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Ada Adoption Handbook: 
Compiler Evaluation and Selection 

Abstract: The evaluation and selection of an Ada compilation system for a project 
is a complex and costly process. Failure to thoroughly evaluate an Ada compi- 
lation system for a particular user application will increase project risk and may 
result in cost and schedule overruns. The purpose of this handbook is to convince 
the reader of the difficulty and importance of evaluating an Ada compilation sys- 
tem (even when there is no freedom of choice). The handbook describes the 
dimensions along which a compilation system should be evaluated, enumerates 
some of the criteria that should be considered along each dimension, and pro- 
vides guidance with respect to a strategy for evaluation. The handbook does not 
provide a cookbook for evaluation and selection. Nor does it provide information 
on specific compilation systems or compare different compilation systems. Rather 
it serves as a reference document to inform users of the options available when 
evaluating and selecting an Ada compilation system. 

1. Introduction 

An Ada compilation system includes the software required to develop and execute Ada pro- 
grams. Important components of the compilation system are the compiler, the program 
library system, the linker/loader, the runtime system, and the debugger. Evaluation and se- 
lection apply to the entire package, not just the compiler. In this report, the word "compNer" 
is sometimes used for "compilation system" for the sake of brevity, but the context should 
indicate the intended meaning. Another convention of this report is referring to the 
Reference Manual for the Ada Programming Language as RM, rather than LRM or ARM. 

1.1. Purpose and Scope 
Department of Defense directives require the use of Ada for mission-critical, 
embedded applications. This handbook presents information on strategies and 
techniques for selecting an Ada compilation system that is appropriate for a 
particular application. 

Department of Defense (DoD) policy on the use of Ada is specified in DoD directives 3405.1 
[37] and 3405.2 [38]. The first directive describes computer programming policy in general 

and specifies that Ada "shall be the single, common, computer programming language for 
Defense computer resources used in intelligence systems, for the command and control of 
military forces, or as an integral part of a weapon system." The second directive specifies 
the policy for weapon systems in particular. It requires the use of a validated Ada compiler, 
the use of software engineering principles facilitated by Ada, and the use of Ada as a pro- 
gram design language (PDL). Waivers are provided for in these directives, but will be in- 
creasingly difficult to obtain. 
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With regard to application areas not included in the paragraph above, DoD directive 3405.1 
states: "Ada shall be used for all other applications, except when the use of another ap- 
proved higher order language is more cost-effective over the application's life cycle, in keep- 
ing with the long-range goal of establishing Ada as the primary DoD higher order language 
(HOL)." By most standards, the requirements of embedded weapon systems are more de- 
manding than those of management information systems (MIS). This handbook addresses 
both application areas, but with an emphasis on embedded systems. When MlS-type ap- 
plications have special requirements, they will be noted. 

There are risks in using any new programming language, particularly when new software 
engineering techniques are being adopted at the same time. But there are also risks and 
costs associated with failure to adopt modern technology. In order to reduce the risk of a 
new language, as well as the risk of immature compiler implementations, the selection proc- 
ess must identify key criteria and test the candidate compilation systems against the criteria. 
Even when there is only one compilation system available, or when the choice of compi- 
lation system is mandated, the risks of using a particular system should be identified so that 
the impact on costs and schedules can be better predicted. 

The purpose of this handbook is first to convey to the reader the importance of evaluating an 
Ada compilation system with respect to application requirements and second to provide the 
necessary information and pointers to information to facilitate this evaluation and selection 
process. The handbook is not meant to be a cookbook. There are no simple answers be- 
cause each application is different. There is no test suite or checklist that is sufficient for 
everyone or every project. The best that this handbook can do is identify the areas of impor- 
tance to a reasonable degree of detail, provide the foundations to build an evaluation capa- 
bility, and encourage the reader to follow some of the paths to more comprehensive infor- 
mation. 

The handbook may leave the reader with the impression that the evaluation of an Ada com- 
pilation system is a daunting task. Since Ada was proposed with portability and uniformity in 
mind, it might be supposed that all compilation systems are the same. The fact is that the 
implementors were given freedom in many areas by the language designers, so that the 
language could be tailored to application needs. This has brought about variations in imple- 
mentations, but for good and understandable reasons. These variations are, in part, 
responsible for the fact that Ada compilation systems are available for well under one 
thousand dollars and for well over one hundred thousand dollars. The costs of a good eval- 
uation and selection process are considerable, but the costs of an inadequate evaluation are 
greater and can cause disastrous results for the system under development. 

Information contained in the handbook is derived, in part, from the experience of the SEI 
Real-time Embedded Systems Testbed (REST) Project. The project was initiated in 
October, 1986, and as of early 1989 has had experience with three host systems, four target 
systems, nine Ada compiler vendors, and five Ada test suites. 

The handbook is written for anyone who may be in the position of evaluating or selecting an 
Ada compiler for a project, or anyone who is managing a project for which an Ada compiler 
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must be selected. The handbook assumes that the reader has a general working knowl- 
edge of compilers, linkers, loaders, and Ada program library systems. The more general 
information for project managers appears in Chapters 2, 3, and 4. More specific information 
for lead technical personnel is contained in Chapters 5 through 9. 

1.2. Handbook Organization 

This section describes the organization of this handbook. 

This handbook is organized as a series of chapters that provide information about the proc- 
ess of evaluating and selecting an Ada compiler. It raises questions that should be an- 
swered by those responsible for choosing compilers or reducing the risk of using a specific 
compiler. 

1. Introduction: Includes the purpose of this handbook and provides help in its 
use. 

2. Common Questions: Presents commonly asked questions, succinct an- 
swers, and, where needed, pointers to more detailed information. Topics in- 
clude both the technical and pragmatic issues of compiler selection. This 
chapter can be used (among other purposes) as an executive summary for the 
rest of the handbook and to review particular points. 

3. Compiler Validation and Evaluation: Distinguishes between validation and 
evaluation and provides an overview of the types of information that should be 
part of a general evaluation strategy. 

4. Practical Issues of Selecting an Ada Compiler: Discusses the recom- 
mended steps for developing and executing a strategy for evaluating and se- 
lecting an Ada compiler for a particular application. 

5. Compile/Link-Time Issues: Presents selection criteria based on the options, 
performance, capacity, and human factors of the compiler and linker. 

6. Execution-Time Issues: Presents selection criteria based on the options, 
performance, and capacity of the code generated by the compiler and the run- 
time system provided by the compilation system. 

7. Support Tool Issues: Presents selection criteria based on the program 
library system, linker/loader, debugger, and target simulator. 

8. Benchmarking Issues: Presents the issues surrounding the use of test pro- 
grams in order to obtain quantitative information about an Ada compilation 
system. 

9. Test Suites and Other Available Technology: Provides an overview of the 
tools and technology available today to assist in the selection of Ada 
compilers. 

The following appendices are also included: 

A. Test Suite Summaries: Contains the categories of tests included in five major 
test suites as described in their documentation. 

B. Compiler Evaluation Points of Contact: Contains short descriptions as well 
as names, addresses, and telephone numbers of professional organizations, 
U.S. government organizations, evaluation technology producers, and other 
Ada information sources. 
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C. Accessing Network Information:  Contains scripts for accessing relevant in- 
formation about Ada and evaluation technology on the ARPANET. 

D. Acronyms: Defines acronyms that are used in the handbook. 

1.3. Tips for Readers 

This section highlights techniques for quick and efficient use of this handbook. 

In addition to the question and answer approach of Chapter 2, several other techniques 
have been used to help the reader make maximum use of this handbook: 

• Definitions: The terminology of evaluation and validation can be found primar- 
ily in Chapter 3. Those familiar with these concepts may not need to read this 
chapter carefully. 

• Summaries: A summary begins each major section. Each summary is cen- 
tered and italicized for easy identification. 

• Action plans: Actions and strategies necessary to select an Ada compiler are 
given in Chapter 4. 

• Bold and bullets: Major points are emphasized by using bold headings within 
bulleted lists. The major points are then followed by detailed discussions. 

The information contained in this handbook has a short half-life. Examples are the descrip- 
tions of current evaluation technology in Chapter 9 and the list of points of contact in Appen- 
dix B. This handbook will be reissued periodically to present up-to-date information about 
Ada compiler selection. It is important that users have the most recent information as part of 
their decision-making process. Ada compiler technology, particularly in the realm of em- 
bedded systems, is advancing rapidly. 

The following topics are not covered (or are given only limited coverage) in this handbook: 

• details of Ada language features 

• details of using the Ada language 
• details of specific test suites and evaluation technology 
• details of specific Ada compilation systems 

• comparisons of different Ada compilation systems 
• language administration and policy issues 

• government procurement regulations and issues 
• issues concerning the decision to adopt Ada for use on a project 

Readers interested in these topics are referred to the Ada Information Clearinghouse (see 
Appendix B), to the Ada Adoption Handbook: A Program Manager's Guide [19], and to other 
points of contact mentioned in the appendices. 
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2. Common Questions 

Thoroughly evaluating Ada compilers is more difficult and costly than one might 
expect. However, an inadequate effort at this stage may be even more costly 
to the program in the long term because it may adversely affect the progress of 
the project for which the compiler was chosen. Questions about evaluating and 
selecting an Ada compiler generally fall into three categories: questions about 
procedure, questions about compiler technology, and questions about evalua- 
tion technology. 

This handbook provides the information that is needed to make well-informed decisions 
about evaluating and selecting Ada compilers. Some typical questions are presented on the 
following pages. Where needed, pointers to supplemental information contained in other 
chapters of the handbook are provided. 

2.1. Questions About Procedure 

Question: What are some important sources of information to consult before beginning an 
Ada compiler selection process? 

Answer: Before starting a selection process the user should be thoroughly familiar with 
some of the top-level issues of using Ada. For this, the reader is referred to the latest 
edition of the Ada Adoption Handbook: A Program[B Manager's Guide [19]. The Ada 
Programming Support Environment (APSE) Evaluation and Validation (E&V) Team has 
produced a reference manual [45] and a guidebook [46]. The former gives a broad intro- 
duction of the issues and definitions of evaluating APSEs (including compilers) and the 
latter provides pointers to some of the existing E&V technology. An overview of the 
issues has recently been published in IEEE Computer[20]. The AJPO's Information 
Clearinghouse is a good source of information. On the ARPANET, the info-ada bulletin 
digest is a source of anecdotal information. Finally, the references in this handbook 
provide a number of valuable sources of information. 

See: Section 4.9 and Appendix B. 

Question:   How much time should be allocated for doing a thorough, independent evalu- 
ation of an Ada compiler? 

Answer: The circumstances under which the evaluation takes place are the driving fac- 
tors. In general, it will be much easier to evaluate a host-based compilation system than 
a cross-development system. It will be much easier to evaluate a compiler for a system 
with which the user is familiar than to evaluate a new system. It will be much easier to 
evaluate a compiler if there are experienced evaluators doing the job. It will be much 
easier if the compilers being evaluated are mature and stable than if they are new prod- 
ucts consisting of new components. It will be much easier if compilers for only one tar- 
get are being evaluated. The level of effort should also depend on the size of the pro- 
gram for which the compiler is needed. As a general rule, expect to take from one to six 
calendar months for a reasonably thorough first-time evaluation, depending on some of 
the factors mentioned above. 

See: Section 4.5. 
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Question:   If a compiler has already been specified for a program, is there any reason to 
complete a rigorous compiler evaluation process? 

Answer: Yes. Even if a program is required to use a specific compiler (for example, 
standard military computers may have only a single Ada compiler) an evaluation should 
be performed. If the compiler fails to meet minimum requirements for the program, then 
alternative system designs, new compiler procurement, processor waivers, or language 
waivers must be explored. If there are functionality or performance deficiencies, then 
cost and schedule may have to be modified and workarounds need to be explored. 

See: Section 3.2. 

Question:   What are the potential consequences of selecting a poor Ada compiler for a 
particular application? 

Answer: The costs of a poor selection can be many times the cost of a thorough evalu- 
ation. A program should be cognizant of potential problems. For example, error-prone 
or inefficient runtime systems are particularly difficult to work around and require high 
quality and timely vendor support. Unsupported features of the Ada standard may make 
it impossible to meet functionality requirements. Performance degradation under loaded 
conditions may make it impossible to meet performance requirements. Changing com- 
pilers in the middle of a project will also prove costly. 

See: Section 4.5. 

Question: What high-level procedures should be used to evaluate and select Ada compil- 
ers? 

Answer: The general process at the highest level is the same in all cases. First, the 
criteria must be established. Next, the tests must be gathered or written to test the com- 
piler against the criteria. Finally, the results must be analyzed to determine whether the 
compiler meets the criteria. Within these broad parameters there are many alternate 
paths. The breadth and depth of the methods may vary from one selection procedure to 
another and from one project to another, depending on the application requirements. 

See: Sections 3.2 and 4.1. 

Question: How important is a compiler vendor after an acquisition is made? 

Answer: Vendor support after acquisition is usually very important, especially at the 
present time. Relatively new compilers rarely work without problems, and the respon- 
siveness of the vendor to solving these problems in a timely fashion can make or break 
a project. In some cases, the vendor may be called upon to tailor the compiler to appli- 
cation requirements to make it more responsive to project needs. 

See: Sections 4.8 and 6.4. 

Question:   What are the reasons for and implications of porting code between compiler 
systems from different vendors and porting code between different targets? 

Answer: First, an application may have to be ported from one processor to another if 
there is a compelling performance gain in the new hardware or if there is a requirement 
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to run on several different targets. This would generally happen late in the product life 
cycle. Second, an application may have to be ported from one compiler for a given 
processor to another compiler for the same processor. This would generally happen 
early in the life cycle if a compiler were found to be deficient or vendor support to be 
lacking. Third, porting may be required when code is reused from another application. 
Finally, porting is required when two compilers are used in the development phase, one 
for initial development and unit testing on a host-based system and the second for the 
final target system. Changing vendors can be as disruptive as changing either host sys- 
tem or target system (while keeping the same vendor). This is due to the idiosyncratic 
nature of the total environment in which the compiler operates, as well as the 
implementation-dependent choices the vendor has made with respect to machine- 
dependent features. Installing, invoking the compilation tools, downloading, and debug- 
ging are all quite vendor-specific. 

See: Section 4.7. 

Question: What kinds of compiler deficiencies are likely to show up in the later stages of 
the development cycle? What will be the impact of these deficiencies on a large project? 

Answer: Some deficiencies do not show up until the systems being developed reach a 
certain size. These capacity problems are often difficult or impossible to correct or work 
around. Some runtime system bugs do not manifest themselves until a system has 
been running for a long period of time. For example, if a runtime system does not cor- 
rectly allocate and deallocate storage for exceptions, the bug may not be detected until a 
large number of exceptions have been processed. The impact on a project at this stage 
can be devastating, because there is rarely time left in the schedule to adjust. Risk 
reduction strategies for these situations would include early system testing and a strong 
working relationship with the compiler vendor. 

See: Sections 5.3, 6.2.3, and 6.5. 

Question: How many vendors are currently producing Ada compilers? How many 
compilers are available from these vendors? For which targets are cross-compilation sys- 
tems available? 

Answer: As of early 1989, there were nearly 50 Ada compiler vendors. The AJPO's 
validated compiler list contained over 230 compilers. Cross compilers are available for 
host-based systems as well as for an increasing number of bare targets. 

See: Section 3.1. 

Question: Can a fair comparison be made between Ada and other languages? 

Answer: What can be compared is an implementation of Ada with an implementation of 
another language. To make the comparison a fair one, it must be understood that Ada 
does more consistency checking at both compile time and execution time than many 
other languages. The tradeoffs must be recognized and acknowledged. 

See: Sections 3.2.6 and 9.6. 
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Question:  Is the evaluation of Ada compilers substantively different from the evaluation of 
compilers for other languages? 

Answer: In many ways it is the same. The prospective users must determine the time 
and space efficiency of the compiler and the code it generates, as well as the usability of 
the compiler. What makes Ada evaluation more formidable is the complexity of the lan- 
guage, the number of implementations, and the incorporation of executive functions 
such as memory management and scheduling into the runtime system. Furthermore, 
Ada's program library system, which provides separate compilation with full consistency 
checking, provides an evaluation dimension not relevant in many other languages. 

See: Section 6.1. 

2.2. Questions About Compiler Technology 

Question: Are there substantial differences among validated Ada compilers? 

Answer: Yes. The fitness of a specific Ada compiler for use in a particular application 
has very little to do with validation. Validation is a process which is meant to test 
whether an Ada implementation conforms to the language definition specified in 
ANSI/MIL-STD-1815A. Fitness for use has to do with compile-time and execution-time 
performance, capacity, and user options, as well as many issues related to the user in- 
terface, documentation, and support of the product. There are compilers that are more 
suitable for educational purposes, some that are more suitable for MIS applications, and 
some that are more suitable for real-time applications. As such, proper evaluation and 
selection is a necessity. 

See: Sections 3.1 and 3.2. 

Question: Do all Ada compilers employ the same algorithms to handle the semantics of the 
Ada programming language? What are the best sources of information about differences in 
implementations? 

Answer: No. There is a great deal of variation permitted by the Ada language standard 
and a substantial performance impact on the users of Ada compilers. Implementors are 
required to provide an appendix to their Ada reference manuals detailing their dif- 
ferences. The ARTEWG (Ada Runtime Environment Working Group) is one source of 
information on implementation dependencies [1]. There is also a new group that has 
been established under Working Group 9 (WG9) of the International Standards Organi- 
zation (ISO) umbrella called the Uniformity Rapporteur Group (URG). While the Ada 
Rapporteur Group (ARG) deals with language interpretation and maintenance, the URG 
makes recommendations about how implementations should handle certain implemen- 
tation features. At the very least, evaluators should be aware of the kinds of issues 
raised by these groups. 

See: Section 5.5 and Appendix B. 
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Question:  How much optimization can Ada compilers be expected to perform?  Are there 
any disadvantages to a highly optimizing compiler? 

Answer: The level of optimization provided by today's compilers varies greatly. Many 
simple optimizations are routinely performed by some compilers, but there are many 
complex optimizations that can improve performance. The Ada Compiler Evaluation Ca- 
pability (ACEC) tests for 24 categories of optimizations. Depending on the compiler, 
optimization levels can be requested with pragmas or compiler switches or optimization 
may be provided automatically. While most users desire the most efficient code pos- 
sible, highly optimized code may present its own new problems; for example, bugs may 
be introduced by the more complex optimizations. Also, the debugger may react differ- 
ently to highly optimized source code and may itself contain bugs. For example, if an 
optimization keeps values in registers rather than storing them in memory, the symbolic 
debugger must recognize the correct values at every point in the program. 

See: Section 6.2.3. 

Question: What are "Chapter 13" features? Why can they be important to the selection of 
an Ada compiler? 

Answer: The name of Chapter 13 in the Reference Manual for the Ada Programming 
Language (RM) is "Representation Clauses and Implementation-Dependent Features." 
It is concerned with representation of data, alignment of data in memory, packing of data 
in memory, low-level I/O, data conversions, interrupts, machine code, language inter- 
faces, storage allocation, and other low-level issues. For many applications, these is- 
sues are irrelevant, but for embedded systems they are critical. For many years these 
features were believed to be "optional" features of the language. The most recent Ada 
Compiler Validation Capability (ACVC) test suite (Version 1.10, required for validation 
after 7/1/88) has a number of tests against requirements in Chapter 13. However, there 
is still not thorough coverage. The ARG is developing language commentaries explain- 
ing what aspects of Chapter 13 must be supported by every implementation, but it is 
unlikely that their work will be completed before the middle of 1989. Evaluators are ad- 
vised to test for those features required by their application. 

See: Section 5.1.4. 

Question: What aspects of interrupt handling must be evaluated? Why are there few tests 
for interrupt handling in the currently available test suites? 

Answer: Interrupt handling is important to most embedded system applications, but not 
to non-embedded systems. Interrupt latency and exit times, as well as the functionality 
available in the interrupt service routine, should be determined. Such tests are difficult 
to include in test suites because there are many options for handling interrupts and spe- 
cial hardware is usually required to implement interrupts and to measure the time re- 
quired to process interrupts. Interrupt handling is dependent upon target architecture, 
compiler vendor, application, and programmer. 

See: Section 6.8. 
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Question: If a compiler generates reliable code that runs fast, why should any time be 
devoted to evaluating other criteria for the compilation system? 

Answer: The developer should be concerned not only with the final product, but also 
with the process of developing the final product and the process of maintaining the final 
product. For this reason the compile/link time, the support tools, and the human factors 
must be given appropriate weight. In addition, vendor support must be considered, par- 
ticularly for embedded applications. 

See: Sections 4.8, 6, and 7. 

Question: Is code expansion (i.e., the average number of bytes of object code generated 
per line of source code) the best measure of the amount of space that will be required by an 
application? 

Answer: No. While code expansion- provides one indicator of eventual size, another 
important space consideration is how well the linker excludes code that is not used. A 
sophisticated linker should eliminate from the loaded code any parts of the runtime sys- 
tem that are not used, as well as any parts of packages (including subprograms and 
objects) that are exported but not used. While many of today's linkers do a good job of 
this, there are still some compilation systems that generate tens or even hundreds of 
thousands of bytes of code for the simplest of programs. Also important is whether the 
compiler shares bodies for generic instantiations and how much space is required for 
dynamically allocated objects. 

See: Section 6.3. 

Question: Is it sufficient to measure the compile/link time on a variety of large programs to 
determine the compile/link time efficiency of the compiler? If not, what other factors are 
important to consider? 

Answer: What is more important than the size of the program is the rate at which the 
compile/link time grows with the size of the program. Some compilers may perform ade- 
quately for small programs, but degrade severely as program size increases. Converse- 
ly, the processing overhead for small programs may be great compared to that of large 
programs. It is important to know how compile/link time is influenced by unit size, num- 
ber of variables, with and use clauses, subunits, generics, etc. Also important is the 
cost of recompilation and relinking in the face of small changes. For example, after 
changing a comment in a compiled unit, does it take just as much work to recompile the 
modified unit? Does the compilation system avoid recompiling units that do not need to 
be recompiled? What is the impact on compile time of hardware configuration (disk and 
memory space, network overhead, etc.) or the number of files in the library? 

See: Sections 5 and 7.1. 
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2.3. Questions About Evaluation Technology 

Question: Are evaluations of individual Ada compilers available, so that the work required 
to evaluate Ada compilers would be reduced? What test suites are available? 

Answer: Currently, very few evaluations of specific products are publicly available. 
There are several reasons for this. First, they are obsolete almost from the moment they 
are published because compilers are constantly evolving and improving. Second, they 
must be carefully documented and defended from challenges from vendors with vested 
interests. Notable exceptions are the evaluations of Ada compilers based on the Ada 
Evaluation System (see Section 9.4) that the British Standards Institute is beginning to 
publish. The major general-purpose test suites that are currently available are the 
ACEC test suite, the AES test suite, and the PIWG test suite. Some application-specific 
tests are available in the Ada Software Repository. 

See: Section 9. 

Question: Is it safe to take at face value the numbers that are being reported by compiler 
vendors or independent groups trying to address performance issues? 

Answer: No. Vendors put their products in the best possible light. For example, ven- 
dors naturally choose favorable parameters for compiling, linking, and loading their pro- 
grams when those parameters are not explicitly specified or ruled out in the instructions 
for running the benchmarks. Independent groups, however well-intentioned, may not 
always control all the appropriate sources of variation nor provide sufficient documen- 
tation and disclaimers. Only by asking detailed questions about the configuration and 
the circumstances under which the numbers were derived can one start to gain con- 
fidence in what is measured. Even then, the questioner must be confident that the ques- 
tions are being answered by informed and totally truthful sources. 

See: Sections 8.2 and 8.3. 

Question: What are the advantages and disadvantages of using a test suite that is avail- 
able from a third party? What is the quality of these test suites? From whom are they 
available? 

Answer: The test suites that are generally available are described in Chapter 9. The 
quality of these test suites is adequate if used by a knowledgeable tester who is familiar 
with most of the pitfalls of benchmarking. The advantage is that the coverage is very 
broad and detailed. (Almost every Ada feature is tested by these suites.) The suites are 
often helpful in answering very specific questions or in comparing compilers. Some 
have extensive tools for analysis of the results. They represent many work years of 
effort and have been constructed to avoid many of the common pitfalls. The disadvan- 
tage is that the tests do not necessarily test the features in the same combination or 
under the same circumstances in which they will be used by a particular application. 

See: Sections 4.1, 9, and 9.1. 
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Question: What are the generic categories of test programs and what are the advantages 
anri HicaHvantanec; <->f panh? and disadvantages of each? 

Answer: One way that tests can be classified is by their granularity. There are fine- 
grained test programs that test and measure individual Ada features, such as the time 
and space for a subroutine call or the effect of a particular kind of optimization. On the 
other hand, there are coarse-grained tests that test many features in combination. The 
coarse-grained tests can be either synthetic (statistically constructed to look like a 
"typical" application) or actual application code. Fine-grained tests do not show how 
various features interact and are more subject to anomalous variations. Coarse-grained 
tests only give a broad indication of quality and do not pinpoint the source of difficulties. 
In the end, a combination of fine- and course-grained tests would seem to be advisable. 

