repository

The Ada Software Repository is a store of Ada programs, software compo-
nents, and educational material. The programs include a number of
benchmarks and Ada programs that could be used for evaluation purposes.
Primary strength: everything available online at no cost. Primary weakness:
quality of programs and documentation is highly variable, depending on the
source.

The Ada Software Repository (ASR) was established in 1984. It resides on the SIMTEL20
host computer on the Defense Data Network. It contains Ada programs, software compo-
nents, and educational material. The information in the repository is extremely well organ-
ized and its directory structure and files can be scanned and transferred by employing the
file transfer protocol (ftp) program on a remote host system. The ASR is also available on
magtape, floppy disk, and CD-ROM.

The purpose of the ASR is to promote the exchange and use of Ada programs and tools and
to promote Ada education by providing working examples of programs in source form for
people to study and modify. The only restrictions that apply to the access and use of the
software is that which is contained in the prologs of each of the programs.

Two references are essential to anyone wishing to access the ASR. The first is The Ada
Software Repository and the Defense Data Network by Richard Conn [11]. This handbook
contains useful information about the terminology and use of the computer networks and
repositories accessible from the networks. The second reference is the Ada Software Re-
pository Master Index [10]. This is a looseleaf notebook which contains, for each item of
software, an abstract, information on the host compiler and operating system and target en-
vironment, and a listing of all associated files and location in the ASR.

Of interest to evaluators is the chapter on benchmarks. Contained in the current ASR are
two PIWG tapes containing the 5/1/87 and 8/31/86 versions of the test suite, as well as
other benchmarks for capacity, language comparisons, and tasking. The repository con-
tains general purpose Ada components, database management programs, graphics pro-
grams, and numerous programming tools. It also contains machine-readable copies of
many references of interest to evaluators such as the RM, Ada Adoption Handbook, and
various ARTEWG documents.

• Strengths:

• large source of Ada information and Ada programs
• well documented structure and taxonomy

• online availability to ARPANET users
• no cost

CMU/SEI-89-TR-13 87

Weaknesses:

• little quality control over submitted items

• no support for software

• some out-of-date information

9.8. Other Sources

Other private organizations are in the business of selling evaluation technology
in the form of reports or benchmark tests. Primary strength: value may be
added to otherwise available data. Primary weakness: these services may be
costly.

Several small companies provide newsletters or other digests of Ada information. They in-
clude Grebyn Corporation (INFO-Ada Newsletter, Ada commentaries, machine-readable
forms of various data), Cutter Information Corporation (Ada Strategies Newsletter,
guidebook), and International Resource Development, Incorporated (Ada Data Newsletter).
See Appendix B for contact information. Among large corporations that have widely cir-
culated Ada newsletters are Texas Instruments, Sperry, and General Dynamics.

As test suites such as the PIWG tests, University of Michigan benchmarks, and the ACEC
become part of the public domain, there may be more small companies packaging these
and other evaluation tools into a service which applies the tests to particular compilers and
makes the raw information easier to understand and analyze. These companies may pro-
vide added value to information already available in the public domain, but the watchword
must be caveat emptor. The consumer of this information must be confident that the pro-
ducer is fully cognizant of the principles that are provided in this handbook and has no
vested interests in the products being evaluated.

88 CMU/SEI-89-TR-13

References
[I] Ada Runtime Environment Working Group.

Catalog of Ada Runtime Implementation Dependencies.
Technical Report, ACM Special Interest Group on Ada, 11 West 42nd St., New York,

NY 10036, December, 1987.

[2] Ada Runtime Environment Working Group.
A Framework for Describing Ada Runtime Environments.
Ada Letters 8(3):51-68, May/June, 1988.

[3] Ada Runtime Environment Working Group.
Catalog of Interface Features and Options.
Technical Report, ACM Special Interest Group on Ada, 11 West 42nd St., New York,

NY 10036, October, 1988.

[4] N. Altman.
Factors Causing Unexpected Variation in Ada Benchmarks.
Technical Report CMU/SEI-87-TR-22, ADA187231, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA 15213, October, 1987.

[5] N. Altman and N.H. Weiderman.
Timing Variation in Dual Loop Benchmarks.
Ada Letters 8(3) :98-102, May/June, 1988.

[6] M.W. Borger.
VAXELN Experimentation: Programming a Real-Time Clock and Interrupt Handling

Using VAXELN Ada 1.1.
Technical Report CMU/SEI-87-TR-32, ADA200612, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA 15213, October, 1987.

[7] D. Bryan.
Dear Ada.
Ada Letters 8(4):24-34, July/August, 1988.

[8] D J. Byrne.
Comparison of Ada Real-Time/Run-Time Environments Using the AC PS.
Technical Report SD-TR-88 (draft), Space Division, Air Force Systems Command,

Los Angeles Air Force Station, P.O. Box 92960, Worldway Postal Center, Los
Angeles, CA 90009-2960, December, 1988.

[9] R.M. Clapp, L Duchesneau, R. Volz, T.N. Mudge, and T. Schultze.
Toward Real-Time Performance Benchmarks for Ada.
Communications of the ACM 29(8):760-778, August, 1986.

[10] R. Conn (ed.).
Ada Software Repository (ASR) Master Index.
24 May edition, Management Assistance Corporation of America, PO Drawer 100,

Building T-148, White Sands Missile Range, New Mexico 88002, 1988.

[II] R. Conn.
The Ada Software Repository and the Defense Data Network.
New York Zoetrope, 838 Broadway, New York, NY 10003,1987.

CMUSEI-89-TR-13 89

[12] H.J. Curnow and B. A. Wichmann.
A Synthetic Benchmark.
Computer Journal 19(1) :43-49, January, 1976.

[13] E.W. Dijkstra.
Notes on Structured Programming.
Structured Programming.
Academic Press, New York, 1972.

[14] J. Dongarra, J.L Martin, and J. Worlton.
Computer Benchmarking: Paths and Pitfalls.
IEEE Spectrum 24(7):38-43, July, 1987.

