
D vP

4a

op

I-IEC
m J'z 1989

E

Massachusetts Laboratory for
Institute of

Technology Computer Science
July lg9O- Progress Report
June 1987

24

Accession For

NiTIS GRA-&I
DTIC TAB
Unannouced

Distribution/

Availability Codes

Ava and/or

Dist Special

DTIC
Sl ELECTE

MA 12 198911
tow% -" -.S_ -

-- i.i.N

The work reported herein was carried out within the Laboratory for Computer
Science, an MIT interdepartmental laboratory. -uring 1986-87 the principal financial
support of the Laboratory has come from the-Defense Advanced Research Projects --

Agency (DARPA). DARPA has been instrumetal in supporting most of our research
during the last 24 years and is gratefully ackno ledged here. Our overall support has
come from the following organizations:

" Defense Advanced Research Projects Agency;

" National Institutes of Health

" National Science Foundation;

" Office of Naval Research;

" United States Army Research Office;

" MIT controlled IBM funds under an IBM/MIT joint study contract;

Other support of a geiierally smaller level has come from Apple, Hewlett-Packard,
Siemens, and Giers.

.1

7 TABLE OF CONTENTS

INTRODUCTION 1
CLINICAL DECISION MAKING 5

1. Introduction 7
-2. An Artificial Intelligence Approach to Clinical Decision Making 7

3.,A Program for the Management of Heart Failure 23
COMPUTATION STRUCTURES;-, 43

1. Introduction 45
2. Personnel 47
3. Id World 47

-4: Languages and Systems>, 49
5. Architectures 56

o , -"')Applications' 60
7. Multiprocesso.'Emulation Facility 62
8. Work Under Professor Dennis' Supervision 64

- DISTRIBUTED COMPUTING" 73
1. Introduction - 74

- I2, Bulk Data Transfer Protocol 74
3. Resource Allocation in Packet Switching Networks 74
4. Gateways 75
5. MAM: A Semi-Automatic Debugging Tool 76
6. Pcmail Distributed Mail System 76

INFORMATION MECHANICS 7
1. Introduction 80
2. The Book 80
3. CA,'86 80
4. .The CAM-7 Multiprocessor 80
5.,Fluid Dynamics 81
6. Physics and Comiputation 81
7. ,Texture-Locked Loops 82

- MERCURY;, 85
1. Introduction 86
2. Model 86
3. Implementations 88

PARALLEL PROCESSING 93
1. Introduction 94
2. The Concert Multiprocessor 94
3. The Concert System Programming Environment 96
4. MultiLisp 97
5. MultiScheme •98
6. Benchmarks 99

7. Performance Studies 99
8. Architectural Studies 102
9. Related Projects 103
10. Conclusion 104

PROGRAMMING METHODOLOGY,' 109
1. Introduction 110
2. Argus 110
3. Mercury 111
4. Issues in Distributed Systems 112

PROGRAMMING SYSTEMS RESEARCH 121
1. Introduction 122
2. Plans for the Next Year 123
3. Remote Pipes and Procedures for Efficicnt Distributed Communication 124
4. Semantics 126
5. Refinements 134
6. Pragmatics 136
7. Practical Experience and Conclusions 141

--- REAL TIME SYSTEMS 153
1. Introduction 154
2. The L Architecture 154
3. Memory Systems Architecture 156
4. Seed projects 159
5. Miscellaneous Projects 162

SYSTEMATIC PROGRAM DEVELOPMENT 167
1. Introduction 168
2. The Larch Specification System 168
3. Inference Systems 170
4. Equational Logic Programming 173
5. Parallel Compilation 174

THEORY OF COMPUTATION 181
1. Introduction 183
2. Faculty Reports 184
3. Student Reports 196

THEORY OF DISTRIBUTED SYSTEMS 239
1. Individual Progress Reports 240

PUBLICATIONS 259

ADMINISTRATION

Academic Staff

M. Dertouzos Director
R. Rivest Associate Director
A. Vezza Associate Director

Administrative Staff

P. Anderegg Assistant Director, Administration
G. Brown Facilities Officer
W. Fitzgerald Fiscal Officer
M. Jones Assistant Director, Operations
M. Sensale Reading Room Supervisor
P. Vai)cini Information Manager

Support Staff

L. Baxter A. Kekejian
L. Cavallaro S. Kim
S. Chung J. Little
R. Donahue M. Rebelo
H. Dor M. Weston
M. Gibson

!'

INTRODUCTION

The MIT Laboratory for Computer Science (LCS) is an interdepartmental laboratory
whose principal goal is research in computer science and engineering.

Founded in 1963 as Project MAC (for Multiple Access Computer and Machine Aided
Cognition), the Laboratory developed the Compatible Time Sharing System (CTSS),
one of the first time shared systems in the world, and Multics -- an improved time
shared system that introduced several new concepts. These two major developments
stimulated research activities in the application of on-line computing to such diverse
disciplines as engineering, architecture, mathematics, biology, medicine, and
management. Since that time, the Laboratory's pursuits expanded, leading to
pioneering research in knowledge-based (expert) systems, computer networks and public
cryptography. Today, the Laboratory's research spans a broad front of activities,
grouped into four major areas.

The first such area, entitled Knowledge-Based Systems, involves making programs
more intelligent by capturing, representing, and using knowledge which is specific to a
narrow problem domain. The Laboratory's Clinical Decision Making Group uses expert
medical knowledge for computer-assisted diagnosis.

Research in the second and largest area, entitled Machines, Languages, and Systems,
strives to discover and understand computing systems at both the hardware and
software levels that open new application areas and/or effect sizable improvements in
their ease of utilization and cost effectiveness. A large part of the Laboratory is
involved in the architecture of large multiprocessor systems (which tackle a single task,
e.g., speech understanding or weather analysis) by the Computation Structures, Real
Time Systems, Information Mechanics, and Parallel Programming Research Groups.
Continuing research includes the analysis and synthesis of languages and operating
systems for use in large geographically distributed systems by the Distributed
Computing Systems and Programming Methodology Groups. Finally, a key application
involving distributed databases and community information is pursued by the
Programming Systems Research Group.

The Laboratory's third principal area of research, entitled Theory, involves exploration
and development of theoretical foundations in computer science. For example, the
Theory of Computation Group strives to understand ultimate limits in space and time
associated with various classes of algorithms; the semantics of programming languages,
from both analytical and synthetic viewpoints; the logic of programs; the utility of
randomness in computation; concurrent computation and the links between
mathematics; and the privacy/authentication of computer-to-computer messages. Other
examples of theoretical work involve the study of distributed systems by the Theory of
Distributed Systems Research Group, and the development of effective algorithms for
VLSI design.

INTRODUCTION

The fourth area of research, entitled Computers and People, is concerned with the
interrelationships between people and machines -- for example, the societal impact of
computers, carried out by the Societal Implications Research Group.

Some of the year's research highlights were as follows:

The Multiprocessor Emulation Facility (Professor Arvind) and the Laboratory's
Simulators were used to study the feasibility of a Tagged-Token Dataflow architecture.
The results of these and related studies have led us to the design of a one gigaflop (peak
performance) 256-processor machine which we are currently proposing (to DARPA) for
construction. A comprehensive software system, Id World, has been documented and
released. It translates functional programs from the language Id to representations that
can be emulated on the above facility, simulated on an IBM 4381 computer, or executed
on a dataflow machine. This programming environment will be used to study and
assess additional application areas.

In the same area of multiprocessor systems, we are continuing our research on: Project
L (Professor Stephen Ward) and CAM-7 (Dr. Tommaso Toffoli). L is a new model of
computation characterized by: (1) a large collection of finite state machines and state
representations with the property that programs written in object-oriented languages
(with concurrency) can be efficiently compiled into L structures; and (2) L structures
can be efficiently executed on a proposed hardware architecture associated with the L
project. The CAM-7 architecture is a highly parallel cellular automata machine that
further extends our previous architectures in this area. This machine will be able to
update in one screen refresh interval, half-a-billion digital cells which are configured
either as a cube or as a plane.

During the year, a good deal of progress was achieved in designing and defining the
LCS Common System, now named Mercury, which is aimed at facilitating the
composition of programs across different computational cnvironments. For example, a
program written in a Lisp machine environment should be able to call a subprogram
written in C under a Unix environment.

During the same period we were successful in funding (through Siemens) and formally
initiating research in learning systems. This program strives to develop theories and
machines that can learn from their environments, and not from their programmers. We
believe that the rapid technological progress in architectures and VLSI calls for a re-
examination of learning theories and approaches. In the theoretical area, we have
developed (Professor Baruch Awerbuch) an approach that can make network protocols
run reliably on unreliable networks, and we have established (Professor F. Thomas
Leighton) some important results about broadcast networks.

Two of the Laboratory's past accomplishments have achieved higher levels of
standardization. First, the NuBus standard (Professor Ward) was adopted by Apple
Computer for their new open architecture systems, starting with the Apple II GS.

2

INTRODUCTION

Second, the X-Window Standard (Mr. Robert Scheifler) for graphics has been adopted
by the MIT School of Engineering's Project Athena and some 20 companies which are
urging us to form a consortium for the continued development of X.

During 1986-1987, the Laboratory has continued its successful Distinguished Lecturer
Series with presentations by Carnegie-Mellon University's Hans J. Berliner; Cal Tech's
Charles Seitz; Robert E. Kahn, President of the Corporation for National Research
Initiatives; David J. Kuck, Director of the Center for Supercomputing Development at
the University of Illinois; Leslie B. Lamport from DEC's Systems Research Center; and
Nils J. Nilsson, Chairman of the Computer Science Department at Stanford University.

The Laboratory had several personnel changes over the past year including: the
return of Mr. Albert Vezza as Associate Director, the arrival of Dr. Thomas Greene as
Director of Computing Resource Services; and the departures of Dr. Irene Grief to
Lotus Corporation, Dr. Gerard Vichniac to MIT's Plasma Fusion Center, and Professor
Richard Zippel to Symbolics, Inc.

Our Laboratory consisted of 320 members -- 45 faculty and academic research staff,
30 visitors and visiting faculty, 60 professional and support staff, 110 graduate and 75
undergraduate students -- organized into 14 research groups. Laboratory research
during 1986-87 was funded by 12 governmental and industrial organizations, of which
the Defense Advanced Research Projects Agency of the Department of Defense provided
over half of the total research funds. Also during the same period the Laboratory
employed 23 undergraduates through the "Hacker Heaven" project which strives to
identify promising potential researchers in computer science.

Technical results of our research in 1986-87 were disseminated through publications in
the technical literature, through Technical Reports (TR 367-TR 394), and through
Technical Memoranda (TM 296-TM 332).

Michael L. Dertouzos,
Director

3

CLINICAL DECISION MAKING

Academic Staff

P. Szolovits, Group Leader R. Patil

Collaborating Investigators

M. Criscitiello, M.D., Tufts-New England Medical Center Hospital
M. Eckman, M.D., Tufts-New England Medical Center Hospital
C. Fleming, M.D., Tufts-New England Medical Center Hospital
R. Friedman, M.D., University Hospital, Boston University
W. Hardy, Ph.D., University Hospital, Boston University
R. Jayes, M.D., Tufts-New England Medical Center Hospital
J. Kassirer, M.D., Tufts-New England Medical Center Hospital
M. Klein, M.D., University Hospital. Boston University
B. Kuipers, Ph.D., University of Texas at Austin
A. Moskowitz, M.D., Tufts-New England Medical Center Hospital
S. Naimi, M.D., Tufts-New England Medical Center Hospital
S. Pauker, M.D., Tufts-New England Medical Center
W. Schwartz, M.D., Tufts-New England School of Medicine
0. Senyk, M.D. Ph.D., Tufts-New England Medical Center Hospital
F. Sonnenberg, M.D., Tufts-New England Medical Center Hospital
L. Widman, M.D., Case Western Reserve University Medical School

Research Staff

S. Marshall W. Long

Graduate Students

D. Fogg S. Novick
H. Goldberger T. Russ
R. Granville E. Sackq
Y. Jang M. Wellman
I. Kohane T. Wu
P. Koton A. Yeh

CLINICAL DECISION MAKING

Undergraduate Students

T. Chow
T-Y. Leong

1. HailmoWitz

Support Staff

R. Hegg

Visitors

N. Guarino
B. Rasmussen

CLINICAL DECISION MAKING

1. INTRODUCTION

With our colleagues at Tufts/New England Medical Center (TNEMC), we in the
Clinical Decision Making Group have continued to be involved in a variety of research
activities. Our two main projects are entitled An Artificial Intelligence Approach to
Clinical Decision Making and A Program for the Management of Heart Failure. The
main goals of our research in the former project continue to reflect the directions
outlined in last year's report. Chiefly, they include (1) the creation of a coherent
knowledge-representation formalism for medical knowledge that can serve as the basis
for research into advanced medical reasoning techniques, and (2) the application of
artificial intelligence methods to improve the effectiveness of the clinical use of decision
analysis. In the last year, we have continued to advance the work in both of these major
directions. In the Heart Failure Project, Dr. Villiam Long and his colleagues continue
work on developing a methodology and tools for assisting the physician in reasoning
about the diagnosis and management of heart failure.

2. AN ARTIFICIAL INTELLIGENCE APPROACH TO CLINICAL
DECISION MAKING

2.1. Summary of Research Progress

Our hypothesis in formulating one major aspect of our current research effort has
been that the next major steps forward in the capabilities of medical expelt systems
would come from the successful integration of a large number of independently-
developed capabilities into a single coherent system. In particular, our aim is to
combine into a single overall system methods for reasoning about:

" the causal nature of disease hypotheses,

" the physiological mechanisms underlying health and illness,

" the temporal evolution of natural processes and intervention plans, and

" the partially-known likelihoods and utilities of possible future developments.

Our initial approach has been to continue to perform research on each of these
problems independently, because each requires further advances, and at the same time
to work toward their integration by investigating the utility of general-purpose
knowledge representation languages (in particular, NIKL) to express everything required
by these investigations in a single overall language. Thus far, it appears that our
individual attempts to improve the state of the art concerning each of the above
problems is far outstripping our ability to find suitable representations for their
concepts within a single linguistic framework.

The other major focus of our efforts, on improving the use of decision analysis in

7

.

CLINICAL DECISION MAKING

clinical settings, has produced a more balanced record of progress on the conceptual and
the implementational front. Our foundational work focuses on continuing our analyses
of human performance in planning for patient management and on the development of
new artificial intelligence methods of planning under uncertainty. The more pragmatic
focus of this research is our analysis of errors actually made by human practitioners in
the conduct of their decision analyses and the creation of a Decision-Tree Critiquer
(DTC) program that will help to critique and improve decision analyses, based on our
growing understanding of how to evaluate such analyses.

The following subsections describe the major components of these efforts in more
detail and outline our related plans for the coming year. Subsections 2--10 focus on our
efforts to develop and integrate various Al methods for medical reasoning, and Sections
11 and 12 concentrate on our work on applying Al techniques to the support of decision
analysis.

2.2. Integrating Various Techniques within a Single Knowledge
Representation Framework

The most difficult technical task we have undertaken has been to try to develop a
common underlying knowledge representation formalism that is adequate to state all the
knowledge and strategies to be used in any of the various reasoning methods that we
wish to use in our medical programs. At the outset of this research, we had anticipated
that recent advances in knowledge representation research would provide us a basis for
building such a formalism. It was clear that the myriad problems of defining a
sophisticated medical epistemology and then reducing it to the implementational
requirements of a particular knowledge representation language would be formidable,
but we assumed that a focused, two-part process would enable us to perform the task,
at least to a reasonable degree of success. First, we planned to develop an informal,
English-like representation, with simple and flexible rules, that would provide an initial
target for our efforts to encode the knowledge of our medical areas of focus (in
cardiology and nephrology). Second, we planned to develop effective means of stating
in NIKL (our choice of knowledge representation technology) whatever was encoded in
our intermediate language. This translation process, though it should ideally be
automated, was planned to involve significant researcher intervention.

The next section describes out efforts toward the first of these steps, in the domain of
coronary artery disease. The second step has been a source of more serious difficulties,
because we have been unable to find good ways of expressing in NIKL all of the
concepts needed. This point is perhaps worth a short elaboration, because of course in
a descriptive language in which new terms can be intrcduced at will, it is always
possible to find some syntax into which to map anything. The crucial issue in using a
knowledge representation language is that the knowledge, once represented, should work
in a natural and effective way with the facilities built into the representation scheme.
In fact, the principal reason advanced for the utility of knowledge representation

CLINICAL DECISION MAKING

languages compared with predicate calculus is that a language like NIKL provides

certain often-useful statements and operations in a particularly concise and efficient

form. Inheritance via taxonomies and the computation of subsumption and exclusion

relations are such specially-provided mechanisms in NIKL.

Profs. Ramesh Patil and Peter Szolovits and one of our students, Ira Haimowitz, are

now preparing a paper charting our experience in converting the knowledge base of the

ABEL program for acid-base and electrolyte diagnosis into NIKL. Our principal

difficulties have been twofold: (1) many concepts and relationships that had been

concisely represented in XLMS (ABEL's original implementation language) expand by a
factor of five or so in NIKL, and, more seriously, (2) the definitional character of NIKL
makes it virtually impossible to model accurately the notion of "typical, but with

possible exceptions" that seems much more appropriate to medical knowledge.

Profs. Szolovits, Patil and Dr. William Schwartz have also prepared two reviews of Al-
based medical reasoning methods for the community of physicians. One paper [19]
explores the limitations of current methods and the potential utility of intermediate-
term programs that fall short of the ultimate ambitions of AI researchers but
nevertheless provide useful functionality based on current techniques. The second [21]
presents a technical exploration of how various diagnostic problem-solving methods of
proven value can be integrated to form the basis of a new generation of diagnostic tools.

Our plans for the coming year on this important problem of integration of knowledge
are to pursue some revisions of the NII(L representation language (as proposed by a
student, Yeona Jang), to consider alternative representation formalisms (such as
FRAPPE, see below), and to adapt our ideas on diagnostic strategies and our
experiences with existing representation efforts such as those described in the next two
sections to suggest new integrative ideas.

2.3. Flexible Knowledge Representation for Multiple Reasoning Tasks

Drs. William Long and Robert Jayes have been working on the problem of
representing knowledge in a form flexible enough to support multiple reasoning tasks
and to represent the different kinds of information actually present in real medical
domains. That is, it should be possible to represent the knowledge that the knowledge
base designer has without having to reformulate it to meet some criteria for a specific

reasoning paradigm. Furthermore, the relations between concepts should be explicitly
stated so that new reasoning methods can determine the properties they need from the
existing statements. The knowledge base should contain all of the information that
might reasonably be considered pertinent to the domain.

To explore the issues involved in representing medical knowledge and the problems
with meeting these desiderata, we have examined the problem of representing the

knowledge about exercise stress testing for coronary artery disease (CAD) patients.
CAD testing includes a wide variety of kinds of knowledge and reasoning, making it a

J9

CLINICAL DECISION MAKING

fertile domain. The knowledge of the physician includes the anatomy of the heart and
coronary vessels, the physiological requirements and abnormalities involved in
myocardial ischemia, the relationship between the electrocardiogram (ECG) and the
heart electrical activity being measured, the relationships between the actions and
effects involved in an exercise protocol, as well as the specific rules for interpreting the
test within the more general physiological understanding.

Our approach has been to write the domain knowledge as simple English statements,
keeping the description as concise and simple as possible. We made a number of
simplifications to the medical knowledge when it, seemed that more completeness would
not bring out new issues. An attempt was made to keep the entire description under
two pages. This description then formed the basis for what had to be represented in a
knowledge representation language. The next step was to transform the descriptions
into statements in Lisp syntax representing the content of each sentence and adding
additional statements to define as many of the concepts as possible in terms of more
primitive concepts. In this way we were able to build an initial set of primitive
concepts and identify the ways in which concepts need to be combined as statements of
the representation.

We have identified a number of kinds of knowledge that need to be in the knowledge
base to capture the content of the CAD description. These include subsumption
relations, logical assertions, probabilistic relations, cause-effect relations from constraints
to tendencies, correspondences, empirical rules, and descriptions of events, actions, and
plans. The subswmpV1on relations carry important properties at each concept level. For
example, the right coronary artery (RCA) supplies part of the inferior myocardium, but
it is a coronary artery and therefore can be restricted in coronary artery disease. It is
also an artery, so it supplies oxygen to tissues by being a kind of conduit. A logical
relation can assert the general location of the RCA, but the circumflex coronary artery
supplies the anterior myocardium in some patients and the inferior myocardium in
others. Such relations require a probabilistic relation. The causal relations range from
"exercise increases heart rate proportionately" to "when ischemia exceeds a threshold,
the patient usually experiences angina." The correspondences in the domain can be
quite complicated, in particular, the correspondence between electrical leads of the ECG
and the location of the electrical phenomena in the heart. In addition to the causal
information about CAD causing coronary restriction, causing (with exercise) ischemia,
causing ST-depression on ECG, it is necessary to include the empirically determined
rules such as an ST-depression greater than 3mm at maximum heart rate implying that
significant CAD is very likely (i.e., CAD sufficient to require surgery). To describe the
protocol for the exercise stress test -- with its progression of exercise levels and success
and failure termination conditions and associated measurements -- requires a language
for plans and events.

This effort has also helped to identify some of the important distinctions among
concepts of the same class. For example, there are several kinds of causation
represented in this domain. CAD itself is a progressive disease. The practical

10

CLINICAL DECISION MAKING

implication of progressive cauaation is that the disease state is always the same or

worse than it was at any known point in the past unless there has been a corrective

intervention. From this arises the distinction between corrective interventions such as

coronary artery bypass surgery and non-corrective therapies such as propranclol. A

second type of causation is the ischemia causing angina, which is only true when the

ischemia is over a certain threshold. Thus, the angina marks the ischemia.

The Lisp form of the knowledge base only uses logical connectives and a simple

pattern language. For example, the relationship between oxygen deficit and ischemia is

as follows:

;When oxygen supply to a region Is less than oxygen requirement,
the region has ischemia in proportion to the difference.

(=> (> (requirement oxygen myocardium)
(supply-of oxygen ?(area-of myocardium)))

(proportional-cause
C- (requirement oxygen myocardium)

(supply-of oxygen ?(area-of myocardium)))
(schemia ? (area-of myocardium))))

Our intention is to develop and maintain this knowledge base in multiple forms and
use it for testing new knowledge representation ideas and testing the modules using the
knowledge base. It contains more kinds of knowledge than we can currently represent
in the NIKIL constructs that we have developed so far, but as we extend the NIKL
representation we will develop and maintain a version in NIKL. We have also used this
knowledge base to examine the potential for using the FRAPPE representation system
developed by Rich and Feldman at the MIT Al Laboratory. However, our initial
conclusion is that the representational requirements are not well matched to the

facilities of their system. The knowledge base will certainly help to push the
development of the assertional component of the general knowledge representation
language for the other projects.

2.4. Representation for Physiologic and Anatomic Knowledge

One focus of our interest has been the representation of physiological and anatomical
knowledge for use in diagnostic reasoning and therapy planning. In the past few
months, Dr. Oksana Senyk has collaborated with Prof. Patil and Dr. Frank Sonnenberg,
an internist at NEMC, in a project exploring the explicit representation of anatomical
and physiological knowledge for a program which reasons about the pathophysiological
and anatomical aspects underlying the syndrome of jaundice. We have used the NIKL
language to build the knowledge base, in which several "pure" taxonomic hierarchies

121], each built around one aspect of medical knowledge, such as anatomy, physiology,
and etiology, are interconnected by links representing relations among the nodes. Each
node in the taxonomies can have multiple parents. The resulting lattice structure
provides disease descriptions which may be accessed along several dimensions, e.g.

11

CLINICAL DECISION MAKING

anatomical involvement of the disease or etiology of the disease. This organization
encourages a principled development of the knowledge base and permits one to capture
various subtleties of the domain [121. It also lends itself to reasoning about clinical
scenarios from a variety of approaches; for example, in a situation where the anatomical
involvement of a disease is known in considerable detail, while other data are sparse,
this information can be used to perform a first cut at the formulation of a diagnostic
hypothesis [131.

In this project, we have been particularly interested in the role of anatomical
reasoning in medicine. Thus, we have implemented an experimental program which
combines anatomical reasoning with the causal knowledge inherent in the knowledge
base's model of the pathophysiological processes involved in hyperbilirubinemia. For
example, the program can reason about the association between pancreatic carcinoma
and jaundice. It finds the mechanical ("anatomical") cause(s) of jaundice, namely,
common bile duct obstruction. Next it explores the mechanisms of duct obstruction in
general, among which it finds that duct obstruction can be caused by external
compression, which in turn is caused by a space-occupying lesion. It notes that this
particular cause may be relevant to pancreatic carcinoma, which is a space-occupying
lesion (it is also a type of disease, having two parents in the taxonomy). Finally, it
investigates the anatomical relations of the relevant anatomical structures and finds
that the head of the pancreas is anterior to the common bile duct.

We feel we have explored some interesting territory in the intersection between
anatomical and physiological reasoning. The problem of jaundice, with its various
mechanical etiologies, is particularly well suited to such an investigation. We plan now
to adapt some of the techniques we have developed to the domains of renal and
cardiovascular disease.

2.5. Hierarchical Reasoning

Echoing one of the principal themes of our work on integrating problem-solving
methods, Thomas Wu has been investigating three ideas, each of which focuses on the
use of hierarchies in representation and reasoning.

In an area crucial to medical reasoning because of the inherent uncertainty of medical
data and inference, Mr. Wu has developed a formalism to allow the propagation of
uncertainty between hierarchies of hypotheses. Current schemes for managing
uncertainty allow the propagation of uncertainty only between singleton sets of
hypotheses, not hierarchies of hypotheses. Nevertheless, medical concepts exist at
various levels of abstraction, necessitating a hierarchical organization.

To address this issue, he has developed a framework for making uncertain inferences
between hierarchical hypothesis spaces which is based upon the semantic relationship
between inferences drawn from a subset of hypotheses and those drawn from its
individual component hypotheses. A consistent set of inferential links from one frame

12

CLINICAL DECISION MAKING

of discernment to another can therefore be derived. This framework provides one
approach to combining hierarchical and associational knowledge.

A second area of his involvement concerns the cognitive psychology of medical
expertise. Together with Prof. Peter Politser of the Harvard School of Public Health,
Mr. Wu has recently completed a review of the various studies on clinical reasoning.
Medicine has been an interesting area for psychologists to study because of its rich and
large structure of knowledge. At the same time, though, this complexity has led to
seemingly conflicting results in the literature. These results have been cast in a general
framework for understanding and comparing results on the medical problem-solving
process. This framework suggests that medical expert systems could be improved in
several ways, such as increasing the precision and organization of medical knowledge,
using causality and abstraction in inference, and having both a focused approach and a
global control of the reasoning process.

During the next year, Mr. Wu will begin to design a novel architecture for medical
expert systems. This design will be based upon the construction of medical
classification trees that change dynamically during the course of a diagnosis. Current
classification diagnosis systems depend upon a single hierarchy based on one attribute,
such as cause or set-inclusion. His proposal would allow a large number of different
hierarchies to be built at any given time in the diagnosis. The problem space can
therefore be partitioned flexibly during the course of the diagnosis. This architecture
would allow for the representation of the many functional interrelationships inherent in
a semantically rich domain such as medicine.

2.6. Reasoning about Continuous Dynamic Systems

One of the important advances in artificial intelligence research has been the creation
of new, qualitative, techniques for studying the behavior of complex physical systems
whose structure and laws of operation may only be known approximately. This sort of
capability must also underlie sophisticated medical reasoning programs that are able to
trace their understanding of the behavior of a complex disorder to the pathophysiologic
derangements that are its etiology. Beginning with the study of physiological systems,
Elisha Sacks has developed a series of more and more powerful programs that analyze
the behavior of a physical system that is described by its equations, even when those
equations include unknown parameters.

Earlier results worked only for linear systems, which represent a useful though very
limited set of mechanisms. During the last year, Mr. Sacks has designed and begun to
implement a program called PLR that analyzes continuous nonlinear dynamic systems.
It simplifies a nonlinear system by approximating the equations that describe it with
piecewise linear ones. It derives phase diagrams for the piecewise system by combining
the local behaviors on the linear regions. The current program can analyze common
nonlinear systems including pendulums, van der Pol oscillators and servo-mechanisms.

13

CLINICAL DECISION MAKING

This work is the subject of Mr. Sacks' doctoral thesis, which should be completed in
the coming year. He has also presented a paper at the AAAI qualitative physics
workshop in Urbana/Champagne in May 1181, and two additional papers will be
presented at AAAI in Seattle this July [16][17]. A fourth is being presented at the
Second International Conference on Applications of AI in Engineering in Boston this
August.

2.7. Human Performance on Planning Tasks in Medical Decision Making

Dr. Alan Moskowitz and several colleagues have been conducting an empirically based
study to gain insight into the methods employed by physicians in planning patient
management and to build on these insights in developing the planning methodology and
terminology required for an artificial intelligence system to perform the complex task of
planning clinical management.

Clinical Case Selection

During the last year we collected the clinical accounts of several seriously ill patients,
which we summarized for presentation to clinicians to observe their problem-solving
behavior. Because we are interested in the intermediary stages of reasoning, the clinical
cases we selected for presentation needed to be unique enough that our physician-
subjects would not have pat responses to them and yet familiar enough that their
solution did not rely on obscure information or virtuoso performance. In order to elicit
planning behavior, we chose patients with multiple active medical problems with
potentially conflicting goals. We selected two such cases for conducting the interview
experiments (see Figures 2-1 and 2-2).

Subject Selection

We selected for interview eight board certified, academic internists, who are
recognized as highly competent physicians and who were unfamiliar with the nature of
the research being conducted. We deliberately selected internists without subspecialty
training in the medical concerns of the two clinical cases because they would be less
likely to have managed patients with precisely the same constellations of findings and
would, therefore, be more likely to exhibit the use of first principles in their prnblem
solving, rather than offering precompiled solutions to the problems. We plan to look at
the behavior of domain subspecialists at a later time.

The subjects of the study volunteered their participation and we obtained their
informed consent.

Format of the Interview Experiments

The interview was comprised of two parts: a thinking aloud experiment, in which the
subjects responded to the written case material in a spontaneous fashion, uninterrupted
by the interviewers; and a direct questioning segment, in which the interviewer asked

14

CLINICAL DECISION MAKING

The patient is a 73 year old man with a history of adult onset diabetes

mellitus, hypertension, peptic ulcer disease (inactive), gout (inactive) and mild

chronic renal insufficiency (creatinine 1.9 mg/dl) who presented to his

physician with a headache and was discovered to have an enlarged liver and

elevated hematocrit (Hct 65%). He was admitted to the hospital for work-up

and treatment of his hepatomegaly, headache and erythrocytosis.

During hospitalization red blood cell labeling revealed a 50% increase in red
cell mass with normal serum B12 and leukocyte alkaline phosphatase levels.

An abdominal ultrasound was obtained and showed a normal sized spleen, but

revealed an 8 x 10 x 11 cm singular mass in the right lobe of the liver and an

5.8 cm abdominal aortic aneurysm. The ultrasound was followed by an'

abdominal CT scan which showed a singular mass extending from the right

lobe of the liver to the caudate lobe, enhancing slightly with injection of
contrast material. CT scan directed percutaneous needle biopsy of the mass
was reported to be bloody and complicated by a vasovagal reaction. He

recovered from this reaction without further incident. The biopsy specimen
showed clusters of cells with malignant morphologies that were consistent with
hepatocellular carcinoma and his alphafetoprotein level was markedly
elevated, 74,500 ng/ml (normal <2.5 ng/ml). The patient was phlebotomized

3 units of packed red blood cells and his hematocrit dropped to 42.2%.1 [27).

Figure 2-1: Case I

A 72 year old man with a long history of hypertension and coronary artery
disease presented for abdominal evaluation of abdominal cramping was

discovered to have an abdominal aortic aneurysm, which measured 4.6 x 5.6 x
9.3 on ultrasound. His abdominal cramping was self limited but on a follow-
up visit he related that he was having regular episodes of exertion associated
angina pectoris. He underwent an exercise tolerance test during which he
developed 3mm of st segment depression in the inferior leads, at a heart rate
of 140 and a BP of 170/80.

His medical history is also notable for a cerebral iscbemic attack from which
he recovered fully. Other medical history includes peptic ulcer disease and
osteoarthri tis.

Figure 2-2: Case II

probing questions to clarify the subject's earlier responses or to elicit responses to topics

the subject did not address before. Both the thinking aloud segment and the direct
questioning segment were tape recorded and transcribed verbatim. The transcripts of

lWe published a formal decision analysis of this case in the Western Journal of Medicine.

15

A
4.

CLINICAL DECISION MAKING

the interviews serve as the data for our analysis. The transcripts do not contain specific
information about the subject, to preserve their anonymity.

Analysis of the Data

We are analyzing the data using "script analysis", an analytic formalism intended to
reveal the goal structure of the problem-solving process or explanation trategy. The
technique involves reading each line of the transcript and keeping track of the status of
the decision or argument by noting such items as: the nature of the point or argument
being made, the trigger for the line of reasoning, the knowledge presumed, the choices
made, or any dangling threads of the argument. The product of this analysis is an
outline or "script" of the different stages of the reasoning process, identifying operations
being performed (e.g., summarizing, making choices, defining) and the content of the
knowledge being used. We demonstrate this methodology in two manuscripts that were
recently accepted for publication [7][101. The former paper reports the results of our
preliminary work on planning in medical management.

Our work to date appears to confirm our preliminary observations that there is
considerable individual variation in the overall reasoning processes of physicians,
especially at points where hypotheses are considered and risks are assessed. The
management planning processes that we observed appear to follow an opportunistic
model, in which the different steps of the planning process are not strictly ordered and
their sequence appears to be determined by the structure of the problem, the
information happens to be available, and the inferences that happen to be activated.

Goals for Next Year

Our plans for the coming year are to finish the analysis of previously collected
protocols and collect additional protocols to substantiate our findings. We plan to use
additional case materials in other medical domains to see whether our findings hold for
problem solving in these other areas. We also plan to employ clinicians at different
levels of training to see how this affects the planning processes that we observe.

2.8. Planning under Uncertainty

Work on planning under uncertainty is aimed at generalizing the traditional Al
planning framework to handle partially satisfiable goals and uncertain effects of actions,
two requirements of medical therapy application domains. Decision theory provides a
criterion for choice in such cases, but does not address the problem of assembling
complex strategies from distributed specifications of individual actions or plan
fragments. Yet this is the form that knowledge is likely to take in comprehensive
medical knowledge bases of the future.

Michael Wellman, as part of his doctoral research program, has designed and begun to
implement a new planning system that will address this problem. The heart of our
approach is to introduce a dominance prover into the basic planning engine. The

16

CLINICAL DECISION MAKING

dominance prover tries to prune away large classes of potential plans by finding classes

that are guaranteed to contain plans at least as good. Dominance relations are recorded

in a lattice of the plan classes generated. New plan classes are classified in the plan

lattice according to the subsumption relation, thereby ensuring that subclasses of classes
already determined to be dominated are not searched. The plan lattice supports a
constraint-posting approach where plans can be explored at multiple levels of
abstraction. A further description of this planning methodology is provided in a recent
paper [231.

To design a planner based on this approach, we need to choose several other
representat1 =s and mechanisms. In particular, we need a representation for the effects
of actions and relations between events. Our knowledge representation describes
influences among actions and events in terms of a qualitative probability formalism we
have developed for this purpose [251[261. This representation has significant modularity
advantages over purely numerical schemes because, while the exact joint probability
distribution over a set of events varies substantially with context, the direction of
influences are more reliably taken as constant. The conclusions that may be drawn are
weaker, but are often sufficient to derive useful dominance results for the planner.

At this time the design for SUDO-Planner is substantially completed and the
implementation is well underway. For a fuller description of the project, see [24].

Over the coming year we will complete the implementation of SUDO-Planner and test
it on a range of overlapping examples. Extensions to the theoretical framework will
include an investigation of representations for qualitative synergy and the development
of reasonable focus mechanisms for limiting the search space.

2.9. Case-Based Reasoning in a Domain with Causal Models

Most current expert systems have the following characteristics:

1) They rely on knowledge compiled from experts.

2) Their performance does not improve with experience, unlike human problem
solvers. When faced with the same difficult problem twice in succession,
they work just as hard the second time.

3) They can not modify their knowledge as a result of their problem solving
history.

The difficulty of extracting the expert's compiled knowledge, and the problems of
depending only on compiled knowledge for problem solving have been well documented
(e.g., by Waterman and Davis). The advantages of having a problem solver that could
learn from experience has also been addressed elsewhere (e.g., in Michalski's writings).

17

CLINICAL DECISION MAKING

Phyllis Koton is implementing a medical therapy and follow-up program for heart
disease (CASEY) which will incorporate the experiential component seen in human
problem solving. It draws on previous work of Michalski, Winston and Kolodner on
learning, reasoning by analogy, case-based reasoning, and memory organization.
CASEY is designed in response to the three characteristics described above. First,
instead of having to extract compiled knowledge from experts, the system itself is able
to create new pieces of knowledge as a result of generalizations from the cases it has
seen. Second, the system will be able to use diagnostic and treatment solutiolls from
previously seen patients to aid in the treatment of subsequent patients. Finally, some
knowledge (e.g., strategic and treatment, but not basic physiology) contained in the
system will be revised in response to feedback on its success in solving clinical

problems.
2

The basic idea of the program is the same as other programs which use analogical
reasoning: compare the current problem to a set of previously seen problems stored in
memory. If current problem is "sufficiently similar" to a previous problem, the
program can use the previous solution as a "shortcut" to solve the current problem.
However, if the program does not find a sufficiently similar problem, then the current
problem must be solved from scratch (presumably a more difficult process). The system
also adds the current case to its memory of problems it has seen.

In order for the program to know if the transferred solution worked, the stored
precedent solution must include an expectation of the results of using it, and the
program must be given follow-up information so that it can evaluate the results. If the
actual results don't meet the expectation, the program will go back and analyze the
current case and the precedent to see why its expectation was not met, which might
result in a more restricted applicability for the precedent. If the expected results were
achieved, the current case is added as one more piece of evidence in favor of using the
transferred solution. After solving a number of related problems, the program can
make generalizations from the experience in solving the earlier problems.
Generalization consists of placing cases that have features in common in (conceptually)
adjacent locations in memory, and extracting the features in common for use in making
predictions about subsequent similar cases.

The proposed system differs from previous work in two ways. The first difference is
that CASEY makes use of causal explanations of illness. The causal explanation from a
precedent case may be transferable to a new case presenting with similar symptoms,
thus allowing the new case to be understood quickly. Comparing the causal
explanations of a precedent case and a new case allows the program to make causally-

2 The philosophical assumption here is that there are two kinds of knowledge in the program's
knowledge base: associational knowledge (as, for instance, between a symptom set and a disease) whic,:
can be modified by experience, and basic science or "first principles" knowledge, which cannot.

18

CLINICAL DECISION MAKING

grounded predictions
3 about the new case based on the precedent.

The second difference is that while all previous case-based reasoners have worked to

restrict the set of features that are used to store and recall cases from memory, the

system will index every given feature of the case. The reason for doing this is that the

importance of a feature can not always be predicted in advance. If a feature is

determined to be unimportant a priori, and a request is later received to match a case

using that feature as an index, the system must construct an alternate method of

searching for cases having that feature. This is time-consuming and not always

successful. By using all features as indexes the system increases its chances of retrieving

relevant and useful cases. The frequency with which an index is used will determine the

strength of the recall of that index.

The proposed system also offers a method for combining "shallow" and "deep"

reasoning in a program. By comparing a new problem with previously seen problems,

the program has information about the types of problem-solving methods that have

been successful on similar problems in the past. If the new problem matches a case that

has been solved in the past, the solution that is transferred is essentially a "shallow"

solution, because the reasoner can avoid the complicated causal reasoning that the

original solution required (only verifying it, as will be discussed below). As several

similar cases are solved, the information about them and their solution paths is

generalized and becomes new "shallow" knowledge. If no matching case is found, the

problem solver must use "deep" reasoning to solve the problem, using basic knowledge.

2.10. Temporal Reasoning

During the past year, we have completed two projects investigating different aspects

of the problems of temporal reasoning. Mr. Thomas Russ has made available the initial

implementation of a temporal control striieture. a set of program utilities for the

Symbolics 3600 that helps in the implementation of programs that reason with data

that change over time [15]. The chief facility provided by this package is a separation

between two components of a program's capabilities for reasoning about time. One

component allows the expression of decision and interpretation rules in a time-

independent, "instantaneous" fashion, supporting the "onvention that decisions are

made instantaneously based at all times on the availab 9 current information. The
spcond component keeps track of the dependencies of current data on past reports and

arranges to rc-c.'ecute those instantaneous decision rules whose data prerequisites have

changed, either because of the advance of time or because of the correction of

previously-incorrect historically-reported data. We plan to incorporate this model into

our common representation.

The other project, done as part of Dr. Isaac Kohane's M.D. studies at Boston

3
(As well as empirically-based predictions.)

10

CLINICAL DECISION MAKING

University and done in collaboration with us, investigates a knowledge representation
for reasoning with imprecisely-known temporal intervals. Its principal contribution is to
suggest practically-useful ways to limit the complexity of the obvious book-keeping
necessary to calculate the temporal constraints imposed by a number of independent
partially-known time relationships. Dr. Kohane's stidy emphasizes the utility of those
temporal relations that correspond to the causal structure of hypotheses, in preference
to other temporal relations. This work has been reported in a paper presented at
SCAMC [5), and the thesis is available as a technical report [6].

2.11. Improving the Clinical Application of Decision Analysis

Our colleagues at Tufts/NENIC are continuing to develop an expanded terminology
for decision trees to allow the representation of events in more detail than would be
engendered by simply decision, chance, and outcome nodes. We have been tracking the
clinical decision making consultation service for the past year, cataloging the errors that
appear in decision trees and iLe sequences of errors made as such models evolve over
time. Although most of our computing development has been in the Symbolics
environment, we have begun a parallel effort on PC class machines, in both PROLOG
and Lisp. We have also continued to improve our microcomputer DecisionMaker
environment, distributing the first major update in three years. That system is now
being used in over 100 settings outside of Tufts. Its representation scheme has become
the de facto standard of the field.

The utility acquisition project has been focusing on three related domains -- prenatal
diagnosis, contraceptive counseling and counseling about changes in behavior, and
seeking information about antibody status with respect to IIIV infection. We hope to
have a form of these modules, integrated with the DecisionMaker tree analysis
environment, running very shortly. That module will then be available in a public
display through which we can collect data about its utility. As a portion of this project,
some of the conclusions of one of our analyses concerning IIIV infection were rectntl v
published in the New England Journal of ,Mledicine and have provoked widespread
discussion about screening of low prevalence populations.

DecisionMaker

We have completed a major upgrade of the l)ecision.Maker decision analysis system,
now being distributed as Version 6.0. It was demonstrated at Medlnfo 86 and will be
demonstrated at SCAMC 87. The representation of decision trees has been enhanced
and a full tree editing capability has been added. We have also been explorinr the
implications of the distribution of risk profile results and have added the automatic
calculation of variance (the second moment) to expected utility calculations. The cost-
effectiveness section now automatically calculates tihe frontier of non-dominated cost
effective strategies.

We have almost completed a script player for recording and replaying (wit hI t le option

20

CLINICAL DECISION MAKING

of including variable input) sessions for either education or for developing simple

variations on fixed decision trees. We are beginning to develop the ability to recall

arbitrary text tagged to various objects within a decision tree problem.

We have also begun to include the concepts being developed in the Symbolics 3600

environment into our PC system. A representation for different sub-types of decision

nodes has been specified in a manner compatible with existing software for summarizing

decision trees. We have made ou" first foray into symbolic evaluation of complex
decision trees, both in the 3600 and PC environments.

Utility Analysis

We have developed a scheme for acquiring patient utility information in both lottery

and time trade-off modes using a PC system with a graphic display. We have applied
this technique to problems in utility acquisition for prenatal diagnosis and contraceptive

counseling. We are developing a module to provide counseling about HIV screening.
The modules have been developed in a combination of Turbo Pascal (the native
language for DecisionMaker) and Turbo Prolog. The systems uses several scenarios and
tradeoffs to check answers for internal consistency and feeds inconsistencies back to the
user for resolution.

We have arranged for this module to be displayed in the Boston Computer Museum.
where it will be used by the general public. The information we collect from that
exposure should provide information about the durability of this approach.

2.12. Automatic Critiquing of Errors in Decision Analyses

As we have stated, one of the major foci of the group's interests in medical artificial
intelligence centers around the automatic critiquing of errors made by decision analysts
in structuring and analyzing medical decision trees. During the past year, the group has
developed a catalogue of errors made by novice medical decision analysts and generated
a taxonomy of errors based on the catalogue. These products have been used to develop
an existence demonstration of a program, the Decision Tree Critiquer DTC. This is a
decision-tree building software environment that we developed in Lisp. The work has
been done in collaboration with the Division of Clinical Decision Making at Tufts-New

England Medical Cen, ,r (TNEMC).

The material for the catalogue of errors w, 'ollected at TNEMC. N-w Fellows
arrived in the Division on July 1. 1986 and participated in the patient consultation
service. Many of the consults present medical problems that are amenable to decision

analysis. Active consults are presented formally semi-weekly and are discussed
informally as needed. These discussions give ample opportunity to observe the Fellows'
learning process and to collect errors from their draft analyses. We have also developed
a taxonomy of errors in medical decision analysis based on the material in the error

catalogue. The work will be generalized into a taxonomy that is domain inlependent.

21

CLINICAL DECISION MAKING

The error catalogue has been used to develop the critiquing capability of the DTC.
This program was originally written by Michael Wellman, a graduate student in our
Group. The program, as originally written, allowed the user to develop and modify
decision trees with a minimum of effort and to analyze these trees and choose an
optimal strategy based on the maximization of expected utility. Further development of
the DTC during the past year has resulted in a version of the program that can
recognize and critique structural errors in decision trees.

Our critiquing methodology is based on the hypothesis that many essential features of
a decision problem can be understood from a decision tree without massive amounts of
domain-specific knowledge, such as medical knowledge. Our tree representation
elucidates these features by providing a taxonomy of node categories to spec'fy
distinctions among nodes beyond the usual types of decision, chance, and terminal
nodes. Test decisions and treatment decisions, for example, are two kinds of decision
nodes. Chance nodes are classified as test results, treatment efficacies, physiologic
states, and complications. The nodes are the primitives for building an abstract
structural description of a decision problem. The critiquer analyzes the description
encoded in the decision tree to validate the structural accuracy of the proposed model.

The DTC's response to a decision tree is governed by critiquing rules expressed within
our representational language. For example, the program recognizes and questions test
decisions that are modeled without discernible costs (e.g., side effects or money) because
the decision to order a truly cost-less test need not be modeled explicitly. The program
also questions the analyst about stra.tegies in which actions are conditloned on
unobservable physiologic states rather than observed test results and strategies that
include explicit test decisions but in which no differential action is taken for different
test results.

Recently, work has commenced on developing the capability of DTC to revise
probabilities that appear in a decision tree using an event space that represents all
possible events on which probabilities in the tree can be conditioned. Probability
revisions are a frequent source of errors in medical decision analysis because the
calculations can be very complex, especially when dealing with non-exclusive sets of
events or conditioning events that have many possible outcomes. The availability of an
automatic transformation capability may prevent some errors in probability
calculations.

We plan to present two abstracts describing aspects of this work at the Society for
Medical Decision Making meeting this October [2][201. During the past year, we have
also developed a classification for decision problems which was applied to the literature
of existing decision analyses. That study was published in the Annals of Internal
Medicine [4].

Plans for Future Work

The development of the error catalogue will continue as long as it yields a significant

22

CLINICAL DECISION MAKING

amount of new information. Since new Fellows will arrive in the Division of Clinical

Decision Making in early July, we anticipate that the next few months will be the most

important. Shortly, we will begin to generalize the catalogue of errors and the error

taxonomy to be domain independent.

We are continuing to work on the development of the DTC. Current rules for

critiquing have been analyzed for common structure in order to begin to develop a rule

processor. Next, we plan to develop rules to critique more complex, non-structural

errors. Finally, during the current year we hope to begin to develop an automatic

explanation capability for the DTC.

2.13. Miscellaneous

In addition to the range of work reported above, various members of the CDM Group
have been involved in studies and reviews that have led to publications. Prof. Patil co-
directed an MIT conference on the future of artificial intelligence research, which led to
publication of a book on that topic [3]. Prof. Szolovits contributed a study of tools for
expert systems construction to that volume [221, and Prof. Patil also contributed a
chapter outlining his thoughts on how medical diagnosis systems are evolving [141. Dr.
Robert Kunstaetter won second place in the 1986 student paper competition at SCAMC
for his paper on using a knowledge-based model of physiologic reasoning in medical
education [8].

3. A PROGRAM FOR THE MANAGEMENT OF HEART FAILURE

The objective of this research is to develop a computer-based methodology for
assisting the physician in reasoning about the diagnosis and management of patients,
particularly when causality, physiological relationships, and changes over time are
important to the reasoning process. The disease context for developing the methodology
is the diagnosis and management of cardiovascular diseases that have as part of their
manifestation the syndrome of heart failure, thus requiring a thorough understanding of
the hemodynamic and physiological relationships of the cardiovascular system for
effective management. The approach is to develop a system that represents what is
known about the patient in a form that can be displayed graphically and can be
manipulated by the physician to explore hypotheses and investigate their implications.
During the first two years of the project, we developed the basic structure of the
program including the logical support for relationships between physiological states, a
methodology for projecting changes given interventions, a method of graphical entry of
the input data, and a simple scheme for interpretation of the data. During this past
year we have continued to work on the reasoning of the therapy management module as
we are expanding the physiology module to cover the diseases that lead to heart failure.
The next two years of the project will emphasize developing the facilities necessary to

make the program a useful tool in the hospital setting, but will also include further
development of the reasoning mechanisms and physiological model of the program.

23

CLINICAL DECISION MAKING

During the past year, we worked on all of the modules of the program to some extent,
but most of the effort was focused on the mechanisms and relations in the physiology
module needed for rea.soning about patie'nt management. First, however, we will discuss
the progress in the developmenrit of thi input and diagnosis modules including

developing outlines of the primary pathophysiological mechanisms and manifestations of

the pertinent disease entities for use in diagnostic reasoning, adapting a mechanism for

probabilistic reasoning about input data as evidence for physiological states, and
completing the reimplementation of the earlier PDP-10 based angina program on the
Symbolics computer.

In addition to the work on the progran, there are two other closely related efforts

being conducted by graduate students Tlinomas Iluss and Alexander Yoh. Mr. Russ is
developing a general control structure for supportilng reasoning with time dependent
data and Mr. Yeh is developing 'methods for dealing with the uncertain values and
relations in predicting therapy effects in the I leart Failure Program. These projects will
he discussed later in this section.

3.1. Module Analyses

Each of the diseases that can cause heart failure has pathophysiological consequences
that are useful for confirming or rejecting the disease as a hypothesis and for tracking
the progress of the patient management, As a starting point for extending the input
and diagnostic modules to cover these diseases, we have made outlines of the
physiological mechanisms and the important manifestations of each disease. The
physiological mechanisms are specified in terms of the chains of causation that lead to
the abnormal states encountered in the diseases. These causal chains are specified at
the same level of abstraction as the existing model. The observations included in the
outlines are those that are most useful in tracking the changes in the disease during
therapy and those that are useful for differential diagnoses. These outlines will he used
to extend tile diagnostic modtle and input module to cover the diseases as we extend
the physiological model to cover these diseases.

One of the weaknewse of the earlier version of the progrim is the mechanism by
which inputs are used as evidence for deterniing the state of the physiological
parameters. The present mechanism attaches procedures to each parameter that
evaluate the pertinent inputs. In a search for a more principlese iechanism for
evaluating evidence, one that also takes into account evidence from other parameters,
we have begun exploring casal interpretations of Bayesian probahilities as developed by
Judea Pearl [II] and others. This year we produced an initial implementation of Pearl's
scheme for the IIeart Failure Program. On(. prhleni with this scheme is its restriction
of no loops andci requirement th at rejoins be handled specially in the chains of
relationships. In our ihplemcntation this problem was avoided by only drawing
conclusions when there are no lxps or rejoins and withdrawing conclusiorm if they
develop. We have not yet incorporated this nechanism into the whole program, so we

24

CLINICAL DECISION MAKING

do not yet know whether this restriction will be seriously limiting. However, this
mechanism should provide the appropriate functionality for local reasoning about

evidence.

The angina program, developed on the PDP-10, includes the initial implementations of
all of the modules of the program from input to therapy recommendation, but did not
include any of the graphics that are now possible on the Lisp machine. The

physiological model in the program focused on the determinants of myocardial oxygen
supply -- the considerations most important for managing a patient with angina and
heart failure. Over the past year we have incorporated all of the important
functionality of this program into the Heart Failure Program on the Lisp machine.
Thus, we have a shell that includes a simple implementation of all of the modules to
which we can add the more sophisticated modules we are developing now. With the
angina physiological model as the program model, this provides an effective
demonstration of the functioning of the whole program.

The therapy module has been the primary focus of our efforts over the past year.
Two years ago we began the development of a mechanism for reasoning about the
expected changes in parameters resulting from application of therapies. The mechanism
is based on signal flow analysis and computes the changes in the parameters from
steady state to steady state. The advantage of this mechanism over other means of
solving the equations is that we end up with a record of the pathways of influence on
the parameters and their relative contribution. This record constitutes an explanation
of the change. Last year we applied this mechanism to a model with qualitative
relations on the links between parameters. This worked well in our early tests in which
we compared the actions of drugs in the normal patient to the model predictions, but
we had considerable difficulty extending the model to account for the behavior of mitral
stenosis, the first valve disease we considered. Since most of the parameters have
known quantitative relationships to other parameters and the computational mechanism
supports quantitative reasoning, we decided to explore the feasibility of a quantitative
model. To do so required two significant additions to the reasoning mechanism as well
as a new model. The two additions are the handling of integrated parameters and
compensating for non-linearities.

The shape of the physiological model is intended to conform to the usual notion of
causality in the cardiovascular system (basically in the direction of blood flow), even
though the equations are actually constraint equations and therefore directionless. Since
one normally considers that the input pressures produce cardiac output on both the left
and right sides, there is a problem in representing the equality of left and right outputs
in steady state. Physiologically these outputs are the same because blood volume shifts
between circulations until they are the same. To capture this idea, it is necessary to
have levels or integrated variables to represent the volume in a particular circulation.

We extended the reasoning mechanism to handle integrated relationships by making
the observation that in steady state, the derivative of an integrated parameter is zero.

25

CLINICAL DECISION MAKING

This provides the additional constraint needed to determine the level of the parameter.
With this extension the procedure for determining the change in parameters resulting
from an intervention requires two steps: first determine the levels of the integrated
parameters necessary for their derivatives to be zero, then use these values plus the
original change to determine the final values of all of the parameters.

The second extension to the reasoning was to handle non-linearities in the
relationships between parameters. A non-linearity in the relationship between two
parameters implies that the gain between the parameters varies over the course of the
change. The algorithm uses the initial value of the gain to determine the changes, but
that is not always adequate. Our solution has been to adjust all of the gains to be the
average gain over the range of the change and iterate until the final values conform to
the constraint equations. Although this approach has theoretical limitations, in practice
it seems to converge rapidly to the solution.

With this mechanism in place, it was possible to convert our physiological model to a
quantitative form. The equations we used came from several sources. Some of the
equations were obvious, such as the relationship between cardiac output, vascular
resistance, and pressures. Others were determined from data in the literature, such as
the relation between heart rate and systolic time. The rest were borrowed from existing
models such as Coleman's Human Program [1], including the relation between blood
pressure and vagal stimulation. The basic set of equations we have been using is in
Figure 2-3. The parameters included in the model are those that are likely to be
measured in the patient or reported in the literature plus the parameters needed to
account for the actions of the usual cardiovascular agents. So far we have focused on
short term effects, so mechanisms such as those causing changes to the blood volume
have not yet been included in the model.

To this initial model we have added some of the common cardiovascular therapies.
(New therapies are being added as we investigate experiments that include them.) Each
therapy is added as a set of changes to the parameters that the therapy effects directly.
The proportions are determined by comparing the model predictions to published
results. In some cases the model of the drug had to be extended to include lesser direct
effects to account for the published changes. The nodes and links for beta blockers,
hydralazine, and nitroglycerin are included in the graphic presentation of the model in
Figure 2-4.

Also, to the initial model we have started to add relationships to account for the
different diseases causing heart failure. So far, we have added three to the model,
aortic stenosis, aortic regurgitation, and mitral stenosis. These were added by including
equations relating the pressure drops and regurgitant volumes to the degree of value
dysfunction from the original equations developed by Gorlin. As we investigate other
diseases we will include more such relations in the model.

26

CLINICAL DECISION MAKING

venous..vol = blood-vol - pulm..vol -

dead..vol / (.7 + .3 x symp..stim) x venous..constr
right output

rap = 5.7 x venous..vol - resist..venous-ret x co
rvedp = rap
rv-output = rv..campl x rv..emptying x 1.375 x (rvedp + 4.0)
pa-press = lap + put m -vascul -resist x rv..output

left output
lap = if (< pulm..vol .7) then 36.0 x pulm..vol - 10.2

else 125.0 x pulm..vol - 72.5
lvedp = lap
IV-.output = if (< lvedp 8.0) then .75 x Ivedp x lv-compl x Iv..emptying

else (.5 x lvedp + 2.0) x lv..compl x lv..emptying
co = IV-.output
;blood pressure and sympathetic response

blood-press = co X svr
systol-press = blood-press
symp..stim = -.03 x (blood-press - blood -press.-base) + 1.0
vagal..stim = .033 x (blood-.press - blood.-press.-base) + 1.0
;heart rate

heart-rate = base..heart..rate + 37.5 x symp..stim -

(if (< vagal-stim 1.0) then 23.0 x vagal..stim
else-if (< vagal..stim 2.0) then 17.0 x vagalstim + 6.0

else 10.0 x vagaL-stim + 20.0)
syst-time = 17.3 + .075 x heart-.rate
dias-time = 42.7 - .075 x heart-.rate

left systolic function
inotrop = symp..stim
lv-systolic..funct = inotrop x lv..systolic..funct -base
IV-.emptying = lv-systolicfunct x

(if(< systol..press 100) then 1.0
else 1.4 + -.004 x systol..press)

right systolic function
rv..systolic..funct = inotrop x rv..systolic..funct -base
rv..emptying = rv-systolic-funct x

(if (<z pa-press 20) then 1.0
else 1.1 - .005 x pa..press)

vascular resistance
svr = svr..base + symp..stim x svr..response
resist -venous -et = svr x .025 + .9
pulm..vascul-resist = pvrkIl + rv..output x pvr..k2
;pulmonary volume

pulm-vol = integral (rv-output - co)

Figure 2-3: Basic Physiological Model Equations

27

CLINICAL DECISION MAKING

3.2. Model Validation

Our method of validating the model has been to compare published data to the model
predictions. We are taking the data from papers in the literature in which patients
with one of the diseases was given one or more of the therapies or was exercised and the
values of the hemodynamic variables are reported before and after the intervention. As
long as the hemodynamic data is fairly complete, the initial values of the model
parameters can be computed or estimated and the model can simulate the patient. Our
efforts thus far in validating the model have been very fruitful. The paper we
presented at the Computers in Cardiology Conference in October [91 provides more
detail of the modeling of the valve disorders and exhibits the initial results of the
comparison. The model proved sufficient to account for the average behavior reported
in each of the five papers studied. With only two or three minor exceptions, the
predictions were within the errors of the mean reported in the papers for all of the
parameters included in the model, once appropriate distributions of direct effect were
determined for the therapies and the exercise the patients experienced.

Figure 2-4 shows an example of the prediction of the model for a case in which a
patient having mitral stenosis is exercised (actually we used the average data for 10
patients). The data in the paper included the heart rate, cardiac output, left
ventricular systolic pressure, left ventricular end diastolic pressure, pulmonary artery
pressure, and pulmonary wedge pressure. The rest of the parameters were computed
from these to run the model by making assumptions consistent with the state of the
patient. Since right atrial pressure was not reported and these patients were not
reported to have any signs of right sided failure, the right atrial pressure was assumed
to be zero. The degree of mitral stenosis shown in the diagram (zero is normal) is
computed from the pressure drop across the mitral value. Parameters that have no
initial value at the bottom of the node are qualitative parts of the model intended to
indicate the source of influences on parameters such as myocardial ischemia and blood
volume. For this example, the amount of exercise applied was chosen to produce the
cardiac output of 8.0 that was reported in the paper. Under these conditions the
predictions for the other reported parameters were all within the errors of the mean. In
the figure there is also highlighting along two pathways from exercise to cardiac output.
This illustrates the capability of the program to identify the most important pathways
for producing the change. This highlighting serves as a type of explanation of the
predicted changes and points the user to the areas of the model that would be most
sensitive to changes.

Since then we have continued the investigation, both to include other disease
situations and to determine the extent of variation in response to interventions among
patients. The next paper we studied investigated patients with congestive
cardiomyopathy given dobutamine. The model could be made to reproduce the average
behavior by adjusting the direct effects of dobutamine, but among the individual
patients for whom adequate data was included in the paper, there was considerable
variation. We are currently considering possible explanations for this variation

28

CLINICAL DECISION MAKING

l (Gffrtd*) ,~h e Iystom t e aient, H-eart
Load Model Load Patient Refru , Rw 1 Failure

E dit I,.j [xrn Pro ram

Figure 2-4: Prediction for Mitral Stenosis with Exercise

including the possibility of variable mitral regurgitation. In any case, we need to
determine the extent and types of variation among patients with all of the diseases to
be able to give realistic predictions of the likely outcomes of a therapy.