See: Section 8.1. 

Question:   Are benchmark test suites the best source of quantitative data for comparing 
compilation systems? 

Answer: The best software to use for comparing compilation systems is the operational 
software itself. If operational software is not available during evaluation, then subsys- 
tems or prototypes can be helpful. In general the better one understands any software 
that is being used for evaluation (including test suites), the more meaningful will be the 
results. 

See: Section 8. 

Question: What hardware, aside from the host and target systems, is required to perform 
an assessment of Ada compilers? 

Answer: For general purpose systems, no additional hardware is required. For em- 
bedded systems, there should be some hardware mechanism, such as a logic analyzer 
or in-circuit emulator, to verify software timings and to time those software segments, 
such as first-level interrupt handlers, that are not easily timed using software techniques. 

See: Section 4.2. 

Question:  What software, aside from that provided by the compiler vendor, is required to 
perform an assessment of an Ada compiler? 

Answer: For general purpose computing systems that are self-targeted, installing the 
compiler is usually straightforward. On cross-development systems it is often necessary 
to write some drivers for the target to adapt the runtime system and download software 
for the particular board that is installed. Typically, the adaptation of these target resident 
software modules is necessary to provide access to an on-board timer and a serial con- 
troller for downloading and host-target cross I/O. For either type of system, an assess- 
ment requires test software. It is often useful to have analysis software to reduce the 
large amounts of data generated by benchmark programs to useful information that can 
be easily interpreted. 

See: Section 4.3. 
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Question: What are some of the most important criteria when selecting a compiler for hard 
real-time (deadline-driven) applications? 

Answer: For hard real-time applications, some important criteria are usually determinis- 
tic behavior, the modeling of time, interrupt handling, representation clauses and 
implementation-dependent features, and time and space runtime efficiency. If the appli- 
cation will use the Ada tasking model, then the tasking features will be important criteria. 

See: Sections 3.2, 5, and 6. 

Question: What are some of the most important criteria when selecting a compiler for C3I 
and MIS applications? 

Answer: I/O performance and functionality, standardized interfaces to commercial off- 
the-shelf (COTS) software packages such as graphics, database, and windowing sys- 
tems, and portability are likely to be rated as important criteria for these types of applica- 
tions. 

See: Sections 3.2, 5, 6, and 7.1. 
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3. Compiler Validation and Evaluation 

There is an important difference between validation and evaluation. Validation 
tests conformance to ANSI/MIL-STD-1815A. Validation cannot be relied upon 
for determining whether a given Ada compiler is fit for use in a particular appli- 
cation. 

3.1. Validation 

Ada compiler validation is the formal testing process whereby an Ada compiler 
is certified by the Department of Defense to conform to the military standard 
ANSI/MIL-STD-1815A. This is accomplished by successfully executing several 
thousand test programs. Validation does not guarantee that the compiler (or 
the code it generates) is error free and it certainly does not imply anything 
about matters outside the realm of the standard (performance, capacity, and 
certain functionality areas). 

This section describes what can be expected of a validated Ada compiler. Further, it de- 
scribes what some have mistakenly come to expect of validated compilers. Finally, it 
presents what information can be gleaned from the validation process that is useful in deter- 
mining the fitness of a compiler for use in a particular application. 

The official procedures and guidelines for validation are contained in a 25-page document 
called Ada Compiler Validation Procedures and Guidelines, issued 1 January 1987 [39]. It 
is available electronically via the AdalC Bulletin Board or the ARPANET. See Appendix B of 
this report for addresses and access information. Some changes to the validation process 
were announced on 25 October 1988 and are contained in a press release available from 
the Ada Information Clearinghouse. This announcement lengthened the amount of time that 
a validation suite is in force from 12 months to 18 months. It also lengthened the time that a 
validation certificate is valid from one year to the expiration date of the validation suite. 

The Ada Compiler Validation Capability (ACVC) is a system used to test conformance to the 
standard. A part of the ACVC, the Ada Validation Suite (AVS) is a suite of test programs 
that are updated annually. The original philosophy and design of the testing capability was 
described by Goodenough [22, 23] in 1981. ACVC Release 1.10 was made operational on 
1 June 1988. This version will be operational until 1 December 1989 when Release 1.11 will 
become the official version. Version 1.12 will be released for public comment and review on 
1 June 1989, become operational on 1 December 1989, and will expire on 1 June 1991. 
Subsequent test suites will follow a similar release schedule. 

Tests in the ACVC test suite are divided into three major categories and six subcategories 
[23]: 

• N on-executable 

• Class B: errors to be detected at compile time 
• Class L: errors to be detected at link time 
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Executable 

• Class D: tests of the capacity of an implementation (need not be passed 
for validation) 

• Class A and C: other executable tests (the distinction between these two 
classes is no longer relevant) 

• Other 

• Class E: tests whose PASS/FAIL criteria are special or that require spe- 
cial processing of some kind 

The test names incorporate the class name so that it is clear from the name whether a test 
is expected to compile and execute. Executable tests are self-checking and print 
PASS/FAIL messages in a standard format. 

The ACVC has been an effective mechanism for promoting conformance of implementations 
to the standard. Unfortunately, there has been a misconception that it should serve other 
purposes for which it was not designed. It is important to understand that validation was 
never intended to measure fitness for use. While the misconceptions surrounding the ACVC 
have largely been dispelled, it may be worthwhile to revisit them. 

First, the ACVC is not a guarantee of conformance to the requirements of the standard. As 
Edsger Dijkstra has aptly pointed out, "Program testing can be used to show the presence of 
bugs, but never to show their absence!" [13]. Even though there are several thousand tests, 
most of the tests are small and few features are tested in combination with one another, so 
many potential problem areas are untested. Second, the ACVC does not systematically 
address capacity or performance issues. It contains a few tests for capacity and while the 
total running time for the tests is an indicator of performance, it is not sufficient for evaluation 
purposes. Third, the ACVC was not intended to address any issues of the programming 
support environment or human factors issues. A fourth misconception has been that the 
standard does not require a compiler to implement any of the representation clauses or 
implementation-dependent features described in Chapter 13 of the RM. Version 1.10 of the 
ACVC, in fact, includes many tests of Chapter 13 features, and more tests will be included in 
future versions of the ACVC. In particular, the ARG is developing language commentaries 
explaining what aspects of Chapter 13 must be supported by every implementation, but their 
work is not likely to be completed before the middle of 1989. Thorough coverage by the 
ACVC can therefore not be expected before Version 1.12. One rather subtle point regarding 
the ACVC testing is that the vendor is required to test the compiler using only one set of 
compiler options, when in fact the compiler may provide many sets of compiler options. The 
vendor is required to make no assertions about whether all the tests are passed under all 
switch configurations. If there are a large number of such options, it may be unrealistic for 
the vendor to run all the tests in all configurations. The options and the interactions between 
options have the potential to introduce errors in the generated code. Three possible ex- 
amples are optimization options, debugging options, and runtime configuration options (see 
Section 5.1). 
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In summary, the ACVC is a suite of tests that attempts to determine conformance to the 
language standard. It does not address, nor was it meant to address, evaluation issues 
such as fitness for use in any particular application area, performance, capacity, or availa- 
bility of implementation-dependent features or options. 

3.1.1. Validation Procedures 
The current procedure for a compiler vendor is to obtain the test suite, indicate its intent to 
validate its compiler with one of the Ada Validation Facilities (AVFs) in the United States or 
Europe, negotiate a formal agreement for validation services with the AVF, submit a decla- 
ration of conformance and test results to the AVF, and resolve any test issues with the AVF. 
Following this, the AVF prepares a validation summary report (VSR), monitors on-site test- 
ing to duplicate previously submitted results, issues a validation certificate, and issues a 
final VSR. The director of the Ada Joint Program Office provides overall direction and is 
responsible for the Ada certification system. The Ada Validation Office (AVO) provides ad- 
ministrative and technical assistance to the director and the AVFs. A compiler that is vali- 
dated according to the procedure outlined above is called a "base compiler." A "derived 
compiler" may be any of the following: a base compiler on an equivalent configuration 
(same computer architecture and operating system), a maintained compiler on a base con- 
figuration, or a maintained compiler on an equivalent configuration. For compilers that are 
derived from a validated base compiler, there is a registration procedure which conveys vali- 
dation status without the completion of all of the validation steps. The status of a derived 
compiler as a validated compiler may be challenged, and if the challenge is sustained, the 
vendor must correct deficiencies within 90 days or the compiler will lose its validated status. 

The list of validated Ada compilers dated 1 February 1989 contained 164 validated base 
compilers and 70 derived compilers from over 50 vendors. The current list, which is up- 
dated monthly, is available through the Ada Information Clearinghouse and electronically on 
the ARPANET. (See Appendix C for accessing information.) The list contains the vendor 
and compiler names, the host and target systems, the ACVC version number, and the ex- 
piration date for the validation. Over 50 of the compilers are targeted to processors that are 
bare targets or targets traditionally used in embedded systems. These targets include in- 
struction set architectures by Intel, Motorola, National Semiconductor, and Data General, as 
well as several implementations of MIL-STD-1750A. 

Validations eventually expire, so it is important to understand the status of a compiler being 
used on a project when that compiler is no longer validated (either because the project 
chooses not to upgrade to a newer version or because no subsequent compiler is available 
from the vendor). To address this issue, there is the concept of a "project-validated 
compiler." After a compiler has been baselined in accordance with applicable DoD policies 
on software life-cycle management, it becomes a project-validated compiler for the lifetime 
of the project. 
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3.1.2. Validation Summary Reports 
A validation summary report (VSR) is prepared by an AVF and contains results that are 
observed from testing a specific Ada compiler or grouping of Ada compilers. This is an 
important output of the validation process for users trying to evaluate Ada compilers. The 
VSR includes the following components [39]: 

• Declaration of conformance. 

• Description of all ACVC tests that were processed on the base compiler. 

• Table showing the class and category of all ACVC tests and their results (e.g., 
total number of class C tests passed, failed, withdrawn, or inapplicable, etc.). 

• Description of the testing environment (e.g., designation of configurations 
tested, testing completion date). 

The VSR reflects any decisions made regarding disputed test issues. Finally, the VSR in- 
cludes implementation-dependent options that must also be supplied in Appendix F of the 
vendor's reference manual. 

The declaration of conformance is the certification by the implementor and owner of the 
compiler that they have implemented Ada as defined in the RM and that they have not 
deliberately included any extensions to the Ada language standard. This declaration must 
be submitted for the original base compiler, as well as for any derived compiler registration. 

The implementation-dependent characteristics that must be included in the VSR and in Ap- 
pendix F of the vendor's reference manual includes the following information: 

• The form, allowed locations, and effect of every implementation-dependent 
pragma. 

• The name and the type of every implementation-dependent attribute. 
• The specification of the package SYSTEM (see RM 13.7). 
• The list of all restrictions on representation clauses (see AM 13.1). 

• The  conventions  used  for  any  implementation-generated   name  denoting 
implementation-dependent components (see AM 13.4). 

• The interpretation of expressions that appear in address clauses, including 
those for interrupts (see RM 13.5). 

• Any restrictions on unchecked conversions (see RM 13.10.2). 

• Any implementation-dependent characteristics of the input/output packages 
(seef?M14). 

The validation summary report should be required reading for anyone selecting an Ada com- 
piler for a project. The vendor should supply a copy upon request. Failing that, a copy can 
be obtained from the Ada Validation Office. (Unfortunately these reports are not online and 
the most recent reports may be difficult to obtain.) 

It should be noted that there is currently little consistency among vendors in the quantity and 
quality of information provided in their versions of Appendix F. Application experts should 
examine them carefully to determine whether sufficient information is provided. 
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3.2. Evaluation 

Ada compiler evaluation is the process whereby a user determines the fitness 
of an Ada compiler for use in a particular application environment. Evaluation is 
a much broader investigation than validation and includes factors such as the 
performance and capacity of the compiler and the generated code, the cost of 
the compiler, quality of documentation and error messages, vendor support, 
and quality and usability of the supporting tool set. 

This section describes some of the criteria that can be used to evaluate and eventually se- 
lect an Ada compiler so that the reader gains a general appreciation for evaluation issues. 
Subsequent chapters give more detailed treatments of the evaluation issues. The criteria 
are both quantitative and qualitative in nature. While it may be appealing to use only criteria 
for which there is a numerical "score," it should be recognized that there are many criteria 
for which a simple number is not sufficient. While scoring may simplify and accelerate the 
process, the overall result may be inferior to one that includes qualitative information. 

A comprehensive reference for criteria that may be used for evaluating software in general 
and Ada Programming Support Environments (APSEs) in particular is the E&V Reference 
Manual [45]. The following is taken from the executive summary: 

The purpose of the E&V Reference Manual is to provide information that will help 
users to: 1) gain an overall understanding of APSEs and approaches to their as- 
sessment, 2) find useful reference information (e.g., definitions) about specific ele- 
ments and relationships between elements, and 3) find criteria and metrics for as- 
sessing tools and APSEs and techniques for performing such assessment. The 
latter are found (or referenced) in a companion document called the E&V 
Guidebook [46]. 

Some assessment criteria are more amenable to quantitative analysis while other criteria 
are more amenable to qualitative analysis. Examples of quantitative criteria that are ad- 
dressed in this handbook include performance efficiency (both at compile time and at run 
time), capacity, and cost. Examples of qualitative criteria that are addressed in this hand- 
book include correctness, completeness, and usability. The following sections address in 
general how each of these criteria may be evaluated. 

3.2.1. Quantitative Criteria and Benchmarks 
Quantitative criteria are distinguished by the fact that they, can be easily measured with reli- 
able, acceptable, and repeatable tests. Tests that measure the performance and efficiency 
characteristics of an Ada compiler are often called benchmarks because they are a means 
of easily comparing one system to another. An example of a performance criterion is 
compile-time efficiency. Tests may be written to measure the time it takes to compile 
various Ada programs under various conditions. A single test is not sufficient because one 
would like to know whether the compile time varies with the size of the program, with the 
Ada constructs used in the program, with the number of subunits used, with the compiler 
options, the machine configuration, etc. 
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Similarly, tests may be written to measure the time to link independently compiled modules 
and the time or space efficiency of the code generated by the compiler. It may be desirable 
to know how long it takes to execute an assignment statement, a subroutine call with three 
integer parameters, or some representative section of code. It may be important to know 
how much space is required for implementing these Ada statements or for certain data 
structures such as records. Capacity tests may be constructed to determine how large a 
program can be handled by an Ada compiler or how large a symbol table can be handled in 
a given system configuration. 

3.2.2. Qualitative Criteria and Checklists 
Qualitative criteria are distinguished by the fact that they are not easily measured with reli- 
able, acceptable, and repeatable tests. There are always methods of quantifying such infor- 
mation, but the resulting numerical results are rarely more useful than anecdotal and sum- 
mary information. Consider correctness as one example. There is no reliable method of 
determining how "error prone" a compiler is. Indicators include trouble reports to the vendor 
(rarely available), number of errors encountered running some series of test programs, or 
inspections of the compiler's source code (rarely accessible). However, there is no test for 
determining how many errors remain in any large software system and a compiler is a large 
software system. 

Completeness refers to the extent to which a component provides the complete set of 
operations necessary to perform a function. If there were a master list of desirable functions 
and a weight associated with each function, then it would be simple to define a metric for the 
completeness of a particular aspect of a compiler. However, there is little agreement about 
the functions and how they should be presented. In an Ada compilation system, there are 
many implementation-dependent options and features. The standard says nothing about a 
requirement for a debugger or the features it should have. It says nothing about the error 
messages or their contents. 

Usability is the effort required to learn, operate, prepare input for, and interpret output of a 
component. Certainly this criteria depends on the background and experience of the user. 
Ease of learning is often in conflict with ease of use. All human factors criteria are subjec- 
tive because they involve human judgement and human preferences. For example, there 
will never be general agreement on the type of human interface that is best for displaying 
information on a bit-mapped workstation. 

What all these qualitative criteria have in common is that they can be addressed with a 
series of questions or checklists that make it easier to evaluate them. Questions about 
debuggers-include whether breakpoints can be set on subprogram entry and exit. Ques- 
tions about error messages include whether they provide easy identification of the source of 
the errors. There is always a tradeoff between the ease of evaluating a simple yes/no ques- 
tionnaire versus the more subjective questionnaire, but despite the problems, it is important 
to gather subjective and qualitative information. 
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3.2.3. Other Evaluation Techniques 
Evaluators need not rely solely on information generated internally. Much information is 
available from third party sources. The validation information discussed in Section 3.1 is 
readily available. Vendors can be called upon to provide presentations about their products. 
These presentations must be received with the foreknowledge that vendors will always 
present their products in the most favorable light. 

Perhaps the most useful source of third party information is available from other users of the 
product. No good evaluation should be considered complete without extensive interviews 
with current users. They have experienced firsthand the joy and pain of installing, testing, 
operating, and using the product. 

Another source of information is an evaluation service. The British Standards Institute (BSI) 
has started a service to evaluate Ada compilation systems. As of early 1989, this service 
has conducted two compiler evaluations. Their methodology is a useful source of informa- 
tion and their evaluation reports are available for under $500. (See Section 9.4 and Appen- 
dix B.) The BSI plans to expand their Ada compiler evaluation service to the United States. 

3.2.4. Reevaiuation 
There are three circumstances under which a project may wish to consider reevaluating a 
compilation system. These are the need to upgrade the compiler to a new version, to 
rehost, or to retarget. Each of these changes can generate a considerable amount of dis- 
ruption for a project and should not be undertaken lightly. None of these circumstances, 
however, warrants a complete reevaiuation and the cost in terms of time and schedule can 
be much less than that of an initial evaluation. Upgraded compilation systems suggest 
some reevaiuation of the areas changed the most. A rehosted system suggests major em- 
phasis on the compile-time testing. A retargeted system suggests major emphasis on the 
runtime testing and runtime system testing. It is probably a good strategy to keep the 
results of the initial testing so that a subset of the tests can be rerun and compared with the 
original results. 

3.2.5. Tailoring Evaluations 
It is highly unlikely that an evaluation of a compiler undertaken for one project will meet the 
requirements of another project. The many dimensions of compiler evaluation will almost 
invariably be weighted differently by different users with different application requirements. 
Projects will certainly have different views of the importance of cost, compile-time perfor- 
mance, execution-time performance, and configurability of the run time to their particular ef- 
fort. This handbook gives many of the dimensions along which the compilation systems 
may be evaluated. 

Table 3-1 gives an example of how the major concerns might differ for two extremely differ- 
ent applications, a hard real-time, embedded application (labeled "Embedded") and a non- 
real-time management information system application (labeled "MIS"). While the ratings of 
importance given in the table are arguable, it is clear that these two applications have differ- 
ent requirements for an Ada compilation system and that what is optimum for one will not be 
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Table 3-1:   Application Concerns (Hypothetical Example) 

Major Concerns of Application Developers 

Attribute Embedded MIS 

Compilation speed Important Important 

Efficiency of generated code Very Important Important 

Efficiency of runtime code Very Important Important 

Machine-dependent features Very Important Less Important 

Execution restart/recovery Very Important Less Important 

Text I/O functionality Less Important Very Important 

Interfaces to COTS software Less Important Very Important 

Portability of application code Less Important Important 

Determinism Very Important Less Important 

Timer resolution/accuracy Very Important Less Important 

Support tools Very Important Very Important 

Availability of runtime source 
code 

Very Important Less Important 

Vendor support Very Important Important 

Recompilation avoidance Less Important Important 

Compiler correctness Very Important Very'Important 
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optimum for the other. Other application areas such as soft real-time, C3I, or educational 
applications would have still other major concerns. For example, educational application 
requirements would rank compile-time efficiency higher than either of the two applications 
given as examples in the table. 

Furthermore, the application area may dictate certain criteria. Embedded applications may 
require extensive machine-dependent features, while MIS applications may not require any. 
Hard real-time applications (those whose correctness depends on meeting severe timing 
deadlines) may require highly precise timing capabilities, while soft real-time applications 
(those whose time requirements are not mission critical) may be less demanding. Large 
applications with hundreds of thousands of lines of code may be more concerned with 
compile-time efficiency and recompilation characteristics, while smaller applications may not 
need highly efficient compile-time performance. 

Inevitably, users will tailor their programming styles to the characteristics of the Ada com- 
piler. If select statements are inefficient, they will not use select statements. If exceptions 
are expensive even when they are not raised, then they will avoid exceptions. If dynamic 
memory allocation is expensive, then they will create internal development standards to al- 
locate all data statically. 

It is important to understand the tradeoffs between the application requirements and pro- 
gramming style on the one hand, and the capabilities of the Ada compilation system on the 
other. The evaluation process should consciously and overtly tailor the criteria to suit the 
application and programming style desired. Perhaps there will be no compilation system 
that meets all the requirements, but it is important for the requirements to dictate the com- 
piler rather than the other way around. The steps recommended for conducting an evalu- 
ation and selection are given in Chapter 4. 

3.2.6. Comparing Ada with Other Languages 
It can be expected that first-time users of the Ada language will have to justify its use rela- 
tive to languages for which the functionality, performance, and risks are better known. While 
this can be done, there are many caveats that must be observed. First, while two languages 
can be compared on a feature-by-feature basis, it is more productive to compare the imple- 
mentations of two languages and recognize that no matter how elegant or functional a lan- 
guage may be, it is the actual language implementation that will determine the success or 
failure of a project. Some of the following guidance is also relevant for comparing Ada lan- 
guage implementations with respect to a given set of criteria, because the evaluator must 
recognize that Ada functions are often more robust or are carried out in the language rather 
than in the operating system. 

Among the issues to be considered in fairly comparing Ada to other languages are the fol- 
lowing: 

• Compile-time checking: Ada provides consistency checking across 
separately compiled units, which is not available is some languages. The cost 
of this checking must be compared to the cost of separate tools to do this in 
other languages or the additional integration time required in other languages. 
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• Runtime checking: Constraint checking for subscripts and other variables is 
done automatically in Ada. For fair comparisons, either the checking should be 
turned off in Ada or added to the tests in the other language. 

• Data representation: The size of variables may be different by default in two 
different languages. Integers and floating point variables must be made the 
same for a fair comparison. (This is also true for two Ada implementations.) 

• Compiler and operating system options: Rarely do default settings of 
various options make for fair comparisons. Experienced programmers must de- 
termine how to set the parameters so that each language provides comparable 
functionality (e.g., optimization levels) and ample resources (e.g., working set 
sizes). 

Recent studies (e.g., [8]) have demonstrated that the runtime performance of Ada compares 
favorably with other languages such as FORTRAN, C, and JOVIAL. For comparable bench- 
mark tests, roughly as many run slower in Ada as run faster in Ada. Three areas that have 
been cited for increased speed in Ada are automatic in-lining of procedures, the ability to 
use block move operations for slices of arrays, and the ability to perform optimizations 
across separately compiled units because of information kept in the program library. 
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4. Practical Issues of Selecting an Ada Compiler 

After a certain amount of information about evaluation has been gathered, the 
process of evaluation and eventually selection can start. An evaluation plan 
should be developed to determine the process and the products of the evalu- 
ation. The resources available for evaluation must be determined and set 
aside. Timetables must be established for the process. 

The purpose of this chapter is to identify some of the pragmatic issues for evaluation and 
selection of an Ada compilation system. The first section identifies a general selection proc- 
ess. This process must be tailored to individual requirements. The intent is to provide a 
general structure that is not biased toward any particular host-target environment or any 
particular application area. The remaining sections list some of the practical issues that 
ought to be considered when planning for Ada compiler acquisition. 

4.1. Selection Process 
The following ten steps can be performed for any evaluation and selection process. Each 
step may consist of many substeps. However, it should be noted that eliminating candidate 
compilation systems may be much easier than confirming that a compilation system meets 
all or most of the criteria. This suggests a two-stage evaluation and selection process 
wherein the first stage quickly eliminates candidates from further consideration. 

1. Gather general evaluation information: First, the evaiuator needs to get a 
general understanding of the evaluation process. Reading this handbook will 
provide a start in this process, but some of the references should be consulted 
as well, and more detailed information should be collected about the compilers 
available and the evaluation technology available. 

2. Plan  overall  strategy,  including  budget,  personnel,  and  timetables: 
There should be an evaluation strategy based on the resources available. It is 
desirable to have a formal written strategy, but at the very least an informal 
strategy should be determined. If it is determined that insufficient resources or 
time has been allocated, then the budget or schedule should be revised. The 
overall strategy should, in particular, determine the level of effort to be ex- 
pended on each of the following steps. 

3. Understand project requirements: Criteria for compiler selection cannot be 
established without a firm understanding of the problem to be solved. This 
handbook can provide little help in this area because the domain-specific proj- 
ect requirements are so varied. 