[15] P.H. Feilerand R. Smeaton.
Managing Development of Very Large Systems: Implications for Integrated Environ-

ment Architectures.
Technical Report CMU/SEI-88-TR-11, ADA197671, Software Engineering Institute,

Carnegie Mellon University, May, 1988.

[16] D. G. Firesmith.
Mixing Apples and Oranges or What is an Ada Line of Code Anyway?
Ada Letters 8(5) :110-112, September/October, 1988.

[17] R. Firth.
Ada Code Quality, Some Observations and Some Recommendations. Presenta-

tion at the AdaJUG Conference in Redondo Beach, CA.
December 1,1988.

[18] P.J. Fleming and JJ. Wallace.
How Not to Lie with Statistics: The Correct Way to Summarize Benchmark Results.
Communications of the ACM 29(3):218-221, March, 1986.

[19] J.T. Foreman and J.B. Goodenough.
Ada Adoption Handbook: A Program Manager's Guide.
Technical Report CMU/SEI-87-TR-9, ADA182023, Software Engineering Institute,

Carnegie Mellon University, May, 1987.

[20] M. Ganapathi and G.O. Mendal.
Issues in Ada Compiler Technology.
IEEE Computer 22(2):52-60, February, 1989.

[21] W.M. Gentleman and B.A. Wichmann.
Timing on Computers.
Computer Architecture News 2(3):20-23, October, 1973.

[22] J.B. Goodenough.
The Ada Compiler Validation Capability.
IEEE Computer 14(6):57-64, June, 1981.

[23] J.B. Goodenough.
An Example of Software Testing Theory and Practice.
System Development and Ada, Proceedings of the CRAI Workshop on Software

Factories and Ada, Capri, Italy, May 1986.
Springer-Verlag, 1986, pages 195-232.

90 CMU7SEI-89-TR-13

[24] J. B. Goodenough.
Ada Compiler Validation Capability Implementers' Guide.
Technical Report NTIS ADA189647, SofTech, Inc., Waltham, MA, December, 1986.

[25] M.O. Hogan, E.P. Hauser, and S.M. Menichiello.
The Definition of a Production Quality Ada Compiler.
Technical Report SD-TR-87-29, Space Division, Air Force Systems Command, Los

Angeles Air Force Station, P.O. Box 92960, Worldway Postal Center, Los An-
geles, CA 90009-2960, March, 1987.

[26] J.D. Ichbiah, J.G.P. Barnes, RJ. Firth, and M. Woodger.
Rationale for the Design of the Ada Programming Language.
Ada Joint Program Office, OUSDRE(R&AT), The Pentagon, Washington, D.C.

20301,1986.

[27] R.E. Kayfes.
Ada Compiler Performance Test Suite and Test Evaluation Capability (ACPS) User's

Guide.
Technical Report SD-TR-88 (draft), Space Division, Air Force Systems Command,

Los Angeles Air Force Station, P.O. Box 92960, Worldway Postal Center, Los
Angeles, CA 90009-2960, June, 1988.

[28] D. Lange.
Ada Compiler Evaluation Capability (ACEC) Questions and Answers, Version 1.0 —

9/3/88.
Ada-JOVIAL Newsletter 10(3):16-20, September, 1988.

[29] T.G.L Lyons and J.C. D. Nissen.
Selecting an Ada Environment.
Cambridge University Press, New York, 1986.

[30] I. Marshall.
Ada Evaluation System.
18 June edition, British Standards Institute, Linford Wood, Milton Keynes, U.K.,

1987.

[31] J.C.D. Nissen and B.A. Wichmann.
Ada-Europe Guidelines for Ada Compiler Specification and Selection.
Ada Letters 3(5):50-62, March/April, 1984.
Originally published in October 1982 as National Physical Laboratory (United

Kingdom) Report DITC 10/82.

[32] R. Shepherd and P. Thompson.
Lies, Damned Lies and Benchmarks.
Technical Report 27, INMOS Limited, Bristol, U.K., January, 1988.

[33] A. Tetewsky and R. Racine.
Ada Compiler Selection for Embedded Targets.
Ada Letters 7(5):51-62, September/October, 1987.

[34] U.S. Army HQ Center for Software Engineering.
Final Report - Guideline to Select, Configure, and Use an Ada Runtime Environment.
Technical Report CIN: C02092LA0001, CECOM Center for Software Engineering,

Advanced Software Technology, Fort Monmouth, NJ, 15 February, 1989.

CMU/SEI-89-TR-13 91

[35] United States Department of Defense.
Requirements for Ada Programming Support Environments.
Technical Report DTIC Report Number ADA100, DoD, February, 1980.

[36] United States Department of Defense.
Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-1815A-1983.
American National Standards Institute, New York, 1983.

[37] United States Department of Defense.
DoD Directive 3405.1, Computer Programming Language Policy.
April 2, 1987.

[38] United States Department of Defense.
DoD Directive 3405.2, Use of Ada in Weapon Systems.
March 30, 1987.

[39] United States Department of Defense.
Ada Compiler Validation Procedures and Guidelines.
Technical Report AD A178 154, NTIS, U.S. Dept. of Commerce, 5285 Port Royal

Rd., Springfield, VA22161, January, 1987.

[40] I.C. Wand, J.R. Firth, C.H. Forsyth, L Tsao, and K.S. Walker.
Facts and Figures About the York Ada Compiler.
Ada Letters 7(4):85-87, July/August, 1987.

[41] R.P. Weicker.
Dhrystone: A Synthetic Systems Programming Benchmark.
Communications of the ACM 27(10):1013-1040, October, 1984.

[42] N.H. Weiderman, N. Habermann et al.
Evaluation of Ada Environments.
Technical Report CMU/SEI-87-TR-1, ADA180905, Software Engineering Institute,

Carnegie Mellon University, March, 1987.

