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Summary

This report is concerned with the application of aspects of statistical pattern
classification to speech recognition. It presents an extension of linear
discriminant analysis to the case where the classes are unknown. This exten-
sion provides solutions to the interrelated problems of the design of acoustic
representations and spectral distance measures, and allows the efficient com-
bination of heterogeneous sets of parameters. In particular, a representation
called IMELDA based on the output of a filter-bank and its changes in time
is introduced. Other approaches to distance measures are discussed. It is
noted that these other methods lack the ability to make efficient combina-
tions of heterogeneous parameters, and that they require empirical adjust-
ments in order to give good results. Tests indicate that IMELDA provides
markedly superior recognition performance compared to the alternatives.

Rdsume

Ce rapport traite de l'application des aspects de la classification statistique
des motifs i la reconnaissance de la parole. Il pre'sente une extension de la
technique de l'analyse discriminante au cas dans lequel les classes ne sont
pas connues. Cette extension fournit une solution aux problemes de la con-
ception des reprersentations acoustiques et des distances spectrales, les deux
probl4mes e'tant inse'parables. Elle permet la combinaison efficace de
plusieurs series de param~tres heterogenes. En particulier, une representation
nomme'e IMELDA basee sur le rendement d'une banque de filtres et son
changement dans le temps est presentee. D'autres approches aux distances
sont discutees. On remarque que ces alternatives n'offrent pas la possibilite
de faire des combinaisons efficaces de parametres heterogenes, et qu'ils ont
besoin des ajustements empiriques pour obtenir de bons re'sultats. Des tests
indiquent qu'IMELDA donne une performance en reconnaissance nettement
superieure i celles obtenues avec les approches alternatives.
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1. Introduction

This report describes a method of deriving a linear transformation that can
be applied to acoustic parameters for speech recognition in order to improve the
speech sound comparison process. It consists of an extension of the pattern
classification process known as linear discriminant analysis to the case when the
classes are unspecified and may not be discrete.

The method allows several disparate sets of acoustic parameters to be com-
bined into a single, compact representation. Results are reported here with
representations that we call IMELDA, generated by combining parameters
derived from a mel-scale filter bank.

A close variant of the method described here was first reported at an
Acoustical Society of America meeting in 1979 [1]. However, although a full text
was produced, only an abstract was published, and that, together with the lack
of experimental results at the time, resulted not surprisingly in the work being
ignored. The presentation argued that cepstrum coefficients should be given
monotonically increasing weights in Euclidean distance calculations, and it pro-
vided a method of estimating the values of the weights. Since then, application of
weights to cepstral coefficients has become popular. Various theoretical argu-
ments have been advanced for the weighting, but for good experimental results it
has usually been necessary to make empirical changes to the theoretical values.
Results now show that the method described in principle in 1979 gives exception-
ally good results without the need for empirical adjustments. The 1979 text is
therefore included as an appendix to this report.

The purpose of this report is to give a tutorial introduction to a method of
deriving an acoustic representation with only a brief account of speech recogni-
tion tests. A fuller account of recognition tests, covering a wide range of
representations is provided elsewhere [2].

2. Pattern Classification and Linear Discriminant Analysis (LDA)

In a typical pattern recognition task, a sample must be assigned to one of a
set of known, discrete classes. Values of a set of N parameters are provided for
the sample to be classified. The optimum strategy for this problem - namely,
Bayes classification - is both well known and obvious: the sample is assigned to
the class to which it is most likely to belong. That is, assuming equal a priori
class probabilities, the sample is assigned to the class whose probability density
function is highest at the point in N-space corresponding to the values of the N
parameters provided for the sample. This assumes that for each class the proba-
bility density as a function of the N parameters is known. In general, however,
the probability density functions are not known, and we have to try to estimate
them from a finite number of training samples for each class.

If the number of training examples is very large, we can estimate the local
class densities directly by k-nearest-neighbor methods, which assume only that
the f-i:r; tions are continuous. For somewhat fewer training examples, it is useful
to smooth the density estimates over the parameter space using weighted k-
nearest-neighbor methods or Parzen functions.
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More commonly, however, we either do not have enough training examples
to estimate the local densities directly, or else the computational cost of making
the estimates for each sample to be classified is considered too high. In these
cases, we have to resort to parametric assumptions about the class probability
distributions, and generally assume that the distributions are multivariate Gaus-
sian. By computing centroids and covariance matrices for each class, we can esti-
mate the probability densities corresponding to the parameter values of the sam-
ple to be classified.

With even fewer training examples, estimates of individual class covariance
matrices become unreliable. It is then more effective to assume that classes differ
only in their centroids and not in their distributions about those centroids. The
covariance information is pooled over all classes to provide a single within-class
covariance matrix, W. Note that this matrix is not the same as the covariance
matrix, T, representing the covariance of all the training examples without
regard to their class, and therefore describing the distribution of the samples
about their grand mean. The relation between these two matrices is T=W+B,
where B is the covariance matrix of the class centroids.

The assumption of identical within-class distributions makes the
classification process computationally efficient. A single linear transformation of
the measured parameters results in a space in which the log probability of a sam-
ple belonging to a given class is directly proportional to the Euclidean distance
from the sample to the class centroid. The sample can then be assigned to the
class of the closest centroid in the transformed space.

The linear transformation confers spherical symmetry on the within-class
probability density functions. The space can therefore be suhjected to further
rotations without affecting these functions.