4. Establish criteria based on the nature of the project: The criteria for selec- 
tion are technological and non-technological. Technological issues such as 
compile-time issues, execution-time issues, and support-tool issues are dis- 
cussed in Chapters 5, 6, and 7. Some of the business criteria are discussed 
in Section 4.8 of this chapter. Two alternative styles of specifying criteria may 
be chosen. First, it is possible to specify absolute criteria, e.g., the compilation 
system must support feature x or must not take more than y seconds to per- 
form function z on a given system configuration. Second, it is possible to 
specify relative criteria, e.g., a rating scale for each criterion to facilitate the 
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comparison of different compilation systems. The style of evaluation depends 
on the application. In fact, a mixture of these styles, with some absolute and 
some relative criteria, is possible. 

5. Plan tactics in three areas: Information about the compilation system comes 
from benchmarks, checklists, interviews, and informal information gathering 
from vendors and users. In each case the evaluator must decide how much 
effort to devote and how to allocate that effort between already existing tech- 
nology and hand-tailored technology. The plan is largely a decision about 
reuse and about the tradeoff between searching for tests that address the cri- 
teria of the previous step and developing unique tests. The former approach 
maybe desirable if the existing tests are comprehensive, suitable for the appli- 
cation domain, well cataloged, and well organized. The latter approach may 
be suitable if there are highly specialized criteria or if the existing technology is 
not well organized. 

• Benchmarks: The results from running test programs and test 
scenarios are the primary source of quantitative data. Benchmarks 
should be selected based on application requirements. These tests 
may be run and verified by the evaluator or may be accepted from 
another source. In the latter case the evaluator should consider the 
source of the information and the reliability of the information. 

• Checklists: The answers to detailed questions about the compilation 
system are the primary source of non-quantitative data. The questions 
should be constructed so as to allow the minimum amount of subjec- 
tiveness or judgement on the part of the evaluator. Simple yes/no ques- 
tions have the advantage of limiting subjectivity, but have the disadvan- 
tage of restricting the amount of information conveyed. Checklists may 
be completed by the evaluator or some third party and the same caveat 
applies here as applies to benchmark data. 

• Interviews and information gathering: Interviews should be con- 
ducted with users of the product that is being evaluated and information 
should be gathered about the vendor of the compilation system. Unlike 
the other two categories of information, this must be done firsthand. 

6. Create or find an evaluation testbed: An evaluation must take place in an 
environment where the product can be used. Reliance on paper evaluation is 
risky. The first preference is to create a testing environment on the site at 
which it will be used and conduct the testing with the people who will be using 
the compilation system. The second preference is to find another site 
(preferably other than the vendor's site) that can be used for a limited amount 
of time to test the product. Only as a last resort should the choice of a product 
be based on limited demonstrations. Several products should be tested in this 
environment so that side-by-side comparisons are possible. 

7. Perform the evaluations: After the proper environment has been estab- 
lished, the testing can begin. The benchmark programs can be run and the 
checklists completed. An evaluation log should be kept and any problems and 
observations made during the evaluation that are not explicitly addressed in 
the criteria should be documented. 

8. Analyze the results: Once all the data have been collected, the information 
must be organized to facilitate a decision. Benchmark data must be organized 
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so that unusual or anomalous behavior is not inadvertently missed. Checklist 
data should be organized so that information that discriminates among prod- 
ucts stands out from information that does not discriminate among products. 
Formal or informal weighting of the data should be used to separate the critical 
criteria from the desirable criteria. 

9. Select, procure, install, and accept the compilation system: Once all the 
information has been analyzed, it should be possible to make a decision. Pro- 
curement may be a highly variable process, depending on the organization 
that is making the procurement. Installation, if the compiler has not been eval- 
uated in-house, may require some tailoring to the particular host-target envi- 
ronment. Finally, there may be some criteria that the user specifies to the 
vendor in order to accept the product after some trial period. 

10. Provide feedback to vendors: The strengths and weaknesses of the compi- 
lation system should be communicated to the vendor. Not only will this repay 
a vendor who may have provided an evaluation copy, but it will also accelerate 
the progress toward production quality products for particular applications. 

4.2. Hardware Requirements for Evaluation 

The hardware that must be assembled for evaluation purposes includes a host 
system and a target system, with the necessary interconnections. Certain test 
equipment is also valuable for a credible evaluation. 

The host and target hardware are often selected prior to compiler selection and are there- 
fore not an issue. If an Ada development is only a small part of the total computational 
needs of a project, and there is already an established infrastructure for using a given host 
and its operating system, then the existing system is a natural and pragmatic choice for the 
additional Ada development effort. There is much to be said for continuing to work in a 
programming support environment that is familiar and comfortable. If, on the other hand, 
there is no such history, or if there is a desire for a revolutionary change, or if there is no 
Ada compiler for a given host, then other options must be explored. The time required to 
select a host system is therefore highly variable. 

The choice of a target architecture is often determined by military standards. The Navy 
AN/UYK-43, AN/UYK-44, AN/AYK-14 computers and the Air Force MIL-STD-1750A ar- 
chitecture are examples of these standards. While some military programs require a partic- 
ular architecture, other programs have no architecture requirements at all. When there is 
some discretion allowed, then the decision about the target system should be made with full 
consideration of the Ada compilation systems currently available or likely to be available. 
The state of the compilation systems available for a given target architecture may be much 
more critical to the success of the project than the nuances of different instruction set ar- 
chitectures. Standard architecture benchmarks such as Whetstone may show one architec- 
ture to be slightly better than another, but the software may have a system impact far 
greater than the architecture. 

For cross-development systems, the download path may be a key bottleneck. If the host is 
connected to the target by a 9600-baud serial link, the download time for a 64-kilobyte load 
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image will be a little over a minute. For one-half a megabyte, the time will be nearly 10 
minutes. Special hardware may be available for certain host-target combinations so that 
this transfer can be done at much faster rates. Also, this bottleneck may be mitigated by 
software that permits the sending of only that part of the download images that changes 
from one run to the next and by placing the receiver, debugger, or parts of the runtime sys- 
tem in ROM. The evaluator should carefully consider the impact of download times and 
investigate alternatives to serial transfer. 

Test equipment can be a critical hardware resource for time-critical applications. A logic 
analyzer or microprocessor development system may provide critical timing information for 
real-time systems that is not easily available from software timing. Another advantage to 
hardware test equipment is that it is non-intrusive. The software will run exactly the same 
whether timing information is being collected or not. This equipment is particularly helpful 
for isolation of hardware faults and the measurement of interrupt latency times. For distri- 
buted applications it is important to have the capability to correlate the timing information 
from several independent sources. 

4.3. Software Requirements for Evaluation 

The software that is required for an evaluation is dependent on the hardware 
configuration. Normally, the host operating system will not be an additional 
item required. The target system, if different from the host, may require its own 
operating system. Software may also be required to download code from the 
host to the target. Timing software may be required that is more accurate than 
Ada's clock. 

The compilation system normally includes the following software components: 

• compiler 
• library manager 

• runtime system 
• linker 

• downioader or loader 

• debugger 
• assembler 
• simulator 

The first five items are absolutely necessary to run Ada programs. The debugger is highly 
desirable, and the assembler and simulator may be desirable for certain embedded applica- 
tions. 

The environment in which the software runs on the host system, commonly called an Ada 
Programming Support Environment (APSE), may contain additional tools. These may in- 
clude graphical design tools, static and dynamic analyzers, testing tools, pretty printers, etc. 
These are quite important and the integration of the tools is a critical issue for performance 
and productivity, but it is not within the scope of this report.   However, it is important to 
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compilation system evaluators to get a general feeling for the extent to which the tools listed 
above cooperate with the tools of the operating environment. For example, is the Ada 
library compatible with the file system of the operating environment and do all the com- 
mands of the operating environment apply to the Ada library? 

The environment in which the software runs on the target system (in the case where the 
target is different from the host) may be supplied by the vendor (the so-called "bare target") 
or may be an operating system or an executive. In either case, the vendor must tailor the 
product to the target operating environment. Unfortunately, this is a burdensome task due 
to the nuances of different single board computers. Even for a given architecture there are 
different input/output and timer characteristics. Thus, the user may be faced with the task of 
tailoring part of the target environment. For example, the downloader may have to be 
tailored for a particular board or the timer interface routines of the runtime system may have 
to be rewritten. The user should be certain to specify precisely the target configuration so 
that the extent of the tailoring (if any) is known beforehand. 

4.4. Test Suite Requirements 

A test suite can be procured in a number of ways, depending on the test suite. 
The cost of obtaining the test suite is often negligible compared to the cost of 
setting up and running the test suite and correctly interpreting the results. 
Therefore, it is important to have specific test objectives in mind before starting 
out. 

The decisions regarding test suites are the following: 

• Should a test suite or suites be acquired, or should a test suite be built? 

• If a test suite or suites are to be acquired, which one or ones should be ac- 
quired? 

• Of the test suite or suites acquired, should all or just some of the tests be run? 
If the latter, which ones? 

The advantages and disadvantages of several test suites generally available are discussed 
in Chapter 9. Acquisition costs are generally very small and should not be a deterrent. On 
the other hand, the cost of setting up and using one of the test suites can be substantial. 
The questions above can only be answered by doing an evaluation of the test suites them- 
selves, based on the level of effort and the criteria of the compiler selection process. If a 
short and unsophisticated evaluation is planned, the PIWG tests may be sufficient. If a 
more in-depth evaluation is planned, the ACEC or AES test suites may be more suitable. 
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4.5. Timetables, Dependencies, and Costs 

It is difficult to provide any guidelines or rules of thumb for the schedule and 
budget required, in general, for an evaluation of a compilation system. Experi- 
enced and knowledgeable evaluators will require less time than novices. If the 
selection is dictated or there is only one compilation system for a military stan- 
dard computer, the evaluation process may be significantly simplified. On the 
other hand, if there are many variables (host, target, and compilation system) 
and the risks of a wrong decision are high (as in the case of a major weapon 
system), then a substantial evaluation effort is called for. 

The time required for an evaluation is often dictated by the higher level considerations of a 
program schedule. Every attempt should be made to ensure that sufficient time and budget 
are allocated for the evaluation, but often the schedule must drive what can be accomplish- 
ed. It is senseless to plan a six-month evaluation if only sixty days have been allocated to 
the job. The ten steps outlined in Section 4.1 should each be allocated a proportion of the 
time and budget, depending on the evaluation requirements. While these steps are 
presented as sequential, some in fact can be performed in parallel. The planning steps 
(steps 1 to 5) can for the most part proceed somewhat in parallel, although it is certainly 
desirable to know the strategic directions and criteria before planning the tactics. Steps 6 
through 9 must be performed sequentially for the most part. Figure 4-1 shows a hypotheti- 
cal schedule for a rather thorough first-time evaluation. 
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CMU/SEI-89-TR-13 31 



The schedule and budget for the planning process are highly dependent on the level of ef- 
fort allocated for the evaluation process. As a general rule of thumb, it may be prudent to 
allow 25% of the total effort to the planning steps. Creating the testbed is highly dependent 
on what is already in place and the degree of variability permitted in the decision. If the host 
already exists, then little time is required to evaluate, select, procure, install, and check out 
the host. If the target already exists in the testbed, then this is also a zero cost item. Bring- 
ing an unknown target into a testbed and connecting it to an existing host system can take 
many months of effort. Acquiring and installing the test software for the testbed will depend 
greatly on the software chosen. At a minimum, the cost is nearly zero and the time is prob- 
ably at least a couple of weeks. At the maximum, the cost is several thousand dollars and 
the time required may be more than a month, including setup and checkout. 

Performing the evaluation also is highly variable. Very little of significance could be accom- 
plished in under two weeks' effort. More realistic is a couple of months to run the tests, 
complete the checklists, and contact the vendors and users. Certainly something is to be 
learned about the test technology by executing the tests, but there are no significant gains 
after the second or third evaluation. Analysis of the results can be very time-consuming, but 
can be facilitated by appropriate software. For example, the ACEC suite has a good pro- 
gram for comparing the benchmark results from several compilation systems. This step de- 
pends on the level of overall effort, but a couple of weeks is probably again a minimum. 
Finally, if the data are well presented and analyzed, the selection takes minimal effort. How- 
ever, the procurement, installation, checkout, and acceptance may take as much as several 
months. 

One strategy that has proved effective in at least one case is to defer the final selection of a 
compilation system until top-level design is almost complete. Not only does this allow more 
time for compilers to mature, but it also provides time for some prototypes or project-specific 
tests to be developed and run on the candidate systems. 

In summary, the scheduling and budgetary impact of compiler evaluation and selection is 
highly dependent on the situation. It can take from one to six months or more to complete 
with one to three people. The costs can vary from very little to tens of thousands of dollars 
when personnel costs are factored in. What is important to understand are the tradeoffs 
between the costs of doing a thorough evaluation and the long-term costs to a project of 
choosing an unacceptable, or less than desirable, compilation system. 
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4.6. Defining Requirements and Criteria 

The requirements for evaluation and criteria for selection are extremely depend- 
ent upon the application. Requirements that are appropriate for a particular 
project must be developed by project personnel. This should be done with a 
balance between high-level system criteria and low-level technical criteria. 
There should also be a balance between development environment, runtime 
environment, and business criteria. 

This handbook does not attempt to define requirements and criteria for compiler evaluation 
and selection because every application should have its own. Categories of criteria can be 
specified safely, but it should be recognized that the depth and breadth of each category will 
be different for each project and different depending on the time and resources available for 
the evaluation and selection process. Chapters 5, 6, and 7, together with Section 4.8, 
should provide the consumer with the bulk of the criteria categories that should be covered 
by an evaluation. Chapter 9 gives pointers to some of the technology to help evaluate the 
various criteria with respect to particular compilation technology. 

One real danger of this step of the process is the overspecification of requirements. Rarely 
will one know a priori all the functional, performance, and support requirements of a compi- 
lation system. Unless there is a known model of the system to be built, with accurate data 
on the loads to be put on the system, and known interactions between components of the 
system, it seems silly to get down to the level of specifying how long each feature of the Ada 
language should take at run time. It is better to base a selection on a high-level criterion 
rather than a low-level criterion because the interaction of various features is unknown. For 
example, it would be better to specify for an MIS application that a certain file-processing 
program execute in a certain amount of time rather than to specify the requirements for each 
atomic action, such as accessing each record of the file. 

It is unlikely that all the criteria for selection will receive equal weight in an evaluation. 
Those who are quantitatively minded will want to score each criterion for each candidate 
compilation system (on a scale of 0 to 100, for example,) and then weight each criterion (as 
a percentage of unity). Then when all the weighted scores are added, the score for the 
compilation system will also be based on a scale of 0 to 100. For those who are subjectively 
minded, the process can be more informal, with a subjective rating being given to each com- 
pilation system based on all the criteria. There is no single correct way to perform a rating 
of products and none should be imposed. 

4.7. Portability issues 

In the selection of an Ada compiler, one portability issue is whether the appli- 
cation code can be ported to another host or target system. This might happen 
when a system is modernized. Another issue is whether the existing code can 
be ported to another compilation system for the same target. 

In the lifetime of some programs, it may be more likely that there will be a need to change a 
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compilation system (for a given target system) than there will be to change a host or target 
machine. Many machine upgrades fall into the category of "upward compatible" upgrades in 
which a processor is replaced with one that is faster or one that has an extended or reduced 
instruction set. The reason that there is some stability in instruction set architecture (ISA) is 
that so much depends on the ISA that a change in the ISA would mean changing almost 
every other aspect of the environment. This is true of both a host system and a target sys- 
tem. 

A change of the compilation system, on the other hand, can be undertaken without changing 
the entire supporting environment. A change of compilation system may be required for a 
number of reasons including: 

• requirement for additional performance 

• requirement for additional functionality 

• lack of support from the vendor 

• lack of development activity on the part of the vendor 

If the vendor ceases operation, then the user faces the prospect of maintaining the compi- 
lation system without vendor support or porting to a new compilation system. 

It must be recognized by the consumer that highly tailored compilers may be the only way to 
satisfy performance constraints, but that each special feature that is included may detract 
from the portability to a new system. Thus, the advice for the consumer is to understand 
whether the performance required can be achieved with a given compilation system without 
using implementation-dependent features. If it cannot, then the user must be aware of the 
portability constraints, isolate the implementation dependencies into a few small packages, 
and carefully document them so that any port would be made easier. 

4.8. Evaluating Vendors 

The guidelines for evaluating vendors of Ada compilation systems are not very 
different from the guidelines used to evaluate vendors of other hardware and 
software products. There should be some reasonable assurance that the com- 
pany is financially healthy and that it will be able to service and support the 
product it is selling. Responsiveness of the vendor to error reports as well as to 
requests for tailoring the compiler should be consistent with the needs of the 
project. 

The following issues are important for the evaluation of an Ada compilation system vendor: 

• Corporate structure: Is the developer of the product the same as the dis- 
tributor of the product? If not, what is the relationship between the two compa- 
nies? Is the distributor knowledgeable about the product? Is the entire compi- 
lation system produced by one company? If not, how are problems reported 
and fixed? 

• Corporate performance: Has the vendor produced product releases on 
schedule? Is the vendor responsive to requests for information? Does the ven- 
dor provide an appropriate customer interface? 

34 CMU/SEI-89-TR-13 



• Product lines: How important are Ada compilation systems to the company's 
overall business? Does the company specialize in a particular hardware 
domain or provide rehostable and retargetable compilation systems? 

• Corporate health: What is the primary business of the vendor? How long has 
the company been in business? Is it profitable? Is the number of employees 
increasing or decreasing? How many employees are working on technical de- 
velopment? On supporting the product? 

• Tailoring policies: Is the vendor willing and able to tailor the compiler for spe- 
cific application requirements? If so, what will be the cost and schedule? How 
do the changes affect the maintenance agreement? 

• Support policies: Is there local product support? Is there a telephone hot- 
line? What is the escalation policy for problems? How are problems reported 
and tracked? What are maintenance response times? Are bugs fixed? How 
often are there new releases? Is there an online database of reported prob- 
lems? Is it available to customers? Is there a product newsletter? Are there 
user groups? Are there electronic bulletin boards for customers? Can support 
personnel be contacted by electronic mail systems? Are previous versions of 
the product supported? What does the maintenance provide? Are there any 
response guarantees for reported errors? 

• Pricing policies: How much does the product cost? How does the price de- 
pend on the characteristics of the host? The target? Are discounts available 
for quantity purchases? What is the cost of maintenance? 

• Runtime royalties: Does the vendor charge a royalty for each copy of an ap- 
plication program (with the vendor's runtime system) that is deployed on a sep- 
arate target system? If so, what are the procedures for accounting for and col- 
lecting this royalty? Note: This royalty could be by far the largest component 
of cost for applications that are duplicated in thousands of systems (such as 
many weapon systems). It is important to understand the implications of these 
royalties before selecting a vendor. 

• Source code: Is source code available for the compiler and runtime system? 
If so, what are the cost and licensing terms? If not, can the source code be put 
in escrow so that if the company goes out of business, the application system 
developer has recourse to solve problems and fix bugs? 

• Contractual issues: Can the product be purchased or only leased? If it can- 
not be purchased, is the license perpetual or for a fixed term? If fixed term, 
what are the renewal terms? What happens in the event that maintenance has 
been dropped? 

• References: Has the compilation system been used to develop software sys- 
tems similar to the applications being considered by the buyer? If so, is the 
vendor willing to provide several references? Note: The buyer should insist on 
talking to technical references, not just project managers. 

It should be noted that the AES contains an extensive "vendor/implementor questionnaire" 
that could be used for guidance in extracting important information about the vendor. 

Vendors often emphasize future improvements to their products rather than their products 
as they currently exist. Evaluators should be skeptical of promises and try to place more 
weight on past performance. Significant improvements are difficult to achieve. 
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4.9. Getting More Information 

The appendices and the reference section of this handbook provide sources of additional 
information. The most relevant and current information available in published form is con- 
tained in two newsletters: 

• Ada Information Clearinghouse Newsletter: Published roughly four times a 
year by the Ada Information Clearinghouse for the Ada Joint Program Office, 
this newsletter presents information on the AJPO, Ada usage, validated 
compilers, and Ada policy and events. 

• Ada-JOVIAL Newsletter: Published quarterly by the Language Control Facility 
at Wright Patterson AFB for the Ada Joint Users Group (AdaJUG), this newslet- 
ter provides articles, news, and announcements about both Ada and JOVIAL 
tools and compilers. It contains up-to-date information about Ada compilers 
and vendor points of contact. 

Refer to Appendix B for addresses and contact information for the newsletters. For online 
information that may be even more up-to-date than what is contained in the newsletters, 
refer to Appendix C. 
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5. Compile/Link-Time Issues 
The time and space efficiency of the generated code on the target system is 
often the primary criteria for Ada compiler selection. But there are other impor- 
tant criteria as well. The functionality and performance of the compiler and 
linker are selection criteria that cannot be overlooked. 

The purpose of this chapter is to raise the compile/link-time issues of importance to a com- 
piler buyer. Each of the issues is described in a general way and some of the major criteria 
are identified. An exhaustive list of possible criteria is not given since such a list is highly 
dependent on the application. Rather, the reader is given an appreciation for the issues and 
provided references to more detailed information. Some compilers perform some linking 
operations while others do not. Further information about linkers and loaders is contained in 
Section 7.2. 

5.1. Compiler Options and Special Features 

Compiler vendors are free to provide a number of features and options not re- 
quired by the standard. These include compiler switches, pragmas, attributes, 
and other machine-dependent characteristics. All implementation-dependent 
features must appear in Appendix F of a vendor's reference manual. 

5.1.1. Compiler Options 
The ANSI/MIL-STD-1815A defines the syntax and semantics of the Ada language, but the 
compiler vendor is given latitude in providing options or features that are not required by the 
standard. There are two primary ways that the user can specify directions to the compiler. 
The first is through a directive to the programming environment when the compiler is in- 
voked and the second is through a language construct called a pragma. It is possible that 
compiler directives and pragmas may give conflicting information. It is therefore important to 
consult the compiler documentation to determine which is the overriding direction. 

The following list gives some of the compiler options that are often provided as directives 
when the compiler is invoked: 

• generation of source code and machine code listings 

• generation of machine code output 

• specification of program libraries to search for input 

• control of the printing, selection, and disposition of diagnostics 
• control of the level of debugging requested 

• control of the level of optimization requested 

• control of ability to suppress runtime checks 
• control of conditional compilation 
• ability to terminate after syntax checking 
• ability to terminate after some predefined error limit 
• ability to print timing information about the compilation 
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5.1.2. Pragmas 
Pragmas are used to convey information to the compiler. A pragma starts with the reserved 
word pragma followed by an identifier that is the name of the pragma and optionally by 
parameters. There are two kinds of language pragmas: those that are predefined in the RM 
and those that are defined by the compiler vendor. There are 14 predefined pragmas de- 
fined in Annex B of the RM. While it is true that RM 2.8(7) states "pragmas defined by the 
language ... must be supported by every implementation," the fact is that the level of support 
varies from implementation to implementation. For example, implementations differ in the 
languages to which they interface, the number of priority levels they support, and whether 
CONTROLLED or SHARED have any effect at all. In most cases, the validation suite veri- 
fies only that the pragma is recognized by the compiler, not that it has any effect. Therefore, 
it is extremely important in an evaluation effort to determine what pragmas are important. 
For example, certain pragmas (such as INLINE) may be particularly important to particular 
design approaches (such as object oriented design). The user documentation should be 
checked to verify the level of support provided for all predefined pragmas. It is highly desir- 
able for the implementation to follow the recommendation of RM 2.8(11) that 
"implementations issue warnings for pragmas that are not recognized and therefore 
ignored." 

Pragmas that are defined by the vendor are provided by the implementations to provide 
additional performance, to make the job of the implementor easier, or to allow use of addi- 
tional functionality of the operating environment. For the sake of portability, a compiler may 
ignore a pragma if it is not recognized. Implementation-defined pragmas must be described 
in Appendix F of the implementor's reference manual. The existence of implementation- 
defined pragmas is becoming increasingly more important for improving performance of 
compilers and should be considered very carefully in evaluation efforts. However, these 
pragmas are not generally portable, and they cannot be tested using standard benchmark 
test suites. 

The following list gives some of the areas in which compiler vendors provide 
implementation-defined pragmas: 

• provision of interfaces to operating system service calls 

• provision of interfaces to Ada objects and routines from other languages 
(import/export) 

• choice of representation for predefined types in package SYSTEM 

• ability to suppress all runtime checks 
• specification of task scheduling discipline (e.g., time slicing) 

• control of storage allocation for tasks 

• ability to specify restricted use of interrupt service routines to permit fast inter- 
rupt handling 

• ability to share code for generic bodies under certain conditions 
• machine-dependent specification of register conventions and calling conven- 

tions 
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It should be noted that vendors provide functionality in different ways and that what one 
vendor provides by a language pragma, another vendor might supply as a compiler option 
or a customized package. 

5.1.3. Attributes 
Attributes are basic operations applied to an entity given by a prefix. Like pragmas, there 
are a number of attributes defined by the language standard (Annex A). Unlike pragmas, 
attributes must have the effect described in the RM. Furthermore, the implementation may 
provide implementation-defined attributes as long as the attribute designator is not the same 
as any language-defined attribute. The implementation-defined attributes must be de- 
scribed in Appendix F of the implementor's reference manual. Implementation-dependent 
attributes are much less prevalent than implementation-dependent pragmas and primarily 
address the problem of extracting, during run time, more information about the machine rep- 
resentation of Ada objects. 