[43] N.H. Weiderman, M.W. Borger, A.L. Cappellini, S.A. Dart, M.H. Klein, and S.F.
Landherr.
Ada for Embedded Systems: Issues and Questions:.
Technical Report CMU/SEI-87-TR-26, ADA191096, Software Engineering Institute,

Carnegie Mellon University, December, 1987.

[44] M.I. Wolf, W. Babich, R. Simpson, R. Thall, and L Weissman.
The Ada Language System.
IEEE Computer 14(6):37-45, June, 1981.

[45] Wright Research and Development Center.
E& V Reference Manual, Version 1.1.
Technical Report TASC-TR-5234-3, Wright Patterson AFB, OH 45433, (DTIC Acces-

sion Number pending), October, 1988.

[46] Wright Research and Development Center.
E & V Guidebook, Version 1.1.
Technical Report TASC-TR-5234-4, Wright Patterson AFB, OH 45433, (DTIC Acces-

sion Number pending), August, 1988.

92 CMU/SEI-89-TR-13

[47] Wright Research and Development Center.
Ada Compiler Evaluation Capability (ACEC) Technical Operating Report (TOR)

Reader's Guide.
Technical Report AFWAL-TR-88-1094, Wright Patterson AFB, OH 45433, (DTIC Ac-

cession Number pending), August, 1988.

[48] Wright Research and Development Center.
Ada Compiler Evaluation Capability (ACEC) Technical Operating Report (TOR)

User's Guide.
Technical Report AFWAL-TR-88-1095, Wright Patterson AFB, OH 45433, (DTIC Ac-

cession Number pending), August, 1988.

[49] Wright Research and Development Center.
Ada Compiler Evaluation Capability (ACEC) Version Description Document.
Technical Report AFWAL-TR-88-1093, Wright Patterson AFB, OH 45433, (DTIC Ac-

cession Number pending), August, 1988.

CMU/SEI-89-TR-13 93

94 CMU/SEI-89-TR-13

Appendix A: Test Suite Summaries

A.1. ACEC Test Groupings
The following list is taken from the table of contents of the ACEC Reader's Guide [47]:

• Execution Time Efficiency

• Individual Language Features

• Pragmas

• Optimizations

• Classical Optimizing Techniques

• Common Subexpression Elimination

• Folding

• Loop Invariant Motion
• Strength Reduction

• Dead Code Elimination
• Register Allocation

• Loop Interchange
• Loop Fusion

• Test Merging
• Boolean Expression Optimization
• Algebraic Simplification

• Order of Expression Evaluation
•Jump Tracing

• Unreachable Code Elimination

• Use of Machine Idioms

• Packed Boolean Array Logical Operators

• Effects of Pragmas
• Static Elaboration

• Aggregates

• Tasks

• Language Specific

• Habermann-Nassi Transformation For Tasking
• DELAY Statement Optimization

• Performance Under Load

• Task Loading

• Levels of Nesting

CMU/SEI-89-TR-13 95

• Parameter Variation

• Declarations

• Tradeoffs

• Design Issues

• Order of Evaluation

• Default vs. Initialized Records

• Order of Selection

• Scope of Usage
• LOOP Statements

• CASE Statements

• Subtypes

• Generics

• Library Subunits

• Exceptions

• Context Variation

• Different Coding Styles

• Operating System Efficiency

• Tasking

• Exception Handling
• File I/O
• Memory Management
• Elaboration

• Runtime Checks

• Application Profile Tests

• Classical Benchmark Programs

• Ada in Practice
• Ideal Ada

• Code Size Efficiency

• Code Expansion Size

• Runtime System Size

• Compile Time Efficiency
• Tests for Existence of Language Features

• Usability
• Capacity Tests

96 CMU/SEI-89-TR-13

A.2. PIWG Test Groupings

The following list is derived from the "READ.ME" file of the PIWG suite TAPE_12_12_87:

Group A - Setup, clock resolution, Dhrystone, Whetstone, Hennessy
Group B - Tracker algorithm

Group C - Task creation

Group D - Dynamic elaboration

Group E - Exceptions

Group F - Coding style

Group G - TextJO

Group H-Chapter 13

Group L - Loop overhead
Group P - Procedure calls
Group T - Task
Group Y - DELAY

Group Z - Compile time

CMU/SEI-89-TR-13 97

A.3. AES Test Groupings

The following list is taken from the table of contents of the AES User Introduction to the
Evaluation Test Suite [30]:

• Group CH - The checkout tests

• Group A - Compiler efficiency tests

• Group B - Compiler informational quality tests

• Group C - Compiler error reporting tests

• Group D - Compiler error recovery tests

• Group E - Compiler warning tests

• Group F - Compiler behavioral tests

• Group G - Compiler capacity tests

• Group 1 • General run-time efficiency tests

• Group J - NPL test suite

• Group K - Tasking tests for Mascot systems

• Group L - Tasking tests

• Group M - Storage management tests

• Group N - Input/output tests

• Group 0 - Optimization tests

• Group Q - Run-time limit tests

• Group R - Implementation dependency tests

• Group U - Linker/loader error reporting tests
• Group V - Benchmark tests

• Group W - Symbolic debugger tests

A.4. University of Michigan Test Groupings

The following list is taken from the article in Communications of the ACM [9]:

• Subprogram calls
• Object allocation

• Exceptions
• Task elaboration, activation, and termination

• Task synchronization
• CLOCK evaluation

• TIME and DURATION evaluation
• DELAY function and scheduling
• Object deallocation and garbage collection

• Interrupt response time

98 CMU/SEI-89-TR-13

A.5. ACPS Test Groupings

The following list is taken from an Aerospace draft report comparing Ada real-time/runtime
environments using the ACPS [8]:

• General Tests

• Feature Tests

• Computational Tests

• Integer Tests

• Integer Assignment
• Integer Math

• Integer Declaration

• Floating Point Tests

• Floating Point Assignment
• Floating Point Math

• Fixed Point Tests

• Input/Output

• Direct File Input/Output

• Sequential File Input/Output

• Control Statements

• Boolean Expressions
• Branching

• Non-Numerical Data Processing

• Strings
• Record Types

• Record Assignment

• Record Component Reference
• Record Conversion

• Access Types
• Enumeration Types

• Procedure Metrics

• Local Calls

• External Calls

CMU/SEI-89-TR-13 99

• Argument Reference

• in-line Local Calls

• In-line External Calls

• In-line Argument Reference

• Variable Reference

• Tasking Metrics

• Generics Metrics

• Exception Metrics

• Miscellaneous

• Numeric Conversion

• Other

• Loading Tests

• Tasking I/O

• Tasking Array Access

• Optimization Tests

• Common Subexpression

• Loop Optimization

• Other Optimization

100 CMU7SEI-89-TR-13

Appendix B: Compiler Evaluation Points of Contact

Many groups are involved in Ada compiler evaluation and selection activities. In the follow-
ing sections, details of various groups are discussed, including:

• Professional organizations

• U.S. government sponsored/endorsed organizations
• Ada information sources

Contact information is provided; where known, AUTOVON numbers (AV) and/or electronic
mail (Email) addresses are also included.

B.1. Professional Organizations

B.1.1. Ada Joint Users Group (AdaJUG)
AdaJUG is a national organization (formerly known as the Ada-JOVIAL Users Group)
providing a forum for communication among persons involved with the acquisition, devel-
opment, and maintenance of real-time embedded systems using Ada (and JOVIAL/J73).
The AdaJUG makes recommendations to appropriate military services and DoD agencies
regarding language policies and practices. Two AdaJUG points of contact are:

Mr. Joe Dangerfield, Chair
TeleSoft Corporation
5959 Cornerstone Court West
San Diego, CA 92121-9891
(619)457-2700

Mr. Dudrey Smith
Smiths Industries, Chair, Ada Validation WG
Aerospace & Defense Systems
SLI Avionic Systems Corp.
4141 Eastern Ave, S.E.
Grand Rapids, Ml 49518
(616)241-7665

B.1.2. SIGAda
The Association for Computing Machinery Special Interest Group on Ada is a professional
association composed of people interested in the Ada language. Ada Letters is the SIGAda
bimonthly publication. The SIGAda chairman is:

Dr. Ben Brosgol
Alsys, Inc.
1432 Main Street
Waltham, Ma 02154
(617)890-0030
Email: brosgol@ajpo.sei.cmu.edu

CMU/SEI-89-TR-13 101

The following SIGAda groups are examining issues of particular interest:

ARTEWG: Ada Run-Time Environment Working Group

• Purpose: To establish conventions, criteria, and guidelines for Ada runtime en-
vironments that facilitate the reusability and transportability of Ada program
components; improve the performance of those components; and provide a
framework which can be used to evaluate Ada runtime systems [1, 2, 3]. AR-
TEWG acts as a forum for users to interact effectively with Ada implementors,
thereby encouraging development of runtime environments that meet users'
needs. For further information, contact:

• Mr. Mike Kamrad
Unisys Computer System Division
M/SY41A6
PO Box 64525
St. Paul, MN 55164-0525
(612)456-7315
Email: mkamrad@ajpo.sei.cmu.edu

PIWG: Performance Issues Working Group

• Purpose: To investigate Ada compiler performance issues. Develops bench-
mark tests in areas such as exception handling, loop overhead, procedure calls,
I/O, dynamic allocation, task creation, and task rendezvous; and collects and
disseminates results. The PIWG tests have been run against many Ada com-
pilers. Instructions to customize the tests for a particular compiler are included
with the tests. For further information, contact:

• Dr. Daniel Roy, Chairman
Ford Aerospace
7375 Executive Place, Suite 400
Seabrook, MD 20706-2257
(301)805-0464

B.1.3. ISO/JTC1/SC22/WG9
Working Group 9 (WG9) is the working group for Ada language standardization within the
Programming Languages Subcommittee (SC22) of the Information Systems Joint Technical
Committee (JTC1) of the International Standards Organization (ISO). WG9 is the interna-
tional organization responsible for the Ada standard and any subsidiary standards. The
working group conducts its business through subgroups, which are given work items. Cur-
rently there are four subgroups called the Ada Rapporteur Group (ARG), the Uniformity
Rapporteur Group (URG), the Structured Query Language (SQL) subgroup and the Ada
Numeric Packages subgroup. The ARG is responsible for responding to commentaries
about the language and clarifying the meaning of the standard. The URG is addressing how
to promote uniformity of Ada implementations in those cases where the standard leaves
freedom to the implementors. The SQL subgroup is tasked to define a standard interface or
binding between SQL and Ada. It has not yet been determined whether this last subgroup
will fall under SC22 or some other subcommittee (SC21). For further information contact:

102 CMU/SEI-89-TR-13

Dr. Robert Mathis, Convenor of WG9
Software Engineering Laboratory
Contel Technology Center
12015 Lee Jackson Highway
Fairfax, VA 22033-3346
(703) 359-0203
Email: mathis@a.isi.edu

Dr. John Goodenough, Chairman of the ARG
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
(412)268-6391
Email: goodenough@sei.cmu.edu

Dr. Robert B. K. Dewar, Chairman of the URG
New York University
715 Broadway
New York, NY 10012
(212)998-3000
Email: dewar@acf2.nyu.edu

Mr. Stephen Michell, Chairman of the SQL Subgroup
Prior Data Sciences
240 Micheal Cowpland Drive
Kanata, Ontario K2M 1P6
Canada
(613)596-7790

Mr. Gil Meyers, Chairman of the Ada Numeric Packages Subgroup
Naval Ocean Systems Center
Code 423
271 Catalina Boulevard
San Diego, CA 92152-5000
(619)225-7401
Email: gmyers@ajpo.sei.cmu.edu

CMU/SEI-89-TR-13 103

B.2. U.S. Government Sponsored/Endorsed Organizations

AJPO: Ada Joint Program Office

• Purpose: To oversee the total direction of the Ada program. The AJPO reports
to the Deputy Undersecretary of Defense for Research and Advanced Tech-
nology (DUSDR&AT).

