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§1 Introduction

In this report we present a block diagonalization theorem which is designed to study the
stability and bifurcation of rotating systems, or more generally, of relative equilibria. The context
of the discussion is the energy-momentum method for mechanical systems with symmetry. Simo,
Posbergh and Marsden [1989] and Lewis and Simo [1989] discovered crucial special cases of the
block diagonalization theorem for uniformly rqtating systems, including general nonlinear elasticity
and geometrically exact rods. Our purpose is to abstract these examples and prove a general
geometric theorem. We expect these general results will be important for rotating gravitational

.fluid masses as well.

For rotating systems the result says that a splitting of coordinates can be explicitly found on
a linearized level which represent the rotational and internal vibrational modes. In these
coordinates, the second variation of an augmented Hamiltonian is block diagonal. Of course
coordinates can always be found in principle to do this, but we are able to do it explicitly enough to
give useful stability and, we also believe, bifurcation criteria.

On the other hand, the symplectic form does not block diagonalize, indicating that the
rotational and internal modes are in fact dynamically coupled. However, for purposes of the
stability calculation, block diagonalization of the augmented energy is what is important. The off
diagonal terms in the symplectic form (sometimes called Coriolis coupling terms) are, however,
sufficiently simple that they should be useful for studying the dynamic interaction of the rotational
and internal vibrational modes.

For rotating pseudo-rigid bodies, Lewis and Simo [1989] noticed that the computation of
the definiteness of the second variation is considerably simplified by our result - in this case the

simplification saves considerable computation time. In fact the symbolic and numerical
manipulation required one to test a full 14 x 14 matrix for definiteness; block diagonalization

reduces this to testing a 6 x 6 matrix for nonisotropic bodies and to a 3 x 3 matrix for the isotropic

case.

§2 The Energy-Momentum Method

We begin our work in the context of standard mechanical systems with symmetry before
any reductions have taken place. In other words, we begin with a symplectic manifold (P, Q)
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rather than a Poisson manifold. In fact, shortly we shall specialize to the case of P = T*Q and a

Hamiltonian of the form kinetic plus potential.

Let G be a Lie group acting symplectically on P with an equivariant momentum mapping

J : P - g* (1)

(see Abraham and Marsden [1978], Marsden [1981] or Marsden et al. [1982] for the standard
definitions and results used here).

Let H : P - R be a given G-invariant Hamiltonian. A point z' in P is called a relative

equilibrium if there is a 4 g, the Lie algebra of G, such that for all t e R,

z(t) = exp(tt) ze, (2)

where z(t) is the dynamical orbit of XH, the Hamiltonian vector field of H, with z(O) = ze*

The energy-momentum method rests on the following result.

2.1 Relative Equilibrium Theorem A point ze is a relative equilibrium iff there is a

e g such that ze is a critical point of Ht : P -* R, where

H4(z) = H(z) - (J(z) - ,  (3)

and , = J(z.).

In (3), the Lie algebra element e g may be regarded as a Lagrange multiplier. Since J
is conserved by the flow of XH, the set J - ge = 0 is preserved, so one may regard it as a (non-
holonomic) constraint set. It also follows that e g , the isotropy algebra of ., (with respect

to the coadjoint action). Thus,

BH4(Ze) = 0 (4)

may be regarded as a (constrained)variational principle for relative equilibria.
The relative equilibrium theorem is readily verified. Of course it has a long history, going

back to Lagrange and Poincar for rotating systems. Like many basic results, it has been
rediscovered in a number of contexts by various authors. Early references in our context are

Arnold [1966], Smale [1970] and Marsden and Weinstein [19741 As we shall state below, the
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relative equilibrium theorem sometimes specializes to the principle of symmetric criticality

(Palais [19791).

The energy-momentum method proceeds as follows (see Holm et al. [1985] for the
meaning of formal stability and related references).