One of the advantages of the method we have chosen is the possibility of extending it
to reason about ranges of possible behavior. As we gather data on patient responses
under various conditions, we will gain a better understanding of the ways in which
patient response varies. Once we have this information, we plan to add to the
mechanism facilities for including ranges of possible gain along links and ranges of
direct effect from interventions as needed to anticipate the usual range of patient

response.

I9

CLINICAL DECISION MAKING

Overall, the results of comparing the model predictions to literature have been very
encouraging. Not only do the appropriate qualitative changes take place, but the
quantitative predictions have had enough resolution to force us to include some of the
minor direct effects of some of the therapies to account for the reported data. For
example, in modeling propranolol our first model of the effect was to say that it
decreased inotropic effect and heart rate in the proportions that sympathetic
stimulation increased them. From the predictions, it was clear that that did not
account for the increased systemic vascular resistance reported in the patients. We
investigated further and discovered that in decreasing the beta sympathetic tone in the
vascular system, the drug leaves the alpha sympathetic effect unopposed and therefore
the systemic vascular resistance actually does increase. When this and a similar effect
on the pulmonary vascular resistance were taken into consideration, the predictions of
the model corresponded to the actual behavior.

Thus over the past year we have made progress on all of the modules of the program,
but most of the effort has gone into improvements to the therapy module. We feel that
the new quantitative capabilities of the therapy prediction mechanism will be beneficial
not only for predicting therapy results but also for using the results of therapy to
differentiate among contending hypotheses.

3.3. A Control Structure for Building Time-Dependent Data

Thomas Russ has been continuing the development of a control structure for writing
expert systems that use time dependent data. The ability to have multiple sessions and
track changes in a patient's state is crucial for patient management applications. The
essential simplification that the control structure provides is the decomposition of
decision-making over time into a series of "snapshots," each of which is a static
framework which provides the context for more traditional reasoning strategies.

In support of this static framework simplification, it is necessary to develop a state
description from raw input data. The construction of state descriptions from the data
is an example of abstraction and problem structuring. One concept to receive special
attention in the past year was the idea of "persistence" of laboratory or observational
values. After a certain period of time, previous results are considered to be too old to
have a bearing on current decision-making.

As an example of the usefulness of this approach, a Master's thesis project was
completed by Steven Novick using the control structure that is being developed. The
thesis describes a program to reason about the underlying disease state of patients in a
cardiac intensive care unit suffering from ventricular arrhythmias.

30

CLINICAL DECISION MAKING

3.4. Dealing with Model Uncertainty

Alexander Yeh is building a model of the human cardiovascular system which tries to
answer questions about cardiac patients relating to the possible effects (main and side-)
of a certain therapy on a particular patient (with a particular set of conditions). The
model is based on the work of Dr. Long and others, and includes:

" Ahout 40 to 50 variables, including blood pressure BP, cardiac output CO,
systemic vascular resistance SVR, etc.

" Constraints (equations) between the variables. An example is: BP
CO *SVR.

The constraints are arranged in an 'intuitive' way, with causality in terms of blood
flow being a primary determiner of what is intuitive. As an example, the constraint
above indicates that CO and SVR together 'causes' BPs value.

The model's properties include the following:

1) The constraints are nonlinear in the variables that can vary in value. An
example is the BP equation above. Besides multiplication, exponentiation to
a constant power is also present. In other words, algebraic operations are
used.

2) Because of stability and other properties, the modeled system can be viewed
as moving from one temporary equilibrium to another.

3) Like many models in biology, this one has many feedback loops. The loops
affect many variables, and different loops affect a given variable in different
ways (one loop may increase a variable's value, while another is decreasing
it). The loops are comparable in the size of the changes they induce (one
loop is not negligible compared to another).

A major problem with using the model is that the input data can vary greatly from
patient to patient, and even within a given patient from one moment to another when
(s)he is at rest. Examples include the following:

" In one experiment, the ten patients had pulmonary arterial pressure
measurements ranging from 14 to 53 mm of mercury (a factor of over 3).

" For one patient, the pulmonary wedge pressure went from 25mm in one
control run to 34mm in another, a gain of over one third.

Current methods for dealing with this varying data all have problems: Bounding
algorithms (find upper and lower bounds), qualitative math systems, and order of
magnitude math systems all tend to give results that are too loose, general, or
ambiguous to he useful. Monte-Carlo methods give results in a form that is hard to use,

31

CLINICAL DECISION MAKING

because one never knows when an important case has been randomly left out, and
because finally, complications can arise when the assumed input probability density is
not quite right. Unless an equation has only linear operations and/or multiplications
between uncorrelated variables, using it directly to find the means has little formal
justification (probabilistic or otherwise), and often gives bad results. Assuming the
model is quasi-linear about an operating point and using Gaussian densities sometimes
results in skewed densities being called Gaussian. However, this last method does seem
to have some utility.

To improve on the situation, Mr. Yeh proposes two possible methods. The first is a
variation using upper and lower bounds. Normally, one uses known variable upper and
lower bounds and any known (in)equalities to find the upper and lower bounds of the
variables of interest. The bounds on the latter often tend to be too loose to be useful.
Instead of this, the method lets the known bounds and (in)equalities not hold all the
time, but just at least n% (say for example, 50%) of the time. Given the proper
bounding algorithm, the resulting bounds on variables of interest will also hold at least
n% of the time. Since the known bounds and inequality(s) that may only hold 50% of
the time will be tighter than those that hold all the time, the resulting bounds should
be too. One then repeats the process with other values of n (like 25, 75, etc.). The
resulting sets of variable bounds will give a bound on what the joint probability density
of the variables looks like. Combining this with some methods that can merge sets of
bounds and (in)equalities that only hold some of the time, causes a possibly useful
method to emerge.

The second method deals with estimating the probability densities (or bounds on
densities) of operations on random variables. The results are exact when operations only
involve one of the following two types of operations:

1) Linear combinations (multiplication by a constant, addition, and
subtraction), or

2) exponentiation by a constant, multiplication, and division.

If both types of operations are involved, some approximations are done to convert
between two types of densities. The random variables need to have 'Gaussian-like'
densities (or perhaps a combination of such).

Once these density bounds or approximations are found, one can use them to indicate:

1) The odds of some variable being below or above some critical value (above
or below which pain, damage and/or improvement may result).

2) How much a variable can vary in value, which may help determine if it is
possible or desirable to try to measure the variable more accurately.

During the past year, Mr. Yeh has been writing code and running some preliminary

32

CLINICAL DECISION MAKING

examples based on data from a study on 10 patients with mitral stenosis. The results

from those examples look promising. However, more testing needs to be done,

including:

" Rerun the examples with better models of the example data densities.

" Try the cardiovascular model on more examples. Especially useful would be
examples where the data variation is not between patients, but within the
measurements of one patient.

As well as running more examples this coming year, we plan to develop some needed
criteria for gauging density shape (type) from data. For example, we might ask on what
grounds one would say that a density is approximately Gaussian, lognormal, or
something else.

Finally, a number of methods or their variations have yet to be tested, and the
various methods have to be combined into a coherent system.

3.5. Directions for the Coniing Year

There will be two major foci for our research in the heart failure domain in the
coming year. The first is to develop the interface and support functions to make the
program a useful tool for the medical users. The second is the further development of
the model and reasoning.

All of our testing of the program thus far has been by using cases from the literature
or carefully gathered cases from the CICU. These cases were then entered into the
program by the system developers, who also assc&'d the sults. Tu .k..,t , program
a useful tool for the medical community, we need to extend the functionality by
including a data base for saving and retrieving the cases that are in progress, extending
the reasoning to make appropriate inferences during multiple sessions with the same
patient, enhancing the input module to provide appropriate summarization of the case
material, improving the graphic presentation to tailor the display to include only those
relationships that are pertinent to the patient being considered, and making the other
improvements necessary to eliminate any gaps we discover as medical users gain
experience with the system. The objective is to have a system that will support the
functions needed by the user to carry on an extended dialog with the machine, possibly
over several sessions. Thus, the program needs to remember what went on before and
incorporate the new information into the existing information. Since we need the user's
opinions to find the kinds of improvements that would most help the user, we will
include comment facilities in the program so that the user can add comments when they
arise in using the program.

Development of the model and reasoning will proceed in two directions. First, we
need to continue the addition of disease entities to the model until we have all of the

33

CLINICAL DECISION MAKING

commonly occurring diseases that lead to heart failure. This includes mitral
regurgitation, the various forms of cardiomyopathy, constrictive pericarditis and
tamponade, pulmonary disease, and tricuspid regurgitation. Each of these presents an
additional challenge for modeling the dynamics under the therapeutic interventions, but
our experience with the diseases we have modeled thus far should enable us to extend
the model without major difficulty. Our method for developing the models for these
diseases will be to use the data available in the medical literature to identify the
physiological effects of the disease that account for any changes in hemodynamic
response. In the end, we will have a single physiological model that can account for all
of the commonly occurring pathophysiological states of the cardiovascular system. As a
result, there should be no difficulty in accounting for multiple disorders or comparing
the implications of competing hypotheses.

The knowledge bases used by the input and diagnostic modules also need to be
extended to cover the diseases being added to the physiological model. The first step in
doing this was to develop the disease outlines, which were done this past year. Now we
need to include the physiological concepts in those outlines in the causal relations used
by the diagnostic module as well as include the manifestations in the input frames. The
interpretation of the input will also require incorporating the new probabilistic
reasoning algorithm into the evidence evaluation both from the input and between
parameter states where causality is possible rather than definite. This will give us the
experience with the probabilistic methods needed to determine whether they are
adequate.

34

CLINICAL DECISION MAKING

References

1. Coleman, T. G. and J.E. Randall. "HUMAN: A Comprehensive Physiological
Model." The Physiologist, 26, (1983), 15-21.

2. Eckman, M.H., M.P Wellman, S.L. Marshall, C. Fleming, F.A. Sonnenberg
and S.G. Pauker. "A Knowledge-Based System for Critiquing Medical
Decision Trees." Abstract to be presented at the Annual Meeting of the
Society for Medical Decision Making, October 1987.

3. Crimson, W.E.L and R.S. Patil (eds.). Al in the 1980's and Beyond: an MIlT
Survey. Cambridge, MA, MIT Press, 1987.

4. Kassirer, J.P., A.J. Moskowitz, J. Lau and S.G. Pauker. "Decision
Analysis: A Progress Report." Annals of Internal MIedicine, (1987). 106.
275-291.

5. Kohane, I.S. "Temporal Reasoning in Medical Expert Systems." MEDI'FO
86: Proceedings of the Fifth Conference on .\ledical Informatics. 1986.
170-174.

6. Kohane, I.S. "Temporal Reasoning in Medical Expert Systems."
MIT/LCS/TR-389, MIT Laboratory for Computer Science, Cambridge, \LX.
April 10,97.

7. Kuipers, B., A.J. Moskowitz and J.P. Kassirer. "Decisions in Medicine:
Representation and Structure." Cognitive S5cience, to appear.

8. Kunstaetter, R. "Intelligent Physiologic Modeling: An Application of
Knowledge-Based Systems Technology to Medical Education." Computer
AMethods and Programs in Biomedicine, 24, (1987). 213-225.

9. Long, W.J., S. Naimi. M. G. Criscitiello and R. Jayes. "Ising a
Physiological Model for Prediction of Therapy Effects in Heart Disease."
Proceedings of Computers in ('ardiology Conference. Boston. M, October
7-10, 1986.

10. Moskowitz, A.J., B. Kuipers and J.P. Kassirer. "Dealing \Vith Uncertainty.
Risk and Tradeoffs: A Cognitive Science Approach." Annals of Internal
Medicine, to appear.

11. Pearl, J. "Fusion, Propagation. and Structuring in Bayesian Networks."
Technical Report CSD-850022, U-niversity of California at Los Angeles. Los
Angeles, CA, June 1985.

35

CLINICAL DECISION MAKING

12. Patil, R.S. "Review of Causal Reasoning in Medical Diagnosis." Proceedings
of the Tenth Annual Symposium on Computer Applications in Medical
Care, IEEE, 1986, 11-15.

13. Patil, R.S. and 0. Senyk. "Efficient Structuring of Composite Causal
Hypotheses in Medical Diagnosis." Proceedings of the Eleventh Annual
Symposium in Computer Applications in Medical Care, IEEE, 1987 -
forthcoming.

14. Patil, R.S. "A Case Study on Evolution of System Building Expertise:
Medical Diagnosis." In Al In The 1980's and Beyond: An MIT Survey.
Grimson, W.E.L and R.S. Patil (eds.), Cambridge, MA, MIT Press, 1987.

15. Russ, T.A. "Temporal Control Structure Reference Manual."
MIT/LCS/TR-331, MIT Laboratory for Computer Science, Cambridge, MA,
June 1987.

16. Sacks, E.P. "Hierarchical Reasoning About Inequalities." Proceedings of the
National Conference on Artificial Intelligence. American Association for
Artificial Intelligence, 1987, 649-654.

17. Sacks, E.P. "Piecewise Linear Reasoning." Proceedings of the National
Conference on Artificial Intelligence, American Association for Artificial
Intelligence, 1987, 655-659.

18. Sacks, E.P. "Qualitative Sketching." in Knowledge Based Expert Systems
for Engineering: Classification, Education, and Control, Boston, MA,
Computational Mechanics Publications, 1987, 1-13.

19. Schwartz, W.B., R.S. Patil and P. Szolovits. "Artificial Intelligence in
Medicine: Where Do We Stand?" Sounding Board article in New England
Journal of Medicine, 316, (March 12. 1987), 685-688.

20. Sonnenberg, F.A., M.P. Wellman, M.H. Eckman, C. Fleming, S.L. Marshall
and S.G. Pauker. "Automatic Probability Revision in Decision Trees Using
Event Spaces." Abstract presented at the annual meeting of the Society for
Medical Decision Making, October 1987.

21. Szolovits, P., R.S. Patil and W.B. Schwartz, "Artificial Intelligence in
Medical Diagnosis." Annals of Internal Medicine, to appear.

22. Szolovits, P. "Expert Tools Systems Techniques and: Past, Present and
Future." Al in the 1980s and Beyond: An MIT Survey. W.E.L. Grimson
and R.S. Patil (eds.), Cambridge, MA, MIT Press.

36

CLINICAL DECISION MAKING

23. M, P.Dominance. "and Subsumption 1987 in Constraint-Posting Planning."
Proceedings of the Tenth International Joint Conference in Artificial
Intelligence, 1987.

24. Wellman, M.P. "Formulations of Tradeoffs in Planning Under Uncertainty."
MIT/LCS/TM-332, MIT Laboratory for Computer Science, Cambridge, MA,
1987.

25. Wellman, M.P. "Probabilistic Semantics for Qualitative Influences."
Proceedings of the National Conference on Artificial Intelligence,
American Association for Artificial Intelligence, 1987, 660-664.

26. Wellman, M.P. "Qualitative Probabilistic Networks for Planning Under
Uncertainty." Uncertainty in Artificial Intelligence, J.F. Lemmer (ed.),
North-Holland, 1987.

27. Wong, J.B., A.J. Moskowitz and S.G. Pauker. "Clinical Decision Analysis
Using Microcomputers--A Case of Coexistent Hepatocellular Carcinoma and
Abdominal Aortic Aneurysm." Western Journal of Medicine, 145, (1986),
805-815.

Publications

1. Grady, G. and R.Patil. An. "Expert System for Screening Employee
Pension plans for the Internal Revenue Service." Proceedings of Al and
Law Conference, Boston, MA, May 27-28, 1987.

2. Hirsch, D.E. "An Expert System for Diagnosing Gait for Cerebral Palsy
Patients." MIT/LCS/TR-388, MIT Laboratory for Computer Science,
Cambridge, MA, May 1987.

3. Kohane, 1. "Temporal Reasoning in Medical Expert Systems." Proceedings
of MEDINFO-86: the Fifth Congress on Medical Informatics, Washington.
DC, October 26-30, 170-174.

4. Kohane, I. "Temporal Reasoning in Medical Expert Systems."
MIT/LCS/TR-389, MIT Laboratory for Computer Science, Cambridge, MA,
June 1987.

5. Kunstaetter, R. "Intelligent Physiological Modeling: an Application of
Knowledge Based Systems Technology to Medical Education." Pr-oceedings
of MEDINFO-86: the Fifth Congress on Medical Informatics. Washington,
DC, October 26-30, 1986.

6. Kunstaetter, R. "Intelligent Physiological Modeling: an Application of

37

CLINICAL DECISION MAKING

Knowledge Based Systems Technology to Medical Education."

MIT/LCS/TR-360, MIT Laboratory for Computer Science, Cambridge, MA,

April 1986.

7. Leong, T-Y. "Murmur Clinic: an Auscultation Expert System."

M1T/LCS/TM-319, MIT Laboratory for Computer Science, Cambridge, MA,

January 1987.

8. Long, W.J., S. Naimi, M. G. Criscitiello and R. Jayes. "Using a
Physiological Model for Prediction of Therapy Effects in Heart Disease."
Proceedings of Computers in Cardiology Conference. Boston, MA, October
7-10, 1986.

9. Long, W.J., S. Naimi, M.G. Criscitiello and S. Kurzrok. "Reasoning About
Therapy From a Physiological Model." Proceedings of AIEDINFO-86: the
Fifth Congress on Mledical Informatics, Washington, DC, October 26-30,
1986, 756-760.

10. Patil, R.S. "Review of Causal Reasoning in Medical Diagnosis." Proceedings
of Tenth Annual Symposium on Computer Applications in Mfedical Care,
Washington, DC, October 25-26, 1986, 11-15.

11. Patil, R.S. and W.E.L. Grimson (eds.). Al in the 1980s and Beyond: An
MIT Survey. Cambridge, MA, MIT Press, 1987.

12. Patil, R.S., "A Case Study in Evolution of System Building Expertise:
Medical Diagnosis." Al in the 1980s and Beyond: An MIT Survey. R.S. Patil
and W.E.L. Grimson (eds.), Cambridge, MA, MIT Press, 1987.

13. Russ, T.A. "A System for Using Time Dependent Data in Patient
Management." Proceedings of AIEDINFO-86: the Fifth Conference on
Iedical Informatics, Washington, DC, October 1986, 165-169.

14. Russ, T.A. "The Temporal Control Structure Reference Manual."
MIT/LCS/TM-331, MIT Laboratory for Computer Science, Cambridge, MA,
June 1987.

15. Sacks, E.P. "Hierarchical Inequality Reasoning." MIT/LCS/TM-312, MIT
Laboratory for Computer Science, Cambridge, MA, February 1987.

16. Schwartz, W.B., R.S. Patil and P. Szolovits. "Artificial Intelligence in
Medicine: Where Do Stand?" Sounding Board article in New England
Journal of Medicine, 316, (March 12, 1987), 685-688.

38

CLINICAL DECISION MAKING

17. Szolovits, P. "Expert Systems Tools and Techniques: Past, Present and

Future." Al in the 1980s and Beyond: An MIT Survey. W.E.L. Grimson and

R.S. Patil (eds.), Cambridge, MA, MIT Press, 1987.

18. Szolovits, P. "Computer Science and Medical Decision Support."

Proceedings of the 1985 Workshop on Computing and Medicine, University

of Texas Health Sciences Center at San Antonio, to appear.

19. Szolovits, P., J.P. Kassirer, W.J. Long, A.J. Moskowitz, S.G. Pauker, R.S.

Patil and M.P. Wellman. "An Artificial Intelligence Approach to Clinical

Decision Making." MIT/LCS/TM-310, MIT Laboratory for Computer

Science, Cambridge, MA, September 1986.

20. Wellman, M.P. "Representing Health Outcomes for Automated Decision

Formulation" Proceedings of MEDINFO-86: the Fifth Conference on

Medical Informatics, Washington, DC, October 1986, 789-793.

21. Wellman, M.P. "Qualitative Probabilistic Networks for Planning Under

Uncertainty." Proceedings of the Workshop on Uncertainty in Artificial
Intelligence, Philadelphia, PA, August 1986, 311-318.

22. Wellman, M.P. "Formulation of Tradeoffs in Planning Under Uncertainty."

MIT/LCS/TM-332, MIT Laboratory for Computer Science, Cambridge, MA,

June 1987.

Theses Completed

1. Kunstaetter, R. "Intelligent Physiological Modeling: an Application of
Knowledge Based Systems Technology to Medical Education." E.E. and S.M.

thesis, MIT Department of Electrical Engineering and Computer Science,

Cambridge, MA, April 1987.

2. Novick, S.L. "Reasoning Over Time About the Causes of Arrhvthmias."

S.M. thesis, MIT Department of Electrical Engineering and Computer

Science, Cambridge, MA, May 1987.

Theses in Progress

1. Fogg, D. "Design Under Multiple Performance Criteria." Ph.D. Dissertation.

MIT Department of Electrical Engineering and CompuLer Science,

Cambridge, MA, expected June 1989.

2. Koton, P.A. "Using Experience in Learning and Problem Solving." Phi).

dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected January 1988.

39

,: /I

CLINICAL DECISION MAKING

3. Russ, T.A. "Reasoning With Time Dependent Data." Ph.D. dissertation,

MIT Department of Electrical Engineering and Computer Science,

Cambridge, MA, expected June 1988.

4. Sacks, E.P. "Piecewise Linear Reasoning." Ph.D. dissertation, MIT

Department of Electrical Engineering and Computer Science, Cambridge,

MA, expected May 1988.

5. Wellman, M.P. "Formulation of Tradeoffs in Planning Under Uncertainty."
Ph.D. dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected May 1988.

6. Yeh, A. "Quantitative Qualitative reasoning." Ph.D. dissertation, MIT
Department of Electrical Engineering and Computer Science, expected May
1988.

Talks

1. Coldberger, H. IIASA Conference on Informatics and Medicine, Tbilisi,
USSR, October 1986.

2. Kohane, I. "Temporal Reasoning in Medical Expert Systems."
MEDINFO-86: the Fifth Congress on Medical Informatics, Washington, DC,
October 1986.

3. Kunstaetter, R. "Intelligent Physiological Modeling: an Application of
Knowledge Based Systems Technology to Medical Education."
MEDINFO-86: the Fifth Congress on Medical Informatics, Washington, DC,
October 1986.

4. Long, W.J. "Using a Physiological Model for Prediction of Therapy Effects
in Heart Disease." Computers in Cardiology Conference, Boston, MA,
October 1986.

5. Long, W.J. "Reasoning About Therapy From a Physiological Model."
MEDINFO-86: the Fifth Congress on Medical Informatics, Washington, DC,
October 1986.

6. Patil, R.S. "Knowledge Representation Meets Knowledge Acquisition: What
Are the Needs, and Where is the Leverage?" Panel Discussion at the Fifth
National Conference on Artificial Intelligence (AAAI-86), Philadelphia, PA,
August 1986.

7. Patil, R.S. "Coordinating Clinical and Pathophysical Reasoning for Medical
Diagnosis." The First International Conference on Artificial Intelligence and

40

CLINICAL DECISION MAKING

its Impact in Biology and Medicine (I.A. Biomed. 86), Montpellier, France,

September 1986.

8. Patil, R.S. "Review of Causal Reasoning in Medical Diagnosis." Tenth

Annual Symposium on Computer Applications in Medical Care, Washington,

DC, October 1986.

9. Patil, R.S. "Causal Models for Reasoning and Explanation." Boston

University Sem;nar on Expert Systems, Boston, MA, November 1986.

10. Patil, R.S. "Knowledge Representation: Lessons from Research in Medical
Expert Systems." MIT/ILP Symposium on Expert Systems from the User's
Perspective, Cambridge, MA, December 1986.

11. Patil, R.S. "Compiling Causal Knowledge for Efficient Diagnosis."
Carnegie-Mellon University and University of Pittsburgh Clinical Decision
Making Group, Pittsburgh, PA, January 1987.

12. Patil, R.S. "Exploiting Causal Constraint in Model-Based Reasoning."
Applied Expert Systems, Inc., Cambridge, MA, February 1987.

13. Russ, T.A. "A System for Using Time Dependent Data in Patient
Management." MEDINFO-86: the Fifth Conference on Medical Informatics,
Washington, DC, October 1986

14. Sacks, E.P. "Piecewise Linear Reasoning." AAAI Workshop on Qualitative

Physics, Urbana-Champaign, IL, May 1987.

15. Szolovits, P. "Medical Artificial Intelligence." Meet the Experts session,

Symposium on Computer Applications in Medical Care, Washington, DC,
October 1986.

16. Szolovits, P. "Medical Artificial Intelligence and Planetary Space

Exploration." NLM/NASA Symposium for the Sesquicentennial of the
National Library of Medicine, Bethesda, MD, November 1986.

17. Wellman, M.P. "Representing Health Outcomes for Automated Decision
Formulation." MEDINFO 86: the Fifth Conference on Medical Informatics,

Washington, DC, October 1986.

18. Wellman, M.P. "Qualitative Probabilistic Networks for Planning Under
Uncertainty." Workshop on Uncertainty in Artificial Intelligence,

Philadelphia, PA, August 1986.

41

p.#

CLINICAL DECISION MAKING

19. Wellman, M.P. "Automated Decomposition of Multiattribute Utility

Functions." ORSA/TIMS Joint Conference, New Orleans, LA, May 1987.

42

COMPUTATION STRUCTURES

Academic Staff

Arvind, Group Leader J.B. Dennis
R.S. Nikhil

Research Staff

G.A. Boughton

Graduate Students

P.S. Barth G.K. Maa
S.A. Brobst D.R. Morals
A.A. Chien G.M. Papadopoulos
T-A. Chu K.K. Pingali
D.E. Culler S.A. Plotkin
G-R. Gao R.M. Soley
G. Guha Roy I. Taylor
S.K. Heller K.R. Traub
R.A. Jannucci E.W. Waldin
S. Jagannathan S. Younis
V.K. Kathail

Undergraduate Students

H. Chan S. Malinack
J. Cheng S. Manandhar
S. Desai J. Nieh
J. Horn T. 01kin
3. Hicks M. Penniston
C. Joerg S. Sanghani
T. Leung

Support Staff

S.M. Hardy N. F. Tarbet

COMPUTATION STRUCTURES

Visitors

M. D. Atkins M. Mack
A. Konagaya H. Nohmi
J. Lewis S. Truve

Technical Staff
J.P. Costanza R.F. Tiberio

44

COMPUTATION STRUCTURES

1. INTRODUCTION

The Computation StrucLures Group (CSG) made significant progress from July 1986
through June 1987. The primary thrust continues to be towards general-purpose
parallel machines, focusing on functional and declarative languages, and on the Tagged-
Token Dataflow Architecture (TTDA). In addition, we have been looking at parallel
graph reduction, persistence in functional languages and the T'IDA, and functional
databases.

Our dataflow programming language Id Nouveau (or Id, for short) was redesigned and
reached some degree of stability, based on vastly improved understanding of the
denotational and abstract operational semantics of I-structures, our parallel data-
structuring primitive. With experience in Id, we are beginning to develop a
programming.methodology for langusees with I-structures. We are also looking beyond
I-structures to other parallel, determinate object-oriented structures.

The Id compiler was completely rewritten in Common Lisp, and is now used quite
heavily. Work continues in developing a type-system for Id and incorporating a type-
checking module in the compiler. Because of its extremely modular structure, the
compiler is very amenable to modifications, and is thus being used for research into
other parallel architectures and languages.

A major activity in our Group was the development of Id World, an integrated
programming environment for experimenting with parallel programs. The components
of Id World include editor customizations for Id, the Id compiler, GITA -- an
extensively instrumented emulation of the Tagged-Token Dataflow Architecture, and
the Id debugger. These are packaged in an integrated user interface that makes it
extremely easy to prepare, run, debug and study parallel programs quickly. We believe
that with its flexibility and power, Id World is a unique tool for studying parallelism in
programs.

Various members of our Group have begun using Id World to study a variety of
application programs. Id World was publicly released in April 1987, and is available to
anyone with a Symbolics or TI Explorer Lisp Machine. Based on the interest it has
generated so far, we expect that Id World will soon be used in several research projects
in the U.S. and abroad.

In the past year we have conducted many experiments to study instruction counts,
instruction mixes, the effects of memory latency, granularity of parallelism, networks,
program mapping, etc. These experiments have significantly improved our
understanding of fundamental issues in parallel architectures, and thrown much light on
the TTDA and its relation to conventional von Neumann machines. This improved
understanding of dataflow and parallel von Neumann machines has sparked two
exciting new research efforts.

One such effort is "Monsoon," a concrete architecture for the thus-far relatively

45

COMPUTATION STRUCTURES

abstract Tagged-Token Dataflow Architecture. Monsoon solves many of the open

questions about the TTDA, such as the implementation of the Waiting-Matching store,

and for the first time we have reached a point where we are ready to build a hardware
dataflow machine. We are seeking funding to build the machine in the next three
ypars. We have already begun building and studying prototypes of some components of

lie Monson architectu,

The second outcome of this deeper understanding has been research into hybrid von
Neumann/dataflow architectures. Here we are exploring changes to the classic von
Neumann architecture, borrowing ideas from dataflow. These changes address the
fundamental latency and synchronization problems that we believe make it difficult, if
not infeasible to use conventional von Neumann architectures in a gencra!-purpose
parallel machine.

The study of resource management issues continues to be a major effort. We have
also begun to btudy various other topics that concern both language design and
architcctural support thereof: lazy evaluation, input-output and general persistence of
arbitrary objects. We have also continued work DisCoRd, an emulator for a parallel
graph-reduction machine on the MEF.

In April 1987 we participated in the third MIT/IBM Workshop on parallel computing
held in Essex, CT (held every other year). This is a useful forum for the exchange oi
ideas -- we learned about the status of IBM's RP3 architecture and hardware
construction, and about the EPEX programming environment for studying parallel
programs, in use by IBM and several university partners. We continue to have strong
and productive connections with IBM, particularly with Dr. K. Ekanadham. We now
also have strong connections with Cornell University -- Dr. Pingali joined the faculty
there after graduating from MIT in August 1986.

Professor Nikhil is also working on the database problem in the Computer-Aided
Fabrication Project (Professor Paul Penfield). Under his guidance, they have
implemented a database system interface using ideas from functional languages. It is
unique because with its clean functional formalism, non-computer experts have been
able to learn its use rapidly; it is accessible both from C and from Common Lisp: and it
encompasses data transparently from three distinct and different real database
management systems.

The Multiprocessor Emulation Facility (MEF) has stabilized to a large extent. It
currently consists of 32 TI Explorer Lisp Machines on our circuit-switch network, with
no current plans for enhancements or improvements. It is currently used for two kinds
of emulations: the TTDA and DisCoRd. The generic MEF software to support
arbitrary parallel emulators has been rewritten and cleaned up significantly as a result
of our experience with the dataflow and graph-reduction tmulators. We have given
several public demonstrations of the MEF running parallel programs. These and various
related matters are discussed in greater detail in sections below.

46

COMPUTATION STRUCTURES

2. PERSONNEL

Over the course of the year, Computation Structures had six visiting researchers.
Hitoshi Nohmi, a hardware specialist from Nippon Electronic Corporation, spent his
year-long study leave strengthening his knowledge of computer languages, and
participating in aspects of MEF design work. His colleague Akihiko Konagaya arrived
in January to study dataflow and reduction architectures, and to further his interest in
logic languages with constraints.

Staffan Truve, a Fulbright fellow from the Chalmers University of Technology in
Sweden, joined the group to continue his study of logic languages. John Lewis, taking a
year off from his post at Boeing in Seattle, has been studying the parallel execution of
scientific applications.

1986 saw the termination of IBM/Endicott's participation in CSG design work. In
late September, senior associate engineers Michael Mack and Mark Atkins returned to
Endicott. Mack had successfully designed the group's first chip, an 8 x 8 4-bit crossbar,
and made a sizable contribution to the design of the MEF transmitter. Atkins had been
working on the FIFO logic and 48Mhz clock subsystem of the MEF.

The departure of the Endicott team did not mean the end of IBM's interest in the
group's work, however. Although not formally a visitor, Dr. Ekanadham, a researcher in
parallel processing at IBM/Yorktown Heights, has worked very closely with us over the
past year. His work includes studies comparing the instruction set of the TTDA with
von Neumann machines, and a significant rewrite of the SIMPLE application to take
advantage of Id's high-level features.

On March 1, Prof. Jack Dennis took early retirement to devote more time to his new
company, Dataflow Technologies. He now holds the rank of Senior Lecturer in
Computer Science, and in that capacity will see his remaining graduate students
through to the completion of their degrees. He will also continue to pursue his long-
standing VimVal interests.

3. ID WORLD

Last year we reported the completion, by Dinarte Morais, of a first version of Id
World, an integrated programming environment for preparing, running, debugging and
analyzing Id programs and their behavior on the Tagged-Token Dataflow Architecture.
Based on that experience, we invested much effort this year in a major redesign to make
it stable and flexible, with the objective of not only making it easier to use internally,
but also to release it publicly for use elsewhere. Originally aiming for January 1987, we
released Id World in April 1987. Id World is implemented mostly in Common Lisp and
runs on Symbolics and TI Explorer Lisp Machines. It is accompanied with extensive
documentation that minimizes prerequisite knowledge of Lisp Machines [9]. We have
plans to port it to other popular workstations, such as Suns and MicroVaxes. Several

47

COMPUTATION STRUCTURES

research projects in the U.S. and abroad have expressed interest in acquiring and using
Id World.

The program development process in Id World is patterned after the analogous
process for Lisp. The editor (currently Zmacs) is customized for Id -- it knows about Id
syntax and has commands that facilitate entry and formatting of Id programs. The
editor also has commands to invoke the Id compiler on segments of Id source code -- the
resulting object code (dataflow graphs) is normally loaded automatically into GITA, the
"Graph Interpreter for the Tagged-Token Architecture." In case of compilation errors,
the editor can immediately display the relevant parts of the source for correction.

To run compiled Id programs, one switches to the GITA window. Here one can
compile and load Id files, and invoke any compiled Id function on GITA, the graph
interpreter. Id objects for function arguments may be entered using a special "Lisp-
ified" syntax.

A significant and unique part of Id World is the Id debugger, designed and
implemented by Mr. Dinarte Morals. In case of run-time errors, GITA enters the
debugger, which has commands similar to the Lisp debugger except that they are with
respect to a tree of contexts instead of a stack, because this is a truly parallel emulator.
Using the debugger, the programmer can examine the state of the machine, mostly
using source-language names and constructs. A unique feature of Id is that the set of
run-time errors (a parallel machine may not have a single run-time error!) does not
change with machine configuration or run-time scheduling, and so debugging is easy,
and may be performed on a single processor.

After debugging, programmers can study the parallel behavior of Id programs: they
can choose the number of processors, the network latency, and the kinds of run-time
statistics that should be collected. After running the program, they can immediately
display and plot the statistics on the three graphics panes in the GITA window. There
are facilities to save, restore and hardcopy statistics.

Id World is exciting not only for dataflow research, but also for other approaches to
parallelism. Because the parallelism in Id Nouveau and the TTDA is limited only by
data dependencies, Id World can supply a reference point for the maximum parallelism
in a given algorithm -- a calibration point aainst which one can compare the actual
parallelism obtained in an encoding of the aleithm in, say, parallel Fortran running
on a parallel von Neumann machine.

The development and implementation of Id World involved a significant cooperative
effort by many members of the group, notably Dinarte Morals, Richard Soley, Ken
Traub, Ian Taylor, and David Culler.

48

COMPUTATION STRUCTURES

4. LANGUAGES AND SYSTEMS

This year saw significant effort on several language and systems issues in Id Nouveau
and the TTDA.

4.1. I-Structure Semantics

The concept of l-Rtriitres as an architectural idea for parallel data structures is not
new to the dataflow project, but it had long been unclear how to incorporate them into
a programming language. Two significant steps this year cleared the way. First, Keshav
Pingali established a connection between I-structures and Logic Variables -- variables
whose values are incrementally- refined by Unification -- and thus showed a fixpoint
denotational semantics for a language with I-structures. Based on this, Profs. Arvind
and Nikhil and Keshav Pingali, assisted by Vinod Kathail, developed an abstract
Plotkin-style operational semantics for Id Nouveau. The semantics are given as rewrite
rules that transform an Id program to its result, and capture exactly the parallel
dataflow behavior of the program [2].

Abstractly, the machine state is modeled as a number of components executing in
parallel -- an expression and zero or more statements:

E ; S ; ... ; S

The result of the program is the ultimate value of the expression. The rewrite rule for
function applications looks like this:

(f Eargl ... Eargn)
E ; S ; ... ; S

(Ebody')
E ; S ; ... ; S ; xl = Eargl ; ... ;xn = Eargn

i.e., the upper machine state which somewhere contains the expression (f...) can be
rewritten to the lower machine state with the expression replaced by (Ebody'), where
Ebody' is the body of function f with the formal parameters given new names xl
through xn. This captures exactly the behavior in the TTDA where a function can
begin executing while its arguments are still being computed. We call this dataflow
behavior the parallel call-by-value computation rule. Similarly, there is a rule which
says that an identifier can be substituted only when there is a statement in the machine
state that binds the identifier to a reduced value -- this corresponds exactly to the
arrival of a token on an arc in the dataflow machine.

49

COMPUTATION STRUCTURES

The rule for I-structure allocation is:

(array (vi.vu))
E.; S ; ... ; S

(<Xvl I.... Xvu>)
E ; S ; ... ; 8

Where Xvi through Xvui are new variables. This rule illustrates a difference from
functional languages -- rewrite rules for functional languages never introduce new
variables on the right-hand sides.

An exciting aspect of these rewrite rules is that, for the first time, one can now
understand the parallelism of the dataflow machine purely in source-language terms,
without any appeal to dataflow graphs or the Tagged-Token Dataflow Architecture. In
addition to facilitating the dissemination of dataflow ideas to a wider audience, this
simplification also gives us a much better perspective on the relation of dataflow to
other approaches to parallel execution of functional languages such as parallel graph
reduction.

4.2. Id Nouveau

The advances in understanding the semantics of I-structures gave us insight into the
semantic categories to be supported in the language Id Nouveau. The difficulties were
in integrating cleanly the expression-oriented constructs of the functional subset with
the refinement-oriented constructs of the I-structure subset. The syntax was frozen in
January 1987, and the compiler and Id World upgraded accordingly.

One consequence of the introduction of I-structures is that the language loses
"referential transparency", thus making it more difficult to reason about programs.
For this reason, many in the functional programming community are still skeptical
about I-structures and advocate the use of "bulk" functional array operators. For
example,

malce-array n f

returns an array of size n such that the I'th component contains (f 1). Thus the
returned array can be considered a "cache" for a finite part of f.

We have argued in (31 that any fixed set of functional primitives will result in
inefficient programs. The programmer must be allowed to invent and code new array
abstractions, and for this, I-structures are essential in the language. We have thus
gradually evolved a programming methodology in which one part of the program
contains the definitions of program-specific array abstractions using I-structures, and
the remaining, major part of the program is a purely function program that uses these
abstractions and does not mention]-structures at all. We are still experimenting with
this programming methodology.

50

COMPUTATION STRUCTURES

To encourage this programming style, we have defined a large library of standardfunctional array, list and set operators [81 in the hope that programmers will use thiscommon library and train themselves to think along those lines. Paul Barth wrote the
code for these libraries which are now loaded automatically as part of Id World.

4.3. Id Compiler

Version II of the Id Compiler, written by Kenneth Traub, compiled its first programone month ahead of schedule in July 1986. Besides simply accepting the latest version
of the Id programming language, Version II has several features which set it apart from
most other compilers, including its predecessor, Version 1:

" It is founded on a common core of data structures and abstractions that is
general and powerful enough to support all conceivable dataflow compilers.
This common core is described in Kenneth Traub's "A Dataflow Compiler
Substrate" 111].

" It hsa a highly modular structure, and includes a facility (known as
defcompiler) which permits modules to be incorporated into the compiler
with very little effort.

" It includes a novel attribute grammar evaluator which incrementally
computes parse tree attributes on demand, and automatically adjusts to
changes in parse tree structure made by source-to-source transformation
modules. The evaluator is designed to work from grammatical specifications
developed with PAGEN, a parser generator program also written by Traub.

" It supports incremental compilation through a sophisticated database
mechanism for recording properties of Id procedures. Assumptions aboutseparately compiled procedures are recorded in object code, allowing the
consistency of a collection of procedures to be verified at load time.

" It includes a number of code optimization modules, including such well-
known transformations as common subexpression elimination, loop invariant
code motion, and procedure integration (these were implemented by Ian
Taylor). There is also a peephole optimizer for dataflow machine code.
believed to be the first use of peephole optimization within a compiler for
dataflow architectures. The peephole optimizer is also noteworthy as it, is
completely specification-d riven.

" The compiler and PAGEN are written entirely in Common Lisp. ensuring
their portability.

Many of these features reflect the ld Compiler's special nature as a research compiler;it is specifically designed to support experiments at all phases of the compilation

51

COMPUTATION STRUCTURES

process. Already, the compiler has proved itself adaptable enough to be used in twoprojects for which it was not originally designed: Bob lannucci has modified the backend of the compiler to support his VNDF architecture, resulting in a compiler from Idto VNDF object code, while John Lucassen of LCS' Programming Systems ResearchGroup has replaced the front end with one for his FX language, resulting in a compiler
from FX to TTDA object code.

So far, Version II of the Id Compiler has proved to be an overwhelming success.Future plans include a type-checking module to be written by Prof. Nikhil, support ofpattern-matching syntax, and code-generation for the Monsoon architecture.

4.4. Types and Type-checking in Id Nouveau
In Fall 1986 Prof. Nikhil implemented a first version of a Miiner-style polymorphictype-checker for Id. One problem was to devise the type-checking rules for I-structureconstructs, which are analogous to side-effects in a functional language qioh as XfL, andwhich normally make the Milner-style rules unsound. A solution exists inimplementations of ML, but have never been published, and so we had to re-invent itfor Id Nouveau.

Preliminary use of the type-checker was very encouraging -- it promises to be a majoraid in debugging and compiling. Our plans for the type-checker are:

" Upgrade it for the current Id Nouveau syntax,

" Fix a major limitation, which is the lack of user-defined union types and theassociated pattern-matching syntax,

" Design a limited inheritance capability which is another kind ofpolymorphism that also simplifies programs,

" Use the type information to improve compiled code,

" Permit incremental type-checking. and the coexistence of typed and untyped
code.

4.5. Lazy Structures

Eager interpreters are able to exploit vast parallelism, yet lazy interpreters have moredesirable terminatio, properties. Pingali proposed a soiroe-to-sou roe programtransformation for achieving lazy behavior within an eager interpreter [101. Pingali'sapproach offers the power of a lazy interpreter within the framework of datafow, but isdifficult in practice. When some values are not demanded, cleanup problems occur.For example, forks are not self-cleaning -- if one arm does not demand a value that isdemanded by the other arm, the value sits at the fork forever. This cleanup problem is

52

COMPUTATION STRUCTURES

quite difficult in the context of the TTDA, and we cannot ignore it. If values are
always demanded by all possible consumers, lazy evaluation buys us nothing.

Steve Heller is considering another approach. An eager interpreter evaluates
expressions as soon as the inputs are available, and a lazy interpreter evaluates an
expression if and only if its value is needed to produce an answer. These extreme
positions span a spectrum of possibilities, and he is studying some of these mixed
evaluation strategies. If we delay only those expressions that sit in array slots, an
interesting compromise is achieved. The TTDA already synchronizes array producers
and consumers in hardware using I-structure Memory [3][4]15]. A similar
synchronization mechanism is required to support demand propagation for delayed
expressions that sit in array slots. By generalizing I-structures to L-structures ("lazy"
structures) we can support both producer/consumer synchronization and demand
propagation in hardware.

4.6. Accumulators

In studying various applications, we have repeatedly encountered a paradigm that
cannot efficiently be handled by functional data structures or I-structures. One
initializes an object, performs numerous "accumulations" on that object, and finally
reads the value of the object. Because the accumulations are commutative, the order of
accumulations is immaterial. An example would be to compute a histogram of 10 000
values into 10 intervals. In an imperative (and sequential) language, one would start
with an array with 10 zeroes, and repeatedly increment the comp-nents. This cannot
be done with functional data structures or with I-structures without much copying
because one cannot update an array element in place. On the other hand, it is safe to
do them in parallel because the increments may be done in any order.

Profs. Arvind and Nikhil, Keshav Pingali and Kenneth Traub have produced an
initial proposal -- both linguistic and architectural -- to solve this accumulation problem
in Id Nouveau on the TTDA. For example, to allocate an array for the histogram, one
says:

xa,xr = ID_accumulator (1,10) 10000 (+)

This allocates a vector with bounds 1 and 10, where each cell can accumulate values by
addition, and where a total of 10000 accumulations are allowed. The expression returns
two descriptors -- an accumulate-only descriptor xa and a read-only descriptor xr. One
can increment bucket (cell) J by saying:

IDaccumulate (xa,], 1)

One can read bucket J as if it were an ordinary I-structure: xr (J1]. However, the
token for xr is not released until 10000 accumulations are done, thus ensuring that
there are no read-write races. The function iD accumulator is non-strict in n, the
number of accumulations, so that the number of allowed accumulations need not be
known beforehand.

5 3

COMPUTATION STRUCTURES

We know how to compile these constructs into dataflow graphs for the TTDA and
plan to implement it and start using it immediately. We certainly do not expect this to
be the final word on accumulators -- the hope is that experience in using it will allow us
to understand the problem better and to produce a better solution.

4.7. Serialization and Serial Input-Output

Richard Soley has begun exploring explicit and implicit serialization methods, with the
aim of controlling machine resources efficiently during the execution of combinatorially
explosive expert system programs. This serialization would be carried out in a
completely distributed fashion, without any centralized control over the system. This
methodology has carried over to a serialization Reh-me tc enable serious input/output
facilities within the Id language. In Soley's approach, serialization of calls to I/O
primitives is carried out by the Id compiler, which adds static and dynamic program
arcs to order the run-time execution of I/O primitives as the programmer has implicitly
specified.

4.8. DisCoRd: Parallel Graph Reduction

Ian Taylor has been working on modifying the Id Compiler to generate combinator
code for DisCoRd, a parallel graph reduction architecture. In contrast to other parallel
graph reduction machine projects, we assume eager evaluation wherever possible, using
this assumption to minimize message traffic. Ted Leung has been working on
implementing an emulator on the MEF for the parallel graph reducer. This work is a
redesign of the initial version of DisCoRd that we reported last year.

4.9. Persistence in ld/TTDA

Bhaskar Guha Roy and Prof. Nikhil have been investigating the design and
implementation of databases on the Tagged-Token Dataflow Architecture. Many
database applications contain a high degree of inter-transaction parallelism and
performance is often limited by disk latency. We believe the TTDA provides an
excellent substrate for a high-performance database machine because of its ability to
tolerate high latencies. Dataflow allows us also to take advantage of intra-transaction
parallelism. I-structure memory allows synchronization among tasks to be expressed
naturally, and the synchronization is achieved in hardware.

We are developing extensions to Id Nouveau for experimenting with functional
databases. The main extension is the bag data structure for modeling large,
homogeneous collections of objects. Bags have parallel, I-structure-like semantics. We
are currently examining how operations in this language can be implemented to take
advantage of features of the Monsoon architecture.

We have also been working on architectural extensions to the TTDA to support

54

COMPUTATION STRUCTURES

persistent store (disks). Objects of any data type in the language can be made

persistent. A persistent object is initially referred to by a logical name, and can be

associated with a name in the program. The actual movement of data from primary to

persistent store is transparent and incremental. We are currently extending the Id

Nouveau compiler to support a variety of operations related to persistent objects. In
the coming year, our goal is to complete the design of the persistent storage system and
design and implement a complete transaction processing system.

4.10. Environments as First-Class Objects

This past year, Suresh Jagannathan (with Prof. David Gelernter of Yale University
and Prof. Nikhil) has been examining the ramifications of incorporating environments
as first-class values into a programming language. We have produced a new
programming language with several novel features. Symmetric Lisp is built around an
environment-building structure, the ALPHA form. The semantics of an ALPHA is derived
by (conceptually) transposing the familiar Lisp PROGN or Algol compound-statement
symmetrically around a time-space axis. Where the elements of a PROGN are evaluated
during sequential lifetimes in a fixed temporal order, the elements of an ALPHA form are
evaluated during concurrent lifetimes in a fixed spatial order. Concurrent evaluation
lifetimes mean that the ALPHA form is a concurrency creating structure, and that
Symmetric Lisp is a parallel language. Because elements of an ALPHA can refer to one
another, they all have a shared evaluation lifetime. Shared lifetimes mean that the
elements of an ALPHA-form may be taken to define a scope; all name-binding, program-
building and scope-defining mechanisms in the language are based on this form. The
semantics of Symmetric Lisp is defined by a collection of rewrite rules that preserve the
structure of the source program (that is, the number and order of its elements). Unlike
other languages, the "shape" of a program is invariant over the transformation process.
Thus, ALPHA forms evaluate to new ALPHA forms and, consequently, Symmetric Lisp
has no notion of a data structure: a data structure is simply any program that evaluates
to itself.

"First-class environments" means that Symmetric Lisp allows programmers to write
expressions that evaluate to environments and to create and denote variables and
constants of type environment. One consequence is that the roles filled in other
languages by a variety of limited, special-purpose environment forms like records,
structures, closures, modules, and classes are filled instead by the ALPHA. i addition to
being the fundamental structuring tool in the language, environments also allow us to
treat function application as syntactic sugar for environment building: LAMBDA-forms
become constants and are no longer constructs in their own right. Because the elements
of an environment are evaluated in parallel, Symmetric Lisp is a parallel programming
language intended for implementation on fine-grained architectures such as a dataflow

or graph-reduction machine. Because environments may be constructed statically as
well as dynamically, Symmetric Lisp accommodates an unusually flexible and simple
parallel interpreter that is well-suited as an interface to a concurrent, language-based

55

COMPUTATION STRUCTURES

Symmetric Lisp computer system. Our goal for the coming year is to refine the design

of the language and build an implementation on an available multi-processor

architecture such as the MEF.

4.11. Functional Databases

Prof. Nikhil has been guiding the database effort in the Computer-Aided Fabrication
(CAF) project run by Prof. Penfield. The problem here is to provide a single on-line
information facility that encompasses not only traditional data-processing mainstays,
such as personnel and accounts, but also highly complex data such as IC masks, process-
flow programs, intermediate states of process-flow programs, wafer states, etc. In

addition, the facility must be able to access data from other existing software packages

such as IC simulation packages.

With our suggestions and guidance, Mike Heytens, a graduate student in the CAF
project, has designed and implemented GESTALT, a Functional Data Model interface, in
which one views information as a collection of database types and functions that map
between those types. These functions are embedded in a full functional language. The
database is unique in its power and flexibility. The interface uses three separate
commercial database management systems underneath for data storage; however, users
see a single, integrated model of all the data. Accessible from C and Common Lisp,
users have been able to learn to use it very quickly, and it is in daily use. We expect to
continue this collaboration with the CAF project. Now that immediate operational
needs have been met, we are exploring several enhancements to the type system, and to
the data model so that it incorporates a notion of history. That is to say, data is never
updated, only appended to.

5. ARCHITECTURES

5.1. TTDA Experiments

Gino Maa conducted extensive experiments using the existing emulation tools to study

the effects of the various code-mapping strategies and grain sizes, the presence of
significant latencies in the communications network, and interleaved memory allocation
on the performance of relatively large systems (hundreds of processors) executing a

large-scale scientific application kernel. The results have all shown that a dataflow
machine, when running large programs with sufficient parallelism, is indeed very
tolerant of extreme communications latencies: system performance degrades very
gracefully even with an almost order-of-magnitude increase in such latencies.

The resource allocation experiments provided evidence that relatively simple run-time
strategies such as round-robin and randomized code mapping produce surprisingly good
results consistently. They also showed that by choosing the grain size of the code-
mapping unit to be around the iteration level, we get the scalability characteristics of

56

COMPUTATION STRUCTURES

mapping at the instruction level while still maintaining much of the locality property of
mapping at the code-block level. Past studies on data structure reference patterns have
indicated that contention for specific memory locations may hinder scalability in large
systems, but recent experiments showed that a modest degree of interleaving in memory
allocation yields much improvement over a non-interleaved memory system, although
some contention for constant data structures can only be eliminated by altering the
source program.

5.2. Storage Usage

GITA and the new Id compiler have been put to extensive use by David Culler in
studying the resource requirements of dataflow programs under a variety of conditions.
Our expectation that storage requirements grow in proportion to the amount of
unfolding under idealized execution with unrestricted parallelism was confirmed; this
implies cubic growth for triply nested loops, for example. Moreover, restricting the
amount of parallelism exploited in executing a program does not alleviate the problem,
rather, it is necessary to constrain the unfolding of the program itself. Loop-bounding
techniques developed by Culler have proved effective in this; under restricted parallel
execution, it is possible to reduce resource requirements dramatically without increasing
the running time of the program appreciably. We are continuing to explore this
direction.

5.3. Instruction Counts

An important metric in assessing the effectiveness of the dataflow approach is the
total number of instructions executed. TTDA instructions are roughly comparable in
power to those of a load/store architecture - memory access operations are disjoint from
arithmetic operations. We expect instruction counts of dataflow programs to be
somewhat higher than a good sequential implementation, as there is a certain amount of
work required to initiate and synchronize concurrent computations. Nonetheless, for
dataflow machines to be viable, they must be comparable to sequential machines in this
regard. Comparative studies performed by David Culler in conjunction with
K. Ekanadham at IBM/Yorktown indicate that Id programs with little optimization
typically require 2-3 times as many instructions as highly optimized Fortran. This
comparison is encouraging in light of the number of additional instructions that would
be performed in a "parallelized" Fortran version. However, it is clear that without
relatively sophisticated program graph generation. as in the current Id compiler, the gap
would be much worse. Recent work with common subexpression elimination has
narrowed the gap dramatically.

57

COMPUTATION STRUCTURES

5.4. Towards Real Implementations

While it has been well understood for some time that dataflow offers a framework for

thinking about parallel computation, it is only within the last year that we have been

able to make statements about the essence of dataflow architecture which may be

meaningfully applied in the von Neumann multiprocessor domain. It has become clear

through analysis [1] and experiments by Gino Maa that any scalable architecture must

be able to tolerate basic, machine-induced latencies and must provide, at the hardware
level, a synchronization mechanism that is inexpensive to use. The former is
necessitated by the physical partitioning of a machine into cooperating processing and

memory elements separated by nontrivial communication delays. The latter is a direct
result of decomposition of the program into communicating pieces or tasks.

Dataflow by its very nature allows parallelism in the program to be traded off against
latency -- given sufficient parallelism in the program (on the order of the processor-
memory-processor pipeline depth times the number of such parallel pipelines), latency
cost as measured by induced processor idle time can be controlled. Dataflow also offers
a uniform synchronization paradigm through the tagging and matching of data. Each
enabled instruction represents a task which can execute independent of all other such
tasks. Tags serve to identify these tasks. Dataflow machines provide the means for
bringing together identically tagged values; this is the necessary and sufficient condition
for the task's executioji.

The essential features of the dataflow mechanism are a large namespace for
identifying "meeting places" (synchronization events), provision at the hardware level
for multiple, concurrent tasks, and the ability to switch between these tasks as
necessary with speeds approaching single instruction times.

Von Neumann Dataflow Machine

One proposal which has grown out of this work is the construction of a hybrid
dataflow vonNeumann machine by extending von Neumann architecture with some
embodiment of the essential features of dataflow. The proposal is made and discussed
by lannucci [6]. The goal of this work is to refine further the notion of essential
features, and to explore compiler-directed, pipelineable sequential code sections as a tool
for implementing resource management primitives and for exploiting vector-type
instructions.

One possible approach is to recognize the relationship between arcs in a compiled
dataflow graph and slots in a traditional invocation stack frame. Both are used for
holding temporaries local to the invocation of the associated procedure. As such, they
embody the intra-process communication mechanism. Augmented with a basic
synchronization mechanism, stack frame slots allocated out of a relatively large address
space would provide two of the three above-mentioned features considered essential for
a scalable multiprocessor. Local memory with I-structure-like synchronization bits on
each slot (indicating slot-empty, slot-full, or deferred-read) [51 provides such a

58

COMPUTATION STRUCTURES

synchronization mechanism; deferred reads cause suspension of the current process and
storage of the current program counter (PC) into the empty slot. Subsequent writing to
the deferred slot reawakens the suspended process by extracting the deferred PC and
making it a candidate for execution once again.

The third feature, fast task switching, implies sufficient high-speed storage to hold the
computation state for a large number of such PCs (similar to the requirement for a
large, fast waiting-matching memory and token buffer in a dataflow machine), and the
ability to interleave instructions from different tasks on a per-instruction (or nearly so)
basis. Note that it is neither essential nor always desirable to switch tasks at each
instruction dispatch -- it is often the case that small groups of instructions may be
statically scheduled for execution as a unit given the satisfaction of only a few input
data dependencies. Thus, the quanta of execution may be bigger than single
instructions. It is, however, essential that the task switching be done to the resolution
of individual instructions.

Progress to date includes definition of a simple machine model, complete definition of
the syntax and semantics of a suitable machine language, design, coding, and testing of
a von Neumann/dataflow back end for the Id compiler (previnusly described), and
preliminary work on an emulator for the architecture.

Monsoon

We have been sufficiently encouraged by our research results to contemplate and
evaluate critically a hardware implementation of a multiprocessor based on the Tagged-
token Dataflow Architecture. Central to this goal is the ability to translate the
dataflow execution mechanism, specifically waiting-matching and I-structure operations,
into practical and efficient hardware. Greg Papadopoulos has described a novel
instruction execution mechanism that implements both the I-structure storage and the
waiting-matching section in the same explicitly addressed storage. He has also given
the outline for generating code for such a machine from TTDA-style dataflow graphs.

The processing element is somewhat more general than a TTDA graph interpreter.
The design draws heavily on traditional pipelined von Neumann techniques as
popularized by the "RISC" methodology. A processing element is really a
multi-threaded non-blocking RISC pipeline, where a join of two threads, an operation,
and a fork of two threads can all occur within a single pass through the pipe. Threads
are interleaved each cycle, without switching overhead, from a hardware managed task
queue. We address the two fundamental multiprocessing issues by (1) providing non-
blocking split-transaction global memory references, and (2) providing very efficient
hardware synchronization on an instruction-by-instruction basis. We believe that this
architecture brings the dataflow machine a step closer to von Neumann machines,
exploiting the efficiencies of pipelined designs while reducing the overhead of fine-
grained data-driven evaluation.

We intend to construct a 256 PE multiprocessor prototype called Monsoon. Because

59

COMPUTATION STRUCTURES

we believe the processor pipeline to be well balanced and technologically scalable, we are

initially employing fairly conservative TTL and CMOS gate array technologies. Our

initial implementation calls for each PE to have a 100ns. cycle time, 64-bit floating

point, and two Megawords of local storage. The network will be a packet switched 256-
way two-stage exchange with 800 Mbits/sec/port. This will yield a machine with a peak

performance of over two GigaFLOPS. We believe it will sustain between 100-300

MegaFLOPS on a wide variety of scientific codes, making it competitive with the fastest

general purpose von Neumann machines presently available. A discrete logic laboratory
prototype of a processor (125ns. cycle time) is now under construction.

Compiling for Sequential Architectures

Many of the programming languages devised for fine-grained parallel architectures are

non-sequential. Non-sequential languages, which include Id as well as most lazy
functional languages, cannot be directly compiled into ordinary sequential code (as for a
von Neumann machine). Instead, they must be compiled into fine-grain parallel code
(as for a dataflow machine) or into many sequential threads, executed concurrently. In
his Ph.D. research, Kenneth Traub is examining the problem of compiling non-
sequential languages into multi-thread code. Multi-thread code can be run on von
Neumann machines by simulating parallel scheduling, and so this work will address the
problem of efficient execution of non-sequential languages on von Neumann machines.
More importantly, this work will have direct application to machines whose architecture
is based on a multi-thread model, such as lannucci's VNDF.

As part of his dissertation work, lannucci 161 has constructed a new code generator for
the Id compiler. While the target machine architecture is markedly different c.f.
TTDA, the relative ease with which new modules were integrated to the existing
compiler was significant. This new compiler retains parse tree and program graph
generation and substitutes a new machine graph generator, an altered peephole
optimizer, and a new assembler for a von Neumann style (i.e., program counter based)
architecture.

S. APPLICATIONS

K. Ekanadham of IBM/Yorktown, working closely with Prof. Arvind, has been
rewriting the SIMPLE code in Id Nouveau. With extensive use of higher-order
functions and array abstractions, Ekanadham's masterful SIMPLE code in Id has
provided the best example to date of the high level that scientific programming can
reach. His SIMPLE code has become the standard against which we compare the
quality of codes written here and elsewhere.

During the fall, three scientists from Los Alamos National Laboratory visited the
group to learn about our programming environment and to start work on several large
dataflow applications. The discussions prompted a valuable review of Id. These visitors
became a beta-site for the Id World release. One of their applications, a Particle-In-Cell

60

COMPUTATION STRUCTURES

(PIC) electrodynamics code, had been implemented on a variety of parallel machines.
Culler wrote a version of it in Id, and we are now comparing various implementations.
The PIC code involved more sophisticated data structures than most scientific
applications and stressed the expressiveness of the I-structure paradigm. One of the
Monte Carlo codes involving neutron transport proved very difficult to express
efficiently with I-structures and added to the on-going discussion of accumulators.

Paul Barth wrote a signal-processing application in Id Nouveau based on his
experience at Schlumberger with software for oil-exploration. Jamie Hicks also wrote a
general electronic signal-processing application in Id Nouveau. Both these experiments
shed light on the need for streams and stream-processing operators in the language.

Paul Barth wrote several algorithms for the single-source, shortest path problem.
These algorithms highlight several methods of applying dataflow to graph traversal
problems. Ohe algorithm uses I-structures for synchronizing the traversal of several
parallel paths; another encodes the graph as a dataflow program that can be executed
directly. Two algorithms were written that used nondeterministic constructs for
marking the graph. These nondeterministic constructs are not currently part of Id
Nouveau; their addition would support these algorithms, as well as many others, such as
dynamic programming and search problems in Al.