• For further information, contact:

Mr. William S. Ritchie, Acting Director
Ada Joint Program Office
The Pentagon, Room 3E114
Washington, D.C. 20301-3081
(202)694-0210
Email: ritchie@ajpo.sei.cmu.edu

Ada Board:

• Purpose: A federal advisory committee, composed of compiler developers,
language designers, embedded system users, and government personnel
whose purpose is to provide the director of the AJPO with a balanced source of
advice and information regarding the technical and policy aspects of the Ada
Program. For further information, contact:

Mr. William S. Ritchie, Acting Director
Ada Joint Program Office
The Pentagon, Room 3E114
Washington, D.C. 20301-3081
(202)694-0210
Email: ritchie@ajpo.sei.cmu.edu

AdalC: Ada Information Clearinghouse director

• Purpose: To support the AJPO by distributing Ada-related information, includ-
ing:

• policy statements
• lists of validated compilers

• classes
• conferences

• text books
• programs using Ada

In addition to publishing a newsletter, an electronic bulletin board system
(300/1200/2400 baud, no parity, 8 bits, 1 stop bit) is available at (202) 694-0215
and (301) 459-3865. For further information, contact:

Ada Information Clearinghouse
c/o IIT Research Institute (IITRI)
4600 Forbes Boulevard
Lanham.MD 20706-4312
(703) 685-1477 or (301) 731-8894
Email: adainfo@ajpo.sei.cmu.edu

104 CMU/SEI-89-TR-13

AMO: Ada Maintenance Organization

• Purpose: To develop, maintain, and support the Ada Validation Suite (AVS).
Additionally, the AMO supports Ada language maintenance activities. For fur-
ther information, contact:

Mr. Bobby R. Evans
ASD/SCEL
Wright-Patterson AFB, Ohio 45433
(513)255-4472
Email: evansbr@wpafb-jalcf.arpa

AVF: Ada Validation Facility

• Purpose: To validate Ada compilers (giving priority to DoD-targeted compilers)
and register derived compilers. AVFs currently exist in the US (2), the UK,
France, and West Germany. For further information, contact:

Mr. Bobby R. Evans
ASD/SCEL
Wright-Patterson AFB, Ohio 45433
(513) 255-4472
Email: evansbr@wpafb-jalcf.arpa

In addition to the aforementioned activities, this organization also publishes the
Ada-JOVIAL Newsletter. To subscribe, write to:

ASD/SCEL
Standard Languages and Environments Division
Engineering Applications Directorate
DCS/Communications - Computer Systems (ASD/SC)
Wright Patterson AFB, Ohio 45433-6503
(513)255-4472/4473
AV: 785-4472

AVO: Ada Validation Organization

• Purpose: The AVO is a federally funded research center directly responsible
to the AJPO. AVO functions include:

• overview development of the Ada Compiler Validation Capability (ACVC)
• independent QA on RELEASED AVS (Ada Validation Suites)

• resolution of disputes arising from problems in the validation process,
such as investigating disputed tests and having incorrect tests withdrawn
from the validation suite

For further information, contact:

Ms. Audrey Hook
Institute for Defense Analyses
1801 Beauregard Street
Alexandria, Virginia 22311
(703) 824-5501
Email: ahook@ajpo.sei.cmu.edu

CMU/SEI-89-TR-13 105

E&V: Evaluation and Validation Team

• Purpose: "The Ada community, including government, industry, and academic
personnel, needs the capability to assess APSEs (Ada Programming Support
Environments) and their components and to determine their conformance to ap-
plicable standards (e.g., DoD-STD-1838, the CAIS standard). The technology
required to fully satisfy this need is extensive and largely unavailable; it cannot
be acquired by a single government-sponsored professional society-sponsored,
or private effort. The purpose of the APSE Evaluation and Validation (E&V)
task is to provide a focal point for addressing the need by:

1. Identifying and defining technology requirements,

2. Developing selected elements of the required technology,

3. Encouraging others to develop some elements, and

4. Collecting information describing existing elements.

5. This information will be made available to DoD components, other gov-
ernment agencies, industry and academia" [45].

For further information, contact:

Mr. Raymond Szymanski
WRDC/AAAF-3
Wright-Patterson AFB, Ohio 45433-6523
(513)255-2446
AV: 785-2446
Email: szymansk@ajpo.sei.cmu.edu

U.S. Army CECOM: Communications-Electronics Command

• Purpose: The Advanced Software Technology section of the Center for Soft-
ware Engineering, at the U.S. Army Communications-Electronics Command
and (CECOM) at Ft. Monmouth, NJ, has a technical program concerned with
Ada real-time and Ada runtime issues. Their purpose is to provide guidance for
the embedded real-time Ada applications world and disseminate their results.
For further information, contact:

Mr. Edward Gallagher
U.S. Army CECOM
AMSEL-RD-SE-AST
Ft. Monmonth, NJ 07703
(412) 268-5758
Email: egaliagh@ajpo.sei.cmu.edu

106 CMU/SEI-89-TR-13

B.3. Sources of Evaluation Technology

Ada Compiler Evaluation Capability
Data and Analysis Center for Software
RADC/COED
Building 101
Griffiss AFB, NY 13441-5700
(315)336-0937

Performance Issues Working Group Benchmarks
Mr. Rob Spray
PIWG Tree
P.O. Box 850236
Richardson, TX 75085-0236
(214)907-6640

Ada Evaluation System
British Standards Institute,
Information Technology Department
BSI Quality Assurance
PO Box 375 Unford Wood
Milton KeynesMKI 4 6LL
United Kingdom
Tel: 0908 220908

University of Michigan Benchmarks
Robotics Research Laboratory
University of Michigan
Ann Arbor, Ml 48109

Aerospace Benchmarks
Aerospace Corporation
P.O. Box 92957
Los Angeles, CA 90009
attn. Richard Ham
(213)336-3438