5.1.4. Other Important Compiler Features 
There are a number of other important compiler characteristics that should be evaluated by 
a prospective user. It is not within the scope of this handbook to treat them in detail. Many 
are only of interest for embedded real-time systems. It is important that the vendor provide 
comprehensive documentation on the areas of interest for a particular application. The fol- 
lowing list provides some of the areas in which there is a degree of variability from compiler 
to compiler. All the information about these areas is required to appear in Appendix F of the 
implementor's reference manual. 

• Predefined language environment: Package STANDARD (defined in Appen- 
dix C of the RM) contains all predefined identifiers of the language and any 
implementation-defined types such as SHORTJNTEGER, LONGJNTEGER, 
SHORT_FLOAT, and LONG_FLOAT. (Note that some implementations may 
not use these names as their predefined types, although they ought to.) 

• Specification of the package SYSTEM: This Ada package contains defini- 
tions of certain configuration-dependent characteristics, such as the sizes of in- 
tegers and floating point numbers and the resolution of the clock. 

• Restrictions on representation clauses: Ada defines length, enumeration, 
record representation, and address representation clauses. The extent to 
which an implementation must support these features is currently changing as 
the validation suite is being upgraded. 

• Conventions used for implementation-generated names denoting imple- 
mentation components in record representation clauses: RM 13.4(8) al- 
lows the implementation to define these conventions. 

• Interpretation of expressions appearing In address clauses: RM 13.5(3) 
permits latitude for interpreting a value of type ADDRESS. 

• Restrictions on unchecked conversions: Implementations may place 
restrictions on sizes or types of objects to be converted. 

• Implementation-dependent   characteristics   of   input/output   packages: 
Some implementations aimed at specific application areas such as MIS may 
provide more sophisticated I/O packages which still have implementation- 
dependent characteristics. 
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• Low-level input/output: RM 14.6 defines the requirements for low-level 
input/output. Since the kinds and formats of the control information will depend 
on the physical characteristics of the machine and the device, the parameter 
types of the procedures are implementation-defined. Some implementations 
may provide alternative packages that interface with operating system services 
for this purpose. 

• Machine code Insertions: RM 13.8 defines a mechanism for inserting ma- 
chine code in an Ada program using a package MACHINE_CODE. An imple- 
mentation is not required to provide this package. 

5.2. Compile/Link-Time Performance 

The amount of time and disk space required to compile and link Ada programs 
is important for extremely large Ada projects. Many compile/link-time perfor- 
mance issues cannot be simply resolved by buying a larger computer. The dis- 
tinction between compiling and linking in Ada is often blurred because some 
vendors postpone some operations such as generic instantiation until link time 
while others perform link operations at compile time. 

The amount of time (and space) that it takes to compile an Ada program is of paramount 
importance during the development phase and may be less important during the mainte- 
nance phase. As second and third generation compilers appear, expectations have been 
raised for the performance of production quality compilers. Unfortunately, the evaluation 
standards that are used are unsatisfactory for comparing performance. Typically, compiler 
vendors will quote figures giving the speed of a compiler in terms of lines of code compiled 
per minute. Very rarely do they quote the requirements for disk and memory for the compi- 
lation. 

Unfortunately, the "lines of code per minute" metric is not well defined and may vary greatly 
depending on the definition and the programs being compiled. In fact, Firesmith [16] has 
shown that the number of lines in an Ada program varies by a factor of six, depending on 
the definition of a line of code. Among the factors influencing the "lines of code per minute" 
metric are the following: 

• The machine and operating system (this should always be stated). 

• The definition of a line of code (usually defined as the number of carriage 
returns or the number of Ada statements). 

• The size of program (small programs may compile more slowly and generate 
more code per line). 

• The number of comments and blank lines (if carriage returns are used for lines). 
• The type of statements (wide variation exists in the size of Ada components 

and the difficulty of compiling those components). 

• The compiler options selected (optimizations and debugging options generally 
increase compile time). 

• The number of subunits and generics (these, in particular, may have a great 
impact on compiler performance). 

• The definition of time (wall clock time includes I/O waits while CPU time does 
not). 
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• The operating system parameters (e.g., working set size). 

• The size and state of the program library (how fragmented). 

Vendor claims about compiler performance should be viewed with circumspection. Even if a 
vendor provides all the information listed above, it is difficult to evaluate unless compared to 
other compilers under exactly the same conditions. The evaluator is strongly advised of the 
need for controlled experimentation. Instead of being interested in a single number for time 
characteristics, the evaluator should be interested in how the time characteristics vary with 
respect to the parameters listed above. Furthermore, the programs that are used to dis- 
cover these relationships should be typical of the programs that will be developed using the 
compilation system. 

Among the questions to be answered are the following: 

• How does compilation time vary with size of program, complexity of program, 
unit dependencies, and optimizations selected? 

• Can the compiler be invoked simultaneously by more than one user? 
• How does compilation time vary with system load (number of users)? 

• How much disk and memory space is required for a minimal compilation? 

• How much do disk and memory space requirements vary with the size of pro- 
gram, complexity of program, and other factors? 

• Does the compilation system clean up after itself with respect to temporary files 
on disk? 

• How much space is required for all the file objects derived from the source file 
during compilation and to what extent can these derived objects be controlled in 
size? 

• Are there both batch and interactive modes and if so, how do they differ? 

• Are there provisions to avoid unnecessary compilation or for incremental compi- 
lation (see Section 7.1.1)? 

Because implementors can partition the effort of pre-runtime activities differently among the 
compiler, library manager, linker, and loader it is important for evaluators to understand and 
compensate for the tradeoffs. If improved compiler performance is gained at the expense of 
greater link times or vice versa, this should be made apparent in the evaluation results. 

5.3. Compiler Capacity and Limitations 

It is possible that some validated Ada compiler can compile only small pro- 
grams. (In fact, some Ada compilers have been "crippled" so that they may be 
sold for a lower price to educational institutions.) For large projects it is impor- 
tant to know what the limitations of a compiler are in terms of number of state- 
ments, units, and identifiers, as well as the maximum size of critical data struc- 
tures. 

The Uniformity Rapporteur Group (URG) of ISO WG9 has begun to define some standards 
to which Ada implementations ought to adhere, including minimum capacities that ought to 
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be provided by Ada compilers. What is desired is that none of the capacities are unreason- 
ably small so as to hamper software development. While it is reasonable for vendors to sell 
restricted versions of compilers for educational purposes, it is not reasonable to provide 
highly restrictive versions for general use. The following list represents some of the more 
important implementation limits that the user should find documented in the vendor docu- 
mentation. In the absence of user documentation, the Ada Evaluation System (see Section 
9.4) contains a battery of tests for reasonable limits on most of the entities listed below. 

• lines in a compilation or compilation unit 

• compilation units in a compile 

• wlthed or used units in a compilation unit 

• packages, subprograms, and subunits in a compilation unit 
• characters in an identifier 

• identifiers in a program 

• entries in a task 

• static  nesting depth  for subprograms,   loops,  blocks,  packages,  subunits, 
accept statements, case statements, genetics, If statements, and aggregates 

• static nesting depth of parentheses in expressions 

• characters in a line 

• dimensions and elements in an array 

• elements in an aggregate 

• formal parameters in an entry, subprogram, or generic declaration 
• enumeration literals in an enumeration type definition 
• alternatives in a case statement or select statement 
• elsif parts in an if statement 

• characters in a string 
• bits in an object 

• discriminants in a record type 
• number of instantiations of a generic subprogram or package 

5.4. Human Factors 

The productivity of the user of a compiler is strongly influenced by the user in- 
terface provided by the compiler. This includes how the compiler and associ- 
ated tools are invoked, the quality of the error messages provided, the manner 
in which the compiler responds to errors, and the quality of the documentation. 
These qualitative issues can have a greater influence on productivity than 
quantitative measures, such as compile time, do. 

Human factors are often described in terms of ease of learning and ease of use. In order for 
a system to be easy to learn, it should be similar to other systems that are already learned. 
For example, if one is an expert using the DEC VAX/VMS operating system, then a compi- 
lation system that uses the same mechanisms to invoke tools and specify parameters will be 
easier to learn than one that uses UNIX conventions.  The same is true of the style of the 

42 CMU7SEI-89-TR-13 



debugger, the file management tools, the diagnostics, and the user documentation. In order 
for a system to be easy to use, it must be helpful in uncovering errors early in the devel- 
opment process and provide succinct, but accurate information about the source of errors. 
The following sections list some of the areas that must be considered in evaluating the user 
interface of the compilation system. 

5.4.1. Informational Outputs and Diagnostics 
The compilation system provides information about the compilation as well as information 
about errors. 

• Compiler listing: Is a cross reference listing giving point of definition and all 
uses available for all identifiers? Can the origin of withed objects be deter- 
mined? Are all options in effect clearly listed? Is the version of the compiler 
available on the listing? Is the total size of the code and data given? 

• Assembler listing: Is it available? Is it interleaved with the source? Is it clear 
and concise? Can a mapping of the data objects and subprograms be ob- 
tained? Is linking information shown? 

• Error reporting: How many severity levels are there for error messages? 
How accurate are the error messages at identifying the source of the error? 
How helpful are the error messages in fixing the error? Can more information 
be obtained about the error either from the documentation or interactively? Are 
error messages keyed to the RM? 

• Warnings: Does the compiler provide warnings for implementation-dependent 
features and non-portable code? Does it warn about potential runtime errors 
such as infinite loops, uninitialized variables, and unreachable code? Are prag- 
mas that have no effect flagged? Are unassigned out parameters, un- 
referenced In parameters, and functions without a terminating return flagged? 

• Interactive help: Can a user get help on the use of the language and the com- 
piler interactively? Is the RM online? 

5.4.2. Error Recovery 
The maximum amount of information should be derived from each compilation. A user be- 
comes very frustrated if only one error can be detected in each compilation. The purpose of 
error recovery at the compile phase is to continue in the face of errors to the maximum 
extent possible and recover the context so that errors are not propagated through the com- 
pilation. Systems might recommend corrections to errors or even try to correct errors when 
directed to do so. 

• Error recovery: Does the compiler terminate analysis of errors upon en- 
countering difficult errors? Is there any attempt to correct simple errors such as 
misspelled keywords? Does a single syntax error prevent semantic analysis? 
Does a single error often cause a cascading of subsequent errors? 

• Handling multiple compilation units: Does the compiler continue a compi- 
lation if errors are found in a previous compilation unit? Are all legal compi- 
lation units added to the program library? 
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5.4.3. Documentation 
Good hardcopy and interactive documentation is indispensable for ease of use and ease of 
learning. Some characteristics of good documentation follow: 

• Contents: The documentation set should include a definition of the function- 
ality of the Ada compilation system, a user's guide that describes how to use 
the system and the informational outputs, and a description of the runtime sys- 
tem and its characteristics. 

• Organization: There should be tables of contents and indices for each docu- 
ment supplied. A master index is useful when there are multiple volumes. 

• Style: The documentation set should be clear, concise, complete, and written 
in plain English. 

• Implementation dependencies: The documents should use color, 
changebars, or some other technique to clearly distinguish those features that 
are implementation-dependent. 

• Appendix F: After the index, this is the most important part of the documen- 
tation. It should be complete and in the order specified in the RM. 

• Capacities and limitations: Information about the compile-time and 
execution-time capacities and limitations should be clearly stated. 

• Implementation options: The documents should give as much non-proprietary 
information as possible on the internal structure of the compiler and runtime 
system and the choices made by the compiler vendor to enhance functionality 
and performance. Performance characteristics of critical runtime operations as 
a function of the variables that influence timing should also be provided. 

• Error messages: There should be a clear explanation of each error message 
reported by the compilation system with possible remedies. 

• Installation Instructions: The documentation should have installation instruc- 
tions with recommended system parameters for users and sysgen parameters 
for the system. 

5.5. Implementation Options 

Many algorithms exist for accomplishing the requirements specified in the RM. 
For example, the method of choosing which task to run from a group of ready 
tasks is determined by the implementor. The actual algorithms are often diffi- 
cult to determine by testing. The evaluator should attempt to learn how certain 
critical operations are carried out in a particular compiler. This information 
should be provided in vendor documentation, but often is not. 

There are many instances where the algorithm for specifying how to implement a given Ada 
function is left to the discretion of the implementor. Examples include which data structures 
to use for composite data types, whether generic bodies use shared code or not, or how the 
case statement is implemented. The URG of ISO WG9 is compiling a list of implementation 
options along with current practice. Such a list provides the evaluator with a baseline for 
comparing systems. 
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Some of the choices have little effect on the performance of the Ada compiler either at com- 
pile time or at run time. Other choices may have significant impacts. Sometimes the ven- 
dors treat this information as proprietary since they may feel that a certain technique gives 
them a competitive advantage. Certainly a highly optimizing compiler is valuable for real- 
time applications. The job for an evaluator is to determine those features that are critical to 
the application and then pressure the vendor to provide the information that will facilitate 
making an informed decision. 

Some of the important compile-time, implementation-dependent issues being considered by 
the URG include: 

• minimum requirements for arithmetic types 

• minimum source line lengths 
• file name conventions 
• recommendations for pragmas SHARED, SUPPRESS, INTERFACE 

The URG issues are most important to those applications that either have specialized or 
unusual requirements or that will be ported to other compilation systems. 
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6. Execution-Time Issues 

The time and space efficiency of the code generated by the Ada compiler as 
well as the time and space efficiency of the mntime system must be carefully 
evaluated. Other considerations are runtime system capacity and 
implementation-dependent functionality provided at run time. 

6.1. The Runtime System Model 
Three execution-time models can be defined for Ada programs. First, there is a 
"host-based" environment in which the Ada code can make use of operating 
system services. Second, there is a "bare machine" environment in which all 
the execution-time software is provided by the compilation system. Third, there 
is an "enhanced bare machine environment" in which some of the execution- 
time services may be provided by a third party "executive." The issues are: 
how well does the runtime system code match user requirements and how well 
prepared are vendors of compilation systems to provide executive system func- 
tionality and performance? 

Two components must be considered in an evaluation of the runtime performance of an Ada 
compilation system: the code that is generated from the application program and the code 
that provides the environment in which the application program runs. The latter is called 
"the Ada runtime system" and is provided by the Ada compilation system. The Ada runtime 
system provides the resource management for the Ada program. Among other functions, it 
must provide the following services: memory management, task management, time man- 
agement, exception management, and I/O management. These services may be many 
times more costly in performance (time and space) than the code generated by the appli- 
cation program. 

Further complication is that there is no clear-cut distinction made by implementors as to 
what functions cause code to be generated and what functions cause runtime system calls. 
For example, string concatenation can be done by in-line code or by a runtime system call. 
These decisions impact the speed of the operation as well as the size of the runtime. There 
are obvious tradeoffs between the size of the runtime with the size and efficiency of the 
generated code. Therefore, it is important to distinguish in any evaluation between the gen- 
erated code and the runtime system and the tradeoffs involved. 

Ada compilation systems whose generated code runs on the host development system 
("host-based compilers") usually make heavy use of the services provided by the underlying 
operating system. In these cases, the runtime performance of the Ada system is unalterably 
tied to the performance of the underlying operating system and the manner in which the Ada 
system interfaces with that operating system. The compiler vendor generally has no choice 
but to use the underlying operating system for these services and the evaluator usually has 
no choice but to evaluate the compilation system in the context of the operating system. 

Ada compilation systems whose generated code runs on targets different from the host de- 
velopment system ("cross compilers") have two alternatives.   Either the Ada compilation 
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system can provide the entire runtime system or the runtime system can be provided to run 
on top of an executive. In either case, the full semantics of the Ada language must be 
provided. In the first case (a "bare machine environment"), the runtime system must be 
tailored to a specific computer because of differences in memory, clocks, and interrupt struc- 
tures. In the second case (an "enhanced bare machine environment"), the runtime system 
must be tailored to the interfaces of the executive which, in turn, is tailored to a specific 
computer system. 

Some of the components that vendors distinguish are the following: 

• executive or kernel 

• memory management 

• tasking management 

• exception management 

• interrupt management 
• predefined library packages (I/O, SYSTEM, CALENDAR, etc.) 

• vendor-supplied library packages (math, bindings for COTS databases and 
graphics, etc.) 

The advantages of a bare machine implementation are that the vendor has complete control 
and can provide a highly optimized system. The disadvantages of a bare machine are that 
the compiler vendor may have less experience in performing some of the executive func- 
tions than an executive system vendor and therefore have a less mature product. For a 
more complete exposition of the concept of a runtime environment and how this concept 
differs in Ada as compared to other languages, the reader is referred to an article entitled "A 
Framework for Describing Ada Runtime Environments" [2]. For information on selecting, 
configuring, and using an Ada runtime system, as well as checklists and evaluations of spe- 
cific Ada runtime systems, the reader is referred to [34]. Figure 6-1 gives a very simplified 
view of the three models of Ada runtime environments. 

Small, high performance, real-time executives have been in existence for a number of years, 
both as commercial products and as company proprietary products. Ada runtime systems 
for bare targets have been available for only a few years. Providers of real-time executives 
are extremely cognizant of time-critical constraints of interrupt handling and resource man- 
agement. Compiler vendors may have less experience in these areas and they have not 
been effective in merging the experience bases of compiler writing with executive writing. It 
is therefore important to evaluate the overall performance of the execution-time character- 
istics of Ada programs. The remainder of this chapter gives some of the characteristics that 
must be considered in an evaluation. 
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Figure 6-1:   Three Models of Ada Runtime Configuration 
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6.2. Time Efficiency of Generated Code 

The efficiency of the code generated by the compiler may be investigated by 
inspection and testing. Inspection of code generated by simple programs pro- 
vides anecdotal evidence of the quality and efficiency of the code. Much infor- 
mation can be gained from a few well chosen examples. Benchmarking, on the 
other hand, can be used in a "black box" fashion for more exhaustive and auto- 
mated testing. Numerous optimizations are available to improve the efficiency 
of the generated code. 

6.2.1. Inspection 
Much can be learned by inspecting the assembly listing of the code generated by an Ada 
compilation system for some simple Ada programs. This strategy can be used to obtain 
approximate measures of the quality of the code generator and to determine the efficiency 
of various Ada features. It can also provide insights to the overall code generation strategy 
of the compiler. Required for code inspection are an assembly listing of the generated code, 
knowledge of the instruction set of the target computer, understanding of code generation 
techniques, and understanding of the requirements of the Ada language. This activity 
should be undertaken only by experienced technical people. 

The following examples were presented at AdaJUG by Robert Firth [17] in December 1988. 
They were used to make some observations and recommendations about Ada code quality. 
The first example, shown in Figure 6-2, is designed to test the code for several operations 
on a simple record of three integer components. The operations are assignment, com- 
parison, and aggregate assignment. By comparing the generated code with optimal as- 
sembler coding, observations can be made about the ability to take advantage of word align- 
ments, optimal use of the instruction set architecture (ISA), use of unnecessary variables, 
use of unnecessary instructions, and unnecessary tests of impossible conditions. 

type Triple is record 
x,y,z : integer; 

•nd record; 
— static aggregate assignment 

tconst : constant Triple :• Triple' (1,2,3); 
tl,t2 : Triple; 

tl ;m  tconst; - record assignment 

if tl«t2 then .. — record comparison 

tl :* Triple'(tl .x,tl.y,tl.x);  -- record construction 

Figure 6-2: Simple Test for Complex Types 

A second example was the "if X in 1 ..10 then ..." code fragment. Firth observed that one 
compiler was generating a Boolean value unnecessarily, that there were numerous unnec- 
essary instructions, and that the ISA was not used effectively.    The underlying cause 
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seemed to be a series of expansions of higher-level abstraction idioms into lower-level ones, 
with loss of efficiency at each stage. 

A third example, shown in Figure 6-3, was used to observe the code generated by a simple 
procedure that copies a constant value into its parameter. This example can be used to 
observe conventions for parameter passing, stack handling, and register saving and restor- 
ing. In this particular example it was observed that the nineteen instructions on one partic- 
ular ISA could be reduced to three by a number of optimizations. 

procedure 
begin 

X   :-  1; 
and P; 

Figure 6-3: 

P   (X   :   in out  Intagar) 

Simple Test of Procedure 

is 

Inspection of generated code should not generally be used as an exhaustive testing tech- 
nique, but it is effective for making limited but useful comparisons of different compilers for 
the same ISA. Additional simple tests can be used for the code generated by exceptions, 
generics, declarations, and many other Ada features. 

6.2.2. Testing 
The second method of determining the efficiency of the generated code is to develop black 
box tests called benchmarks. This technique is less dependent upon the target machine 
than is inspecting assembly code and offers a systematic and semi-portable way of observ- 
ing efficiency. However, it is subject to the caveats described in Chapter 8. Testing can be 
said to answer the "what" of the efficiency of the generated code, but does not answer the 
"why," as inspection does. 

Each individual Ada language feature takes a certain amount of time to execute if it is 
treated in isolation. However, it is sometimes difficult to measure these times (because they 
are so short) and the time in isolation may not be relevant when the feature is used in com- 
bination with other language features. Also, the performance of each individual Ada feature 
may be a combination of the performance of the generated code and the performance of the 
runtime system. The more complex an Ada feature, the greater the chances that there will 
be some effect by the runtime system. Among the features that are not likely to generate 
calls to the runtime system are the following: 

• arithmetic and logical expressions 
• selection statements (if and case) 
• loops 
• subprogram calls 
• selection from and assignment to composite data structures 
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Each of the above operations has thousands of alternative forms depending on the number 
of parameters, the size and complexity of the objects, and the levels of nesting. For ex- 
ample, it makes little sense to ask how long it takes to complete a subroutine call unless the 
number of parameters, their types, and their direction are also known. As a general ex- 
ercise, the benchmarking of many forms of given Ada features quickly reaches a point of 
diminishing returns unless the user can characterize an application very precisely. It is bet- 
ter to get some general feeling for performance and perhaps use fine-grained tests for 
troubleshooting or special investigations. 

Among the features that are likely to generate calls to the runtime system are: 

• dynamic storage allocation and deallocation 

• elaboration of data objects 

• task creation and termination 

• rendezvous 

• delay 

• input and output 
• exception handling 

• interrupts 

These features can also be measured with the so-called language feature tests, and the 
number of parameters and combinations is just as great as those described above. The 
difference in this case is that the features are more opaque to the user. Whereas in the 
former case the evaluator could see precisely what is happening from an assembly lan- 
guage listing of the program, in the case of these Ada features, such an investigation will 
lead to a call to the runtime system. Unless the user has a source code license to the 
runtime system, the code that is being executed is subject to scrutiny only if the machine 
code is disassembled. Disassembled machine code is often difficult to interpret. 

Fine-grained tests may also be useful for establishing whether the runtime system exhibits 
deterministic behavior. To accomplish this, however, the instrumentation must include high 
precision timing capability so that each instance of execution can be timed rather than 
averaged (see Sections 8.3 and 8.4). 

6.2.3. Optimizations Supported 
Many different techniques are available to compiler vendors for improving the efficiency of 
generated code. It is important for the evaluator to decide which of many potential optimiza- 
tions are critical to the application and to test to ensure that these options are provided in 
the generated code. There are many opportunities for optimization in Ada, as there are in 
all programming languages. The RM gives the rules in Sections 10.6 and 11.6. Other sug- 
gestions are provided by the Ada Implementers' Guide [24] and the Ada Rationale [26]. 
Since Ada is a complex language, a highly optimized compiler is very important for perfor- 
mance. 
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Among the optimizations that can be performed are the following: 

• Dead code elimination: Code that is unreachable may be removed. 
• Folding: Operations on operands whose values are known at compile time 

can be performed at compile time. 

• Common subexpression elimination: Expressions that have previously been 
evaluated need not be reevaluated (can be performed within statements, within 
control structures, or globally). 

• Strength reduction: Replacing complex, expensive operations with simple, 
less-expensive operations; for example, replacing multiplication with addition 
especially in the case of loop indices used in array subscripts. 

• Expression simplification: Application of valid mathematical or logical laws 
such as associativity, commutativity, multiplication by 1, etc. to simplify arith- 
metic and logical operations. 

• Cross-jumping: Merging of common code sequences at the end of conditional 
branches. 

• Code motion: Moving common code sequences so that they are not repeated 
in conditional branches and loops and so that they do not cause unnecessary 
jumps. 

• Peephole: Reduction of short machine code sequences by passing a "window" 
over the final object code to eliminate or collapse adjacent instructions, and to 
substitute more efficient instructions wherever possible. 

• Habermann-Nassi transformation: Technique for reducing the number of 
context switches required to execute a rendezvous. 

• In-lining: Short subprograms may be placed in-line even without a pragma. 
• Static elaboration: Certain objects whose characteristics are known at com- 

pile time can be elaborated before execution time. 
• Global optimizations: Because of information in the Ada program library, op- 

timizations can be performed across compilation units. 