In general, the distribution of class centroids will not be uniform in the
space designed to make the within-class distributions spherical. By computing a
covariance matrix of the centroid coordinates, and carrying out a principal com-
ponents analysis (i.e. finding the eigenvectors of this matrix) we can obtain an
ordered list of orthogonal axes going from the axis along which the dispersion of
the centroids is greatest to that along which it is least. If the class centroids are
themselves multivariate normally distributed, the ability to discriminate between
classes in any direction in the space is given by the variance of the class centroids
in that direction divided by the variance of the individual samples about their
class centroids. But the latter variance is the same in all directions, so the princi-
pal components analysis provides a list of axes going from the one with the
greatest discriminating power to the one with the least. The rotation correspond-
ing to the principal components analysis can be combined with the first
transform to provide a single linear transformation that can be applied to the
original parameters to give a set of transformed parameters. Classification using
these parameters is simply a Euclidean distance calculation from the unknown
sample to the class centroids, and the parameters are listed in order of their
effectiveness. This process is known as Linear Discriminant Analysis (LDA).

Because the parameters are ordered by their effectiveness, the computation
needed to classify a sample can be reduced by dropping the last few parameters.
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Perhaps surprisingly, this process usually improves classification performance.
This is probably because the estimates of the class centroids will contain errors.
In directions with low classification power, the small differences between the cen-
troids will tend to be dominated by the estimation errors - the "signal-to-noise
ratio" will be low.

3. Speech Recognition using Dynamic Programming Template Matching

In speech recognition systems using dynamic programming (DP) template
matching, the speech to be recognized and the reference templates with which it
is compared are represented as sequences of frames. The frames consist of a set
of parameters generally representing the power spectrum sampled every 10 ms or
so. By repeating or deleting frames, the sequences being compared are time dis-
torted to find an alignment that maximizes their similarity. Ideally, the similar-
ity being maximized should be the phonetic similarity of the speech sounds. It is
assumed that the alignment will bring together corresponding parts of the words.
The alignment chosen is that which minimizes some dissimilarity measure
summed over aligned frame pairs across the word. Most commonly, the dissimi-
larity measure is Euclidean squared distance.

The assumption that seems to underlie this process is that the squared dis-
tances correspond to log probabilities. This assumption implies that each frame
in a template corresponds to the centroid of the values of the parameters at this
location in the word, and that the parameters in the corresponding frames of the
individual examples of this word are distributed about the template values
according to a multivariate Gaussian distribution with equal variance in all direc-
tions. That is, the vector Xk-Xkj where Xk is the vector of template parameter
values for the k'th frame and xk, is the corresponding vector for the j'th exam-
ple of the word, is multivariate normally distributed with spherical symmetry. A
consequence of this assumption is that the covariance matrix whose nm'th ele-
ment is:

I Z~m kjn)(Xkn - kjm)

where the subscripts m and n refer to the m'th and n'th parameters, will be
diagonal with equal diagonal elements, i.e. it will be a multiple of an identity
matrix.

If the pairs of frames aligned are assumed to belong to the same class, this
matrix can be considered to be a within-class matrix. In making this assump-
tion, we do not have to define what a class is.

In principle, we could compute for each frame in each template a linear
transform that would make the Euclidean distance proportional to the log proba-
bility that the pair of frames being compared represent equivalent frames in the
same word. In practice, there is rarely enough data to obtain accurate distribu-
tion estimates for each template frame; and even if there were, the recognition
process would be computationally expensive, since each frame-to-frame com-
parison would require a different transform. Roughly, if a frame consisted of N
parameters, the computation needed in the recognition process would be
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increased by a factor of N. (Frame-to-frame comparisons account for most of the
computation in all but the smallest-vocabulary recognition systems.)

In the previous section we saw that LDA assumes that all classes have the
same within-class distributions. We can make the same assumption here and
average the within-class covariance estimates over all frames in all templates.
The assumption is unreasonable: clearly different speech sounds and different con-
texts will have different covariance properties; but it is better than the alterna-
tive assumptions that will be discussed in the next section. Furthermore, we can
also take the second step in LDA and try to estimate a between-class covariance
matrix. Exactly what this means when we have not defined the classes is not
clear. We can take each frame to be a distinct class with its centroid represented
by the template parameter values. Since adjacent frames in steady sounds can be
indistinguishable, this would mean that certain "classes" were indistinguishable.
Nevertheless, our two matrices will provide a practical measure of the discrim-
inating power of linear combinations of the parameters and will allow us to gen-
erate a reduced set of transformed parameters that optimize discrimination with
Euclidean distance calculations.

4. Spectral Representations and Distance Measures

A common first stage in a speech recognition system is a bank of around
twenty band-pass filters. The filters may be realized directly as analogue or digi-
tal filters, or they may be simulated from a Fourier transform. The centre fre-
quencies of the filters are usually approximately equally spaced on a perceptual
frequency scale, and their outputs are represented as log energies sampled every
10 or 20 ms.

It is possible to compute frame-to-frame distances directly on the channel
log energies, and some systems do so. However, this method is computationally
expensive, because it means that all twenty energy values must be stored and
compared. Moreover, it can give a poor indication of phonetic similarity because
it is sensitive to fine structure. In the lower channels, for example, harmonics of
the fundamental may be separated by two channels, particularly for women and
children. In this case, phonetically identical sounds spoken on different pitches
can be judged to be quite different when the distance is computed channel by
channel.