Energy-Momentum Method

To test a relative equilibrium ze 4 P for formal stability:

1 Choose 4 e g such that 8H4(z e) = 0

2 Choose a linear subspace S c T P such that

i S c ker dJ(z,) and

ii S complements T (Gk• z.) in ker TJ(ze), where G, c G is the isotropy . .

subgroup of g±.  -
3 tDlstribution/

3Test
Avalabllity Codes

'I stat Spee.).

for definiteness as a bilinear form on S.'1__

The energy-momentum method "covers" the energy-Casimir method (Holm et al. 1985])
in the sense that if the latter applies and gives formal stability, so does the former. One difficulty

with the energy-Casimir method is that on the reduced space P/G, there may not be enough
Casimirs to make the method effective, even to get the analogue 8(H + C) = 0 of (4). This

difficulty is genuine for the case of geometrically exact rods, for instance. See Simo, Posbergh

and Marsden [1989] for further details.
The fact that 82H4(ze) drops to the reduced space follows from the next lemma.

2.2 Gauge Invarlance Lemma

8 2 H(ze)(T1p(Ze), 8z) = 0 (5)

for all 8z E ker TJ(ze) and T" e g , where rip denotes the infinitesimal generator of the group

action on P.
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This follows readily from invariance of H and equivariance of J. One can view (5) as a
block diagonalization result on the unconstrained tangent space TzeP, but it does not yield block

diagonalization within the constrained subspace S in the energy-momentum method. It is the

latter that we are concerned with.
One can identify any choice of S with the tangent space to the reduced space

P4 = J-I(te)/G

at [ze] (assuming, as we shall, that te is a regular and generic value; c.f. Weinstein [1984]).

However, it is easier to do our analysis directly on TzeT*Q rather than on the quotient space. This

is the usual situation found in constrained optimization problems. However, dropping the

calculations to the quotient space at the appropriate point will play a useful role.

§3 Simple Mechanical Systems

We now specialize to the systems we will be studying. Let Q be a configuration manifold

and P = T*Q with its canonical symplectic structure and cotangent coordinates (q', pi) in the

finite dimensional case. (Whenever we use coordinates, we assume Q is finite dimensional,

although the results are not restricted to this case.) Coordinates on the velocity phase space TQ

are similarly denoted (q, 41).

Let g denote a Riemannian metric on Q; in coordinates we write the components of g as
gij as usual, and we write giJ for the inverse tensor. Let K TQ -- R denote the corresponding

kinetic energy, i.e.,

K(q, q) -- gij(q) i 1

Let V : Q - R be a given potential.

Assume G acts on Q (by a left action) and hence on T*Q by the cotangent lift, so the
equivariant momentum map is given by

(J, :(a,) = (aq, (q)). (2)

In coordinates, we define the action coefficients Ai(q) by writing
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[ =(q)]i = Ai(q) 4a (3)

where a, b, c, ... denote coordinate indices for the Lie algebra g. Thus (2) becomes

Ja(q, p) = pi Ai(q). (4)

We assume that G acts on Q by isometries and that the potential V is G-invariant. For

elasticity, for instance, this is the requirement of material frame indifference. Note that (3) of §2

reads

H(q, p)P + V(q) - pi A.(q) 4a (5)

Define the moment of inertia tensor It for the system locked at q 6 Q by

1ab(q) = gij(q) Ai(q) A4(q) (6)

(alternatively, in terms of the q-dependent inner product (t, Ti) ( Q(q), 'IQ(q)) on g, we have

T Oi) = Iab(q) rjb), and define the augmented potential V by

V4(q) = V(q) -1ab(q) (7)

One can readily verify the following (see Abraham and Marsden [1978] and Palais [1979]) by

writing out the conditions 8H4 = 0 in 2.1. A more elegant argument is, however, given below.

3.1 Principle of Symmetric Criticality A point z, = (qi, pj) is a relative equilibrium

if and only if there is a r: gP such that

I pi = gij AJ 4a (i.e., Pe is the Legendre transform of Q(qe)) (8a)

and

II q' is a critical point of V .(i.e., - V = 0.) (8b)

This is useful for carrying out the computations that follow. We also observe that V is

Ge-invariant, and so induces a function on Q/G4.

Define the one-form A4 on Q by
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A (q) = gij(q) Ai(q) a (9)

or abstractly, A (q) = [ ,Q(q)], where b denotes the index lowering operation with respect to the
metric gij- In other words, A4(q) is the Legendre transform of Q(q). We remark that A may

be viewed as a G-connection for the bundle Q --+ Q/G and that this connection plays an important

role in Berry's phase; cf. Marsden, Montgomery and Ratiu 11988]. Now notice that at equilibrium,

(8a) says

Pe= Ak(qe). (10)

Also note that

H4(q, p) = K4(q, p) + V4(q, p) + (g, ) (11)

where K (q, p) = IIIP - At(q) 112, and V4 is given by (7). By (10), K4 has a critical point at

ze. Thus, (8b) is a direct consequence of the relative equilibrium theorem and (11).