These are by no means all the optimization techniques that can be performed and are listed 
here only to provide a representative list. The ACEC test suite described in Section 9.2 has 
the most comprehensive set of tests for evaluation of optimization techniques. The ACEC 
Reader's Guide [47] lists over 20 optimizations that are tested for in the ACEC test suite. 

It is not always clear to an evaluator what, if any, optimizations are important to the evalu- 
ation process. Optimization tests are very fine-grained and may provide little useful infor- 
mation that is not provided by a coarse-grained test. Unless the user has some idea of a 
model for what optimizations could be performed on typical application code, the information 
on what optimizations are performed may be useless. For example, the user may wish to 
determine the optimizations that can be performed on a case statement. On the other hand, 
the number of optimizations performed may provide a good indication of what the general 
level of optimization is. Furthermore, certain optimizations such as Habermann-Nassi and 
automatic in-lining may be isolated as particularly important to an application that makes 
heavy use of tasking and small subprograms respectively. 
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Some implementations provide pragmas that facilitate optimization. The user specifies by a 
pragma that certain coding restrictions will be adhered to. This allows the compiler to gener- 
ate code that is less general than if no restrictions were imposed. Examples are pragmas 
for fast interrupts or for certain kinds of tasking paradigms. 

6.3. Space Efficiency of Generated Code 

The size of the generated code is usually measured in terms of bytes per Ada 
statement. Since this measure varies greatly from statement to statement, it is 
important to have a uniform and representative program for which this measure 
is applied. One should be very wary of "code expansion" ratios unless one 
knows what is being measured. 

As was described in Section 6.1, the amount of memory required by a Ada program de- 
pends on two things: the object code generated by the compiler and the runtime system. 
Each of these is discussed in turn. While it may seem that the runtime space required is a 
constant (and often is in practice), it need not be, and the ability to configure the runtime 
system is one of the most important requirements of space-limited applications. 

From the point of view of an evaluator, the space requirements are probably best measured 
with a representative application benchmark. In that way, the evaluator can use the code 
expansion metric with a fixed program over a set of compilation systems. Code size in units 
of STORAGE_UNITs can be measured in a portable way using the difference between the 
'ADDRESS attribute of two labels. One problem with this solution is that not all implemen- 
tations support the 'ADDRESS attribute. A machine-dependent solution is to write a simple 
assembly language function that returns the address of its caller. Both these methods are 
provided to compute code expansion sizes in the ACEC. Another problem with this tech- 
nique is that code motion optimization may move some code. This is not a serious problem 
at present since few implementations support code motion, but it may prove to be more 
troublesome as optimizations become more sophisticated. Finally, the evaluator must be 
cognizant of the effects of elaborated data structures and elaboration code. 
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6.4. Time Efficiency of the Runtime System 

The runtime system is code which is not generated from the application pro- 
gram. Rather, it is code that is needed by the generated code to perform func- 
tions such as task management, memory management, exception manage- 
ment, and input/output. The efficiency of the runtime system can be more im- 
portant than the efficiency of the generated code, because the user may have 
less control over it. 

6.4.1. Tasking 
Tasking is the mechanism for concurrency in the Ada language. The performance of the 
implementation of tasking will be of importance for those applications that choose to use 
tasking and of little importance to those applications that choose not to use tasking. Among 
the features critical to performance are: 

• task creation and termination 

• simple rendezvous (task synchronization) 

• selective waits, conditional and timed entry calls 

• delay statements 

• abort statements 
• priorities 

Rendezvous can be accomplished with varying parameters, varying calling and accepting 
alternatives, varying states of guards on selects, and varying synchronization conditions (the 
order in which tasks get to their synchronization points). 

Of particular importance to an evaluation of the tasking implementation is the performance 
under load. How does performance degrade as more tasks become active in the system? 
How does performance degrade when there are more tasks waiting on an entry? How does 
performance degrade when there are more alternatives in a selective wait? How does per- 
formance degrade with increased number and size of rendezvous parameters? 

Other questions have to do with implementation dependencies. How many priority levels 
are supported? How are alternatives selected from among the open alternatives? What 
scheduling algorithm is used for tasks? How does the delay respond to a parameter that is 
close to zero? What optimizations are performed with respect to tasking? The evaluator 
should determine which questions are relevant for the application being developed and then 
conduct tests to answer those questions. 

6.4.2. Exception Handling 
Exceptions are meant to be used for rare events. As such, the overhead for using excep- 
tions should be low when the exceptions are not raised. Thus, the runtime system overhead 
of entering and leaving a frame (block, subprogram, package, task unit, or generic unit) in 
which an exception is defined should be very small. 

The overhead of the following operations can be measured for both user-defined and 
predefined exceptions: 
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• declaring the exception 
• raising the exception 

• handling the exception 

• propagating the exception 

These operations are normally handled by the runtime system. They have many forms and 
alternatives. Applications making heavy use of exceptions should carefully evaluate the 
time and space of the exception mechanism. 

6.4.3. Input and Output 
I/O is provided in the language by means of predefined packages or vendor-supplied 
packages. The predefined packages are SEQUENTIALJO and DIRECTJO (generic 
packages) for I/O operations on files containing elements of a given type, TEXTJO for text 
I/O, and LOW_LEVEL_IO for direct control of peripheral devices. Package 
IO_EXCEPTIONS defines the exceptions needed by the I/O packages. Rarely will an appli- 
cation use all these packages. For example, embedded applications may use only 
LOW_LEVEL_IO. However, there are runtime overheads associated with all I/O operations 
and these should be evaluated for the relevant packages. I/O performance is particularly 
important to MIS applications. 

Ada provides a FORM string parameter to CREATE and OPEN procedures that permits 
users to specify values of such timing parameters in an implementation-dependent fashion. 
The speed of programs using default values may not be optimal. The evaluator must be 
concerned with setting these parameters in test programs to "reasonable" or "comparable" 
values. 

It should be noted that packages provided in the language standard were not expected to 
yield high performance implementations. The intention was more to provide uniform ways of 
performing a minimal set of I/O operations. As a result, I/O is implementation dependent 
and there is considerable variation in I/O functionality and performance. For example, I/O 
for unconstrained arrays and variant records is not always available. Parallelism of I/O in a 
multitasking situation is implementation dependent. Finally, it should be noted that I/O 
benchmarks may be influenced more by the timing parameters of I/O hardware and operat- 
ing systems than by runtime software. Operating system effects include multiple buffers, 
read-after-write checking, read-ahead, shared file access, disk allocation schemes, block 
sizes, etc. 

6.4.4. Elaboration 
Elaboration is defined in RM 3.1(8) as the "process by which a declaration achieves its 
effect." The time and space required to execute declarative items such as type declarations 
and simple or complex object declarations can be measured with the same techniques used 
for other language features as described above. The RM also states in the same paragraph 
that elaboration "happens during program execution." However, it is well recognized that in 
many instances, all the information that is needed to elaborate an Ada object is known at 
compile time. Then valuable execution time can be saved if those declarations that can be 
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elaborated at execution time are in fact "pre-elaborated." For example, arrays can be pre- 
elaborated and initialized if the array dimensions and initial values are known at compile 
time. This is a common, but by no means universal, optimization that can be performed at 
compile time. 

Library units must be elaborated in an order consistent with the partial ordering defined by 
the unit dependencies. Pragma ELABORATE can be used to provide some user control 
over the elaboration order defined by the partial ordering. Since the elaboration of a library 
unit only happens once during program execution, it is not as easy to measure the time 
required for elaboration of a library unit. This is because the operation cannot be placed in a 
loop so the "dual loop" paradigm cannot be used for reliable timing measurements. Library 
unit elaboration time may be highly variable from compiler to compiler and also from 
elaboration to elaboration. If declarative items in the library unit have not been pre- 
elaborated, the time on a host-based system may depend on the file system or the paging 
system or both. The time required to allocate dynamic objects within library units is similar 
to that required by explicitly invoking the "new" allocator. This can be time-consuming and 
varies considerably between implementations. 

The importance of elaboration to an evaluation is highly variable and depends on both the 
application and programming style. One important consideration is how much of the 
elaboration is done at compile time. For certain applications this can be an optimization that 
overshadows some of the other optimizations because it is so pervasive. For real-time ap- 
plications that need to restart often (forcing re-elaboration) or change modes by loading a 
new program, the elaboration time may be critical and deserve careful attention. For non- 
real-time applications, the elaboration time may be inconsequential. A heavily nested pro- 
gramming style will force more elaboration at different points of program execution than a 
flat program style where most of the elaboration activity will happen at the beginning of ex- 
ecution. This means that the overhead of restarting a program may depend on the effi- 
ciency of the implementation, the elaboration options provided, and the style of program- 
ming. If elaboration is an important consideration, it should be systematically tested using 
hardware monitors so that the design tradeoffs are understood. 

6.5. Space Efficiency of the Runtime System 

Memory space is required for the runtime system code (determined at load 
time), for implicitly created entities, and for explicitly created entities. The 
evaluator must be concerned with the amount of space required, the method of 
allocation and deallocation, and the recovery of unused space. 

Executing Ada programs require storage for code and data. The major areas of concern for 
an evaluator are: 

• static space for application code and data 
• runtime system space 

• space for implicitly created dynamic entities 
• heap space for explicitly created dynamic objects 
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Static space for application code and data is covered in Section 6.3. The other three cate- 
gories are controlled by the runtime system. The space taken by the runtime system itself is 
highly variable from compilation system to compilation system. 

Storage requirements are especially important in embedded systems that do not have virtual 
memory capability because the space taken by the runtime system is not available for appli- 
cation code. A large runtime system may affect the program size to a much greater degree 
than the size of the generated code. A full runtime system may require over 100K bytes of 
storage, but a minimal one for a minimal function application program may require only a 
kernel of 1K or 2K bytes. For space-critical applications, it is important to be able to con- 
figure the runtime system either automatically or by hand. The straightforward method of 
constructing a loadable program is to include the entire runtime system. If large parts of the 
runtime system are unused, then this is extremely wasteful of space. Thus, it is necessary 
to be able to include those portions of the runtime system that are used and to exclude 
those parts that are not used. This is accomplished by a vendor-supplied "selective loader," 
as described in Section 7.2. 

There are no automated or semi-automated ways to determine the size of the runtime sys- 
tem. This information should be available from the load map produced by the linker or in the 
vendor-supplied documentation. 

Space is implicitly required for the following types of Ada operations: 

• creation and initialization of tasks 

• entry into a new scope 
• handling of an exception 

The runtime system must allocate and deallocate the space for these Ada operations as well 
as for dynamic structures using allocators. The language does not define strict require- 
ments for allocation and deallocation of space. Two possible hazards are the failure to 
reclaim space and fragmentation of space. Programs compiled by some first generation 
compilers were known to run out of space because certain Ada features allocated space 
which was never returned to the free list. Since the ACVC does not systematically test for 
performance or capacity, the test programs all ran to completion because they did not 
exceed the storage limits, but real programs failed simply because they executed a simple 
Ada feature multiple times. These problems can be uncovered either by running systematic 
tests or by running large programs that continuously exercise a substantial subset of the 
language. Some tests in the suites described in Chapter 9 do contain runtime capacity 
tests. 

Ada also permits objects to be explicitly created with an allocator and explicitly designated 
as free with the predefined, generic, library procedure UNCHECKEDJDEALLOCATION (if 
supported by the implementation). In addition to determining the efficiency of these opera- 
tions for different kinds of objects, an evaluator should determine whether and under what 
circumstances the implementation performs "garbage collection" (the recovery of unused 
storage space). RM 4.8(7) states that "an implementation may (but need not) reclaim the 
storage occupied by an object created by an allocator, once this object has become 

58 CMU/SEI-89-TR-13 



inaccessible." If there is no garbage collection, the user must restrict the amount of dynamic 
storage allocated or provide a user-defined package for dynamic storage management. If 
garbage collection is performed, it can be done dynamically (as each object is deallocated), 
periodically (after a certain amount of time), or when the space pool is exhausted. Real-time 
applications can rarely tolerate garbage collection at unpredictable times so the evaluator 
should determine the impact of this runtime feature. 

6.6. Features of the Runtime System 

In addition to being fast and small, the Ada runtime system may have a number 
of features that are required by certain application domains to meet functionality 
or performance constraints. 

There is an inevitable tradeoff between generality and performance. If the application 
domain does not have severe performance constraints, then a general purpose runtime sys- 
tem can serve the needs of a variety of applications. For embedded and real-time applica- 
tions it may be necessary to sacrifice generality for additional performance. Some of the 
functionality and performance features that may be useful for such applications are listed 
below. 

• Configurability: It is not the case that one runtime system is capable of ef- 
ficiently supporting all application domains. Thus, to achieve maximum perfor- 
mance it may be desirable to allow the user the flexibility of modifying the 
character of the runtime system to suit application requirements. This is partic- 
ularly important when application requirements change in the course of a proj- 
ect. Among the characteristics that the user may wish to change are the timer 
characteristics (SYSTEM.TICK), scheduling options, heap and stack sizes, 
maximum number of tasks (if static), etc. 

• Alternative tasking/synchronization support: It has been proposed, but by 
no means universally accepted, that alternatives to the Ada tasking be provided 
for applications having the most stringent timing constraints. Real-time execu- 
tives have provided such operations for many years and it is a more familiar 
paradigm for many real-time programmers. Operations include task creation, 
deletion, suspension, and resumption as well as synchronization primitives im- 
plemented as semaphores, mailboxes, or events. 

• Distributed system support: There are a number of Ada implementations 
that currently are supported on closely coupled (shared memory) distributed 
systems. On the other hand, there are few, if any, runtime systems that provide 
direct support for Ada programs running on a loosely coupled (non-shared 
memory) systems. Runtime systems can provide support for federated sys- 
tems in which separate Ada programs run on each node of a distributed system 
or for a unified system in which a single Ada program runs on the entire net- 
work. 

• User "hooks": Some runtime systems provide a user the capability of gaining 
control when certain operations are performed. This capability allows runtime 
enhancements, performance monitoring, debugging, etc. For example, user 
hooks could be provided for the task creation, task switching, or task deletion 
runtime operations. This would give the user an opportunity to perform memory 
management processing or to time the overhead of a task switch. 
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• I/O support: Asynchronous I/O to physical devices must be supported for 
many real-time applications. The runtime system should provide I/O support 
that presents a device-independent interface to the user. The interface should 
be configurable with respect to device types and provide the necessary mecha- 
nism for applications to be notified of asynchronous I/O operation completion 
and status. 

• Co-processor support: The runtime system should make it possible to sup- 
port special purpose co-processors for enhanced performance. Examples in- 
clude floating point co-processors and memory management units. Either the 
compilation system should support these co-processors directly or provide the 
necessary "hooks" for the user to implement this support. 

These, and many other features, are covered in much more detail in reports produced by 
the ARTEWG [1, 2, 3]. 

6.7. Implementation Dependencies 

Many options exist for implementing Ada runtime functionality. These are docu- 
mented in ARTEWG's Catalog of Runtime Implementation Dependencies 
(CRID) [1]. The evaluator should consult the CRID and determine whether any 
of the implementation dependencies are critical to the application. 

There are many places in the language definition where Ada implementors are free to 
choose how to implement a language feature (as long as the feature conforms to the rules 
of the language). Some of these choices (such as the evaluation of operands in an 
expression) may have little effect on the overall time/space tradeoffs. Other choices (such 
as sharing of code bodies for generics or automatic in-lining of procedures) may have a 
significant effect on overall time/space tradeoffs. It is important that an evaluator know what 
performance impacts the choices will have on the application. 

Another source of information on implementation dependencies is the ACVC Implementors' 
Guide [24]. This report was produced as part of the Ada Compiler Validation Capability and 
it explains the consequences of the language rules. It was meant to provide guidance for 
writing test programs, but has also served to provide useful information to designers of im- 
plementations. Both the Implementors' Guide and ARTEWG's original CRID are organized 
by RM section, making it easy to find implementation dependencies of interest. A newer 
version of the CRID is organized by functional area and has a very large index so issues 
can be located by Al number, RM section, pragma name, etc. These reports, along with the 
RM, can serve as handy references for evaluators looking for insight into performance 
anomalies. 

Some of the important runtime implementation-dependent issues being considered by the 
URG are the following: 

• garbage collection policies 
• scheduling policies, including time-slicing and non-blocking I/O 
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• guidelines for DURATION and delay (0.0) 

• guidelines for elaboration ordering 

As is pointed out in Section 5.5, these types of issues are significant for evaluation if the 
application has specific requirements in these areas or when portability is a primary con- 
cern. 

6.8. Interrupt Handling 

Interrupt handling is heavily dependent upon the implementation. There are 
many implementations and many options for optimization. The evaluator 
should understand how interrupts are handled in a particular implementation 
and determine whether this is sufficient for the application. 

Handling interrupts in Ada is always machine dependent. Depending on the machine ar- 
chitecture, the compilation system, and the system designer, there are numerous alter- 
natives. Most of the alternative solutions are not portable between target machines or be- 
tween different compilers for the same target. The language standard approach to inter- 
rupts is to use task entries and address clauses. In this approach an address clause is used 
to associate the interrupt address with the interrupt entry. Some systems do not provide this 
functionality and instead use machine code insertions or a system call to load an interrupt 
table with the address of an Ada procedure. These options and their variations are de- 
scribed by Doug Bryan [7]. 

When applicable to the system being developed, the functionality and performance of inter- 
rupts provided by the compilation system should be carefully evaluated. Because interrupt 
handling is so machine-dependent, there is no portable code to test interrupt handling; 
hence, it is largely ignored in the benchmark test suites described in Chapter 9. Among the 
questions to be asked are the following: 

• What language support is there for handling interrupts? 
• Are there language pragmas for "fast interrupts" (giving the user the opportunity 

to give up some tasking functions for improved performance)? 
• How much time is required to get to the interrupt service routine from the time 

of the interrupt? 
• How much time is required to return to the interrupted program from the exit of 

the interrupt service routine? 

• Are the times above deterministic (i.e., does the operation take the same 
amount of time each time it is executed)? 

• How are nested interrupts handled? 

• How do interrupt priorities relate to hardware priorities and Ada task priorities? 

• Are there limits to what one can do in an interrupt service routine with respect to 
accessing data and synchronizing with or activating other tasks? 

• Is  there  sufficient   support  for  representation   specifications   (Chapter   13 
features) to allow access to hardware for interrupt service? 

• How long are interrupts disabled by the runtime or generated code in the worst 
case for each specific operation? 
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6.9. The Clock and Timing Issues 

For real-time embedded systems, the abstraction of time is of critical impor- 
tance. The evaluator must determine how time is represented, what the resolu- 
tion of the clock is, and what the costs of invoking clock services are. 

Ada's abstraction for time is contained in a predefined package CALENDAR. This package 
contains an implementation-dependent type called TIME. The package compares times and 
performs arithmetic operations on times which are clearly meant to be of coarse granularity. 
The constructors and selectors for time break time into years, months, days, and seconds 
(and fractions of seconds). The function CLOCK returns the time of day. Package SYS- 
TEM defines an implementation-dependent type called DURATION. DURATION is a fixed 
point type whose values are expressed in seconds. The type must allow representations of 
durations (positive and negative) of up to 86400 (number of seconds in a day) and the smal- 
lest representable duration must not be greater than twenty milliseconds. RM 9.6(4) recom- 
mends that the value should not be greater than 50 microseconds "whenever possible." 
Since it takes 18 bits to represent the integer part and 14 bits to represent durations down to 
61 microseconds, it can be assumed that the recommendation was based on the abilities of 
32-bit architectures. 

For many applications, the abstraction of time is not of critical importance. For printing the 
time of day on a user console or measuring the time required to execute functions that take 
seconds or more, package CALENDAR is quite sufficient. For real-time applications that 
measure time in microseconds and milliseconds, the abstraction for time becomes ex- 
tremely important. 

For real-time applications the evaluator should determine the following characteristics of the 
Ada implementation: 

• The implementation-dependent representation for type DURATION. 

• The implementation-dependent representation for type TIME. 
• The speed at which the clock ticks. (This should be the same as 

SYSTEM.TICK, but has been found to be otherwise in some implementations.) 
• The maximum and minimum possible times between the expiration of a delay 

and the rescheduling of the task executing the delay. (Note that this reschedul- 
ing requirement says nothing about when the task will restart execution, since 
its priority may be such that other higher priority tasks are eligible for execution 
at the time the delay expires.) 

• Any additional packages provided by the vendor to provide a more precise defi- 
nition of time. 

• The relationship between the Ada clock and the system (hardware) clock. 

The application developer may be unable to use the Ada facilities for timing. In that case, 
there is the option to write an interface to access a hardware clock that is provided with most 
embedded computers. A hardware device can normally be programmed so that the Ada 
interface can set the clock, interrogate the clock, start the clock to count down, and interrupt 
when it reaches zero. Such clocks are often accurate to one microsecond or better. An 
example of how Ada can be used to interface with a hardware clock is given in [6]. 
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7. Support Tool Issues 
An Ada compilation system includes more than just a compiler. There is a mini- 
mal tool set without which the compiler becomes almost useless. This tool set 
is often called a "minimal Ada programming support environment" or MAPSE. 
Support tools should provide adequate functionality and performance, have a 
good user interface, and be easy to use with one another. 

This chapter will attempt to show the importance of evaluating four important support tools, 
the program library system, the linker/loader, the debugger, and the target simulator. The 
first three are normally considered to be part of a minimal tool set (MAPSE) and are essen- 
tial for producing correct programs on the target. The fourth is considered to be an impor- 
tant tool for cross-development systems. While these three tools represent only a small part 
of a complete Ada Programming Support Environment (APSE), they are among the most 
important tools and the ones most tightly coupled to the compiler itself. For a more com- 
plete discussion of APSEs, the reader is referred to the original Stoneman requirement 
[35] and a description of one of the early government funded environments [44]. For spe- 

cific detailed requirements and criteria for evaluating these support tools, the reader is 
referred to the SEI environment evaluation work [42] and the Ada Evaluation System [30]. 
Future versions of the ACEC will cover these areas as well. 

7.1. Program Library System 

Many of the functions of the Ada program library system are given by the lan- 
guage definition. These functions support the separate compilation of program 
units, which facilitates "safe" top-down and bottom-up programming. Because 
Ada compilers must do a great deal of checking across compilation units, the 
structure and performance of the library system is critical to compile-time per- 
formance. 

Ada programs may be broken down into separate modules to facilitate large development 
efforts. However, unlike some other languages that permit independent compilation, each 
Ada compilation depends on information in a program library so that knowledge about the 
properties defined in other modules is available to the module currently being compiled. For 
example, the number and type of parameters of a subprogram'call can be checked with the 
definition of the subprogram that was previously compiled into the library. For a better un- 
derstanding of the purposes and structure of the Ada library system, the reader is referred to 
the Ada Rationale [26]. 

The purpose of evaluating program library systems is to determine how the library 
mechanisms can affect programmer productivity. While the implicit library usage by the 
compilation system is part of compile time evaluation (see Chapter 5), this section will try to 
elucidate the evaluation issues with respect to explicit library usage. 

The following facilities are not defined by the language, but are expected to be present in 
the programming support environment: 
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• Library creation and deletion: Although a library is normally created from 
scratch (empty), facilities that create it with a program or family of programs 
from another library are desirable. How long does creation take? How much 
space is consumed by an empty library? Can a library be deleted without first 
deleting all its contents? 

• Inclusion of library units: There should be a command to include a unit of 
one library in another library. Can this be done without recompiling the unit? 

• Deletion of library units: There should be a command to delete a unit from a 
given library. Is the space made immediately available for reuse? Does dele- 
tion or updating of a unit "obsolete" executable files that use it? 

• Completion check: There should be commands to check whether some units 
of a program are obsolete or missing. Can valid compilation orders be pro- 
vided? Can the system (re)compiie all the units of a program that would be 
required by a set of source changes without the user's having to explicitly iden- 
tify the impacted units? (i.e., perform the function of the UNIX command 
"make")? 

• Status commands: There should be commands that allow a user to display 
global information about the current state of the library, such as the units in the 
library and their dependency relationships, whether the units have been com- 
piled, and which units need to be recompiled. If space is allocated to a library, 
can the amount of available space be listed? How much space is allocated to 
each unit? When was a unit last modified? 

• Library structure: Does the librarian require the source to be in the same di- 
rectory as the library files? How transparent is the library with respect to the file 
system of the operating system? Is concurrent access by multiple users per- 
mitted? 

7.1.1. Recompilation and Incremental Compilation Features 
Whenever any unit in the program library is compiled, it may invalidate those units that de- 
pend on it. For example, if a subprogram specification is changed, all those units that use 
that definition are subject to recompilation. However, it may not be not necessary to recom- 
pile all the units that depend on the library unit, if they do not depend on the specific defini- 
tion that was changed in the library unit. For example, if unit X only uses subprogram A 
from a unit that exports subprograms A and B, then recompilation of X is trivial when only 
the spec of B is changed in that unit. Thus, it is extremely important to determine the 
granularity with which recompilation is required. The simpleminded and straightforward 
solution is to simply mark a compilation unit as needing recompilation without regard to the 
recompilation impact. A more sophisticated approach is required to determine the smallest 
fragment of the program that requires recompilation. 