Serge Plotkin studied the problem of writing a symbolic polynomial arithmetic
package in Id Nouveau. This exercise again reinforced the need for "accumulators" in
the language. For example, when multiplying two polynomials with coefficients ao,a1 ,...
and b0,bl.... for x ° X1, ... , respectively, each coefficient ci in the result is sum of
products of the form ai x bJa-. The summing can be done in any order, and so can
ideally be expressed as an "accumulation" of product terms.

Richard Soley has been performing experiments with Id World on pattern-matching
systems, both as an approach to debugging Id World and a study of the potential
sources of parallelism within "expert" production systems. He has identified various
combinatorially explosive aspects of these computations, leading to his current work in
efficiently serializing such highly parallel, and highly "speculative" programs.

Arun Iyengar joined our group late in the Spring Term, 1987. He will be studying the
implementation of graph algorithms in Id Nouveau/TTDA based on his experience in
writing applications in molecular biology.

In the fall, Jamie Hicks wrote an interface that enhances the use of the Quicksim
circuit simulator, part of our Mentor logic CAD system. A designer can use an ordinary
text editor to enter specifications of circuit inputs and expected circuit outputs, and
then run a driver that performs the circuit simulation, automatically applying the
inputs at the right (simulated) times and comparing the simulated outputs with the
expected outputs. We expect this to be of use in our future hardware design efforts.

61

COMPUTATION STRUCTURES

7. MULTIPROCESSOR EMULATION FACILITY

Andy Boughton, Jack Costanza, and Ralph Tiberio have been responsible for ensuring
the reliability of the MEF hardware. During the past year the circuit switch and the
other MEF hardware have stabilized. The high infant mortality rate among certain
active components on the circuit switch accounted for the greatest number of failures.
For example, many optoisolator failures were recorded in the first few thousand hours
of service. As the number of hours on the circuit switch boards has gone up, the failure
rate has gone down. Currently, the average time between circuit switch hardware
failures is a few months. The reliability of the circuit switch has been more than
adequate to support large experiments.

During the same period we have also seen a decrease in the failure rate of the MEF
processors. We have kept detailed records of all MEF hardware failures in an IBM SQL
database designed by Jack Costanza. The failure rate that we have observed on the
MEF processors is consistent with industry averages. The failure rate of the circuit
switch boards has been substantially less.

7.1. Network Development

We have redirected our development effort from the MEF to Monsoon. The departure
of the IBM team of Atkins and Mack, coupled with the emergence of a design for an
extremely practical hardware implementation of the Tagged-Token Dataflow
Architecture has caused this change in emphasis. The MEF packet switch design of the
IBM team promised greatly improved robustness, flexibility, and reliability over the
existing MEF circuit switch. The team's departure, however, prompted the shift to the
circuit switch. While the circuit switch has proven to be sufficient for the current 32
processor MEF configuration, the MEF packet switch would have provided the
roustnes and reliability necessary to support larger and more flexible MEF
configurations.

The key characteristics required of a network for Monsoon are bandwidth and
reliability. Monsoon requires a network capable of supporting 800 megabits per second
of bandwidth on each network input. We believe that such a network can be
constructed using concepts similar to those developed for the MEF packet switch.

Andy Boughton, Chris Joerg, and Greg Papadopoulos have developed an overall
structure appropriate for the Monsoon network. The proposed structure is a staged
packet switched network. The proposed network is composed of two stages of 16-input
16-output switch boards. The maximum size of the network is 256 inputs and 256
outputs. Each switch board is composed of eight four-input four-output Packet
Switched Routing Chips (PaRC's). Each PaRC will be a complete switching node with
a crossbar, control circuitry, and packet buffering. The data paths of the network are
aa umed to be 16 bits wide and capable of running on a 50 Mhz clock. The network
also supports circuit switched connections between network inputs and network outputs.

62

COMPUTATION STRUCTURES

This facility is required by the Monsoon architecture in order to allow a processor to

maintain, if necessary, a strict order among the arrival times of its messages at other

processors.

A preliminary logic design for one possible implementation of PaRC has been
completed by Chris Joerg. The proposed implementation is based on a number of the
concepts developed for the MEF packet switch [7]. The implementation uses LSI Logic
compacted gate array technology. The proposed PaRC is composed of four major
subcomponent types; fifo input controller, scheduler, transmitter, and crossbar. The
overall structure is similar to that of the MEF packet switch board but there are some
differences. PaRC uses a distributed scheduling scheme with a scheduler associated
with each output. While buffering a packet received on a given input and destined for
a blocked output, PaRC is capable of transferring a subsequent packet from the same
input to a different output if that output is not blocked. PaRC is also capable cf
supporting circuit switched connections. The proposed PaRC was designed and
simulated using LSI Logic 7000 series logic. At the time our CAD system only
supported the 7000 series and we decided to proceed with a preliminary design for
PaRC rather than wait for the upgrade of our CAD system. Since the 10000 series
array is required to fabricate a chip of the size of PaRC, we must now transfer the
design to the 10000 series and simulate it in more detail.

Jack Costanza and Ralph Tiberio have explored potential link technologies for the
Monsoon network. The size of Monsoon may require some of its network links to be 30
to 40 feet long. We have tested a link technology that uses a 16 bit wide data path.
This link is based on earlier work done by Mark Atkins, using coaxial cables and CMOS
drivers and receivers. While our initial results have been encouraging, much more work
is required to develop a link technology with the reliability that is needed for the
Monsoon network.

7.2. Evolution of MEF Software into A General Emulation Model

Two years ago, we reported on Tanglewood, a powerful, general substrate for MEF
experiments built on top of the EtherNet. Unfortunately, Tanglewood proved to be
rather slow. Last year we put Tanglewood aside in favor of CSWITCH, an extremely
lean, specialized interface to the MEF circuit switch network. This network interface
was tightly integrated with the dataflow emulator MEF-GITA. In a sense, this year we
have come full circle: the circuit switch interface has been abstracted from MEF-GITA
and generalized to provide a simple, efficient substrate for a broad variety of MEF
experiments. The new CSWITCH abstraction has facilitated many extensions to GITA
and has been used as a substrate for other MEF experiments, including DisCoRd, a
graph-reduction architecture, and the game of MultiLife.

63

COMPUTATION STRUCTURES

7.3. Demonstrations on the MEF

MEF made a number of public appearances this year. The demonstration to

participants in the Lisp and Functional Languages conferences in August drew a large
crowd. All thirty-two TI Explorers in the MEF were used in executing a variety of
dataflow programs. In December we showed various aspects of M F-GITA and GITA
to the executive director of DARPA. This included system utilities of the MEF, a large
hydrodynamics code written in Id and running on thirty-two machines, and a non-
dataflow MEF application, MultiLife, employing the new CSWITCH interface. In
addition, we demonstrated many facilities in GITA for studying the behavior of parallel
programs.

8. WORK UNDER PROFESSOR DENNIS' SUPERVISION

Tam-Anh Chu has completed his doctoral dissertation entitled "Synthesis of Self-
timed VLSI Circuits from Graph-theoretic Specifications" under the supervision of Prof.
Dennis. In this thesis, he presents an approach for direct and efficient synthesis of self-
timed (asynchronous) control circuits from formal specifications called Signal Transition
Graphs (STGs). Control circuits synthesized from this graph model are speed-
independent and capable of performing concurrent operation. The property of speed-
independence means that the circuit operates correctly regardless of variations in delays
of logic gates, thus implying that the circuit is hazard-free under any combination of
gate delays. The capability of STGs for explicitly specifying concurrent operations
internal to a control circuit is unique to this model, unlike other approaches based on
Finite State Machines.

STGs are a form of interpreted Petri nets, in which transitions in a net are interpreted
as transitions of signals in a control circuit. While other synthesis approaches based on
Petri nets have not been very successful, we have developed a number of analytical
results which establish the equivalence between the static structure of nets (their syntax)
and their underlying firing sequence semantics--an analytical approach called structure
theory of Petri nets. This equivalence permits the characterization of the low-level
properties of control circuits in terms of STG syntax: the deadlock-free and hazard-free
properties of circuits are characterized as syntactic properties of liveness and persistency
of STGs. A preliminary STG specification of a control circuit can be modified into one
which is live and persistent, from which a deadlock-free and hazard-free logic
implementation can be derived mechanically.

STGs allow efficient synthesis of control circuits by using a method of decomposition
based on a graph-theoretic technique called contraction. Instead of implementing a
logic circuit from a STG directly, it can first be decomposed into a number of
contracted nets, one for each signal generated by the control circuit. A logic element
can then be determined from each contracted net, and the composition of logic elements
produces the final circuit implementation.

64

COMPUTATION STRUCTURES

References

1. Arvind and R.A. annucci. "Two Fundamental Issues in Multiprocessing."

Computation Structures Group Memo 226-5, MIT Laboratory for Computer

Science, Cambridge, MA, July 1086.

2. Arvind, R.S. Nikhil and K.K. Pingali. "Id Nouveau, Reference Manual Part

1: Operational Semantics." Computation Structures Group, MIT

Laboratory for Computer Science, Cambridge, MA, April 1987.

3. Arvind, R.S. Nikhll and K.K. Pingali. "I-structures: Data Structures for

Parallel Computing." Computation Structures Group Memo 269, MIT

Laboratory for Computer Science, Cambridge, MA, February 1987. Also in

Proceedings of the Graph Reduction l'orkshop, Santa Fe, NM, October

1986.

4. Arvind and R.E. Thomas. "-Structures: An Efficient Data Type for

Functional Languages." Computation Structures Group Memo 178, MIT

Laboratory for Computer Science, Cambridge, MA, October 1981.

5. S.K. Heller. "An I-Structure Memory Controller (ISMC)." M.S. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,

MA, June 1983.

6. lannucci, R. A. "A Dataflow/von Neumann Hybrid Architecture." Ph.D.

dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected August 1987.

7. Joerg, C.G. "Design of a Circuit Switched Routing Chip for a Dataflow

Supercomputer." S.B. thesis, MIT Department of Electrical Engineering and

Computer Science, Cambridge, MA, May 1987.

8. Nikhil, R.S. Ad Nouveau, Reference Manual Part I: Syntax." Computation
Structures Group, MIT Laboratory for Computer Science, Cambridge, MA,

April 1987.

9. Nikhil, R.S. "Id World Reference Manual." Computation Structures Group,
MIT Laboratory for Computer Science, Cambridge, MA, April 1987.

10. Pingali, K.K. "Demand-driven Evaluation on Dataflow Machines." Ph.D.

dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, July 1986.

It. Traub, K.R. "A Dataflow Compiler Substrate." Computation Structures

65

COMPUTATION STRUCTURES

Group Memo 261, MIT Laboratory for Computer Science, Cambridge, MA,
March 1986.

Publications

1. Arvind and K. Ekanadham. "Future Scientific Programming on Parallel
Machines." Proceedings of the International Conference on Supercomputing
(ICS), Athens, Greece, June 1987.

2. Arvind and R.A. Iannucci. "Two Fundamental Issues in Multiprocessing."
Proceedings of DFVLR - Conference 1987 on Parallel Processing in Science
and Engineering, Bonn-Bad Godesberg, Germany, June 1987. Also
MIT/LCS/TM-330 and Computation Structures Group Memo 226-6, MIT
Laboratory for Computer Science, Cambridge, MA, May 1987.

3. Arvind and R.A. Iannucci "Two Fundamental Issues in Multiprocessing."
Computation Structures Group Memo 226-5, MIT Laboratory for Computer
Science, Cambridge, MA, July 1986.

4. Arvind and R.S. Nikhil. "Executing a Program on the MIT Tagged-token
Dataflow Architecture." Proceedings of the PARLE Conference,
Eindhoven, The Netherlands, June 1987. (Also Computation Structures
Group Memo 271, March 1987.)

5. Arvind, R.S. Nikhil and K.K. Pingali. "Id Nouveau, Reference Manual Part
II: Operational Semantics." Computation Structures Group, MIT Laboratory
for Computer Science, Cambridge, MA, April 1987.

6. Arvind, R.S. Nikhil and K.K. Pingali. "I-structures: Data Structures for
Parallel Computing." Computation Structures Group Memo 269, MIT
Laboratory for Computer Science, Cambridge, MA, February 1987. Also
Proceedings of the Graph Reduction Workshop, Santa Fe, NM, October
1986.

7. Chien, A.A. "Hot Spots in Routing Networks: A Collection of Studies."
Computation Structures Group Memo 267, MIT Laboratory for Computer
Science, Cambridge, MA, October 1986.

8. Chien, A.A. "Structure Referencing in the Tagged-token Dataflow
Architecture." Computation Structures Group Memo 268, MIT Laboratory
for Computer Science, Cambridge, MA, October 1986.

9. Chu, T-A. "Synthesis of Self-timed VLSI Circuits from Graph-theoretic
Specifications." MIT Laboratory for Computer Science, Cambridge, MA,
June 1987.

66

COMPUTATION STRUCTURES

10. Chu, T-A. "Synthesis of Self-timed VLSI Circuits from Graph-theoretic

Specifications." Proceedings of the International Conference on Computer

Design, IEEE, New York, October 1987.

11. Chu, T-A. "A Method of Abstraction for Petri Nets." Proceedings of the

International Workshop on Petri Nets and Performance Models, Madison,

WI.

12. Chu, T.-A. and L.A. Glasser. "Synthesis of Self-timed Control Circuits from
Graphs: An Example." Proceedings of the International Conference on

Computer Design, IEEE, New York, October 1986.

13. Chu, T.-A. and C.K.C. Leung, "Design of High Performance FIFO Queues
for Packet Communication Architectures." Proceedings of the International
Conference on Parallel Processing, IEEE, Chicago, IL, August 1986.

14. Gelernter, D., S. Jagannathan and T. London. "Environments as First-class
Objects." 14th Conference on Principles of Programming Languages,
Munich, Germany, January 1987.

15. Gelernter, D., S. Jagannathan and T. London. "Parallelism, Persistence and
Meta-cleanliness in the Symmetric Lisp Interpreter." 1987 SIGPLAN
Conference on Interpreters and Interpretive Techniques, St. Paul, MN, June
1987.

16. Nikhil, R.S., K.K. Pingali and Arvind. "Id Nouveau." Computation
Structures Group Memo 265, MIT Laboratory for Computer Science.
Cambridge, MA, July 1986.

17. Nikhil, R.S. "Id Nouveau Quick Reference Guide." Computation Structures
Group (internal document), MIT Laboratory for Computer Science,
Cambridge, MA, February 1987.

18. Nikhil, R.S. "Id Nouveau, Reference Manual Part 1: Syntax." Computation
Structures Group, MIT Laboratory for Computer Science, Cambridge, MA,
April 1987.

19. Nikhil, R.S. "Id World Reference Manual." Computation Structures Group,
MIT Laboratory fori Computer Science, Cambridge, MA, April 1987.

20. Traub, K.R. "A Compiler for the Tagged-token Dataflow Architecture."
MIT/LCS/TR-370, MIT Laboratory for Computer Science, Cambridge, MA,
August 1986.

67

COMPUTATION STRUCTURES

Theses Completed

1. Brown, D.A. "Concurrent Synchronous Simulation." S.B. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, May 1987.

2. Chien, A.A. "Congestion Control in Routing Networks." S.M. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, October 1986.

3. Chu, T.-A. "Synthesis of Self-timed VLSI Circuits from Graph-theoretic
Specifications." Ph.D. dissertation, MIT Department of Electrical
Engineering and Computer Science, Cambridge MA, May 1987.

4. Joerg, C.G. "Design of a Circuit Switched Routing Chip for a Dataflow
Supercomputer." S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1987.

5. Kaushik, S. "Design of a Cyclic Redundancy Code Generator Circuit for a
Packet Switch." S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1987.

6. Traub. K.R. "A Compiler for the MIT Tagged-token Dataflow
Architecture." S.M. thesis, MIT Department of Electrical Engineering and
Computer Science. Cambridge, MA. August 1986.

Theses in Progress

1. Culler, D.E. "Effective Dataflow Execution of Scientific Applications."
Ph.D. dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected December 1987.

2. Guha Roy, B. "Transaction Processing on Dataflow Computers." Ph.D.
dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected December 1988.

3. Heller, S.K. "Efficient Streams on a Dataflow Machine." Ph.D. dissertation,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected December 1987.

4. lannucci, R. A. "A Dataflow/von Neumann Hybrid Architecture." Ph.D.
dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected August 1987.

5. Jagannathan, S. "The Design and Inplementation of a Symmetric

68

COMPUTATION STRUCTURES

Programming Language." Ph.D. dissertation, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, expected August 1988.

6. Kathail, V.K. "Optimal Evaluators for Functional Languages." Ph.D.
dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected December 1987.

7. Maa, G. "Scalability of the Tagged-token Dataflow Machine." S.M. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected September 1087.

8. Papadopoulos, G.M. "Implementation of a General-purpose Dataflow
Multiprocessor." Ph.D. dissertation, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, expected August 1987.

9. Traub, K.T. "Sequential Implementation of Non-sequential Programming
Languages." Ph.D. dissertation, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, expected June 1988.

Talks

1. Arvind. "Dataflow and the Multiprocessor Emulation Facility."
DARPA/JASON Workshop on Advanced Computer Architecture Research,
La Jolla, CA, July 10, 1986.

2. Arvind. "A von Neumann-Dataflow Machine." IBM Research, Hawthorne,
NY, August 26, 1986.

3. Arvind. "Data Structures for Parallel Computing." Graph Reduction
Workshop, Santa Fe, NM, October 1, 1986.

4. Arvind. "Quantifying Parallelism in Programs." Los Alamos National
Laboratory, Los Alamos, NM, October 2, 1086.

5. Arvind. "Dataflow Architectures." Keynote Talk, ICCD '86, Rye Town
Hilton, Port Chester, NY, October 6, 1986.

6. Arvind. "Dataflow Architectures." Michigan State University, E. Lansing,
MI, October 16, 1986.

7. Arvind. "Parallel Computing: New Directions in Dataflow." MIT
Department of Electrical Engineering and Computer Science. Cambridge,
MA, November 17, 1986.

8. Arvind. "Quantifying Parallelism in Programs." IBM-ACES l1th University

69

COMPUTATION STRUCTURES

Study Conference, Bonaventura Hotel, Ft. Lauderdale, FL, November 19,
1986.

9. Arvind. "Dataflow Architectures." NCR Workshop on Distributed Systems
Architecture, San Diego, CA, December 9, 1986.

10. Arvind. "Dataflow and Scientific Programming." Lawrence Livermore
Laboratory, Livermore, CA, December 10, 1986.

11. Arvind. "Future Scientific Programming: Ek's SIMPLE Code." Parallel
Processing: Matching Execution Models with Program Classes, A High-
Speed Computing Conference, sponsored by Los Alamos and Lawrence
Livermore National Laboratories, Gleneden Beach, OR, March 17, 1987.

12. Arvind. "Parallel Computing: The need to move away from the von
Neumann Model." Keynote Talk, SEAS Meeting, Montpellier, France, April
7, 1987.

13. Arvind. "Monsoon: A realization of the MIT Tagged-Token Dataflow
Architecture." The 3rd MIT-IBM Workshop on Parallel Processing, Essex,
CT, April 20, 1987.

14. Arvind. "Future Scientifle Programming: Ek's SIMPLE Code." The 3rd
MIT-IBM Workshop on Parallel Processing, Essex, CT, April 21, 1987.

15. Arvind. "Future Scientific Programming." A Keynote Talk, International
Conference on Supercomputing, Athens, Greece, June 11, 1987.

16. Arvind. "Executing a Program on the MIT Tagged-Token Dataflow
Architecture." A Keynote Talk, PARLE Conference, Eindhoven, The
Netherlands, June 15, 1987.

17. Arvind. "Two Fundamental Issues in Multiprocessing." DFVLR - Conference
1987 on Parallel Processing in Science and Engineering, Bonn-Bad
Godesberg, W. Germany, June 25, 1087.

18. lannucci, R. A. "Multiprocessor Emulation Facility: Retrospective."
DARPA/IPTO meeting held at LCS, December 18, 1986.

19. lannucci, R.A. "Dataflow Computer Architecture: an Introduction." Bolt,
Beranek and Newman Laboratories, Cambridge, MA, March 2, 1987.

20. lannucci, R.A. "Dataflow Computer Architecture." DSD Kingston
Laboratory, IBM Corporation, Kingston, NY, March 2, 1987.

70

COMPUTATION STRUCTURES

21. Jagannathan, S. "Environments as First-class Objects." 14th Conference on
Principles of Programming Languages, Munich, Germany, January 1987.

22. Jagannathan, S. "Parallelism, I ersistence and Meta-cleanliness in the
Symmetric Lisp Interpreter." 1987 SIGPLAN Conference on Interpreters and
Interpretive Techniques, St. Paul, MN, June 24-26, 1987.

23. Nikhil, R.S. "Functional Database System." IEEE Hyderabad Chapter,
Hyderabad, India, July 1986.

24. Nikhil, R.S. "I-structures: Data Structures for Parallel Computing."
Department of Computer and Information Sciences, University of
Pennsylvania, Philadelphia, PA, November 1986.

25. Nikhil, R.S. "Functional Databases." Boston SIGMOD Seminar, Cambridge,
MA, November 1986.

26. Nikhil, R.S. "Dataflow and Databases." DARPA/IPTO meeting held at
LCS, December 18, 1986.

27. Soley, R.M. "Lisp Carries Its Own Weight." 3rd Artificial Intelligence
Applications Conference, IEEE, Orlando, FL, February 25, 1987.

71

DISTRIBUTED COMPUTING

Academic Staff

D. D. Clark, Group Leader J. Saltzer

Research Staff

M. Lam bert

Graduate Students

D. Feldmejer L. Kolodney
T. Ng T. Shepard
L. Zhang

Undergraduate Students

J. Capo J. Devine
A. Heybey J. Lunny

Support Staff

G-L. Staton

DISTRIBUTED COMPUTING

1. INTRODUCTION

The Distributed Computing Systems Group is concerned with the issues surrounding
the design of networked computing nodes. During the year a number of projects were
pursued, as described below.

2. BULK DATA TRANSFER PROTOCOL

Work is continuing on the NETBLT project. Current research topics within NETBLT
are (1) inventing algorithms to raise or lower protocol transmission rates dynamically in
the face of network congestion or channel noise, (2) inventing methods for congestion
detection that do not involve querying sources of information external to the protocol
module, (3) development of a protocol (or addition to an existing protocol) that will
allow NETBLT to query gateways and obtain network load information, and (4)
modifications to a gateway that will allow it to monitor network load and give out
information to network hosts describing current (and possibly predicted) network load.

During the year, we performed a number of performance tests on NETBLT, with
positive results. Over the wideband network, we demonstrated a sustained throughput
of 930 kbps, which is more than an order of magnitude improvement over previous
demonstrations of transport protocols, and a channel utilization of over 900%.

A NIC RFC describing NETBLT test results over a variety of networks is in draft
form and almost ready for distribution. Another RFC is being written describing
possible algorithms for dynamic rate control. Finally, a paper describing the design
philosophy behind bulk data transfer protocols such as NETBLT is in draft form.

3. RESOURCE ALLOCATION IN PACKET SWITCHING NETWORKS

Lixia Zhang has been working on the design of a new architecture for packet switching
networks. Although packet switching technology has achieved a great success in its first
20 years, we are yet to gain further understanding of the performance control issues. A
noticeable example is the network congestion problem which, despite years of research
effort, has never been satisfactorily solved.

Zhang considers that the performance problems seen in today's packet switching
networks reflect an architectural defect, that is, the effective traffic control components
were missing from the design. Both datagram and virtual circuit architectures emerged
in the early stage of packet switching era, when a full understanding of the new
technology was yet to be gained through experimentation. The performance issues, as
in usual cases with any new technology, were significantly exposed only after early
successes made packet networks grow to enormous sizes. The future success of packet
switching will depend on how well the network can control the performance.

This study has concluded that the following distinguished features of the packet
switching network make the performance control challenging and interesting:

74

DISTRIBUTED COMPUTING

1) There are wide diversities in applications, end machines, and even network
components themselves.

2) Theoretically, packet switching allows any single user an unlimited share of
network resources. This dynamic sharing feature, on the one hand, provides
the needed flexibility to meet various service requirements, but on the other
hand, it can easily be abused to damage the network service, as we all have
witnessed.

3) Computer generated data traffic has, in most cases, the flexibility of
tolerating delays and channel bandwidth adjustment; some applications can
even accept postponement of transmission services for a short time period
with no negative effect on performance; network mail and background file
transfers are such examples. However, merely blocking traffic at the
network entrance is not an acceptable control, because computers work well
only when being explicitly informed of what to do; they do poorly in coping
with unexpected abnormal situations.

4) The capacity of a packet switching network should be measured in rates,
and the sharing among users should also be controlled by rate.

Zhang proposes the following solutions:

1) Good performance can be achieved only through effective control. The
network should build performance supporting mechanisms into the
architecture, which include (a) a user interface with service specifications so
that applications can express their requirements in a quantitative manner;
(b) network data forwarding resource management that allocate and monitor
the network usage; and (c) a control mechanism that dynamically adjusts
network traffic with end users.

2) The network should apply an average-rate flow control on the so described
bursty and random data traffic, based on the statistical data flow
information provided in user service specifications.

3) An overall good performance can be achieved only through collaborations
between the network and the application designs. We should design
applications with controllable data generations.

4. GATEWAYS

Gateways interconnect computer networks, but often gateway performance is an order
of magnitude less than that of the connected networks. Network transparency is
increased if the gateways have a throughput as high as that of the attached networks,
so that hosts can communicate at full network speed regardless of network location. A

75

DISTRIBUTED COMPUTING

way of improving gateway performance is to increase the speed of routing-table lookups
This routing table is a list of destination/next-hop pairs used for packet forwarding.
Performance of the routing table lookup can be increased by placing a cache in front of
the routing table. A cache will increase performance if there is a locality of reference of
internet packet addresses; earlier network measurements by Feldmeier, Jain and
Routhier suggested that this was likely. Models of various types of caches were
constructed and the performance of these caches was evaluated by driving the cache
models with data derived from network measurements. Thus, the performance of
gateways with caches could be assessed in an existing network without actually
implementing a cache on a gateway. The results demonstrate that internet packet
addresses have reference locality and that a cache could indeed improve gateway
performance.

5. MAM: A SEMI-AUTOMATIC DEBUGGING TOOL

During the last year Larry Kolodriey completed a Master's Thesis entitled, MAM: A
Semi-Automatic Debugging Tool. This work was done as part of the 6A program,
jointly at GenRad and MIT. The problem addressed in the thesis was to provide
distributed debugging tools in an environment where logging of all network activity
occurred. Therefore the debugging tools could be postmortem in nature. He developed
a language and mechanism for defining event abstractions of network activity, where
the base events were messages of various types being sent to processes. The work
included a mechanism for recognizing "near-misses" of events, to highlight potential
sources of bugs. The work was innovative both in the area of abstraction of events for
debugging, allowing for the definition of events that are not quite correct, as well as the
display tools provided to the programmer for viewing and analyzing problems. The
thesis was completed in January.

6. PCMAIL DISTRIBUTED MAIL SYSTEM

Work has largely finished on the Pcmail Distributed Mail System project. Final
enhancements included bulletin-board capabilities and an interface to the Network
News Transfer Protocol, allowing USENET network news to be captured and stored in
Pcmail bulletin-board mailboxes. The mail system is in use by about 10 people here at
the Laboratory for Computer Science, and by other groups around the country.
Currently available software includes a mail server for Unix machines, as well as client
software for both Unix and MS-DOS machines. A paper describing the philosophy
behind Pcmail is forthcoming.

76

DISTRIBUTED COMPUTING

Publications

1. Feldmeier, D.C. "Statistical Monitors for Local Area Networks."
Proceedings of the 11th Conference on Local Computer Networks,

Minneapolis, MN, October 1986.

2. Feldmeier, D.C. "Traffic Measurements on a Token Ring Network."
Proceedings of the Computer Network Symposium, Washington, DC,

November 1986.

3. Sollins, K.R. and D.D. Clark. "Distributed Management." Proceedings of
the IFIP WOG6.5 International Working Conference on Message Handling
Systems, Munich, Germany, April 1987.

4. Zhang, L. "Why TCP Timers Don't Work Well." Proceedings of
Symposium on Communication Architectures and Protocols, August 5-7,
1986.

5. Zhang, L. "Some Thoughts on the Packet Network Architecture." Computer
Communication Review, 17, 1&2, (January/April 1987).

6. Zhang, L. "Congestion Control in Packet-Switched Computer Networks."
Proceedings of the Second International Conference on Computers and
Applications, Beijing, China, June 1987.

7. Zhang, L. "How to Build a Gateway." Proceedings of the Second
International Conference on Computers and Applications, Beijing, China,
June 1987.

Theses Completed

1. Kolodney, L.K. "MAM: A Semi-Automatic Debugging Tool for Distributed
Programs." S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, January 1987.

2. Lunny, J.F. "A Reliable Server Protocol and a Disk Manager Protocol."
S.B. thesis, MIT Department of Engineering and Computer Science,
Cambridge, MA, May 1987.

3. Ng, P. "Long Atomic Computations." Ph.D. dissertation, MIT Department
of Electrical Engineering and Computer Science, Cambridge, MA, August
1986.

77

DISTRIBUTED COMPUTING

Talks
1. Clark, D.D. "The 1, 5, 20 Year Goals of Internet Research." TCP-IPVendors Workshop, Monterey, CA, March 1987.

2. Clark, D.D. "What's Wrong With Distributed Systems?" 2nd EuropeanSIGOPS Workshop, Anmsterdam, Netherlands, September 1986.

3. Clark, D.D. "Future Directions in Networking." Xerox Corporation,
November 1986.

4. Feldmeier, D.C. "Statistical Monitors for Local Area Networks." 1lthConference on Local Computer Networks, Minneapolis, MN, October 1986.
5. Feldmeler, D.C. "Traffic Measurements on a Token Ring Network."Computer Network Symposium, Washington, DC, November 1986.
B. Zhang, L. "EGP Miscellaneous." Second Internet Engineering Task Force

Meeting, Ann Arbor, MI, July 1986.

7. Zhang, L. "The Internet Traffic Measurement." Second Internet Engineering
Task Force Meeting, Ann Arbor, MI, July 1986.

8. Zhang, L. Invited panelist at the First TCP/IP Vendor's Workshop,
Monterey, CA, August 1986.

78

INFORMATION MECHANICS

Research Staff

T. Toffoli, Group Leader

Graduate Students

N. Margolis P. Tamnayo

Undergraduate Student

D. Petty

Support Staff

T. Cloney D. Zaig

INFORMATION MECHANICS

1. INTRODUCTION

In the past year we have (1) published a major book, (2) organized a conference, (3)
completed software and documentation for CAM-6 (including a 250-page User's guide),
(4) revised and essentially finalized the design of CAM-7, and started working on an
early prototype of it, (5) completed a Ph.D. thesis, and made substantial progress in
three new areas of research, namely (6) locally-additive information flo- in near-
equilibrium system, (7) Lorentz transformations of parallel computing processes, and (8)
a new technique for pattern recognition by cellular automata, called texture-locked loop.

We are almost through with a huge backlog of administrative and service duties, most
of them concerned with scientific and technical support of cellular automata machines.
While we have found time to do a good amount of original research, publication of
results has suffered -- and will receive priority in the months to come.

2. THE BOOK

The publication of the book Cellular Automata Alachine8 -- A New Entironment for
Modeling (MIT Press) 1161, represents a milestone in our effort to transfer to the
scientific community the methodology of modeling by cellular automata and the
technology of cellular automata machines.

3. CA,'86

The conference CELLULAR AUTOMATA '86. held at MIT on June 16--19, 1986, and
organized by Charles Bennett, Tom Toffoli. and Stephen Wolfram, has brought in
about 150 participants, of which about 80 have given contributions in the form ,f
lectures, posters presentations, demos, etc. A collection of extended abstracts has been
published as an LCS Technical Memo [31; selected full-length papers (including some by
our group 151[8]) have been published in two issues of the journal Complex Systems.

4. THE CAM-7 MULTIPROCESSOR

We have made a major revision 112] in the design of ('4\1-7 -- a large cellular-
automaton multiprocessor which will be especially useful for fine-grained models of
physical systems: this revision allows one to achieve arbitrary neighborhoods by
software methods rather than cumbersome hardware mln tiplexing. The target
configuration will process 100 Giga-events/sec (where an event is the updating of a I-hlit
cell as a function of up to 16 neighboring bits), and handle an array of 512 by 512 hy
512 by 16 sites. The architecture is modularly expandable.

We iutend to go ahead with construction as so(no as we are free of other 'IIc:ige cc t I

and the funding prospects are a little clearer. We have started working on an .arl\

prototype of the basic module.

so

INFORMATION MECHANICS

5. FLUID DYNAMICS

The idea of modeling fluids by means of cellular automata ("lattice gas" models),

introduced by Pomeau in 1973 and independently rediscovered by us a few years later,

has recently caught the attention of the scientific community. One of the stimuli for the

more recent developments has been the availability of cellular automata machines --

ideally suited for simulating lattice gases. Fair and informative mentions of this topic

have recently appeared in The Neu' York Times [61 and Physics Today 191.

While hydrodynamics experts have been working on a number of issues concerning the

immediate applicability of this method to the modeling of real fluids, we have

concentrated on more fundamental questions: why the method should work at all, wvhat

are its connections with differential cquations, with analytical mechanics, and with

information theory. We have proved a number of theorems that establish a bridge

between mass waves and information waves, and point at at interesting generalization

of earlier results.

In particular, we have arrived at an explicit and complete characterization of

equilibrium for a class of systems having computational-universal capabilities.
Previously, such characterizations were known only for trivial systems (such as the

Bernouilli flow). Moreover, we have proven that in this class of systems the information

carried by small perturbations about equilibrium flows as a locally-additive conserved

quantity -- and thus takes on a surprisingly material aspect. A paper on this subject [15]
was presented at the Symposium on Basic Concepts in Quantum and Stochastic

Transport (IBM Research, June 19, 1987).

6. PHYSICS AND COMPUTATION

A graduate student, Joe Herzgovic. has been analyzing a system that constitutes a

good paradigm for the reduction of mechanical quantities (force, energy, etc.) to

quantities of an information-theoretical nature. This system consists of a bit-string

embedded in a reversible cellular automaton, macroscopically, it yields a harmonic

oscillator in which the restoring forces remain linear even for finite-amplitude

displacements.

Another graduate student, Mark Smith, has been working with Toni Toffoli and Tom

Cloney on the behavior of lattice gases under conditions of relativistic drift velocities. It
is known that such behavior departs from Galilean invariance (and thus violates the

Navier-Stokes equation). We hope to show that this departure is in the direction of

L.orentz invariance, and thus closer to physics than the Navier-Stokes equation itself.

Norman Margolus has successfully defended his Ph.D. dissertation on "Physics and
Computation" 1111. Ilis work on quantiumn computation tias been presented at the

conference "New lea.' and Techniques in Quantum Measurement Theory" 1101.

81

INFORMATION MECHANICS

7. TEXTURE-LOCKED LOOPS

Tom Toffoli has obtained rewarding preliminary results with a new method for
pattern recognition using cellular automata [141. This method is is capable of reliably
recognizing patterns characterized by long-range correlations, even when obscured by
extremely large amounts of noise -- provided that the pattern themselves are of the kind
that can be obtained by iteration of short-range processes. This method is next-to-
useless for recognizing objects such as faces or tanks -- which are produced by deep
transformational grammars; on the other hand, it promises to be very efficient in
recognizing "natural" features such as clouds, mountain ranges, rivers, coastlines, urban
agglomerations, etc.; the identification of such features constitutes, of course, a large
fraction of the routine preprocessing of satellite pictures.

82

INFORMATION MECHANICS

References

1. Bennett, C., N. Margolus and T. Toffoli. "Energy Encoding vs. Spin

Encoding in Ising Spin Models." submitted for publication, 1987.

2. Bennett, C. "Reversibility and Computation." Symposium on Basic

Concepts in Quantum and Stochastic Transport, IBM Research, June 19,

1987.

3. Bennett, C., T. Toffoli and S. Wolfram (ed.). "Cellular Automata '86

Conference." MIT/LCS/TM-317, MIT Laboratory for Computer Science,

Cambridge, MA, 1986.

4. Califano, A., N. Margolus and T. Toffoli. CAMI-6 User' Guide, MIT,
Cambridge, MA, 1987.

5. Cloney, T, E. Goles and G. Vichniac. "The 3x+1 Problem: A Quasi-Cellular
Automaton." Complex Systems, 1, (1987), 349-360.

6. Gleick, J. "Fluid Math Made Simple -- Sort Of." The New York Times,
(April 19, 1987).

7. E. Goles and G. Vichniac. "Lyapunov Functions for Neural Networks with
Parallel Iterations." Neural Networks for Computing 1986, J.S. Denker
(ed.), American Institute of Physics, (t98?}.

8. Hartman, H., P. Tamayo and W. Klein. "Statistical Mechanics of
Inhomogeneous Cellular Automata." Complex Systems, 1, (1987). 245-256.

9. Kadanoff, L. "On Two Levels." Physics Today, (September 1086), 7-9.

10. Margolus, N. "Quantum Computation." Annals of the NY Academy of
Science, 480, (1986), 487-497.

11. Margolus, N. "Physics and Computation." Ph.D. dissertation. MIT Physics
Department, Cambridge, MA, 1987.

12. Margolus, N. and T. Toffoli. "Cellular Automata Machines.' Alodern
Approaches to Large Computer Systems, Santa Fe, NIM, (1986).

13. Porter, K. CAM-6 Hardware Alanual. Systems Concepts. San Francisco,
CA, 1987.

14. Toffoli, T. "Texture-Locked Loops -- Long-range Optimization by Local
Mechanisms." Neural Networks and Neurocomputers, Raleigh, NC, 1987.

83

INFORMATION MECHANICS

15. Toffoli, T. "Locally-additive Information Transport." Symposium on Basic

Concepts in Quantum and Stochastic Transport, IBM Research, June 19,
1987.

16. Toffoll, T. and N. Margolus. Cellular Automata Machines: A New

Environment for Modeling. Camibidge, MA, MIT Press, 1987.

8.1

MERCURY

Academic Staff

D. Gifford WV. Weihi
B. Liskov R. Zippel
S. Ward

Research Staff

T. Bloomn R. Scheifler
D. Clark K. Sollins
I.Grelf L. Shrira

Graduate Students

B. Ben-Zvi Thu Nguyen
A. Xu S. Zanarott!

Support Staff

J. Doherty A. Rubin
G-L. M_'aton

Visitors

S. Blau 13. DeDecker

J. Liner

MERCURY

1. INTRODUCTION

Mercury, previously known as the Common System, will be a system to support
computing in a heterogeneous environment. The high level goals of the project are to

permit program invocation across language boundaries, as well as protect and sustain
the heterogeneity inherent in the choices of various languages, operating systems, and
hardware. Furthermore, it is our intention to build the system in order to validate the
work. The report last year discussed these high level goals and issues. This report will
only address work that has been done since that report.

This has been the first full year of work on Mercury. The work has mostly been in
the form of detailed study and analysis of alternatives leading to decisions about the
semantic models that are required for various mechanisms. Recently, we have reached
points in several parts of the project, where implementations could begin. Some of
these are viewed as a simple first phase, undertaken to get "something up and
running", in order to gain experience with the mechanisms. With that experience, these
parts will be replaced with better ones. The semantic model can be viewed in two
parts, communications semantics, and abstract transmissable data. The implementation
efforts can be broken into transport layers, language veneers (of which there are three,
Argus, Lisp, and C), and clients. The work is documented in over 20 internal working
notes, with several more in progress. In addition, several papers have been prepared for
submission for publication. The working notes provide much more detail than can be
included here. This is only a summary.

2. MODEL

A number of basic decisions in the project concern our underlying model of
communication, the semantics of communication and the nature transmissable objects.
Mercury takes the perspective that computation is distributed over modules. A module
is an instance of a service interface. It resides at a single location (host) and consists of
a set of single operation ports, procedures that can be invoked remotely. The
granularity of registration of publicly accessible entities is the module. Within a
module, we also saw the need for multiple threads of control. Each such thread is
called an agent. Therefore a module contains a set of agents, which may make remote
calls. A module can be invoked by remote agents through a set of ports.

The model we propose for communication is the streom. Each port contains a stream
identifier. A stream is the set of requests from an agent to a set of ports having the
same stream identifier. A stream guarantees that all requests will be delivered in the
order sent and that any responses will be delivered in that same order. An agent can
set several flags as part of invoking a port. For instance, the agent can specify whether
a reply is required or not, or whether the request should be handled immediately or not.
These features provide flexibility in the semantics of invocation. If the invoker does not
expect and will not collect a response, the semantics of the invocation is that of message
passing, a simple send. In this case immediacy is irrelevant, since no response is

86

MERCURY

awaited. In contrast, if a reply is expected and the request should be handled

immediately, the semantics of traditional rpc is available. But, in addition, there is
another interesting option. The invoking agent might make a series of requests,

indicating that the responses should be returned, but that there is no urgency. The

requesting agent will not wait, but will collect the responses later.

Streams provide an interesting set of advantages over previously provided semantics.
First, from the language level, they can be used as a simple form of futures, as proposed
in Halstead's Mult:Lisp. They allow for inclusion of invocations the results of which will

only be needed at a later time, permitting a more relaxed form of evaluation. Second,
from the perspective of the lower layers of communication protocols, they permit more
efficient use of communications mechanisms, when either responses are not needed, or
requests and replies can be delayed. The possibility of delaying the processing of remote
invocations allows for batching of message handling. Finally, in terms of ports, there
can be a single type of port, for which replies are always generated, but on transmitted
when needed. From the perspective of the service programmer, a simpler model can be
used, since there is only one form of invocation.

The project has a commitment to supporting transactions and atomicity. This work is
still in its formative stages, although it ;s clear that the semantics of message passing
will have a strong influence on atomicity.

Given the model of streams, it has also been important to reach agreement on the
nature of transmissable objects. In keeping with the goal of the project to support
heterogeneity and therefore not to take the route of the intersection of facilities in the
languages, but rather something closer to the union, the project has a commitment to
permitting transmission of data abstractions. The entities being transmitted are values;
they do not have operations, and what is of primary importance is the representation of
values. Therefore, their types are termed valuespaces or vpsaces. There are an agreed
upon set of base vspaces including such vspaces as BOOL, BYTE, CHAR, INT16,
INT32, etc. In addition there are vspace generators such as STRUCT (tagged union).
ONEOF, and PTR (a generator for supporting sharing). In addition, there are
mechanisms still under discussion for defining abstractions. The issues of polymorphism
and type inheritance are not supported at present, although they may be investigated
further at a later date. There is much remaining work in determining how and where
both interfaces for modules and vspaces will be defined. First, in order to define them.
there must be a language, and then there must be translation mechanisms between that
language and the local languages.

The underlying model proposed here is that modules form the basis of activity. Each
module, residing at a single site, will contain one or more threads of control, called an
agent, and can be invoked remotely through a set of single operation ports. Ports for a
single module are grouped by stream identifier. The set of invocations from an agent to
a set of ports having the same stream identifier form a stream. All invocations on a
stream are sequenced. Finally, the objects that are transmitted on a stream are

extensibly typed by vspace,.

87

MERCURY

3. IMPLEMENTATIONS

The implementation efforts at present are focused on providing the mechanisms

needed to support initial remote invocations in order to build the first applications.

Therefore the first areas of effort are the transport layer, to allow for actual

transmission of requests and replies, and the language veneers, so that the

communication mechanisms are accessible from the languages in question. This has led

to four separate activities, in the form of four subgroups within the project, one each to

design the transport protocols, and each of the three language veneers.

The transport group has defined the protocols needed for lower level connections

between pairs of modules and on top of that shorter-lived streams from individual

agents at one or the other module. In addition to the basic creation and deletion of

connections and streams, the work has had to focus on exceptions, failures, and
quiescence, and when information no longer need be retained. One of the issues here is

retaining information for very long-lived but seldom used connections or streams.

Another issue that is also getting significant attention is authentication and security,
not only how to provide it, but also how to guarantee that it does not cause
inefficiencies when it is not needed. The model of a client invoking a service that in
turn must invoke a series of other services in order Lo complete an operation on the
client's behalf has highlighted the problem of cascading authoriation. This is only one
example of cascading. Problems also arise when it is important for sequencing of

actions to know when a service module is invoked by a client, which streams are being
used in further remote invocations. Similar problems arise in cascaded subactions in a
transaction. All are undergoing further work.

The present situation in the transport layer work is that the protocols and data
representations are in a form that the first phase of implementation is proceeding in

both the Unix and Lisp machipe environment. In order to decrease the amount of time
and work needed to complete this first phase, the lower level connections are being built
on TCP, which itself does most of the work needed to set up and maintain connections.

The problems with TCP are that it does not have the idea of modules, so our
connections must be a slight extension of TCP connections, and it may be very

inefficient for our needs. In the long run, TCP will be replaced with our own transport

layer.

In each of the three languages, the mappings from the Mercury ideas such as module,
agent, and ports have been defined. In addition, in order to support remote
invocations, there must be mechanisms for translating local objects into vspaces.
Initially, other than for the base vspaces and simple local types, these translations will
be done by the programmer, although the intention is that in the future, as much of
this as possible will be automated, simplifying the task of the applications programmer.

Implementations are underway in C and Lisp, and planned for Argus.

In a(lition to these implementation efforts, one service for Mercury is underway, an

88

MERCURY

archive service, and others are planned. The next two efforts will be a front-end for the
Community Information Service and a catalog, in order t, be able to register and then
later find the ports to be invoked to reach a particular module. The archive service is
the Master's thesis of Stan Zanarotti. The work here is first to define and prototype a
publicly accessible archive service, and then within that to study further a set of
proposals for naming mechanisms that meet the naming requirements for such an
archive service. The Community Information Service and catalog work are two of the
projects planned for this summer.

Our short-term future plans are to build two demonstrations within the next year.
The first of these will use remote invocations, with hand-crafted interfaces. This will
require existence of the first phase of the transport layers, the language veneers, a
simple catalog to find ports, simple autl,entication as part of the transport layers, and
transactions. The later application will demonstrate more automatic interface
generation, and will therefore require the design and implementation of the language in
which interfaces and vspaces are defined, as well as the library in which they will be
stored, on top of the functions needed for the earlier application. Simultaneously. work
will continue in many nf the areas in which only preliminary work has been done. and
there will be work on both a file service and object repository as well as debugging
tools.

89

MERCURY

Publications

1. Sollins, K.R. "Naming Problems in the Common System." Proceedings of

the Distributed Systems Architecture Board Task Force on Naming,
February 1987.

Talks

1. Liskov, B. "Support for Heterogeneous Computing." NEC Corporation,

Tokyo, Japan, October 1986.

2. Liskov B. "Communication in a Heterogeneous System."

Texas Instruments, Dallas, Tx, February 1987;
MIT Laboratory tbr Computer Science, Cambridge, vA,

March 1987;
Stanford University, Stanford, CA, March 1987;
Georgia Institute of Technology, Atlanta, GA,

April 1987;
Dept. of Information and Computer Science, University of

California, Irvine, May 1987.

3. Liskov, B. "Support for Programming in Heterogeneous Sy-tems."

NYNEX, White Plains, NY, June 1987;
Annual Meeting, MIT Laboratory for Computer Science,

June 1987.

4. Soflins, K.R. "Naming Problems in the Common System." Distributed
Systems Architecture Board Task Force on Naming, February 1987.

5. Sollins, K.R. "Common System." University of California at Davis,

February 1987.

6. Sollins, K.R. "Mercury: Heterogeneous System."

Advanced Networks System Architecture Project (ANSA),
Cambridge. England, April 1987:

Cambridge University, Cambridge. England, 1 ay 1987.

7. Sollins, K.R. "Type and Service Registry in the Common System." IEEE
Computer Society Workshop on Design Principles for Experimental
Distributed Systems, November 1986.

8. Weihl, W. "Communication in the MIT Common System."

90

MERCURY

Brown University, Providence, RI, March 1987;
DEC Systems Research Center, March 1987;
IBM Almaden Research Center, March 1987;
University of Washington, March 1987.

91

PARALLEL PROCESSING

Academic Staff

R. Halstead, Group Leader

Graduate Students

L. Bagnall M. Ma
E. Bradley J. Miller
Y. Jang D. Nussbaum
J. Loalza P. Nuth

R. Osborne

Undergraduate Students

D. Becker J. Gilson
B. Callaghan S. H-erronD. Chamberland K. Johnson
J. Ferro K. Lu

Support Staff

S.M. Hardy

Visitors

T. Fujita G. Thaker
1. Vuong

PARALLEL PROCESSING

1. INTRODUCTION

The 1986-87 academic year mar:-s the first full year of operation of the Parallel
Processing Group, whose ultimate goal is learning how to build parallel processors that
can be programmed for general-purpose applications. Meeting this challenge requires
progress on three fronts: languages, algorithms, and architectures. A major focus of our
effort is in the direction of general-purpose symbolic computing. Accordingly, our
current programming language work centers on MultiLisp [14][111, a dialect of Lisp
including the future 15][191 construct for parallel computing. As a vehicle for
experimentation with parallel programming, we have built Concert [13][21, a 32-
processor shared-memory multiprocessor. Concert has been several years in the making,
but the past year saw the final emergence of a full-size and reliably working Concert.
MultiLisp has been implemented on Concert and has been used to experiment with
implementations of future and to support the generation and perf, , nce
measurement of a library of representative parallel programs.

The ways in which MultiLisp helps or hinders the expression of these algorithms
furnish guidance on how to improve MultiLisp. At the same time, as more programs
are written, a library of "benchmark" programs written in MultiLisp is gradually
accumulating. These benchmarks are the calibration or "reality check" for proposed
architectures: whenever a question arises as to whether the benefits of some proposed
architectural feature justify its cost, simulations using the benchmarks can supply
quantitative data to help provide the answer. It is important for many of the
benchmarks to be sizable programs, because the ultimate use of high-performance
parallel architectures will be for large problems, which often have qualitatively different
properties from small ones (for example, small programs are apt to show more locality
of reference).

Our work on benchmarks is discussed later, after brief descriptions of Concert and
MultiLisp. MultiLisp is built on Concert using three levels of implementation: (1) the
Concert multiprocessor hardware, (2) the utility (or "operating system") level, and (3)
the MultiLisp implementation itself.

2. THE CONCERT MULTIPROCESSOR

The Concert multiprocessor consists of eight clusters of processors, as shown in Figure
7-1. connected by a segmented bus in the shape of a ring, known as the RingBus.
which is controlled by a central arbiter 113][2]. Each cluster contains a block of globally
accessible memory and a MultiBus tying together a small number of MC68000
processors and their private memories. The processors and memories are commercially
available dual-ported boards that each have one MultiBus port and one High Speed Bus
port. The High Speed Bus is a single-master bus designed to operate somewhat faster
than the MultiBus.

The structure of a representative Concert cluster is shown in Figure 7-2. Arrowheads

94

PARALLEL PROCESSING

RingBus segment

Figure 7-1: RingBus Multiprocessor System

on the vertical lines in this figure show the nature of the associated bus connections: a
module is potentially a master of the bus if the arrow points toward the bus, and
potentially a slave if the arrow points away from the bus. MultiBus arbitration circuitry
ensures fair access to the MultiBus by each potential MultiBus master.

Multibus

High Speed Buses

P = processor
M = memory

RIB = RingBus interface board

Figure 7-2: Structure of a Typical Concert Cluster

If the majority of memory accesses from each processor are directed toward its own
tightly coupled memory using its High Speed Bus, enough traffic is unloaded from the
MultiBus so it can be shared by several processors without significant performance
degradation. When running MultiLisp with four processors per cluster, each cluster's
MultiBus is busy from one-quarter to one-half of the time, and only slight performance
degradation occurs.

95

PARALLEL PROCESSING

An individual cluster's MultiBus is connected to the RingBus by a RingBus interface
board, or RIB. The RIB responds to MultiBus operations like a memory module:
whenever a memory read or write operation on the MultiBus has an address marking it
as a global memory access, the RIB responds to the request and translates it into the
appropriate RingBus operation. Each RIB also manages a portion of the global memory
pool, represented in Figure 7-2 by the memory module connected to the RIB via a High-
Speed Bus. Thus each RIB also listens to the RingBus for accesses to the portion of
global memory connected to that RIB. A 16-bit access on the High Speed Bus,
MultiBus , or RingBus takes approximately 500 nanoseconds, one microsecond, or two
microseconds, respectively, in the absence of contention.

The RingBus supports read and write transactions by which processors may access
global memory. All accesses to global memory are under the control of the RingBus
arbiter, which periodically examines and grants requests from the clusters. The arbiter
can cause multiple segments to be connected together to perform a single memory
access, if a processor attempts to access a memory location several segments distant
along the RingBus. Several processors may be carrying out independent accesses to
different blocks of global memory, provided they do not require overlapping sets of
RingBus segments. Studies show the performance of a RingBus to be intermediate
between that of a crossbar and a simple shared bus [13][261.

Led by the heroic efforts of D. Nussbaum and P. Nuth, we finally completed the
construction of Concert and commissioned a reliable, full-sized, eight-cluster system
during the past year. J. Loaiza assisted by greatly improving the Diag diagnostic
exerciser program, which is now run routinely whenever Concert is unloaded to watch
for developing hardware problems.

Another version of Concert, which replaces the RingBus with a differcnt -!obal
communication mechanism called the GCM, has been built at the Advanced Technology
Division (ATD) of the Harris Corporation's Government Systems Sector. The past year
has seen the final completion of debugging of ATD's GCM-based Concert, which is now
running reliably with eight clusters containing eight processors each. A continuing
collaboration with ATD has yielded, among other dividends, several hardware modules
that may be plugged into Concert for performance monitoring. During the past year,
personnel from ATD assisted D. Nussbaum and P. Nuth in installing the Beckerboard,
which provides a visual display of processor status and MultiBus loading in each cluster,
and the SysM, which provides a facility for measuring the performance of different
parts of a program under test in a way that only slightly affects the performance of
that program.

3. THE CONCERT SYSTEM PROGRAMMING ENVIRONMENT

Low-level Concert "system programs" are written in C. A utility subroutine package
provides access to file and network I/O facilities supported by server processes that
(normally) run on one processor dedicated to this purpose. The utility subroutine

96

PARALLEL PROCESSING

interface is a subset of the UNIX "standard I/O library" interface and includes the

ability to read, write, and create files on the Concert file system or remotely across the

network. Although the utilities are designed to provide the needed facilities, they are

also designed to be unobtrusive, so they will not generate overhead to disrupt the

performance of multiprocessor programs running on Concert.

The past year saw further development of Concert's Chaos network interface to a
point where it offers a reliable remote file access service, and the development of

Maestro, a program to load and oversee other programs running on Concert, by
J. Loaiza and G. Thaker. Another improvement to the Concert user environment was
an input editor for commands typed to Concert, implemcntcd by I. Vuong.

4. MULTILISP

MultiLisp is an extended version of the Lisp-like programming language Scheme [1
that allows a programmer to specify concurrent execution. The default in MultiLisp is
sequential execution; concurrency can be introduced into a MultiLisp program by means
of the future construct. The form (future X 0) immediately returns a future for
the value of X and creates a task to concurrently evaluate X, allowing concurrency
between the computation of a value and the use of that value. When the evaluation of
X yields a value, that value replaces the future; we say that the future resolves to the
value. Any task that needs to know a future's value will be suspended until the future
resolves.

We say that a task T examines, or touches, a future when it performs an operation
that will cause T to be suspended if the future is not yet resolved. Most operations, e.g.,
arithmetic, comparison, type checking, etc., touch their operands (any operation that is
strict in an operand touches that operand). However, simple transmission of a value
from one place to another, e.g., by assignment, passing as a parameter to a procedure,
returning as a result from a procedure, building the value into a data structure, etc., do
not touch the value. Thus, many things can be done with a future without waiting for
its value. Future induces some patterns reminiscent of those found in graph-reduction
architectures based on "lazy evaluation" 116][18] 129), yet in other ways future
creates a style of computation much like that found in data flow architectures [31101
I8].

The team of J. Loalza, G. Thaker, D. Nussbaum, and P. Nuth removed the last
lingering synchronization bugs in the MultiLisp garbage collector during the summer of
1986. Consequently, Concert and MultiLisp are now both operational and heavily used
for developing new programs as well as for measuring properties of existing ones.
Experience has generally been encouraging, and has also helped focus attention on a few
areas where the MultiLisp design needs further thought. One of these areas is
debugging and exception handling. A preliminary approach to these problems using
exception values is currently implemented [12]. Another area where further thought is
needed is speculative parallelism (141 -- the creation of tasks whose results may

97

PARALLEL PROCESSING

subsequently be rendered irrelevant by the results of other computations. Some ways of

dealing with this problem have been implemented in the MultiScheme system described

below, but we have not yet been able to evaluate how completely the MultiScheme

solutions address the speculative parallelism problems that may arise in realistic

application programs. R. Osborne has begun studying the issues involved in supporting

speculative parallelism in MultiLisp.

5. MULTISCHEME

J. Miller and L. Bagnall collaborated with Bolt, Beranek, and Newman, Inc. (BBN) in
developing an alternative implementation of parallel Lisp with futures, known variously
as MultiScheme and Butterfly Lisp [241171, which runs on the BBN Butterfly Machine.
This work has explored a number of new areas within MultiLisp's value-oriented
parallel processing model. MultiScheme includes a parallel garbage collection algorithm
which not only recycles the (unfortunately) finite memory resource but removes
speculative computations that are no longer needed. The garbage collector also acts as
a centralized provider of a number of user-visible services formerly provided in a far
more ad hoc manner.

The MultiScheme work has also explored ways in which the underlying support for
the future operation can be exploited to extend the expressive power of Scheme. In
the process we have discovered a host of uses for "placeholders" (which implement
futures) even in the serial language. In addition, by separating these placeholders from
the underlying tasks which perform the computation, a number of alternative
computation models can be embedded in MultiScheme. A number of applications have
been written utilizing novel combinations of this same underlying support.

Finally, the MultiScheme system is based around a core "scheduler" written in
Scheme. By recasting this portion of the implementation in a user-accessible form, a
number of extensions have been easily built and tested. Among the more successful
additions is a new operation, called "disjoin," which is similar in spirit to McCarthy's
"aab" operator. Another useful extension has been the creation of "mutable futures."
These allow a value to be tentatively assigned to a placeholder and then subsequently
changed. This was the basis for a simulation of the ParaTran system [171, an
experimental architecture designed to support parallelism in the presence of side-effects,
which was reported on in last year's progress report.

The resulting system continues to evolve under the direction of Prof. Sussman's
Scheme group in the Al Lab and the BBN Butterfly Lisp Project. The next steps are
expected to be the integration of an efficient Scheme compiler with the existing
Butterfly implementation of MultiScheme, followed by porting the system to the newly
available Butterfly Plus processor.

MultiScheme has been distributed rather widely as the installed base of Butterfly
machines grows, and already a number of projects in various research organizations are
using it.

g8

PARALLEL PROCESSING

8. BENCHMARKS

Several application programs have been and are being written and studied, licluding
sorting [i], simulation of logic circuits [6], event-based simulation [23], part of a speech
recognition system [221, semantic net retrieval [41, a subset of Prolog not including
"cut" [27], a kernel of EMYCIN [211 (developed at MCC), the Boyer benchmark from
the Gabriel benchmark set [91], polynomial manipulation, traveling salesman, parallel
parsing of Lisp expressions, and the MultiLisp compiler itself. Two of these programs
underwent significant development during the past year: event-based simulation (by
M. Ma) and the Boyer benchmark (by R. Halstead and R. Osborne).

7. PERFORMANCE STUDIES

A program to be executed by Concert MultiLisp is first compiled into a machine-level
language called MCODE. MCODE is interpreted by a native-code MC68000 program.
One copy of this program is located in the local memory of, and executed by, each
processor in the Concert machine. Each processor manipulates various per-processor
data structures, such as top-of-stack caches, also located in the processor's local
memory. Shared data structures (including MCODE programs) reside in a garbage-
collected heap that is distributed among the RingBus-accessible memory modules of
Concert. Thus each processor makes mainly local accesses, punctuated by an occasional
access to the shared heap for the next MCODE instruction or some other MultiLisp
object. Notable features of Concert MultiLisp include a parallel, incremental garbage
collector and an unfair scheduler 11].

The shared memory of Concert allows fairly efficient implementation of the sharing of
objects between MultiLisp tasks; furthermore, the bandwidth to Concert's global
memory is fairly well matched to MultiLisp's demands -- the observed performance
degradation due to contention for global memory ranges from 0 to 15%. However, the
decision to use an off-the-shelf microprocessor -- the MC68000 -- on an off-the-shelf
processor board has imposed several costs that could have been avoided if we had
designed and built more hardware ourselves. The fastest MCODE instruction (pushing
nil onto the stack) takes 60-70 microseconds. Other instructions take longer --
sometimes much longer. For example, pushing the value of a local variable onto the
stack takes only about twice as long as pushing nil, but the Ft}TJRE instruction
takes over two milliseconds. The chief preventable costs in the "inner loop" operations
of instruction fetch and execution involve

" lack of support for manipulation of tagged data;

" lack of support for incremental garbage collection;

" limited facilities for atomic operations to memory (the MC68000 has only a
test-and-set instruction that affects the most significant bit of a byte),
leading to expensive protocols for atomic 32-bit reads and writes to shared
memory;

9

PARALLEL PROCESSING

" bounds checking on the "stack cache" maintained by each processor to
cache locally the top few items on the stack of the currently executing task;
and

" interpretive overhead for fetching and decoding MCODE instructions
(however, compilation of MultiLisp into MC68000 code is unattractive, due
to the length of the code that would have to be generated for the operations
listed above).