The problem of sensitivity to fine structure can be resolved by using a trun-
cated cosine transform of the sequence of log energies across the channels in each
frame. Since a cosine transform is an orthogonal transform, Euclidean distances
are unaffected if the twenty channel values are replaced by the twenty transform
coefficients. However, the lower-order coefficients are sensitive fo the gross struc-
ture of the channel energy sequence and the higher-order coefficients are more
sensitive to its fine structure. Therefore, by truncating the series at, say, the
eighth term we can exclude the fine structure and effectively smooth the spec-
trum. Moreover, while energy values in adjacent channels are correlated (since
spectra are generally smooth) the cosine transform coefficients are largely
uncorrelated; that is, the cosine functions are close to a principal components
basis set for the spectra (see Figures 1 and 2). This property means that the
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lower-order cosine coefficients form an almost optimally efficient representation of
the variations between frames. For these two reasons, a cosine transform
representation of the filter-bank output (often called a mel-cepstrum representa-
tion) is widely used.

The most common alternative to a filter-bank front-end in speech recogni-
tion systems is linear predictive (LPC) [3] analysis. A cosine transform represen-
tation can be easily derived from such an analysis, and Euclidean distance on this
representation is now popular with LPC-based systems as well as with filter-bank
based systems. In the LPC case, the frequency scale is generally linear, but per-
ceptual frequency scales are also being used [4] at the price of additional compu-
tation.

The cosine transform coefficients can be weighted before the frame-to-frame
distance is computed. The most trivial weighting, which has been used from the
start, is to ignore the coefficient C0 , the coefficient representing total log energy
across the channels. Since Co is in principle the only coefficient that is affected
by changes in gain, setting the weight of this coefficient to zero removes the
dependence of the representation on the input level.

More recent and more sophisticated weighting schemes generally apply
weights that increase monotonically with coefficient number, at least for the first
few coefficients. There are several different motivations for doing this, but the
resulting weighting patterns are nevertheless fairly similar.

One motivation is perceptual. Klatt [51 found that the unweighted Euclidean
mel-cepstrum distances between sounds correlated well with human judgments of
the similarity between sounds as sounds, but correlated poorly with human judg-
ments of phonetic similarity, which is what is needed for speech recognition. He
found that a metric that was sensitive to the slope of the smoothed power spec-
trum gave a much better indication of phonetic similarity. Paliwal [6] pointed
out that weighting each mel-cepstrum term by its index (so-called quefrency
weighting) was equivalent to differentiating the spectrum, and therefore led to a
slope-sensitive metric.

A second motivation is based on the properties of speech signals. Giving
increasing weight to the higher order coefficients has an effect equivalent to
reducing the bandwidths of formants. As a result, spectra recomputed from suit-
ably weighted cepstra show enhanced sensitivity to formants, reduced sensitivity
to spectral tilt, and an increased ability to resolve neighboring formants [7.

A third motivation is statistical. It has been claimed [81 that weighting
coefficients inversely by their standard deviations should result in a theoretically
optimal distance measure. The previous section, however, argued that it is the
within-class statistics that should be used, not the total statistics. Figure 3 shows
the first three principal components of the within-class variance for our database.

When weighting schemes have been tested in recognition experiments [7,8,9],
it has generally been found that the best performance is obtained when weighting
of the higher components is limited in some empirical way, such as making all
weights above a certain coefficient (around the fourth or fifth) equal. Figure 4
shows weights derived from total variances of mel-cepstrum coefficients in a large
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multi-speaker database and from within-class variances. The values shown are
the reciprocals of the standard deviations normalized to make the weight for C
equal to one. (Figure 5 shows for comparison the corresponding weights for the
true principal components.) Note that both sets of cepstrum weights rise less
quickly than linearly with index number. Moreover, the within-class weights level
off around the fifth value, while the weights derived from total variances continue
to rise. The empirical expressions may therefore be interpreted as attempts to
approximate the statistically derived within-class weights.

5. LDA-derived Transformations with Other Parameters: IMELDA

So far, we have considered only parameters representing the static log power
spectrum. But there are other parameters that can be used to represent speech
sounds. For example, linear prediction coefficients describe the power spectrum
but are not linearly related to it. Parameters can also be derived [101 that
represent rates of change in the power spectrum rather than its static properties.
Auditory models, such as the one developed at NRC [11], can produce multiple
representations that depend nonlinearly on both the static spectrum and on
changes in the spectrum. We have seen that the cosine transform is a good
approximation to a principal components representation of the log power spec-
trum, but there is no reason to suppose that it would be suitable for other
parameter sets. For representations of linear rates of change in the log power
spectrum the cosine transform seems to remain a reasonable approximation to a
principal components representation. However, we have no indication as to how
to combine the static and dynamic parameters. Most researchers simply append
weighted cepstrum coefficients from the dynamic parameters to those from the
static parameters. This doubles the number of parameters and thus the storage
and computation requirements. Moreover, the relative weights given to the static
and dynamic parameters have to be determined empirically with recognition
tests.

The approach that we have developed, outlined in Section 2, allows many
disparate parameter sets to be combined and a small number of discriminant
functions to be derived from them. Using our multi-speaker spoken-digit data-
base, templates are generated by time aligning and averaging together all exam-
ples of each digit from all speakers of a given sex. All individual examples from
that sex are then re-aligned to the appropriate template to compute a within-
class covariance matrix, and a between-class matrix is computed over all the tem-
plate frames. The approach has been applied successfully to our auditory model
[121, and Figure 6 shows the first three discriminant functions derived from a 20-
channel mel-scale filter-bank. Note that they are quite different from the func-
tions shown in Figures 2 and 3.