Incremental compilation is the ability to use information about previous compiles to perform 
new compiles at decreased cost. If an environment can recognize that the only change to a 
source file is a comment, recompilation is again a trivial operation. If an environment can 
recognize that the only change to a source file is the addition or deletion of a definition in a 
package specification, then generally none of the other definitions should need to be recom- 
piled. Changes to bodies of units should not force recompilations of other bodies or specifi- 
cations.  It should be noted that such avoidance of compilation and incremental compilation 
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are not generally provided in today's compilers. Good intermediate representations such as 
DIANA are needed to capture and reuse work that has been done by a compiler. 

7.1.2. Sublibraries 
Another feature that is desirable to promote programming-in-the-large with multiple groups 
is the concept of shared libraries for different subsystems. This capability should permit 
users to link two or more libraries so that when a compilation is started in one library, the 
compiler can be steered to another library to find parent units. This feature does raise the 
consistency problem in that when libraries are linked in this fashion, the recompilation flags 
must be propagated across library boundaries when a unit is changed in one library and is 
depended upon by a unit in another library. 

7.2. Linker/Loader Support 

The linker/loader support tools provide the capability of combining separately 
compiled Ada units into a single module and preparing for execution by loading 
the module into memory. This process should be efficient in both time and 
space. 

The linker/loader support tools may be provided by the underlying operating system on the 
host or by the Ada compilation system. When they are provided by the underlying operating 
system, they have the features and performance provided by the operating system vendor. 
If they are provided with the compilation system, they may provide additional features and 
performance. Some environments are so tightly integrated that the linking process is essen- 
tially invisible because the programs are linked incrementally. With a host-based develop- 
ment system the linker and loader may be tightly coupled, but in a cross-development sys- 
tem the loader is necessarily a separate and highly machine-dependent step involving pro- 
grams running on two machines. 

7.2.1. Selective Loading 
Ada permits developers to use object oriented techniques whereby similar objects and 
operations are combined in a "package." For example, a package could consist of a library 
of trigonometric functions or a set of graphics objects and operations. When a program unit 
withs one of these packages, it is not necessarily the case that all the operations supplied 
with the package are used. Therefore, it would be more efficient if the linker/loader included 
in the load module only those subprograms that are actually referenced by the object pro- 
gram. As an example, for very large packages such as a vendor supplied mathematics 
package, the difference in the runtime code could be the difference between a 100-byte 
routine for returning an absolute value and a 10,000-byte package for computing most stan- 
dard mathematical functions. A similar consideration applies to the selective loading of only 
those modules in the runtime system that are referenced by the object program. The ab- 
sence of selective linking features tends to create load modules of hundreds of thousands of 
bytes when only tens of thousands of bytes may really be required. 
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7.2.2. Other Linker/Loader Features and Options 
Other features that may be supported by the linker/loader are the following: 

• Memory assignment: There may be a means of specifying the placement of 
the code and/or data of the program in particular memory locations so that as- 
signments to read-only memory (ROM) may be accommodated or so that code 
segments or entry points can be aligned in memory. 

• Partial linking: There may be a means of partial (incremental) linking for pro- 
grams so that small changes at the highest level do not require relinking the 
entire program. 

• Dynamic loading/overlays: When the load module is too big for the available 
memory, are there any automated capabilities to load portions of the program 
as they are needed? 

• Link-time optimization: Most optimizations take place at compile time, but the 
separate compilation capability prevents the compiler from having complete in- 
formation about the program. Additional optimizations are possible at link time. 
For example, additional dead code can be eliminated. 

• Linking to other languages: Support for interfacing with subprograms and 
objects in other languages must be provided by the compiler using pragma 
INTERFACE or by other import/export techniques supported by the implemen- 
tation. 

• Dynamic memory allocation: Is it possible to specify how much memory is to 
be allocated to various dynamic structures such as the stack and heap? 

• Library searching: Does the linker support library searching to satisfy external 
references not resolved in the primary library? 

In addition to these features, the following generic concerns should be considered in the 
evaluation of a linker: 

• performance 
• capacity 
• informational outputs, including the link map 

• diagnostic outputs 

• user interface 

7.2.3. Downloading for Cross-Development Systems 
For cross-development systems, the loading of an Ada program onto the target requires two 
programs, a downloader running on the host system, and a receiver program running on the 
target system. The cross-development package must also support triggering (starting) of 
the execution of the application code on the target. The downloading process is often time- 
consuming, complex, and error prone. The performance of this communications link can 
have a significant impact on the ability to evaluate a compilation system (by running bench- 
mark programs) and later to develop systems. In fact, the time taken to download a pro- 
gram may, in some cases, be longer than the compile, link, and execute times combined. 
Download time may also be increased by as much as a factor of two when 
hardware/software monitors or microprocessor development systems are used because of 
the need to download additional symbol table information and the formatting information as- 
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sociated with it. Download time may be decreased if static parts of the loadable image such 
as the runtime system do not have to be reloaded for each program execution. This critical 
download link depends primarily on the speed of the hardware connection, but must be con- 
sidered carefully by cross developers. What is important to determine is whether the vendor 
supports the exact target/link configuration to be used. If not, the user can expect to have to 
customize the downloader and receiver to the particular configuration being used. 

7.3. Support for Debugging 

Debugging should take place at the highest abstract level possible, which 
means that a debugger should be integrated with the compiler to provide 
source code information to the user. Because debuggers may improve pro- 
grammer productivity significantly, it is important to have at least a minimum 
level of debugger functionality. 

It is useful to distinguish three levels of debuggers. A machine-level debugger knows only 
about machine addresses, machine instructions, and contents of machine locations. It is 
useful to an Ada programmer only with the memory maps generated by the compiler and 
linker and only for testing the generated code in assembly language format. A symbolic 
debugger is essentially a machine-level debugger with symbolic information available so 
that the programmer can refer to data objects by name rather than by machine location. A 
source-level debugger allows the programmer to display source code and to enter all debug- 
ger instructions in terms of source code instructions. The source-level debugger provides a 
high level of abstraction to maximize programmer productivity. 

There are no benchmark tests for debuggers. Since debugging is a highly interactive acti- 
vity, there are two approaches that are used to evaluate the functionality and performance of 
a debugging system. The first is a checklist of features and performance characteristics and 
the second is a debugging "scenario" that permits the user to take a program and a set of 
tasks to be performed and conduct a debugging session. The checklist is often filled out 
using only the documentation, while the scenario must be conducted on the system being 
evaluated. Both of these techniques are somewhat subjective, but the second is preferred 
because it promotes exploration of the system and allows serendipity and discovery not fa- 
cilitated by the "hands-off" approach. 

Among the operations important in debugging are the following: 

• Examining the control flow (break operations) 

• after n statements executed 

• at a particular statement 
• at program unit entry or exit 
• at the raising of an exception 

• at a scheduling point 

• on modification of a variable (tracepoints) 
• on interrupt by the programmer 
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• after the iteration of a loop 

• Examining the program state 

• data objects 
• call history 

• active tasks 

• status of blocked tasks 

• Changing the program state 

• modify data object 

• add, modify, delete code 

• restart at designated instruction 

• selectively step into or skip entire subprogram 

• raise an exception 

• Displaying debugging information 

• displaying source code 

• displaying assembly code 

• displaying breakpoints 

• displaying tracepoints 

Debugging in a multitasking environment poses special problems and may require control of 
time (because of conditional waits, for example). More complete checklists and example 
scenarios can be found in [42]. As with most tools, a poor quality debugger can hinder 
rather than facilitate progress. 

7.3.1. Effects of Optimization on Debugging 
Optimizers tend to confuse debuggers. The reason for this is that the optimizer may change 
the order of operations in a program as long as it does not affect the semantics of the pro- 
gram. Thus, the source level model of the semantics does not map onto the runtime 
semantics. For example, an optimizer may move an invariant assignment statement outside 
a loop. If the user sets a breakpoint on that assignment statement, it may be difficult or 
impossible for the debugger to stop each time through the loop. Similarly, the values of 
variables may be different from what may be expected by looking at the source code be- 
cause the object code may hold temporary values in machine registers rather than storing 
them into main memory. These problems may be solved in several ways: 

• Disallow debugging for optimized programs. 

• Limit the functionality of the debugger for optimized programs. 

• Permit the debugger to have unpredictable behavior for optimized programs. 
• Take extraordinary steps to ensure that the debugger works identically for op- 

timized programs. 
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None of these options comes without limitations and costs. It is important for the evaluator 
to know which of the options the vendor has chosen, to understand the tradeoffs, and to 
know the implications. 

7.3.2. Debugger User Interface 
Just as the user interface is an important part of the compiler, the user interface is also an 
important part of the debugger. The debugger should be easy to use and easy to learn. It 
should have documentation and online help facilities. It should have clear informational and 
diagnostic messages. Links to the editor are also helpful. 

7.3.3. Cross Debuggers 
In a cross-development environment the debugger should execute on the host with a debug 
kernel on the target. The debug requests and the debug output should be sent back to the 
host where the user interacts with the debugger. The advantage of this is that the host with 
its considerable resources can be used to do most of the work instead of the limited 
resource target. The evaluator must determine the time and space implications on the tar- 
get system of such a cross debugger. Other cross debuggers operate without a kernel on 
the target system. Instead they use hardware to monitor the target system bus. This form 
of debugger is the least intrusive and allows debugging of exactly the code that will exist in 
the production system. 

7.4. Target Simulator 

Target simulators can increase programmer productivity when operating in a 
cross-development environment. 

Cross-development systems are more complex than host-based systems. Programmer 
productivity can be lowered because of the time required to download programs and be- 
cause of the vagaries of the hardware and the special hardware interfaces. A target simu- 
lator allows the user to execute programs for the target on the host system and to shorten 
the turnaround time for each run. While target simulators may execute at greatly reduced 
instruction speeds, the turnaround time between consecutive runs may compensate for this. 
It is important that a target simulator provide an almost exact duplicate of the environment 
provided on the actual target. In particular, the simulator must simulate time precisely both 
with respect to instruction speeds and clocks, it should have a debugging capability with 
exactly the same features and user interface as the cross debugger, and it must have the 
ability to simulate interrupts as they would occur on the real target. 

The target simulator should do the following [43]: 

• Accurately simulate both the functional and temporal behavior of the target's 
instruction set architecture. 

• Provide access to all memory locations and registers. 
• Support typical features of symbolic debuggers. 
• Perform timing analysis. 

CMU7SEI-89-TR-13 69 



• Support simulated input/output interaction. 

• Facilitate setup and reuse of test sessions. 

Users should have a high degree of confidence in the quality and correctness of the tool. 

7.5. Other APSE Tools 

There are a number of other APSE tools that could be considered useful and 
deserving of evaluation along with the Ada compilation system. A primary con- 
sideration, if present, is how well they are integrated with the compilation sys- 
tem. 

In addition to the compiler, debugger, and linker/loader, the Stoneman requirement [35] for a 
Minimal Ada Programming Support Environment (MAPSE) calls for the following tools: text 
editor, pretty printer, set-use static analyzer, control flow static analyzer, dynamic analysis 
tool, terminal interface routines, file administrator, command interpreter, and configuration 
manager. Since this early attempt at defining requirements of an APSE, it has become clear 
that some of this functionality is more appropriately provided as an option of another tool 
(pretty printers and set-use analyzer functionality can be provided by compiler options) or 
incorporated into a more powerful tool (static control flow can be done with a browser and 
dynamic analysis can be done with a debugger). Other tools may be important at the re- 
quirements definition and testing phases of the life cycle. These include document 
processing systems, spelling checkers, project planning aids, presentation graphics tools, 
cost tracking and accounting systems, archival storage management systems, testing tools, 
electronic mail systems, performance monitoring tools, accounting systems, etc. 

What Stoneman does make clear is that a tool set should make it easy for a programmer to 
move easily from one tool to another. This may be accomplished by a common represen- 
tation for Ada programs such as the Descriptive Intermediate Attribute Notation for Ada 
(DIANA), which stores all the syntactic and semantic information about a program unit. 

It is beyond the scope of this handbook to provide guidelines for the evaluation of other tools 
that should be tightly integrated to the Ada compilation system. The existence of a compre- 
hensive integrated tool set may be part of the criteria for compiler selection. It certainly can 
have an impact on programmer productivity. Another desirable criterion for an environment 
is openness, the ability to add home-built tools or tools from other vendors. This criterion is 
often in conflict with tight integration. For further information on general APSE evaluation 
criteria, the reader is referred to the environment evaluation literature [15, 29, 42, 45, 46]. 

70 CMU/SEI-89-TR-13 



8. Benchmarking Issues 

Benchmarking is a black art. Benchmark design and development, as well as 
the use of benchmark data, require careful and painstaking analysis by skilled 
technical people. Simple acceptance of raw comparisons without an under- 
standing of the tests and the testing environment is risky. 

Benchmarking is perhaps the most widely used performance evaluation technique. It con- 
sists of running a set of programs on a system to compare its performance with other sys- 
tems. In the case of Ada, the purpose is to compare one Ada compilation system with 
another Ada compilation system or possibly with the compilation system of some other lan- 
guage. A problem that benchmark users should be aware of is that it is difficult or impos- 
sible to isolate the compilation system from the other components of its environment, 
namely the computing environment. This computing environment includes both hardware 
and software that may be difficult to control. As is pointed out by Dongarra [14], "bad bench- 
marking can be worse than no benchmarking at all." 

Using benchmarks is like using statistics. If applied properly, they can enlighten. If used 
improperly, they can confuse, obfuscate, and deceive. Shepherd and Thompson have 
paraphrased the famous quotation attributed to Disraeli by Mark Twain ("There are three 
kinds of lies: lies, damned lies, and statistics") in a technical memo entitled "Lies, Damned 
Lies, and Benchmarks" [32]. Other technical papers providing insight into the potential and 
problems of benchmarking include [9, 14, 18]. The purpose of this chapter is to highlight 
what benchmark programs are and what they can and cannot do. It also provides some 
guidelines for those who may have to conduct benchmarking activities. 

This chapter deals primarily with runtime benchmarks. The issues of benchmarking 
compile-time performance are covered more fully in Section 5.2. 

8.1. Types of Tests 

There are many kinds of benchmark tests. Users are not likely to have time to 
run all the tests that are available. Some understanding of the advantages and 
disadvantages is necessary in order to select those tests that provide the most 
useful information. Benchmarks can be small programs that measure an indi- 
vidual Ada feature (such as a subroutine call) or they can be large programs 
that measure many Ada features in combination. Fine-grained benchmarks are 
useful for pinpointing the strengths and weaknesses of an Ada compiler, while 
coarse-grained benchmarks are useful indicators of the overall efficiency as de- 
termined by the way in which individual features interact. 

BAA. Language Feature Tests 
Language feature tests are meant to isolate a single or a small number of features of the 
Ada language. The idea is not to measure the time or space characteristics of the whole 
program, but rather to isolate a small portion of the program for measurement. Most, but not 
all, of the tests included in the test suites described in Chapter 9 are language feature tests. 

CMU7SEI-89-TR-13 71 



They attempt to measure how long it takes to execute a given Ada feature under various 
conditions. For example, there may be tests to determine the overhead of invoking a sub- 
routine. But the time it takes to invoke a subroutine depends on the number and the nature 
of the parameters, so there may be dozens of tests that test many parameter combinations. 
One suite of tests has subroutine overhead tests for the number of parameters (1, 10, 100), 
the direction passed (in, out, in out), the type of parameter (integer, enumeration, string, 
various records and arrays of integers, and various sizes of parameters (1, 5, 10, 20, 100, 
1000 storage units). Other tests exist for arithmetic, loop overhead, accessing components 
of record types, clock overhead, exception handling, task creation, and rendezvous. Just 
about every section of the RM has an associated performance test in one of the available 
test suites. 

The advantage of language feature tests is that they may identify strengths or weaknesses 
in the ways that individual language features are implemented. If an application will make 
heavy use of a particular feature or set of features, then the user may wish to know which 
compilers perform best on that feature set. The user may be in a position to influence a 
vendor to make small changes in a compiler in areas where it is found to be deficient com- 
pared to other compilers. The disadvantage of language feature tests is that they inade- 
quately address the impact of features being used in combination with one another. Just as 
correctness cannot be completely evaluated by a feature-by-feature test suite, neither can 
performance be completely evaluated by a feature-by-feature test suite. 

8.1.2. Capacity and Degradation Tests 
Related to language feature tests are tests of the capacity of a system (hardware and 
software) and tests to determine how a system reacts to increased loading. The former is 
determined largely by memory capacity and by internal limits. Examples are dynamic nest- 
ing levels and dynamic storage space. The latter has to do with how performance changes 
when heavy loads cause queues to increase or available memory to decrease. Examples 
are the effect on tasking operations of increased numbers of tasks and the effect on 
dynamic memory allocation of memory fragmentation. Exploration of these issues may re- 
quire running a series of tests rather than a single benchmark. 

8.1.3. Composite Benchmarks 
Composite benchmarks are programs that are designed to test many features in combina- 
tion with one another. Composite benchmarks may be small or large and may be 
application-dependent or application-independent. Generic tests such as the Sieve of 
Eratosthenes, Quicksort, Ackermann's function, or computing pi, are typical of academic 
programs written for numerical analysis or data structures courses. There is rarely any sci- 
entific basis for their selection as benchmark programs, but they tend to be widely available, 
which makes comparisons easy. Other tests tend to be larger and more application- 
dependent. Examples include Kalman filtering applications, inertial navigation systems, 
radar tracking systems, or aircraft simulations. For real-time applications, buffer, relay, and 
monitor tasks serve as useful paradigms for composite benchmarks for tasking. 

72 CMU/SEI-89-TR-13 



The advantage of composite benchmarks is that they may test a broad cross section of lan- 
guage capabilities (often they do not). They may also test just those features that will be 
utilized in the application to be written (often they do not). The primary disadvantage is that 
if the benchmark test produces a poor result relative to other systems, it is often difficult to 
determine the reason. It may be due to a single feature of the language, to uniform in- 
efficiencies, or to the way the compilation system handles features used in combination. 
Fine-grained tests are needed to address these issues. 

8.1.4. Synthetic Benchmarks 
The general idea of a synthetic benchmark is to develop a skeleton application whose char- 
acteristics are typical in some way. Two of the best known synthetic benchmarks are the 
Whetstone [12] and the Dhrystone [41]. The Whetstone is constructed based on the static 
and dynamic instruction frequencies of 949 programs. It is meant to be typical of scientific 
numerical computation and is heavily weighted toward floating point operations. It is widely 
accepted as a means of comparing architectures, languages, and implementations of lan- 
guages. The Dhrystone is intended to reflect the features of modern programming lan- 
guages (e.g., record and pointer data types) and is intended to be typical of systems pro- 
grams. It was originally written in Ada and is synthesized from static and dynamic fre- 
quencies of statements as determined by 16 different studies that analyzed large and small 
programs from a variety of sources. 

Synthetic benchmarks can have many of the advantages of composite benchmarks. They 
test language features in a broad way, yet are in some sense more representative of a 
larger application domain because they have been constructed scientifically (i.e., based on 
many representative programs). The idea is to provide all the characteristics of many pro- 
grams into a single program in exactly the proportions that they exist in some application. 
The disadvantages of synthetic benchmarks are that they are seldom accepted as being 
representative of any particular problem domain and they do not permit the user to isolate 
particular sources of inefficiency. 

8.1.5. Application-Specific Tests 
The most representative benchmark program for any particular application is the application 
itself. However, it is often difficult or impossible to benchmark a system with the real system 
because the software is not yet written. There may also be software dependencies and 
hardware dependencies that make it difficult to port the application to the system of interest. 
The next best alternative is a benchmark program that has been specifically written to be 
similar to the application program. What is needed is a program with the similar computa- 
tions, similar input/output characteristics, a similar number of tasks, and similar interactions 
among the tasks. This might be considered a tailored synthetic benchmark program. 

The advantage of this type of benchmark is that it is more characteristic of the workload to 
be performed than any other benchmark. The disadvantage is that it may have to be con- 
structed from scratch which may be a more difficult task than using something that is al- 
ready written. Furthermore, these benchmarks, are subject to the same disadvantages as 
the composite and synthetic benchmarks, namely that they do not clearly identify sources of 
performance problems. 
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8.2. Factors Causing Variation in Results 

Benchmark results may vary significantly depending on the hardware and soft- 
ware environment in which they are run. Evaluators should be cognizant of the 
various sources of variation and try to control them. They should also gain an 
appreciation for the magnitude of the errors introduced by these sources of vari- 
ation. 

Benchmark programs often yield inconsistent or inexplicable results. These variations result 
from the environment in which the benchmarks are run. Many of the environmental factors 
may be controlled, but many others are difficult or impossible to control. Fine-grained 
benchmarks are usually more susceptible to variation than coarse-grained benchmarks be- 
cause small changes in the environment can cause large changes in the results. This sec- 
tion will simply enumerate some of the factors that cause difficulty either in comparing two 
systems, or in achieving repeatability on a single system. The reader is referred to papers 
by Altman [4], Clapp, et al. [9], and Gentleman, et al. [21] for further details. 

• Memory effects: 

• Cycle stealing—Peripherals or other processors may "steal" memory 
cycles and slow down the processor speed. 

• Boundary alignment—Segments of code that are spread across memory 
boundaries may run more slowly than segments of code that are for- 
tuitously aligned in memory. 

• Memory interleaving—Whether a double word operand is located on an 
even-odd or odd-even location may make a difference. 

• Multi-level memories—Cache, scratch pad, and paged memories operate 
at different speeds and affect performance. 

• Processor effects: 

• Pipelined architectures—Instruction look-ahead and overlap can in- 
fluence the execution speed of instruction sequences. 

• Interrupts—Interrupts and interrupt service routines can influence perfor- 
mance. 

• Clocks—Hardware clocks vary in their timing resolution. 

• Operating and runtime system effects: 

• General overhead—The operating system may require processor time to 
allocate and manage system resources such as the clock or memory. 

• Periodic and asynchronous events—Operating system "daemons" to 
handle events such as network activity may be activated at unpredictable 
times and steal processor time. 

• Garbage collection—The Ada runtime system may collect unused mem- 
ory at unpredictable times. 

• Multiprogramming—Other programs executing will influence the elapsed 
time and possibly the CPU time. 
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Program translation effects: 

• Optimization—Variation is caused when parts of the benchmark are op- 
timized away by the compiler at compile time or link time. 

• Asymetrical translation—A compiler may translate the first instance of a 
language construct differently from second and subsequent instances. 

• Hidden parallelism—I/O from compilation may be performed in parallel 
with execution of a test. 

8.3. Timing Anomalies 

Timing methodology is crucial to reliable benchmarking results. Most Ada 
benchmark suites rely on software techniques for timing. Package CALENDAR 
provides an implementation-dependent timing capability so that timing issues 
must be carefully studied and understood. 

Most benchmark programs use the Ada package CALENDAR rather than external timing 
mechanisms or operating system timing mechanisms. The first possible problem for bench- 
marking is the lack of precision of this clock. Many Ada implementations have a clock 
resolution of 10 milliseconds or greater. This is not sufficient for the fine-grained 
benchmarks described above. The solution to this problem is to use a "dual loop design." 
In this technique, the software to be timed is repeated many times in a loop and then the 
overhead of the loop is subtracted by timing a "control loop" [9]. This technique can be 
refined by a "software vernier" which provides additional precision [47]. Another possible 
problem is that the software implementing package CALENDAR may be subject to some of 
the factors causing variation that are listed in the previous section. 

The dual loop design depends heavily on the assumption that the loop instructions in the 
test loop take exactly the same amount of time as the loop instructions in the control loop. 
Unfortunately, this may not always be the case because of the variations described in the 
previous section (particularly memory alignment variations). Because the dual loop design 
requires the subtraction of two large numbers of nearly the same value, a small relative error 
in either of the numbers may cause a large relative error in the difference. The problems of 
dual loop benchmarks are fully documented [5]. In its worst manifestation, this anomaly will 
result in negative values being provided for the time required to execute certain features of 
the language. 

8.4. Timing Verification 

Software timing techniques are not always reliable. Two techniques are avail- 
able to verify software timings. The first is to use a high precision hardware 
clock with an Ada interface package. The second is to use direct hardware 
monitoring with, for example, a logic analyzer or in-circuit emulator. 

Many of the sources of timing variation mentioned in Section 8.2 are not introduced by soft- 
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ware timing techniques but are real effects that modify the time it takes to execute instruc- 
tion sequences being measured. These variations due to real effects will be measured by 
both hardware and software techniques. To isolate software timing variations, software 
timing results should be verified with hardware when time and resources permit. Hardware 
clocks are generally at least three orders of magnitude more precise than software timers. 
Whereas the Ada package CALENDAR may provide a timer resolution of 10 milliseconds, 
hardware clocks may provide a timer resolution of 1 microsecond. This permits the user to 
time a language construct directly instead of using the dual loop design. It also allows the 
user to measure the distribution of the times required to execute a language construct rather 
than just computing an average. One would hope that it always takes the same amount of 
time to execute an Ada language feature, but because of operating system and runtime sys- 
tem effects, this may not be the case. In order to use a hardware clock, the user must 
purchase the timer hardware (if it is not already on the processor board) and write the 
drivers to start and read the clock. One model for interfacing Ada with a high precision timer 
is given by Borger [6]. 