In the energy-momentum method we shall use a special choice of 5, namely

= {v E TzT*Q IT7cQ vze is g-orthogonal to T(G. q,) and v.e E ker[TJ(ze)] }. (12)

Letting coordinates on TT*Q be denoted

(qi, pi, Sq i, Bpi),

(12) reads, with the help of (8a),

S = {(qi, pi, 8qi, Bpi) I gij(Sq)i AJ a = 0 for all X e e and

(8p)i Ai + gij A4 b aAAL (8q)k = 01 (12')a qk

§4 Rigid Variations

One version of the cotangent bundle reduction theorem (see Abraham and Marsden [19781
and Kummer [1981], Montgomery [1986] and references therein) states that the reduced space
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(T*Q)k is a symplectic bundle over T*(Q/G) with fiber the coadjoint orbit through Pe, Thus

there is an isomorphism

T~z,] (T*Q), _ g/9, x TfzeI(T*(Q/G)) = q/2.,x (UINT x U* r )

where UM is a model space for Q/G. For G = SO(3), UINT models the configuration space
for the internal modes, while /g = T, Oe models the phase space for rigid modes. Our goal is

to realize this decomposition explicitly, in such a way that 82H4(ze) block diagonalizes. The

bundle (T*Q)A --> T*(Q/G) with fiber O4 also has a natural connection (Montgomery [1986])

and our decomposition should be related in some way to the horizontal-vertical split for this
connection. However we proceed directly here; see also the comments in §5 below.

We will define two subspaces SRIG and SINT of S and further subspaces UINT and

U4,T of SINT such that

relative to which 82H(ze) will be block diagonal. As above, the first component 3 RIG

of S is isomorphic to the tangent space to the coadjoint orbit through g,. As we shall see, this

component will also carry the coadjoint orbit symplectic structure. This first component is defined
in terms of rigid variations as follows: Let

gQ = IQ(q) e TQI I e g andqe Q) (2)

and let TqQ c TTQ be its tangent bundle.

4.1 Definition Let VRIG = s(TgQ) where s : T2Q --+ T2Q is the canonical involution.

Alternatively, VRIG consists of double tangents of curves denoted by Aqt (identified with

velocity variations of superposed rigid body motions in the case of SO(3))

Aq d L ' t,-0 exp(cl(t)) q(t)

where T(t) is a curve in 9 with "(o) = ") and q(t) is a curve in Q. (The canonical involution

in effect swaps the order of differentiation.)
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In coordinates, if we write elements of V RIG as

then we find that

Aqi = Ail, and Al = ka+A a (3b)

Now let FL: TQ -T*Q be the Legendre transform given by

Pi = 9i i(4)

and let TFL :TI'Q -* Tr*Q be its tangent map. Set

SRIG =TIPL 'VRIG (-S, (5)

where S is defined by (12) of § 3 .If we let g -L- denote the (q-dependent) orthogonal

complement of g ein the metric I&I, then one finds that SRIG is parametrized by elements Tj

g 1 as follows: we write elements of 3 RIG as

(q%, pj, Aqi, Apj) (6a)

where Aq1 = AiTna (6b)

and Ap. 'A= 7,a (6c)

where il r g'I and where e q; the condition that (6a) belongs to ker(TzJ) is equivalent to theP.e

relation -Iba~I~ 7

i.e., =ad*g. , so is determined by 71. One checks that Ti rm2- as well.
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§5 The Internal Vibration Space

Now we define a complement to SRIG in S. We will do this by a constructive procedure

that can be effectively carried out in examples. As we have mentioned, this complement appears to
be not the same as, but related to the complement to the vertical space relative to a natural
connection on the coadjoint orbit bundle (T*Q) 9 -- T*(Q/G). In this regard we note that the

metric naturally induced on Q/G is Wilson's G-matrix (see Wilson, Decius and Cross [1955]).
Our decomposition appears to be finer than the one proposed by Guichardet [1984] and discussed
by Iwai [1988]. Notice that we have connections on all levels of this tower of bundles

T* Q z J-1 (g.) -0 (T* Q)4t - T* (Q/G)

where J-1 (.) - (T*Q) 9 is regarded as a G bundle and (T*Q) - T*(Q/G) is regarded as an

O bundle, where 0. is the coadjoint orbit through i.