We are currently using our statistical rmethod of generating representations
with three parameter sets derived from a twenty-channel mel-scale log power
spectrum. The three representations are: the log-power spectrum itself, linear
regression coefficients representing the rate of change in log power in each chan-
nel, and a notch-like representation generated by taking the log of the sum of the
linear energies in pairs of channels spaced two channels apart (e.g. channels 10
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and 12). Because our process integrates several mel-scale representations using
linear discriminant analysis, we have called it IMELDA.

Our approach to deriving transformed parameters allows the transformation
to be derived for the conditions in which it is to be used. If, for example, it is
expected that the test material will be subjected to a particular distortion while
the reference material will be undistorted, we can align degraded material to
undegraded templates. If the degradation consists of a variation in spectral tilt,
application of this degradation during the derivation of the transform will reduce
the influence of parameters sensitive to tilt in the discriminant function. In our
experiments, we have been interested in both tilt and added noise, so we have
computed a transform using a combined within-class covariance matrix resulting
from alignment of tilted, noisy and undegraded speech. Such a "multi-
condition" transform gives better performance over the three test conditions than
a transform derived from a single condition. Moreover, its performance on unde-
graded test speech is only slightly worse than that of a transform derived purely
from undegraded speech.

Without degradations, the mean of all the frames aligned to a template
frame should correspond to the template frame, because the template frame was
derived in this way. After degradation, however, the means will no longer be
equal. This invalidates one of the assumptions on which our transformation is
based, namely that the individual frame parameter values will have a multivari-
ate Gaussian distribution about the corresponding template frame parameter
values. It is possible to correct for the shift in the mean in the computation of
the covariance matrix, but since we do not shift the templates in the recognition
experiments, it is not obvious that we should make this correction: a parameter
whose mean shifts is less useful and should be given less weight. We have com-
pared recognition performance when the correction for mean shift was applied
and when it was not, and we find that it is indeed better not to apply the correc-
tion.

For the auditory model, there is no conventional alternative to our method
of deriving a transform using LDA, though we have compared it with using prin-
cipal components derived from the template frames and found the latter to be
inferior. For filter-bank representations, however, we can make direct comparis-
ons between IMELDA and alternatives used elsewhere. Table 1 shows a com-
parison in an isolated-word digit recognition test between IMELDA, mel-
cepstrum, and a representation developed at NTT using mel-cepstrum and
weighted regression coefficients for the change of cepstrum coefficients over time
("8-cep"). Dyaamic programming template matching was used with a single
averaged template per digit and a 19.2 ms frame rate. The word boundaries
were marked manually.

As we noted earlier, the NTT representation has two parameters to be set
empirically. The value of one of these parameters could be taken directly from
an NTT publication, while we set the other to optimize performance in speaker-
independent tests. This procedure implies a slight bias in favor of the NTT
method. Nevertheless, the table shows that the NTT representation was far less
effective than IMELDA. The magnitude of improvement of the NTT
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representation over a conventional mel-cepstrum representation is comparable
with that reported by the NTT researchers, which leads us to conclude that we
have accurately implemented their method. Alternative weighting schemes pro-
posed elsewhere have shown performance improvements over unweighted cep-
strum that are comparable in magnitude with that found for the NTT represen-
tation, and therefore much smaller than IMELDA.

It might be objected that IMELDA uses an additional set of input parame-
ters in the notch-like representation, and that this makes the comparison with
the NTT representation unfair. Table 1 therefore also shows results with a
reduced IMELDA in which the notch was excluded, and an even simpler
representation in which only the twenty log channel energies ("LCE") were used
as input parameters to the LDA. Even this simplest representation performs
enormously better than the representations that do not use LDA.

The mel-cepstrum results were obtained using eight parameters (C to CS).
There seems to be little advantage in going to a larger number of coefficients.
With the NTT representation, however, we found that results were improved by
using twelve mel-cepstrum and twelve 8-cepstrum terms, so these are the results
shown. For comparison, the simplest LDA results and the reduced IMELDA
results are shown for both eight and twelve parameters.

Table 2 shows the results of similar tests with a connected-word recognition
system. Tests have been carried out only for mel-cepstrum and IMELDA.

6, Use of IMELDA with Other Speech Recognition Techniques

The IMELDA representation is derived using DP time alignment, and it has
been tested in systems using DP template matching. Hidden Markov Modeling
(HMM) is a popular alternative, and indeed the most effective current speech
recognition systems are generally HMM systems. However, given the large
improvement in DP template matching performance with IMELDA, it is not
obvious that current HMM systems would still have better performance. HMM
systems frequently use a cepstrum representation, sometimes augmented with a
8-cep representation. It is therefore natural to ask whether an IMELDA
representation could be used. Theoretically, HMM should, through the B matrix,
be capable of deriving an ideal distance measure for each hidden state. In prac-
tice, however, there is never enough data to estimate the parameters adequately.
HMM systems are forced to make simplifying assumptions: for example, that the
covariance matrices are diagonal, or that all variances are equal. The assump-
tions underlying IMELDA may lead directly to better 11MM performance. or may
at least provide a better starting point for 11MM estimations of state-specific vari-
ances.

Neural networks are widely felt to be serious competitors to )I template
matching ahd HMM for future speech recognition systems. Here, the applicability
of IMELDA is less evident. Small-scale experiments [131 have not found any
difference in performance when input parameters were subjected to linear
transformations such as a cosine transform or LI)A. These results must be

regarded as preliminary, however, particularly since the multi-layer-perceptron
system used was found to give much worse recognition performance than our
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simple DP template matching system on the same spoken-digit database.