Generally, the costs seem to be distributed rather widely across the different
categories, so no single improvement would lead to an order-of-magnitude increase in
execution speed. Therefore, incremental modifications to Concert to improve MultiLisp
performance are not planned. Instead. the current focus of the Concert MultiLisp
project is to use Concert to learn as much as possible about the MultiLisp language
design and about MultiLisp application programs, and then use these insights to design
a completely new architecture whose processors. memories and communication elements
would all be tailored for efficient MultiLisp execution.

Figure 7-3: Parallelism Profile for BoYer Benrlimiark

These projects to refine the MultiLisp language and develop example application
programs are complemented by several other activities in the Concert group. One of
these other activities involves developing tools for measuring and visualizing properties

100

PARALLEL PROCESSING

ri. S .. ,rs,.U*.1

Figure 7-4: Parallelism Profile For 16-City Traveling Salesman Problem

of MultiLisp programs, such as the amount of parallelism available or the degree of
locality of reference. R. Halstead and G. Thaker built a tool to produce graphical
parallelism profiles for programs. Figures 7-3 and 7-4 show parallelism profiles for
executing the Boyer benchmark to decide whether the expression

(implies (and (and (implies (f x) (g x))
(implies (g x) (h x)))

(implies (h x) (i x)))
(implies (f x) Ci x))))

is a tautology, and for exactly solving a 16-city traveling salesman program. The
horizontal axis on each profile marks the passage of time in seconds, and the vertical
axis indicates the number of processors busy at a given moment. Black ink indicates
"real computing" also performed in a sequential execution of the algorithm, and the
shades of gray correspond to two different kinds of overhead that result from using
futures. Such profiles have been useful in assessing both the amount of parallelism
made available and the amount of overhead introduced by different uses of MultiLisp's
parallelism constructs.

101

PARALLEL PROCESSING

8. ARCHITECTURAL STUDIES

In pursuit of the information about program execution behavior needed for designing

parallel architectures tuned for efficient execution of MultiLisp programs, two tools for
measuring program behavior have been constructed. One of these is Nusim, an
extensively instrumented re-implementation of MultiLisp which can yield detailed
information about locality of reference and dynamic instruction execution frequencies

125), implemented by P. Nuth. Another tool, implemented by I. Vuong, modifies
MultiLisp programs to record various statistics about themselves as they run.

Nusim simulates one processor of a multiprocessor system as a set of functional units.
By running a copy of Nusim on each processor of the Concert machine, a user can
emulate different parallel organizations. Nusim allows a user to vary several parameters
in the implementation of MultiLisp. It can use several different strategies for scheduling
tasks. Nusim can also simulate different topologies of processing nodes. Finally, a user
can vary some of the internal characteristics of a MultiLisp processor in Nusim.

Nusim wa- used for a series of experiments on the communication load generated by
MultiLisp programs. The goal was to quantify the locality of data reference of the
programs, and to see how that could be improved. A specific model of a shared
memory multiprocessor for MultiLisp was proposed. Five different application
programs were run under Nusim, ranging from simple benchmarks to some of the larger
applications yet written in MultiLisp. The number and types of data accesses made by
each of these programs was measured, as was the distribution of those accesses in
memory. The task scheduling algorithms used by the processors was varied, as was the
topology simulated by Nusin, to see what effect that would have on communication
patterns.

This research showed that MultiLisp programs exhibit some locality of data reference,
as approximately one third of the data referenced by a processor is typically allocated in
the local memory of that processor. Furthermore, the locality of reference can be
increased by changing the manner in which processors search for executable tasks. The
locality of data reference improved by 5% to 60% when processors exploited knowledge
of the system topology. Finally, it is possible to improve the locality of reference by
limiting the parallelism of a particular program.

R. Osborne investigated the effect of garbage collection activity on the amount of non-
local communication during the execution of MultiLisp applications. This initial
investigation, performed using Nusim, revealed that garbage collection activity
primarily affects the variability in the amount of non-local communication. The mean
amount of non-local communication was largely unaffected. Further investigation is
required to confirm this finding.

I. Vuong's tool permits studying the parallelism obtained in a hypothetical MultiLisp
machine. The purpose of this work is to help evaluate the relative importance of the
mechanisms involved in a MultiLisp computation and hence the effort that should be

102

PARALLEL PROCESSING

put into different parts of the architecture. This study can give some answers to
questions such as how fast the intercommunication network should be, compared to the
processor.

This tool was built by turning the MultiLisp (MCODE) interpreter running on Concert
into a simulator. One can specify the relative duration of computing operations such as
future creation, function call, etc., and observe the effect on the parallelism and overall
computing behavior when these parameters are varied. For example, by simulating a
case where future is very cheap, one can experiment with increasing the parallelism
of the programs by inserting more futures, thus evolving toward finer-grain parallelism.
This simulator produces operation profiling and parallelism profiling in the form of
time-based graphs, mean values aad standard deviations. This simulator is currently
being run on the varios existing small to middle size programs written in MultiLisp,
with the goal of extracting both application-independent and -dependent results from
these experiments.

A "first cut" at the design of a processor architecture for a MultiLisp-oriented
multiprocessor has been begun by T. Fujita and R. Halstead. This architecture is
heavily influenced by the reduced instruction set philosophy of the SPUR multiprocessor
[2b' ind by the multithreaded approach of the HEP-1 [20]. It features hardware tag
manipulation for speed in basic Lisp primitive operations, along with multiple register
sets for speed in procedure calling, process creati(n, trap handling, and context
switching [15].

9. RELATED PROJECTS

Our collaborators at Harris Corporation continue to use their own version of Concert
to pursue a research program currently centered around the SPoC (Simultaneous Pascal
on Concert) programming environment. Simultaneous Pascal is a version of Pascal
augmented with explicit concurrency constructs of the fork/join and do-all variety.
Several recent experiments at Harris have shown the performance of Simultaneous
Pascal programs on Concert to equal or surpass that of hand-coded C programs using
much more primitive and lower-level synchronization constructs. Additionally, Harris
continues to develop hardwar for performance measurement on Concert and continues
to share that hardware with us. In addition to the Beckerboard and SysM modules
discussed above, a new module, the DLA (Degradation due to Latency and Arbitration),
is currently in final debugging stages. The DLA counts memory accesses of different
types to different regions of address space and also allows computation of the average
access time, including arbitration and contention delays, to each region of address space.
This board will allow much more precise measurement of the extent to which MultiBus
or RingBus contention is affecting the performance of a program running on Concert.
Eight copies of this board are expected to be available for installation at MIT during
the 1987-88 academic year.

Copies of the Concert MultiLisp implementation have also been sent to certain outside
organizations, notably the University of Texas and Encore Computer Corp.

103

PARALLEL PROCESSING

10. CONCLUSION

The challenge of parallel computing requires coordinated evolution of languages,
algorithms, and architectures. Lacking an established software base of parallel
programs, a parallel computing research project must push back all three of these
frontiers. Concert thus performs a vital support role by permitting experimentation
with the MultiLisp language and with algorithms expressed in MultiLisp. This
experience will lead to the specification of a new architecture more congenial for
MultiLisp than Concert is. This new machine will allow experimentation with larger
and more realistic applications, which, in turn, should lead to further revisions of
MultiLisp and further insights regarding parallel programming. It is through such
iteration between software and hardware design that we can ultimately hope to achieve
genuinely cost-effective general-purpose parallel computing.

104

PARALLEL PROCESSING

References

1. Abelson, H. and G. Sussman. Structure and Interpretation of Computer

Programs. MIT Press, Cambridge, MA, 1984.

2. Anderson, T. "The Design of a Multiprocessor Development System."

MIT/LCS/TR-297, MIT Laboratory for Computer Science, Cambridge, MA,

September 1982.

3. Arvind, K. Gostelow and W. Plouffe. "An Asynchronous Programming

Language and Computing Machine." University of California, Report

TR114a, Irvine, CA, 1978.

4. Baek, H.J. "Parallel Retrieval Algorithms for Semantic Nets." S.B. thesis,

MIT Department of Electrical Engineering and Computer Science,

Cambridge, MA, June 1986.

5. Baker, H. and C. Hewitt. "The Incremental Garbage Collection of

Processes." Artificial Intelligence Laboratory Memo 454, Cambridge, MA,

December 1977.

6. Bradley, E. "Logic Simulation on a Multiprocessor." S.M. thesis, MIT

Department of Electrical Engineering and Computer Science, Cambridge,

MA, Jun-! 1986.

7. Courtemanche, A. "MultiTrash, a Parallel Garbage Collector for
MultiScheme." S.B. thesis, MIT Department of Electrical Engineering and

Computer Science. Cambridge, MA, January 1986.

8. Dennis, J.B. "Data Flow Supercomputers." IEEE Computer, 13, 11,

(November 1980), 48-56.

9. Gabriel, R. Performance and Evaluation of Lisp Systems. MIT Press,
Cambridge, MA, 1985.

10. Gurd, J., C. Kirkham and I. Watson. "The Manchester Prototype Dataflow

Computer." Communications of the ACAf, 28, 1, (January 1985), 34-52.

11. Halstead, R. "MultiLisp: A Language for Concurrent Symbolic

Computation." ACM Transactions on Programming Languages and

Systems, October 1985, 501OA-538.

12. Halstead, R. and J. Loaiza. "Exception Handling in MultiLisp." 1985

International Conference on Parallel Processing, St. Charles, IL, August

1985, 822-830.

105

PARALLEL PROCESSING

13. Halstead, R., T. Anderson, R. Osborne and T. Sterling. "Concert: Design of
a Multiprocessor Development System." 13th Annual Symposium on
Computer Architecture, Tokyo, June 1986, 40-48.

14. Halstead, R. "Parallel Symbolic Computing." IEEE Computer, 19, 8,

(August 1986), 35-43.

15. Halstead, R. "Concurrent Lisp Machines." Parallel Processing Group, MIT
Laboratory for Computer Science, Cambridge, MA, March 1987.

16. Henderson, P. and J.H. Morris. "A Lazy Evaluator." Proceedings 3rd ACM
Symposium on Principles of Programming Languages, 1976, 95-103.

17. Katz, M. "ParaTran: A Transparent, Transaction Based Runtime
Mechanism for Parallel Execution of Scheme." S.M. thesis, MIT Department
of Electrical Engineering and Computer Science, Cambridge, MA, May 1986.

18. Keller, R. and F. Lin. "Simulated Performance of a Reduction-Based
Multiprocessor." IEEE Computer, 17, 7, (July 1984), 70-82.

19. Knueven, P., P. Hibbard and B. Leverett. "A Language System for a
Multiprocessor Environment." Fourth International Conference on the
Design and Implementation of Algorithmic Languages, Courant Institute of

Mathematical Studies, NY, June 1976, 264-274.

20. Kowalik, J.S. "Parallel MIMD Computation: HEP Supercomputcr and Its
Applications." MIT Press, Cambridge, MA, 1985.

21. Krall, E. and P. McGehearty. "A Case Study of Parallel Execution of a
Rule-Based Expert System." International Journal of Parallel

Programming, 15, 1, (February 1986), 5-32.

22. Lau, W. "Lexical Analysis of Noisy Phonetic Transcriptions." S.M. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, February 1986.

23. Ma, M. "Efficient Message-Based System for Concurrent Simulation." Ph.D.
dissertation, MIT Department of Electrical Engineering and Computer

Science, Cambridge, MA, to appear.

24. Miller, J. "MultiScheme: A Parallel Processing System Based on MIT
Scheme." Ph.D. dissertation, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, to appear.

106

PARALLEL PROCESSING

25. Nuth, P. "Communication Patterns in a Symbolic Multiprocessor." S.M.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1987.

26. Osborne, R. "Modeling the Performance of the Concert Multiprocessor."
S.M. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1986.

27. Solomon, S. "A Query Language on a Parallel Machine Operating System."
S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1985.

28. Taylor, G., et al. "Evaluation of tht SPUR Lisp Architecture."lth Annual
Sympoaium on Computer Architecture, Tokyo, June 1986, 444-452.

29. Turner, D. "A New Implementation Technique for Applicative Languages."
Software -- Practice and Experience, 9, 1, (January 1979), 31-49.

Publications

1. Halstead, R. "Parallel Symbolic Computing." IEEE Computer, 19, 8,
(August 1986), 35-43.

Theses Completed

1. Becker, D. "A Multiprocessor Emulator of a Static Data Flow Computer."
S.B. thesis, Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1987.

2. Herron, S. "A General-Purpose Simulation Environment." S.B. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,

MA, June 1987.

3. Nuth, P. "Communication Patterns in a Symbolic Multiprocessor." S.M.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1987.

Theses in Progress

1. Gilson, J. "An Object Oriented Programming System in Common Lisp."
S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected July 1987.

2. Ma, M. "Efficient Message-Based System for Concurrent Simulation." Ph.D.
dissertation, MIT Department of Electrical Engineering and Computer

Science, Cambridge, MA, expected January 1988.

107

PARALLEL PROCESSING

3. Miller, J. "Multischeme: A Parallel Processing System Based on MIT
Scheme." Ph.D. dissertation, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected August 1987.

4. Nussbaum, D. "A Framework for Real-Time Graphics on a Multiprocessor."
S.M. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected August 1Q87.

Talks

1. Halstead, R. "MultiLisp: A Language for Parallel Symbolic Computing."

JASON Parallel Architecture Workshop, MITRE Corp.,
La Jolla, CA, July 1986;

Nippon Electric Company C&C Laboratories, Tokyo, Japan,
June 1988;

Apollo Corp., Chelmsford, MA, October 1986.

2. Halstead, R. "Language and Architecture for Parallel Symbolic Computing."
Carnegie-Mellon University, Pittsburgh, PA, March 1987;
Alliant Corp., Littleton, MA, March 1987;
Tsinghua University, Beijing, China, April 1987;
Shanghai Jiao Tong University, Shanghai, China,

April 1987;
MIT Industrial Liaison Program seminar, Tokyo, Japan,

April 1987.

3. Halstead, R. "Parallel Symbolic Computing Using MultiLisp."

IBM/MIT workshop on parallel processing, Essex, CT,

April 1987.
California Institute of Technology, Pasadena, CA, April 1987.
Stanford University Computer Science Colloquium, Palo Alto,

April 1987.
DEC Systems Research Center, Palo Alto, CA, April 1987.
Schlumberger Palo Alto Research Laboratory, Palo Alto, CA,

April 1987.
University of California at Berkeley, Berkeley, CA, May 1987.
University of Illinois Center for Supercomputing Research

and Development, Champaign, IL, May 1987.

108

PROGRAMMING METHODOLOGY

Academic Staff

B. H. Liskov, Group Leader W. E. Weihi

Research Staff

C. Chambers D. W. Curtis

P. R. Johnson

Graduate Students

B. P. Ben-.Zvi G. T. Leavens
R. E. Brown S. C. Markowitz
G. Chan T. D. Nguyen
M. S. Day B. M. Oki
K. J. Goldman S. E. Per]
D. J. Hwang M. Vermeulen
E. K. Kolodner A. S. Xu
R. Ladin

Undergraduate Students

L. Bela P. A. Viola
A. K. Farrell K. Vogel
B. J. Sagarin W. Wong

Support Staff

E. Pothier A. Rubin

Visitors

B. DeDecker L. Shripsa

S. Sugihara

PROGRAMMING METHODOLOGY

1. INTRODUCTION

The research in the Programming Methodology Group has continued to focus on the
area of distributed computing. We have continued our work on the Argus
programming language and system. We have been designing an extension to Argus to
enable it to make use of Mercury mechanisms, especially the call-stream. Also, we have
continued our work on a broad range of problems that arise in distributed systems.
Our research in these areas is described in the following sections.

In addition, the CLU implementation on M68000 based machines has been ported to
the HP machines that run HP-UX. CLU also runs now under Berkeley Unix 4.3 and
under Ultrix.

2. ARGUS

The following progress has been made on Argus.

1. A revised Argus reference manual has come out [13]. The revisions were done
primarily by Mark Day and Gary Leavens.

2. Work on the implementation has continued. The implementation has been ported
to Berkeley Unix 4.3. Much of the effort has centered on the debugging system, which
is being improved along the lines suggested by Mike Vermuelen's thesis. This thesis
proposed ways for making debugging of distributed programs more like those of
sequential programs with easy checkpoints on remote procedure call and return.

3. In addition we have been doing performance analysis of certain critical areas such
as communication. Eventually we intend to reimplement certain areas including
making some changes to the Unix Kernel.

4. A paper describing the implementation and its performance has been written and
accepted for SOSP 1987 114].

5. Elliot Kolodner has completed his thesis on a new way of supporting crash
recovery [7]. His approach speeds up recovery from soft crashes in which disk storage is
unaffected. Recovery uses information in both virtual memory and the stable log.
Checkpoints are taken frequently in which dirty pages are written to disk: checkpoints
reduce the amount of the log that must be scanned after a crash. The thesis proposes
modifications to a copying garbage collection algorithm such that recovery using virtual
memory is possible even if the crash occurred during garbage collection.

6. A new overview paper about Argus and its support for applications has been
written for a forthcoming special issue of the Communications of the ACM 1151.

7. A paper about experience using Argus to implement a distributed editor has been
written [2). Our experience in this application indicates that Argus performance is

110

PROGRAMMING METHODOLOGY

satisfactory, but that there is a problem with expressive power in some areas. We have
been studying alternative techniques that may alleviate some of these problems, in
particular, in a thesis being done by Sharon Perl.

S. Mark Day has completed a thesis on a mail repository implemented in Argus Il].
The repository was designed to replace the backend of the Athena mail system in which
a single server node stores the mail. The Athena approach is a performance bottleneck
and has an availability problem, since a crash of the server node makes mail
unavailable. The approach in the thesis replicates the repository. It allows sending and
receiving mail to work in as large a number of situations as possible without exposing
the user to confusing inconsistencies. It also investigates techniques for finding
mailboxes and for allowing on-the-fly system reconfiguration in which individual
mailboxes may be moved from one server (or group of servers) to another.

0. Gary Leavens has implemented an application in Argus to compute Hailstone
numbers [41, 19]. Our experience here is that Argus made this application
straightforward to implement with essentially no performance penalty for the use of
atomic actions.

3. MERCURY

In conjunction with the work on Mercury, we have been studying how to extend
Argus to incorporate the new Mercury communication mechanisms. Issues under study
include the following:

1. We have been studying how to integrate a more general transaction model into
Argus. At present Argus does not allow a parent action to run concurrently with its
descendants. In Mercury such concurrency is supported because of remote stream calls
in which the caller continues to run in parallel with the processing of the call at the
remote site. The additional concurrency has caused us to reformulate our locking rules.
In addition, we have investigated an approach that combines timestamps with locking
and that would allow us to guarantee that if two streams calls are made in order sl; s2
to two different remote sites, then they are serialized in that order. We have rejected
this approach, however, because it has several unfortunate properties. For example, a
change in system performance can cause a program that previously ran properly to
deadlock.

2. Another issue opened up by stream calls is how to integrate them into Argus in a
way that is both general and type-safe. We are investigating an approach based on
futures [3). The idea is to treat a stream call as a special kind of strongly typed "fork";
we call this entity a "promise". For example, consider

p: handler (arraylint]) returns (real) signals (cannot).

(A handler is a remote procedure in Argus.) Then the following is a legal program:

111

A.

PROGRAMMING METHODOLOGY

pt = promise (real) signals (cannot)
a: array[int] :
x: pt := stream p(a)

y: real := ptSclaim(x) + pi
except when cannot: ... end

After the stream call, the calling program continues to run. As is the case with
futures, a promise like x can be assigned to another variable (also of type promise) or
passed as an argument or result without being "really" used; real use only happens with
the value of the promise is needed. When the program uses the value, as in the
expression in which the value of x is added to pl, it extracts the value by using the
"Claim" operation, which causes it to wait for the call to complete if necessary. The
work on promises has been carried out primarily by Liuba Shrira.

3. Another problem is how to match up Argus types with the language-independent
types that define how values are communicated in Mercury. For example, the types
shown above are Argus types. The call might actually be directed to

PORT (SEQ[INT32]) RETURNS (FLOAT) SIGNALS (CANNOT).

Here capitals are used to indicated Mercury types. In Mercury a remote procedure is
called a port. For the call from Argus to work, we need a way of relating arrayjint] to
SEQ[INT32] and real to FLOAT, and also a way of copying the array into the call
message and the real from the return message. We are investigating a method that
allows types and Mercury types to be associated with one another very flexibly but that
is nevertheless type-safe.

4. ISSUES IN DISTRIBUTED SYSTEMS

In addition we have continued our work on issues in distributed systems. Some
achievements in this area are discussed below.

1. We have written a paper describing our orphan detection algorithm [11, [12]. An
orphan is a computation that continues to run when its result is no longer of interest.
Such a situation might arise, for example, because the calling node crashed while that
call was being processed; the call processing is the orphan in this case. Our algorithm
works by sending information on all messages in the system. It finds orphans quickly
but is inefficient because of the amount of information propagated and the time it takes
to process the information. Two optimizations have been proposed: using a central
service to store the information, and eliminating information when deadlines have
expired. We are implementing both optimizations at present.

2. Bill Weihl, working jointly with Nancy Lynch and others, has succeeded in proving
the correctness of part of our orphan detection method [51, [61.

112

PROGRAMMING METHODOLOGN

3. A paper describing our central service method has been written and submitted for
publication 181. An early version of this paper appeared in PODC 1986 [IO]. The
method provides a highly available service that is tolerate of common failures such as
node crashes and partitions and lost messages. The service is implemented Ty several
replicas. Clients need communicate with only one replica; replicas propagate new
information to one another in background mode by exchanging "gossip" messages.
Clients can request answers from the service based on old information, but can bound
how old the requested information must be. The method outperforms other techniques
such as voting, but is limited to applications that can use old information effectively.

4. Rivka Ladin, as part of her thesis, has developed a technique for doing garbage
collection in a distributed system. The technique is tolerant of failures such as node
crashes and partitions and loss of messages. It uses the central service to detect when
objects are no longer referred to by clients. Clients run local garbage collection using
an algorithm of their choice (a different algorithm can be used at different clients) and
at a convenient time; no synchronization between clients is required. They
communicate information about nonlocal references to the service, and later inquire
about the status of local objects that may be referred to by other clients. The method
requires relatively few messages to be exchanged compared with other methods. A
preliminary report on the method appeared in PODC 1986 [10].

113

PROGRAMMING METHODOLOGY

References

1. Day, M. "Replication and Reconfiguration in a Distributed Mail
Repository." MIT/LCS/TR-376, MIT Laboratory for Computer Science,
Cambridge, MA, April 1987.

2. Greif, I., R. Seliger and W. Weihl. "A Case Study of CES: A Distributed
Collaborative Editing System Implemented in Argus." Programming
Methodology Group Memo 55, MIT Laboratory for Computer Science,
Cambridge, MA, April 1987. Also to be published in IEEE Transactions on
Software Engineering.

3. Halstead, R. "Multilisp: A Language for Concurrent Symbolic
Computation." ACM Transactions on Programming Languages and
Systems, 7, 4, (October 1985).

4. Hayes, B. "Computer Recreations: On the Ups and Downs of Hailstone
Numbers." Scientific American, 250, 1, (January 1984), 10-16.

5. Herlihy, M. P., N. Lynch, M. Merritt and W. Weihl. "On the Correctness of
Orphan Elimination Algorithms (Preliminary Report)." To be published in
Proceedings of the 17th International Symposium on Fault-Tolerant
Computing.

6. Herlihy, M. P., N. Lynch, M. Merritt and W. Weihl. "On the Correctness of
Orphan Elimination Algorithms." MIT/LCS/TM-329, MIT Laboratory for
Computer Science, Cambridge, MA, May 1987.

7. Kolodner, E. "Recovery Using Virtual Memory." MIT/LCS/TR-404, MIT
Laboratory for Computer Science, Cambridge, MA, July 1987.

8. Ladin, R., B. Liskov and L. Shrira. "A Technique for Constructing Highly-
Available Services." To be published in Algorithmica.

9. Lagarias, J. C. "The 3x+1 Problem and Its Generalizations." The American
Mathematical Monthly, 92, 1, (January 1985), 3-23.

10. Liskov, B. and R. Ladin. "Highly-Available Distributed Services and Fault-
Tolerant Distributed Garbage Collection." Proceedings of the 5th ACM
Symposium on Principles of Distributed Computing, Calgary, Alberta,
Canada, August 1986. Also Programming Methodology Group Memo 48,
MIT Laboratory for Computer Science, Cambridge, MA, 1986.

11. Liskov, B., R. Schelfler, E. Walker and W. Weihl. "Orphan Detection."

114

PROGRAMMING METHODOLOGY

Programming Methodology Group Memo 53, MIT Laboratory for Computer
Science, Cambridge, MA, February 1087.

12. Liskov, B., R. Scheifler, E. Walker and W. Weihl. "Orphan Detection
(Extended Abstract)." Proceedings of the 17th International Symposium

on Fault-Tolerant Computing, Pittsburgh, PA, July 1987, 2-7.

13. Liskov, B., et al. "Argus Reference Manual." MIT/LCS/TR-400, MIT
Laboratory for Computer Science, Cambridge, MA, November 1987.

14. Liskov, B., D. Curtis, P. Johnson and R. Scheifler. "Implementation of
Argus." Proceedings of the ACM l1th Symposium on Operating Systems
Principles, Austin, TX, November 1987.

15. Liskov, B. "Distributed P ogramming in Argus." Communications of the
ACM, 31, 3, (March 1988), 300-312.

Publications

1. Coan, B., B. Oki and E. Kolodner. "Limitations on Database Availability
when Networks Partition." Proceedings of the 5th ACM Symposium on
the Principles of Distributed Computing, Calgary, Alberta, Canada, August
1986.

2. Day, M. "Replication and Reconfiguration in a Distributed Mail
Repository." MIT/LCS/TR-376, MIT Laboratory for Computer Science,
Cambridge, MA, April 1987.

3. Dolev, D., N. Lynch, S. Pinter. E. Stark and W. Weihl. "Reaching
Approximate Agreement in the Presence of Faults." Journal of the ACM,
33, 3, (July 1986).

4. Fekete, A., N. Lynch, M. Merritt and V. Weihl. "Nested Transactions and
Read-Write Locking." Proceedings of the Sixth ACA SIGACT-SIGAIOD-
SIGART Symposium on Principles of Database Systems, March 1987.

5. Greif, I., R. Seliger and W. Weihl. "A Case Study of CES: A Distributed
Collaborative Editing System Inplemented in Argus." Programming
Methodology Group Memo 55, MIT Laboratory for Computer Science,
Cambridge, MA, April 1987. Also to appear in IEEE Transactions on

Software Engineering.

6. Heddaya, A., M. Hsu and W. Weihl. "Background Checkpointing and
Discarding Old Events in Event-based Distributed Systems." January 1987,

submitted for publication.

115

PROGRAMMING METHODOLOGY

7. Herlihy, M., N. Lynch, M. Merritt and W. Weihi. "On the Correctness of

Orphan Elimination Algorithms." MIT/LCS/TM-329, MIT Laboratory for

Computer Science, Cambridge, MA, May 1987.

8. Herlihy, M., N. Lynch, M. Merritt and W. Weihl. "On the Correctness of

Orphan Elimination Algorithms (Preliminary Report)." To be published in

Proceedings of the 17th International Symposium on Fault-Tolerant

Computing.

9. Ladin, R., B. Liskov and L. Shrira. "A Technique for Constructing Highly-

Available Services." To appear in a special issue of Algorithmica.

10. Liskov, B. "Programming Methodology Group Progress Report July 1, 1984

- June 30, 1985." Programming Methodology Group Memo 51, MIT

Laboratory for Computer Science, Cambridge, MA, February 1987.

11. Liskov, B. "Highly-Available Distributed Services." Programming

Methodology Group Memo 52, MIT Laboratory for Computer Science,

Cambridge, MA, February 1987.

12. Liskov, B. "Distributed Programming in Argus." To be published in a

special issue of Communications of the ACA!.

13. Liskov, B., et al. "Argus Reference Manual." Programming Methodology

Group Memo 54, MIT Laboratory for Computer Science, Cambridge NLL.,

March 1987.

14. Liskov, B. and M. Herlihy. Issues in Process and Communication

Structure for Distributed Programs. Computer Systems for Process

Control. R. Guth (ed.), Plenum Press. 1986.

15. Liskov, B., P. Johnson and R. Scheifler. "Implementation of Argus." To be

published in the Proceedings of the Eleventh AC.\I Symposium on

Operating Systems Principles.

16. Liskov, B. and R. Ladin. "Highly-Available Distributed Services and Fault-

Tolerant Distributed Garbage Collection." Proceedings of the 5th ACAI

Symposium on the Principles of Distributed Computing. Calgary, Alberta,

Canada, August 1986.

17. Liskov, B., R. Scheifler, E. Walker and W. Weihl. "Orphan Detection."

Programming Methodology Group Memo 53. MIT Laboratory for Computer

Science, Cambridge, MA, February 1987.

116

PROGRAMMING METHODOLOGY

18. Liskov, B., R. Scheifler, E. Walker and W. Weihl. "Orphan Detection
(Extended Abstract)." To be published in the Proceedings of the 17th
International Symposium on Fault-Tolerant Computing.

19. WeihlOC, W. "Distributed Version Management for Read-Only Actions."
IEEE Transactions on Software Engineering, (January 1987).

20. Weihl, W. "Local Atomicity Properties: Modular Concurrency Control 'or
Abstract Data Types." Accepted for publication in ACAM Transactions on
Programming Languages and Systems.

Theses Completed

1. Bela, L. "Winsrv Support for Common ASCII Terminals." S.B. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge.

MA, May 1987.

2. Chan, G. "Generalized Transaction Management." S.I. thesis. MIT
Department of Electrical Engineering and Computer Science, Cambridge
MA, May 1987.

3. Day, M. "Replication and Reconfiguration in a Distributed Mail
Repository." S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA. February 1987.

4. Kolodner, E. "Recovery Using Virtual Memory." SNI. thesis, MIT
Department of Electrical Engineering and Computer Science. Cambridge,

MA, May 1987.

5. Vermeulen, M. "Debugging with Remote Procedure Calls." SM. thesis,
MIT Department of Electrical Engineering and Computer Science.
Cambridge, MA, August 1986.

6. Vogel, K. "Highly Available Stable Storage for Argus." S.B. thesis. MIT
Department of Electrical Engineering and Computer Science. Cambridge,

MA, May 1987.

Theses i-a Progress

1. Farrell, A. "A Deadlock Detection Program for a Distributed Computing
System." S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected February 1088.

2. Hwang, D. "Constructing Highly-Available Services in a Distributed
Environment." S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected February 1988.

117

PROGRAMMING METHODOLOGY

3. Leavens, G. "A Semantics for Subtypes." Ph.D. dissertation, MIT
Department of Electrical Engineering and Computer Science, Cambridge,

MA, expected June 1988.

4. Nguyen, T. "Measurement of Orphan Detection Protocols." S.M. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected December 1987.

5. Oki, B. "Building Highly Available Distributed Programs." Ph.D.
dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected January 1988.

6. Perl, S. "Commit Protocols for Nested Atomic Actions." S.M. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,

lA,, expected September 1987.

7. Sagarin, B. J. "Theory and Implementation of Concurrent I/O in Argus
with the X-Window System." S.B. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA. expected February

1088.

8. Wong, W. "Investigation of Methods to Maintain Availability in Partitioned
Replicated Systems." S.B. thesis, MIT Department of Electrical Engineering
and Computer Science, Cambridge, NLA, expected February 1988.

Talks

I. Day, M. "Building an Application in Argus." Second European SIGOPS
Workshop on Distributed Systems, Amsterdam. The Netherlands, September

1086.

2. Ladin, R. "Highly-Available Distributed Services and Fault-Tolerant
Distributed Garbage Collection." 5th ACM Symposium on the Principles of
Distributed Computing, Calgary, Alberta. Canada, August 1086.

3. Liskov, B. "Argus and Support for Distributed Systems." NEC

Corporation, Tokyo, Japan, October 1986.

4. Liskov, B. "Support for Heterogeneous Computing." NEC Corporation,

Tokyo, Japan, October 1086

5. Liskov, B. "LCS Common System." Presentation to DARPA, MIT

Laboratory for Computer Science, Cambridge, MA, December 1086.

6. Liskov, B. "Communication in a Heterogeneous System."

118

PROGRAMMING METHODOLOGY

Texas Instruments, Dallas, TX, February 1987;

MIT Laboratory for Computer Science, March 1987;
Stanford University, Stanford, CA, March 1987;
Georgia Institute of Technology, Atlanta, GA, April 1987;
Dept. of Information and Computer Science, University of

California, Irvine, May 1987.

7. Liskov, B. "Support for Programming in Heterogeneous Systems."

NYNEX, White Plains, N. J., June 1087;
Annual Meeting, Laboratory for Computer Science, June 1987.

Liskov, B. "Argus: The Programming Language and System." Bell
Communications Research, Morristown, NJ, April 1987.

8. Oki, B. "Limitations on Database Availability when Networks Partition."
5th ACM Symposium on the Principles of Distributed Computing, Calgary,

Alberta, Canada, August 1986.

9. Weihl, W. "Communication in the MIT Common System."

Brown University, Providence, RI, March 1987;
DEC Systems Research Center, Palo Alto, CA. March 1987:

IBM Almaden Research Center, San Jose, CA, March 1987;
University of Washington, Seattle, WA, March 1987.

119

PROGRAMMING SYSTEMS RESEARCH

Academic Staff

D. Gifford, Group Leader

Research Staff

S. Berlin

Graduate Students

R. Baldwin D. Heitrnann
M. Blair J. Lucassen
A. Braunstein J. O'Toole
R. Brown R. Rao
M. Day M. Sheldon
N. Glasser S. Slivan
T. Hamnell J. Stamnos

M. Strauss

Undergraduate Students

H. P. Brondmo J. Henderson
R. Cote J. LaRocca
R. Gruber P. Ritto

D. Segal

Support Staff

R. Bisbee

Visitors

D. Burmaster P. Jouvelot

PROGRAMMING SYSTEMS RESEARCH

1. INTRODUCTION

The Programming Systems Research Group has been involved in two major efforts
over the past year. The first effort was the addition of new functions and algorithms to

a distributed database system that we have designed and now operate at over 150 sites.
The second effort was the development of a new programming model for parallel
computation that introduces the notion of an effect system.

As reported last year, we have developed a new type of large scale information system
that is in use at over 150 sites in the Boston area. The goal of this information system
research is to explore how a new type of system architecture can be used to implement
information systems for that can support very large user populations - perhaps up to
one million users. Our prototype system, the Boston Community Information System,
was improved during the last year to add database content labeling and query routing.
Query routing allows the personal database system software to automatically connect to
database servers at MIT when necessary.

As part of our work on large scale information systems, we have developed and
implemented the Remote Channel System. The Remote Channel system is a remote
procedure call system with procedural parameters and pipes. Pipes are procedure-like
objects that, when called remotely, do not cause the caller to block waiting for
completion, allowing the local and remote programs to execute concurrently. During
the past year, the Remote Channel System was specified and implemented on Unix.
The implementation is used by the Walter distributed database program, a component
of the Boston Community Information System.

In order to evaluate our information system work we have conducted an in-depth
survey of present database system users via monthly questionnaires. We are presently
analyzing this information, and in the near future we hope to be able to draw
conclusions about the promise of the information system technology we have developed.

Along a different line of research, we have been engaged in a project to develop a
programming model for parallel computation that combines the good features of both
imperative and functional programming languages. As a result of this work we have
developed the notion of an effect system. An effect system is analogous to a type
system (as found in many programming languages), but whereas types describe what
results from a computation, effects classify how the computation proceeds.

We have completed the design and implementation of the prototype language called
FX that includes a type and an effect system. The design features a type and effect
system with type, effect and region polymorphism, parameterized and recursive types,
and bounded quantification. FX was implemented in Zetalisp on the Symbolics 3600.
The implementation consists of three parts:

- a front-end that performs syntax analysis and type checking;

122

PROGRAMMING SYSTEMS RESEARCH

" a sequential interpreter that permits rapid turnaround; and

" a parallel dataflow compiler that generates dataflow graphs suitable for
execution on the tagged-token dataflow simulator constructed by the
Computation Structures Research Group.

The Computation Structures Research Group dataflow simulator was also extended to
accommodate a small number of new low-level memory and synchronization operations
that were needed to support the execution of the prototype language.

Experience with the prototype language has lead to the redefinition of FX. A draft
reference manual for the revised version of FX Is now complete. A type-checker and
type-erasing interpreter has been built on Scheme; this implementation allows the
execution of FX programs but does not take advantage of type and effect information
to schedule parallel evaluation of expressions.

In theoretical work, we have demonstrated that FX can be used to implement the
f_eO function on ordinals and thus has the full power of second-order typed lambda-
calculus. Other well-known programming languages (such as ML, Russell, and Pebble)
do not have this power. We have also found that type-checking FX in the presence of
recursively defined type functions is equivalent to an open problem concerning the
equivalence of pushdown automata. However, in the restricted cases currently planned
for use in FX, the type-checking problem with recursive type functions is no harder
than without them.

2. PLANS FOR THE NEXT YEAR

Our plans for the next year are as follows:

" Develop a Project Mercury interface to our database system in order to test
the usefulness of the Mercury communication model, and to provide a useful
service to users both within MIT and at other DARPA sites.

" Develop an X Window-based user interface to our database system to permit
us to experiment with a new user interface, and to allow us to introduce new
features, such as direct client modification of server databases. This X
window interface will also provide a useful service.

" Complete the implementation of FX and to develop application programs to
test the usefulness of the programming model that we have developed.

* Investigate a new type of computer architecture for distributed
multiprocessing, and to design a new version of FX that will take advantage
of this architecture.

123

PROGRAMMING SYSTEMS RESEARCH

3. REMOTE PIPES AND PROCEDURES FOR EFFICIENT
DISTRIBUTED COMMUNICATION

As part of our work on large scale information systems we have developed a new
communication model for distributed systems called the Remote Pipe and Procedure
Model that combines the advantages of bulk data transport and remote procedure call
in a single simple framework.

Remote procedure call is now a, widely-accepted standard method for communication
in distributed computer systems [18][6] [14]112]121. This popularity can be attributed to
three advantages provided by remote procedure call. First, remote procedure call uses a
widely-accepted, used, and understood abstraction, the procedure call, as the sole
mechanism for access to remote services. Second, remote procedure call allows remote
interfaces to be specified as a set of named operations with certain type signatures.
Such specifications enable remote interfaces to be precisely documented, and distributed
programs to be statically checked for type errors. Third, since interfaces can be
precisely specified, the communication code for an application can be automatically
generated, by either a compiler or a specialized stub generator.

The wider use of remote procedure call systems has led to an understanding of their
disadvantages as well as their advantages. Based on our recent application experience
[7], we have have discovered three major problem areas in standard remote procedure
call systems: protocol flexibility, incremental results, and bulk data transport.

1) Protocol Flexibility: Certain communication protocols are impossible to
implement if a remote procedure call system does not allow remote
procedure values to be exchanged freely between nodes. For example,
imagine that a client node wishes to provide a server node with a procedure
for use in certain circumstances, and the server node then wishes to pass this
procedure on to another server. Unless remote procedures are first-class
objects that can be passed from node to node this protocol can not be
expressed in a remote procedure call framework.

2) Incremental Results: Consider a server that is computing a result on behalf
of a lient and wishes to communicate incremental results to the client as
they are computed. In present remote procedure call systems this would be
accomplished by having the client ask the server to compute the first
incremental result, then the second, and so forth until all of the results have
been computed. The problem with this approach is that it forces a single
computation to be decomposed into a series of distinct remote procedure
calls. This decomposition reduces the performance of the server since it is
inactive between client procedure calls unless it creates a sophisticated
process structure upon the client's first incremental result request.
Sophisticated process structures are undesirable because they substantially
complicate a program.

124

U-

PROGRAMMING SYSTEMS RESEARCH

3) Bulk Data Transport: Remote procedure call mechanisms are optimized for
Loth low call-return latency and the transmission of limited umount of data
(usually less than 103 bytes). These optimizations for the normal case
seriously affect the ability of remote procedure call mechanisms to transport
large amounts of data efficiently. Since in contemporary systems only one
remote procedure call can be in transit at a given time between a single
process client and a server, the communication bandwidth between them is
limited. For example, if we assume that a program transmits 103 bytes per
remote procedure call and the network has a 50 millisecond round trip
latency, the maximum bandwidth that can be achieved is 20 KBytes/second.
Furthermore, to achieve even this performance, the client must combine
data values as they are produced into 103 byte blocks before a remote
procedure call is made. If a remote procedure call was made whenever data
was available to be sent, e.g. for each character to be displayed on a remote
screen, communication performance could drop to 20 bytes/second.

As a direct result of our experience with these limitations we have developed a new
communication model called the Remote Pipe and Procedure Model that extends remote
procedure call in three directions and address the three disadvantages discussed above.
First, we permit remote procedures to be first-class values which can be freely passed
between nodes. Second, we introduce a new abstraction called a pipe that allows bulk
data and incremental results to be efficiently transported. Third, we introduce channel
groups which control the relative sequencing of calis on pipes and procedures.

Elements of the Remote Pipe and Procedure Model have been present in previous
work although these elements have not been combined into a single consistent
framework. The idea of transmitting remote procedure values is discussed by Nelson
[14], and is also present in Argus [12] as handlers. However neither of these proposals
allow remote procedures to be created in nested scopes which limits the generality of
remote procedures. The notion of a pipe is similar in some respects to Nelson's
immediate return procedures [14], and the unidirectional messages of Matchmaker [11].
Nelson however rejected immediate return procedures for his communication model
because they were inconsistent with procedure call semantics. Our solution to the
consistency problem is the creation of a new type of abstract object with well defined
properties. In Matchmaker remote procedures are not first-class values and
unidirectional message sends are not optimized for bulk data transmission. None of the
above systems include an idea similar to a channel group.

The remainder of this paper is organized into three sections: Semantics (Section 2),
Refinements (Section 3), Pragmatics (Section 4), and Practical Experience and
Conclusions (Section .5).

125

PROGRAMMING SYSTEMS RESEARCH

4. SEMANTICS

We will discuss in this section:

" typed remote interfaces,

" the use and creation of remote pipes and procedures,

* channel call ordering,

" how channel groups provide inter-channel synchronization,

* and failure semantics.

For the purposes of our discussion we will define a node to be a virtual computer with
a private address space. A physical computer can implement one or more nodes; the
precise size and scope of a node will depend on application requirements. We will
assume that all of the nodes in a system are interconnected by a network.

Both remote procedures and pipes provide a communication path to a remote node,
and thus we call them channels. A channel represents the ability to perform a specific
remote operation at a remote node. Channels are first-class values. In particular,
channels can be freely passed to remote procedures or pipes as parameters, or returned
as the result of a remote procedure. Connections are implicitly established as necessary
when channels are used as described in Section 4.

A node that exports a set of channels will be called a service node, while a node that
imports a set of channels will be called a client node. A given node can be a service
and a client at the same time with respect to different sets of channels.

It is not always the case that a client calls a service; when a service and client are
working together on a task it is sometimes most natural for a service to call a client.
For example, a client might provide a service with a pipe in order to allow the service to
send a large file to the client. Thus we will introduce terminology to describe the
dynamic relationship between two nodes. We will call the node that processes calls
made on a channel the channel's sink node, and we will call the node that makes calls
on a channel the source node. Note that a given node can be both a source and a sink.

Remote procedures and pipes are defined as follows:

9 Procedures: A remote procedure value provides the capability to call a
procedure on a remote node. A remote procedure call blocks the caller until
the remote procedure has finished execution and a response has been
received from the sink node. Because a remote procedure call blocks a
client, remote procedure calls are optimized for minimum latency. In the
event that a remote procedure call fails, a distinguished error value is

126

PROGRAMMING SYSTEMS RESEARCH

returned as the value of the call. The precise types of failures that can
result are described below.

a Pipes: A pipe value provides the capability to send bulk data to the pipe's
sink node. A pipe is used as is a remote procedure. However, unlike a
remote procedure call, a pipe call does not block the caller and does not
return a result. Because a pipe is designed for bulk data transport, it is
optimized for maximum throughput. Since a pipe call does not block its
caller a pipe call implicitly initiates concurrent activity at the pipe's sink
node. The caller continues execution as soon as the call to the sink is
queued for transmission. The data values sent down a pipe by a given
process are received by the pipe's sink node in the order they are made.
Received means that the sink receives the data in order and performs some
computation on the data. This computation could process the data to
completion or simply schedule the data for later processing. The failure of a
pipe call to complete can be detected as described below.

The Remote Pipe and Procedure Model is designed to be readily adaptable to a wide
range of programming languages. For pedagogical purposes we will write our examples
in Modula-Il. Section 5 contains an discusses a C implementation of remote pipes and
procedures.

4.1. Remote Interfaces are Typed

A remote interface is a set of type definitions that is used to describe a collection of
channels that is exported as a unit by a service. We will use a collection of Modula-II
type definitions to describe a remote interface, with the language extended to include
types for remote procedures and pipes.

We introduce the types PIPE and PROC in our interface language to describe pipes
and remote procedures, respectively. A channel's type further describes the channel's
input values and the channel's result values. Note that only procedures have result
values. For example a pipe value might have type

PIPE PutChar(CHAR);

indicating that the pipe is a character pipe, while a remote procedure might have type

PROCEDURE GetChar0: CHAR;

indicating that the remote procedure does not take an argument and it returns a
character.

The following is an example of a remote interface that defines three channels. Note
that two of the channels are pipes, while one is a remote procedure.

127

PROGRAMMING SYSTEMS RESEARCH

REMOTE INTERFACE Terminal;
TYPE Color = (red, blue, green);
PIPE PutChar(c: CHAR);

(* Displays a character on the terminal *)
PIPE SetColor(c: Color);

(* Sets the display color for subsequent characters)
PROCEDURE GetCharo: CHAR;

(* Returns the next character. Blocks if a character is
not available 5)

END Terminal.

Interfaces are used to document a service, as well as to allow an implementation of the
Remote Pipe and Procedure Model to encode and decode messages of appropriate types.
For example, a remote interface, by virtue of its type declarations, contains enough
information to permit a stub generator [141 to automatically generate code to implement
the details of a communications protocol. Once an interface is specified an application
programmer can deal with pipes and procedures, and not be concerned with how
information is encoded and transmitted over a wire.

Figure 9-1 shows how the interface above might be used to define a communications
protocol. The interface is first transformed by an automatic stub generator into two
stubs, a server stub and a client stub. As shown in Figure 9-1, the server st-ub includes
the operation Export. Export is called by the server to register an instance of the
channels described by Terminal for use by client programs. In order to use these
operations a client program calls the Import operation in the client stub to obtain a
specific instance of Terminal.

The general problem of providing clients with instances of service interfaces is known
as binding, and we will assume that an implementation of the Remote Pipe and
Procedure Model will employ a conventional binding technique. For example, the
Import and Export scheme shown in Figure 9-1 is employed by the Cedar Remote
Procedure Call System 12]. Another technique is to use a distributed database system to
record offered services. For example, the Courier remote procedure call system [20] in
the Xerox Star System uses the Clearinghouse distributed database system 119] for
client-server binding.

Binding allows a node to bootstrap itself into a distributed environment. Note that
binding is used to establish initial contact with a set of servers, and that this set of
initial servers can easily provide a client with a rich set of channels that can be used to
contact other nodes that were not provided via the binding mechanism.

128

PROGRAMMING SYSTEMS RESEARCH

4.2. Channels are Represented by Local Procedures

Remote procedures and pipes are used in the same manner as are local procedure
values. In order to allow procedures and pipes to be introduced without changing
Modula-II, we will represent channels with local procedures. Thus, a local procedure
must be converted to a channel value for export, and a channel value must be converted
to a local procedure on import. If a given channel is first imported as a local procedure,
and then that local procedure is exported as a channel, the channel value exported must
be the same as the original channel value imported to ensure that extra overhead is not
introduced.

The channel type declarations that are used in programs are automatically produced
by the stub generation program from the user's original remote interface definition. For
example, the Terminal remote interface would result in the following client stub
definitions module:

DEFINITION MODULE TerminalClient;
TYPE Color = (red, blue, green);
Terminal = RECORD

PutChar: PROCEDURE (CHAR),
SetColor: PROCEDURE (Color),
GetChar: PROCEDURE 0: CHAR

END;

PROCEDURE Import(server: ARRAY OF CHAR): Terminal;
END TerminalClient.

Thus, assuming that term is an instance of terminal, in order to call the procedure
GetChar, the statement

new-char : term.GetChar0;

could be used.

A pipe value is used in precisely the same way as a procedure value is used except that
pipes do not return result values. The following expressions send the values "o" and
"k" down PutChar:

term.PutChar("o");
term.PutChar("k");

The values "o" and "k" are guaranteed to be received by the sink of PutChar in
order (because the two pipe calls shown above are performed by the same process). No
reception order is defined for pipe calls that are made by separate processes.

Since pipe calls do not return values and are processed asynchronously, a

120

PROGRAMMING SYSTEMS RESEARCH

Synchronize operation is provided. When a Synchronize operation is applied by a
source process to a pipe, the pipe's sink is forced to process all outstanding data sent
down the channel from the source process, after which the synchronize operation
returns. If the pipe has broken for some reason (e.g. the sink node has crashed) then
synchronize will return a distinguished error value and reset the pipe so that it can be
used again. Errors are described in detail in Section 2.5.

term.PutChar("n")
term.PutChar("o")
code := Synchronize(term.PutChar);

A pipe value is created through the provision of a local procedure called a pipe sink
procedure, that will process data received over the pipe. As data arrives through a pipe
its corresponding sink procedure is applied to each datum in the order it is received. A
pipe's sink procedure must return before it will be applied to the next datum sent down
the pipe from the same source process. When a node desires to export a pipe it
provides a pipe sink procedure, and this sink procedure is converted into a pipe value
by the sink's stub.

We now have enough mechanism to introduce a simple file transfer protocol based on
channels. Recall that channels can take channels as arguments and return channels as
values. Thus, simplified file transfer interface could be represented as the two
procedures SendFile and GetFile:

REMOTE INTERFACE Ftp;
PROCEDURE SendFile(name: ARRAY OF CHAR): PIPE (CHAR);

(* Returns a pipe to receive the contents of name *)
PROCEDURE GetFile(name: ARRAY OF CHAR, put-here: PIPE(CHAR));

(* The contents of name are sent down the pipe put-here *)
END Ftp.

SendFile returns a pipe to receive the contents of the file called name. The file is
then transmitted down the returned pipe, and with the end of a file marked by a special
character. The symmetric operation GetFl1e is passed a file to retrieve and a pipe
called put-here for the retrieved file to be sent down.

4.3. Calls on a Channel By a Single Process Are Ordered

Our communication model guarantees that if a process makes two separate calls on
the same channel then the calls will be processed at the sink in the order in which they
were made by the process. Processed means that the second call is not executed at the
sink until the procedure invoked by the first call has returned.

The ordering of channel calls not covered by the above invariant is undefined. Thus,

130

PROGRAMMING SYSTEMS RESEARCH

a single channel can be invoked simultaneously by different source processes. We

assume that monitors [16] or a similar mechanism is used to ensure the proper operation

of remote procedures and pipes in the presence of concurrent invocations.

4.4. Channel Groups Provide Inter-Channel Timing Invariants

In our present model the ordering of calls on separate channels is undefined. However

at times it is desirable to provide a timing invariant across channels. Consider our

example Terminal that was defined above, and the characters that would be displayed

by the following statements:

term.PutChar(" a");
term.SetColor(blue);

term.PutChar(" b");

Because SetColor and PutChar are separate pipes, there is no sequencing invariant
defined between them. Thus the character b may or may not be displayed in blue,
depending on the order in which the pipe calls SetColor and PutChar are processed
by their sink node. In this example we would like to be able to specify that calls on
SetColor and PutCharacter must be performed in the order in which they were

made.

When timing invariants must be preserved between a set of channels the channels can

be collected into a channel group. A channel group is a collection of pipes and
procedures that all have the same sink node and that observe a sequential ordering
constraint with respect to a source process. This ordering constraint guarantees that
calls made by a single process on the members of a channel group are processed in the

order they were made.

In order to construct channel group values we introduce Group. Group takes a
record of channel values as input and returns a new record of channels that are in the
same group. Group relationships that existed in the input channels will be present in
the output channels. If all of the channels that are passed to Group do not have the
same sink node then Group will return a distinguished error value. Note that the
channels returned by Group are copies, and thus the original input record to Group
will still refer to a set of ungrouped channels after Group returns. The channel copies

returned by Group will each include a new unique sequence stamp that has been added
by Group. The sequence stamp added to each channel is used to identify each
channel's membership in the newly created group. In addition to the sequence stamps
obtained by group membership, upon creation each channel is assigned a unique

sequence stamp.

We can now solve our earlier problem of synchronizing SetColor and PutChar calls.

For example, the statements

131

PROGRAMMING SYSTEMS RESEARCH

seqTerm : Group(term);
seqTerm.SetColor(red);
seqTerm.PutChar("a");
seqTerm.PutChar("b');

can be used to create a new sequenced terminal value seqTerm and to display the
characters "ab" in red.

A channel can be a member of more than one group at once, which allows a wide
variety of sequencing semantics to be directly expressed using channel groups. For

example, consider the following remote interface:

REMOTE INTERFACE ColorDisplay;
TYPE Color = (red, blue, green);
PIPE SetFont(font: ARRAY OF CHAR);

(* Sets the font *)
PIPE SetColor(c: Color);

(* Sets the color *)
PIPE PutChar(c: CHAR);

(* Displays a character on the screen

END ColorDisplay.

In order to guarantee that characters appear in the proper color and font a server that
exports ColorDisplay can create two channel groups: {SetFont, PutChar} and
{SetColor, PutChar}. Note that SetFont and SetColor do not need to be
sequenced with respect to one another. Utilizing two channel groups instead of a single
channel group to sequence ColorDisplay allows SetFont and SetColor to execute

in parallel.

The channel timing invariant provided by the communication model can now be

succinctly stated:

Channel Timing Invariant If a process makes two separate calls on channels that (1)
are at the same sink node, and (2) have a sequence stamp in common, then the calls will
be processed at the sink in the order in which they were made by the process.
Processed means that the second call is not executed until the procedure invoked by the
first call has returned.

The channel timing invariant implies the invariant for calls ol a single channel
(because a channel will always be at the same sink node as itself and will have a

sequence stamp in common with itself). The channel timing invariant embodies all of
the ordering semantics provided by the Remote Pipe and Procedure Model. The
ordering of channel calls not covered explicitly by the channel timing invariant is

undefined.

132

PROGRA. MING SYSTEMS RESEARCH

4.5. Failures Complicate Channel Semantics

Our communication model guarantees that a channel call will be performed precisely
once in the absence of failures. In the presence of failures the semantics of remote
operations are more complicated. Many kinds of distributed system failures (e.g. node
crashes, network partitions) can cause a source node to wait for a reply which will never
arrive. In such cases it is impossible to tell if the corresponding remote operation was
ever attempted or completed.

In the presence of failures at-most-once semantics can be provided for remote calls.
At-most-once semantics guarantees that a remote operation either will be performed
exactly once, or will have been performed at most once if a failure has occurred. A
failed procedure call returns a distinguished crash value as its result. A failed pipe call
causes a distinguished crash value to be returned as the result of the next procedure call
on the same group. When a failure occurs it is impossible to determine whether a
remote operation was completed, never started, or only partially completed. Thus
at-most-once semantics present a serious challenge to the application programmer who
wishes to cope gracefully with failure.

One technique used in several practical systems accepts the limitations of at-most-once
semantics and insists that procedure calls that mutate stable storage be idempotent.
With this restriction a remote procedure call that returns crash can be repeated safely
until the call completes without failing.

Exactly-once semantics is an alternative to at-most-once semantics. Exactly-once
semantics guarantees that a remote operation will be performed exactly once or not at
all. Exactly-once semantics is implemented by protecting the actions of a remote
operation with a transaction. If a remote operation returns crash the operation's
corresponding transaction is aborted. The transaction abort will undo the effects of the
failed remote operation and the failed operation will appear to never have happened.
The failed operation can then be retried (if desired) with a new transaction.

Exactly-once semantics can be achieved through the combination of communication
with transactions in one of two ways. One approach as suggested by Argus's innovative
design [12] is to integrate transactions into the communication model such that each
remote operation has an implicit associated transaction. A second approach is to keep
the communication model and transactions separate by explicitly specifying transactions
where they are required [4[.

In addition to success and crash, a third result can be optionally returned from a
remote call. If desired, a ping message can proceed a call to ensure that the remote
node is available. If the node does not reply to the ping message within a certain
amount of time then unavailable can be returned as the result of the call. In this case
the remote call was not attempted, and thus no compensation needs to be performed.

133

PROGRAMMING SYSTEMS RESEARCH

In summary, the channel errors that can occur are as follows follows:

1) Crash: Communication with the remote node was lost during a call, and it

is unknowi, if the operation was performed once, performed partially, or not
performed at all.

2) Unavailable: The sink does not respond to ping r.iessages and thus the

requested operation was not attempted.

3) Destroyed: The channel that was called has been destroyed by its sink node.

The operation was not attempted.

Channel errors are always reported to the source node. If a procedure call returns in
an error, the error is returned as a distinguished value by the call. If a pipe call results

in an error, the error is returned upon the next procedure call to a channel in the same
group, or upon the next synchronize operation on a pipe in the group, whichever comes

first. When a pipe call results in an error, any subsequent calls on pipes that are in the
same group are discarded until the error is reported. Any calls that were made before
the call that resulted in an error will have been performed exactly once.

5. REFINEMENTS

We discuss in this section two refinements to the basic model:

" explicitly serviced pipes,

" and stable channels that survive crashes,

5.1. Explicitly Serviced Pipes

An alternate model for the sink end of a pipe is to allow a program to create a pipe
that is explicitly serviced. This is accomplished by using the procedure Create to

create a pseudo-pipe sink procedure. However, unlike a pipe sink procedure, this
procedure is not called when data arrives down the pipe. Instead, data must be
explicitly taken from the pipe with the following procedures:

DEFINITIONS MODULE ExplicitPipe;
TYPE Pipe = PROCEDURE 0;
PROCEDURE Create(): Pipe;

(Returns a new local procedure that can be used as
a pipe sink *)

PROCEDURE Value(p: Pipe): Any;
(Returns the next value from p. Blocks if no value

is present until a value arrives. Successive applications or

134

PROGRAMMING SYSTEMS RESEARCH

Value will return the same value unless Accept has

been called *)
PROCEDURE Accept(p: Pipe);

(C Accepts the last datum read with Value, and permits
Value to get the next value from the pipe. Blocks its caller

if no data has arrived for the pipe. Once Accept discards the
present value, it does not block its caller waiting for the next
pipe value *)

PROCEDURE Ready(p: Pipe): BOOLEAN;
(* Returns TRUE if there is data waiting in p, FALSE otherwise *)

END ExplicitPipe.

A simple example of how a pipe can be explicitly serviced follows:

my-pipe := Create);
ftp.GetFile("fred.txt", my-pipe);

(* pass the new pipe to remote source *)
c := Value(my-pipe);
Accept(my-pipe);

(* remote source will terminate with 0)

WHILE c'CHR(0) DO
term.PutChar(c);
c := Value(my-pipe);
Accept(my-pipe);
END;

Accept is used to define the sequencing semantics of explicitly serviced pipes. Until

Accept is called to acknowledge receipt of a call, further calls on the same channel will
not be processed.

We call pipes which are connected to a procedure procedure serviced, and pipes which

are polled explicitly serviced. We expect that both procedure serviced and explicitly
serviced pipes will find application.

5.2. Stable Channels Survive Crashes

The above examples have shown how both remote procedures and pipes can be
dynamically created, but their lifetimes have not been discussed. The desired lifetime of
a channel depends upon its application. Thus in our model a dynamic channel will exist
until it is explicitly destroyed by a program or until the channel's sink node crashes.
An attempt to call a remote procedure which has been destroyed will result in a

distinguished error value, and an attempt to call a pipe which has been destroyed will
result in a destroyed error.

Channels which can survive node failures are useful for stable services that are

135

PROGRAMMING SYSTEMS RESEARCH

registered with a clearinghouse. We call a channel that can survive a node failure a

stable channel. The state of a stable channel and its associated procedure must be

recorded in stable storage to permit recovery of the channel upon node restart. The

details of how stable channels are created will depend on the host language

environment.

6. PRAGMATICS

We discuss in this section five pragmatic aspects of the Remote Pipe and Procedure
Model:

" how connections are used to detect node crashes,

" failure recovery,

* how sequence numbers can be used to implement the channel timing
invariant,

* normal call processing,

" and performance elaborations.

For the purposes of this section, we will assume that the message system may lose,
reorder, and duplicate messages. However, we will assume that messages that are
delivered are delivered without error. This ideal can be approximately with any desired
level of reliability in practice by using larger and larger error detecting codes, and
discarding messages with detected errors.

6.1. Connections are Used to Detect Crashes

Our crash detection and recovery algorithm is based upon connections. Connections
provide a simple mechanism for detecting node crashes. A connection is a unique
identifier that is shared between a source process and a sink that identifies the
incarnation of the source and the sink. In order to implement crash detection, a node
discards its connection state when it crashes. Thus the connection state of a node can
be stored in volatile memory.

Before a source process makes its first call to a remote sink it must establish a
connection with a two packet interchange. The source node first sends the sink the
name of the process making the call, the source node identifer, and a proposed
connection identifer (one packet), and then the sink acknowledges receipt of the
connection identifer and other information (one packet). Each source process keeps
track of its outgoing remote connections in a table that is indexed by remote node

136

PROGRAMMING SYSTEMS RESEARCH

identifer. Each sink node keeps track of its incoming remote connections in a table that
is indexed by connection identifer.