The Guichardet-Iwai results appear to be largely concerned with the bundle J-'(Pt) --

(T*Q)g ; the fact that the reduced space (T*Q), still has the factor 09 seems to be the reason the

connection on the G bundle J-() - (T*Q) A is not sufficient to completely isolate the
vibrational modes from the rotational ones. We believe that the 0. bundle fills this gap. These

remarks aside, we turn to the explicit construction of Simr . To do this, we first describe UIN.
Recall that the augmented potential V4 is given by

V= V+L (la)

where

Lt(q) _ ( Q(q), Q(q)). (I b)

For mechanical systems undergoing stationary rotations about 4, i.e., G = S0(3) and G

rotations about the axis ge which is parallel to 4), we note that L gives the potential of the
centrifugal force. Now define U1NT as the subspace on which V4 or equivalently L4 looks

objective in the sense of nonlinear elasticity (cf. Marsden and Hughes [1984]). More precisely:
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5.1 Definition

U~r = {&e TQI(&I,(LdIXq)) = 0 foran rje cl- and (&, X qe)=0 fOrala X E 9W (2)

where the first pairing is the natural pairing between vectors and one forms while the second is the

metric inner product.

Since V, has a critical point at q, (by the principal of symmetric criticality) and V is G-

invariant, we find that

(8q, (L TIQfdC)(q)) = 82V4(q,)(8i, ilQ(q)) (3)

and so we see that the geometric condition (2) is exactly what is needed to block diagonalize
82V4(q,) within S. In coordinates, the first condition on &Vi defining UI.T is the geometric

condition

qil ,a b c -L [Ak -L-- (Ag' Am g, 0; (2')
aqz aqk Cg ) 0;

the second condition is just the defining condition on S. Now we are ready to define Sir-

5.2 Definition SiNe = { 8z = T zT*Q I 6q E U,. and 8z e ker[TJ(ze)] } c S. (4)

5.3 Proposition S = @RIG (E) SINT

This is easy to check. The idea is that ,S3 G r ,iNTa = (0), that dim -S G = dim(g/%9) and

that 1%T is determined by dim(g/g) equations. Also, we write

u~eu~(5)

where U1T= {8p - A'(q,) J 8p c UT} is the dual space with a momentum shift by A4 (see

equation (10) of §4). The relation (5) is really a coordinate description; to do it intrinsically, we use

the metric connection to split TZT*Q = Tq.Q @ (TqQ)* (this split is in fact nothing more than

what we do in coordinates to identify accelerations and momenta with vectors) then we take the
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horizontal and vertical splitting of UINT in SINT , with the vertical component followed by the

momentum shift by A (q,).

We remark here that even if G is abelian (for instance, G = S1 in the case of planar

coupled rigid bodies) then the decompositions are not trivial: while SRIG = (0) in this case, JSNc

= UI U is still not a trivial decomposition.

Now H = + k + (.t, ) and we have arranged for V4 to be block diagonal. As far

as K is concerned, we compute in coordinates that

= -gij(p i - g-tlk~a)(p - gjmAmb). (6)

Thus, since P1 = gik At a at equilibrium, we get

82 K(ze) ' (8z, 8') = gij 8Pi 5pj . (7)

It is clear that 82K4 block diagonalizes from 52V4 within UINT E UM T by construction.

Regarding the block diagonalization of 82K on *-RIG E SINT , we shall use some further

interesting identities.
First, here is an equivalent characterization of UM.T in terms of superposed motions:

5.4 Proposition Let q, E Q be a curve tangent to 8q at qe ,let 1 E g -L and let Tl.' e
Adexp( )Tl. Then UINT is characterized by those & orthogonal to Tqe(Gt e -q) and satisfying

d (Q(qe), (rlFQ(qF)) =0 (8a)

or, equivalently,

d( Q(exp(e4) T) , TIQ(exp(e )q)) = 0. (8b)

This is verified by a direct coordinate calculation. We can lift this expression to get an
alternative characterization of SNT . We consider the momentum map J restricted to g - and

regarded as a function on TQ. In other words, for E q I±, set
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J( )(8)- (,Q(q), 8q) = gij A' Ca()J- (9)

Now consider the condition

= (10)

where C is to evolve as = [ , 4] which is consistent with (8a) and E 9-L here is the Lie

algebra element giving the relative equilibrium. Equation (10) defines a condition on T(TQ). We

shall regard it as a condition on T (T*Q) via the Legendre transform. For simplicity we still

write the resulting condition as J = 0.