A second method of verifying timing data is to use hardware monitoring devices. Both logic 
analyzers and microprocessor development systems (MDSs) with in-circuit emulators (ICEs) 
provide capabilities that are helpful to real-time embedded programmers. They differ in cost 
and sophistication. A logic analyzer is a monitoring and storage device while an MDS is a 
programmable device that can, with an ICE, be used to both monitor and control the activi- 
ties of the target system within its embedded environment. These devices are becoming 
increasingly more flexible and sophisticated; they can be used to debug on the target using 
Ada source code. 

A logic analyzer can be used to store samples of data from a hardware source such as an 
address bus. It can be triggered to start and stop sampling using a variety of criteria. In 
particular, it can be triggered to take a sample once a certain address appears on the ad- 
dress bus. Once the data has been captured, the timing characteristics can usually be 
measured down to the nearest 50 nanoseconds or better. The logic analyzer permits the 
user to compute times that are impossible to determine using software techniques. For ex- 
ample, no software technique can be used to determine the time interval between an inter- 
rupt signal and the start of the interrupt service routine. Thus, for interrupt handling and 
real-time programming and debugging, the logic analyzer or MDS can be an indispensable 
tool. 

8.5. Data Analysis and Reporting 

When using suites of benchmark programs, the user may be faced with huge 
amounts of data. It is extremely useful to have programs that analyze and dis- 
play the data in a helpful fashion, but these tools cannot substitute for sound 
engineering analysis. This is particularly important in discovering the weakest 
and strongest points of each compiler. Some of the benchmark test suites discussed 

in Chapter 9 have as many as 1000 individual tests, each providing the time and space 
required to execute the test. Obviously, this presents a formidable data reduction task. The 
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numbers by themselves represent an overwhelming quantity of data and a paucity of infor- 
mation. What is extremely helpful is some means of making some sense of the information, 
especially for comparing one system with another system. In particular, it is useful to know 
the overall performance of a compilation system compared to that of other compilation sys- 
tems, as well as results from tests that fall outside nominal expectations compared to test 
results of other systems. The AC EC provides some of this kind of software. 

Good analysis tools make it is easier to conduct sound engineering analysis of the tradeoffs 
involved in the selection and use of compilers. The analysis must bring out the fact that 
there is no single rank-ordered list of compilers for a given application. Each Ada compiler 
offers something different and should be judged on the basis of its strengths and 
weaknesses rather than against a rigid set of criteria. For example, a compilation system 
that scores highly on most criteria and has only one fatal flaw may be unacceptable com- 
pared to a compiler that scores less highly on all criteria. Test suites and analysis software 
may give the impression that evaluation is based on apples-to-apples comparisons, when in 
fact the compilation systems being compared are not all addressing the same problem and 
should not all be judged using the same yardsticks. 

8.6. Strategy for Benchmarking 

Benchmarking should be done very selectively. Because so many programs 
are available, planning is necessary to choose the most salient benchmarks for 
a particular application. Most times the user is well advised to augment the 
selected benchmarks with tailored application profiles that will more closely rep- 
resent the application than any of the publicly available benchmarks. 

In their paper, "Computer Benchmarking: Paths and Pitfalls," Dongarra et al. [14] provide the 
following advice: "If a performance evaluation is to be effective, it will include: 

• Accurate characterization of the workload. 
• Initial tests using simple programs. 
• Further tests with programs that approximate even more closely the jobs that 

are part of the workday." 

While the primary concern of their paper is benchmarking hardware rather than software 
systems, the advice is still relevant for Ada compilations systems. It should be recognized 
that benchmarking is only one aspect of compiler system evaluation and should not be the 
only criterion. 
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8.7. Standard Benchmark Configuration Information 

Certain key information should be provided whenever benchmark figures are 
presented. If any of the information is missing, the user of the benchmark data 
should request it. If the information cannot be provided, the consumer should 
treat the results with extreme skepticism. 

The following information on standard benchmark configurations includes both compile-time 
and execution-time benchmarks: 

• For the host system (for compile-time benchmarks): 

• the host machine (including model number, memory size, memory 
speed) 

• the peripherals (disk type, capacity, interface, and speed) 

• the operating system (including version number) 

• relevant configuration parameters for host operating system 

• For the target system (for runtime benchmarks): 

• the target configuration (including number of processors, cycle speeds, 
memory sizes, cache sizes, existence of floating point co-processors, 
number of wait states for the memory) 

• the target operating system (if any, including version number) 

• For all benchmarks: 

• compiler system vendor 
• time and date of test 
• version number of the compiler and runtime system 

• switch settings for compilations 
• option settings for linking/loading 
• test suite version number 

• test name 
• list of all modifications made to test 
• list of all special environmental considerations (network interfaces dis- 

abled, daemons disabled, other processing loads, co-processor 
enabled/disabled, etc.) 

• information on the timing mechanism and units of measurement (e.g., 
CPU time or elapsed wall clock time) 

In short, the supplier of benchmark data should provide all the information that is necessary 
to reproduce exactly the same results using exactly the same configuration. If this condition 
is not met, then it is not safe to assume any particular configuration information. The bench- 
mark results should be considered suspect until independently verified and documented. 
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9. Test Suites and Other Available Technology 

There is no single appropriate test suite or checklist for all possible uses of an 
Ada compilation system. Different technology tests different aspects of a com- 
pilation system. Some test suites place more emphasis on runtime perfor- 
mance while others may place more emphasis on the support tools provided 
with a compilation system. However, it will rarely be the case that an evaluator 
will have to start from scratch. Much technology exists for evaluating the quality 
of Ada compilation systems. It should be noted, however, that for embedded 
systems there is little automation and gathering results may be tedious and 
time-consuming. 

9.1. General Information on Evaluation and Test Suites 
The generic issues of benchmarking are discussed in Chapter 8. This chapter gives brief 
descriptions of some of the existing benchmarking technology along with its strengths and 
weaknesses. In general, the technology described in this chapter has the following charac- 
teristics: 

• There are more fine-grained language feature tests than there are composite or 
synthetic benchmarks. 

• The fine-grained tests are subject to the timing anomalies described in Chapter 
8. 

• The tests have tended to address portability to a larger extent than real-time 
performance. 

• With a few exceptions, the test suites provide little or no analysis capability. 
• None has any graphical output of comparative results, with the exception of the 

printer histogram plots of the ACEC. In short, there are many Ada test pro- 
grams, many checklists, and many test suites, but very little in the way of ad- 
vice for applying this technology and almost nothing in the way of analyzing 
vast quantities of raw data. 

The remainder of the chapter focuses on five of the better known benchmark test suites 
(ACEC, PIWG, AES, University of Michigan, and Aerospace), one software repository 
(ASR), and other sources of evaluation information. For each of these, the major strengths 
and weaknesses of the technology involved are noted. For summaries of each of the test 
suites as described by their own documentation, see Appendix A. 

9.2. The Ada Compiler Evaluation Capability 

The ACEC is the test suite developed by the U.S. government for evaluating 
compiler systems. It has been available from the government since September 
1988. The test suite will be expanded over the next year. Primary strengths: 
extensive coverage of language features and analysis tools. Primary 
weaknesses: relative newness and lack of support. 

The Ada Compiler Evaluation Capability (ACEC) is a comprehensive test suite for assessing 
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the performance characteristics of Ada compilers. It was developed by Boeing Military Air- 
planes for the APSE Evaluation and Validation (E&V) Team of the Ada Joint Program Office. 
According to the ACEC User's Guide [48], "the ACEC shall make it possible to: 

1. Compare the performance of several implementations. The Operational Soft- 
ware shall permit the determination of which is the better performing system 
for given expected Ada usage. 

2. Isolate the strong and weak points of a specific system, relative to others 
which have been tested. Weak points, once isolated, can be enhanced by 
implementors or avoided by programmers. 

3. Determine what significant changes were made between releases of a compi- 
lation system. 

4. Predict performance of alternate coding styles. For example, the performance 
of rendezvous may be such that designers will avoid tasking in their applica- 
tions. The ACEC will provide information to permit users to make such deci- 
sions in an informed manner." 

The ACEC consists of 240 test programs comprising over 1000 tests and some support 
tools to analyze test results. The main emphasis of the ACEC is execution performance, but 
it also addresses compile-time efficiency and code-size efficiency. The test suite includes: 

• language feature tests 

• composite benchmarks 
• optimization tests 

• sorting programs 

• example avionics application 

Files of raw output from the test programs can be formatted by a support program named 
FORMAT and then used as input to an analysis tool called MEDIAN. This program can be 
used to perform a statistical analysis of the ACEC results collected from several target sys- 
tems. The output of MEDIAN takes the form of statistical summaries and histograms which 
can be used to compare the performance of different target systems. 

The ACEC has been available from the Data Analysis Center for Software (DACS) since 
September 1988. Sample command files for VAX/VMS and UNIX systems are provided with 
the current release; users will have to adapt these if they wish to run the ACEC on other 
host machines. The principal documents describing the ACEC are the Reader's Guide [47], 
the User's Guide [48], and Version Description Document [49]. 

For a more complete description of the ACEC, the issues involved in using it, and the 
taxonomy of coverage, the reader is referred to a series of questions and answers published 
in the Ada-JOVIAL Newsletter [28]. 

As of this writing, the current release of ACEC is Version 1.0. Plans for the next version 
(subject to government funding availability) include adding new tests in response to user 
feedback and evaluating the quality of diagnostic messages, debuggers, and library system. 
There is also a desire to provide more analysis capabilities for single systems. 
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• Strengths: 

• depth of coverage for language features and runtime optimization (goes 
well beyond that of other test suites) 

• well documented structure and taxonomy 

• extensive documentation 

• code size measurements 
• good timing techniques with statistical model and indication of accuracy 

• cross-system analysis software 

• expectation of further development 

• Weaknesses: 

• no support provided by government or contractor (at present) 
• need for further automation in analysis subsystem 

• weakness of first version's systematic coverage of compile-time perfor- 
mance 

• first version's lack of coverage of diagnostics, debuggers, or library sys- 
tem 

• export control—available only to qualified DoD contractors 

The ACEC goes well beyond the PIWG and Michigan suites in its range of tests, its timing 
techniques (described in the User's Guide), and its provision of an analysis tool for results. 
In particular, the MEDIAN analysis program can compare ACEC test results from different 
machines. Furthermore, it contains a better sampling of coarse-grained MCCR application 
benchmarks than do either of the other two suites. 

9.3. The PIWG Benchmarks 

The PIWG benchmarks are constructed and maintained by a volunteer sub- 
group of SIGAda. They have been in the public domain since 1986, are up- 
dated periodically, and are widely quoted by compiler vendors. Primary 
strength: wide distribution and availability. Primary weakness: lack of docu- 
mentation and support. 

The PIWG benchmarks are a suite of Ada performance measurement programs put togeth- 
er by the Performance Issues Working Group (PIWG) of the Association for Computing Ma- 
chinery (ACM) Special Interest Group on Ada (SIGAda). The principal focus of the tests is 
the measurement of the execution time of individual features of the Ada language. Ex- 
amples of the kinds of tests in the PIWG suite are: 

• clock resolution 
• task creation and task rendezvous 

• dynamic storage allocation 
• exception handling 
• representation clauses and operations on packed and unpacked arrays 
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• procedure calling overhead 

• runtime checks overhead 
• composite benchmarks (including Whetstone and Dhrystone) 

• Hennessy benchmarks 

• compilation speed and capacity tests 

There are 136 tests in the suite, plus command files for running the tests. Tests are de- 
signed to be as machine-independent as possible and to run without modification. Machine- 
dependent CPU time routines are available for several implementations. Many of the tests 
are adaptations of the Ada benchmarks developed at the University of Michigan. A user can 
adapt the command files to run selected groups of tests and route the output to an output 
file. Each test program will print out a short description of the test and the measured execu- 
tion time. The only documentation currently available is the "read me" file provided with the 
suite. 

The PIWG suite is largely the work of dedicated volunteers, so enhancements and additions 
do not necessarily occur on a predictable basis. A new version of the suite is generally 
released once a.year; as of this writing, the currently available version is designated 
TAPE_12_12_87. The principal distribution media are tapes and diskettes, but the suite is 
also available from the Ada Software Repository (see Section 9.7). Users who obtain the 
PIWG suite are encouraged to run the tests and submit the results to PIWG; they are also 
encouraged to suggest enhancements or contribute new tests. A PIWG workshop is held 
annually and there are PIWG meetings held during the year, usually in conjunction with 
scheduled SIGAda meetings. There is also a PIWG newsletter which publishes PIWG test 
results submitted by users. PIWG activities are announced in Ada Letters and each issue 
lists the names and addresses of current PIWG officers. Contact information for PIWG is 
contained in Appendix B. 

The PIWG suite is emerging as a kind of industry standard. It has become a generally 
accepted means of providing a good first cut at Ada real-time performance measurement. 
The tests can easily be run on systems with text I/O capabilities. As more users acquire and 
run the tests, a large database of results is being accumulated by PIWG. A special issue of 
Ada Letters will contain a rationale for the design of the PIWG suite. Results based on 
approximately 150 test reports will be presented. A PIWG database of test reports is under 
development. 

• Strengths: 

• widely distributed and used (becoming an industry standard) 
• not time-consuming to run 

• available online for those with ARPANET access 

•free 
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Weaknesses: 

• little documentation and support 

• focus mostly on fine-grained runtime performance tests 

• lack of analysis tools 

• lack of coverage of diagnostics, debuggers, or library system 

9.4. The Ada Evaluation System 

The AES is the test suite for compilation system evaluation developed by the 
British government. It has been available since September 1987. Further de- 
velopment of the test suite is in progress. Primary advantages: broad 
coverage of compilation system issues, including checklists. Primary 
d isadvantages: cost and lack of analysis tools. 

The Ada Evaluation System (AES) is a comprehensive, automated test suite for evaluating 
various aspects of a minimal Ada Programming Support Environment (APSE), where a 
"minimal" APSE means one that contains an Ada compiler and program library system, a 
linker, a loader, a symbolic debugger, and runtime libraries. The test suite measures such 
features as: 

• compiie-time and execution-time performance 
• quality of the generated code 
• quality of the error and warning messages produced by the compiler, linker, and 

program library system 

• capabilities of the debugging system 

The AES was developed by Software Sciences Ltd. for the United Kingdom Ministry of 
Defence. It is distributed by the Information Technology Department of the British Stan- 
dards Institute. The software consists of a suite of test programs and a test harness to run 
the tests. The test harness allows a user to run all or portions of the test suite and have 
reports on the results generated automatically. There are over 200 tests grouped into 19 
main categories; some examples of these groups are: 

• Group A - Compiler performance tests 
• Group G - Compiler capacity tests 

• Group L - General tasking tests 

• Group O - Optimization tests 

• Group Q - Runtime limit tests 

• Group V - Benchmark tests 
• Group W - Symbolic debugger tests 

For evaluation of aspects of a compilation system not readily subject to automation (e.g., 
quality of diagnostic and informational messages), evaluation checklists and assessment 
guidelines are provided for users. 
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Two versions of the AES are available: one for DEC VAX/VMS systems and one for IBM 
MVS systems. The AES can be used to evaluate any compiler or cross-compiler hosted on 
these machines. It can also be re-hosted on other systems; the AES documentation con- 
tains re-hosting guidelines for users. Documentation comprising five user manuals is sup- 
plied on the distribution tape. The manuals are: User Introduction (2 volumes), User Guide, 
Re-Hosting Guide, and Installation Guide. Paper copies of the Installation Guide and a list 
of the latest fixed and outstanding bugs are included with the distribution tape. 

The British Standards Institute aims to provide a comprehensive Ada evaluation service 
based on the AES. Users can buy a simplified version of the AES for about $1,800 and do 
their own evaluation of a compilation system. As an alternative, for about $21,600 BSI will 
do a full evaluation using their Assessor Support System version of the AES. BSI will also 
undertake formal evaluations of compilation systems and issue reports. Reports may be 
obtained by subscribing to the evaluation service (about $3,600 annually, for 12 reports). 
Single copies may also be purchased for about $450. 

Further development work on the AES is planned by the British Ministry of Defence. The 
areas to be covered by this work are still under consideration. For more information on the 
AES the reader is referred to the British Standards Institute (see Appendix B). 

As of this writing, the currently available AES is Release A, Version 1.22. 

• Strengths: 

• breadth of coverage (more than just runtime efficiency) 

• interactive user interface 
• automatic generation of reports from test results 

• extensive documentation 

• macro capability for test generation 
• checklists for diagnostics, library systems, vendor evaluation, etc. 
• availability of example evaluation reports 

• Weaknesses: 

• requirement of considerable setup time 
• lack of U.S. support at present 

• depth of coverage in runtime performance 

• subjective nature of checklists 
• cost 
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9.5. The University of Michigan Ada Benchmarks 

The University of Michigan was among the first to attempt to put Ada bench- 
marking on a sound scientific and theoretical basis. Their CACM article is ex- 
cellent reading for benchmarking practitioners. The University of Michigan work 
has been largely superseded by the PIWG activities described in Section 9.3. 
Primary strength: timing mechanism based on sound theoretical principles. 
Primary weakness: no further development or support. 

The University of Michigan Ada benchmarks concentrate almost exclusively on the runtime 
performance of individual Ada language features. The suite contains over 150 different test 
programs to measure the execution times of task creation and rendezvous, clock calling 
overhead, procedure calling overhead, exception handling, and dynamic storage allocation. 
There is no composite benchmark, since the approach adopted by the Michigan team was 
to develop a set of benchmarks rather than one or two synthetic composites. Also, because 
the emphasis is on runtime performance, there are no compilation speed or capacity tests. 
The suite is largely similar to the PIWG suite and in fact forms the basis of much of the 
PIWG suite. It also contains some tests not included in the PIWG suite, such as tests for 
the presence of garbage collection and manipulation of variables of type time and duration. 

The only documentation available on the Michigan suite is the August 1986 CACM article by 
Clapp et ai [9], which describes the rationale for the tests, summaries of their operation, and 
the theoretical basis of the measurement techniques used in the tests. Sample results for a 
number of machines and analyses of the results are also included in the article. There is 
also a follow-up letter in the February 1987 issue of CACM. For further contact information 
see Appendix B. 

As of this writing, the currently available version of the Michigan suite is the original one 
described in the CACM article. 

The Michigan suite is not as streamlined and flexible as the PIWG suite, probably because it 
was not originally designed with wide distribution in mind. However, the tape containing the 
suite does contain command files for compiling, linking and running the tests. Users may 
find it easier to use PIWG, supplemented with the Michigan tests that are not included in the 
PIWG suite. 

• Strengths: 

• excellent theoretical underpinnings 
• still many requests by evaiuators 

• Weaknesses: 

• lack of current support by the University of Michigan 
• lack of further development activity 
• lack of analysis tools 

• lack of coverage of diagnostics, debuggers, or library system 
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9.6. Aerospace Benchmarks 

The Aerospace Corporation has recently completed a suite of tests and an as- 
sociated user's guide. The tests are written in three languages (Ada, JOVIAL, 
and FORTRAN). Another report gives detailed results and analyses comparing 
Ada with JOVIAL. Primary strength: only test suite that allows comparison of 
language implementations. Primary weakness: availability and support still 
under consideration. 

The purpose of Ada Compiler Performance Test Suite and Test Evaluation Capability 
(ACPS) [27] is to "assist users in evaluating the performance of runtime environments pro- 
vided by Ada compilation systems." The test suite contains feature tests as well as com- 
posite tests. A unique feature of this suite is that there are Ada, JOVIAL, and FORTRAN 
files so that the three languages can be compared on machines that support these lan- 
guages. The suite also provides software to "gather and report performance statistics in a 
format common to all three test languages." The suite can be used to gather compile-time 
and execution-time statistical information such as elapsed time, CPU time, code and data 
size, virtual and physical memory usage, and the like. The base Ada test suite is comprised 
of 868 tests in 459 programs. 

A draft Aerospace report compares two Ada compilers, a FORTRAN compiler, and a 
JOVIAL compiler using the ACPS [8] on the same machine architecture. Results are 
presented using histograms showing the number of tests that are faster by a certain percent 
in each language implementation. The study showed that for those language features that 
are available in each language, VAX Ada was faster than VAX FORTRAN in about as many 
cases as FORTRAN was faster than Ada. Among the reasons cited for Ada tests running 
faster were automatic in-lining of procedures by the Ada compiler and the use of the ma- 
chine architecture for handling slices with single instructions rather than loops. The Ada 
compiler was cited as slower in tests using the compiler's inefficient mechanism for access- 
ing global variables. For the most part, the histograms showed bell-shaped curves indicat- 
ing that as the ratio of execution times increased there were fewer tests in that category. 
However, there were a substantial number of tests for which an Ada test ran more than five 
time slower or a FORTRAN test ran five times slower than its equivalent. The reasons for 
these anomalies must be very carefully examined by evaluators interested in cross- 
language analysis. 

• Strengths: 

• some tests written in three languages (Ada, JOVIAL, and FORTRAN) 
• well documented structure and taxonomy 

• some analysis software available 

• Weaknesses: 

• still uncertain in availability and support 
• written primarily for VAX/VMS-hosted systems 

• relatively new and untested 
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9.7. Ada Software Repository 

The Ada Software Repository is a store of Ada programs, software compo- 
nents, and educational material. The programs include a number of 
benchmarks and Ada programs that could be used for evaluation purposes. 
Primary strength: everything available online at no cost. Primary weakness: 
quality of programs and documentation is highly variable, depending on the 
source. 

The Ada Software Repository (ASR) was established in 1984. It resides on the SIMTEL20 
host computer on the Defense Data Network. It contains Ada programs, software compo- 
nents, and educational material. The information in the repository is extremely well organ- 
ized and its directory structure and files can be scanned and transferred by employing the 
file transfer protocol (ftp) program on a remote host system. The ASR is also available on 
magtape, floppy disk, and CD-ROM. 

The purpose of the ASR is to promote the exchange and use of Ada programs and tools and 
to promote Ada education by providing working examples of programs in source form for 
people to study and modify. The only restrictions that apply to the access and use of the 
software is that which is contained in the prologs of each of the programs. 

Two references are essential to anyone wishing to access the ASR. The first is The Ada 
Software Repository and the Defense Data Network by Richard Conn [11]. This handbook 
contains useful information about the terminology and use of the computer networks and 
repositories accessible from the networks. The second reference is the Ada Software Re- 
pository Master Index [10]. This is a looseleaf notebook which contains, for each item of 
software, an abstract, information on the host compiler and operating system and target en- 
vironment, and a listing of all associated files and location in the ASR. 

Of interest to evaluators is the chapter on benchmarks. Contained in the current ASR are 
two PIWG tapes containing the 5/1/87 and 8/31/86 versions of the test suite, as well as 
other benchmarks for capacity, language comparisons, and tasking. The repository con- 
tains general purpose Ada components, database management programs, graphics pro- 
grams, and numerous programming tools. It also contains machine-readable copies of 
many references of interest to evaluators such as the RM, Ada Adoption Handbook, and 
various ARTEWG documents. 

• Strengths: 

• large source of Ada information and Ada programs 
• well documented structure and taxonomy 

• online availability to ARPANET users 
• no cost 

CMU/SEI-89-TR-13 87 



Weaknesses: 

• little quality control over submitted items 

• no support for software 

• some out-of-date information 

9.8. Other Sources 

Other private organizations are in the business of selling evaluation technology 
in the form of reports or benchmark tests. Primary strength: value may be 
added to otherwise available data. Primary weakness: these services may be 
costly. 

Several small companies provide newsletters or other digests of Ada information. They in- 
clude Grebyn Corporation (INFO-Ada Newsletter, Ada commentaries, machine-readable 
forms of various data), Cutter Information Corporation (Ada Strategies Newsletter, 
guidebook), and International Resource Development, Incorporated (Ada Data Newsletter). 
See Appendix B for contact information. Among large corporations that have widely cir- 
culated Ada newsletters are Texas Instruments, Sperry, and General Dynamics. 