Connection state can be garbage collected by both sources and sinks. A source can
discard its connection state with a sink when no calls are in progress with the sink by
simply forgetting the corresponding connection identifer. The source will have to
reestablish a connection before it makes its next call to the sink. A sink can discard
source connection identifiers if no calls are in progress with the corresponding source
process. As outlined below, the next time that the source makes a call to the sink the
source will discover that the connection has been garbage collected and create a new
connection.

If a sink receives a call message with an unknown connection identifer then the sink
sends back a distinguished unknown connection message to the source. The sink
includes the unique identifier of the call message, the source process identifer, and the
unknown connection identifer in the message.

A source will find itself in one of three states upon receipt of an unknown connection
message:

" The first case is that the call message received by the sink was sent before
the last source crash. In this case the source process identifier will be
unknown to the source, and the unknown connection message is ignored.

" The second case is that the unknown connection message is in response to
the first transmission of a call message and when the call was made the
source process had no other outstanding calls to the sink. In this case a new
connection is established with the sink and the call is retransmitted with the
new connection identifer. Subsequent calls will use the new connection
identifer.

" If neither the first or the second case apply, then the source must assume
that the sink has crashed and recovered since the last successful call. Once
the crashed failure is returned as the result of a procedure call, a new
connection with the sink is established which will enable future calls to be
processed.

6.2. Channel Failure Detection and Recovery

We guarantee that as soon as a failure occurs on a channel, no further operations on
channels in the same group will be performed until the calling process is advised of the
error. Here we examine how this guarantee can be implemented. There are two types
of failures that we will consider in our discussion: the failure that results when a
destroyed channel is called (a destroyed failure), and the failure that results when a sink
crash occurs during the processing of a call (a crash failure).

137

PROGRAMMING SYSTEMS RESEARCH

Procedure call failures are directly reported to the call site by a distinguished return
value. Thus, a failure during a procedure call will not cause future operations on the
same group to be ignored because the failure is immediately reported.

Pipe call failures can not be immediately reported to the call site because the calling
process does not block and wait for a return value. Thus, if a pipe call fails, all
subsequent pipe calls to channels in the same group will be ignored until a procedure is
called that is in the same group as the failed pipe call. The pipe failure will be
immediately returned as a distinguished return value from the procedure call, and then
subsequent pipe and procedure calls on the group can be processed. Note that
synchronize is a special form of procedure call, and thus synchronize can be used to poll
for pipe failures.

In the case of a pipe destroyed failure the sink must ignore future pipe calls on
channels in the same group until a procedure call on the same group is made. The sink
can of course advise the source of the pipe error, but the source will not be able to
report it to the calling process until it makes a call on a procedure in the same group as
the failed pipe.

In the case of a pipe crash failure the source must ignore future pipe calls on channels
in the same group until a procedure call on the same group is made. If the pipe calls
were not ignored, then it would be possible for the sink to recover and process
subsequent pipe calls before the pipe faiture was reported.

8.3. Sequence Vectors Implement Channel Timing

A new mechanism that utilizes vectors of sequence numbers can be used to implement
the sequencing semantics for groups. Recall that in the Remote Pipe and Procedure
model a client can dynamically create groups in order to force the sequential processing
of calls made on independent channels. A channel value starts with a single sequencing
stamp that is unique to the channel, and copies of the channel value can be freely made
that include additional sequencing stamps to denote group memberships. Two channel
calls will be processed in order if and only if the channel values share a sequencing
stamp. We call this sequencing property the channel timing invariant.

One way to implement the channel timing invariant is to generate sequence numbers
for each sequence stamp on a per-process basis. Using this method, when a call is made
on a channel a new sequence number is obtained for each of the channel value's
sequence stamps. This set of sequence stamps and sequence numbers is sent in the call
message to the sink, along with the process identifier of the calling process. In order to
guarantee the channel timing invariant, the sink will only process a call when all of the
call's sequence numbers are one greater than the sequence numbers for already
processed calls from the process identified in the call message. By "one greater" we
mean that for each sequence stamp in the call message, the sequence number associated

138

PROGRAMING SYSTEMS RESEARCH

with the stamp is one greater than the sink's copy of the sequence number for the
corresponding stamp. For a given stamp, if the sequence number is 1 and the sink has
no previous record of this stamp, then it initializes its sequence number for the stamp to
be 0. At the end of a call, the sink increments the sequence numbers of the stamps that
were sent with the call.

For example, consider the the following sequence of channel calls made by a single
process. Each call is shown with the list of sequence stamp and seqiience number pairs
that is included in the call message:

Put(a); <[1. #1]>
PutSeq("bl); <[1, #2]. [2, #1]>
ColorSeq(blue); <(3, #1], [2, #2]>
Put(Ic'); <C1. #3]>
PutSeq(d'); <[1, #4], [2, #3]>

From the stamps that are sent in each call messages shown above, we can determine
the sequencing semantics of the channel calls. Because ColorSeq and Put do not share
a sequence stamp their processing is unordered. PutSeq refers to the same underlying
channel as Put (identified by sequence stamp 1), and thus calls on these two channels
will be ordered. In addition, PutSeq has been extended with the sequence stamp 2
which is used to group PutSeq and ColorSeq in order to guarantee that calls on these
two channels will be ordered.

In sum, to implement the normal sequencing of calls, the following state must be
maintained by a source and a sink:

The source must keep for each outgoing connection a sequence stamp to
sequence number table. When a local process makes a call appropriate
entries in the outgoing sequence table are incremented, and the new sequence
numbers are sent with the call to the sink. The first time that a sequence
stamp is used by a local process an entry is placed in the process' table with
sequence number 1.

* The sink must keep a sequence stamp to sequence number table for each
incoming connection. Each request that is received is checked against the
corresponding connection's table, and if the sequence stamps do not match
the request is rejected. After a request is processed, appropriate entries in
the connection's table are incremented. When a sink establishes a new
connection it creates a fresh table with no sequence stamp entries. If a
sequence stamp is not in a table, an entry with a sequence number of 1 will
be automatically generated.

It is possible for either a source or a sink node to discard sequence number tables by

139

$1

PROGRAMMING SYSTEMS RESEARCH

garbage collecting the corresponding connection. The rules for garbage collecting
connections were outlined in the last section.

6.4. Normal Call Processing

Here we recap the information that is sent in every call message. A call message
includes: (1) the sink node address (for the communication system), (2) the connection
identifier (to identify the source node and calling process), (3) a unique call identifer
that is different for each retransmission of the call (to determine if a new connection
can be opened if the call fails), (4) a sequence vector (to sequence the call), (5) the
identifer of the channel being called, and (6) a byte string that represents the data for
the channel. We assume that typed values can be converted to byte strings and back
again via encode and decode operations [10]. Specific versions of encode and decode
must be designed to work with each programming language in order to properly handle
the language's type space and exception handling discipline.

A call message is retransmitted until a corresponding return message is received. A
return message includes: (1) the source node address (for the communication system),
(2) the connection identifer (to identify the calling process), (3) the unique call identifer
(to identify the call); and (4) a byte string that represents the result data.

6.5. The Performance of the Model Implementation Can Be Improved

The model implementation we have described is intended only to be suggestive; a
practical implementation of the Remote Pipe and Procedure Model would require
performance optimizations. Important optimizations include:

* Combine pipe calls: Multiple pipe calls destined for the same sink node can
be buffered at a source and transmitted as a single message in order to
reduce message handling overhead and improve network throughput. The
amount of time that a pipe call is buffered before it is sent presents a
tradeoff between low pipe latency and efficient bulk communication. A
moving window flow control algorithm can be employed [Postel79] to
manage the transfer of buffered pipe calls between a source and a sink.

* Combine pipe calls with procedure calls: A procedure call message will
always be transmitted immediately, and any buffered pipe calls to the same
sink should be prepended to the procedure call message whenever possible.

* Combine pipe returns: Because returns from pipe calls are only used to
acknowledge the completion of processing, multiple pipe call returns can be
combined into a single message that acknowledges the processing of a set of
calls.

140

PROGRAMMING SYSTEMS RESEARCH

" Preallocate Processes: Processes can be preallocated into a process pool at
node startup so that performance of a FORK operation for each incoming
remote call is not required. Eliminating FORK overhead on is especially
important for a collection of pipe calls that arrive in a single message,
because the overhead per pipe call is limited to approximately the cost of a
procedure call, as opposed to a process creation. A process allocated from a
pool would return itself to the pool when the process had finished processing
its assigned call message.

* Explicil Acknowledge Messages: At times both call and return messages
should be explicitly acknowledged in order to improve performance. A call
message should be explicitly acknowledged by a sink when the sink has been
processing. a call for a predetermined interval without a result having been
produced. This acknowledgment informs the source that the call has been
successfully received, and that the source does not need to retransmit the
call message. A procedure return message from a sink should be explicitly
acknowledged by a source when the same source process does not make a
subsequent procedure call to the sink within a predetermined interval. This
informs the sink that the return message has been received by the source,
and that the sink can discard the result contained in the return message.

" Factor Packages and Groups: In order to save space, information that is
common to all of the channels in a package or group value need only be
represented once.

7. PRACTICAL EXPERIENCE AND CONCLUSIONS

We conclude with

* analytical performance bounds and empirical performance results,

" experience with an application of the Remote Pipe and Procedure Model
that has proven certain of its elements practical,

" and discussion about general application of the model.

7.1. Performance Bounds and Results

We show here that k pipe calls can be at most k times as fast as k identical procedure
calls, and we compare this performance bound to empirical data gathered from an
implementation of the Remote Pipe and Procedure Model. Experimental data confirms
the analytical model as long as the source does not generate data faster than they can
be transmitted to the sink. Performance is substantially degraded from analytical

141

PROGRAMMING SYSTEMS RESEARCH

predictions when the source is generating data faster than they can be transmitted to
the sink.

First we derive elementary performance bounds on the ratio of time spent processing k
procedure calls vs. k pipe calls followed by a synchronize. Figure X schematically
breaks down the time spent processing a pipe and a procedure call into individual
components as follows:

" Each procedure call has a processing cost at the source (send and receive), a
round trip network latency delay, and a processing cost at the sink node
(receive, execute call, and send). If we let a be the cost of the source send,
and r be the cost of the source receive plus the cost of a round trip network
latency plus the processing cost at the remote node, then k procedure calls
will take ka + ir units of time.

" A series of k pipe calls requires k source sends, and a following
synchronize requires a round trip network latency plus the processing cost
at the remote node plus a source receive. Thus the cost of c pipe calls
followed by a synchronize is ka + r. This assumes that r is larger than a.
If a is larger than r then the cost is 8 + kr. We can ignore this case without
loss of generality by symmetry.

With these estimates of the cost of pipe and procedure calls we can estimate the time
ratio between k procedure calls and k pipe calls followed by a synchronize as:

ka + icr
A(k,a,r) =ka + r

This equation for A(k,8,r) shows that for fixed r, as the source send time decreases,
the performance ratio between pipes and procedures is bounded by

lim A(k,a,r) = k
8-0

Furthermore, for fixed a and r, the performance ratio is bounded by

r
lim A(k,a,r) = 1 + -

Combining these two independent bounds yields the single bound

r

A(k,s,r) < max (1 + -, k)

This performance bound can not be realized when the source generates data faster

142

PROGRAMMING SYSTEMS RESEARCH

than it can be transmitted to the sink. This will occur when data is generated at a rate

that is greater than the bandwidth of the channel to the sink or when insufficient

buffering is provided at the source. In this case additional queuing delays will result

that add to the network delay time, and the performance ratio of pipes to procedures
will be reduced.

A series of experiments were run on an implementation of the Remote Pipe and

Procedure Model to measure the relative performance of pipe and procedure calls. The

implementation tested uses TCP as its underlying transport layer, and limits all
channels that are exported as a service to be in a single group. Further details of the
implementation are given in [9].

The experiments that we ran consisted of making 10, 50, 100, 500, and 1000 pipe and
procedure calls to test the effect of varying k. For each number of calls 0, 100, and

1000 byte arguments were used to test the effect of argument size. Each experiment
that tested a combination of number of calls, argument size, and pipe or procedure was
repeated 10 times.

We first ran these experiments in a low network delay environment. Low-delay was

provided by running the tests on two Microvax-II workstations on the same 10
MBit/second Ethernet network. In this environment, the average time to perform a 0
byte argument remote procedure call was 13.3 milliseconds, while the average time to

perform a 0 byte argument remote pipe call was 4.3 milliseconds.

As shown in the following table, the measured pipe to procedure performance ratio
increases with k as predicated by our simple model. The value for A(k,s,r) was
computed by assuming that for 1000 calls that the procedure time was s + r and the
pipe time was 8. Note that the performance improvements are all greater than a factor

of two.

We repeated the same experiments in an environment with a large communication

channel latency by employing one node at MIT as the sink and a second nc.!.' at a
distant Arpanet site as the source. The results are shown in the table below. The
average time for a null procedure call was 748 milliseconds, which is far longer than the

13 milliseconds measured in the Ethernet case. Because the source was generating data
faster than the Arpanet could absorb it we did not expect the measured performance

rati
o

n to be consistent with our simple performance model. In fact, the underlying TCP
protocol exhibits pathological behavior under these circumstances as shown by the net
performance reduction of pipes when compared with procedures in the case of 1000 byte

arguments. This pathological behavior results from TCP's window based flow control
algorithm. Instead of TCP's window based approach, a rate based flow control

algorithm should be employed under these circumstances.

In sum, k pipe calls can perform at most max(1 + *, k) times better than k procedure

calls, where r is the remote communication and processing time and a is the source send

143

PROGRAMMING SYSTEMS RESEARCH

Low Latency Experiments
Single Ethernet

Bytes Number Procedure 90% Pipe 90% Pipe/
per of Calls Call Time Conf. Call Time Conf. Procedure
Call k (seconds) Interval (seconds) Interval Ratio A(k,sr)

0 10 0.056 0.006 2.37 2.54

0 50 0.297 0.131 2.24 2.94

0 100 0.439 0.060 3.09 3.00

0 500 2.155 0.010 3.08 3.05
0 1000 13.277 0.034 4.341 0.008 3.06 3.05

100 10 0.062 0.003 2.28 3.23
100 50 0.255 0.004 2.77 4.02

100 100 0.437 0.006 3.23 4.15

100 500 1.178 0.013 4.11 4.26

100 1000 14.136 0.029 3.300 0.010 4.28 4.27

1000 10 0.088 0.005 2.06 2.19

1000 50 0.374 0.005 2.43 2.45

1000 100 0.777 0.065 2.34 2.49

1000 500 3.615 0.076 2.51 2.52

1000 1000 18.153 0.213 7.175 0.015 2.53 2.52

Table 9-1: Low Latency Experiments: Single Ethernet

time. This bound can be approached in practice when sufficient bandwidth is available.
Thus, pipes can provide a substantial performance advantage over procedures for many
applications.

144

PROGRAMMING SYSTEMS RESEARCH

High Latency Experiments
Long-Haul Arpanet

Bytes Number Procedure 90% Pipe 90% Pipe/
per of Calls Call Time Conf. Call Time Conf. Procedure
Call k (seconds) Interval (seconds) Interval Ratio

0 10 3.781 0.349 1.98

0 50 3.931 0.308 9.52

0 100 3.876 0.277 19.3

0 500 6.799 0.351 55.0

0 1000 748.22 60.760 16.289 1.726 45.9

100 10 4.601 1.177 1.62

100 50 20.364 6.047 1.83

100 100 55.907 7.619 1.33

100 500 165.30 23.89 1.42

100 1000 745.84 29.81 531.24 128.18 1.42

1000 10 113.91 25.41 0.09

1000 50 152.95 23.94 0.34

1000 100 251.83 15.05 0.41

1000 500 1252.1 70.4 0.30

1000 1000 1034.3 54.9 3504.5 1329.6 0.41

Table 9-2: High Latency Experiments: Long-Haul Arpanet

7.2. The Elements of the Model Have Been Proven Practical

In order to gain experience with the Remote Pipe and Procedure Model we have used
it to implement a distributed database system. The database system we implemented
provides query based access to the full-text of documents and newspaper articles, and is
presently in use by a community of users. The database system is divided into a user
interface portion called Walter that runs on a user's local node, and a confederation of

145

PROGRAMMING SYSTEMS RESEARCH

remote database servers which are accessed by Walter via the DARPA Internet. Walter
employs a query routing algorithm to determine which server contains the information
required for processing of a given user query.

The protocol that Walter uses to communicate with a database server is built using
the Remote Pipe and Procedure Model. A stub generator automatically generates both
source and sink node stubs from an interface file. This interface file (rewritten from C
into Moduia-Il) is shown below:

REMOTE INTERFACE DataBase;
PIPE EstablishQuery(c: ARRAY[CHARI);

(* establishes a new query *)
PROCEDURE CountMatchingRecords0: NT;

(5 Returns the number of records that have matched so far 5)

(Number is positive if query processing is complete *)
PROCEDURE FetchSummary(r: Range, dest: PIPEISummaryl);

(* Causes summaries in range r to be sent to dest *)
PROCEDURE FetchRecord(rec: INT, r: Range, dest: PIPE{Line]);

(S Causes lines in range r of record rec to be sent
to dest *)

PIPE Abortf;
(5 Causes the server to abort the query and any data that it

is sending down a pipe 5)

END DataBase.

When a user supplies a query the procedure EstablishQuery is called.
EstablishQuery initiates processing of a query at a server. The server procedure
FetchSummarles, which computes the summaries for a range of articles matching the
current query is then called. As the summaries are computed they are sent down the
pipe supplied in the FetchSummaries call. The pipe sink procedure that receives the
summaries displays them as they arrive. All of the summaries generated by
FetchSummaries are guaranteed to arrive before FetchSummaries returns. In order
to view an entire database record the server procedure FetchRecord is used in
precisely the same manner as FetchSummaries is used.

A second process is conceptually running concurrently with the information which is
arriving down a pipe and being displayed. This process checks for the abort user
request, which aborts the query in progress. If such a keyboard request is received, the
Abort procedure is called to abort the FetchSummaries or FetchRecord operation
in progress.

The use of pipes in this database application has provided two distinct advantages
over remote procedures. First, pipes permit both FetchSummaries and FetchRecord
to send variable amounts of bulk data to Walter simply. Second, since pipe calls do not
block a server can continue computing after it has sent a datum. If a procedure instead

146

PROGRAMMING SYSTEMS RESEARCH

of a pipe were used to return data the server process would suspend processing while
waiting for a response from Walter. The concurrency provided by pipes has proven to
be important to Walter's performance in practice.

7.3. The Remote Pipe and Procedure Model Has Many Advantages

We have proposed three major ideas:

* Channel values: Channels should be first-class values which can be freely
transmitted between nodes. If a communication model does not permit
channel values to be transmitted between nodes, then its application will be
limited to a restricted set of protocols. An application of channel values is
the return of incremental results from a service to a client.

0 pes: A new abstraction called a pipe should be provided in the
communications model. A pipe permits bulk data and incremental results to
be transmitted in a type safe manner in a remote procedure call framework.
Existing remote procedure call models do not address the requirements of
bulk data transfer, or the need to return incremental results.

* Channel groups: A new sequencing technique, the channel group, is
important in order to permit proper sequencing of channel calls. A channel
group is used to enforce serial sequencing on its members with respect to a
single source process.

As we have explained these three ideas form the basis for the Remote Pipe and
Procedure Model. We expect that this model will find a wide variety of applications in
distributed systems.

Acknowledgments: The ideas in this paper benefited from meetings with fellow MIT
Mercury Project members Toby Bloom, Dave Clark, Joel Emer, Barbara Liskov, Bob
Scheifler, Karen Sollins, and Bill Weihl. I am especially indebted to Bob Scheifler for
posing a question that resulted in the notion of a channel group. Barbara Liskov, John
Lucassen, Bob Scheifler, Mark Sheldon, Bill Weihl, and Heidi Wyle commented on
drafts of the paper.

147

PROGRAMMING SYSTEMS RESEARCH

References

1. Bershad, B., et al. "A Remote Procedure Call Facility for Heterogeneous

Computer Systems." Technical Report 86-09-10, Computer Science

Department, University of Washington, September 1988.

2. Birrell, A. and B. Nelson. "Implementing Remote Procedure Calls." ACAI

Transactions on Computer qystems, 2, 1, (February 1984), 39-59.

3. Birrell, A. "Secure Communication Using Remote Procedure Calls." ACAM

Transactions on Computer Systems, 3, 1, (February 1985), 1-14.

4. Brown, M., et al. "The Alpine File System." ACM Transactions on

Computer Systems, 3, 4, (November 1985), 261-293.

5. Cheriton, D. "VMTP: Versatile Message Transaction Protocol." Computer
Science Department, Stanford University, Stanford, CA, January 12, 1987.

6. Gifford, D. "Information Storage in a Decentralized Computer System."

Report CSL-81-8, Xerox Palo Alto Research Center. Palo Alto, CA.

7. Gifford, D., et al. "An Architecture for Large Scale Information Systems."

Proceedings of the Tenth ACM Symposium on Operating Systems
Principles and ACM Ops. Systems Review, 19, 5, 161-170.

8. Gifford, D. "Remote Pipes and Procedures for Efficient Distributed

Communication." MIT/LCS/TR-384, MIT Laboratory for Computer

Science, Cambridge, NIA, October 1986.

9. Glasser, N. "The Remote Channel System." M.S. thesis. MIT Department of
Electrical Engineering and Computer Science, Cambridge, ML. May 1987.

10. Herlihy, M. and B. Liskov. "A Value Transmission Method for Abstract
Data Types." ACAI Transactions on Programming Languages and Systems.
4, 4, (October 1982), 527-551.

11. Jones, M., et al. "Matchmaker: An Interface Specification Language for
Distributed Processing." Proceedings of the 1th Annual ACM Symposium
on Principles of Programming Languagces. January 198, 225-235.

12. Liskov, B. and R. Scheifler. "Guardians and Actions: Linguistic Support for

Robust, Distributed Programs." AC,\I Transactio's on Programming

Languages and Systems, 5, 3, (July 1983), 381-40-1.

1,18

PROGRAMMING SYSTEMS RESEARCH

13. Needham, R. and M. Schroeder. "Using Encryption for Authentication in

Large Networks of Computers." Communications of the ACM, 21, 12,

(December 1978), 993-998.

14. Nelson, B. "Remote Procedure Call." Report CSL-81-9, Xerox Palo Alto
Research Center, Palo Alto, CA, May 1981.

15. Postel, J. "Internetwork Protocols." IEEE Transactions on
Communication, COM-28, 4, 604-611.

16. Redell, F. "Experience with Processes and Monitors in Mesa."

Communications of the ACAM, 23, 2, (February 1980), 105-117.

17. Voydock, V. and S. Kent. "Security Mechanisms in High-Level Network

Protocols." Computing Surveys. 15, 2, (June 1983), 135-171.

18. White, J. "A High-Level Framework for Network-Based Resource Sharing."
Proceedings of the National Computer Conference, 1976. AFIPS Press,
561-570.

19. White, J. and Y. Dalal. "Higher-Level Protocols Enhance Ethernet."

Electronic Design, 30, 8, (April 1982), 33-41.

20. "Courier: The Remote Procedure Call Protocol." Xerox System Integration
Standard XSIS 038112, Xerox Corporation, Stamford, CT, December 1981.

Publications

1. Gifford, D.K. and A. Z. Spector. "The Evolution of the IBM System 360/370
Architecture." Communications of the ACA1, 30, .1, (April 1987), 291-307.

2. Gifford, D.K. "Processor Lattices." December 1986.

3. Gifford, D.K. "Remote Pipes and Procedures for Efficient Distributed
Communication." MIT/LCS/TR-384, MIT Laboratory for Computer
Science, Cambridge, MA, October 1986.

4. Gifford, D.K.. J.M. Lucassen, S.T. Berlin, D.E. Burmaster, .1.B. Henderson

and D.A. Segal. "Boston Community Information System - User Manual."

MIT/LCS/TR-373, MIT Laboratory for Computer Science, Cambridge, MA.
September 1986.

5. Gifford, D.K. aod J.M. Luc,,Lssen. "Integrating Functional and Imperative

Programming." Proceedings of the 1986 ACAI Conference on LISP and
Functional Pr"ogramming, August 1986.

1,19

PROGRAMMING SYSTEMS RESEARCH

Theses Completed

1. Baldwin, R. "Rule Based Analysis of Large Protection Systems." Ph.D.

dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, June 1987.

2. Cote, R. "An Automatic News Article Editor." S.B. thesis, MIT Department
of Electrical Engineering and Computer Science, Cambridge, MA, June 1987.

3. Glasser, N. "The Pipe Extension to Remote Procedure Calls." S.M. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1987.

4. Rao, R. "A Flexible and Portable Window System for Common LISP." S.M.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1987.

5. Slivan, S. "An Interactive Graphics Interface for Clinical Applications
Software." S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, August 1986.

Theses in Progress

1. Braunstein, A. "New File System." S.M. thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA, expected
September 1987.

2. Brondmo, H.P. "User Interface of a Dynamic Proton Synchrotron Control
System." S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected September 1987.

3. Lucassen, J. "Types and Effects -- Integrating Functional and Imperative
Programming." Ph.D. dissertation, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, expected August 1987.

4. O'Toole, J. "Type Inferences in Fluent Programming Languages." S.M.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected January 1988.

5. Sheldon, M. "Standard Types for a Fluent Language." S.M. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,

MA, expected September 1987.

150

PROGRAMMING SYSTEMS RESEARCH

Talks

1. Lucassen, J. "Types and Effects -- Integrating Functional and Imperative
Programming." Bell Laboratories, Holmdel, NJ, June 1987.

2. Gifford, D. "Processor Lattices." MIT Parallel Computing Research Meeting,

Endicott House, Dedham, MA, February 1987.

3. Gifford, D. "Applications of the MIT Common System." DARPA
Presentation, December 1986.

4. Gifford, D. "Communication Models for Distributed Computation."
Advanced Study Institute, Izmir, Turkey, August 1986.

5. Gifford, D. "An Architecture for Large Scale Information Systems." TTI
Study Mission on Videotex - MIT-ILO Visit by Japanese Companies, MIT,
Cambridge, MA, May 1986.

6. Lucassen, J. "An Architecture for Large Scale Information Systems." MIT-
ILO Visit by IBM, MIT, Cambridge, MA, March 1986.

151

REAL TIME SYSTEMS

Academic Staff

M. Dertouzos R. Zippel
S. Ward, Group Leader

Research Staff

J. Pezaris R. Zak

M. Singh

Graduate Students

R. Anderson A. Ayers R. Baldwin

M. Blair D. Goddeau B. Guharoy

S--L. Ku B. Kuszmaul W. Lar

J. Miller J. Morgan P. Oster

M. Powell S. Seda C. Shepard

JI Sieber P. Spacek M. St. Pierre

C. Staelin S. Weiner J. Wolfe

M. Wong F. Zhao

Undergraduate Students

L. Candell S. Chang J. Chung

C. Forsythe K. Gartner S. Geels

R. Hagen J. Halebian H. Houh

J. Hunt R. Jenez B. Kartzman

J. Kipnis D. Kwon K. Mackenzier

M. Matchett J. Nguyen J. Ofori

R. Opie M. Powell B. Swiston

J. Tabor K. Tarnura

Support Staff

S. Thomas

Visitors

D. Cerys R. Saenz

REAL TIME SYSTEMS

1. INTRODUCTION

Consolidation of RTS research goals has marked the 1g86-7 academic year, owing
primarily to personnel changes. The departure last year of Profs. Terman and Zippel is
leading RTS research in the areas of VLSI CAD tools and the database accelerator to an
orderly finish. The divestment of Prof. Halstead's project as a separate research group
leads progress on CONCERT and MULTILisp to be reported elsewhere.

Major foci of RTS research efforts have been continued work on (1) the L architecture
and (2) alternative memory system architectures, with seed projects in learning and
modeling. An undercurrent of NuBus-related projects continues an eight-year RTS
tradition, encouraged somewhat by several conspicuous recent proselytes.

2. THE L ARCHITECTURE

Continuing development of L, a minimalist architectural model for multithreaded,
object oriented computatiofh, was a primary focus of research by Ayers, Saenz, Singh,
and Ward.

2.1. Microcoded L Simulation

The microcoded emulation of a single-processor L system became operational during
the reporting period, due primarily to the work of Ayers, together with primitive
versions of a number of associated software tools [Ayers, Saenz, Singh]. The current
implementation runs on T.I. Explorer processors, co-resident with the T.I. Lisp machine
microcode. While the basic interpretive structure of L (including chunk management
and elementary fetch/execute mechanism) is directly supported, the current system
freely uses escapes to Lisp to bridge various gaps in the implementation. While this
approach has been a valuable bootstrapping and prototyping tool, it is encumbered by
resource and performance limitations which we hope to mitigate in the next
implementation (see following section).

The current system integrates volatility-based garbage collection with a local chunk
cache in a scheme which we hope to extend to more ambitious implementations. The
cache is non-associative, and constitutes a chunk namespace local to the processor.
Local names are assigned chunks when they are (1) locally allocated or (2) imported
from an external namespace object. Chunks of the former class need not have external
names at all, allowing them to be garbage collected without having undergone the
expense of exportation. The highest volatility level is thus kept entirely within the local
cache. The processor deals only with local names, which are typed pointers into the
local cache. Processor references to chunks by external names are dynamically trapped,
causing importation of the referenced chunk if necessary and substitution of its local
name in the cached chunk containing the offending reference.

This approach has a number of virtues. Various aspects of storage management

154

REAL TIME SYSTEMS

overhead (such as synchronization, virtual memory management, protection checking,
etc) can be bundled into the importation and exportation operations and thereby
removed from critical paths of instruction execution. So long as the working set of an
active computation fits into the processor cache, its memory references can be direct
and unencumbered, leading to a streamlined execution pipeline and fast clock speeds.

2.2. Multiprocessor L Prototype

The foundations have been layed for a reimplementation of the L emulation in a less
restrictive context [Ayers, Pezaris, Singh]. This approach is again based on T.I.
Explorer processors, but with the entire resources of a single processor board devoted to
the emulation of a single L processor. Pursuant to the new implementation, we have
configured a large NuBus chassis to accept multiple cards, and have arranged for a
single processor running Lisp to bootstrap secondary L-based processors. This approach
lends considerable flexibility to our L implementation, which can now expand beyond
the microstore corner unused by Lisp. It also makes a clean break from our current
Lisp dependency, perhaps leading eventually to standalone L systems runnable on
ordinary explorer hardware. Most importantly, it provides a testbed for extension of
the L system to modest multiprocessor dimensions.

2.3. L Base Language

Although the L architecture is designed to support a wide range of programming
languages, our current language technology focuses on a single Lisp-like base language
tuned to exploit the unique characteristics of L. To a rough first approximation, the
language is SCHEME adapted to a compiler-intensive implementation. In particular, it
deviates from SCHEME at the source language level primarily in its facilities for
optional type declarations. While defaulting to SCHEME semantics in the absence of
declarations, our dialect is intended to afford the efficiency of, say, C to programmers
willing to adhere to C programming idioms.

The base language implementation goes to unusual lengths to semantically integrate
compile- and run-time environments. It is completely devoid of interpretive mechanism;
even the most trivial of evaluations are performed by compilation followed by execution.
A single lexical environment governs execution and compilation: a form is both compiled
and executed relative to an environment, and the compiler is effectively distributed
about the environment by the same mechanism that governs other semantic bindings.
Thus the form (fn arg8) is compiled relative to an environment by looking in that
environment for a form compiler for fn and invoking it; the meanings of quote, lambda,
and cond are dictated by environmental bindings to compile-time mechanism. As a
special case, traditional Lisp SUBR8 are bound to form compilers which invoke shared
interpretive means (presumably by producing calls to a shared procedure); macros,
inline-coded functions, and various language extensions are similarly simple special
cases. Of particular interest is the ability this approach affords to sophisticated

155

REAL TIME SYSTEMS

optimizations, particularly those crossing thp boundaries of a procedure call. In
commonly occurring cases, a form compiler which deals with a call to a procedure can
exploit detailed knowledge about the internal structure of that procedure, alternative
entry points for polymorphic procedures, organization of local environment, etc.

2.4. Metacache Architecture and Implementation

Work by Singh has led to a preliminary VLSI implementation of a prototype
metacache, an architectural feature intended to improve the performance of L and
similar processors heavily dependent on accessing data through bounded-length
indirection paths. The unit of storage in L is the chunk, a 9-tuple whose elements may
each be a scalar or a reference to another chunk. Since objects in L are made of
interconnected chunks, a natural memory accessing mechanism is the "metaname". A
metaname is a path into memory starting at some initial chunk and ending at some
final point. A typical metaname in L is of the form (1 4 5 6). Accessing is always done
relative to a root chunk which is usually dictated by the context of the access (typically
the STATE chunk corresponding to a computation). Given this type of memory
structure, it is straightforward to design a cache that simply stores values based on
some function of a given metaname, where the metaname is provided by the L processor
during a memory access.

There are at least two interesting features specific to this cache however. The first is
that since memory accesses will most likely display some sort of locality of reference, it
might be worthwhile on a cache miss to iteratively cache the object pointed to by each
partial metaname. Secondly, care must be taken in how the metacache handles the
problem of objects accessed via multiple paths. This problem is of course general in the
sense that there may be more than two paths which converge at any level in the
metaname and writes to the terminal locations of these paths must be carefully treated.

An approach to this problem is to use a good hashing scheme based on an "encoded
dependency word" to allow the invalidation of entries based on path convergence. The
dependency word for each cache entry yields a conservative approximation of that
entries reliance on the contents of several chunks, by ORing hashed derivatives of
identifiers of these chunks. When a chunk element is changed a corresponding
invalidate code is broadcast, causing each cached value possibly dependent on the
modified element to be marked invalid for future reference.

Simulation of systems based on this approach led to a promising design, a modest
sample of which (8 words) has been implemented in CMOS.

3. MEMORY SYSTEMS ARCHITECTURE

Continuing work on memory systems architecture by Ward and Zak has led to a
nonstandard architecture for main memory systems which promises potentially

156

REAL TIME SYSTEMS

improved cost/performance characteristics. The typical cached memory system uses a
modest amount of fast-access static RAM as a buffer between the processor and a much
larger array of slower, denser dynamic RAM devices. The benefits of a large cache are
average access times approaching that of the fast static memory. Its costs include the
static RAM whose contents are redundant with the selected portions of dynamic
memory, additional tag memory used to record addresses of cache contents, as well as
comparators and other associated logic.

Modern static column dynamic RAM (SCRAM) chips combine a fast static row buffer
with a much larger dynamic charge array. An entire row of the two-dimensional array
(dictated by high-order address bits) is loaded into the row buffer on the RAS signal.
Subsequent accesses to memory elements within that row may be made at static RAM
speeds, since they deal only with the static buffer. The effect is to achieve very fast
access times to consecutive locations within the same row, while exploiting DRAM
densities for the bulk of the memory.

The static row buffer is reminiscent of a cache, and its use as such has been proposed
by Goodman and Chiang. An alternative system architecture, reported as RTS progress
last year and refined further recently, extends SCRAM cache usefulness by achieving
the performance characteristic of a virtual rather than physical cache. Each of these
schemes associates a register (or, equivalently, a location in a dedicated tag memory)
with each of several memory banks. The contents of each register reflects the current
row of the associated bank, allowing a sequence of accesses to the same row (within a
given bank) to be detected and the intervening RAS cycles avoided. The effect of this
approach, is equivalent to the use of a direct-mapped cache whose line size is equal to
the size of the row buffers of a single bank.

While these techniques can be usefully employed with conventional static-column
RAM parts, they suffer from two limitations: (1) the total effective cache size is dictated
by the size of the RAM static row buffers, which is typically smaller than desirable; and
(2) the direct-mapped nature of the effective cache results in serious contention
problems, lowering overall performance. These latter contention problems arise when
tl,' ,r more frequenty a&cessed locations reside in different rows within the same
memory bank. If they are accessed (say) alternately, then the time overhead associated
with a RAS cycle will burden each memory access since no two consecutive accesses to
that bank refer to the same row.

3.1. Set-associative DRAMs

The basis for our proposed memory system is a new dynamic memory device, the
set-associative dynamic RAM or SADRAM, which features a multiplicity of on-chip
static row buffers as shown in Figure 10-I.

The SADRAM chips will typically exploit technology similar to that used in
conventional static-column parts, nnd have similar timing and I/O provisions. However,

157

REAL

WhESYTM
eahciIilhv "idpnetrwbfes an I aditIa inu pin to selec

TZ& YSTL Row/Coluinn

Dynamic
Charge Array

RAS c

SeDSe t acat Row
Suffers uffer

R/W

Figure 10-1 Set Associative DRAM

each chip will have independent row buffers, and n additional input pins to select
between them. In compliance with accepted cache terminology, we refer to 2" as the set
size.

The binary data on the n aet select inputs is significant during static accesses as well
as each edge of RAS. During static accesses, the additional inputs select which of the
row buffers is to be accessed. On the rising edge of RAS, they select the row buffer to
be filled from the row (dictated by the address lines) of the dynamic charge array; on
the falling edge of RAS, they select the row buffer to be written into the addressed row

of the charge array. Thus by use of appropriate off-chip circuitry, the e static buffers
of each SADRAM may be used to hold a corresponding number of arbitrarily chosen
rows of memory.

One use of these devices involves the straightforward extension of a previous system to
n-way set associativity, as depicted in Figure 10-2. Systems restricted to caching
physical locations may be implemented somewhat more simply.

Note that in this illustrative system, we have chosen a set size of 4 and assume the use
of 256K by 4-bit devices. Each virtual memory address is simultaneously compared
with the contents of a register associated with each row of each memory bank; thus the
comparator logic grows in proportion to the product of the number of banks and the set
size. If any comparison reveals a match, the corresponding bank and row buffer are
selected and the row buffer is directly accessed. If no match occurs, a miss condition
causes access via the mapped (physical) address to the appropriate bank, cycling RAS
to rewrite the current row and to select a new one containing the accessed location.
Note that the new row can be read into any of the 4 row buffers of the selected bank;
this choice is made according to a replacement strategy whose details reflect logic not

158

SAPA MOO" SV REAL TIME SYSTEMS

Figure 10-2: Virtual Set-Associative SADRAM Memory System

shown. Standard cache replacement strategies (and their usual implementations) are
appropriate here, including least recently used or pseudo-random replacements.

We have demonstrated many elements of the above system in a prototype 68020
system which outperforms commercial equivalents having dramatically higher parts
counts. While we are not in a position to prototype actual SADRAM chips,
extrapolation of empirical performance data suggests very promising results using these
parts, as a primary cache in small systems or as a secondary cache in larger ones. We
are exploring additional techniques for collecting performance data under a variety of
practically interesting assumptions, in an effort to reinforce our argument for the
commercial assimilation of these ideas. For similar reasons, we have applied for a
patent.

Aside from its intrinsic architectural novelty, we view our proposed system as an
example of a class of technological innovation which is both important to the domestic
semiconductor industry and difficult for that industry to assimilate. Its importance
stems from the alternative it offers to the permanent abdication of the commodity chip
market to international competitors offering production advantages. It defines a new
commodity, moving the competitive focus to the architectural arena where we seem
better equipped. The difficulty of such proposals is that they dictate simultaneous
innovation at the system and the component levels, in rude defiance of the "socket
counting" marketing policy that the semiconductor industry has retrenched to.

4. SEED PROJECTS

The exploration of alternative models of computation continues as the common theme
among RTS projects. The following paragraphs sketch two new efforts along these
lines.

i - 15.

REAL TIME SYSTEMS

4.1. Machine Learning

The goal of this new research by Goddeau is to develop a memory/computational
model capable of learning to perform certain cognitive tasks by example. That is,
having been taught with a set of examples of input/output (problem/solution) pairs
from a problem domain, the system should be able to solve additional problems from
that domain. This research focuses primarily on exploring the underlying mechanisms of
learning and the architecture of learning systems.

Although this research is not directed towards human learning, the model is inspired
by observations on human abilities. One of these is the importance of memory relative
to computation. Humans are clearly able to remember and retrieve vast amounts of
information with little conscious effort. By contrast, the low-level computational
mechanisms (relative to cognition rather than vision or hearing) are very difficult to
characterize. One of the underlying principles of this research is to concentrate on
memory and retrieval mechanisms, and minimize the complexity of the required
computational machinery.

To contrast memory-based learning by example with a computation-based approached
consider the problem of predicting the horizontal travel of a projectile launched with a
given speed and angle of inclination. A computation-based approach might assume the
function d = .f(speed, angle) could be approximated by a polynomial, the coefficients of
the polynomial would be determined from the examples presented and new problems
solved by evaluating the polynomial given data. A memory-based approach might
simply remember all of the examples and use linear interpolation based on the known
examples to solve new problems. Assuming the examples are well chosen, both methods
will converge on the correct answer as the number of examples increase (assuming the
function is continuous over the region of interest).

The problem domain chosen for development work is the syntax of natural languages.
The knowledge to be acquired in this domain is the ability to translate a sentence in a
given natural language into a Meaning Representation Language expression or vice
versa. The system should be capable of learning any human language by example with
no prior knowledge of the language.

Clearly memory alone is not sufficient for learning language, since the system must be
able to interpret and produce sentences it has not encountered before. The
characterization of the computational abilities needed to perform this task is one of the
major goals of the research. The underlying principle in developing computational
mechanisms is that new sentences are interpreted based on similar, known sentences.
These mechanisms inc!;.de interpretation through "analogy" with known examples,
abstraction of examples into patterns, classification of subunits, and association of
subunits with corresponding translations. Since natural languages are often less
consistent than the examples given above, the structure of patterns learned will be more
complex, with exceptions to patterns, exceptions to exceptions, and hierarchies of

160

REAL TIME SYSTEMS

patterns. Furthermore the learning system must converge on a correct set of rules even
though some of the training examples may demonstrate spurious relationships. The
system must have the ability to forget some forms as additional data shows them to be
incorrect.

An initial version of the learning system has been built during 1987. This includes an
"associative" memory/retrieval system, abstraction and classification mechanisms, and a
control structure which uses them to provide translations. This initial system has been
tested on the problem of learning verb conjugation and on translating and generating
simple sentences, with encouraging results. Future work includes research on exception
hierarchies, multiple paradigms, recursive patterns, "forgetting" and system
convergence, as well as extensive testing on a diverse set of languages.

4.2. Modeling

New research by Sieber is aimed at developing the first phase of a system that can
"understand" some portion of the world. The rather amorphous notion of
"understanding" is based upon the ability to combine available information about the
local structure of the parts of the world to build a description of its overall structure.
This overall structural description can then be analyzed to determine the behavioral
characteristics of the system.

This ability to create a picture of the whole given an understanding of its parts will be
combined with the ability to compare two views of the same system and see the ways in
which they differ. The result will be a system that can build a model of the world and
either simplify it to a similarly behaving model with a less complex description, or
determine what aspects of the world the simpler model doesn't capture. This allows us
to build plausible theories and then verify whether they can in fact explain the behavior
of the system.

Initially this goal will be accomplished by developing a framework in which interesting
aspects of the world can be formally described by a human modeler with the help of a
computer. The second phase of the project will allow the computer to take a more
active role in manipulating (analyzing and modifying) the model to extend its
understanding.

The tangible product of the first phase will be to develop a dynamic system modeling
tool. This tool will make it relatively easy to describe and manipulate (model and
simulate/analyze) both simple systems and those that are so complex that they can only
be modeled by building upon previously developed models.

There are two reasons that this project is interesting. The first is that the resulting
tool will be a step in a direction that is useful to people who actually do modeling. The
second is that rather than being simply an updated implementation of existing modeling
tools, it will form the basis for a system that will exhibit the ability to "understand"

161

REAL TIME SYSTEMS

the way the world works and use that understanding to interpret data available from
the real world.

5. MISCELLANEOUS PROJECTS

A number of RTS projects were directed at concluding or continuing previously
reported research; following subsections briefly note several efforts in this category.

5.1. Data Base Accelerator

Continuing work by Osler and Zippel on the Smart Memory Project has focused on
completion of a Content Addressable Memory (CAM) system called the Data Base
Accelerator. The goals of the project are to produce a memory system which has
extendability, storage capacity, density, and per-bit-costs similar to RAM based memory
systems, but with significantly more computing power.

The basic element in this memory system is a 32K-digit chip called the DBA. This
chip will be fabricated at MIT's M.T.F., using an enhanced 2pum CMOS process
employing titanium silicide polysilicon gate electrodes and N-channel buried contacts.
The first step towards that goal is the fabrication of a prototype chip, of 2K-digits.
The data path of this chip has been fabricated using MOSIS's 2Am CMOS process.
Verification of this data path has occurred, and the design of the associated control
logic has been begun. Working 2K prototype chips are expected in the fall.

A circuit board has been designed, fabricated, and debugged. This circuit board has
been designed to accept up to 16 of either the 2K or the 32K DBA chips. The circuit
board plugs into a Symbolics Lisp machine. When working prototypes become
available, this board will be the medium for system testing of the DBA chips.

5.2. NuBus Gadgetry

The RTS undercurrent of NuBus-related projects has continued, including
development of bus windows [Wolfe], processor cards IZak), and sound synthesizers
[Tabor]. Of particular interest is a new project by Gartner involving the design and
implementation of an "architectural sandbox" device containing an array of software
programmable gate array chips. The device incorporates a low-level microprogrammed
engine and recently available SRAM-based Gate Arrays to arrive at a highly
reconfigurable system which operates at reasonable speeds. A large collection of these
gate arrays, totalling about 30,000 usable gates is surrounded and controlled by
standard wide-word microcode. Data may enter the array simultaneously from two fast
32 bit SRAM stores. A single 32 bit result may be fed back to the array, saved or
transmitted to a remote device through the PORT Transceiver. Various bits of state
may be dynamically set or read from the keyboard console of the Lisp Machine. This
board interfaces with the Lisp Machine as a slave peripheral through the use of a 10
Mhz Nubus.

162

REAL TIME SYSTEMS

Publications

1. Dertouzos, M. L. "Personal Computers." 1986 Edition of World Book

Encycolopaedia, Chicago, IL, 1986

2. Dertouzos, M. L. "Future Information Technology and Some Thoughts on

T.I.'s Role." Texas Instruments, Dallas, TX, September 1986.

Talks

1. Dertouzos, M. L. "Multiple Cooperating Computers." Data General

Corporation, June 1986.

2. Dertouzos, M. L. "Core IT Issues." MIT Sloan School of Management,
Colloquium: Management in the 1990s, Cambridge, MA, July 1986.

3. Dertouzos, M. L. "The Frontiers of Information Technology by 2000 A.D."
Harvard University 350th Anniversary Celebration, Cambridge, MA,
September 1986.

4. Dertouzos, M. L. "Long Term Trends In Information Technology." Internal
Revenue Service, Annual Meeting, Washington, DC, October 1986.

5. Dertouzos, M. L. "Technology Overview." Fondazione Luigi Einaudi,
Seminar on Advanced Information Technology: The Europe-Japan-USA
confrontation, Milano, Italy, October 1986.

6. Dertouzos, M. L. "Dominant Technological Trends +2000 Versus 1986--
What Will Make the Difference." The Society for Information Management,

Annual Conference, September 28-October 2, 1986.

7. Ward, S. A. "The L Architecture." Texas Instruments, Austin, TX, July

1986.

8. Ward, S. A. "The L Architecture." Texas Instruments, Dallas, TX, July

1986.

9. Ward, S. A. "The L Architecture." IBM/MIT Technical Review, April 1987.

10. Ward, S. A. "A View From The Outside." Texas Instruments, Dallas, TX,

September, 1986.

11. Ward, S. A. "Set Associative Dynamic Random Access Memories." Texas

Instruments, Dallas, TX, June 1987.

163

REAL TIME SYSTEMS

12. Ward, S. A. "Systems, Semiconductors, Strategies." Intel-Asilomar III

Conference, Rippling River, Oregon, June 1987.

13. Ward, S. A. and W. K. Stuart. "A Solution to a Special Case of the

Synchronization Problem." IEEE Transactions on Computers, to appear.

Theses Completed

1. Anderson, R. "High Performance Raster Graphics Architectures." S.B. and

S.M. thesis, MIT Department of Electrical Engineering and Computer

Science, Cambridge, MA, May 1987.

2. Baldwin, R. "Rule Based Analysis of Computer Security, Ph.D. dissertation,

MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1987.

3. Forsythe, C. "A Simplified High-Power Graphics Architecture." S.B. thesis,

MIT Department of Electrical Engineering and Computer Science.
Cambridge, MA, May 1987.

4. Gartner, K. "DREAM: A Dynamical/Reconfigurable Electrically Alterable

Module." S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA. May 1987.

5. Haleblian, J. "G: An Object-Oriented Graphics Editor for the IBM-PC."

S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1987.

6. Hunt, J. "Design and Construction of a Board to Facilitate Debugging of

3081/E Emulators." S.B. thesis, MIT Department of Electrical Engineering

and Computer Science, Cambridge. MA. May 1987.

7. Ku, S.L. "A High Level Microcode Development System." S.M. thesis, MIT

Department of Electrical Engineering and Computer Science, Cambridge,

MA, May 1987.

8. Matchett, M. "The L--Project Debugger--Inspector." S.B. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge.

MA, May 1987.

9. Nguyen, J. "Mused: A Music Editor." S.B. thesis, MIT Department of

Electrical Engineering and Computer Science, Cambridge. MA, May 1987.

10. Spacek, P. "A Network-Based Real-Time Interactive Simulation." S.M.

thesis, MIT Department of Electrical Engineering and Computer Science,

Cambridge, MA, May 1987.

164

REAL TIME SYSTEMS

11. Wu, C. "Persistent Object Storage for Object-Oriented Database Systems."

S.B. & S.M. thesis, MIT Department of Electrical Engineering and Computer

Science, Cambridge, MA, May 1087.

12. Zak, R. "Column Addressable Dynamic Memory: A Novel Design to Increase

Microprocessor Performance." S.M. thesis, MIT Department of Electrical

Engineering and Computer Science, Cambridge, MA, December 1986.

Theses in Progress

1. Ayers, A. "Architectural Simulation for L." S.M. thesis, MIT Department of

Electrical Engineering and Computer Science, Cambridge, IvLA, expected

August 1087.

2. Chang, S. "A Structure Compiler for L." S.B. thesis, MIT Department of

Electrical Engineering and Computer Science, Cambridge, MA, expected
May 1988.

3. Goddeau, D. "A Memory Based Model of Natural Language Acquisition

Interpretation, and Generation." Ph.D. dissertation, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA, expected

September 1988.

4. Kartzman, B. "An 8086 Simulator in Lisp -- Can It Perform?" S.B. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected September 1987.

5. Osler, P. "A Prototype Content Addressable Memory System." S.M. thesis,
MIT Department of Electrical Engineering and Computer Science,

Cambridge, MA, expected July 1987.

6. Seda, S. "Compacting VLSI Layouts Containing Octagonal Geometry."
S.M. thesis, MIT Department of Electrical Engineering and Computer

Science, Cambridge, MA, expected August 1987.

7. Sieber, J. "Gnostic: A System That Can Understand How The World
Works." Ph.D. dissertation, MIT Department of Electrical Engineering and

Computer Science, Cambridge, MA, expected September 1987.

8. Wolfe, J. "Explorer Nubus to PC/AT Input/Output Bus Converter Card."

S.B. and S.M. thesis, MIT Department of Electrical Engineering and

Computer Science, Cambridge, MA, expected October 1987.

9. Zhao, F. "An 0(n) Algorithm For Three-Dimensional N-Body Simulations."

Ph.D. dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected September 1087.

165

SYSTEMATIC PROGRAM
DEVELOPMENT

Academic Staff

J. V. Guttag, Group Leader

Research Staff

S. J. Garland

Graduate Students

D. S. Hinman K. A. Wienhold

D. N. Jackson K. A. Yelick

M. T. Vandevoorde J. L. Zachary

Undergraduate Students

J. Lin B. Teitelbaum

Support Staff

A. L. Rubin

SYSTEMATIC PROGRAM
DEVELOPMENT

1. INTRODUCTION

The activities of the Systematic Program Development Group during 1086-87 have
been rather diverse. Most of these activities were part of ongoing work on formal
specifications and inference systems. Other activities concerned logic programming and
parallel compilation.

2. THE LARCH SPECIFICATION SYSTEM

The main thrust of our research continues to be the development of the Larch
Specification System as a vehicle for the specification of software. The Larch Project is
a collaborative effort between MIT's Laboratory for Computer Science and DEC's
Systems Research Center. The project is developing both a family of specification
languages [81 [9] and a set of software tools to support their use. The support tools
include language-sensitive editors and semantic checkers based on a powerful theorem
prover. Work this year has included language design, tool building, and
experimentation with constructing and using specifications.

Larch is a two-tiered approach to formal specifications. One tier is written in a
language-independent shared language, the other in a language-dependent interface
language. Shared language specifications provide a vocabulary of terms to interface
language specifications, which describe the externally visible effects of program
components and deal with features (such as parameter mechanisms, exception handling,
and concurrency) specific to the programming languages in which systems are
implemented.

2.1. Specification of Concurrency

In the last year we have begun studying the specification of concurrent programs. In
part, this activity is an outgrowth of work done by John Guttag while he was on leave
at DEC's System Research Center. Together with Jim Horning, he developed a
formalism and a language for specifying interfaces to concurrent systems. Because
concurrency is implemented in different ways on different systems, they added a specific
Larch/Concurrent interface language to the Larch family of specification languages.
Using this language, they worked with others at DEC to write formal specifications of
parts of programs in which concurrency plays a major role.

Experience with these specifications has been very encouraging. A Larch/Concurrent
specification of the Topaz synchronization primitives [2 became the reference of choice.
both for programmers using those primitives and for programmers responsible for their
implementation. A prior prose specification [161 [17] gave an indication of how the
primitives were to be used, but left too many questions unanswered about the
guaranteed behavior of the interface. A second, semiformal operational specification
was more precise and accurate; but it was too subtle, and important information was
rather widely distributed. By contrast, both users and implementors seem able to read
the Larch/Concurrent specification and to understand its implications.

168

SYSTEMATIC PROGRAM
DEVELOPMENT

Another encouraging aspect of our experience is the role played by our specification in

insulating clients from the implementation of the synchronization primitives. Not only

does the specification abstract from the details of the implementation to provide a

simpler model, but it has enabled the underlying implementation to be reworked several

times.

2.2. Specification of Text Primitives

Modula-2+ is an extended version of Modula-2 developed at DEC SRC and used for

all systems programming there. The compiler provides a number of interfaces that
supply frequently used routines. One of these, the text interface, contains routines for
manipulating immutable strings. Previously, these routines had been specified
informally by short natural language descriptions accompanying the source code.
Daniel Jackson wrote formal specifications [1II of these routines using the Larch Shared
Language and the Larch/Modula-2+ interface language. He did not specify those
routines which, for reasons of efficiency, violate the text data abstraction. The
completed formal specifications, with an explanatory introduction and accompanying

notes, are now being used by programmers instead of the informal specifications.

Reactions have been enthusiastic, and programmers have been happy to help maintain
the formal specification. Larch is now more widely used at SRC, and we anticipate that
eventually the informal descriptions of all the interfaces will be replaced by formal
specifications.

2.3. Specification Tools

We have continued the development of a syntax/semantics-directed specification
editor for the Larch Shared Language. Ben Teitelbaum enhanced the editor to take

advantage of the features of a bit-mapped display provided by the X Window System.
Kay Wienhold, by subjecting the editor to a thorough workout, generated a list of ways
in which the editor could provide better support for a specification effort.

2.4. Larch Interface Languages

In his Master's thesis, David Hinman designed a Larch interface language for
Modula-2 and provided a guide for the development of further interface languages.
Prior to Hinman's work, the only completely defined interface language was for CLU

[151 [201; a partially-defined interface language also existed for Pascal. The existence of
a Modula-2 interface language makes the Larch methodology fully accessible to a larger
number of programmers.

The Modula-2 interface language demonstrates that interface languages can be
designed for programming languages quite different from CLU. It shows how to
support programming language features such as multiple parameter passing mechanisms
and explicit heap allocation. Furthermore, its definition shows how to formalize the
semantics of interface languages in general.

169

SYSTEMATIC PROGRAM
DEVELOPMENT

3. INFERENCE SYSTEMS

Our interest in inference systems stems from a desire to provide mechanical assistance
for specifiers in detecting errors--assistance analogous to that provided for programmers
by compilers [7]. While many errors in programming are easily detected by running a
program (that is, by testing), the Larch style of specification emphasizes brevity and
clarity at the expense of executability. To compensate for our inability to execute
specifications, Larch permits us to make significant assertions about logical properties of
specifications; these properties are related to consistency, completeness, and
independence.

Our experience in hand checked specifications has convinced us that such assertions
are useful in establishing the validity of a specification. Unfortunately, they cannot be
checked completely by machine because they are all undecidable in the general case.
But we are making progress toward designing useful approximations to the desired
checks, and toward building mechanical inference systems that will help us carry out
the checkc

3.1. Reve

Much of Larch is based on equational logic because of the promise of an approach to
theorem proving based on term rewriting. In conjunction with our work on Larch, we
have developed the Reve Term Rewriting Laboratory [51, which is in use in
approximately thirty university and industrial laboratories in the United States and
Western Europe. This program includes a robust implementation of the Knuth-Bendix
[12] completion procedure, partial support for inductionless induction using the Huet-
Hullot method [101, and a laboratory environment for rewriting and unifying terms; it
can handle associative-commutative operators (using the methods of Peterson and
Stickel [19]) and several orderings (rdos [14], dsmpos, and polynomial interpretations) to
prove the termination of rewriting systems.

We are about to issue a final release, Reve 2.5, of the Term Rewriting Laboratory.
This release differs from the previous one in the following ways.

* Reve 2.5 supports proofs by traditional induction in addition to proofs by
inductionless induction. We have had some success (see below) in showing
that this mechanism is both more powerful and easier to work with than
inductionless induction.

" Reve 2.5 provides an automated test [13] that constructors for proofs by
inductionless induction satisfy the required principle of definition (i.e., are
sufficiently complete).

" The polynomial interpretation has been extended to use sequences of
polynomials, rather than a single polynomial, to interpret an operator [1].

170

SYSTEMATIC PROGRAM
DEVELOPMENT

As a result, it is now possible to use a polynomial interpretation to prove the
termination of a rewriting system for the natural numbers under addition
and multiplication.

" The user interface in Reve 2.5 is more flexible and consistent than before.

" The library of examples that accompanies Reve has been expanded and
annotated.

" A half dozen subtle, but significant errors in the previous release have been
fixed.

Our evaluation of Reve as a tool for analyzing specifications has convinced us to bring
the development of Reve to a close and to begin development of a new inference system,
described below, in which the Knuth-Bendix completion procedure plays a less central
role.

3.2. Induction

The inductive theory of a set of equations (i.e., the equations true in its initial model)
is generally larger than its equational theory (i.e., the equations true in any model); it is
also larger than the set of theorems provable using any particular method of induction.
Our experience with inductionless induction in Reve gave us cause for concern that this
method of induction, though of considerable theoretical interest, presented far too many
practical difficulties. Hence we implemented facilities for constructing proofs by
traditional induction in Reve, and we used these facilities to contrast the two methods
[61.

Our experiments lead us to conclude that term-rewriting systems are well-suited to
constructing traditional inductive proofs. For the kinds of examples we are most
interested in, traditional induction seems superior to inductionless induction. While the
set of provable theorems is not necessarily larger, the proofs are often--though not
always--easier to find.

Proofs by traditional induction have a simpler theoretical basis--one which is more
familiar to nonspecialists. It is easier to control such proofs, to see when and why they
fail, and to supply the lemmas necessary to make them succeed. Proofs by inductionless
induction, though intended to reduce the amount of interaction required from the user,
actually require more interaction (of a less obvious sort) in many applications.

Proofs by traditional induction impose no special requirements on a set of equations.
Inductionless induction requires that a set of equations to be Hilbert-Post complete, a
property which is difficult to show and which makes the method inapplicable when we
wish to reason about incompletely specified systems. Inductionless induction requires

that a set of equations be converted into an equivalent, terminating, confluent set of

171

SYSTEMATIC PROGRAM
DEVELOPMENT

rewrite rules. Traditional induction can often succeed when a set of equations is
converted into a set of rewrite rules that lacks one or more of these properties.

These experiments persuade us that the interesting theoretical issues raised by
inductionless induction have unjustly distracted attention from a more traditional
approach to induction. We intend to pursue this more natural approach in our future
work.

3.3. The Larch Prover

This spring, we started work on a new theorem proving system, called The Larch
Prover, or lp for short. This system is designed to support our work on analyzing
specifications of software. It builds on our earlier work on Reve, but departs from Reve
in some radical and interesting ways. Whereas Reve was designed to analyze and
construct term rewriting systems for proving theorems in equational logic, Ip is designed
to use these systems in constructing proofs for formulas in quantifier-free first-order
logic. This change of focus allows us to prove more theorems; it even seems to reduce
the time required to prove equational theorems.

In specific terms, the current version of the Larch Prover differs from Reve 2.5 in the
following ways.

" Special mechanisms exist in lp for reasoning about equality, logical
connectives, and conditionals. Some of these mechanisms are simply built-in
sets of rewrite rules. Others (such as a simplification rule for conditionals)
are implemented as metarules. And still others are implemented as
transformations on a rewriting system which enlarge its equational theory
while respecting the intended interpretation of the logical primitives.

" Proofs in Ip can be carried out by case analysis in addition to equational
reasoning, traditional induction, and inductionless induction. Case analysis
enables us to apply rewriting techniques in the proof of quantifier-free first-
order formulas.

" The term-rewriting capabilities of Ip have been enhanced to handle operators
that are commutative, but not associative.

" The user interface of Ip has been streamlined and enhanced to facilitate
proof construction, to give users greater control over term rewriting systems,
and to facilitate connection to our specification environment.

" The performance of Ip has been improved considerably by analyzing its
behavior on several large proofs.