7. Conclusions

This report has shown how linear discriminant analysis can be extended to
the case when the classes are unknown and possibly non-discrete. This extension
has led to a technique for computing distance measures for speech recognition
that is theoretically based and needs no empirical adjustment. It nevertheless
appears to outperform alternative distance measures in dynamic programming
template matching systems even when empirical adjustments are applied to
them.

The technique has the unusual property of being able to combine diverse
sets of parameters. In particular, the representation known as IMELDA has been
found to be particularly effective for robust speech recognition.

The transformations derived by the technique described in this report are
likely to be effective in HMM-based speech recognition systems as well as those
using dynamic programming template matching, but possibly not in systems
using neural networks.
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Test material Representation (# of coefs.) ErsD SI/

mel-cepstrumn (8) 1.1 5.8
mel-cepstrum + 6-cep (24) 0.6 3.6
LCE & LDA (8) 0.4 1.8

Undegraded LCE & LDA (12) 0.2 1.5
reduced IMELDA (8) 0.3 1.1
reduced IMELDA (12) 0.2 0.8

______IMELDA (12) 0.1 0.31
White noise mel-cepstrumn (8) 23.9 36.6

mel-cepstrum + li-cep (24) 9.7 19.9
LCE &LDA (8) 1.1 5.3

S =1dB LCE &LDA (12) 1.2 5.6
SR 5dB reduced IMELDA (8) 1.3 3.3

reduced IMELDA (12) 0.9 3.0
IMELDA (12) 0.6 1.9

Tilted mel-cepstrumn (8) 75.4 77.3
mel-cepstrum + 6-cep (24) 62.5 71.9
LCE & LDA (8) 0.5 4.5

6d/c. LCE & LDA (12) 0.4 3.7
6d/t. reduced IMELDA (8) 0.4 1.9

reduced IMELDA (12) 0.4 1.7
______IMELDA (12) 10.0 10.3

Table 1. Speaker-dependent (SD) and independent (SI) quasi- isol ated-word
recognition results on 1346 digits from nine male speakers. The nuimbers in
parentheses represent the number of coefficients used in the Euclidean distance
calculation.

test repres- subst. Ins. del. tot. rate
speech entation%

speaker udg. IMELDA 0 0 3 3 0.2
udg.mel-cep. 3 26 23 52 3.8

niy IMELDA 4 0 4 8 0.6
dep. niy mel-cep. 316 9 59 374 127.7

tit IMELDA 0 0 1 1 0.1
titd mel-cep. 509 74 521 1104 81.7

speaker udg.IMELDA 7 0 17 24 1.8
ner.mel-cep. 70 42 23 135 10.0

niy IMELDA 33 13 10 56 4.1
indep. nsy mel-cep. 445 15 65 525 38.8

tit IMELDA. 7 0 12 19 1.4
titd mel-cep. 480 98 593 1171 86.6

Table 2. S peaker-depen dent and independent connected-word recognition
results or, 1352 digits from nine male speakers.
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tions are much less smooth than those shown in Figures 1-3: smooth features
account for much of the variance, but relatively less of the discriminating infor-
mation in log power spectra.
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ABSTRACT

Time-warping pattern-comparison algorithms are widely used in speech
recognition. Two words or syllables being compared are described by a
series of frames each containing values of a set of acoustic parameters.
After time alignment, the squared distance between the patterns is summed
over the parameters within a frame and then across frames. The sum
obtained is assumed to be proportional to the log probability of the two
patterns having the same identity. This assumption is generally invalid,
but it may be made substantially true by analyzing the variability
between different examples of the same syllable and adjusting the metric
accordingly. Variability is estimated both as a function of frame
position within the syllable and as a function of the acoustic
parameters. In the latter case, within- and between-class covariance
matrices can be estimated and standard linear discriminant analysis
methods applied. This permits the combination of disparate acoustic
parameters into a single distance measure. The possibility is considered
that different speed sound classes require different metrics, and the
problem of interframe correlation is discussed.

I. INTRODUCTION

This paper is concerned with the distance measures used in the comparison
of unknown words or syllables with stored reference forms in the dynamic
programming pattern matching algoritlm. The work forms part of an effort
to achieve speaker-dependent continuous speech recognition by first
dividing the speech into syllables and then matching the syllables
consecutively against stored templates [Hunt, Lennig and Mermelstein
19801.

The templates we use are composites formed by warping together several
utterances of the same syllable. Our symmetric, unconstrained
formulation of the matching algorithm is particularly well suited to the
production of such composites.

Our speech material is digitized with an 8 KHz sampling rate and
represented by the first seven mel-scale cepstrum coefficients computed
every 6.4 ms. The general approach described here is not, however,
confined to this form of representation of the speech signal nor 1o
speaker-independent systems, and the central concern of the paper is with
the general approach and not with its application to our particular
system. The experimental results that are quoted were obtained from sets
of sentences specifying dates and times recorded in English by a male
speaker and in French by a female speaker.

The syllable matching algorithm returns a squared distance between an
unknown syllable and a composite reference template. For the purpose of
recognizing individual syllables the only requirement on the distance is
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that it should be monotonically related to the probability that the

unknown belongs to the same syllable type as the template. However, when
a sequence of syllables is to be recognized, the information coming from
the individual syllables has to be combined. If the information
regarding individual syllables is considered to be independent, then the
appropriate combination is to multiply together the individual
probabilities or, equivalently, to add the log probabilities. It is
therefore desirable thAt the distances output by the syllable comparator
should be proportional to log probabilities.