B.4. Ada Information Sources

Data Analysis Center for Software (DACS)
RADC/COED
Bldg 101
Griffiss AFB, NY 13441
(315)336-0937
Email: dacs@radc-multics

CMU/SEI-89-TR-13 107

Defense Technical Information Center (DTIC)
Cameron Station
Alexandria, VA 22314
(202) 274-6871 (Registration section)
(703) 274-7633 (Reference section)

National Technical Information Service (NTIS)
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
(703) 487-4650 or
(202) 724-3374

Ada Software Repository Newsletter
Echelon, Inc.
885 N. San Antonio Road
Los Altos, CA 94022
(415)948-3820
Email: ada-sw-request@simtel20.army.mil

Grebyn Corporation
P.O. Box 497
Vienna, VA 22180
(703)281-2194
Email: products@grebyn.com

Cutter Information Corporation
1100 Massachusetts Ave
Arlington, MA 02174
(617)648-8700

International Resource Development, Inc.
PO Box 1716
New Canaan, CT 06840
(203) 966-2525

108 CMU/SEI-89-TR-13

Appendix C: Accessing Network Information

A great deal of information is available through network access. This information can be
retrieved online so that it is often more up-to-date and more readily available than infor-
mation available in libraries or ordered through the mail. Much of this information is on the
AJPO and the SIMTEL20 machines which are both on ARPANET. Anyone that has ftp (file
transfer protocol) access to these machines can access this information. The best resource
on the various networks and information on how to navigate between them is given in The
Ada Software Repository and the Defense Data Network [11]. This appendix will merely
give some simple scripts which should work for ARPANET users. Those on other networks
will need to consult their system managers to determine whether they have ftp access to
these ARPANET databases.

In the following scripts, lines on which the user enters information are preceded with aster-
isks. The commands and information that are typed by the user is shown in italics. It should
be noted that "cd" is the UNIX "change directory" command. At any directory, the user may
type "dir" for a listing of the files or directory entries that are contained in the current direct-
ory.

C.1. Retrieving Ada Issues
The script below shows how to retrieve an individual Ada commentary from the AJPO ma-
chine. It is possible to register to receive updates of language commentaries automatically
by electronic mail. To be put on the notification list you should send Email to
ada-comment@ajpo.sei.cmu.edu and request either to be notified of updates or to be sent
the updates. Potential subscribers to this service are cautioned that the volume of the up-
dates is large (approximately one megabyte per month) if they are sent the updated com-
mentaries and its index.

The following script will retrieve all files that begin with the characters "ai-00032" in the
"public/ada-commentH directory on the AJPO machine. This file happens to contain infor-
mation about Ada commentary 32, "preemptive scheduling is required." An index to the Ada
commentaries is contained in the files referenced as "ai-index" where the * is a wildcard for
the file suffixes. This file is quite long (approximately 200K bytes) and contains the Ada
issues indexed by commentary number, reference manual number, status, and comment
number.

* ftp ajpo.sei.cmu.edu
220 ajpo.sex.emu.edu FTP server
(Version 4.98 Wad Fab 19 18:51:48 EST 1986) ready.

* Name (ajpo.sei.onu.edu:) : anonymous
* Password (a jpo. sei. emu. edu : anonymous) : your name here

331 Guest login ok, sand ident as password.
230 Guest login ok, accass restrictions apply.

* ftp> cd public/ada-comment
200 CWD command okay.

* ftp> mget ai-00032*

CMU7SEI-89-TR-13 109

mget ai-00032-ra.wj? y
200 PORT command okay.
150 Opening dataconnection for ai-00032-ra.wj(128.237.2.47,1261)
(2591 bytes).
226 Transfer complete.
2648 bytes received in 0.20 seconds (13 Kbytes/s)
mget ai-00032 mss? y
200 PORT command okay.
150 Opening data connection for ai-00032.mss (128.237.2 47,1262)
(2595 bytes).
226 Transfer complete.
2660 bytes received in 0.22 seconds (12 Kbytes/s)
ftp> quit
quit
221 Goodbye.

C.2. Retrieving the Latest Validated Compiler List

* ftp ajpo.sei.cmu.edu
220 ajpo.sei.cmu.edu FTP server
(Version 4.98 Wed Feb 19 18:51:48 EST 1986) ready.

* Name (ajpo.sei.cmu.edu:): anonymous
* Password (a jpo .sei.cmu.edu: anonymous) : your name here

331 Guest login ok, send ident as password.
230 Guest login ok, access restrictions apply.

* ftp> cd public/ada-info
200 CWD command okay.

* ftp> mget val-comp. hip
mget val-comp.hip? y
200 PORT command okay.
150 Opening data connection for val-comp.hip (128.237.2.47,1273)
(141429 bytes).
226 Transfer complete.
143266 bytes received in 6.43 seconds (22 Kbytes/s)
ftp> quit
quit
221 Goodbye.

C.3. Retrieving ASR Files

The Ada Software Repository resides on a machine called SIMTEL20, which is accessible
from ARPANET. Unlike the AJPO machine, the operating system is TOPS-20 rather than
UNIX. However, the protocol is still the ftp protocol so the scripts are similar. About the only
difference is the structure of directory and file names. The following script retrieves a file
called "bench.doc" from the "pd2:<ada.benchmarks>" directory. The command "mget
PIWG*" could have been used to retrieve all the PIWG benchmarks from the same directory.
As for the UNIX machine, the command "cd" will change directories and "dir" will list the
contents of the current directory. The master index can be found in the directory
"pd2:<ada.master-index>".

TTO CMU/SEI-89-TR-13

*

* ftp simtel20.army.mil
Connected to s witel2 0 . army .mil.
220 WSMR-SIMTEL20.ARMY.MIL FTP Server Process 5Z(53)-7 at
Fri 4-Nov-88 08:25-MST

* Name (simt el20 . army. mil: nhw) : anonymous
* Password (simtel20 .army .mil: anonymous) : your name here

331 ANONYMOUS user ok, send real ident as password.
230 User ANONYMOUS logged in at Fri 4-Nov-88 08:25-MST, job 20.

* ftp> cd pd2:<ada.benchmarks>
331 Default name accepted. Send password to connect to it.