Next year, we plan to continue development of Ip and to experiment further with its

172

SYSTEMATIC PROGRAM
DEVELOPMENT

use. A major goal is to make Ip easy to use by nonspecialists. A related theoretical
goal is to use more fully the notion of "critical pairs," which arises in the Knuth-Bendix
completion procedure for term rewriting systems, to enhance the power of, and to
provide a cleaner logical foundation for, inference systems based on term rewriting.
Fulfilling these goals should cause Ip to outperform, be easier to use, and be
conceptually simpler than the Boyer-Moore theorem prover (31 [4], which uses an
intricate set of heuristics to control the application of term rewriting to proofs in
quantifier-free first-order logic.

3.4. Verification

As an outgrowth of our work on specifying concurrent systems, we became involved in
verifying them. In particular we have started to use the Larch Prover to construct
mechanical proofs of the correctness of concurrent algorithms. We successfully
completed a proof of the correctness of a pipeline architecture, and we have started
verifying the correctness of an algorithm developed by Nancy Lynch and Leslie
Lamport.

Others have used Reve to verify properties of mathematical systems. For example,
Ursula Martin at the University of Manchester has used Reve to investigate
axiomatizations for algebraic systems 118].

4. EQUATIONAL LOGIC PROGRAMMING

In his Ph.D. thesis, Joe Zachary investigated ways of using procedural and data
abstraction in logic programming. His goal was to carry over techniques for
programming in the large that have been developed for use with imperative languages.
He presented Denali, a language based upon pure Prolog and equational logic, as a
vehicle for illustrating our ideas.

In Denali, predicate abstraction is analogous to procedural abstraction in conventional
programming languages. The interface of a predicate abstraction must fix the domain
of objects over which the predicate is defined. Because the objects within a logic
program can contain variables, completely describing the domain of a predicate requires
a two-dimensional type system. Consequently, a Denali type is composed of a
conventional sort component and a novel multi-valued mode component. A multi-
valued mode specifies the degree to which an object must be instantiated. The modes
are an improvement upon the bi-valued modes used by some logic languages.

The objects of a program written in an equational logic language are related by an
equational theory. A program in such a language typically consists of a set of Horn
clauses and a set of equations that present the theory. In a resolution interpreter for
such a language, an equational unification procedure that respects this theory must be
substituted for the classical unification algorithm. Unfortunately, obtaining an

173

SYSTEMATIC PROGRAM
DEVELOPMENT

equational unification procedure for an arbitrary equational theory is an undecidable
problem. Moreover, unification algorithms are known for only a handful of simple
theories. Although unification procedures can be synthesized dynamically for a
restricted class of theories, the resulting procedures are extremely inefficient and are
almost always non-terminating.

By contrast, the equational theory that underlies a Denali program is not explicitly
presented. Instead, the programmer must implement, for each sort, a unification
predicate for the objects of that sort. The language implementation, in turn, combines
these individual predicates into an overall unification procedure. The most critical
aspect of the design of the data abstraction mechanism in Denali, then, is facilitating
the construction of unification predicates by the programmer. In particular, the design
takes care to ensure that Denali programs can be constructed by non-specialists in
equational logic.

The implementation of unification is facilitated in two ways. First, Denali supports
the layering of data abstractions. Consequently, existing unification algorithms can be
built into the language and exploited by user-defined implementations. Second, the
mode mechanism can be used by the programmer to impose restrictions upon both the
domain and range of a unification predicate. This simplifies the problem of
implementing unification, at the cost of some expressive power.

5. PARALLEL COMPILATION

In his SM thesis, Mark Vandevoorde described the extension of a C compiler to run in
parallel on a tightly-coupled multiprocessor. The parallel compiler (PTCC) consists of a
two-stage pipeline. The first stage performs lexical analysis for the second stage, which
does the parsing and assembly code generation. Lexical analysis is extended to include
matching paired delimiters so that the parser can quickly advance past units of the
source program. The second stage processes units of the source program as fine as a
single statement in parallel.

To avoid unproductive parallelism, a new scheduling abstraction, called WorkCrew, is
used In PTCC. In the WorkCrew model of computation, a set of workers cooperate to
perform tasks specified by the client. It differs from other worker/tasklist models in
that clients specify how tasks may be divided. Such tasks are only divided if and when
a processor becomes idle. Thus, WorkCrews favor serial execution when parallel
execution is unproductive. They also favor coarser grains of parallelism over finer ones.

Several experiments were performed to measure the performance of PTCC. With five
processors, PTCC performed 2.5 to 3.3 times better than a similar sequential compiler
on source files approximately 1000 lines long. To measure the benefits of different
levels of parallelism, multiple versions of PTCC were created. Each exploits additional
opportunities for parallelism. Procedure-level parallelism is usually sufficient to keep a
five-processor Firefly fully utilized. Statement-level parallelism, however, sometimes

174

SYSTEMATIC PROGRAM
DEVELOPMENT

significantly reduces compilation time. Furthermore, it was never found to increase
compilation time.

The primary factor limiting PTCC's performance is processor idle time during the
serial processing of declarations. Contention for the shared memory slows the
processors by roughly 10%. Overhead to allow (but not exploit) parallelism makes
PTCC run approximately 7% slower than its serial counterpart.

175

SYSTEMATIC PROGRAM
DEVELOPMENT

References

1. Ben Cherifa, A. and P. Lescanne. "Termination of Rewriting Systems and
Polynomial Interpretations." Centre Recherche en Informatique de Nancy,
France, April 1986.

2. Birrell, A. D., J. Guttag, J. Horning and R. Levin. "Synchronization
Primitives for a Multiprocessor: A Formal Specification." Proceedings of
the Symposium on Operating Systems Principles, Austin, TX, to appear
November 1987.

3. Boyer, R. S. and J.S. Moore. A Computational Logic. New York, Academic
Press, 1979.

4. Boyer, R. S. and J.S. Moore. "Integrating Decision Procedures into
Heuristics Theorem Provers: A Case Study with Linear Arithmetic."
Machine Intelligence. Oxford University Press, to appear.

5. Forgaard, R. and J.V. Guttag. "REVE: A Term Rewriting System
Generator hith Failure-Resistant Knuth-Bendix." Proceedings of an NSF
Workshop on the Rewrite Rule Laboratory, General Electric Corporate
Research and Development Report No. 84GEN008, Schenectady, NY, April
1984, 5-31.

6. Garland, S. J. and J. V. Guttag. "Why Induct Inductionlessly When You
Could Induct Inductively?" MIT Laboratory for Computer Science,
Cambridge, MA, 1987.

7. Garland, S.J. and J. V. Guttag. "Automated Analysis of Formal
Specifications." MIT Laboratory for Computer Science, Cambridge, MA,
1987.

8. Guttag, J. V. and J. J. Horning. "Report on the Larch Shared Language."
and "A Larch Shared Language Handbook." Science of Computer
Programming, 6, 2, (March 1986), 103-157.

9. Guttag, J. V., J.J. Horning and J. M. Wing "An Overview of the Larch
Family of Specification Languages." IEEE Software, (September 1985),
24-35.

10. Huet, G. and J.M. Hullot. "Proofs by Induction in Equational Theories with
Constructors." Proceedings of the 21st Symposium on the Foundations of
Computer Science, Los Angeles, CA, October 1980, 96-107.

176

SYSTEMATIC PROGRAM
DEVELOPMENT

11. Jackson, D. N. and J.J. Horning. "The Modula-2+ Text Interface." Internal
Memorandum, Digital Equipment Corporation, Systems Research Center,
Palo Alto, CA, October 1986.

12. Knuth, D. E. and P. Bendix. "Simple Word Problems in Universal
Algebras." in Computational Problems in Abstract Algebra. J. Leech (ed.),
Pergamon Press, Oxford, 1960, 263-297.

13. Lazrek, A., P. Lescanne and J.-J. Thiel. "Proving Inductive Equalities:
Algorithms and Implementation." Repor. 86-R-087, Centre Recherche en
Informatique de Nancy, France, September 1086.

14. Lescanne, P. "Uniform Termination of Term Rewriting Systems: Recursive

Decomposition Ordering with Status." Proceedings of the 6th Colloquium
on Trees in Algebra and Programming, Bourdeaux, France, Cambridge
University Press, March 1984. Also appears as "How to Prove Termination?

An Approach to the Implementation of a New Recursive Decomposition
Ordering." Proceedings of an NSF Workshop on the Rewrite Rule
Laboratory, General Electric Corporate Research and Development Report
No. 84GEN008, Schenectady, NY, April 1984, 109-121.

15. Liskov, B. H. and J. V. Guttag. Abstraction and Specification in Program
Development. Cambridge, MA, MIT Press, 1986.

16. Rovner, P., R. Levin and J. Wick. "On Extending Modula-2 for Building
Large, Integrated Systems." Report 3, Digital Equipment Corporation,
Systems Research Center, Palo Alto, CA, 1985.

17. Rovner, P. "Extending Modula-2 to Build Large, Integrated Systems." IEEE
Software, 3, 6, (November 1986), 46-57.

18. Martin, U. "Doing Algebra with REVE." Technical Report UMCS-86-10-4,
Department of Computer Science, University of Manchester, June 1986.

19. Stickel, M. E. "A Unification Algorithm for Associative-Commutative

Theories." Journal of the ACA, 28, 3, (July 1981), 423-434.

20. Wing, J. M. "A Two-Tiered Approach to Specifying Programs." Ph.D.
dissertation MIT/LCS/TR-299, MIT Laboratory for Computer Science,
Cambridge, MA, May 1983.

177

SYSTEMATIC PROGRAM
DEVELOPMENT

Publications

1. Birrell, A. D., J.V. Guttag, J.J. Horning and R. Levin. "Synchronization

Primitives for a Multiprocessor: A Formal Specification." Proceedings of

the Symposium on Operating Systems Principles, Austin, TX, to appear

November 1987.

2. Garland, S. J. and J. V. Guttag. "Why Induct Inductionlessly When You

Could Induct Inductively?" MIT Laboratory for Comiphter Science,

Cambridge, MA, 1987.

3. Garland, S.J. and J. V. Guttag. "Automated Analysis of Formal

Specifications." MIT Laboratory for Computer Science, Cambridge, MA,

1987.

4. Jackson, D. N. and J.J. Horning "The Modula-2+ Text Interface." Internal

Memorandum, Digital Equipment Corporation, Systens Research Center,

Palo Alto, CA, October 1986.

5. Yelick, K. A. "Unification in Combinations of Collapse-Free Regular

Theories." Journal Symbolic Computation, 3, (1987), 153-181.

6. Zachary, J. L. "Multi-valued Modes for Logic Programming Languages."

MIT Laboratory for Computer Science, Cambridge, MA, 1987.

Theses Completed

1. Hinman, D. S. "On the Design of Larch Interface Languages." S. N. thesis,

MIT Department of Electrical Engineering and Computer Science,

Cambridge, MA, January 1987.

2. Vandevoorde, M. T. "Parallel Compilation on a Tightly-Coupled

Multiprocessor." S. M. thesis, MIT Department of Electrical Engineering and

Computer Science, Cambridge, MA, June 1987.

3. Wienhold, K. A. "Hybrid Task Allocation for a Multi-Processor System."

S. M. thesis, MIT Department of Electrical Engineering and Computer

Science, Cambridge, MA, May 1987.

Thesis in Progress

1. Zachary, J. L. "Integrating Logic Programming and Data Abstraction."

Ph.D. dissertation, MIT Department of Electrical Engineering and

Computer Science, Cambridge, MA, expected July 1987.

178

SYSTEMATIC PROGRAkM
DEVELOPMENT

Talks

1. Garland, S. J. "Reasoning about Sets of Equations with the Reve Term
Rewriting Program." MIT Laboratory for Computer Science, Cambridge,
MA, February 1987.

2. Garland, S. J. "Term Rewriting, Induction, and Reve." MIT Laboratory for
Computer Science. Cambridge, MA, April 1987.

3. Guttag, J. V. "The Larch Approach to Specification." York University
Distinguished Lecture Series, March 1987.

4. Guttag, J. V. "Using Specifications to Achieve Modularity." University of
Texas Year of Programming, April 1987.

5. Guttag, J. V. "Modularity in the Larph Shared Language." University of
Texas Year of Programming, April 1987.

6. Guttag, J. V. "Concurrent Specifications in Larch.' University of Texas
Year of Programming, Aprii 1987.

7. Zachary, J. L. "Abstraction Mechanisms for Equational Logic Programming
Languages."

MIT, March 1987;

Dartmouth College, March 1987;
University of Washington. March 1987:
Carnegie-Mellon University, March 1987:
University of I tah, April 1987.

171)

THEORY OF COMPUTATION

Academic Staff

B. Awerbuch P. Elias S. Goldwasser L. Heath
F.T. Leighton C. Leiserson N. Lynch A. Meyer
S. Micali R. Rivest. Leader D. Shmoys M. Sipser

Visitors and Post-Does

Paul Beame H. Bodlaender Ra~i Bopanna B. Chor
Johan Hastad 0. Goldreich A. Sherman Kurt Sieber
B. Trakhtenbrot M. Wand

Graduate Students

WV. Aiello R. Ashcroft M. Bellare B. Berger
B. Bloom V. Breazii-Tannen Tr. Corinen C. Crepeau
A. Dhagat P. Feldman L. Fortitow J. Fried
A. Goldberg S. Goldman R. Greenberg M. Grigni
R. Hirsehfeld A. Ishii B. Kallski J. KIllan
S. Kipnis P. Klein R. Koch B. Nlaggs
F.M. Maley S. Malitz S. Mlentzer N1. Newman
X. Pan J. Park C. Phillips S. Plotkin
S. Rao MI. Reinhold J. Riecke R. Schapire
E. Schwabe D. Short J. Siskiiid H. Sloan
J. Wein S.-NI. W11

Undergraduate Students

T. Heigham T. Leung B. Rogoff J. Tang P'. Wang

THEORY OF COMPUTATION

Support Staff

A. Benford S. Bernus B. Hubbard L. Melcher

182

THEORY OF COMPUTATION

1. INTRODUCTION

The principal research areas investigated by members of the Theory of

Computation Group are:

" algorithms: combinatorial, geometric, graph-theoretic, number theoretic

" cryptology,

" computational complexity,

" distributed computation: algorithms and semantics,

" machine learning,

" randomness in computation,

" semantics and logic of programs,

" VLSI design theory.

Group members were responsible for over one hundred publications and several dozen
public lectures around the world during the past year. The individual reports by
faculty and students in the next sections, and the annotated reference and lecture lists
offer further descriptions of the year's activities.

The following major research contributions merit highlighting:

" Awerbuch's "compiler" which produces distributed network protocols for
unreliable networks from protocols which work only on reliable networks [7].

" Breazu-Tannen and Meyer's conservative extension results for polymorphic

types 135)136).

" Leighton's results on stable "backoff" protocols for N-station ethernets [801.

* Rivest's general purpose procedure for inferring finite state environments

[1241.

Group members received the following awards:

" Goldwasser and Shmoys received Presidential Young Investigator awards

from the NSF.

" Hastad won the ACM Ph.D. thesis award.

183

THEORY OF COMPUTATION

" Cormen and Leiserson's paper [46] on their hyperconcentrator switch (patent
pending) won the Best Presentation Award at the 1986 International
Conference on Parallel Processing.

" Maggs and Leiserson's paper on the distributed random-access machine
(DRAM) for parallel computing, which abstracts essential properties of fat-
trees won the Most Original Paper Award at the 1986 International
Conference on Parallel Processing (cf. [103]).

" Meyer was elected to membership in the American Academy of Arts and
Sciences, May '87.

2. FACULTY REPORTS

Baruch Awerbuch

Awerbuch has been working on designing efficient and reliable distributed protocols.
His main emphasis was on studying issues related to complexity of protocols in
distributed dynamic systems.

Together with S. Even (Duke U.), he investigated reliable broadcast protocols in
unreliable networks. He showed [101 that reliable broadcast is possible in networks
under very weak connectivity requirements: such networks may never be connected as a
whole.

Together with Micali, he discovered [13] a new protocol for detecting and resolving
deadlocks, which can deal with the most general form of deadlocks. Its requirements in
communication, time, and memory are optimal.

Another problem is making ali arbitrary protocol adaptive to dynamic input and
network topology, without using unbounded counters or time stamps. The most general
solution to that problem is a "compiler- which receives as input an arbitrary protocol
and produces as output an adaptive version of the former protocol. Such a compiler is
called an Adaptor. Designing efficient adaptors is one of the oldest and the most
fundamental problems in communication nietworking. It has been open since 1976.
Moreover, there was no meaningful definition of what constitutes a "truly" bounded-
complexity adaptor. Awerbuch defined a "truly-bounded" adaptor as one whose
overhead is bounded by the overhead of the original non-adaptive protocol, which
constitutes the true inptit to the problem. That is Awerbuch succeeded in developing
si'lt an adaptor. It also has practical valie since it is very simple and easy to program:
its on one page.

In [8],[2], Awerbuch raised a rnianicpital (Iiestion, neglected so far in the literature:
how to make a ciist ri buted algorith i robust against input errors and wrong
probabilistic assumptions about tile (listribition of the inputs or link delays, lie

18-1

THEORY OF COMPUTATION

introduced a notion of complexity-preserving protocol controller: this is an automatic

procedure that controls worst-case execution of any distributed algorithm. He suggested

a controller with poly-logarithmic overhead, and then generalized it to solve the more

general problem of dynamic resource management.

Together with Plotkin, Awerbuch worked on the problem of Leader Election in a

distributed asynchronous faulty network. They have developed a technique to

approximate up to a constant factor the size of a dynamically growing asynchronous

distributed network with amortized message complexity of O(log21V[) per node, where

| i is the final size of the network. They showed how to apply this technique to

construct an efficient distributed algorithm for Leader Election in a faulty network [141.
The algorithm has a message complexity O(E + IV, log

2
111), which is an improvement

of O(log
2

lV) over the previously known algorithms.

Another area of Awerbuch's research was distributed graph algorithms.

Together with R. Gallager (MIT), Awerbuch found a new distributed algorithm to

find Breadth First Search Trees in an asynchronous communication network [14]. The

communication complexity of this algorithm is O(E + V
1 6

) messages, which is optimal

for dense networks.

In [9], Awerbuch discovered optimal algorithms for a number of problems, including
Minimum Spanning Tree, Leader Election, Counting, and other problems in distributed

computing. Each one of those algorithms has 1(E + V log V) communication

complexity and O(V) time complexity. Previous algorithms required e(1log*V) time.

Together with Goldreich and Vainish, [121, Awerbuch showed that at least 2(E)

messages are needed to construct a spanning tree in a network, even if the identity of
every neighbor is known.

Awerbuch also worked on the problem of breaking symmetry in a network. He
showed that it is impossible to find a maximal independent set on a ring or on a line in
less than f2(log* n) time; this lower bound is tight. Also, working with Beame. he has

extended this result to several infinite families of graphs for which known symmetry-

breaking algorithms are optimal.

Another area of Awerbuch's research was protocols for shared memory registers.
Together with P. Vitanyi, [129] Awerbuch investigated the problem of constructing

multi-user atomic shared registers. The problem addressed is rooted in hardware design
of concurrent registers access by asynchronous components and also in asynchronous

interprocess communication. fie succeeded in constructing multi-valued registers which

can be read and written asynchronously by many processors in a consistent fashion.

Awerbuch plans to continue research on practical distributed algorithms and
communication protocols.

185

THEORY OF COMPUTATION

Peter Elias

The research on two universal coding schemes mentioned in the last annual progress
report was published in January 1987 [54]. More recent work was suggested by a

question from Leonid Levin about the capacity of a binary channel under jamming, and

is being prepared for publication.

In a binary jamming channel (BJC) with parameter p a codebook assigns M= 2 NR

messages each to an N-bit codeword. The transmitter selects one for transmission. A
jammer changes at most Np of the N bits. The jammer knows the codebook, the
transmitter's selection and the (fixed) rule by which the receiver assigns messages to
each of the possible N-bit received noisy sequences. If the receiver assigns a single
message to each sequence, then arbitrarily reliable bits can be received over the channel
at a positive rate R for all sufficiently large N, despite the jammer, only if p<1/4. The
largest such R as a function of p -- the capacity of the BJC -- is not known precisely,
but is bounded above and below by functions which are both strictly positive for

OLp<1/4, and both vanish for 1/4<p<1/
2

: the jammer can guarantee incorrect
decoding of almost all messages for any positive R when p> 1/4.

The new results apply list decoding, useful in analyzing noisy channels and feedback
[52][53][130][581, to the BJC. In list-of-L decoding the transmitter selects a message
from a set of size MI L2

N R
and sends the corresponding codeword. The jammer still

changes up to Np bits. The receiver now maps the received sequence into a list of L
messages: there is a decoding error if the transmitted message is not on that list. If
decoding is successful, Iog(M/L)=NR bits have been transmitted. One result which
follows quite simply from earlier work [521[131] but may be new is that the capacity of
the BJC under list decoding is Cl(p)=l-H(p), where H(p) is the binary entropy function
and C,(p)>O for p<l/2. For every R less than C,(p) there is an L so large that for all

sufficiently large N codes of length N and rate R exist for which the transmitted
message will be on the receiver's list of L whenever the jammer has changed no more
than Np bits. That result is not constructive. Another result is the construction of a
family of linear codes which allow reliable communication at any rate R<C,(p) using a

list size L(p,R), where O<C2 (p)<C,(p) for all p<1/2.

Shari Goldwasser

On leave Spring '87.

Lenwood S. Heath

Heath has been working on problems related to fault-tolerance in processor networks.
In particular, he has made progress on two different aspects of Rosenberg's DIOGENES
design methodology [126]. First, Heath developed algorithms and NP-completeness
results concerning the implementation of networks in linear arrangements [83]. Second.
he and Istrail disproved a conjecture concerning genus g graphs by developing an
efficient algorithm for embedding the class of genus g graphs in a book having a
bounded number of pages [83].

186

THEORY OF COMPUTATION

Heath also investigated problems of mapping one network structure into another,
which can be seen as mapping an algorithm into a parallel processor network. He and
Rosenberg have obtained an efficient algorithm for mapping the FFT algorithm into the
Hypercube network with optimal dilation and expansion [82].

Heath will continue to work on fault-tolerance and network mapping problems.

Tom Leighton

Most of Leighton's research time during the past year was devoted to problems
relating to the design and analysis of parallel algorithms and architectures. In
particular, he spent a substantial amount of time studying the computational properties
of the binary hypercube, currently one of the most popular architectural choices for
large scale parallel machines. Working with Sandeep Bhatt (Yale), Fan Chung (Bell
Core), Hastad, Heath, Newman, Arnie Rosenberg (UMass-Amherst) and others, they
showed that the hypercube is a far more versatile and universal structure than
previously realized. For example, they proved that the N-node hypercube can simulate
(with only a small constant slowdown) any N-node binary tree, mesh of trees, grid
graph, multigrid, pyramid network, butterfly or cube-connected-cycles. Moreover, these
simulations can still be performed even if up to 50% of the cells of the hypercube fail at
random! The details of this work can be found in a recent STOC paper with Hastad
and Newman [79], a FOCS paper with Bhat, Chung and Rosenberg [181, and a
forthcoming paper with Heath and Rosenberg.

Leighton also continued working on problems related to the average case analysis of
algorithms. The highlight of research in this area during the past year is the work with
Hastad and Rogoff on analysis of backoff protocols for communication in multiple
access channels such as Ethernet [80]. Ethernets currently use a protocol known as
exponential backoff to govern the transmission of broadcasts. In exponential backoff, a
station attempts to transmit with probability 2b where b is the number of times the
station has tried to send but failed since the last successful transn,.:sion. The
exponential backoff protocol seems to work well enough for low densities of message
traffic, but does not perform well for high density situations. In their work, they
formally prove that exponential backoff is unstable if the arrival rate of messag, q
exceeds a certain threshold. On the other hand (and more importantly), they how that
polynomial backoff protocols (such as quadratic backoff) are stable up to nearly 100%
utilization, the best possible. Hence, quadratic backoff is dramatically superior to
exponential backoff in systems with lots of message traffic. The details of this work can
be found in the latest ACM STOC proceedings.

Aside from research, Leighton spent a great deal of time working on service-related
activities such as chairing the program committee for the next IEEE FOCS conference,
and on writing his book. Unfortunately, Leighton did not progress as much as he had
hoped on the book, and it now looks like the first volume won't get done until next
summer. The first volume covers parallel algorithms and architectures. The second

187

THEORY OF COMPUTATION

(and last) volume is on VLSI computation and design. Considering that it has taken a
year and a half to write the first 300 pages, it may take a long time before Volume II is
finished!

Charles E. Leiserson

Leiserson has continued his research on the theory of computing machinery. His work
has centered on understanding the impact of communication constraints in parallel
algorithms and architectures. His earlier work on volume- and area-universal networks,
such as tat-trees, has been extended with the help of his students.

Details of Leiserson's research with students can be found in their individual progress
reports. A brief summary follows:

" T. H. Cormen: A U. S. patent application [45] has been submitted for the
hyperconcentrator switch they designed. A paper [461 on the switch won the
Best Presentation Award at the 1986 International Conference on Parallel
Processing.

* A. T. Ishii: A rigorous understanding of the timing of level-clocked circuits is
under way. They have discovered fast, graph-theoretic algorithms for
determining whether a circuit operates properly. The correctness of these
algorithms rests on sufficient conditions for proper operation of a circuit,
which can be shown to be sufficient if the function of the circuit is
interpreted syntactically.

" J. Kilian and S. Kipnis: They have investigated the power of bussed
interconnection schemes for realizing permutations among chips and have
established a correspondence between permutation architectures and
difference covers for permutation sets [94]. As an example of the practical
implications of this theoretical work, a fast, efficient cyclic shifter on n chips

can be built with only v~n pins per chip such that any of the shifts can be
realized in only one clock cycle.

" B. M. Maggs: The distributed random-access machine (DRAM) for parallel
computing, which abstracts essential properties of fat-trees, has been
substantially refined [103]. The earlier version of the paper, implementing
efficient algorithms in the model, won the Most Original Paper Award at the
1986 International Conference on Parallel Processing.

* J. K. Park: A deterministic on-line message-routing algorithm for fat-trees
has been discovered that works asymptotically as well as previous
probabilistic algorithms. The algorithm also works on a butterfly variant of
fat-trees that uses constant-sized switches.

188

THEORY OF COMPUTATION

* C. A. Phillips: They have discovered an algorithm for contracting bounded-
degree planar graphs [104). The algorithm leads to fast EREW-PRAM and
DRAM algorithms for the problem of region labeling in vision systems.

In other work, Leiserson has completed a paper with Leighton surveying algorithms
for integrating wafer-scale systolic arrays 199). He is also writing a textbook on
algorithms with Cormen and Rivest, tentatively entitled, Introduction to Algorithms.

Theses that were completed under Leiserson's supervision include:

" Thomas H. Cormen, Concentrator Switches for Routing Messages in
Parallel Computers, M. S., August 1986.

" Bruce M. Maggs, Communication-Efficient Parallel Graph Algorithms,

M. S., August 1986.

" Daniel Weise, Hierarchical, Multilevel Verification of MOS/VLSI Circuits,
Ph.D., August 1988 (reader).

" Alan T. Sherman, Cryptology and VLSI. Ph.D., October 1986 (reader).

" Marie J. Sullivan, Parallel Graph Algorithms on the Connection Machine,
B. S., February 1987.

" Andrew V. Goldberg, Efficient Graph Algorithms for Sequential and

Parallel Computers, Ph.D., February 1987.

Leiserson is a Presidential Young Investigator, an editor of the Journal of Parallel
and Distributed Systems, and a Corporate Fellow of Thinking Machines Corporation,

Cambridge, Mass.

Nancy A. Lynch

The main project Lynch worked on this year was the development of a theory for
nested transactions, a joint project with Dr. Michael Merritt (AT&T Bell Laboratories).
The concept of nested transactions is central to new languages and systems for
distributed computing. The theory allows careful description of the semantics of nested
transactions, as well as description and correctness proofs for algorithms which
implement them. The work began with a paper [1071 last summer, in which they

presented a semantic model and stated the basic correctness conditions to be satisfied
by nested transaction systems. In this paper, they presented and proved correctness of
an exclusive locking algorithm for nested transactions.

With colleagues at MIT and elsewhere, they continued by treating an interesting
variety of algorithms. With Dr. Maurice Herlihy (CMU) and Bill Weihl (MIT), they
presented proofs for two algorithms for management of "orphan" transactions [84).

189

THEORY OF COMPUTATION

With Alan Fekete (MIT) and Weihl, they extended the work in [107] to read-write
locking [55] and are now working on a further extension to a new algorithm for general
commutativity-based locking. Lynch and K. Goldman (MIT) presented a proof for a
replicated data-management algorithm [671. Lynch has been helping Jim Aspnes (MIT)
to carry out a similar treatment of timestamp-based algorithms [6]. The model has
provided a vocabulary for describing an amazing variety of interesting algorithms, and
has permitted proofs which follow the natural modularity which system designers use in
talking about the algorithms informally.

At bottom, all of this work is based on the -I/O automaton" model of concurrent
computation, a new model which emphasizes the distinction between input and output
events. This model was developed by Lynch and Mark Tuttle (MIT) [108]. In addition
to using it to model concurrency control algorithms, Lynch and Tuttle used it to carry
out an interesting hierarchical proof of a distributed network resource-allocation
algorithm. Lynch and her students are continuing to develop this model and to apply it
to many other problems in concurrency. For instance, she helped Bloom to describe his
new algorithm for implementing two-writer atomic registers from one-writer atomic
registers, by using I/O automata as a framework for presenting all the definitions,
algorithms and proofs [19]. She is helping Jennifer Welch (MIT) to use this model to
present algorithms for mutual exclusion and Dining and Drinking Philosophers. She has
worked with Fekete and Dr. Liuba Shrira (MIT) to present a modular decomposition of

a network synchronizer algorithm of Awerbuch [56].

She has also been working with Dr. Leslie Lamport (DEC West) on a new technique
for carrying out lattice-structured correctness proofs for distributed network algorithms.
They have been using it for reasoning about algorithms for minimum spanning tree
computation and for bank audit.

She plans to continue the work on nested transaction theory, continue developing the
I/O automaton model, and continue trying to apply this model to study a variety of

application areas.

Albert R. Meyer

Meyer's research continues to focus on semantics and logic of programming languages.
The various topics under investigation are enumerated below. Further technical
information is in the annotated references and reports of collaborators.

Research

* Empty types. The question of whether simulations of Booleans and integers
by constructs in a pure "polymorphic" calculus, which Meyer posed to his e-
mail list on types in programming (Jill]), led to a remarkable theoretical
development of proof and model theory of polymorphic types
[37][114][331]35]. Unexpectedly, and in contrast to non-polymorphic type
disciplines, the decision to allow types to be empty has crucial technical
consequences.

190

T14EORY OF COMPUTATION

Conservative extension. Polymorphism is orthogonal to other programming

constructs, that is, the logic of other constructs is unaffected by embedding

them in a polymorphic context. This is formalized in a Ph.D. thesis just

completed under Meyer's supervision [36).

* Hoare-style partial correctness logic for ALGOL-like languages. joint with

Sieber and German (GTE). See Sieber's report.

* Semantics of concurrency with Bloom and Istrail (Wesleyan). Questions the

foundations of Hoare's CSP and Milner's CCS theories of concurrency. See

Bloom's report.

" Fundamental theorem of Scott domains with S. Cosmadakis (IBM Watson

Res.Ctr.) Explains the general connection between operational and

denotational semantics.

" Monotone models with D. Vellemin (Amherst College) and G. Plotkin

(Edinburgh). Demonstration that continuity is not needed for semantics of

first order functional languages---the most famil~ar case. Allows a simpler

pedagogical treatment introducing the theory and incidentally implies

incompleteness of usual LCF style reasoning at third-order types where

continuity is needed.

" Lambda calculus and Cartesian closed categories. Further work with

Breazu-Tannen following [341.

" Continuations. Fundamental theory of continuation transforms of simply

typed functional expressions. Joint with Riecke following earlier work with

Wand (Northeastern) [116].

Professional Activities

" Moderator for research e-mail lists on

1) Types in Programming,

2) Semantics of Concurrency,

3) Logic of Programs.

" These lists are coming to play a significant role in Meyer's research

activit'es. Most of the empty types and conservative extension results grew

out of e-mail collaborations involving researchers in England, France, Italy,

and U.S.

l1

THEORY OF COMPUTATION

* Editor(-in-Chief) of Information and Computation (formerly Information
and Control).

* One of five Editors of a thousand-plus page Handbook of Theoretical
Computer Science to be published in 1088 by North-Holland.

" Editor of JCSS, SICOMP, TCS, Advances in Applied Math.

* Student Supervision:

o Ph.D.: Breazu-Tannen, Jan. 87 1321; Bloom, expected June '88.

o Ph.D. Reader: D.A. MacAllester, June '87; J. Lucassen, expected Sept.

'87.

o S.M.: Reinhold, expected Sept. '87; Riecke, expected June, '88.

* Developing an undergrad theory course in semantics and logic of
programming (6.044)--an alternative to the usual required course in

computability and complexity (6.045).

e Elected to membership in American Academy of Arts and Sciences, May '87.

Silvio Micali

Micali has been working on determining the power of theorem-proving procedures
and, more generally, determining what theorems can be proved in any other efficient
way.

Micali has continued work on his particular interest in a new "corpiher-type"
algorithm that seems fundamental in the design of cryptographic protocols with more
than two participants. This algorithm, given the specification of any protocol for
totally honest parties (which is usually trivial to design), outputs an alternative and
equivalent protocol that remains correct even if tp to half of its participants deviate
from their prescribed programs in an arbitrary (but polynomial-time bounded) way.
Micali has been working on extending his "compiler" to handle the case of two-party
protocols.

He has been working on developing a theory in the field of a-synchronous distributed
systems when- all participants are reliable. Here the problem is the arbitrary arrival
time of messages. The only guarantee is that all messages will be eventually all
delivered. However, messages sent first may arrive later and there is no upper bound on
the time for a message to reach its rcecipient. Clearly. finding robust good solutions in
this extreme model will, a fortiori, imply having good solutions f(r more reasonable

models.

192

THEORY OF COMPUTATION

Together with Beame, he has been investigating the problem of quantifying the

amount of knowledge which a randomized interactive protocol releases. They have

obtained a definition which appears to satisfy intuitive notions of the amount of usable

information released and which has some nice basic information-theoretic properties.

Micali plans to work on signature schemes together with Dhagat this summer.

Ronald L. Rivest

Rivest has developed a new method for searching game trees [121]. This method, an
alternative to minimax search with alpha-beta pruning, uses p-th arithmetic means as
an approximation to the min and max functions, and then takes derivatives to identify

the unexpanded leaf upon whose value the value at the root most strongly depends.
This leaf is then chosen be expanded next. Extensive empirical results demonstrate that
the new method can outperform traditional alpha-beta pruning.

Rivest has also developed a new method for controlling transmissions in a slotted
multi-access broadcast channel [121] with ternary feedback (collision, successful

broadcast, or hole). This method, called "Pseudo-Bayesian Broadcast", is an

approximation of the ideal Bayesian estimators for the number N of stations wishing to

transmit a packet. Each station keeps an estimate v of N, and updates v after each
time slot as follows:

* If there was a hole or a successful broadcast, t, is decreased by one,

otherwise (if there was a collision) v is increased by e-2--1.
3
92211.... v is

increased by e or any other available upper bound on the average arrival

rate of new packets into the system. If ' is less than one, it is replaced by

one.

Then, any station with a packet to transmit, transmits during the next time slot with

probability v. (Note that newly arrived packets and backlogged packets are treated

identically.) It is possible to show that this rule is stable for any average arrival rate

less than e. Empirical results demonstrate that this rule provides excellent performance.

Rivest has shown how one can learn "decision-lists" efficiently, within the model of

learning proposed by Valiant. A decision-list is a representation of a Boolean formala.

which classifies given sample data points as positive or negative instances of the concept
being learned. A decision-list is a sequence of rules, each of which specifies a term (i.e.
a conjunction of some literals) and a value (either true or false). The last rule

represents a default rule; its term is true. A data point is classified as a positive (true)

or negative (false) instance by finding the first rule in the list which applies to that

data point. The class of decision-lists with terms of size at most k is called k-DL; it is

shown that k-DL generalizes the usual classes of k-CNF and k-DNF. It is shown that

k-DL is polynomially learnable in the sense of Valiant.

103

THEORY OF COMPUTATION

Rivest, together with Leighton, has investigated the accuracy with which a finite-state
device can measure a probability (1001. More specifically, the device has access to a coin
with bias p in favor of heads, and can make state transitions which depend on whether
the coin comes up heads or tails. It is shown how to estimate p to within 0(1/n), where
n is the number of states, and that this is optimal (to within a constant factor).

Rivest, together with Goldwasser and Mikali, has refined and published their signature
scheme which is provably secure against chosen-message attacks 173].

Rivest, in collaboration with Goldman, has investigated efficient algorithms for
computing the probability distribution of maximum entropy, subject to a number of
given constraints [69][70]. The problem is approached by viewing the coordinates of the
underlying space as vertices in a hypergraph, and viewing the constraints as hyperedges.
It is shown that adding hyperedges to the graph can make the hypergraph acyclic; and
that acyclic hypergraphs admit efficient algorithms for computing the maximum
entropy probability distribution.

Together with Schapire, Rivest has developed new techniques for inferring th(
structure of a finite-state automaton by systematic experimentation [1241. Thei
procedures make use of a new representation for finite automata which is dramatically
more compact than the usual state-transition table when the automaton exhibits lots of
"regularity". Experimental results have been quite encouraging; for example, their
procedure can infer the structure of Rubik's Cube in under two minutes of CPU time.
(Rubik's Cube can be easily transformed into a finite automaton with over 1019 states.)

Sloan and Rivest have developed a new model for inductive inference, based on a
Bayesian model with a countable number of hypotheses, but where there are explicit
costs associated with making a prediction and with running an experiment [125]. This
model can be used to explore a number of tradeoffs in doing science "efficiently", such
as when to run a "crucial experiment" (i.e. finding an experiment which will distinguish
between the best two competing theories). This model can also be used as a formal
model for a theory of subjective probability, and as such can handle a number of
problems not well addressed by other approaches.

Rivest, in collaboration with Prof. Ross Quinlan (New South Wales Institute of
Technology, Australia), has explored the application of Rissanen's "Minimum
Description Length Principle" to the construction of decision trees 1118]. They develop
a specific algorithm based on this principle, and compare it against other well-known
decision-tree construction algorithms on a variety of "real-life" data bases. The results
are quite promising; the trees produced are competitive with those produced by the
other algorithms both in terms of size and accuracy on new data.

David B. Shmoys

Shmoys studied a wide range of questions in the design and analysis of efficient
algorithms. The problems considered are from the areas of parallel and distributed

194

THEORY OF COMPUTATION

computation, as well as from the area of worst-case analysis of approximation
algorithms for NP-hard combinatoriai optimization problems.

Together with Hochbaum (UC/Berkeley), Shmoys focused on obtaining techniques for
approximation algorithms that can be used for a wide range of problems [86][88]. The
problem of minimizing the maximum completion time of a set of independent jobs when
scheduled on a set of identical machines was the initial problem for which worst-case
analysis was first proposed. In [881 a polynomial approximation scheme is given for it,
which answers a question that had been open for twenty years.

In [85][106], further improvements are given for two of the most important
generalizations of the problem considered in [88]. In work done with Hochbaum 185], a
polynomial approximation scheme is given for the case that allows machines to run at
different speeds, but requires these differences to be uniform for all jobs. With Lenstra
(CWI) and Tardos (Eotvos University) [106], an efficient algorithm is given for the next
natural generalization, where the machines are entirely unrelated, so that running times
for the jobs can vary arbitrarily from machine to machine. The algorithm delivers
solutions no worse than twice the optimum, whereas no bounded guarantees for
polynomial-time algorithms had been previously known. Furthermore, there is evidence
to suggest that this algorithm may be extremely effective in practice.

Shmoys has also been active in the design of protocols for distributed systems,
especially for important primitives, such as tossing a coin or reaching agreement on a
value in the presence of failures. In [51], that is joint work with Dwork and Stockmeyer
(IBM Almaden), procedures are given for tossing a common coin in constant expected
time that can tolerate O(n/log n) failures in a complete network of n processors. These
procedures can then be used to build protocols for Byzantine agreement. If constant
expected time is required, then the procedure can tolerate O(n/log n) failures, whereas
if a constant fraction of the processors could possibly fail, the protocol takes O(loglog n)
time.

The final area in which Shmoys has been doing work, is in the design of parallel
algorithms for combinatorial problems. In work done jointly with Karloff (Univ.
Chicago), edge coloring problems were considered [93]. In work not yet submitted for
publication, parallel approximation algorithms for the traveling salesman and maximum
flow problems were considered. In the former case, an RNC algorithm asymptotically
approaching the Christofides method is given. In the latter case, an RNC approximation
scheme is given for this P-complete problem.

Michael Sipser

Sipser worked on develoling new methods for proving the inherent computational
complexity of a variety of problems in different settings. This past fall, Sipser
conducted a seminar to survey his latest results and discussed further directions.

195

THEORY OF COMPUTATION

3. STUDENT REPORTS

William Aiello

Aiello has been studying Ghe complexity of interactive proofs and zero-knowledge
interactive proofs. In joint work with Goldwasser and Hastad t3l, Aiello gives evidence
that interactive proofs with an unbounded number of rounds recognize more languages
than interactive proofs with a constant number of rounds. It is shown that for any
unbounded function F and any function G=o(F) there is an oracle A such that the class
of languages recognized by interactive proofs with oracle A and F(Ix) rounds is not
contained in the class of languages recognized by interactive proofs with oracle A and
G((x) rounds. However, when one requires an interactive proof to be perfect zero-
kjpwledge then an unbounded number of ruunds do not appear to be much help.
Aiello and Hastad [4] show that any language recognized by an unbounded round
perfect zero-knowledge proof can also be recognized by a two round interactive proof
(which is not necessarily zero-knowledge).

R.A. Ashcroft

Ashcroft arrived at MIT in January after a semester at UC Berkeley. His major
accomplishment has been to get a summer internship doing science journalism for The
Economiat in London. This position was obtained largely on the strength of an article
on Zero-Knowledge written for the non-computer scientist; this appeared in the June
issue of The Economist[51.

Paul W. Beamne

Beame has been working on methods for proving lower bounds on the resources
needed by parallel computers in order to solve various computational problems. With
Hastad he has shown [15] that the concurrent-read concurrent-write parallel random
access machine (CRCW PRAM) requires e (log n/loglog n) time to compute the parity
of, sort, or add n-bits as well as to multiply or divide two n-bit integers along with a
number of related problems. In addition. Beame and Hastad have demonstrated a time
hierarchy for such machines as well given stronger lower bounds which apply to almost
all Boolean functions of n bits. Beame has since extended the results in [15] using
modified techniques which yield lower bounds for additional graph-theoretic problems,
such as finding small cliques in graphs.

Beame has improved the running time of the best known parallel machine algorithms
for symmetry-breaking in constant-degree graphs to O(loglog*n). Also, with Awerbuch.
he has shown that in distributed computation there are several infinite families of
graphs for which known symmetry-bl'eaking algorithms are optimal.

Beame and Micali have been investigating the problem of quantifying the amount of
knowledge which a randomized interactive protocol releases. They have obtained a
definition which appears to satisfy intuitive notions of the amount of usable information
released and which has some nice basic information-theoretic properties.

196

THEORY OF COMPUTATION

Beame plans to continue work on lower bounds for CRCW PRAM's as well as to
investigate the computational advantages of concurrent-read memory access for parallel
computers. In September 1987, he will join the faculty of the University of Washington
in the Department of Computer Science.

Bard Bloom

Concurrent Process Semantics: Bloom, working with Meyer and Sorin Istrail
(Wesleyan) is studying the denotational semantics of parallel and nondeterministic
processes. Dana Scott's very successful models for the semantics of sequential,
deterministic programs do not extend naturally to the more general domain. There are
a number of proposals for a replacement; Meyer and Bloom are investigating several of
these models. One question in semantics is, "when shall we consider two programs
equivalent?" Two proposed notions are trace congruence (used in Hoare's language CSP
and variants) and bisimulation (used in Milner's SCCS). Bloom, Meyer, and Istrail
have found an extension of SCCS (without recursion) in which the two notions coincide.
The new operation is somewhat peculiar in nature; they have shown that no finite set of
operators defined in a clean way can cause the two to coincide.

Meyer and Bloom are also investigating the complexity of the operational semantics of
Milner's SCCS. They have shown that bisimulation in SCCS with unguarded recursion
is not arithmetical, and trace congruence is f7; therefore the two differ for that

language and any extension as well.

Fully Abstract Lattice Semantics: A classic paper in denotational semantics
(Gordon Plotkin's LCF Considered as a Programming Language) gives two kinds of
semantics for a simple but extremely powerful language based on typed lambda
calculus. One semantics is operational, describing how a particular interpreter
computes; the other kind is denotational, assigning meaning to the programs in
moderately familiar mathematical terms, using several varieties of Scott domains. The
paper shows that the two semantics coincide in a weak sense (computational adequacy;
two integer terms evaluate to the same constant if they have the same denotational
meaning), but not in a stronger sense (full abstraction: two routines behave identically
in all contexts if they have the same denotational meaning). The programming
language can be extended by the addition of a "parallel conditional" such that the
extended language is fully abstract for one of the denotational models. The classic
paper shows that this extension is not fully abstract for the other languages.

However, one of the other denotational models (Scott domains built from complete
lattices rather than cpo's) is mathematically appealing, and it is somewhat surprising
that the classic paper did not find a fully abstract extension of LCF using this model.
However, this is not the tithor's oversight. Bloom has shown that there is no fully
abstract extension of LCF with a reasonable evaluator for which this model is fully
abstract, where "reasonable" means that an arithmetic expression can evaluate to, at
most, one value. If the evaluator is not required to be reasonable in this sense, there is

197

THEORY OF COMPUTATION

a simple extension of LCF after the spirit of the classic paper which is fully abstract for
the lattice model.

Atomic Read/Write Registers: Bloom has shown how to construct a two-writer,
n-reader atomic memory register from two one-writer, (n+l)-reader atomic memory
registers. This work was suggested by N. Lynch (MIT) and is part of a continuing
program started by Leslie Lamport (DecCirc) investigating the relations between various
models of shared memory. The most useful kind of shared memory is atomic memory,
defined as memory to which all references appear sequential even though they may
overlap arbitrarily. Most previous research was devoted to single-writer simulations,
e.g., showing how to simulate one-writer, n-reader atomic memory using roughly n one-
writer, one-reader atomic memory cells. This paper describes an optimal construction
of a two-writer, n-reader atomic register from two one-writer, (n+l)-reader registers.

Mihir Bellare

Bellare arrived at MIT in February after a semester at UC Berkeley. He is working
with Rivest on the complexity of a learning algorithm. This work has focused on
determining lower bounds to the complexity of an algorithm trying to learn an
equivalence relation.

Bonnie Berger

Berger is working with Goldwasser on cryptographic applications for Smart Cards. A
Smart Card is a plastic credit card with one or two chips embedded in it to provide it
with computing and memory capabilities.

Hans L. Bodlaender

Bodlaender studied the complexity of (NP-complete) graph problems, when restricted
to certain classes of graphs. In [22 a general approach is taken. It is shown that there
are large classes of problems, called ECC and LCC, that are solvable in polynomial time
for graphs with a constant upperbound on the treewidth (and, for problems in LCC, on
the degree). Several important classes of graphs can be shown to have a constant
upperbound on the treewidth. A large number of important NP-complete graph
problems is shown to be in LCC and/or ECC. Also, polynomial algorithms are obtained
for the CHROMATIC INDEX problem and the GRAPH ISOMORPHISM problem on graphs
with a constant upperbound on the treewidth.

The complexity of these problems in a parallel context has also been studied. It can be
shown that the algorithms can be carried out in O(log n) and O(log2 n) time on a
EREW PRAM, with a polynomial number of processors.

A similar framework is being developed, with similar results for the class of the
cographs.

Bodlaender also is working on the problem of distributed leader finding in rings of

198

THEORY OF COMPUTATION

processors. For this problem several new lowerbounds are obtained, that are better than
existing ones.

Ravi B. Boppana

Boppana has been working on the design of average-case algorithms for certain NP-
complete problems. In particular, he investigated the Graph Bisection problem: Given a
graph, partition its vertices into two equal-size pieces so as to minimize the number of
edges between the two pieces. Graph Bisection has applications in solving VLSI design
and layout problems. Boppana [26] presented a new algorithm for Graph Bisection
that, for almost all graphs in a certain class, will output the minimum-size bisection.
The algorithm will also yield, for almost all such graphs, a proof that the output
bisection is optimal.

Boppana has also been studying interactive proof systems. Interactive proof systems
form a randomized generalization of the complexity class NP. Together with Hastad
and Stathis Zachos (Brooklyn College), Boppana [271 showed that if every language in
co-NP had a short interactive proof, then the polynomial-time hierarchy would collapse.
As a corollary: if the Graph Isomorphism problem is NP-complete, then the polynomial-
time hierarchy collapses.

Boppana plans to continue studying average-case algorithms for other NP-complete
problems. Starting September 1087, he will join the faculty of Rutgers University,
Department of Computer Science.

Val Breazu-Tannen

In collaboration with Meyer, Breazu-Tannen has investigated the conservative
extension properties of the polymorphic type discipline as embodied in the Girard-
Reynolds second-order lambda calculus. These properties state that reasoning about
polymorphic programs is conservative over reasoning about the underlying data types or
other basic features to which polymorphism was added. Given the known
computational power of the Girard-Reynolds calculus, this research gives strong
theoretical support to the idea of designing programming languages that avoid
unrestricted recursion--all programs terminate--and thus gain in reasoning simplicity,
while incorporating versatile features such as "types-as-values" and various tame forms
of recursion [351[381.

In collaboration with Thierry Coquand from INRIA, France, Breazu-Tannen has
described a general method for constructing models of the Girard-Reynolds polymorphic
lambda calculus [33], also used in some of the proofs of the conservative extension
results mentioned above.

All this is contained in Breazu-Tannen's Ph.D. thesis completed in January 187 [32].

Future plans include attacking some conjectures suggested by the thesis research, as

190

THEORY OF COMPUTATION

well as working on type theories with equations between types and on the relationships
between typed lambda calculi and higher-order categorical logic.

Thomas H. Cormen

Cormen has continued his research on concentrator switches. In [44], he showed that
any n-input, n-output synchronous switch that e-nearsorts its incoming valid bits (in
the sense that each bit is within c positions of its correct position in a fulny sorted
sequence) is also an (n, rn. 1 - c/?n) partial concentrator switch if just the first m
outputs are used. He then coastructs two multichip partial concentrator switches based
on the first few steps of thc Revsort [127] and Columnsort [97] algorithms for sorting on
a mesh. Both switches use the hyperconcentrator switch of Cormen and Leiserson
[43][46] as a subcIrcuit and can be implemented efficiently in three dimensions. Signals
incur at most 4 Ig n + 01 gate delays in passing through these switches.

Cormen also received the award for the best presentation at the 1986 International
Conference on Parallel Processing. The talk was entitled "A Hyperconcentrator Switch
for Routing Bit-Serial Messages."

Claude Crepeau

Crepeau moved to MIT in September with a Master's degree from Universite de
Montreal. His major achievements this year are related to Zero-Knowledge and other
types of cryptographic protocols. His work on Zero-Knowledge protocols was done in
collaboration with Gilles Brassard (U. de Montreal) and led to two papers [29][28[.
Research on the "All or Nothing Disclosure of Secrets" protocol led to some results,
both from a cryptographic point of view [301 and an information theoretic point of view
[31]. This work was done in collaboration with Gilles Brassard and Jean-Marc Robert
(McGill U.).

Crepeau's Master's thesis was about a Zero-Knowledge poker protocol that achieves
confidentiality of the players' strategy [49[[40[. Since his arrival at MIT, he has worked
mostly on specific problems relating to Zero-Knowledge protocols, first with Goldwasser
and then Micali. Later in the year, some results about the equivalence between the two
known versions of Oblivious Transfer were achieved [50].

Aditi Dhagat

Dhagat started her first year as a graduate student at MIT in September. She worked
with Goldwasser during the first semester in number theory and cryptography. During
the second semester, she worked with Rivest on inference of finite automata by learning
programs. She will return to cryptography during the summer working on signature
schemes with Micali.

Paul N. Feldman

Feldman has spent this year polishing up the two major results of his thesis, namely,

200

THEORY OF COMPUTATION

an efficient scheme for verifiable secret sharing and a Byzantine Agreement protocol
running in constant expected time. He collaborated with Manuel Blum (Berkeley) and
Micali to show How to Prove a Theorem so Nobody Else Can Claim It [201.

Lance J. Fortnow

Fortnow transferred to MIT in September after one year at the University of
California at Berkeley. His main result concerns perfect zero-knowledge, i.e., interactive
protocols which disclose no knowledge in an information theoretic sense. His paper [57]
shows that for any language which has a perfect zero-knowledge protocol, its
complement has a short interactive proof. In particular, this result implies that if NP-
complete problems had perfect zero-knowledge protocols then the polynomial time
hierarchy would collapse. Some of this work was done while he was at Berkeley.

Fortnow also looked at other complexity issues including: The relativization of the
conjecture that all NP-complete sets are isomorphic, limit points of sequences, monotone
branching programs, and various other complexity issues dealing with interactive
protocols and zero-knowledge.

Jeff Fried

Fried has been working on cost-universal elements for interconnection networks. With
Leiserson and Park, he investigated several types of elements, addressing schemes, and
on-line routing algorithms which were both simple and applicable to a family of
interconnection networks including butterfly-fat-trees. This research also includes a
revision of the classical model of VLSI communication cost (area or volume) to include
variations in the cost of communication at different levels of any packaging hierarchy;
for example wires between chips are much more costly than intra-chip wires. The goal
of this work is to develop a very concrete notion of what 'cost-universal' networks (and
elements) must do. As a class project with Cormen and Brad Kuszmaul (MIT), Fried
designed a processor chip which should be capable of efficiently simulating a wide
variety of low-degree interconnection networks. Called the NAP (for No Alu Processor),
this chip will be fabricated over the summer.

Fried is also continuing research (begun at GTE Laboratories) on Optical

Interconnects for VLSI, including a complexity model for optical interconnects.

Andrew V. Goldberg

Goldberg has been working in the area of algorithms, in particular network flow
algorithms and parallel algorithms.

Working together with Robert Tarjan (Princeton), Goldberg has developed a
successive approximation framework for solving the minimum-cost circulation problem
163][66]. This framework allowed them to obtain better bounds on the problem. Given
a network with n vertices, m edges, and integer costs with absolute values bounded by

201

THEORY OF COMPUTATION

C, the algorithms described in [63][66] achieve an O(Iog(nC)min(n3,n5/3 m 2 /3 ,nmlogn))
running time bounds, significantly improving the previous bounds. Recently, Goldberg
and Tarjan have improved these results in two ways 164]. The running time bound has

been improved to O(log(nC)nmlog(n2 /mn)), and a natural modification of the minimum-
cost framework has been shown to produce strongly polynomial algorithms. Unlike
previous strongly polynomial algorithms, these algorithms use no rounding of costs or
capacities.

Goldberg and Tarjan continued their work on the maximum flow problem [65].
During the summer of 1086, Goldberg has been working at Thinking Machines, Inc.,
implementing a parallel version of the algorithm on the Connection Machine. The
experimental results [63] show that the algorithm is practical.

Goldberg has been working together with Plotkin on efficient parallel algorithms for
coloring and matching in sparse graphs. They have developed a new algorithm to color
a maximum degree A graph with (A+I) colors in O(log*n) time on EREW PRAM,
where n is the size of the graph [60][61]. The usefulness of their technique is exhibited
in [62], where they show how to apply it to significantly improve the running times of a
number of algorithms, including 5-coloring planar graphs and finding a maximal
matching in planar graphs.

Sally A. Goldman

Goldman continued her work with Rivest on theoretical aspects of artificial
lntelligcncf []t,79 and complctcl a Mastr'- thess [6R] hasd on tbi- work. They
developed a new algorithm for computing the maximum entropy probability
distribution satisfying a set of constraints. Unlike previous approaches, their method is
integrated with the planning of data collection and tabulation. They show how adding
constraints and performing the associated additional tabulations can substantially speed
up computation by replacing the usual iterative techniques with a noninteractive
technique. Goldman is beginning new research with Rivest on the problem of machine
learning.

Ronald I. Greenberg

Greenberg has been studying the issue of hardware-efficient parallel computation from
the standpoint of physical layout considerations. The fat-tree architecture proposed by
Leiserson and studied by Leiserson and Greenberg is a step in this direction. It can
simulate any other network with comparable physical volume without requiring much
more time (in a unit-delay model). Greenberg has been working on improving the
mathematical analyses which yield these results and on including consideration of such
issues as wire length and fault-tolerance.

Michelangelo Grigni

Grigni arrived in September with a B.S. from Duke University; he spent most of his

202

THEORY OF COMPUTATION

first year in classes. He is currently working on a project to implement the Quadratic
Sieve factoring algorithm on the Connection Machine--a project begun with Klein and
Walter Gillett (MIT Al Lab). His adviser is Sipser.

Johan Hastad

Hastad's main interest has been lower bounds for concrete problems. Hastad together
with Beame proved in [151 that very powerful parallel machines require almost
logarithmic time to compute simple functions like parity. They also establish that there
is a very fine hierarchy: For slowly growing functions T there are languages that can be
recognized using parallel resources in time T but not in time T-2. The techniques of this
paper are very close to those of Hastad's thesis (supervised by Goldwasser) which was
published as a book by MIT press [76]. The main results of this thesis are close to
optimal lower bounds for small depth circuits. Also related to parallel computing, in
[771 Hastad proves that there are functions which are one-way with respect to parallel
computation. In particular there are permutations computable by constant depth
circuits which are P-complete to invert.

Hastad has also been studying interactive proof systems. Interactive proof systems
form a randomized generalization of the complexity class NP. Together with Boppana
and Stathis Zachos (Brooklyn College), Hastad [27] showed that if every language in co-
NP had a short interactive proof, then the polynomial-time hierarchy would collapse.
As a corollary: if the Graph Isomorphism problem is NP-complete, then the polynomial-
time hierarchy collapses. Hastad also studied other aspects of the computat'onal
complexity of interactive proofs. In [3], which is joint work with Goldwasser and Aiello,
it is proved that, given an unbounded function F, there is an oracle A such that the
class of languages recognizable by an interactive proof relative with F(x) rounds relative
to A is not contained in the polynomial time hierarchy relative to A. A limitation for
the power of interactive proofs was proved together with Aiello [4]. They prove that
given any language which has a zero-knowledge interactive proof of an unbounded
number of rounds also has a two round interactive proof.

Hastad, also interested in the role of randomness in computation, together with
Leighton and Newman, investigated how to cope wiLh randomly occurring errcm in
large networks [791. They prove that in the case of the hypercube an error-free network
can be simulated by a network containing random errors with only a slight loss in
efficiency. Randomness plays a quite different role in [801 where Hastad, Leighton and
Rogoff analyze randomized protocols for communication. The communication model is
that of a broadcast network and backoff protocols are analysed. They prove that the
previously proposed protocols linear backoff and exponential backoff have some
theoretical drawbacks. Instead they propose quadratic backoff which has good provable
theoretical properties and also seems to perform well in practice.

Finally Hastad has been working in the area of geometry of numbers. In [78] he proves
that given a lattice L and a point x outside the lattice the is a vector in the dual lattice

203

THEORY OF COMPUTATION

which gives a fairly good estimate for the distance from x to L. This implies that the

NP-complete nearest lattice point problem has an approximate counterpart which

belongs to co-NP.

Rafael Hirschfeld

Hirschfeld has finished his Master's thesis research in pseudorandom number

generators and complexity theory under Micali's supervision. He investigated
pseudorandom generators that cannot feasibly be distinguished from true random
sources, and their implications for the relationshin between deterministic and
probabilistic computation. Boppana and Hirschfeld 1251 wrote an expository paper on
this and related work. Hirschfeld is presently exploring directions for doctoral research.

Alexander T. Ishii

Ishii and Leiserson are preparing a joint paper describing the analysis of timing in
VLSI circuits where latchcs are controlled by the level (high or low) of a clock signal
rather than a transition (edge) of the clock. Such level-clocked circuits are frequently
used in MOS VLSI design. A kevel-clocked circuit is modeled as a graph G=(VE),
where V consists of components--latches and functional elements--and E represents the

connections among the components. An algorithm is presented for determining whether

a circuit operates properly that runs in O(1lJEJ+Iti2
1g1 time. The work presented

represents results that are to appear in Ishii's Master's thesis.

The timing analysis methods used are based on concepts from elementary logic and
graph algorithms. The "intended" semantics of a designer's circuit are modeled using a
syntactic interpretation of the functional elements of the circuit. Sufficient conditions
are given for a circuit to operate properly under any interpretation of the functional
elements, and under the assumption that the circuit must operate properly for all
interpretations of the functional elements, the conditions are shown to be necessary as
well. The conditions are reducible to a collection of simple linear constraints that can

be solved using standard graph algorithms.

Burton S. Kaliski

Kaliski completed his Master's thesis describing the hardware used for the DES
experiments reported in 1921 and [1281. He also continues to work on the use of elliptic
curves in cryptography.

Shlorno Kipnis

Kipnis together with Kilian and Leiserson have been investigating the power of bussed
interconnection schemes for realizing permutations among chips [941. They established
a correspondence between bussed permutation architectures and difference covers for

permutation sets. As an example, only Vn pins per chip are needed to realize all cyclic
shifts among n chips in one clock cycle. Using point to point wires, n-I pins per chip

204

THEORY OF COMPUTATION

are required. They also show that 4v 4n pins per chip suffice to realize any abelian

group of permutations and that any general group of permutations requires 2 n-g.-I
pins per chip. Some other results include bussed interconnection schemes for
hypercubes (d+l pins per chip), shuffle-exchange graphs (3 pins per chip), and
d-dimensional meshes (d+1 pins per chip).