The statistical distribution for which log probability is proportional to
squared Euclidean distance from the mean is an uncorrelated multivariate
normal distribution in which the variances of all variables are equal.
In the syllable comparator, the composite template can be regarded as an
estimate of the 'mean', and the individual utterances as samples
distributed about the mean. We would like to transform the distance
measures to give the required log probability property. Note that it is
'within-class' distributions that uiatter and not the total distribution
over all syllable types.

The standard method of carrying out dynamic programming template matching
is to find the path linking the two ends of the two words or syllables
being matched which has the smallest sum of local squared distances along
the length of the path. The local squared distances are obtained by
summing the squares of the differences of the corresponding parameters in
the pair of frames linked at each point in the path. These parameters

describe the spectrum, and may, for example, be channel amplitudes or, as
in our case, cepstrum coefficients (we exclude from this discussion the
Itakura metric [Itakura 19751).

Consider the case of a composite template being matched against one of
the utterances from which it was constructed. Providedthe utterances
have been checked to insure that they consist of an identical sequence of
phonemes, and provided, as in our case, that there are no constraints on
the form of the time warping, then all aligned pairs of frames between
the template and individual utterance should represent the same speech
sou.,I. Hence, any differences between parameter values in pairs of
frames must be regarded as within-class differences resulting from the
intrinsic variability of phonemically identical speech souhds. For our
assumption to be true that the summed squared differences along the best
path measures a log probability, certain assumptions have to hold:

i) that the within-class scatter is described by a multivariate

normal distribution.

ii) that differences between nearby frame pairs are uncorrelated.

iii) that the variation is identical for all speech sounds in all

positions in all syllables.
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iv) that the variation is identical and uncorrelated for all parameters

within a frame pair.

We take the first assumption to be approximately true. The second
assumption is patently untrue: differences in adjacent frame pairs of
sustained speech sounds will be highly correlated. We cannot so far
claim any success in dealing with this problem.

The third and fourth assumptions seem unlikely to be true. They can be
checked in principle by computing variances and covariances for every
parameter of every frame in each syllable in the inventory. For a small
inventory with many examples of each syllable, such computation would be
possible. Alternatively, systems which classify frames into phoneme-like
segments could lump together information from equivalent segments.
Neither of these options is open to us: we have a large inventory of
syllables with relatively few repetitions of each syllable, so
statistically reliable estimates for individual frames cannot be made;
and we do not attempt phoneme classification - in any case, a dubious and
error-prone procedure.

2. WITHIN-CLASS VARIANCE AS A FUNCTION OF CEPSTRUN COEFFICIENT

In estimating within-class variation we are forced into making some
generalizing assumptions. Such generalizations have respectable
precedents: in automatic speaker recognition, for example, there is
rarely enough data to estimate variability separately for each speaker,
so speakers are assumed to differ only in the values of the means of the
parameters being used to characterize them. Variation about the means is
assumed to have an identical multivariate normal distribution for every
speaker, and the within-speaker variation information is pooled across
all speakers.

In a similar spirit, we have assumed that information about within-class
variance and--covariance can be pooled across all frames of all syllables.
We then obtain a within-class covariance matrix whose elements, cij, are
given by,

c3 (xijmn - xikm)(Xjkmn- jkm )

km,n
Where xikmn is the value of the i'th cepstrum coefficient number in
the k'th frame of the n'th example of the m'th syllable type, and
Xikm is the corresponding value of the aligned frame of the template
of the m'th syllable type. The factor N has to take into account the
loss in degrees of freedom from the fact that the template values had
been estimated from the data. Consequently, in making a count for N,
each time a term was added to the sum for cij, N was incremented not
by 1 but by (t-l)/t where t is the number of tokens used to create the
template. Note that if xikm in the expression cij were replaced
by Ri, the overall mean value of the i'th cepstrum coefficient,
cij would be an element of the total covariance matrix.
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It is well known that the total covariance matrix is diagonal, i.e. that
there is no overall correlation between the cepstrum coefficients. Our
own experiments confirmed this result. It does not follow that the
within-class covariance matrix will also necessarily be diagonal, but in
fact that turns out to be the case. This is convenient because it means
that the optimum representation can be achieved by simply dividing the
cepstrum coefficients by the square roots of their within-class
variances. If we had started off with channel amplitudes there would
have been within-class -orrelations, but we could have ended up with the
same optimum representation by applying standard linear transformation
techniques to the original parameters in a manner defined by the elements
of the (nondiagonal) within-class covariance matrix.

As can be seen in Figure 1, the within-class variances decrease
monotomically with increasing cepstrum number. The variances are
remarkably consistent across the two speakers and across the two
recording sessions for the male speaker. Figure 2 shows the
correspoonding values for the total variance. It can be seen that these
values generally decrease sharply wILh increasing cepstrum number, but
that the decline is not monotonic. The values are much less consistent
across the three data sets than are the within-class variances. Previous
attempts at scaling [Pols 19771 have used measures of total variance.

Since it is the relative values of variance which matter for scaling
purposes, the values of total and within-class variance shown in the
figures has been normalized by their sum across all the coefficients.

The bars marked E in the figures represent log loudness. Although the
cepstrum coefficients themselves are not correlated with each other,
loudness is correlated strongly with the cepstrum coefficients,
particularly C1 . The main reason for this seems to be that voiced
sounds are generally much louder than voiceless ones.

The first estimate of the variances has to be made using unscaled
cepstrum coefficients. This affects both the construction of the
templates and the alignment used in the variance estimation. When this
variance information is used to scale the cepstrum coefficients, the
resuiLing alignments in the template generation and in the re-estimation
of te variances will be somewhat different. We found that the
re-estimated values of the variances did not differ from the initial
estimates by more than 10%, and the changes in subsequent iterations of
this process were negligible.