* ftp> mgetbench.doc
* mget BENCH.DOC.1? /

200 Port 5.35 at host 128.237.2.47 accepted.
150 ASCII retrieve of PD2:<ADA.BENCHMARKS>BENCH.DOC.1 started.
226 Transfer completed. 7291 (8) bytes transferred.
7291 bytes received in 6.91 seconds (1 Kbytes/s)

* ftp> quit
221 QUIT command received. Goodbye.

It should be noted that the PIWG tests are also available in the AJPO machine in the direct-
ory public/piwg.

CMU/SEI-89-TR-13 111

112 CMU/SEI-89-TR-13

Appendix D: Acronyms
AAH
AC EC
ACM
ACVC
AdaJUG
AES
AFB
AJPO
ANSI
APSE
ARG
ARPA

ARTEWG
ASR
AVF
AVO
AVS
BSI
C3I
CACM
CD-ROM
CECOM
CIFO
COTS
CPU
CRID
DACS
DARPA
DEC
DoD
E&V
HOL
IBM
ICE
ISA
ISO
JTC
MAPSE
MCCR
MDS
MIS
MoD
MVS
NPL
PDL
PIWG
REST
RM

Ada Adoption Handbook
Ada Compiler Evaluation Capability
Association for Computing Machinery
Ada Compiler Validation Capability
Ada Joint Users Group
Ada Evaluation System
air force base
Ada Joint Program Office
American National Standards Institute
Ada programming support environment
Ada Rapporteur Group
Advanced Research Projects Agency
(now DARPA)
Ada Runtime Environment Working Group
Ada Software Repository
Ada Validation Facility
Ada Validation Office
Ada Validation Suite
British Standards institute
command, control, communications, & intelligence
Communications of the ACM
Compact Disk Read Only Memory
Communications-Electronics Command
Catalog of Interface Features and Options
commercial off-the-shelf software
central processing unit
Catalog of Runtime Implementation Dependencies
Data Analysis Center for Software
Defense Advanced Research Projects Agency
Digital Equipment Corporation
Department of Defense
evaluation and validation
higher order language
international Business Machines
in-circuit emulator
instruction set architecture
International Standards Organization
Joint Technical Committee
minimal Ada programming support environment
mission critical computer resources
microprocessor development system
management information system
Ministry of Defense
Multiple Virtual System
National Physical Laboratory
program design language
Performance Issues Working Group
Real-Time Embedded Systems Testbed
Reference Manual

CMU7SEI-89-TR-13 113

ROM read-only memory
SEI Software Engineering Institute
SIGAda Special Interest Group on Ada
SQL structured query language
URG Uniformity Rapporteur Group
VAX virtual address extension
VMS virtual memory system
VSR validation summary report
WG working group

114 CMU/SEI-89-TR-13

Index

ACEC 9, 11,32,53,54,63,79
ACEC Reader's Guide 53
ACEC User's Guide 80

Acronyms 113
ACVC 15,44,58,105
Ada Adoption Handbook 5
Ada Board 104
Ada Compiler Validation Capability 105
Ada Evaluation System 11, 83,107
Ada Implementers' Guide 60
Ada Implementors' Guide 44
Ada Information Clearinghouse 104
Ada issues 109
Ada Joint Program Office 104
Ada Joint Users Group 101
Ada Maintenance Organization 105
Ada Programming Support Environment 106
Ada Rapporteur Group 8
Ada Run-Time Environment Working Group

102
Ada Software Repository 11, 87,110
Ada Validation Facility 17,105
Ada Validation Office 17
Ada Validation Organization 105
Ada Validation Suite 105
Ada-JOVIAL Newsletter 105
AdalC 104
AdaJUG 101
Address clauses 39
Aerospace benchmarks 86, 107
AES 11,35,63,83,107
AJPO 17, 104
AMO 105
ANSI/MIL-STD-1815A 8
APSE 19,28,63,70,83,106
ARG 8,102
ARTEWG 8,47,60, 102
ASR 87, 108
ASR Newsletter 108
Asymetrical translation 75
Asynchronous events 74
Attributes 39, 54

"ADDRESS 54
AVF 17, 105
AVO 17, 105
AVS 15, 105

Bare machine 47
Bare target 17
Base compiler 17
Benchmark

composite 72
configuration information 78
data analysis 76

strategy 77
synthetic 73
timing anomalies 75
types 71

Benchmarking 19, 71, 102, 106
Boundary alignment 74
British Standards Institute 11, 21, 84,107

CAIS 106
CALENDAR 75
CECOM 106
Chapter 13 features 9, 16
Checklists 20
Clock 74
Co-processors 60
Code expansion 10, 54
Code inspection 50
Comparing Ada 23
Compile/link time 10,37
Compiler

base 17
capacity 41
derived 17
options 16,37
performance 40
project-validated 17
reevaluation 21
selection process 25
tools 63

Composite benchmarks 72
Concurrency 55
Conferences 104
Configurability 59
CRID 60
Cross compiler 47
Cross development

downloading 66
environment 27

Cross-development environment 27, 69
Cutter Information Corporation 108
Cycle stealing 74

DACS 80, 107'
Daemons 74, 78
Data analysis 76
Debugging 67, 68
Defense Data Network 109
Derived compiler 17,105
Dhrystone 73
DIANA 64,70
Documentation 42
DoD Directive 3405.1 1
DoD Directive 3405.2 1
Downloading 66

CMU/SEI-89-TR-13 115

DTIC 108
Dual loop design 75

E&V Reference Manual 19
E&Vteam 5,79, 106

E&V Guidebook 5
E&V Reference Manual 5,19

Efficiency 50
ELABORATE pragma 57
Elaboration 56
Embedded systems 17, 79
Evaluation 19

benchmarks 19
completeness 20
correctness 20
cost 30
hardware requirements 12, 27
information 5
portability 33
porting requirements 6
reevaluation 21
runtime performance 47
schedule 30
software requirements 12, 28
tailoring 21
tests 12
time requirements 5
usability 20
vendors 34