Joe Kilian

Kilian, together with Kipnis and Leiserson, has been investigating the power of bussed
interconnection schemes for realizing permutations among chips [94).

Together with Martin Abadi (MCC) and Joan Feigenbaum (U. Chicago), Kilian
examined what can be informally considered an oblivious transfer of capability 111.
They considered protocols in which a polynomially bounded party enlists the aid of a
highly powerful party to solve a problem. The polynomially bounded party trusts the
powerful party, but wishes to conceal from him certain details about the problem. For
example, the weaker person may want to compute loggx mod p, but does not want to
reveal any information about x. An important subclass of these protocols constitutes an
interactive generalization of the complexity class P/poly.

Recently, Kilian has worked on slightly altered models of interactive proof systems.

Philip N. Klein

Klein has been researching efficient use of parallel computation to solve graph
problems. Recently he has been considering the usefulness of preprocessing in
facilitating parallel speed-up. For example, searching a directed graph has proved a
difficult problem to parallelize: to get a speed-up of a, previous methods seem to require

about n2a processors, where n is the number of nodes in the graph. Klein developed a
technique whereby a speed-up of 9<vlm can be achieved with only a processors,
following a preprocessing stage whose output represents the graph using storage na+m.
(Here m is the number of edges in the graph.) The technique can be used to find, for
example, all the nodes reachable from a given set of nodes in the graph. The technique
has applications in artificial intelligence.

In October 1986, at FOCS, Klein delivered a paper ([95), coauthored with John Reif,
on an efficient parallel algorithm for determining whether a graph is planar, and, if so,
finding a planar embedding. The algor~thm is about two orders of magnitude more
efficient than previous such algorithms: in fact, it is almost optimal. Klein gave a talk
at LCS on the same topic the previous month.

Klein plans to continue investigating parallel algorithms and the role of preprocessing
in efficient parallel computation.

Richard Koch

205

THEORY OF COMPUTATION

Koch is currently conducting research for his doctoral dissertation. He investigated the
analysis of protocols for Ethernet-type communication channels. He is currently
investigating a universal routing problem which would have have applications for
distributed routing and the graph bisection problem.

Bruce Maggs

Maggs and Lelserson have refined the Distributed Random-Access Machine (DRAM)
model [1031 in which the communication requirements of a parallel algorithm can be
evaluated. Maggs and Koch are looking for a "universal routing algorithm", an
algorithm that determines how to quickly route a set of messages in an arbitrary
network. A universal routing algorithm would have applications in parallel computing
and possibly in finding a small bisector of a graph.

F. Miller Maley

Maley continued his work on the theory of single-layer wire routing with homotopy
constraints. The theory, which applies to several mathematically natural wiring models,
is the first rigorous treatment of general river routing problems. It derives necessary
and sufficient conditions for routability, and leads to efficient methods for constructing
optimal routings. Maley is currently working on extending these results to models of
greater practical interest.

Stuart Mentzer

Mentzer has been working with Shmoys on the approximability of NP-hard
combinatorial optimization problems. He has studied the question of whether graph
problems in a metric plane allow better approximations than their more general triangle
inequality versions. Results for six metric P-center problems have been obtained.

P-center problems are a type of emergency facility location problem where you wish to
choose a set of p points so as to minimize the maximum distance from any point of a
given set to the closest chosen point. In discrete versions the chosen point set is a
subset of the given points. A simple algorithm delivers a 2-approximation (within a
factor of two of the optimum) to any instance where the distances (given by a
symmetric nonnegative distance matrix) obey the triangle inequality, and it is well
known that doing better than a factor of two is NP-hard for the triangle inequality
version.

Mentzer has shown (publication under preparation) that it is also NP-hard to better
than 2-approximate the discrete and continuous P-center problems in the L' and Ll

3
metric planes (i) was known for the continuous versions). In addition, he showed that

2
it is NP-hard to better than vi-approximate these problems in the Euclidean plane (V3
was known for the continuous version). Techniques for improving this lower bound

206

THEORY OF COMPUTATION

have been found. Thus, of the problems studied, only the Euclidean versions leave open

the possibility of better than 2-approximations (if P 3 NP).

James K. Park

Park has been working with Leiserson on message-routing algorithms for the fat-tree

[102] and related interconnection networks. They have developed a simple new routing

algorithm for the butterfly-fat-tree, a variant of the fat-tree using only constant-sized
switches. It is a deterministic, on-line algorithm, requiring 0 (X(A4) log n) delivery

cycles and 0 (XM/log n + X(M) log 2 n + log 3n) bit operations to deliver a message set
M, where X(M) is the load factor the message set induces on the network and L the
length in bits of the longest message.

Cynthia A. Phillips

Phillips and Leiserson developed a simple parallel algorithm for contraction of n-node
bounded-degree planar graphs which solves the problem of region labeling in vision
systems and leads to algorithms to compute spanning trees and biconnected components
of bounded-degree planar graphs [104]. The connected components algorithm runs in
O(lg n) randomized time or O(lg n lg* n) deterministic time on the restrictive exclusive-
read exclusive-write PRAM model. They are currently trying to extend these results to
planar graphs of arbitrary degree. Phillips is trying to develop an O(lg n)-time parallel
algorithm for region labeling in n-voxel 3D images by exploiting the restrictive topology
and geometry of the spatial tesselation. She is also investigating the use of randomized
search techniques for fast, simple connected components algorithms for general graphs.

Serge A. Plotkin

Plotkin together with Goldberg has been working on efficient parallel algorithms for
coloring and matching in sparse graphs. They developed a new algorithm to color a
maximum degree A graph with (A+1) colors in 0(log*n) time on EREW PRAM, where
n is the size of the graph [60][61]. The usefulness of their technique is exhibited in [621,
where together with Shannon (Purdue Univ.), they show how to apply it to significantly
improve the running times of a number of algorithms, including 5-coloring planar
graphs and finding a maximal matching in planar graphs.

In addition to his work on parallel algorithms, Plotkin has been working with
Awerbuch on the problem of Leader Election in distributed asynchronous faulty
network. They have developed a technique to approximate up to a constant factor the
size of a dynamically growing asynchronous distributed network with amortized message
complexity of O(log2 1i) per node, where [V1 is the final size of the network. They
demonstrated how to apply this technique to construct an efficient distributed
algorithm for Leader Election in a faulty network [14]. The algorithm has a message

complexity O(JEJ + IlV log2 IVJ), which is an improvement of 0(log 2 Ill) over the
previously known algorithms.

207

THEORY OF COMPUTATION

Satish B. Rao

Rao just completed his Master's thesis [119] supervised by Leighton on finding
approximately optimal separators in planar graphs. He presented an algorithm to find
optimal quotient separators (minimizing the ratio of the cost over the weight separated),
and an approximate solution for optimal separators. The approximate solution in some
sense trades balance for the size of the separator. The algorithm may have applications
in various divide-and-conquer approaches to graph problems such as VLSI placement
and routing.

Mark B. Reinhold

Dependent function types, which originated in the type theory of intuitionistic
mathematics, have recently appeared in programming languages such as CLU, Pebble,
and Russell. (A function has a dependent type when the type of its result depends upon
the value of its argument.)

In [115], Reinhold and Meyer investigate the consequences of assuming that there
exists a type of all types in a X-calculus with dependent function types. The type of all
types is the type of every type, including itself. When a language with dependent
function types is enriched with the type-of-all-types assumption, enormous expressive
power is gained at very little apparent cost. By reconstructing and analyzing a paradox
of Girard, they show that this combination leads to several serious problems. The most
significant of these are that for such a language (1) typechecking is undecidable, and (2)
classical reasoning about programs is not sound.

Reinhold has produced a machine-verified construction of Girard's paradox. This
construction, and the undecidability result, will be described in his forthcoming Master's
thesis.

Jon G. Riecke

Riecke has been finishing research begun jointly with Kim B. Bruce. In 138], they
examine the semantics of types in the programming language Miranda. The work
focuses on a novel feature of Miranda, algebraic types, which create new types from old.
Algebraic types, they argue, may be thought of as user-defined type constructors, and
they show how to extend a denotational model to include interpretations for these type
constructors.

Riecke plans to study the connections and differences between two styles of
denotational semantics--the direct and continuation styles. Plotkin's notion of full
abstraction will be particularly emphasized in this project.

Robert E. Schapire

Schapire, working with Rivest, has been investigating a new approach to the problem
of inferring a finite state automaton based only on its input/output behavior [124).

208

THEORY OF COMPUTATION

They have developed and extended an algorithm which infers an FSA in time
polynomial in its diversity, a new measure which may be exponentially smaller than the
number of global states of the automaton.

Eric Schwabe

Schwabe started his first year as a graduate student at MIT in September. Having
spent most of his year involved in course work, he will begin work in parallel
computation with Leighton this summer, initially considering problems taken from a
discussion of space-saving strategies for queue management in packet-routing
algorithms.

Alan T. Sherman

Sherman completed his dissertation [128] and is now an Assistant Professor at Tufts
University.

David Short

Short has been studying learning algorithms for artificial intelligence with Rivest, and
is now studying mixed Eulerian graphs with Shmoys.

Kurt Sieber

Sieber is working on semantics and program verification for ALGOL-like programming
languages with higher order procedures. The main goal is to develop Hoare-style calculi
for reasoning about free procedures, i.e., procedures which are not bound by
declarations, but only specified by semantic properties. Such reasoning is necessary if
correctness proofs are to correspond to the structure of programs. In these proofs the
correctness of a program should follow from procedure specifications and not depend on
the particular procedure declarations.

In his current research two main directions can be distinguished:

" the development of new semantic models which can deal with free
procedures and local variables,

" completeness questions about Hoare-style calculi for the language known as
L4 [41].

New methods for defining the semantics of local variables are necessary, because
traditional denotational semantics (based on complete partial orders and continuous
functions) only work if a declaration is available for every procedure, i.e., they fail in
the presence of free procedures. A first ad hoc solution to this problem was presented in
[75]. Sieber is now developing a more systematic approach, based on so called locally
complete partial orders and locally continuous functions. Moreover he is investigating
the question of full abstraction for his new models.

209

THEORY OF COMPUTATION

In the language L4, procedures are not allowed to have access to global variables. In
this case the local variables are harmless and the above mentioned semantic problems
disappear. But L4 is still powerful enough to make traditional Hoare-style calculi fail. A
relatively complete Hoare calculus has only recently been presented in 1591. In
collaboration with Meyer and S. German (GTE Research Lab), Sieber is now trying to
find generalizations of this result for Hoare formulas with free procedures.

Jeffrey Mark Siskind

Siskind has been continuing the research in the area of logic programming discussed in
last year's report. This research has focused on the incorporation of dependency-
directed backtracking and related search pruning techniques and heuristics into the
control strategy of a Prolog implementation. Analysis of an abstract model of Prolog
execution termed decision problems has highlighted the following four distinct sources
of potential domain-independent search space reduction techniques.

" Constraint Propagation

" Selective Backtracking

" Caching Nogoods

" Incremental Context Switch

The literature on intelligent backtracking in Prolog discusses only selective backtracking
and is unaware of the potential improvement afforded by the additional three
techniques. On the other hand, a long tradition of propositional logic reasoning systems
based on efficient graph representation techniques known as Truth Maintenance
Systems have made use of some or all of these techniques. These systems however,
solve only SAT problems and either do not handle variables and quantification at all or
do so incompletely via a demonic invocation mechanism.

Siskind's research has shown how a symbolic unraveling of a resolution proof tree for
a theorem in first-order logic can produce a corresponding infinite stream of SAT
problems which contains a satisfiable SAT problem if the theorem has a proof. This
unraveling process makes use of novel graph techniques to encode the constraints on
unification between terms as part of the generated SAT problem. The result of this is
that any pure Prolog program can be translated into a finite template which represents
a corresponding infinite stream of SAT problems. The unraveling process and
unification constraint graph techniques have been incorporated into a working
implementation of pure Prolog called ConLog. As ConLog uses a TMS to solve the
resulting SAT problems, it functions as an implementation of pure Prolog which
provides all four of the above search space reduction techniques. ConLog has been
tested on a number of examples from the literature and shows promise of reducing the
amount of search and backtracking required on these examples.

210

THEORY OF COMPUTATION

This work is being supervised by Charles E. Leiserson.

Robert H. Sloan

Sloan has been working on problems in cryptography 11171 together with Micali, and
problems in learning theory [124] in collaboration with Rivest.

Joel Wein

Wein spent the year involved in course work. He will spend the summer working with
Shmoys. Possible topics include parallel algorithms and approximation algorithms to
NP-Complete problems.

Su-Ming Wu

Wu has continued to work on proving the correctness of the Micali-Vazirani algorithm
for maximum matching in general graphs. A crucial component of the Micali-Vazirani
matching algorithm is the labeling of the vertices the algorithm performs while finding a
maximum matching. For his Master's thesis, supervised by Micali, Wu has proved that
this labeling procedure is correct. He is considering how the techniques used in this
proof can be extended to a proof of correctness of the entire algorithm.

211

!i

THEORY OF COMPUTATION

References

1. Awerbuch, B. and S. Even. "Reliable Broadcast Protocols in Unreliable
Networks." Networks, 16, (1987), 381-396.

2. Awerbuch, B. and R. Gallager. "A New Distributed Algorithm to Find
Breadth First Search Trees." IEEE Transactions on Information Theory,
(1987), 33, 315-322.

3. Awerbuch, B., 0. Goldreich and R. Vainish. "On the Message Complexity
of Broadcast: Basic Lower Bound." MIT/LCS/TM-325, MIT Laboratory for
Computer Science, Cambridge, MA, April 1987.

4. Awerbuch, B. and S. Micali. "Dynamic Deadlock Resolution Protocols."
Proceedings of the 27th Symposium of the Foundation of Computer
Science, IEEE, 1986, 196-207.

5. Awerbuch, B. and S. Plotkin. "Approximating the Size of a Dynamically
Growing Distributed Network." MIT/LCS/TM-328, MIT Laboratory for
Computer Science, Cambridge, MA, April, 1987.

6. Beame, P.W. and J. Hastad. "Optimal Bounds for Decision Problems on the
CRCW PRAM." Proceedings of the 19th Symposium on Theory of
Computing, ACM, 1987, 83-93.

7. Berger, B., M. Brady, I). Brown and T. Leighton. "Nearly Optimal Bounds
and Algorithms for Channel Routing." Journal of Circuits and Systems,
submitted for publication.

8. Berman, F., D. Johnson, T. Leighton, P. Shor and L. Snyder. Journal of
Algorithms, to appear.

9. Bhatt, S., F. Chung, T. Leighton and A. Rosenberg. "Optimal Simulation
of Tree Machines." Proceedings of the 27th Symposium of the Foundation
of Computer Science, IEEE, 1986, 274-282.

10. Bloom, B. "Constructing Two-Writer Atomic Registers." Proceedings
PODC, ACM, to appear, 1987.

11. Blum , M. P. Feldman and S. Micali "How to Prove a Theorem so Nobody
Else can Claim It." To appear, 1987.

12. Bodlaender, H.L. "A Better Lower Bound for Distributed Leader Finding in
Bidirectional Asynchronous Rings of Processors." To appear, 1987.

212

THEORY OF COMPUTATION

13. Bodlaender, H.L. "Dynamic Programming on Graphs with Bounded Tree
Width." MIT/LCS/TR, MIT Laboratory for Computer Science, Cambridge,
MA, May 1987.

14. Bodlaender, H.L. "New Lower Bounds for Distributed Leader Finding in
Asynchronous Rings of Processors." Submitted to GI-Jahrestagung.

15. Booth, K. and G. Lueker. "Testing for the Consecutive Ones Property,
Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms." Journal
of Computer System Scinek, 13, (1976), 335-339.

16. Boppana, R. and R. Hirschfeld. "Pseudorandom Generators and Complexity
Classes." Randomness and Computation. Also Advances in Computing
Research, JAI Press, 1987.

17. Boppana, R. B. "Eigenvalues and Graph Bisection: An Average-Case
Analysis." Submitted for publication, 1987.

18. Boppana, R. B., J. Hastad and S. Zachos "Does Co-NP Have Short
Interactive Proofs?" To appear, 1986.

19. Brassard, G. and C. Crepeau. "Non-Transitive Transfer of Confidence: A
Perfect Zero-Knowledge Interactive Protocol for SAT and Beyond." 27th
Symposium Foundations of Computer Science, IEEE 1986,188-195.

20. Brassard, G. and C. Crepeau. "Zero-Knowledge Simulation of Boolean
Circuits (Extended abstract)." Advances in Cryptology: Proceedings Crypto
'86. Springer-Verlag, Lecture Notes in Computer Science, to appear, 1986.

21. Brassard, G. and C. Crepeau and J.-M. Robert. "All-or-Nothing Disclosure
of Sec." Advances in Cryptology: Proceedings Crypto '86, Springer-Verlag.
Lecture Notes in Computer Science, to appear, 1986.

22. Brassard, G. and C. Crepeau and J.-M. Robert. "Information Theoretic
Reductions among Disclosure Problems." 27th Symposium Foundations of
Computer Science, IEEE, 1986, 168-173.

23. Breazu-Tannen V. "Conservative Extensions of Type Theories." MIT
Department of Mathematics, Cambridge, MA, 1987.

24. Breazu-Tannen, V. and T. Coquand. "Extensional Models For
Polymorphism." TAPSOFT'87 -- Colloquium on Functional and Logic
Programming and Specifications, Springer-Verlag, Lecture Notes in
Computer Science, 250, 1987, 291-307.

213

i2

THEORY OF COMPUTATION

25. Breazu-Tannen, V. and A.R. Meyer. "Lambda Calculus With Constrained
Types (Extended Abstract).N Logics of Programs. Springer-Verlag, Lecture
Notes in Computer Science, 193, R. Parikh (ed.), 1985, 23-40.

26. Breazu-Tannen, V. and A.R. Meyer. "Computable Values Can be
Classical." 14th Symposium on Principles of Programming Languages,
ACM, 1987, 238-245.

27. Breazu-Tannen, V. and A.R. Meyer. "Polymorphism is Conservative Over
Simple Types." 2nd Symposium Logic in Computer Science, IEEE, 1987,
7-17.

28. Bruce, K.B. and A.R. Meyer. "The Semantics of Second-Order Polymorphic
Lambda Calculus." Semantics of Data Types, Springer-Verlag, 1984,
Lecture Notes in Computer Science, G. Kahn, D. B. MacQueen and
G. Plotkin (eds.), 173, 131-144. Also to appear in Information and
Computation, 1988, coauthored with J.C. Mitchell.

29. Bruce, K. B. and J.G. Riecke. "The Semantics of Miranda's Algebraic
Types." Workshop on Mathematical Foundations of Programming
Language Semantics, Springer-Verlag, Lecture Notes in Computer Science.

30. Bui, T., S. Chaudhuri, T. F. Leighton and M. Sipser. "Graph Bisection
Algorithms With Good Average Case Behaviour." Combinatorica,, to
appear, 1987.

31. Bui, T., S. Chaudhuri, T. Leighton and M. Sipser. "Graph Bisection
Algorithms With Good Average Case Behaviour." Combinatorica, to
appear, 1987.

32. Chung, T., T. Leighton and A. Rosenberg. "Embedding Graphs in Books: A
Layout Problem With Applications to VLSI Design." SIAM Journal
Algebraic and Discrete Methods, 8, 1987, 33-58.

33. Clark Jr., E.M. "Programming Language Constructs for Which It Is
Impossible to Obtain Good Hoare Axiom Systems." JACM, 26, (1979)
129-147.

34. Coffman, E. and T. Kadota, T. Leighton and L. Schepp "Stochastic Analysis
of Storage Fragmentation. Proceedings Int. Sem. on Teletraffic Analysis
and Computer Performance Evaluation, 1986.

35. Cormen, T.H. "Concentrator Switches for Routing Messages in Parallel
Computers." MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, 1986.

214

THEORY OF COMPUTATION

36. Cormen, T.H. "Efficient Multichip Partial Concentrator Switches." 1987
International Conference on Parallel Processing, IEEE Computer Society
Press, to appear, 1987 Available as MIT/LCS/TM-322, 1987.

37. Cormen, T.H. and C.E. Leiserson. U.S. Patent Application:
"Hyperconcentrator Switch for Message Routing." 1986.

38. Cormen, T.H. and C. E. Leiserson. "A Hyperconcentrator Switch for

Routing Bit-Serial Messages." 1986 International Conference on Parallel
Processing, IEEE Computer Society Press, 1986, 721-728. Also available as

MIT/LCS/TM-321, 1987.

39. Crepeau, C. "A Secure Poker Protocol that Minimizes the Effects of Player
Coalitions." Advances in Cryptology: Proceedings Crypto '85, Springer-

Verlag, Lecture Notes in Computer Science, 218, H.C. Williams (ed.),
(1985), 73-86.

40. Crepeau, C. "Protocole Cryptographique De Poker a L'Aveugle Permettant
la Confidentlaliede la Strategie." S.M. thesis, Dept. d'Informatique et de

R.O., Universite de Montreal, 1986.

41. Crepeau, C. "A Zero-Knowledge Poker Protocol that Achieves
Confidentiality of the Players. Strategy or How to Achieve an Electronic

Poker Face." Advances in Cryptology: Proceedings Crypto '86, Springer-
Verlag, Lecture Notes in Computer Science, to appear, 1986.

42. Crepeau, C. "Equivalence Between Two Flavours of Oblivious Transfers

(Abstract)." 1987, submitted to Crypto '87.

43. Dwork, C., D.B. Shmoys and L. Stockmeyer. "Flipping Persuasively in
Constant Expected Time. 27th Symposium Foundations Computer Science,

IEEE, 1986, 222-232.

44. Elias, P. "List Decoding for Noisy Channels." 957 IRE Wescon Convention
Record Part 2., Institute of Radio Engineers (now IEEE). 1957, 94-104.

45. Elias, P. "Zero Error Capacity for List Decoding." Quarterly Progress

Report, MIT Research Laboratory of Electronics, Cambridge, MA, January
1958, 88-90.

46. Elias, P. "Interval and Recency Rank Source Coding: Two On-Line

Adaptive Variable-Length Schemes." IEEE Transactions on Information

Theory, 33, (1987), 3-10.

215

THEORY OF COMPUTATION

47. Fekete, A., N. Lynch, M. Merritt and W. Weih). "Nested Transactions and

Read-Write Locking." 6th Symposium Principles of Database Systems, to
appear, 1987.

48. Fekete, A., N. Lynch and L. Shrira. "A Modular Proof of Correctness for a
Network Synchronizer." 2nd International Workshop on D;stributed
Algorithms, Springer-Verlag, to appear, 1987.

49. Fortnow, L. "The Complexity of Perfect Zero-Knowledge." Randomness
and Computation, JAI Press, 1987, S. Micali (ed.), Advances in Computing
Research, to appear.

50. Gallager, R.G. Information Theory and Reliable Communication. John
Wiley and Sons, 1968.

51. German, S.M., E.M. Clarke and J.Y. Halpern. "True Relative Completeness
of an Axiom System for the Language L4." Symposium Logic in Computer
Science, IEEE, 1986, 11-25.

52. Goldberg A. and S. Plotkin. "Efficient Parallel Algorithms for (A + 1)
Coloring and Maximal Independent Set Problems." MIT/LCS/TM-320,
MIT Laboratory for Computer Science, Cambridge, MA, 1987.

53. Goldberg, A. and S. Plotkin. "Parallel (A + 1) Coloring of Constant-Degree
Graphs." IPL, 24, 4, 1987.

54. Goldberg A. and S. Plotkin and G. Shannon. "Parallel Symmetry Breaking
in Sparse Graphs." 19th Symposium Theory of Computing, ACM 1987.
315-324.

55. Goldberg, A.V. "Efficient Graph Algorithms for Sequential and Parallel
Computers." MIT/LCS/TR-374, Laboratory for Computer Science,
Cambridge, MA, January 1987.

56. Goldberg, A.V. and R. E. Tarjan. "Finding Minimum-Cost Circulations by
Successive Approximation." To appear, 1987.

57. Goldberg, A.V. and R. E. Tarjan. "A New Approach to the Maximum Flow
Problem." Journal of the ACM, 1987.

58. Goldberg, A.V. and R. E. Tarjan. "Solving Minimum-Cost Flow Problems
by Successive Approximation." 19th Symposium Theory of Computing, May
1987, 7-18.

216

THEORY OF COMPUTATION

59. Goldman, K. J. and N. A. Lynch. "Quorum Consensus in Nested

Transaction Systems." 6th Symposium Principles of Distributed

Computing, ACM, to appear, 1987.

60. Goldman, S.A. "Efficient Methods for Calculating Maximum Entropy

Distributions." MIT/LCS/TR-391, MIT Laboratory for computer Science.

Cambridge, MA, 1987.

61. Goldman, S.A. and R.L. Rivest. "Making Maximum Entropy Computations

Easier by Adding Extra Constraints (Extended Abstract)." Proceedings 6th

Workshop on Maximum Entropy and Bayesian Methods in Applied

Statistics, 1986, to appear.

62. Goldman, S.A. and R.L. Rivest. "Uncertainty in Artificial Intelligence."
North-Holland. A Non-Iterative Maximum Entropy Algorithm, L.N. Kanal

and J. Lemmer (eds.), to appear.

63. Goldreich, 0., S. Micali and A. Wigderson. "Proofs That Yield Nothing But

Their Validity and a Methodology of Cryptographic Protocol Design." 27th
IEEE Symposium Foundations Computer Science, IEEE, 1986, 174-186.

64. Goldreich, 0. and S. Micali and A. Wigderson. "How to Play Any Mental

Game or A Completeness Theorem for Distributed Protocols with Honest
Majority." 19th Symposium Theory of Computing, ACM, 1987, 218-229.

65. Goldwasser, S., S. Micali and C. Rackoff. "The Knowledge Complexity of

Interactive Proof Systems." submitted for publication, 1987.

66. Goldwasser, S., S. Micali and R. L. Rivest. "A Digital Signature Scheme

Secure Against Adaptive Chosen-Message Attacks." Japan-U.S. Conference

on Algorithms, Kyoto, Japan, 1986, 287-310.

67. Greenberg, R.I. and C. E. Leiserson. "Randomized Routing on Fat-Trees.

Advances in Computing Research, Fourth volume: Randomness and
Computation, JAI Press, S. Micali (ed.), to appear. Earlier versions
availab! in MIT/LCS/TM-307 and 2t,'h IEEE Symposium Foundations of

Computer Science, (1985), 241-249.

68. Halpern, J.Y., A.R. Meyer and B.A. Trakhtenbrot. "The Semantics of Local

Storage, Or What Makes the Free-list Free?" 11th Symposium Principles of

Programming Languages, ACM, 1984, 245-257.

69. Hastad, J. "Computational Limitations of Small-Depth Circuits." MIT

Press, Cambridge, MA, 1986.

217

THEORY OF COMPUTATION

70. Hastad, J. "Oneway permutations in NCO." IPL, 1986, to appear.

71. H"stad, J. "Dual Vectors and the Nearest Lattice Point Problem."
Combinatorica, to appear, 1987.

72. Hastad, J. F.T. Leighton, M. Newman. "Reconfiguring a Hypercube in the
Presence of Faults." 19th Symposium Theory of Computing. ACM, 1987,
274-284.

73. Hastad, J., F.T. Leighton and B. Rogoff. "Analysis of Backoff Protocols for
Multiple Access Channels." 19th Symposium Theory of Computing, 1987,
ACM, 241-253.

74. Heath, L. S. and S. Istrail. "The Pagenumber of Genus g Graphs is 0(g)".
19th Symposium Theory of Computing, 1987, ACM, 388-397.

75. Heath, L. S. and A. L. Rosenberg. "An Optimal Mapping of the Algorithm
FFT Onto the Hypercube Architecture." 1987, submitted for publication.

76. Heath, L. S., A. L. Rosenberg, B.T. Smith. "The Physical Mapping Problem
for Parallel Architectures." 1986, submitted for publication.

77. Herlihy, M., N. Lynch, M. Merritt. W. Weihl, W. "On the Correctness of
Orphan Elimination Algorithms. 17th International Symposium Fault-
Tolerant Computing, 1987, IEEE, to appear.

78. Hochbaum, D.S. and D.B. Shmoys. "A polynomial Approximation Scheme
for Scheduling Onuniform Processors: Using the Dual Approximation
Approach." SICOMP.

79. Hochbaum, D.S. and D.B. Shmoys. "A Unified Approach to Approximation
Algorithms for Bottleneck Problems." JACAM, 33, (1986), 533-550.

80. Hochbaum, D.S. and David B. Shmoys. " A Best Possible Parallel
Approximation Algorithm for a Graph Theoretic Algorithm." IFORS '87.
1987, North-Holland, to appear.

81. Hochbaum, D.S. and D. B. Shmoys. "Using Dual Approximation Algorithms
for Scheduling Problems: Practical and Theoretical Results." JACAf, 34,
(1987), 144-162.

82. JaJa, J and J. Simon. "Parallel Algorithms in Graph Theory: Planarity
Testing." SICOMP, 11, 1982, 313-328.

218

THEORY OF COMPUTATION

83. Kaliski, B. S. "Design and Reliability of Custom Hardware for DES Cycling

Experiments." M.S. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, 1987.

84. Kaliski, B. S. "A Pseudo-Random Bit Generator Based on Elliptic
Algorithms." Advances in Cryptology: Proceeding8 of Crypto 86, Springer-
Verlag, 1987.

85. Kaliski, B.S.. R.L. Rivest and A.T. Sherman. "Is the Data Encryption

Standard a Pure Cipher? (Results of more cycling studies cn DES)."
Advances in Cryptology: Proceedings of Crypto 85, Springer-Verlag, H.C.
Williams (ed.), 212-226.

86. Karloff, H. J. and D.B. Shmoys. "Parallel Algorithms for Edge Coloring

Problems." Journal of Algorithms, 8, (1987), 39-52.

87. Kilian, J., S. Kipnis and C.E. Leiserson. "The Organization of Permutation
Architectures With Bussed Interconnections." 1987, submitted.

88. Klein, P.N. and J.H. Reif. "An Efficient Parallel Algorithm for Planarity."
27th Symposium on Foundations of Computer Science. 1986, IEEE,

464-477.

89. Klein, P.N. and J.H. Reif. "Parallel Time O(log n) Acceptance of
Deterministic CFL's on an Exclusive-Write PRAM." SICOMP, to appear,
1987.

90. Leighton, F.T. "Tight Bounds on the Complexity of Parallel Sorting. IEEE,

C-34, (1985), 344-354.

91. Leighton, F.T. "A Survey of Bounds and Algorithms for Channel Routing."

1986, submitted to Algorithmica.

92. Leighton, F. T. and C. E. Leiserson. "A Survey of Algorithms for Integrating
Wafer-Scale Systolic Arrays." A VLSI Circuit and Architecture Design,,

Marcel-Dekker, Inc., E. Swartzlander, Jr. (ed.), To appear, 1987. An early
version appears in the proceedings of the IFIP Conference on Wafer-Scale

Integration, 1986, 177-195.

93. Leighton, F. T. and R.L. Rivest. "Estimating a Probability Using Finite

Memory." IEEE Transactions on Information Theory, IE-32, 6, (November

1986), 733-742.

94. Leighton, F.T. and A. Rosenberg. "Three-Dimensional Circuit Layouts."
Sicomp, 15, (1986), 718-813.

219

THEORY OF COMPUTATION

95. Leiserson, C.E. "Fat-Trees: Universal Networks for Hardware-Efficient
Supercomputing. IEEE, C-34, (1985), 892-901.

96. Leiserson, C. E. and Maggs, B. M. Algorithmica. "Communication-Efficient
Parallel Algorithms for Distributed Random-Access Machines." To appear,
1987. Earlier version available as MIT/LCS/TM-318, MIT Laboratory for
Computer Science, Cambridge, MA., December 1986.

97. Leiserson, C. E. and C.A. Phillips. "Parallel Contraction of Planar Graphs
(Extended Abstract)." 1987, submitted for publication.

98. Leiserson, C. E. and C.A. Phillips. "A Space-Efficient Algorithm for Finding
the Connected Components of Rectangles in the Plane." MIT/LCS/TM-323,
MIT Laboratory for Computer Science, Cambridge, MA, February 1987.

99. Lenstra, J.K., D.B. Shmoys, and E. Tardos. "Scheduling Unrelated Parallel
Machines." 1987, submitted for publication.

100. Lynch, N. and M. Merritt. "Introduction to the Theory of Nested
Transactions." Int'l Conference Database Theory, September 1986, Springer-
Verlag, 278-305.

101. Lynch, N. and M. Tuttle. "Hierarchical Correctness Proofs for Distributed
Algorithms." 6th Symposium Principles of Distributed Computing, August
To appear, 1987.

102. Maggs, B. and S. Plotkin. "Minimum-Cost Spanning Tree as a Path-

Finding Problem in a Closed Semiring." 1986, submitted for publication.

103. Maley, F. M. "Compaction with Automatic Jog Introduction."
MIT/LCS/TM-372, MIT Laboratory for Computer Science, Cambridge, MA,
November 1986.

104. Meyer, A.R. "Communication in the Electronic Forum
typesexx.ics.mit.edu.." February 1986.

105. Meyer, A.R. "Floyd-Hoare Logic Determines Semantics." TCS, 1987, to
appear. Earlier version available in IEEE Symposium Logic in Computer
Science, (June 1986), 44-48.

106. Meyer, A.R. and J.Y. Halpern. "Axiomatic Definitions of Programming
Languages: a Theoretical Assessment." JACM, 29, (1982), 555-576.

107. Meyer, A.R., J. C. Mitchell, E. Moggi and R. Statman. "Empty Types in

220

THEORY OF COMPUTATION

Polymorphic Lambda-Calculus." 14th Symposium Principlea of
Programming Languages. ACM, 1987, 253-262.

108. Meyer, A.R. and M.B. Reinhold. "'Type' Is Not a Type: Preliminary
Report." 18th Symposium Principles of Programming Languages, ACM,
1986, 287-295.

109. Meyer, A.R. and M. Wand. Logics of Programs. Springer-Verlag, 193,
"Continuation semantics in typed lambda-calculi (Summary). 1985,
R. Parikh (ed.), 219-224.

110. Micall, S., C. Rackoff and R. Sloan. "The Notion of Security for
Probabilistic Cryptosystems." SICOMP, To appear, 1987.

111. Quinlan, J.R. and R.L. Rivest. "Inferring Decision Trees Using the Minimum
Description Length Principle." 1987, Draft manuscript available from
authors.

112. Rao, S. "Finding Small Edge Separators in Planar Graphs." M.S. thesis
1987, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA,

113. Reed, D.P. "Naming and Synchronization in a Decentralized Computer
System." Ph.D. dissertation, MIT/LCS/TR-205, MIT Laboratory for
Computer Science, Cambridge, MA, 1978.

114. Rivest, R.L. "Game Tree Searching by Min/Max Approximation." Al
Journal, to appear, 1987. Earlier version available as MIT/LCS/TR-311,
September 1986.

115. Rivest, R.L. "Learning Decision-Lists." Machine Learning, To appear, 1987.

116. Rivest, R.L. Network Control by Bayesian Broadcast." IEEE Transactions
on Information Theory, IT-33, 3, (May 1987), 323-328.

117. Rivest, R. L. and R.E. Schapire. "A New Approach to Unsupervised
Learning in Deterministic Environments." Proceedings Machine Learning
Workshop, Langley (ed.), To appear, 1987.

118. Rivest, R.L. and R. Sloan. "A New Model for Inductive Inference." 1987,
submitted for publication.

119. Rosenberg, A.L. "The Diogenes Approach to Testable Fault-Tolerant Arrays
of Processors." IEEE, C-32, 1983, 902-910.

221

4.

THEORY OF COMPUTATION

120. Schnorr, C.P. and A. Shamir. "An Optimal Sorting Algorithm for Mesh
Connected Computers. 18th Symposium Theory of Computing, ACM, 1986,
255-263.

121. Sherman, A.T. "Cryptology and VLSI (a Two-Part Dissertation):
1. Detecting and Exploiting Algebraic Weaknesses in Cryptosystems II.
Algorithms for Placing Modules On a Custom VISi Chip." Ph.D.
dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, 1986.

122. Vitanyi, P. and Awerbuch, B. "Atomic Register Access by Asynchronous
Hardware. 27th Symposium Foundations Computer Science, IEEE, 1986,
233-243.

123. Wozencraft, J.M. "List Decoding." Quarterly Progress Report, MIT
Research Laboratory of Electronics, Cambridge, MA, January 1958, 90-95.

124. Zyablov, V.V. and M.S. Pinsker. "List Cascade Decoding." Problemy
Peredachi Informatsi, 17, 1981, 29-33. English translation in Problems of
Information Transmission, 236-240, 1982

Publications

1. Abadi, M., J. Feigenbaum and J.F. Kilian. "On Hiding Information From
An Oracle." Proceedings of the 19th Symposium on the Theory of
Computation, IEEE, 1987, 195-203.

2. Afek, Y., B. Awerbuch and E. Gafni. "Adapting Communication Protocols
to Dynamic Input and Network Topology." Proceedings of the 28
Symposium on Foundations of Computer Science, IEEE, To appear, 1987.

3. Aiello, WA., S. Goldwasser and J. Hastad. "On the Power of Interaction."
Proceeding8 of the 27th Symposium on Foundations of Computer Science,
IEEE, 1986, 368-379.

4. Aiello, W.A. and J. Hastad. "Perfect Zero-Knowledge Languages Can Be
Recognized in Two Rounds." Submitted to the 28th Symposium on
Foundations of Computer Science, IEEE, 1987.

5. Ashcroft, R. "When Ignorance Is Bliss." The Economist, 303, (1987), 93-94.

6. Aspnes, J.D. "Timestamp Ordering and Nested Transactions." E.E. and
S.M. Thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, 1987.

222

THEORY OF COMPUTATION

7. Awerbuch, B. "Adapting Communication Protocols to Dynamic Input and
Network Topology." MIT/LCS/TM-326, MIT Laboratory for Computer
Science, Cambridge, MA, April 1987.

8. Awerbuch, B. "Controlling Worst-Case Performance of a Communication
Protocol and Dynamic Resource Management." MIT/LCS/TM-326, MIT
Laboratory for Computer Science, Cambridge, MA, April 1987.

9. Awerbuch, B. "Optimal Distributed Algorithms for Minimum Spanning
Trees, Leader Election, Counting and Related Problems." Proceedings for
the 19th Symposium of the Theory of Computing, ACM, 1987, 230-240.

10. Awerbuch, B. and S. Even. "Reliable Broadcast Protocols in Unreliable
Networks." Networks, (1987), 16, 381-396.

11. Awerbuch, B. and R. Gallager. "A New Distributed Algorithm to Find
Breadth First Search Trees." IEEE Transactions on Inf. Theory, (1987),
33, 315-322.

12. Awerbuch, B., 0. Goldreich and R. Vainish. "On the Message Complexity
of Broadcast: Basic Lower Bound." MIT/LCS/TM-325, MIT Laboratory for
Computer Science, Cambridge, MA, April 1987.

13. Awerbuch, B. and S. Micali. "Dynamic Deadlock Resolution Protocols."
Proceedings of the 27th Symposium of the Foundation of Computer
Science, IEEE, 1986, 196-207.

14. Awerbuch, B. and S. Plotkin. "Approximating the Size of a Dynamically
Growing Distributed Network." MIT/LCS/TM-328, MIT Laboratory for
Computer Science, Cambridge, MA, April, 1987.

15. Beame, P.W. and J. Hastad. "Optimal Bounds for Decision Problems on the
CRCW PRAM." Proceedings of the 19th Symposium on Theory of
Computing, ACM, 1987,83-93.

16. Berger, B., M. Brady, D. Brown and T. Leighton. "Nearly Optimal Bounds
and Algorithms for Channel Routing." Journal of Circuits and Systems,
submitted for publication.

17. Berman, F., D. Johnson, T. Leighton, P. Shor and L. Snyder. Journal of

Algorithms, to appear.

18. Bhatt, S., F. Chung, T. Leighton and A. Rosenberg. "Optimal Simulation
of Tree Machines." Proceedings of the 27th Symposium of the Foundation
of Computer Science, IEEE, 1986, 274-282.

223

THEORY OF COMPUTATION

1. Bloom, B. "Constructing Two-Writer Atomic Registers." Proceedings

PODC, ACM, to appear, 1987.

20. Blum , M. P. Feldman and S. Micali "How to Prove a Theorem so Nobody

Else can Claim It." To appear 1987.

21. Bodlaender, H.L. "A Better Lower Bound for Distributed Leader Finding in

Bidirectional Asynchronous Rings of Processors." to appear 1987.

22. Bodlaender, H.L. "Dynamic Programming on Graphs with Bounded Tree

Width." MIT/LCS/TR, MIT Laboratory for Computer Science, Cambridge,
MA, May 1987.

23. Bodlaender, H.L. "New Lower Bounds for Distributed Leader Finding in
Asynchronous Rings of Processors." Submitted to GI-Jahrestagung.

24. Booth, K. and G. Lueker. "Testing for the Consecutive Ones Property,
Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms." Journal

of Computer System Scinek, 13, (1976), 335-339.

25. Boppana, R. and R. Hirschfeld. "Pseudorandom Generators and Complexity

Classes." Randomness and Computation. Also Advances in Computing
Research, JA Press, 1987.

26. Boppana, R. B. "Eigenvalues and Graph Bisection: An Average-Case
Analysis." Submitted for publication, 1987.

27. Boppana, R. B., J. Hastad and S. Zachos "Does Co-NP Have Short
Interactive Proofs?" to appear, 1986.

28. Boppana, R.B. and R. Hirschfeld. Randomness and Computation.
Advances in Computing Research, 5, JAI Press, To appear, 1987. A
preliminary version appeared as an MIT Master's thesis by the second
author, Department of Electrical Engineering and Computer Science, June
1986.

29. Brassard, G. and C. Crepeau and J.-M. Robert. "Information Theoretic
Reductions among Disclosure Problems." 27th Symposium Foundations of
Computer Science, IEEE, 1986, 168-173.

30. Brassard, G. and C. Crepeau and J.-M. Robert. Advances in Cryptology:
Proceedings Crypto '86. Springer-Verlag. "All-or-Nothing Disclosure of See.

1986, Series=Lecture Notes in Computer Science, to appear.

224

THEORY OF COMPUTATION

31. Brassard, G. and C. Crepeau. "Advances in Cryptology: Proceedings Crypto

'86. {Springer-Verlag. "Zero-Knowledge Simulation of Boolean Circuits

(Extended abstract). 1986, Lecture Notes in Computer Science, to appear.

32. Brassard, G. and C. Crepeau. "Non-Transitive Transfer of Confidence: A
Perfect Zero-Knowledge Interactive Protocol for SAT and Beyond." 2?th

Symposium Foundations of Computer Science, IEEE 1986,188-195.

33. Breazu-Tannen V. "Conservative Extensions of Type Theories." MIT

Department of Mathematics, Cambridge, MA, 1987.

34. Breazu-Tannen, V. and A.R. Meyer. "Computable Values Can be

Classical." 14th Symposium on Principles of Programming Languages,

ACM, 1987, 238-245.

35. Breazu-Tannen, V. and A.R. Meyer. "Polymorphism is Conservative Over

Simple Types." 2nd Symposium Logic in Computer Science, IEEE, 1987,
7-17.

36. Breazu-Tannen, V. and A.R. Meyer. Logics of Programs. Springer-Verlag,
"Lambda Calculus With Constrained Types (Extended abstract). 1985,
Lecture Notes in Computer Science, 193, R. Parikh (ed.), 23-40.

37. Breazu-Tannen, V. and Thierry Coquand. "Extensional Models For

Polymorphism." TAPSOFT'87 -- Colloquium on Functional and Logic
Programming and Specifications, Springer-Verlag, Lecture Notes in
Computer Science, 250, Berlin, 1987, 291-307.

38. Bruce, K.B. and A.R. Meyer. "The Semantics of Second-Order Polymorphic
Lambda Calculus." G. Kahn, D. B. MacQueen and G. Plotkin (eds.),
Semantics of Data Types. Springer-Verlag, 1984, Lecture Notes in Computer
Science, 173, 131-144. Also to appear in Information and Computation,

1988, coauthored with J.C, Mitchell.

39. Bruce, K. B. and J.G. Riecke. "The Semantics of Miranda's Algebraic

Types." Workshop on Mathematical Foundations of Programming
Language Semantics, Springer-Verlag, Lecture Notes in Computer Science.

40. Bui, T., S. Chaudhuri, T. F. Leighton and M. Sipser. "Graph Bisection

Algorithms With Good Average Case Behaviour." Combinatorica, To
appear, 1987.

41. Schnorr, C.P. and A. Shamir. "An Optimal Sorting Algorithm for Mesh

Connected Computers. 18th Symposium Theory of Computing, ACM, 1986,
255-263.

225

THEORY OF COMPUTATION

42. Chung, T., T. Leighton and A. Rosenberg. "Embedding Graphs in Books: A
Layout Problem With Applications to VLSI Design." SIAM Journal
Algebraic and Discrete Methods, 8, (1987), 33-58.

43. Chung, T., T. Leighton and A. Rosenberg. "Embedding Graphs in Books: A
Layout Problem With Applications to VLSI Design." SIAM Journal
Algebraic and Discrete Methods, 8, (1087), 33-58.

44. Clark Jr., E.M. "Programming Language Constructs for Which It Is
Impossible to Obtain Good Hoare Axiom Systems." JACM, 26, (1979)
129-147.

45. Coffman, E., T. Kadota, T. Leighton and L. Schepp "Stochastic Analysis of
Storage Fragmentation. Proceedings Int. Scm. on Teletraffic Analysis and
Computer Performance Evaluation, 1986.

46. Cormen, T.H. "Efficient Multichip Partial Concentrator Switches." 1987
International Conference on Parallel Processing, IEEE Computer Society
Press, To appear, 1987. Available as MIT/LCS/TM-322, 1987.

47. Cormen, T.H. "Concentrator Switches for Routing Messages in Parallel
Computers." MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, 1986.

48. Cormen, T.H. and C.E. Leiserson. U.S. Patent Application:
"Hyperconcentrator Switch for Message Routing." 1986.

49. Cormen, T.H. and C. E. Leiserson. "A Hyperconcentrator Switch for
Routing Bit-Serial Messages." 1986 International Conference on Parallel
Processing, IEEE Computer Society Press, 1986, 721-728. Also available as
MIT/LCS/TM-321, 1987.

50. Crepeau, C. "Equivalence Between Two Flavours of Oblivious Transfers
(Abstract)." 1987, submitted to Crypto '87.

51. Crepeau, C. "Protocole Cryptographique De Poker a L'Aveugle Permettant
Ia Confidentialiede la Strategie." S.M. thesis, Dept. d'Informatique et de
R.O., Universite de Montreal, 1986.

52. Crepeau, C. "A Secure Poker Protocol that Minimizes the Effects of Player
Coalitions." Advances in Cryptology: Proceedings Crypto '85, Springer-
Verlag, Lecture Notes in Computer Science, 218, H.C. Williams (ed.),
(1985), 73-86.

226

THEORY OF COMPUTATION

53. Crepeau, C. "A Zero-Knowledge Poker Protocol that Achieves
Confidentiality of the Players." Strategy or How to Achieve an Electronic

Poker Face." Advances in Cryptology: Proceedings Crypto '86, Springer-

Verlag, Lecture Notes in Computer Science, 1986, to appear.

54. Dwork, C., D.B. Shmoys and L. Stockmeyer. "Flipping Persuasively in
Constant Expected Time. 27th Symposium Foundations Computer Science,

IEEE, 1986, 222-232.

55. Elias, P. "Zero Error Capacity for List Decoding." Quarterly Progress

Report, MIT Research Laboratory of Electronics, Cambridge, MA, January
1958, 88-90.

56. Elias, P. "Interval and Recency Rank Source Coding: Two On-Line

Adaptive Variable-Length Schemes." IEEE Transactions on Information
Theory, 33, (1987), 3-10.

57. Elias, P. "List Decoding for Noisy Channels." 957 IRE Wescon Convention

Record Part 2., Institute of Radio Engineers (now IEEE). 1957, 94-104.

58. Fekete. A., N. Yynch, M. Merritt and W. Weihi. "Nested Transactions and

Read-Write Locking." 6th Symposium Principles of Database Systems, To
appear, 1987.

59. Fekete, A., N. Lynch and L. Shrira. "A Modular Proof of Correctness for a
Network Synchronizer." 2nd International Workshop on Distributed
Algorithms, Springer-Verlag, to appear, 1987.

60. Fortnow, L. "The Complexity of Perfect Zero-Knowledge." Randomness
and Computation, JAI Press, 1987, S. Micali (ed.), Advances in Computing
Research, to appear.

61. Gallager, R.G. Information Theory and Reliable Communication. John
-Wiley and Sons, 1968.

62. German, S.M., E.M. Clarke and J.Y. Halpern. "True Relative Completeness
of an Axiom System for the Language L4." Symposium Logic in Computer
Science, IEEE, 1986, 11-25.

63. Goldberg A. and S. Plotkin. "Efficient Parallel Algorithms for (A + I)
Coloring and Maximal Independent Set Problems." MIT/LCS/TM-320,

MIT Laboratory for Computer Science, Cambridge, MA, 1987.

64. Goldberg A. and S. Plotkin and G. Shannon. "Parallel Symmetry Breaking

227

J -I.

THEORY OF COMPUTATION

in Sparse Graphs." 19th Symposium Theory of Computing, ACM 1987,
315-324.

65. Goldberg, A. and S. Plotkin. "Parallel (,5 + 1) Coloring of Constant-Degree
Graphs." IPL, 24, 4, 1987.

66. Goldberg, A.V. "Efficient Graph Algorithms for Sequential and Parallel
Computers." MIT/LCS/TR-374, Laboratory for Computer Science,
Cambridge, MA, January 1987.

67. Goldberg, A.V. and R. E. Tarjan. "Solving Minimum-Cost Flow Problems
by Successive Approximation." 19th Symposium Theory of Computing, May
1987, 7-18.

68. Goldberg, A.V. and R. E. Tarjan. "A New Approach to the Maximum Flow
Problem." Journal of the ACM, 1987.

69. Goldberg, A.V. and R. E. Tarjan. "Finding Minimum-Cost Circulations by
Successive Approximation." To appear, 1987.

70. Goldman, K. J. and N. A. Lynch. "Quorum Consensus in Nested
Transaction Systems." 6th Symposium Principles of Distributed
Computing, ACM, to appear, 1987.

71. Goldman, S.A. "Efficient Methods for Calculating Maximum Entropy
Distributions." MIT/LCS/TR-391, MIT Laboratory for computer Science,
Cambridge, MA, 1987.

72. Goldman, S.A. and R.L. Rivest. "Making Maximum Entropy Computations
Easier by Adding Extra Constraints (Extended Abstract)." Proceedings 6th
Workshop on Maximum Entropy and Bayesian Methods in Applied
Statistics, to appear, 1986.

73. Goldman, S.A. and R.L. Rivest. "Uncertainty in Artificial Intelligence."
North-Holland. A Non-Iterative Maximum Entropy Algorithm, L.N. Kanal
and J. Lemmer (eds.), to appear.

74. Goldreich, 0., S. Micali and A. Wigderson. "Proofs That Yield Nothing But
Their Validity and a Methodology of Cryptographic Protocol Design." 27th
IEEE Symposium Foundations Computer Science, IEEE, 1986, 174-186.

75. Goldreich, 0. and S. Micali and A. Wigderson. "How to Play Any Mental
Game or A Completeness Theorum for Distributed Protocols with Honest
Majority." 19th Symposium Theory of Computing, ACM, 1987, 218-229.

228

• • m mmmm uw m m mm m mmm mm m mmmmm m m m mm - --

THEORY OF COMPUTATION

76. Goldwasser, S., S. Micali and C. Rackoff. "The Knowledge Complexity of
Interactive Proof Systems." submitted for publication, 1987.

77. Goldwasser, S., S. Micall and R. L. Rivest. "A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks." Japan-U.S. Conference
on Algorithms, Kyoto, Japan, 1986, 287-310.

78. Greenberg, R.I. and C. E. Leiserson. "Randomized Routing on Fat-Trees.
Advances in Computing Research, Fourth volume: Randomness and
Computation, JAI Press, S. Micali (ed.), to appear. Earlier versions
available in MIT/LCS/TM-307 and 26th IEEE Symposium Foundations of
Computer Science, (1985), 241-249.

79. Halpern, J.Y., A.R. Meyer and B.A. Trakhtenbrot. "The Semantics of Local
Storage, Or What Makes the Free-list Free?" 11th Symposium Principles of
Programming Languages, ACM, 1984, 245-257.

80. Hastad, J. "Oneway permutations in NCO." IPL, to appear, 1986.

81. Hastad, J. "Dual Vectors and the Nearest Lattice Point Problem."
Combinatorica, to appear, 1987.

82. Hastad, J. F.T. Leighton, M. Newman. "Reconfiguring a Hypercube in the
Presence of Faults." 19th Symposium Theory of Computing. ACM, 1987,
274-284.

83. Hastad, J., F.T. Leighton and B. Rogoff. "Analysis of Backoff Protocols for
Multiple Access Channels." 19th Symposium Theory of Computing, 1987,
ACM, 241-253.

84. Hastad, J. "Computational Limitations of Small-Depth Circuits." MIT
Press, Cambridge, MA, 1986.

85. Heath, L. S., A. L. Rosenberg, B.T. Smith. "The Physical Mapping Problem
for Parallel Architectures." 1986, submitted for publication.

86. Heath, L. S. and A. L. Rosenberg. "An Optimal Mapping of the Algorithm
FFT Onto the Hypercube Architecture." 1987, submitted for publication.

87. Heath, L. S. and S. Istrail. "The Pagenumber of Genus g Graphs is 0(g)".
19th Symposium Theory of Computing, 1987, ACM, 388-397.

88. Herlihy, M., N. Lynch, M. Merritt, W. Weihl, W. "On the Correctness of
Orphan Elimination Algorithms. 17th International Symposium Fault-
Tolerant Computing, 1987, IEEE, to appear.

229

THEORY OF COMPUTATION

89. Hochbaum, D.S. and David B. Shmoys. " A Best Possible Parallel
Approximation Algorithm for a Graph Theoretic Algorithm." IFORS '87,
1987, North-Holland, to appear.

90. Hochbaum, D.S. and D.B. Shmoys. "A polynomial Approximation Scheme
for Scheduling Onuniform Processors: Using the Dual Approximation
Approach." SICOMP.

91. Hochbaum, D.S. and D. B. Shmoys. "Using Dual Approximation Algorithms
for Scheduling Problems: Practical and Theoretical Results." JACM, 34,
(1987), 144-162.

92. Hochbaum, D.S. and D.B. Shmoys. "A Unified Approach to Approximation
Algorithms for Bottleneck Problems." JACM, 33, (1986), 533-550.

93. JaJa, J and J. Simon. "Parallel Algorithms in Graph Theory: Planarity
Testing." SICOMP, 11, 1982, 313-328.

94. Kaliski, B. S. "Design and Reliability of Custom Hardware for DES Cycling
Experiments." M.S. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, 1987.

95. Kaliski, B. S. "A Pseudo-Random Bit Generator Based on Elliptic
Algorithms." Advances in Cryptology: Proceedings of Crypto 86, Springer-
Verlag, 1987.

96. Kaliski, B.S., R.L. Rivest and A.T. Sherman. "Is the Data Encryption
Standard a Pure Cipher?" (Results of more cycling studies on DES)."
Advances in Cryptology: Proceedings of Crypto 85, Springer-Verlag, H.C.
Williams (ed.), 212-226.

97. Karloff, H. J. and D.B. Shmoys. "Parallel Algorithms for Edge Coloring
Problems." Journal of Algorithms, 8, (1987), 39-52.

98. Kilian, J., S. Kipnis and C.E. Leiserson. "The Organization of Permutation
Architectures With Bussed Interconnections." 1987, submitted.

99. Klein, P.N. and J.H. Reif. "Parallel Time O(log n) Acceptance of
Deterministic CFL's on an Exclusive-Write PRAM." SICOMP, to appear,
1987.

100. Klein, P.N. and J.H. Reif. "An Efficient Parallel Algorithm for Planarity."
27th Symposium on Foundations of Computer Science. 1986, IEEE,
464-477.

230

THEORY OF COMPUTATION

101. Leighton, F. T. and C. E. Leiserson. "A Survey of Algorithms for Integrating
Wafer-Scale Systolic Arrays." A VLSI Circuit and Architecture Design,,
Marcel-Dekker, Inc., E. Swartzlander, Jr. (ed.), To appear, 1987. An early
version appears in the proceedings of the IFIP Conference on Wafer-Scale
Integration, 1986, 177-195.

102. Leighton, F. T. and R.L. Rivest. "Estimating a Probability Using Finite
Memory." IEEE Transactions on Information Theory, IE-32, 6, (November
1986), 733-742.

103. Leighton, F.T. "A Survey of Bounds and Algorithms for Channel Routing."
1986, submitted to Algorithmica.

104. Leighton, F.T. "Tight Bounds on the Complexity of Parallel Sorting. IEEE,
C-34, (1985), 344-354.

105. Leighton, F.T. and A. Rosenberg. "Three-Dimensional Circuit Layouts."
Sicomp 15, (1986), 718-813.

106. Leiserson, C. E. and Maggs, B. M. Algorithmica. "Communication-Efficient
Parallel Algorithms for Distributed Random-Access Machines." To appear,
1987. Earlier version available as MIT/LCS/TM-318, MIT Laboratory for
Computer Science, Cambridge, MA., December 1986.

107. Leiserson, C.E. "Fat-Trees: Universal Networks for Hardware-Efficlent
Supercomputing. IEEE, C-34, (1985), 892-901.

108. Leiserson, C. E. and C.A. Phillips. "A Space-Efficient Algorithm for Finding
the Connected Components of Rectangles in the i'lane." MifijLo/ iNI-323.
MIT Laboratory for Computer Science, Cambridge, MA, February 1987.

109. Leiserson, C. E. and C.A. Phillips. "Parallel Contraction of Planar Graphs
(Extended Abstract)." 1987, submitted for publication.

110. Lenstra, J.K., D.B. Shmoys, and E. Tardos. "Scheduling Unrelated Parallel
Machines." 1987, submitted for publication.

111. Lynch, N. and M. Merritt. "Introduction to the Theory of Nested
Transactions." Int l Conference Database Theory, September 1986, Springer-
Verlag, 278-305.

112. Lynch, N. and M. Tuttle. "Hierarchical Correctness Proofs for Distributed
Algorithms." 6th Symposium Principles of Distributed Computing, August
To appear, 1987.

231

THEORY OF COMPUTATION

113. Maggs, B. and S. Plotkin. "Minimum-Cost Spanning Tree as a Path-
Finding Problem in a Closed Semiring." 1986, submitted for publication.

114. Maley, F. M. "Compaction with Automatic Jog Introduction."
MIT/LCS/TM-372, MIT Laboratory for Computer Science, Cambridge, MA,
November 1986.

115. Meyer, A.R., J. C. Mitchell, E. Moggi and R. Statman. "Empty Types in
Polymorphic Lambda-Calcu!us." 14th Symposium Principles of
Programming Languages. ACM, 1987, 253-262.

116. Meyer, A.R. "Communication in the Electronic Forum
typesxx. lcs.,mit. edu.." February 1986.

117. Meyer, A.R. "Floyd-Hoare Logic Determines Semantics." TCS, 1987, to
appear. Earlier version available in IEEE Symposium Logic in Computer
Science, (June 1986), 44-48.

118. Meyer, A.R. and J.Y. Halpern. "Axiomatic Definitions of Programming
Languages: a Theoretical Assessment." JACM, 29, (1982), 555-576.

119. Meyer, A.R. and M. Wand. "Continuation Semantics in Typed Lambda-
Calculi (Summary)." Log*!cs of Programs., 193, Springer-Verlag, R. Parikh
(ed.), 1985, 219-224.

120. Meyer, A.R. and M.B. Reinhold. "'Type' Is Not a Type: Preliminary
Report." 15th Symposium Principles of Programming Languages, ACM,
1986, 287-295.

121. Micali, S., C. Rackoff and R. Sloan. "The Notion of Security for
Probabilistic Cryptosystems." SICOMP, To appear, 1987.

122. Plotkin, G.D. "LCF Considered As a Programming Language." TCS, 5,
(1977), 223-257.

123. Quinlan, J.R. and R.L. Rivest. "Inferring Decision Trees Using the Minimum
Description Length Principle." 1987, Draft manuscript available from
authors.

124. Rao, S. "Finding Small Edge Separators in Planar Graphs." M.S. thesis
1987, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA,

125. Reed, D.P. "Naming and Synchronization in a Decentralized Computer

232

THEORY OF COMPUTATION

System." Ph.D. dissertation, MIT/LCS/TR-205, MIT Laboratory for
Computer Science, Cambridge, MA, 1978.

126. Rivest, R.L. and R. Sloan. "A New Model for Inductive Inference." 1987,
submitted for publication.

127. Rivest, R.L. Network Control by Bayesian Broadcast." IEEE Transactions
on Information Theory, IT-33, 3, (May 1987), 323-328.

128. Rivest, R.L. "Game Tree Searching by Min/Max Approximation." Al
Journal, to appear, 1987. Earlier version available as MIT/LCS/TR-311,
September 1986.

129. Rivest, R.L. "Learning Decision-Lists." Machine Learning, To appear, 1987.

130. Rivest, R. L. and R.E. Schapire. "A New Approach to Unsupervised
Learning in Deterministic Environments." Proceedings Machine Learning
Workshop, Langley (ed.), To appear, 1987.

131. Rosenberg, A.L. "The Diogenes Approach to Testable Fault-Tolerant Arrays
of Processors." IEEE, C-32, 1983, 902-910.

132. Sherman, A.T. "Cryptology and VLSI (a Two-Part Dissertation):
I. Detecting and Exploiting Algebraic Weaknesses in Cryptosystems II.
Algorithms for Placing Modules On a Custom VlSi Chip." Ph.D.
dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, 1986.