3. WITHIN-CLASS VARIANCE AS A FUNCTION OF FRAME POSITION IN THE
SYLLABLE

So far, then, we have worked with the assumption that the variance
properties of the cepstrum coefficients can be usefully investigated
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independently of the other factors which might affect frame variability.
In a similar way, we have also made the assumption that within-class
variability as a function of position within the syllable can be usefully
investigated independently of other considerations. Composite templates
are again matched against the examples which went to make them up. The
average distance is computed between aligned frames as a function of the
number of frames from each end of the syllable. This is carried out up
to ten frames in from each end of the syllable, except that for syllables
shorter than twenty frames the process stops when the center of the
syllable is reached. The count of number of frames from the end could be
made on the template or on the token being matched against it, but in
keeping with the symmetric formulation of our matching algorithm we
define the number of frames from the end of the syllable as the average
of the number for the template and that for the token (our formulation of
ensures that this average is always an integer). This symmetric
definition has the useful property that a weighting applied in this way
does not affect the alignment chosen, since at each stage the alternative
steps which the algorithm chooses between will all receive equivalent
weighting.

Figure 3 shows variability as a function of syllable position for the
three sets investigated. Since, again, it is relative variability that
matters, the curves have been normalized to be close to each other near
the center of the syllables. It can be seen that the variability is up
to three times greater at the syllable edges than in the center. There
are probably several factors which contribute to this effect. The most
obvious is that minor errors in the placement of syllable boundaries will
cause a few frames at a syllable edge to be deleted or a few frames from
an adjacent syllable to be added. The second possible factor is
coarticulation around syllable edges from the adjacent syllable. A third
factor is that the alignment path is much more constrained near syllable
edges (for example, the first template frame must be aligned to the first
token frame). Finally, the realization of the kinds of speech sounds
occurring most often at syllable edges may be less consistent than those
that are characteristic of syllable nuclei. This possibility is
discussed further below.

The scaling by position is applied during recognition by dividing all
local squared distances by the relative variability value found for the
training set. Local distances more than ten frames inside the syllable
are left unscaled.

The scaling by position and the scaling of the cepstrum coefficients
would be expected to interact with each other. We do find some
interaction, but it is quite small. In particular, the frame-number/
variability curves are very insersitive to scaling of the cepstrum
coefficients.
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Implementation of these two forms of scaling approximately halved the

recognition error: out of the 59 sentences in the English test set the
number of misrecognized sentences fell from seven to three, and when the
recognition strategy was modified to increase the error rate by retaining
only the single most promising sentence hypothesis, there were 21
misrecognized sentences without scaling and 15 with scaling.

4. WITHIN-CLASS VARIANCE AS A FUNCTION OF SPEECH SOUND CLASS

The third factor we have considered which might affect within-class
variance is the class of speech sound. We were resolutely opposed to the
rigid classification of frames into speech sound classes; rather, we
envisaged having a continuously variable metric whose form was a function
of the cepstrum coefficients of the frames being compared. It seemed,
however, that the easiest way to investigate the idea was to compute two
covariance matrices with contributions from each frame comparison being
added to one matrix or the other depending on which side of a boundary
the value of one of the cepstrum coefficients lay. For example, we tried
comp-ting two covariance matrces one of which received contributions when
the average values of Ci for the pair of frames being compared aly
about the overall mean for C1 while the other received contributions
when the average value lay below the mean. Similar experiments were
carried out using the mean values of other cepstrum coefficients and
linear combinaticns of them. In no case was there any marked difference
between the pairs of matrices.

We then plotted histograms of the values of the cepstrum coefficients

occurring in the English training material. All of the distributions
were unimodal except for Cl, which was clearly bimodal (see Figure

4). The dip between the two peaks occurs around the point that we used in
the syllabifier to distinguish voiced from voiceless segments, and it is
clear that the two peaks correspond to voiced and voiceless sounds. A
boundary placed between the two peaks resulted in a pair of covariance
matrices which were markedly different. The matrix resulting from
voiceless sounds is a scaler multiple of that for voiced sounds with a

scaling factor of around 2.5. The results for the English test material
were essentially identical.

It looked, then, as though voiceless sounds had greater within-class
variability than voiced ones. The scalar relationship between the two
diagonal matrices meant that the differences in variability as a function
of Cl could be represented by the values of the traces of the
matrices i.e. by the average squared Euclidean distance between a pair of
aligned frames as a function of the mean value of C1 for the pair.
What we expected to see was the variability uniformly increasing as

Cl moved into the voiceless region. This did not happen. As Figure
5 shows, the variability peaks at the voiced/voiceless boundary. The
most probable explanation seems to be the following. The largest and
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most sudden spectral change that can occur is at the onset and offset of
voicing. However well two syllable productions are time-aligned, the
quantization into discrete frames means that at a voiced/voiceless
transition point a voiceless frame in one production will often have to
be matched to a voiced frame in the other production. The mean value of
voiced and voiceless values, and the spectral distance between the two
frames will be very large.

If the above explanation is accepted, it means that the changes in frame
distances as a function of C1 are not a reflection of within-class
variability but are an artifact of an imperfect alignment process. it
means that we have not detected any need to modify the metric as a
function of the speech sounds being compared, and it makes it unlikely
that the rise in variability at the ends of syllables has anything to do
with the kinds of speech sounds predominantly occurring here.