Evaluation and Validation Team 106
Evaluation service 21
Exceptions 55
Execution

storage requirements 57
time 47, 62

Ftp 109

Garbage collection 58, 74, 85
Generated code

space efficiency 54
time efficiency 50

Granularity 71
Grebyn Corporation 108

Hard real-time 13
Hardware clock 62, 74, 75
Host-based compilers 47
Human factors 42

I/O 39
Implementation dependent features 8
Implementation options 44
Implementation-dependent features 9
In-circuit emulator 76
Incremental compilation 64

Input-output packages 56
Inspection 50
Integration 70
International Resource Development, Inc. 108
Interrupt handling 9
Interrupts 61,74
ISO 102

JTC1 102

Language feature tests
Language features 51
Library units 57
Linker 10,58,65
Loader 58
Loading, selective 65
Logic analyzer 75, 76

71

40 Machine code insertions
MAPSE 63,70
Memory 74

interleaving 74
requirements 54

Microprocessor development system 76
MIS 13,56
Multi-level memories 74

NTIS 108

Optimization 9, 52, 68, 75

Package
CALENDAR 62,75
STANDARD 39
SYSTEM 39,62

Performance Issues Working Group 102
Periodic events 74
Pipelined architectures 74
PIWG benchmarks 11, 81, 102
Portability 6, 33
Pragmas 38
Program library system 63
Programming environment 63

Real-time executive 48
Recompilatjon 64
Reevaluation 21
Rendezvous 55
Representation clauses
Runtime 47
Runtime system 74

space efficiency 57

39

SC22 102
SIGAda 101
Simtel20 109

116 CMU/SEI-89-TR-13

Software vernier 75 WG9 102
SQL 102 Whetstone 73
Stoneman 70
Storage requirements 57
Sublibraries 65
Support tools 10
Synthetic benchmarks 73

Tailoring evaluations 21
Target simulator 69
Tasking 55
Test

application-specific 73
capacity 72
composite benchmarks 72
degradation 72
language feature 71
synthetic benchmarks 73

Test equipment 28
Test hardware 12
Test software 12
Test suite 11, 29

ACEC 79
Aerospace Benchmarks 86
AES 83
PIWG Benchmarks 81
requirements 29
summaries 95
University of Michigan Ada Benchmarks 85

Testing 51
Textbooks 104
Time 62
Timing

anomalies 75
verification 75

Tools 63
debugger 67
integration 70
program library 63

Training 104

Unchecked conversion 39
Uniformity Rapporteur Group 8, 41, 44
University of Michigan benchmarks 85, 107
URG 8,41,44,60, 102

Validated compiler 17
Validation 8,15

ACVC 15
procedures 15
project 17

Validation Summary Report 17,18
Variation 74
Vendors 6
VSR 17,18

CMU/SEI-89-TR-13 117

118 CMU/SEI-89-TR-13

se CURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1». REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/OOWNGRAOING SCHEDULE

N/A
A. PERFORMING ORGANIZATION REPORT NUM8ERIS)

CMU/SEI-89-TR-13
6.. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INST.

Sb. OFFICE SYMBOL
(If applicable)
SEI

6c AOORESS (City. Stale and ZIP Code)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

lb. RESTRICTIVE MARKINGS

NONE
3. OlSTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

S. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-: 89-021
7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

7b. AOORESS (City. Stale and ZIP Codel

ESD/XRS1
HANSCOM AIR FORCE BASE
HANsr:r)Mr MA ni7?i

8«. NAME OF FUNOING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(If applicable)

ESD/XRS1

9. PROCUREMENT INSTRUMENT IOENTlFICATIO*l,NUMSER

F1962885C0003
8c. AOORESS (City. Slate and ZIP Cade)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

10. SOURCE OF FUNOING NOS.

11. TITLE (Include Security Classification)

ADA ADOPTION HANDBOOK: COMPILER EVALUATION AID

PROGRAM
ELEMENT NO.

63752F

SELECTION

PROJECT
NO.

N/A

Version l.d)

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)

Nelson H. Weiderman
13*. TYPE OF REPORT

FTNAT.

13b. TIME COVERED

FROM TO

14. OATE OF REPORT (Yr.. Ma.. Day)

March 1989

IS. PAGE COUNT

-All
16. SUPPLEMENTARY NOTATION

17. COSATI COOES

FIELD GROUP SU8. GR.

18 SUBJECT TERMS (Continue on revert* if necessary and identify by block number)
Ada compiler Validation
Compiler evaluation Compiler testing
Compiler selection Test suites
Benchmarks Runtime systems

19. ABSTRACT (Continue on reverse if necessary and identify by block number/

The evaluation and selection of an Ada compilation system for a project is a complex and
costly process. Failure to thoroughly evaluate an Ada compilation system for a particular
user application will increase project risk and may result in cost and schedule overruns.
The purpose of this handbook is to convince the reader of the difficulty and importance of
evaluating an Ada compilation system (even when there is no freedom of choice). The
handbook describes the dimensions along which a compilation system should be evaluated,
enumerates some of the criteria that should be considered along each dimension, and pro-
vides guidance with respect to a strategy for evaluation. The handbook does not provide
a cookbook for evaluation and selection. Nor does it provide information on specific
compilation systems or compare different compilation systems. Rather it serves as a
reference document to inform users of the options available when evaluating and selecting
an Ada compilation system.

20. OlSTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED £) SAME AS RPT. D OTIC USERS Q

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION
22a. NAME OF RESPONSIBLE INOIVIOUAU

KARL H. SHINGLER
22b. TELEPHONE NUMBER

(Include A rea Code I

412 268-7630

22c. OFFICE SYMBOL

SEI JPO
DO FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAG.