As test suites such as the PIWG tests, University of Michigan benchmarks, and the ACEC 
become part of the public domain, there may be more small companies packaging these 
and other evaluation tools into a service which applies the tests to particular compilers and 
makes the raw information easier to understand and analyze. These companies may pro- 
vide added value to information already available in the public domain, but the watchword 
must be caveat emptor. The consumer of this information must be confident that the pro- 
ducer is fully cognizant of the principles that are provided in this handbook and has no 
vested interests in the products being evaluated. 
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Appendix A: Test Suite Summaries 

A.1. ACEC Test Groupings 
The following list is taken from the table of contents of the ACEC Reader's Guide [47]: 

• Execution Time Efficiency 

• Individual Language Features 

• Pragmas 

• Optimizations 

• Classical Optimizing Techniques 

• Common Subexpression Elimination 

• Folding 

• Loop Invariant Motion 
• Strength Reduction 

• Dead Code Elimination 
• Register Allocation 

• Loop Interchange 
• Loop Fusion 

• Test Merging 
• Boolean Expression Optimization 
• Algebraic Simplification 

• Order of Expression Evaluation 
•Jump Tracing 

• Unreachable Code Elimination 

• Use of Machine Idioms 

• Packed Boolean Array Logical Operators 

• Effects of Pragmas 
• Static Elaboration 

• Aggregates 

• Tasks 

• Language Specific 

• Habermann-Nassi Transformation For Tasking 
• DELAY Statement Optimization 

• Performance Under Load 

• Task Loading 

• Levels of Nesting 
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• Parameter Variation 

• Declarations 

• Tradeoffs 

• Design Issues 

• Order of Evaluation 

• Default vs. Initialized Records 

• Order of Selection 

• Scope of Usage 
• LOOP Statements 

• CASE Statements 

• Subtypes 

• Generics 

• Library Subunits 

• Exceptions 

• Context Variation 

• Different Coding Styles 

• Operating System Efficiency 

• Tasking 

• Exception Handling 
• File I/O 
• Memory Management 
• Elaboration 

• Runtime Checks 

• Application Profile Tests 

• Classical Benchmark Programs 

• Ada in Practice 
• Ideal Ada 

• Code Size Efficiency 

• Code Expansion Size 

• Runtime System Size 

• Compile Time Efficiency 
• Tests for Existence of Language Features 

• Usability 
• Capacity Tests 
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A.2. PIWG Test Groupings 

The following list is derived from the "READ.ME" file of the PIWG suite TAPE_12_12_87: 

Group A - Setup, clock resolution, Dhrystone, Whetstone, Hennessy 
Group B - Tracker algorithm 

Group C - Task creation 

Group D - Dynamic elaboration 

Group E - Exceptions 

Group F - Coding style 

Group G - TextJO 

Group H-Chapter 13 

Group L - Loop overhead 
Group P - Procedure calls 
Group T - Task 
Group Y - DELAY 

Group Z - Compile time 
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A.3. AES Test Groupings 

The following list is taken from the table of contents of the AES User Introduction to the 
Evaluation Test Suite [30]: 

• Group CH - The checkout tests 

• Group A - Compiler efficiency tests 

• Group B - Compiler informational quality tests 

• Group C - Compiler error reporting tests 

• Group D - Compiler error recovery tests 

• Group E - Compiler warning tests 

• Group F - Compiler behavioral tests 

• Group G - Compiler capacity tests 

• Group 1 • General run-time efficiency tests 

• Group J - NPL test suite 

• Group K - Tasking tests for Mascot systems 

• Group L - Tasking tests 

• Group M - Storage management tests 

• Group N - Input/output tests 

• Group 0 - Optimization tests 

• Group Q - Run-time limit tests 

• Group R - Implementation dependency tests 

• Group U - Linker/loader error reporting tests 
• Group V - Benchmark tests 

• Group W - Symbolic debugger tests 

A.4. University of Michigan Test Groupings 

The following list is taken from the article in Communications of the ACM [9]: 

• Subprogram calls 
• Object allocation 

• Exceptions 
• Task elaboration, activation, and termination 

• Task synchronization 
• CLOCK evaluation 

• TIME and DURATION evaluation 
• DELAY function and scheduling 
• Object deallocation and garbage collection 

• Interrupt response time 
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A.5. ACPS Test Groupings 

The following list is taken from an Aerospace draft report comparing Ada real-time/runtime 
environments using the ACPS [8]: 

• General Tests 

• Feature Tests 

• Computational Tests 

• Integer Tests 

• Integer Assignment 
• Integer Math 

• Integer Declaration 

• Floating Point Tests 

• Floating Point Assignment 
• Floating Point Math 

• Fixed Point Tests 

• Input/Output 

• Direct File Input/Output 

• Sequential File Input/Output 

• Control Statements 

• Boolean Expressions 
• Branching 

• Non-Numerical Data Processing 

• Strings 
• Record Types 

• Record Assignment 

• Record Component Reference 
• Record Conversion 

• Access Types 
• Enumeration Types 

• Procedure Metrics 

• Local Calls 

• External Calls 
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• Argument Reference 

• in-line Local Calls 

• In-line External Calls 

• In-line Argument Reference 

• Variable Reference 

• Tasking Metrics 

• Generics Metrics 

• Exception Metrics 

• Miscellaneous 

• Numeric Conversion 

• Other 

• Loading Tests 

• Tasking I/O 

• Tasking Array Access 

• Optimization Tests 

• Common Subexpression 

• Loop Optimization 

• Other Optimization 
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Appendix B: Compiler Evaluation Points of Contact 

Many groups are involved in Ada compiler evaluation and selection activities.  In the follow- 
ing sections, details of various groups are discussed, including: 

• Professional organizations 

• U.S. government sponsored/endorsed organizations 
• Ada information sources 

Contact information is provided; where known, AUTOVON numbers (AV) and/or electronic 
mail (Email) addresses are also included. 

B.1. Professional Organizations 

B.1.1. Ada Joint Users Group (AdaJUG) 
AdaJUG is a national organization (formerly known as the Ada-JOVIAL Users Group) 
providing a forum for communication among persons involved with the acquisition, devel- 
opment, and maintenance of real-time embedded systems using Ada (and JOVIAL/J73). 
The AdaJUG makes recommendations to appropriate military services and DoD agencies 
regarding language policies and practices. Two AdaJUG points of contact are: 

Mr. Joe Dangerfield, Chair 
TeleSoft Corporation 
5959 Cornerstone Court West 
San Diego, CA 92121-9891 
(619)457-2700 

Mr. Dudrey Smith 
Smiths Industries, Chair, Ada Validation WG 
Aerospace & Defense Systems 
SLI Avionic Systems Corp. 
4141 Eastern Ave, S.E. 
Grand Rapids, Ml 49518 
(616)241-7665 

B.1.2. SIGAda 
The Association for Computing Machinery Special Interest Group on Ada is a professional 
association composed of people interested in the Ada language. Ada Letters is the SIGAda 
bimonthly publication. The SIGAda chairman is: 

Dr. Ben Brosgol 
Alsys, Inc. 
1432 Main Street 
Waltham, Ma 02154 
(617)890-0030 
Email: brosgol@ajpo.sei.cmu.edu 
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The following SIGAda groups are examining issues of particular interest: 

ARTEWG: Ada Run-Time Environment Working Group 

• Purpose: To establish conventions, criteria, and guidelines for Ada runtime en- 
vironments that facilitate the reusability and transportability of Ada program 
components; improve the performance of those components; and provide a 
framework which can be used to evaluate Ada runtime systems [1, 2, 3]. AR- 
TEWG acts as a forum for users to interact effectively with Ada implementors, 
thereby encouraging development of runtime environments that meet users' 
needs. For further information, contact: 

• Mr. Mike Kamrad 
Unisys Computer System Division 
M/SY41A6 
PO Box 64525 
St. Paul, MN 55164-0525 
(612)456-7315 
Email: mkamrad@ajpo.sei.cmu.edu 

PIWG: Performance Issues Working Group 

• Purpose: To investigate Ada compiler performance issues. Develops bench- 
mark tests in areas such as exception handling, loop overhead, procedure calls, 
I/O, dynamic allocation, task creation, and task rendezvous; and collects and 
disseminates results. The PIWG tests have been run against many Ada com- 
pilers. Instructions to customize the tests for a particular compiler are included 
with the tests. For further information, contact: 

• Dr. Daniel Roy, Chairman 
Ford Aerospace 
7375 Executive Place, Suite 400 
Seabrook, MD 20706-2257 
(301)805-0464 

B.1.3. ISO/JTC1/SC22/WG9 
Working Group 9 (WG9) is the working group for Ada language standardization within the 
Programming Languages Subcommittee (SC22) of the Information Systems Joint Technical 
Committee (JTC1) of the International Standards Organization (ISO). WG9 is the interna- 
tional organization responsible for the Ada standard and any subsidiary standards. The 
working group conducts its business through subgroups, which are given work items. Cur- 
rently there are four subgroups called the Ada Rapporteur Group (ARG), the Uniformity 
Rapporteur Group (URG), the Structured Query Language (SQL) subgroup and the Ada 
Numeric Packages subgroup. The ARG is responsible for responding to commentaries 
about the language and clarifying the meaning of the standard. The URG is addressing how 
to promote uniformity of Ada implementations in those cases where the standard leaves 
freedom to the implementors. The SQL subgroup is tasked to define a standard interface or 
binding between SQL and Ada. It has not yet been determined whether this last subgroup 
will fall under SC22 or some other subcommittee (SC21). For further information contact: 
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Dr. Robert Mathis, Convenor of WG9 
Software Engineering Laboratory 
Contel Technology Center 
12015 Lee Jackson Highway 
Fairfax, VA 22033-3346 
(703) 359-0203 
Email: mathis@a.isi.edu 

Dr. John Goodenough, Chairman of the ARG 
Software Engineering Institute 
Carnegie Mellon University 
Pittsburgh, PA 15213 
(412)268-6391 
Email: goodenough@sei.cmu.edu 

Dr. Robert B. K. Dewar, Chairman of the URG 
New York University 
715 Broadway 
New York, NY 10012 
(212)998-3000 
Email: dewar@acf2.nyu.edu 

Mr. Stephen Michell, Chairman of the SQL Subgroup 
Prior Data Sciences 
240 Micheal Cowpland Drive 
Kanata, Ontario K2M 1P6 
Canada 
(613)596-7790 

Mr. Gil Meyers, Chairman of the Ada Numeric Packages Subgroup 
Naval Ocean Systems Center 
Code 423 
271 Catalina Boulevard 
San Diego, CA 92152-5000 
(619)225-7401 
Email: gmyers@ajpo.sei.cmu.edu 
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B.2. U.S. Government Sponsored/Endorsed Organizations 

AJPO: Ada Joint Program Office 

• Purpose: To oversee the total direction of the Ada program. The AJPO reports 
to the Deputy Undersecretary of Defense for Research and Advanced Tech- 
nology (DUSDR&AT). 

• For further information, contact: 

Mr. William S. Ritchie, Acting Director 
Ada Joint Program Office 
The Pentagon, Room 3E114 
Washington, D.C. 20301-3081 
(202)694-0210 
Email: ritchie@ajpo.sei.cmu.edu 

Ada Board: 

• Purpose: A federal advisory committee, composed of compiler developers, 
language designers, embedded system users, and government personnel 
whose purpose is to provide the director of the AJPO with a balanced source of 
advice and information regarding the technical and policy aspects of the Ada 
Program. For further information, contact: 

Mr. William S. Ritchie, Acting Director 
Ada Joint Program Office 
The Pentagon, Room 3E114 
Washington, D.C. 20301-3081 
(202)694-0210 
Email: ritchie@ajpo.sei.cmu.edu 

AdalC: Ada Information Clearinghouse director 

• Purpose: To support the AJPO by distributing Ada-related information, includ- 
ing: 

• policy statements 
• lists of validated compilers 

• classes 
• conferences 

• text books 
• programs using Ada 

In addition to publishing a newsletter, an electronic bulletin board system 
(300/1200/2400 baud, no parity, 8 bits, 1 stop bit) is available at (202) 694-0215 
and (301) 459-3865. For further information, contact: 

Ada Information Clearinghouse 
c/o IIT Research Institute (IITRI) 
4600 Forbes Boulevard 
Lanham.MD 20706-4312 
(703) 685-1477 or (301) 731-8894 
Email: adainfo@ajpo.sei.cmu.edu 
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AMO: Ada Maintenance Organization 

• Purpose: To develop, maintain, and support the Ada Validation Suite (AVS). 
Additionally, the AMO supports Ada language maintenance activities. For fur- 
ther information, contact: 

Mr. Bobby R. Evans 
ASD/SCEL 
Wright-Patterson AFB, Ohio 45433 
(513)255-4472 
Email: evansbr@wpafb-jalcf.arpa 

AVF: Ada Validation Facility 

• Purpose: To validate Ada compilers (giving priority to DoD-targeted compilers) 
and register derived compilers. AVFs currently exist in the US (2), the UK, 
France, and West Germany. For further information, contact: 

Mr. Bobby R. Evans 
ASD/SCEL 
Wright-Patterson AFB, Ohio 45433 
(513) 255-4472 
Email: evansbr@wpafb-jalcf.arpa 

In addition to the aforementioned activities, this organization also publishes the 
Ada-JOVIAL Newsletter. To subscribe, write to: 

ASD/SCEL 
Standard Languages and Environments Division 
Engineering Applications Directorate 
DCS/Communications - Computer Systems (ASD/SC) 
Wright Patterson AFB, Ohio 45433-6503 
(513)255-4472/4473 
AV: 785-4472 

AVO: Ada Validation Organization 

• Purpose: The AVO is a federally funded research center directly responsible 
to the AJPO. AVO functions include: 

• overview development of the Ada Compiler Validation Capability (ACVC) 
• independent QA on RELEASED AVS (Ada Validation Suites) 

• resolution of disputes arising from problems in the validation process, 
such as investigating disputed tests and having incorrect tests withdrawn 
from the validation suite 

For further information, contact: 

Ms. Audrey Hook 
Institute for Defense Analyses 
1801 Beauregard Street 
Alexandria, Virginia 22311 
(703) 824-5501 
Email: ahook@ajpo.sei.cmu.edu 
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E&V: Evaluation and Validation Team 

• Purpose: "The Ada community, including government, industry, and academic 
personnel, needs the capability to assess APSEs (Ada Programming Support 
Environments) and their components and to determine their conformance to ap- 
plicable standards (e.g., DoD-STD-1838, the CAIS standard). The technology 
required to fully satisfy this need is extensive and largely unavailable; it cannot 
be acquired by a single government-sponsored professional society-sponsored, 
or private effort. The purpose of the APSE Evaluation and Validation (E&V) 
task is to provide a focal point for addressing the need by: 

1. Identifying and defining technology requirements, 

2. Developing selected elements of the required technology, 

3. Encouraging others to develop some elements, and 

4. Collecting information describing existing elements. 

5. This information will be made available to DoD components, other gov- 
ernment agencies, industry and academia" [45]. 

For further information, contact: 

Mr. Raymond Szymanski 
WRDC/AAAF-3 
Wright-Patterson AFB, Ohio 45433-6523 
(513)255-2446 
AV: 785-2446 
Email: szymansk@ajpo.sei.cmu.edu 

U.S. Army CECOM: Communications-Electronics Command 

• Purpose: The Advanced Software Technology section of the Center for Soft- 
ware Engineering, at the U.S. Army Communications-Electronics Command 
and (CECOM) at Ft. Monmouth, NJ, has a technical program concerned with 
Ada real-time and Ada runtime issues. Their purpose is to provide guidance for 
the embedded real-time Ada applications world and disseminate their results. 
For further information, contact: 

Mr. Edward Gallagher 
U.S. Army CECOM 
AMSEL-RD-SE-AST 
Ft. Monmonth, NJ 07703 
(412) 268-5758 
Email: egaliagh@ajpo.sei.cmu.edu 
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B.3. Sources of Evaluation Technology 

Ada Compiler Evaluation Capability 
Data and Analysis Center for Software 
RADC/COED 
Building 101 
Griffiss AFB, NY 13441-5700 
(315)336-0937 

Performance Issues Working Group Benchmarks 
Mr. Rob Spray 
PIWG Tree 
P.O. Box 850236 
Richardson, TX 75085-0236 
(214)907-6640 

Ada Evaluation System 
British Standards Institute, 
Information Technology Department 
BSI Quality Assurance 
PO Box 375 Unford Wood 
Milton KeynesMKI 4 6LL 
United Kingdom 
Tel: 0908 220908 

University of Michigan Benchmarks 
Robotics Research Laboratory 
University of Michigan 
Ann Arbor, Ml 48109 

Aerospace Benchmarks 
Aerospace Corporation 
P.O. Box 92957 
Los Angeles, CA 90009 
attn. Richard Ham 
(213)336-3438 

B.4. Ada Information Sources 

Data Analysis Center for Software (DACS) 
RADC/COED 
Bldg 101 
Griffiss AFB, NY 13441 
(315)336-0937 
Email: dacs@radc-multics 
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Defense Technical Information Center (DTIC) 
Cameron Station 
Alexandria, VA 22314 
(202) 274-6871 (Registration section) 
(703) 274-7633 (Reference section) 

National Technical Information Service (NTIS) 
U.S. Department of Commerce 
5285 Port Royal Road 
Springfield, VA 22161 
(703) 487-4650 or 
(202) 724-3374 

Ada Software Repository Newsletter 
Echelon, Inc. 
885 N. San Antonio Road 
Los Altos, CA 94022 
(415)948-3820 
Email: ada-sw-request@simtel20.army.mil 

Grebyn Corporation 
P.O. Box 497 
Vienna, VA 22180 
(703)281-2194 
Email: products@grebyn.com 

Cutter Information Corporation 
1100 Massachusetts Ave 
Arlington, MA 02174 
(617)648-8700 

International Resource Development, Inc. 
PO Box 1716 
New Canaan, CT 06840 
(203) 966-2525 
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Appendix C: Accessing Network Information 

A great deal of information is available through network access. This information can be 
retrieved online so that it is often more up-to-date and more readily available than infor- 
mation available in libraries or ordered through the mail. Much of this information is on the 
AJPO and the SIMTEL20 machines which are both on ARPANET. Anyone that has ftp (file 
transfer protocol) access to these machines can access this information. The best resource 
on the various networks and information on how to navigate between them is given in The 
Ada Software Repository and the Defense Data Network [11]. This appendix will merely 
give some simple scripts which should work for ARPANET users. Those on other networks 
will need to consult their system managers to determine whether they have ftp access to 
these ARPANET databases. 

In the following scripts, lines on which the user enters information are preceded with aster- 
isks. The commands and information that are typed by the user is shown in italics. It should 
be noted that "cd" is the UNIX "change directory" command. At any directory, the user may 
type "dir" for a listing of the files or directory entries that are contained in the current direct- 
ory. 

C.1. Retrieving Ada Issues 
The script below shows how to retrieve an individual Ada commentary from the AJPO ma- 
chine. It is possible to register to receive updates of language commentaries automatically 
by electronic mail. To be put on the notification list you should send Email to 
ada-comment@ajpo.sei.cmu.edu and request either to be notified of updates or to be sent 
the updates. Potential subscribers to this service are cautioned that the volume of the up- 
dates is large (approximately one megabyte per month) if they are sent the updated com- 
mentaries and its index. 

The following script will retrieve all files that begin with the characters "ai-00032" in the 
"public/ada-commentH directory on the AJPO machine. This file happens to contain infor- 
mation about Ada commentary 32, "preemptive scheduling is required." An index to the Ada 
commentaries is contained in the files referenced as "ai-index" where the * is a wildcard for 
the file suffixes. This file is quite long (approximately 200K bytes) and contains the Ada 
issues indexed by commentary number, reference manual number, status, and comment 
number. 

* ftp ajpo.sei.cmu.edu 
220 ajpo.sex.emu.edu FTP server 
(Version 4.98 Wad Fab 19 18:51:48 EST 1986) ready. 

* Name (ajpo.sei.onu.edu:) : anonymous 
* Password (a jpo. sei. emu. edu : anonymous) : your name here 

331 Guest login ok, sand ident as password. 
230 Guest login ok, accass restrictions apply. 

* ftp> cd public/ada-comment 
200 CWD command okay. 

* ftp> mget ai-00032* 
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mget ai-00032-ra.wj? y 
200 PORT command okay. 
150 Opening dataconnection for ai-00032-ra.wj(128.237.2.47,1261) 
(2591 bytes). 
226 Transfer complete. 
2648 bytes received in 0.20 seconds (13 Kbytes/s) 
mget ai-00032 mss? y 
200 PORT command okay. 
150 Opening data connection for ai-00032.mss (128.237.2 47,1262) 
(2595 bytes). 
226 Transfer complete. 
2660 bytes received in 0.22 seconds (12 Kbytes/s) 
ftp> quit 
quit 
221 Goodbye. 

C.2. Retrieving the Latest Validated Compiler List 

* ftp ajpo.sei.cmu.edu 
220 ajpo.sei.cmu.edu FTP   server 
(Version 4.98 Wed Feb 19 18:51:48 EST 1986) ready. 

* Name (ajpo.sei.cmu.edu:): anonymous 
* Password (a jpo .sei.cmu.edu: anonymous) : your name here 

331 Guest login ok, send ident as password. 
230 Guest login ok, access restrictions apply. 

* ftp> cd public/ada-info 
200 CWD command okay. 

* ftp> mget val-comp. hip 
mget val-comp.hip? y 
200 PORT command okay. 
150 Opening data connection for val-comp.hip (128.237.2.47,1273) 
(141429 bytes). 
226 Transfer complete. 
143266 bytes received in 6.43 seconds (22 Kbytes/s) 
ftp> quit 
quit 
221 Goodbye. 

C.3. Retrieving ASR Files 

The Ada Software Repository resides on a machine called SIMTEL20, which is accessible 
from ARPANET. Unlike the AJPO machine, the operating system is TOPS-20 rather than 
UNIX. However, the protocol is still the ftp protocol so the scripts are similar. About the only 
difference is the structure of directory and file names. The following script retrieves a file 
called "bench.doc" from the "pd2:<ada.benchmarks>" directory. The command "mget 
PIWG*" could have been used to retrieve all the PIWG benchmarks from the same directory. 
As for the UNIX machine, the command "cd" will change directories and "dir" will list the 
contents of the current directory. The master index can be found in the directory 
"pd2:<ada.master-index>". 
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* ftp simtel20.army.mil 
Connected to s witel2 0 . army .mil. 
220 WSMR-SIMTEL20.ARMY.MIL FTP Server Process 5Z(53)-7 at 
Fri 4-Nov-88 08:25-MST 

* Name (simt el20 . army. mil: nhw) : anonymous 
* Password (simtel20 .army .mil: anonymous) : your name here 

331 ANONYMOUS user ok, send real ident as password. 
230 User ANONYMOUS logged in at Fri 4-Nov-88 08:25-MST, job 20. 

* ftp> cd pd2:<ada.benchmarks> 
331 Default name accepted. Send password to connect to it. 

* ftp> mgetbench.doc 
* mget BENCH.DOC.1? / 

200 Port 5.35 at host 128.237.2.47 accepted. 
150 ASCII retrieve of PD2:<ADA.BENCHMARKS>BENCH.DOC.1 started. 
226 Transfer completed. 7291 (8) bytes transferred. 
7291 bytes received in 6.91 seconds (1 Kbytes/s) 

* ftp> quit 
221 QUIT command received. Goodbye. 

It should be noted that the PIWG tests are also available in the AJPO machine in the direct- 
ory public/piwg. 
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Appendix D: Acronyms 
AAH 
AC EC 
ACM 
ACVC 
AdaJUG 
AES 
AFB 
AJPO 
ANSI 
APSE 
ARG 
ARPA 

ARTEWG 
ASR 
AVF 
AVO 
AVS 
BSI 
C3I 
CACM 
CD-ROM 
CECOM 
CIFO 
COTS 
CPU 
CRID 
DACS 
DARPA 
DEC 
DoD 
E&V 
HOL 
IBM 
ICE 
ISA 
ISO 
JTC 
MAPSE 
MCCR 
MDS 
MIS 
MoD 
MVS 
NPL 
PDL 
PIWG 
REST 
RM 

Ada Adoption Handbook 
Ada Compiler Evaluation Capability 
Association for Computing Machinery 
Ada Compiler Validation Capability 
Ada Joint Users Group 
Ada Evaluation System 
air force base 
Ada Joint Program Office 
American National Standards Institute 
Ada programming support environment 
Ada Rapporteur Group 
Advanced Research Projects Agency 
(now DARPA) 
Ada Runtime Environment Working Group 
Ada Software Repository 
Ada Validation Facility 
Ada Validation Office 
Ada Validation Suite 
British Standards institute 
command, control, communications, & intelligence 
Communications of the ACM 
Compact Disk Read Only Memory 
Communications-Electronics Command 
Catalog of Interface Features and Options 
commercial off-the-shelf software 
central processing unit 
Catalog of Runtime Implementation Dependencies 
Data Analysis Center for Software 
Defense Advanced Research Projects Agency 
Digital Equipment Corporation 
Department of Defense 
evaluation and validation 
higher order language 
international Business Machines 
in-circuit emulator 
instruction set architecture 
International Standards Organization 
Joint Technical Committee 
minimal Ada programming support environment 
mission critical computer resources 
microprocessor development system 
management information system 
Ministry of Defense 
Multiple Virtual System 
National Physical Laboratory 
program design language 
Performance Issues Working Group 
Real-Time Embedded Systems Testbed 
Reference Manual 

CMU7SEI-89-TR-13 113 



ROM read-only memory 
SEI Software Engineering Institute 
SIGAda Special Interest Group on Ada 
SQL structured query language 
URG Uniformity Rapporteur Group 
VAX virtual address extension 
VMS virtual memory system 
VSR validation summary report 
WG working group 
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