5. BETWEEN-CLASS INFORMATION AND LINEAR DISCRIMINANT ANALYSIS

In addition to the need to scale parameters and resulting distance
sensibly, we would like to have a measure of how useful individual
parameters and groups of parameters are in the recognition process. For
an individual parameter, a way of measuring usefulness is to take the
ratio of the scatter in parameter values across different classes to that
within the class. When more than one parameter is to be evaluated there
is a problem with correlations. A standard method exists for dealing
with groups of parameters which involves the simultaneous diagonalization
of within- and between-class covariance matrices. The method goes under
various names, one of which is linear discriminant analysis [Bricker et
al 1971]. Apart from providing a measure of the discriminating power of
a set of parameters, linear discriminant analysis can take a set of
correlated parameters and linearly transform them into a small set of
uncorrelated parameters of equal or similar discriminating power.

We have already described how we derive a within-class covariance matrix.
We derive a between-class matrix in a similar way by matching each
syllable against a randomly chosen template (actually, the template
corresponding to the next syllable in the sentence). In some ways it
would be more strictly correct to estimate between-class covariance by

substracting within-class covariance from the total covariance, and if
what we wanted to do was to estimate the power of a set of parameters to
discriminate between all speech sounds equally, then this would be the
right approach. However, we ultimately want to improve discrimination
among syllables, and syllables do not have speech sounds scattered about
them in an even manner: the ends are invariably less loud than the
middles and voiceless sounds tend to occur near the edges. We therefore
believe that random syllable comparison is a more realistic measure of
bptween-class covariance for our application.
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The between- to within-class variance ratios of the individual cepstrum

coefficients did not show any obvious pattern, and because of the
uncorrelated nature of the original representation, there is little scope
for transforming to a representation of lower dimensionality. The linear
discriminant analysis approach did not therefore bring any immediate
rewards, but it still offers benefits if we wish to include extra
parameters which are correlated.

6. TIME-CHANGE INFORMATION AND INTERFRAME CORRELATIONS

The overriding problem remaining in dealing with distance measures is
that of spectrum changes with time and interframe correlation: the

distance measures coming from adjacent frames in a steady speech sound
are not independent and should not be added together as through they
were. Moreover, much of the information needed to identify consonants

comes from formant trajectories in transition regions. This is
particularly true for our low-pass filtered speech, where much of the
distinction between the various frication and stop release spectra has
been lost. If we knew how to meabdre real changes in speech sounds and
if we knew how to use that informption to weight the distance we are
summing, there seems little doubt that recognition performance would be
greatly improved.

Unfortunately, we do not know how to take time-change information into
account. We would first have to know how to distinguish significant
differences reflecting changes in vocal tract configuration or manner of
production from insignificant differences resulting from the inherent

time-variability of voiceless sounds compared with voiced ones, from
vocal cord irregularities or from extraneous noises.

As a crude attempt to incorporate time-change information, we tried using
the differences between consecutive frames - both the signed differences
in indiv'idual cepstrum coefficients and the squared Euclidean distance
summed over all coefficients - as extra parameters in the recognition
algorithm. Part of the rationale was that since the differences between
consecutive frames in a steady sound should be close to zero, the
difference parameters for any two steady sounds being compared should be
clw~e, and the contribution of steady sounds to the total distance
between two syllables should be reduced. It turns out, however, that the

between- and within-class variances ratios are very small for time
difference parameters. It seemed possible that in constructing templates
the averaging together of several syllable examples would reduce the
random interframe differences and that this might adversely affect the
use of difference parameters in recognition. However, average interframe
difference in composite templates was not significantly lower than that
in the individual examples. We also tried scaling frame differ-nces
inversely by syllable length on the grounds that interframe differences
would be expected to increase with speaking rate. This,



-32-

again, did not produce a positive result. It seems, then, that unLil a
reliable measure of true spectral changes can be found little progress
can be made in exploiting spectral change information.

7. SYLLABLE LENGTH INFORMATION

Another kind of information which is not used in the matching algorithm
is information about the length of syllables. Table I shows that the
between-class variance of syllable lengths exceeds the within-class
variance by a factor of around 10. Syllable length is therefore clearly
a useful source of recognition information (the variance ratios for
cepstrum coefficients lie in the range 2 to 4).

Average Between-class Within-class Variance
Syllable length Variance Variance Ratio

(Frames) (Frames 2) (Frames 2)

Female 38.4 477.5 49.4 9.7
French
Speaker

Male 32.5 406.3 44.0 9.2
English
Speaker

TABLE 1 Syllable Length Data

We would like to incorporate length information with spectral match
information in the reccgnition process. There is, however, a problem in
scaling the two sources of information: for uncorrelated variables one
can normally just make the within-class variances equal; but spectral
information is a property of the frame, and length information of the
syllable. Since adjacent frames are highly correlated, we cannot easily
know the number of spectral dimensions needed to describe a syllable.
Again, we have to wait for progress on the problem of estimating true
spectral changes or else determine an empirical scaling factor that
optimizes recognition performance. The latter approach would require
much more material than is currently available.

Before leaving the topic of syllable lengths, it is interesting td note
that, as a proportion of the mean length, the standard deviations of
syllable lengths are very close in the two languages. The conventional
theory that English is stress timed (approximately equal time intervals
between stressed syllables) and French syllable timed (approximately
equal time intervals between syllables) would predict a higher
consistency in French syllable lengths than in English ones. It is
possible that a combination of artifacts in the automatic syllabifier and
the restricted syntax limiting the syllable contexts could have obscured
the effect, but if it were large it should have shown through.
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