5.5 Proposition

SINT = {J(z e) =0) r) ,S.(1

The condition TJ(ze) • = 0 reads

iP Ai(q) + pi - dqk = 0 (12)
aak

and using this, one can express the conditions defining SlMr entirely in terms of 8q. This
recovers the space UN r , which models TiqJ(Q/G) , and then one gets, as before,

S T= U.E)U.

§ 6 Block Diagonalization

The block diagonalization results for 8214 follow from two basic formulas:

6.1 Proposition Let Az e -RIG and 8z e T, P. Then

82H (ze)(Az, 8z) = d"(CQ(q)' 8q) - ([, T1), 8J(ze).z) (1)

| |
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where Az has associated il and C as in (3b) and (7) of §4.

6.2 Proposition Let Bz1 and 8z2 E S1r ; then

82H4(Ze)(8z 1, BZ2) = 82K4(Ze) • (Sz 1 , 8z 2 ) + 82 V4(qe)(8qj, Sq 2 ) (2)

Proposition 6.1, which is proved by direct calculation, shows that 82H(z.) block

diagonalizes on '- G Q SINT, i.e., if Az E SRIG and 8z e T, then

82H (Ze)(Az, 8z) = 0. (3)

Proposition 6.2 then follows from our earlier calculations. It also follows that if Az c- SRIG and

AI E SRIG, then

82H4(ze)(Az, AT) = (Q(q), Q (4)

which is a generalization of the rigid body second variation formula for motion on the coadjoint
orbit 0,, with the metric 'at. We summarize:

6.3 Theorem The relative equilibrium ze is formally stable (with 52H4(ze) on S positive

definite) if and only if

N j(Q(q), CQ(q)) is positive definite on ".IG

and ii 82V4(qe) is positive definite on Uir.

We note that 82V4(qe) separates (in coordinates on UINT ) into 82V(qe) plus a term

quadratic in . Thus, ii is implied by a condition of the form II II - mi' where ii is a
suitable norm and Xmin is the minimum (non-zero) eigenvalue of 82V(qe); one has to take care
here that V itself does not have a critical point at q,, so 82V(q.) does not make intrinsic sense.

To see how this works in examples, see Simo, Posbergh and Marsden [1989] and Lewis and Simo

[19891.

As far as the symplectic form C1 is concerned, we have
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6.4 Theorem Let Aze SRIG and 8z e TZ P. Then

Q(Ze)(Az, 8z) = - (11, BJ(ze) • 8z) + ( Q(q,)' 8q). (5)

Notice that in an appropriate sense, 82H4(ze) on SiG x T, P is the time derivative of the

symplectic form 92!

From (5) and (7) of §4 one finds that on SRIG x SRIG, a gives the coadjoint orbit

symplectic form

fl(Ze)(Az, A-) = - ( te, [Tl, n]), (6)

while on SRIG x 3SNT we have the cross terms

K2(z,)(Az, 8z) = (Q(qd), 5q), (7)

which depend on the 5q components alone.

We can summarize the situation with the following matrices:

g / gU

Generalized

Rigid Body 0 052H (Ze) = Second Variation~j

82H4(zd = - [R g d

0 d 2V4(z e) 0

L 0 [ 82K4(Ze)

for the amended energy, and
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/Re U -r

ECoadjoint Orbit [ Internal- 0
Symplectic Form Riid Coupling (7)]

SInternal- Canonical symplectic form

-Rigid Coupling (7)j plus a "magnetic" term

0

For information on the "magnetic" term, and its interpretation as a curvature, we refer the reader to

Kummer [1981]. Also, the coupling terms can be interpreted in terms of the curvature of the

connection on the coadjoint bundle T*Q -- T*(Q/G) ; see Montgomery [19861 and Lewis,

Marsden, Montgomery and Ratiu [1986].
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