133. Sloan, R. H. "The Notion of Security for Probabilistic Public-key
Cryptosystems." MIT/LCS/TR-379, MIT Laboratory for computer Science,
Cambridge, MA.

134. Vitanyi, P. and Awerbuch, B. "Atomic Register Access by Asynchronous
Hardware. 27th Symposium Foundations Computer Science, IEEE, 1986,
233-243.

135. Wozencraft, J.M. "List Decoding." Quarterly Progress Report, MIT
Research Laboratory of Electronics, Cambridge, MA, January 1958, 90-95.

136. Zyablov, V.V. and M.S. Pinsker. "List Cascade Decoding." Problemy
Peredachi Informatsi, 17, 1981, 29-33. English translation in Problems of
Information Transmission, 236-240, 1982

233

THEORY OF COMPUTATION

Talks

1. Aiello, W., S. Goldwasser and J.Hastad. "On the Power of Interaction."
Lecture given at IBM Almaden Research Center, Stanford University,
University of California at Berkeley, University of Southern California,
February 1987.

2. Aiello, W., S. Goldwasser and H.J. "On the Power of Interaction." Lecture
given at 27th IEEE Symposium Foundations of Computer Science,Toronto,
October 1986.

3. Beame, P.W. and J.T. Hastad. " Nearly Optimal Lower Bounds for CRCW
PRAM's." Lecture given at Harvard University, October 1986. A
preliminary version of the results in the following lecture.

4. Boppana, R.B. " Eigenvalues and Graph Bisection: An Average-Case
Analysis." Lecture given at Rutgers University, March 1987

5. Breazu-Tannen, V. "Conservative Extension: A Benefit of Recursion-Free,
Polymorphic Computing." Lecture given at University of Torino (January),
University of Pisa, IBM T.J. Watson Research Center (February), University
of Chicago, University of Indiana, University of Pennsylvania, Cornell
University (March), University of Calilfornia Los Angeles, Carnegie-Mellon
University (April), Massachusetts Institute of Technology (May), 1987.

6. Cormen, T.H. "Efficient Multichip Partial Concentrator Switches." Lecture
given at MIT VLSI Research Review, Spring 1987, May 1987.

7. Cormen, T.H. and C.E. Leiserson. " A Hyperconcentrator Switch for
Routing Bit-Serial Messages." Lecture given at 1986 International
Conference on Parallel Processing, 1986.

8. Feldman, P.N. "An efficient Scheme for Verifiable Secret Sharing."
Lecture given at MIT laboratory for Computer Science, November 1986.

9. Feldman, P.N. " A Protocol for Byzantine Agreement Running in Constant
Expected Time." Lecture given At MIT Laboratory for Computer Science,
April 1987.

10. Goldberg, A.V. "A New Approach to the Maximum Flow Problem."
Lecture given at AT&T Bell Laboratories, IBM Yorktown Research Center,
Harris Corporation, Cornell University, New York University, Columbia
University, University of Texas at Austin, 1986-1987.

234

THEORY OF COMPUTATION

11. Goldberg, A.V. "On Finding and Exact Solution of a Zero-One Knapsack
Problem." Lecture given at Cornell University, 1987.

12. Goldberg, A.V. "Solving Minimum-Cost Flow Problems By Successive
Approximation." Leccure given at University of California at Berkeley,
Stanford University, Princeton University, C.M.U., University of Toronto,
MIT, 1987.

13. Goldman, S.A. "Making Maximum Entropy Computations Easier By
Adding Extra Constraints." Lecture given at Brown University, Department
of Computer Science, July 1986.

14. Goldman, S.A. "Making Maximum Entropy Computations Easier By
Adding Extra Constraints." Lecture given at 6th Workshop on Maximum
Entropy and Bayesian Methods in Applied Statistics, Seattle University,
August 1986.

15. Greenberg, R.I. "Randomized Routing and Hardware-Efficient Parallel
Computation." Lecture given at Department of Computer Science,
Washington University, March 1987.

16. Hastad, J. "Randomized Routing and Hardware-Efficient Parallel
Computation". Lecture given at Department of Computer Science,
Washington University, March 1987.

17. Hastad, J. "Almost Optimal Lower Bounds for Small-Depth Circuits".
Lecture given at Dartmouth College, Linkoping University, Stockholm
University, January 1987.

18. Heath, L.S. "The Pagenumber of Genus G Graphs is O(G)." Lecture given
at Department of Mathematics, MIT, March 1987.

19. Kaliski, B.S. "A Pseudo-Random Bit Generator Based on Elliptic
Logarithms." Lecture given at Crypto 86 Conference, August 1986.

20. Killian, J., S. Kipnis and C. Leiserson. "Th Organization of Permutation
Architectures With Bussed Interconnections." Lecture given at MIT. Fall
1987 VLSI Research Review, December 1986.

21. Klein, P.N. "An Efficient Parallel Algorithm for Planarity." Lecture given
at MIT laboratory for Computer Science, 1986.

22. Leighton. "A Survey of Bounds and Algorithms for Channel Routing."
Lecture given at Aegean Workshop on Computing, May 1986.

235

THEORY OF COMPUTATION

23. Leighton, F. "Simulating Special Purpose Networks with General Purpose
Networks." Lecture given at LIDS workshop on Distributed Systems,
October 1986.

24. Leighton, F. "An Introduction to Networks Parallel Computation and Vlsi
Design." Lecture given at Army Math Steering Committee, Knoxville
(November, 86), Mathematical Association of America National Meeting, San
Antonio (January, 87), Cornell Distinguished Lecture Series, (April, 87)
University Cincinatti Distinguished Lecture Series (April, 87), 1986, 1987.

25. Leighton, F.T. "Reconfiguring Networks Around Faults." Lecture given at
Cornell Distinguished Lecture Series, April 1987.

26. Leighton, F.T. "Some Computational Properties of the Hypercube." Lecture
given at BBN. (February, 87) Princeton workshop on Algorithms and
Complexity, (March) Cornell Distinguished Lecture Series, (April), 1987.

27. Leiserson, C.E. "Communication-Efficient Parallel Graph Algorithms."
Lecture given at Graph Theory Day (New York Academy of Seiences),
Albany, New York, October 1986.

28. Lynch, N. "Correctness Conditions for Highly Available Replicated
Databases." Lecture given at 6th Symposium. Principles of Distributed
Computing, August 1986.

29. Lynch, N. "Hierarchical Proofs for Distributed Algorithms." Lecture given
at Workshop on Communication and Distributed Computing, October 1986.

30. Lynch, N. "The Theory of Nested Transactions." Lecture given at
University of California Irvine, U.C.L.A., Computer Corporation of America,
Brown University, Washington University, 1987.

31. Maley, F.M. "Single-Layer Wire Routing." Lecture given at Princeton
University, Department of Computer Science, Bell Communications
Research, DEC Systems Research Center, Cornell University, Department of
Computer Science, AT&T Bell Laboratories, Murray Hill, Carnegie Mellon
University, Department of Computer Science, February/March 1987.

32. Meyer, A.R. "Computable Values Can Be Classical." Lecture given at Year
of Programming Workshop on Types, University of Texas, Austin, June
1987.

33. Meyer, A.R. "Looping Combinators in Polymorphic Lambda Calculus."
Lecture given at Mid-Atlantic Mathematical Logic Seminar, Philadelphia,
PA, February 1987

236

THEORY OF COMPUTATION

34. Micall, S. "Detecting and resolving Dynamic Deadlocks." Lecture given at

Mathematical Foundations of Computer Science Conference, Czechoslovakia

(August), York University, Toronto, (October), 1986 Meeting on Complexity

Theory, Germany (November), Carnegie-Mellon University, PA (December),

1986.

35. Micali, S. "Proofs, Knowledge and Computation." Lecture given at

Mathematical Foundations of Computer Science Conference, Czechoslovakia

(August), York University, Toronto, (October), 1986 Meeting on complexity

Theory, Germany (November), Carnegie-Mellon University, PA (December),

1986.

36. Micall, S. "Recent Trends in Complexity Based Cryptography." Lecture

given at Centro Ricerche per Ie Applicazioni Industrial, Naples, Italy, July

1986.

37. Micali, S. "The Completeness Theorem for Protocols with Honest Majority."

Lecture given at University of Salerno, Italy (July), Yale University, CT

(December), University of Rome, Italy (January, '87), 1986, 1987.

38. Plotkin, S. "Parallel Symmetry Breaking in Sparse Graphs." Lecture given

at MIT Laboratory for Computer Science, May 1987.

39. Riecke, J.G. "The Semantics of Miranda's Algebraic Types." Lecture given

at MIT Laboratory for Computer Science (January), Workshop on

Mathematical Foundations of Programming Language Semantics, Tulane

University (March), 1987.

40. Rivest, R.L. "A New Approach to Unsupervised Learning in Deterministic

Environments." Lecture given at Princeton University Department of

Computer Science, April 1987.

41. Rivest, R.L. "A New Approach to Unsupervised Learning in Deterministic

Environments." Lecture given at MIT Laboratory for Computer Science

May 1987.

42. Sherman, A.T. "Computer Education in the Public Schools: What Should It

Be?" Lecture given at Bentley College, March 1987.

43. Sherman, A.T. "What is a Zero-Knowledge Proof?" Lecture given at

Brandeis University, April 1987.

44. Shmoys, D.B. "Flipping Persuasively in Constant Expected Time." Lecture

given at MIT Laboratory for Computer Science, Mathematical Sciences

237

mm•m •mmmmm mmm nmmmmm Imlmmm

- ---- ---

THEORY OF COMPUTATION

Research Institute, Princeton University, FOCS, Tel Aviv University,
Technion, 1986-1987.

45. Shmoys, D.B. "Analyzing Approximation Algorithms: Objectives,
Impossibilities and possibilites. Lecture given at Tel Aviv University,
January 1987.

46. Shmoys, D.B. "A Polynomial Approximation Scheme for Maehine
Scheduling on Uniform Processors: Using the Dual Approximation
Approach." Lecture given at Cornell University, June 1987,

47. Shmoys, D.B. "Scheduling Unrelated Parallel Machines." Lecture given at
Center for Mathematics and Computer Science, Amsterdam, January 1987.

48. Sieber, K. "Reaswonng About Local Variables." Lecture given at MIT
Laboratory for Computer Science November 1986.

49. Sloan, R. "The Notion of Security for Probabilistic Cryptosystems."
Lecture given at Crypto '86, August 1986.

238

THEORY OF DISTRIBUTED SYSTEMS

Academic Staff

N. A. Lynch, Group Leader

Graduate Students

J. Aspnes K. Goldmnan
B. Coan M. Tuttle
A. Fekete J. Welch

Support Staff

E. Pothier

Visiting Faculty

Y. Moses P. Vitany
L. Shrira

THEORY OF DISTRIBUTED SYSTEMS

1. INDIVIDUAL PROGRESS REPORTS

James Aspnes

During this period, James Aspnes carried out an MS thesis project entitled
"Timestamp Ordering and Nested Transactions". Using the [16] model for database
concurrency control and recovery, he described a general method for proving serial
correctness of concurrency control algorithms which use timestamp ordering. He then
used this method to prove serial correctness of the object history mechanism described
in [23].

Brian Coan

During this period, Brian Coan has worked on the following projects:

He finished his Ph.D. thesis which gives several new results in the area of fault-
tolerant distributed computing. His specific interest is consensus protocols, that is,
protocols that enable correct processors to reach agreement in the presence of disruptive
behavior by faulty processors. The results presented in the thesis are as follows: Two
new efficient agreement protocols, one randomized and one deterministic; a method for
efficiently transforming a protocol that reaches agreement on a single bit into a protocol
that reaches agreement on values chosen from a larger set; a general method for
compiling a protocol that tolerates relatively benign processor faults into one that
tolerates more serious processor faults; and a strengthening of the known lower bound
on the number of rounds of communication required by consensus protocols.

Using communication primitives and a message validation scheme developed by
Bracha, Coan has constructed a compiler that increases the fault-tolerance of certain
asynchronous protocols. Specifically, it transforms a "source protocol" that is resilient
to crash faults into an "object protocol" that is resilient to Byzantine faults. His
compiler can simplify the design of protocols for the Byzantine fault model because it
breaks the design process into two steps. The first step is to design a protocol for the
crash fault model. The second step, which is completely mechanical, is to compile the
protocol into one for the Byzantine fault model. He uses the compiler to produce a new
asynchronous approximate agreement protocol that operates in the Byzantine fault
model. Specifically, he designs a new asynchronous approximate agreement protocol for
the crash fault model and he observes that this protocol can be compiled into a protocol
for the Byzantine fault-model. In the Byzantine fault model, the new protocol improves
in several respects on the performance of the asynchronous approximate agreement
protocol of Dolev et al.

The task of achieving consensus among the correct processors in a fault-tolerant
distributed computer system has been recognized as a fundamental problem in
distributed computing. Many consensus protocols are known. Some of these require an
amount of communication that is exponential in the number of processors. Coan has
developed a general simulation of any synchronous consensus protocol by a

240

THEORY OF DISTRIBUTED SYSTEMS

communication-efficient protocol (i.e., a protocol with communication cost polynomial
in the number of processors). An important corollary of the simulation technique is a
new communication-efficient protocol for a particular consensus problem called the
agreement problem. This new protocol uses about half the number of rounds required
by the best previously-known communication-efficient agreement protocol. His new
protocol approaches the known lower bound for rounds to within a small factor
arbitrarily close to one. The only previously known protocols that achieve the lower
bound for rounds use an amount of communication that is exponential in the system
size.

In designing fault-tolerant distributed database systems, a frequent goal is making the
system highly available despite component failure. With Brian Oki and Elliot
Kolodner, Coan has examined software approaches to achieving high availability in the
presence of partitions. In particular, they consider various replicated-data management
protocols that maintain database consistency and attempt to increase database
availability when networks partition. They conclude that no protocol does better than
a bound which they have determined. Their conclusions hold under the assumption
that the pattern of data accesses by transactions obeys a uniformity assumption. There
may be some particular distribution for which specialized protocols can increase
availability.

With Jennifer Lundelius Welch, he has studied the transaction commit problem under
realistic timing assumptions. They identify an almost asynchronous model, which they
claim is more realistic than some (synchronous) models that have been studied

previously. In this model they give a randomized transaction commit protocol based on
Ben-Or's randomized asynchronous Byzantine agreement protocol. The expected
number of asynchronous rcunds until their protocol terminates is a small constant, and
the number of falistop faults tolerated is optimal.

Alan Fekete

During the past year, Alan worked on three subjects: approximate agreement,
database concurrency control, and verification of network algorithms. He has been
studying the question of approximate agreement, which is a variant of intective
consistency (Byzantine agreement) where the processors are required to reach values
that are close together, rather than identical. This problem is interesting because it can
be solved in an asynchronous system (whereas interactive consistency has no solution in
such systems). Following his earlier work on this problem in synchronous systems, Alan
showed that in i.n asynchronous system where processors fail by crashing or omitting to
send messages, no solution can perform better than a simple round-by-round protocol.

Alan has been working also on developing and verifying algorithms for managing data
in a Database Management System with nested transactions. In recent years several
researchers, particularly those building general purpose distributed systems, have begun
to explore the possibility of giving transactions (the basic unit of atomicity in a system)

241

A

THEORY OF DISTRIBUTED SYSTEMs

additional structure, so that operations within a transaction can be performed
concurrently (but serializably), or aborted independently. In this case we say the system
provides nested transactions. An example of such a system is the Argus system,
developed at MIT. Implementing such a system requires extendling protocols for
concurrency control and recovery that have been studied extensively when transactions
are not nested. His work (in collaboration with Professors Nancy Lynch and William
Weihl (MIT) and Dr. Michael Merritt (AT&T Bell Labs) has been concerned with an
algorithm using locking. They proved the correctness of an algorithm using read and
write locks, developed by Moss for Argus. They then found a way to extend Moss'
algorithm to aliow the use of more semantic information expressed in a table listing
which operations of each data type do not interfere with each other. This algorithm is
based on an algorithm for database systems without nesting, which was due to Weihl.
Both Moss' algorithm, and the new "Conflict-Based Locking" were proved correct by
showing that objects implemented using them satisfy a simple local condition called
dynamic atomicity, and also proving that a nested transaction system is serially correct
if every object is dynamic atomic.

The third topic of Alan's research has been the use of the new IO automaton model
of computation (due to Lynch, Merritt, and Tuttle) to describe and verify a protocol
due to Awerbuch for network synchronization. This protocol allows programs that were
written for a synchronous network to run in an asynchronous failure-free network, with
as little overhead in time and communication as possible. This work (performed
together with Professor Lynch and Dr. Liuba Shrira (MIT)) provides a proof whose
organization follows closely the informal arguments made by Awerbuch. In particular
the proof lays bare the precise modularity of the algorithm, which combines different
techniques for synchronization within and between clusters of nodes in the network.

Ken Goldman

During this period, Ken Goldman completed his MS thesis, entitled "Data Replication
in Nested Transaction Systems". Gifford's basic Quorum Consensus algorithm for data
replication is generalized to accommodate nested transactions and transaction failures
(aborts). A formal description of the generalized algorithm is presented using the new
Lynch-Merritt input-output automaton model for nested transaction systems. This
formal description is used to construct a complete (yet simple) proof of correctness that
uses standard assertional techniques and is based on a natural correctness condition.
Nondeterminism is used in the algorithm description to yield a correctness proof that is
independent of any particular programming language or implementation. The
presentation and proof treat issues of data replication entirely separately from issues of
concurrency control and recovery.

Nancy A. Lynch

The main project Nancy Lynch worked on this year was the development of a theory
for nested transactions, a joint project with Dr. Michael Merritt of AT&T Bell
Laboratories. (The concept of nested transactions is central to new languages and

242

5:

THEORY OF DISTRIBUTED SYSTEMS

systems for distributed computing.) The theory allows careful description of the
semantics of nested transactions, as well as description and correctness proofs for
algorithms which implement them. The work began with a paper 116] last summer, in
which they presented a semantie model and stated the basic correctness conditions to be
satisfied by nested transaction systeiiis. In this paper, they presented and proved
correctness of an exclusive locking algorithm for nested transactions.

With colleagues at MIT and elsewhere, they continued by treating an interesting
variety of algorithms. With Dr. Maurice Herlihy of CMU and Prof. Bill Wplhl, they
presented proofs for two algorithms for management of "orphan" transactions [13].
With Alan Fekete and Weihl, they extended the work in [16] to read-write locking [7]
and are now working on a further extension to a new algorithm for general
commutativity-based locking. Lynch and Goldman presented a proof for a replicated
data-management algorithm [121. Lynch has been helping Jim Aspnes to carry out a
similar treatment of timestanp-based algorithms [Ii. The model has provided a
vocabulary for describing an amazing variety of interesting algorithms, and has
permitted proofs which follow the natural modularity which system designers use in
talking about the algorithms informally.

At bottom, all of this work is based on the "I/O automaton" model of concurrent
computation, a new model which emphasizes the distinction between input and output
events. This model was developed by Lynch and Mark Tuttle this year (and last) [17].
In addition to using it to model concurrency control algorithms, Lynch and Tuttle used
it to carry out an interesting hierarchical proof of a distributed network resource-
allocation algorithm. Lynch and her students are continuing to develop this model and
to apply it to many other problems in concurrency. For instance, she helped Bard
Bloom to describe his new algorithm for implementing two-writer atomic registers from
one-writer atomic registers, by using I/O automata as a framework for presenting all
the definitions, algorithms and proofs [2]. She is helping Jennifer Welch to use this
model to present algorithms for mutual exclusion and Dining and Drinking
Philosophers. She has worked with Fekete and Dr. Liuba Shrira to present a modular
decomposition of a network synchronizer algorithm of Baruch Awerbuch [9].

She has also been working with Dr. Leslie Lamport on a new technique for carrying
out lattice-structured correctness proofs for distributed network algorithms. They have
been using it for reasoning about algorithms for minimum spanning tree computation
and for bank audit.

She plans to continue the work on nested transaction theory, continue developing the
I/O automaton model, and continue trying to apply this model to study a variety of
application areas.

Yoram Moses

Yoram Moses spent part of the period of July 1 - December 31, 1986 at MIT and was
affiliated with the TDS Group in the other part. During that period his main efforts

243

-i

THEORY OF DISTRIBUTED SYSTEMS

were in writing the paper "Programming Simultaneous Actions Using Common
Knowledge" with Mark Tuttle. This paper presents a thorough analysis of a large class
of problems involving fault-tolerant protocols for coordination among processors in a
distributed system. The novel aspect f this work is that it uses a knowledge-based
analysis to uncover the precise structure of the problems involved. As a consequence of
this analysis, this work constructs for the first time protocols for these problems that
are optimal in a much stronger sense than was previously known possible: they behave
optimally in the face of each and every particular faulty behavior of the system. The
class of problems considered includes simultaneous Byzantine agreement, the distributed
firing squad problem and other problems. Yoram presented this paper at a theory
seminar at MIT in August, and Mark presented it at the Symposium on the
Foundations of Computer Science in Toronto in October. The paper appeared in the
proceedings to the conference, and was invited for a special issue of the journal
Algorithmica. Yoram also presented this paper at the University of Toronto in
November Fnd at the Mathematical Center in Amsterdam in December. The predecessor
of this paper, a paper called "Knowledg- and common knowledge in a Byzantine
environment: The case of crash failures" that Yoram wrote with Cynthia Dwork,
appeared as MIT/LCS/TM-300 in July, and was accepted for publication in the Journal
of Information and Communication.

Liuba Shrira

This year Dr. Shrira's main interests were in programming methodology and
specifications in distributed computing.

With A. Fekete and N. Lynch, Dr. Shrira worked on modular specifications of
network protocols [FLS]. The work analyzed a network synchronizing algorithm by B
Awerbuch designed to be used as subcomponent in derivation of other protocols.
Modular specification and correctness proof were given to the algorithm which enable
them to be reused in specifications and proofs of the derived protocols . The work uses
the I/O automaton model [LT) and provides further evidence to the versatility of the
model.

Dr. Shrira completed an earlier work on layered composition of distributed protocols.
In this work R. Gerth and Dr. Shrira suggest a sound and relatively complete method
for correctness proof of layered composition. Contrary to the previous works, this
method is modular [fl.

With R. Ladin and B. Liskov, Dr. Shrira worked on a new efficient fault tolerant data
replication schema. The schema improves availability of the system by exploiting the
semantic knowledge of the application to relax the up to date consistency constraint
1151.

Dr. Shrira participated in the LCS Mercury Project and proposed an expressive
linguistic mechanism for integrating Mercury streams into programming languages. The
idea is to map an asynchronous remote procedure invocation on a stream into a special

244

THEORY OF DISTRIBUTED SYSTEMS

data type. With B. Liskov, Dr. Shrira developed a uniform local and remote streamed
concurrency integration schema for Argus language jig].

Mark Tuttle

Mark completed his Master's Thesis in the second semester of this year, joint work
with Lynch entitled "Hierarchical Correctness Proofs for Distributed Algorithms." One
of the major obstacles to progress in uie field of distributed computing is that many of
the important algorithms seem to be too complex for rigorous understanding. It is often
the case that the designers of an algorithm have an intuitive understanding of how the
algorithm behaves, but that this intuition is lost in the detailed proof of the algorithm's
correctness. In the approach studied by this thesis, the algorithm is first modeled at a
very high level of abstraction, and the correctness of this algorithm proven using the
high-level, intuitive arguments of the algorithm's designers. The algorithm is then
modeled at successively lower levels of abstraction, and each level shown to simulate the
algorithm at the preceding level of abstraction. Since in the proof of simulation any
property that has already been proven for preceding levels, the high-level intuition used
by the algorithm's designers actually becomcs a part of a rigorous proof of the detailed
algorithm's correctness. One important contribution of this thesis is the introduction of
a new model of computation in asynchronous networks, the input-output automaton, a
general model of computation retaining the clean, automata-theoretic semantics
abandoned by other models such as CSP.

Mark has also completed work with Yoram Moses entitled "Programming
Simultaneous Actions Using Common Knowledge." This work applies the theory of
knowledge in distributed systems to the design of efficient fault-tolerant protocols. This
work defines a large class of problems requiring coordinated, simultaneous action in
synchronous systems, and gives a method of transforming specifications of such
problems into protocols that are optimal in all runs: these protocols are guaranteed to
perform the simultaneous actions as soon as any other protocol could possibly perform
them, given the input to the system and pattern of faulty processor behavior. (In
contrast., most protocols do not adapt their behavior on the basis of faulty processor
behavior and hence always perform only as well as they do in their worst-case runs.)
This transformation is performed in two steps. The first step extracts directly from the
problem specification a high-level protocol programmed using explicit tests for common
knowledge. The second step consists of a careful analysis of when facts become
common knowledge, thereby providing a method of efficiently implementing these
protocols in many variants of the omissions failure model. In the generalized omissions
model, however, this analysis shows thit testing for common knowledge is NP-hard.
Given the close correspondence between common knowledge and simultaneous actions,
it is possible to show that no optimal protocol for any such problem can be
computationally efficient in this model. The analysis in this paper exposes many subtle
differences between the variants of the omissions failure model, including the precise
point at which this gap in complexity occurs.

245

THEORY OF DISTRIBUTED SYSTEMS

Paul Vitanyi

Lower Time Bounds for Simulating One Type of Storage
by Another

Using Kolmogorov complexity, Dr. Paul Vitanyi derived optimal or nearly optimal
lower bounds on the time to simulate more X by one Y, where X and Y can be tapes,
stacks or queues. The derived lower bounds are typically within a log n factor of the
upper bound, or match the upper bound.

Interaction between Algorithms and Model of Computation

Traditionally, computational complexity theory deals with sequential computations. In
the computational models the underlying physics is hardly accounted for. In the area of
parallel/distributed computing physical space, time and physics are much more
important. He obtained new lower bounds on the average interconnect length in d-
dimensional space embeddings of symmetric circuits (like the binary n-cube), which hold
for multiprocessor models in any technology.

Distributed Control

The number of messages for matching pairs of mobile processes in a multiprocessor
network is a measure for the cost of setting up temporary communication between such
processes. We establish lower bounds on the average number of point-to-point
transmissions between any pair of nodes in this context. Applications of the results
include lower bounds on the number of messages for distributed nameserver, distributed
mutual exclusion and generalizations to distributed s-matching (that is, matching a
group of s processes) and distributed s-mutual exclusion (that is, s-I processes may enter
a critical section simultaneously, but s processes may not) for any s>=2.

Jennifer Welch

Jennifer Lundelius Welch has been investigating the modular description of
distributed algorithms. She studied two existing resource allocation algorithms, and by
using modularity obtained new algorithms that are more efficient. Modularity is also
being used to rigorously prove correct, using a lattice-style decomposition, a network
minimum spanning tree algorithm, whose correctness had not previously been formally
given.

Resource Allocation Algorithms

Many resource allocation algorithms presented in the literature [21J [3] are described
as using a solution to another problem as a "subroutine," yet the description employs a
particular solution, with the details of its implementation inextricably embedded in the
algorithm. The use of the word "subroutine" suggests attempting to describe such
algorithms modularly, so that any solution at all to the sub-problem can be used.
Welch and Nancy Lynch have used the I/O automaton model of Lynch and Tuttle [171

246

THEORY OF DISTRIBUTED SYSTEMS

to describe two resource allocation algorithms, one for mutual exclusion and one for
drinking philoso hers. In each case, the description uses a solution to another problem
as a true subroutine; nothing needs to be known about the implementation, only that
its "interface" is correct. The advantages of this approach are that the algorithms are
easier to describe and prove correct. As an added bonus, one can sometimes obtain
more efficient (in some complexity measure) solutions by using a more efficient
subroutine. In fact, a faster drinking philosophers algorithm was obtained with this
method.

Liveness conditions have in the past not been treated formally in many papers. Using
the I/O automaton model, Welch is able to state precise correctness conditions,
including liveness properties, for the resource allocation problems. The liveness
properties of the subroutines are inherited by the mutual exclusion and drinking
philosophers algorithms.

Mutual Exclusion

The mutual exclusion problem [5] is an abstraction of many problems that occur in
operating systems and other computer applications. Each process in an asynchronous
system has a section of its code singled out as its critical region. The mutual exclusion
problem consists of guaranteeing that if some process is executing in its critical region,
then no other process is in its critical region. In an operating system context, the
critical region could represent access to a shared resource, such as a printer. In order to
rule out a useless solution to the problem, in which no process ever enters its critical
region, a solution must satisfy the no-deadlock property: as long as some process wants
to enter its critical region, some process (but not necessarily the original one) does so.
Sometimes the stronger property of no-lockout 114] is desired: any process that wants to
enter its critical region eventually does so.

Welch describes the mutual exclusion tournament of Peterson and Fischer [21] in a
completely modular way, so that any 2-process solution at all can be used as a
subroutine. All that is required of the subroutine is that it satisfy the definition of a
mutual exclusion algorithm. In addition, desirable properties of the subroutine carry
over to the entire tournament solution --- if the subroutine has no-deadlock, then so
does the tournament, and the same for no-lockout. (Unfortunately, the nature of the
tournament precludes guaranteeing only a bounded number of bypasses.)

Another pleasing aspect of her approach is its efficient time performance --- the time a
process spends waiting to enter its critical region is O(n log n), assuming no process is
bypassed more than once in the 2-process subroutines. The asynchronous time measure
used is essentially to assume a constant upper bound but no lower bound on the time
between process steps.

Drinking Philosophers

(joint work with Nancy Lynch)

247

.$p.i

THEORY OF DISTRIBUTED SYSTEMS

The mutual exclusion algorithm may be generalized in many ways to other resource
allocation paradigms. One that has been much studied is the dining philosophers
problem [6] [201 [22], in which each process (philosopher) in the system periodically
requests a fixed set of resources (forks). In order to perform useful work (eat), a process
must have exclusive access simultaneously to all the resources in its set. Chandy and
Misra [3] generalized this to a more dynamic problem, the drinking philosophers
problem, in which for each process, there is a maximum set of resources that it can
request, and each time a process wishes to do some work, it may request an arbitrary
subset of its maximum set.

In [3] a dining philosophers algorithm is given and proved correct, and then a drinking
philosophers algorithm is given, which uses as a subroutine the aforementioned dining
philosophers algorithm. Using the I/O automaton model, Lynch and Welch give a
modular description of this drinking philosophers algorithm that uses any dining
philosophers algorithm as a subroutine. As in the work on mutual exclusion described
above, precise correctness conditions, including liveness properties such as no-deadlock
and no-lockout, are given, and it is shown that the liveness properties of the dining
philosophers algorithm carry over to the drinking philosophers algorithm. The
maximum waiting time for a drinking philosopher to enter its critical region is the
maximum time for a dining philosopher to enter its critical region. Thus, by replacing
the dining philosophers algorithm of [3], which has waiting time O(n), with a dining
philosophers algorithm such as that of Lynch [20], which has waiting time 0(1), a more
efficient drinking philosophers algorithm is obtained.

Minimum Spanning Tree Algorithm

(joint work with Leslie Lamport and Nancy Lynch)

The existence of a spanning tree in a distributed system, where processors correspond
to nodes of a graph and communication links to edges, greatly simplifies many necessary
tasks, such as routing and flow control. If the sum of the weights of the edges in the
spanning tree is a minimum, where the weight assigned to each edge is application-
dependent, then greater efficiency can result. In [10], Gallager, Humblet and Spira
present a minimum spanning tree algorithm that is complex and delicate, but has no
proof of correctness. The goal of the work described here is to provide a rigorous proof
of correctness that corresponds to one's intuition concerning the workings of the
algorithm.

The approach Lamport, Lynch and Welch are taking to proving correctness of this
algorithm is to describe it at different levels of abstraction. The novel aspect is that
these different descriptions do not form the usual chain hierarchy, but instead are
organized into a lattice. Thus the original algorithm, or implementation, is described
by several more abstract algorithms, each expanding on a different aspect of the
implementation, and incomparable to each other. The completed work will present a
framework of definitions and theorems to show the relationships between algorithms in

248

THEORY OF DISTRIBUTED SYSTEMS

the lattice and to justify why these relationships imply the correctness of the
implementation.

249

THEORY OF DISTRIBUTED SYSTEMS

References

1. Aspnes, J. "Timestamp Ordering and Nested Transactions," S.M. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1987.

2. Awerbuch, B., L. Kirousis, and E. Kranakis. "On Proving Register
Atomicity." CWI Technical Report and submitted to a journal.

3. Chandy, K.M. and J. Misra. "The Drinking Philosophers Problem." ACM
Transactions on Programming Languages and Systems, 6, 4, (1984),
632-646.

4. Coan, B. "Achieving Consensus in Fault-Tolerant Distributed Computer
Systems: Protocols, Lower Bounds and Simulations." Ph. D. dissertation,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1987.

5. Dijkstra, E.W. "Solution of a Problem in Concurrent Programming
Control." Communications of the ACM, 8, (1965), 569.

6. Dijkstra, E.W. "Hierarchical Ordering of Sequential Processes." Acta
Informatica, 1, (1971), 115-138.

7. Fekete, A. and N. Lynch, M. Merritt and W. Weihl. "Nested Transactions
and Read/Write Locking." Proceedings of the 6th ACM Symposium on
Principles of Database Systems, San Diego, CA, March 1987, 97-111.
Expanded as MIT/LCS/TM-324, MIT Laboratory for Computer Science,
Cambridge, MA, April 1987.

8. Fekete, A. and N. Lynch, M. Merritt and W. Weihl. "Nested Transactions
and Dynamic Atomicity." In preparation.

9. Fekete, A., N. Lynch and L. Shrira. "A Modular Proof of Correctness for a
Network Synchronizer." Proceedings of the 2nd International Workshop on
Distributed Algorithms, Amsterdam, July 1987, to appear.

10. Gallager, R.G., P.A. Humblet and P.M. Spira. "A Distributed Algorithm for
Minimum-Weight Spanning Trees." ACM Transactions on Programming
Languages and Systems, 5, 1, (1983), 66-77.

11. Gerth, R. and L. Shrira "Communication Closed Layers: an Optimized
Approach." Proceedings of 6th Conference on Foundations of Software
Technology & Theoretical Computer Science, Delhi, India, December 1986.

250

THEORY OF DISTRIBUTED SYSTEMS

12. Goldman, K.J. and N.A. Lynch. "Quorum Consensus in Nested Transaction
Systems." Proceedings 6th ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, Vancouver, British Columbia,
Canada, August 1987, to appear.

13. Herlihy, M., A. Lynch, M. Merritt and W. Weihl. "On the Correctness of
Orphan Elimination Algorithms." Proceedings of 17th International
Symposium on Fault-Tolerant Computing, Pittsburgh, PA, July 1987, to
appear. Also, MIT/LCS/TM329, MIT Laboratory for Computer Science,
Cambridge, MA, Cambridge, MA, May 1987.

14. Knuth, D.E. "Additional Comments on a Problem in Concurrent
Programming Control." Communications of the ACM, 9, 321, (1966).

15. Ladin, R., B. Liskov and L. Shrira. "A Technique for Constructing Highly-
Available Services." Accepted in Algorithmica.

16. Lynch, N. and M. Merritt. "Introduction to the Theory of Nested
Transactions." Proceedings of International Conference on Database
Theory, Rome, Italy, September 1986, 278-305. Also MIT/LCS/TR-367,
MIT Laboratory for Computer Science, Cambridge, MA, July 1986, to
appear.

17. Lynch, N.A. and M.R. Tuttle. "Hierarchical Correctness Proofs for
Distributed Algorithms." Proceedings of 6th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, Vancouver, British
Columbia, Canada, August 1987, to appear. Also MIT/LCS/TR-387, MIT
Laboratory for Computer Science, Cambridge, MA, April 1987.

18. Moses, Y. and M.R. Tuttle. "Programming Simultaneous Actions using
Common Knowledge." Proceedings of the 27th Annual Symposium on
Foundations of Computer Science, Toronto, Ontario, Canada, October
1986, 208-221. Also to appear in Algorithmica.

19. Liskov, B. and L. Shrira. "Promises and Forks." Common System Design
Note, MIT Laboratory of Computer Science, Cambridge, MA, June 1987.

20. Lynch, N. "Upper Bounds for Static Resource Allocation: A Distributed
System." JCSS, 23, 2, (1981), 254-278.

21. Peterson, G.L. and M.J. Fischer. "Economical Solutions for the Critical
Section Problem in a Distributed System." Proceedings of the ACM
Symposium on Theory of Computing, (1977), 91-97.

251

THEORY OF DISTRIBUTED SYSTEMS

22. Rabin, M. and D. Lehmann. "On the Advantages of Free Choice: A
Symmetric and Fully Distributed Solution to the Dining Philosophers

Problem." Proceedings 8wh ACM Symposium on Principles of Programming
Languages, 1981, 133-138.

23. Reed, D. "Naming and Synchronization In A Decentralized Computer
System." Ph.D. dissertation, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, September 1978. Also
MIT/LCS/TR-205.

24. Welch, J.L. "Simulating Synchronous Processors." to appear in
Information and Computation.

Publications

1. Bloom, B. "Constructing Two-Writer Atomic Registers." Proceedings of 6th
Symposium on Principles of Distributed Computing, Vancouver, British
Columbia, Canada, August 1987, to appear.

2. Coan, B. "A Communication-Efficient Canonical Form for Fault-Tolerant
Distributed Protocols." Proceedings of the 5th ACM Symposium on
Principles of Distributed Computing Calgary, Alberta, Canada, August
1986, 63-72.

3. Coan, B., B. Oki and E. Kolodner. "Limitations on Database Availability
when Networks Partition." Proceedings of the 5th ACM Symposium on
Principles of Distributed Computing. Calgary, Alberta, Canada, August
1986, 187-194.

4. Dwork, D. and Moses, Y. "Knowledge and Common Knowledge in a
Byzantine Environment: Crash Failures." MIT/LCS/TM-300, Laboratory
for Computer Science, Cambridge, MA, July 1986, to appear in the Journal
Information and Communication.

5. Fekete, A. "Asynchronous Approximate Agreement." Proceedings of the
6th ACM Symposium on Principles of Distributed Computing, to appear.

6. Fekete, A. "Asymptotically Optimal Algorithms for Approximate
Agreement." Proceedings of the 5th ACM Symposium on Principles of
Distributed Computing, Calgary, Alberta, Canada, August 1986, 73-87.
Expanded and submitted to Distributed Computing.

7. Fekete, A. and N. Lynch, M. Merritt and W. Weihl. "Nested Transactions
and Read/Write Locking." Proceedings of the 6th ACM Symposium on

252

THEORY OF DISTRIBUTED SYSTEMS

Principles of Database Systems, San Diego, CA, March 1987, 97-111.
Expanded as MIT/LCS/TM-324, MIT Laboratory for Computer Science,
Cambridge, MA, April 1987.

8. Fekete, A. and N. Lynch, M. Merritt and W. Weihl. "Nested Transactions
and Dynamic Atomicity." In preparation.

9. Fekete, A., N. Lynch and L. Shrira. "A Modular Proof of Correctness for a
Network Synchronizer." Proceedings of the Ond International Workshop on
Distributed Algorithms, Amsterdam, July 1987, to appear.

10. Gerth, R. and L. Shrira "Communication Closed Layers: an Optimized
Approach." Proceedings of 6th Conference on Foundations of Software
Technology &1 Theoretical Computer Science, Delhi, India, December 1986.

11. Goldman, K.J. and N.A. Lynch. "Quorum Consensus in Nested Transaction
Systems." Proceedings 6th ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, Vancouver, British Columbia,
Canada, August 1987, to appear.

12. Herlihy, M., A. Lynch, M. Merritt and W. Weihl. "On the Correctness of
Orphan Elimination Algorithms." Proceedings of 17th International
Symposium on Fault-Tolerant Computing, Pittsburgh, PA, July 1987, to
appear. Also, MIT/LCS/TM-329, MIT Laboratory for Computer Science,
Cambridge, MA, Cambridge, MA, May 1987.

13. Kirousis, L., E. Kranakis and P.M.B. Vitanyi. "Atomic Multireader
Register." 2nd International Workshop on Distributed Computing,
Amsterdam, July 1987.

14. Kranakis, E. and P.M.B. Vitanyl. "Distributed Control in Computer
Networks and Cross-Sections of Multidimensional Bodies."
MIT/LCS/TM-304, MIT Laboratory for Computer Science, Cambridge, MA,
March 1986.

15. Li, M. and P.M.B. Vitanyi. "Tape versus Queue and Stacks: The Lower
Bounds." September, 1986 version, Revision of February, 1986 version,
Revision of September, 1985 version of this paper. (Submitted to
Information and Control).

16. Li, M., L. Longpre and P.M.B. Vitanyl. "The Power of the Queue."
Structure in Complexity Theory Conference, Lecture Notes in Computer
Science 223, Springer-Verlag, Berlin, 1986, 219-233. Also
MIT/LCS/TM-303, MIT Laboratory for Computer Science, Cambridge, MA,
April 1986.

253

'SW

THEORY OF DISTRIBUTED SYSTEMS

17. Lynch, N. and M. Merritt. "Introduction to the Theory of Nested
Transactions." Proceedings of International Conference on Database
Theory. Rome, Italy, September 1986, 278-305. Also MIT/LCS/TR-367,
MIT Laboratory for Computer Science, Cambridge, MA, July 1986, to
appear.

18. Lynch, N.A. and M.R. Tuttle. "Hierarchical Correctness Proofs for
Distributed Algorithms." Proceedings of 6th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, Vancouver, British
Columbia, Canada, August 1987, to appear. Also MIT/LCS/TR-387, MIT
Laboratory for Computer Science, Cambridge, MA, April 1987.

19. Moses, Y. and M.R. Tuttle. "Programming Simultaneous Actions using
Common Knowledge." Proceedings of the 27th Annual Symposium on
Foundations of Computer Science, Toronto, Ontario, Canada, October
1986, 208-221. Also to appear in Algorithmica.

20. Mullender, S.1. and P.M.B. Vitanyi. "Distributed Match-Making, (Invited
for Algoithmica, Special Issue on Distributed Computing)." To appear.

21. Vitanyi, P.M.B. "Non-Sequential Computation and Laws of Nature (Invited
Lecture)." Proceedings Aegean Workshop on Computing, VLSI Algorithms
and Architectures (2nd International Workshop on Parallel Processing and
VLSI). Lecture Notes In Computer Science 227, Springer-Verlag, 1986,
108-120. Also MIT/LCS/TM-306, MIT Laboratory for Computer Science,
Cambridge, MA, May 1986

22. Vitanyi, P.M.B. "Archirithmics or Algotecture?" In: Mathematics and
Computer Science II, M. Hazewinkel, et al. (eds.), 139-161, North-Holland,
Amsterdam, 1986.

23. Vitanyi, P.M.B. "Locality, Communication and Interconnect Length in
Multicomputers." CWI Technical Report and submitted to a journal.

24. Vitanyi, P.M.B. and B. Awerbuch. "Atomic Shared Register Access by
Asynchronous Hardware." 27th Annual IEEE Symposium on Theory of
Computing, Toronto, 1986. Also MIT/LCS/TM-322, MIT Laboratory for
Computer Science, Cambridge, MA.

25. Welch, J.L. "Simulating Synchronous Processors." to appear in
Information and Computation.

254

THEORY OF DISTRIBUTED SYSTEMS

Theses Completed

1. Aspnes, J. "Timestamp Ordering and Nested Transactions." S.M. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1987.

2. Coan, B. "Achieving Consensus in Fault-Tolerant Distributed Computer
Systems: Protocols, Lower Bounds and Simulations." Ph.D. dissertation,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1987.

3. DiPesa Jr., A.P. "Real-Time Extensions To A Relational Database." S.M.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, June 1987.

4. Troxel, G. "Detection of and Recovery from Deadlock in a System using
Remote Procedure Calls." S.B. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, June 1987.

5. Goldman, K.J. "Data Replication in Nested Transaction Systems." S.M.
thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1987. Also MIT/LCS/TR-390, MIT Laboratory for
Computer Science, Cambridge, MA, May 1987.

6. Tuttle, M. "Correctness Proofs for Distributed Algorithms." S.M. thesis,
MIT Department of Electrical Engineering and and Computer Science,
Cambridge, MA, April 1987. Also MIT/LCS/TR-387 MIT Laboratory for
Computer Science, Cambridge, MA, April 1987.

Theses in Progress

1. Fekete, A. "Topics In Distributed Algorithms." Ph.D. dissertation, Harvard
University. Department of Mathematics, Cambridge, MA.

2. Tuttle, M. "Knowledge in Distributed Systems." Ph.D. dissertation, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, expected June 1991.

3. Welch, J. "Topics in Distributed Computing: The Impact of Partial
Synchrony and Modular Decomposition of Algorithms." Ph.D. dissertation,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected September 1987.

255

THEORY OF DISTRIBUTED SYSTEMS

Talks

1. Coan, B. "A Communication-Efficient Canonical Form for Fault-Tolerant

Distributed Protocols." 5th ACM Symposium on Principles of Distributed
Computing, Calgary, Alberta, Canada, August 1986.

2. Coan, B. "A Compiler that Increases the Fault-Tolerance of Asynchronous

Protocols." Cornell University, Ithaca, NY, March 1987.

3. Fekete, A. "Asymptotically Optimal Algorithms For Approximate

Agreement." 5th ACM Symposium on Principles of Distributed Computing,
Calgary, Alberta, Canada, August 1986.

4. Fekete, A."Nested Transactions and Read-Write Locking."

Macquarie University, Sydney, Australia, January 1987;
6th ACM Symposium on Principles of Database Systems,

San Diego, CA, March 1087.

5. Lynch, N. "Correctness Conditions for Highly Available Replicated

Databases." 5th ACM Symposium on Distributed Computing, Calgary,

Alberta, Canada, August 1986.

6. Lynch, N. "Hierarchical Proofs for Distributed Algorithms." Workshop on

Comm uricaticn and Distributed Computing, October 1986.

7. Lynch, N. "The Theory of Nested Transactions." 1987.

University of California, Irvine;

University of California, Los Angeles;
Computer Corporation of America;

Brown University;
Washington University.

8. Moses, Y. "Programming Simultaneous Actions using Common Knowledge."

MIT Laboratory for Computer Science, Theory Seminar,

August 1086;

University of Toronto, November 1986;
Mathematical Center, Amsterdam, The Netherlands,

December 1986.

9. Shrira, L. "On the Complexity of Global Computation in the Presence of

Faults."

256

THEORY OF DISTRIBUTED SYSTEMS

Computer Science Department, Eindhoven University of

Technology;
Computer Science Department, University of Utrecht,

PODC, Calgary.

10. Shrlra, L. "High Level Fault Tolerant Communication Primitives."

CWI, Amsterdam;
DEC SRC, Palo Alto;
Computer Science Department, CMU, Pittsburgh, PA.

11. Tuttle, M. "Programming Simultaneous Actions using Common

Knowledge." 27th Annual Symposium on Foundations of Computer

Science, Toronto, Ontario, Canada, October 1986.

12. Vitanyi, P. "Non-Sequential Computation and Laws of Nature."

University of California at San Diego, Department of EECS,
Computer Science Seminar, May 27, 1986;

Proceedings Aegean Workshop on Computing, VLSI Algorithms

and Architectures (2nd International Workshop on Parallel
Processing and VLSI), Loutraki-Corinth, Greece, July 1986.

13. Vitanyi, P. "Archirithmics or Algotecture?" (Invited Lecture), Symposium
on Fundamental Contributon to Mathematlcs and Computer Science in The

Netherlands since 1945, Amsterdam, October 6, 1086.

14. Vitanyi, P. "Distributed Match-Making for Mobile Processes in Computer
Networks."

Catholic University of Nijmegen (The Netherlands),
Computer Science Department, Computer Science
Seminar, April 22, 1986;

Laboratoire d'Informatique, Ecole Normale Superieure,
Paris, France, December 2, 1986.

15. Vitanyi, P. "Atomic Shared Register Access by Asynchronous Hardware."

257

THEORY OF DISTRIBUTED SYSTEMS

Computer Science Seminar, AT&T Bell Labs, Holmdel, NJ,
September 4, 1986;

Computer Science Seminar, MIT Laboratory for Computer
Science, Cambridge, MA, September 10, 1986;

Computer Science Colloquium, Cornell University,
September 11, 1986;

27th Annual IEEE Symposium on Theory of Computing,
Toronto, October 28, 1986;

Computer Science Seminar, University of Rochester,
October 30, 1986;

CWI General Colloquium, Centrum voor Wiskunde en
Informatica, Amsterdam, November 24, 1986.

16. Welch, J. "Transaction Commit in a Realistic Fault Model."

5th ACM Symposium on Distributed Computing,
Calgary, Alberta, Canada, August;

Harvard University, April 1987.

17. Welch, J. "The Power of Time in Distributed Systems." MITRE
Corporation, September 1986. (overview of some results about clock
synchronization and model simulations)

258

PUBLICATIONS

Technical Memoranda

TM-10 4 Jackson, J.N.
Interactive Design Coordination for the Building Industry, June 1970,
AD 708-400

TM-11 Ward, P.W.
Description and Flow Chart of the PDP-7/9 Communications
Package, July 1970; AD 711-379

TM-12 Graham, R.M.
File Management and Related Topics June 12, 1970, September 1970;

AD 712-068

TM-13 Graham, R.M.
Use of High Level Languages for Systems Programming, September
1970; AD 711-965

TM-14 Vogt, C.M.
Suspension of Processes in a Multi-processing Computer System,
September 1970; AD 713-989

TM-15 Zilles, S.N.
An Expansion of the Data Structuring Capabilities of PAL, October
1970; AD 720-761

TM-16 Bruere-Dawson, G.
Pseudo-Random Sequences, October 1970; AD 713-852

TM-17 Goodman, L.I.
Complexity Measures for Programming Languages, September 1971,

AD 729-011

TM-18 Reprinted as TR-85

TM-19 Fenichel, R.R.
A New List-Tracing Algorithm, October 1070; AD 714-522

TM-20 Jones, T.L.
A Computer Model of Simple Forms of Learning, January 1971; AD
720-337

4 TMs 1-9 were never issued.

4f.

gd

PUBLICATIONS

TM-21 Goldstein, R.C.
The Substantive Use of Computers For Intellectual Activities, April
1971, AD 721-618

TM-22 Wells, D.M.
Transmission Of Information Between A Man-Machine Decision
System And Its Environment, April 1971, AD 722-837

TM-23 Strnad, A.J.
The Relational Approach to the Management of Data Bases, April
1971; AD 721-619

TM-24 Goldstein, R.C. and Strnad, A.J.
The MacAIMS Data Management System, April 1971, AD 721-620

TM-25 Goldstein, R.C.
Helping People Think, April 1971, AD 721-998

TM-26 Iazeolla, G.G.
Modeling and Decomposition of Information Systems for Performance
Evaluation, June 1971, AD 733-965

TM-27 Bagchi, A.
Economy of Descriptions and Minimal Indices, January 1972. AD
736-960

TM-28 Wong, R.
Construction Heuristics for Geometry and a Vector Algebra
Representation of Geometry, June 1972, AD 743-487

TM-29 Hossley, R. and Rackoff, C.
The Emptiness Problem for Automata on Infinite Trees, Spring 1972;
AD 747-250

TM-30 McCray, W.A.
SIM360: A S/360 Simulator, October 1972; AD 749-365

TM-31 Bonneau, R.J.
A Class of Finite Computation Structures Supporting the Fast
Fourier Transform, March 1973; AD 757-787

TM-32 Moll, R.
An Operator Embedding Theorem for Complexity Classes of
Recursive Functions, May 1973; Al) 759-999

TM-33 Ferrante, J. and Rackoff, C.
A Decision Procedure for the First Order Theory of Real Addition
with Order, May 1973; AD 700-000

260

PUBLICATIONS

TM-34 Bonneau, R.J.
Polynomial Exponentiation: The Fast Fourier Transform Revisited,
June 1973, PB 221-742

TM-35 Bonneau, R.J.
An Interactive Implementation of the Todd-Coxeter Algorithm,
December 1973; AD 770-565

TM-36 Geiger, S.P.

A User's Guide to the Macro Control Language, December 1973; AD

771-435

TM-37 Schonhage, A.

Real-Time Simulation of Multidimensional Turing Machines by

Storage Modification Machines, December 1973; PB 226-103/AS

TM-38 Meyer, A.R.
Weak Monadic Second Order Theory of 6uccessor Is Not Elementary-
Recursive, December 1973; PB 226-514/AS

TM-3 Meyer, A.R.
Discrete Computation: Theory and Open Problems, January 1974;
PB 226-836/AS

TM-40 Paterson, M.S., Fischer, M.J. and Meyer, A.R.

An Improved Overlap Argument for On-Line Multiplication, January
1974, AD 773-137

TM-41 Fischer, M.J. and Paterson, M.S.

String-Matching and Other Products, January 197-: AD 773-138

TM-42 Rackoff, C.

On the Complexity of the Theories of Weak Direct Products. January

1974, PB 228-459/AS

TM-43 Fischer, M.J. and Rabin, M.O.

Super-Exponential Complexity of Presburger Arithmetic, February
1974, AD 775-004

TM-44 Pleas, V.
Symmetry Codes and their Invariant Suboodes. May 1974: AD

780-243

TM-45 Fischer, M.J. and Stockmeyer, L.J.
Fast On-Line Integer Multiplication, May 1974; AD 779-880

261

PUBLICATIONS

TM-46 Kedem, Z.M.
Combining Dimensionality and Rate of Growth Arguments for
Establishing Lower Bounds on the Number of Multiplications, June

1974, PB 232-969/AS

TM-47 Pless, V.
Mathematical Foundations of Flip-Flops, June 1974, AD 780-901

TM-48 Kedem, Z.M.
The Reduction Method for Establishing Lower Bounds on th Number
of Additions, June 1974, PB 233-538/AS

TM-49 Pless, V.
Complete Classification of (24,12) and (22,11) Self-Dual Codes, June
1974, AD 781-335

TM-50 Benedict, G.G.
An Enciphering Module for Multics, S.P, Thesis, EE Department,
July 1974, AD 782-658

TM-51 Aiello, J.M.
An Investigation of Current Language Support for the Data
Requirements of Structured Programming. S.M. & E.E. Thesis, EE
Department, September 1974; PB 236-815/AS

TM-52 Lind, J.C.
Computing in Logarithmic Space, September 1974, PB 236-167/AS

TM-53 Bengelloun, S.A.
MDC-Programmer: A Muddle-to-Datalanguage Translator for
Information Retrieval. S.B. Thesis, EE Department, October 1974.
AD 786-754

TM-54 Meyer, A.R.
The Inherent Computation Complexity of Theories of Ordered Sets: A
Brief Survey, October 1971. PB 237-200/AS

TM-55 Hsieh, W.N., Harper, L.H. and Savage, J.E.
A Class of Boolean Functions with Linear Combinatorial Complexitv.
October 1974, PB 237-206/AS

TM-56 Gorry, G.A.
Research on Expert Systems, l)ecember 1974

TM-57 Levin, M.
On Bateson's Logical Levels of Learning, February 1975

262

PUBLICATIONS

TM-58 Qualltz, J.E.
Decidability of Equivalence for a Class of Data Flow Schemas, March

1975, PB 237-033/AS

TM-59 Hack, M.
Decision Problems for Petri Nets and Vector Addition Systems, March
1975; PB 231-916/AS

TM-60 Weiss, R.B.
CAMAC: Group Manipulation System, March 1975, PB 240-495/AS

TM-61 Dennis, J.B.
First Version of a Data Flow Procedure Language, May 1975

TM-62 Patil, S.S.

An Asynchronous Logic Array, May 1975

TM-63 Ples, V.
Encryption Schemes for Computer Confidentiality, May 1975, AD

A010-217

TM-64 Weiss, R.B.

Finding Isomorph Classes for Combinatorial Structures, S.M. Thesis,

EE Department, June 1975

TM-65 Fischer, M.J.
The Complexity Negation-Limited Networks - A Brief Survey, June

1975

TM-66 Leung, C.
Formal Properties of Well-Formed Data Flow Schemas, S.B., S.M. &

E.E. Thesis, EE Department, June 1975

TM-67 Cardoza, E.E.

Computational Complexity of the Word Problem for Commutative

Semigroups, S.M. Thesis, EE & CS Department, October 1975

TM-68 Weng, K-S.

Stream-Oriented Computation in Recursive Data Flow Schemas, S.M.

Thesis, EE & CS Department, October 1975

TM-69 Bayer, P.J.
Improved Bounds on the Costs of Optimal and Balanced Binary

Search Trees, S.M. Thesis, EE & CS Department, November 1975

263

PUBLICATIONS

TM-70 Ruth, G.R.
Automatic Design of Data Processing Systems, February 1976; AD
A023-451

TM-71 Rivest, R.
On the Worst-Case of Behavior of String-Searching Algorithms, April
1976

TM-72 Ruth, G.R.
Protosystem I: An Automatic Programming System Prototype, July
1976; AD A026-912

TM-73 Rivest, R.
Optimal Arrangement of Keys in a Hash Table, July 1976

TM-74 Malvanlia, N.
The Design of a Modular Laboratory for Control Robotics, S.M.
Thesis, EE & CS Department, September 1976; AD A030-418

TM-75 Yao, A.C. and Rivest, R.I.
K+I Heads are Better than K, September 1976; AD A030-008

TM-76 Bloniarz, P.A., Fischer, M.J. and Meyer, A.R.
A Note on the Average Time to Compute Transitive Closures,
September 1976

TM-77 Mok, A.K.
Task Scheduling in the Control Robotics Environment, S.M. Thesis,
EE & CS Department, September 1976; AD A030-402

TM-78 Benjamin, A.J.
Improving Information Storage Reliability Using a Data Network,
S.M. Thesis, EE & CS Department, October 1976; AD A033-39.4

TM-79 Brown, G.P.
A System to Process Dialogue- A Progress Report, October 1976:
AD A033-276

TM-80 Even, S.
The Max Flow Algorithm of Dinic and Karzanov: An Exposition,
December 1976

TM-81 Gifford, D.K.
Hardware Estimation of a Process' Primary Memory Requirements.
S.B. Thesis, EE & CS Department, January 1977

264

PUBLICATIONS

TM-82 Rivest, R.L., Shamir, A. and Adelman, L.
A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems, April 1977; AD A039-036

TM-83 Baratz, A.E.
Construction and Analysis of Network Flow Problem which Forces
Karzanov Algorithm to O(n 3) Running Time, April 1977

TM-84 Rivest, R.L. and Pratt, V.R.
The Mutual Exclusion Problem for Unreliable Processes, April 1977

TM-85 Shamir, A.
Finding Minimum Cutsets in Reducible Graphs, June 1977; AD
A040-698

TM-86 Szolovits, P., Hawkinson, L.B. and Martin, W.A.
An Overview of OWL, A Language for Knowledge Representation,
June 1977; AD A041-372

TM-87 Clark, D., editor
Ancillary Reports: Kernel Design Project, June 1977

TM-88 Lloyd, E.L.
On Triangulations of a Set of Points in the Plane, S.M. Thesis, EE &
CS Department, July 1977

TM-89 Rodriguez, H. Jr.
Measuring User Characteristics on the Multics System, S.B. Thesis,
EE & CS Department, August 1977

TM-90 d'Oliveira, C.R.
An Analysis of Computer Decentralization, S.B. Thesis, EE & CS
Department, October 1977; AD A045-526

TM-91 Shamir, A.
Factoring Numbers in O(log n) Arithmetic Steps, November 1077;
AD A047-709

TM-92 Misunas, D.P.
Report on the Workshop on Data Flow Computer and Program
Organization, November 1977

TM-93 Amikura, K.
A Logic Design for the Cell Block of a Data-Flow Processor, S.M.
Thesis, EE & CS Department, December 1977

265

PUBLICATIONS

TM-94 Berez, J.M.
A Dynamic Debugging System for MDL, S.B. Thesis, EE & CS
Department, January 1978; AD A050-191

TM-95 Harel, D.
Characterizing Second Order Logic with First Order Quantifiers,
February 1978

TM-96 Harel, D., Amir P. and Stavi, J.
A Complete Axiomatic System for Proving Deductions about
Recursive Programs, February 1978

TM-97 Harel, D., Meyer, A.R. and Pratt, V.R.
Computability and Completeness in Logics of Programs, February
1978

TM-98 Harel, D. and Pratt, V.R.
Nondeterminism in Logics of Programs, February 1978

TM-99 LaPaugh, A.S.
The Subgraph Homcomorphism Problem. S.M. Thesis, EE & CS
Department, February 1978

TM-100 Misunas, D.P.
A Computer Architecture for Data-Flow Computation, S.M. Thesis.
EE & CS Department, March 1978; AD A052-538

TM-101 Martin, W.A.
Descriptions and the Specialization of Concepts, March 1978; AD
A052-773

TM-102 Abelson, H.
Lower Bounds on Information Transfer in Distributed Computations,
April 1978

TM-103 Harel, D.
Arithmetical Completeness in Logics of Programs, April 1978

TM-104 Jaffe, J.
The Use of Queues in the Parallel Data Flow Evaluation of "If-Then-
While" Programs, May 1978

TM-105 Masek, W.J. and Paterson, M.S.
A Faster Algorithm Computing String Edit Distances, May 1978

266

PUBLICATIONS

TM-106 Parikh, R.
A Completeness Result for a Propositional Dynamic Logic, July 1978

TM-107 Shamir, A.
A Fast Signature Scheme, July 1978; AD A057-152

TM-108 Baratz, A.E.
An Analysis of the Solovay and Strassen Test for Primality, July 1978

TM-109 Parikh, R.
Effectiveness, July 1978

TM-110 Jaffe, J.M.
An Analysis of Preemptive Multiprocessor Job Scheduling, September
1978

TM-111 Jaffe, J.M.
Bounds on the Scheduling of Typed Task Systems, September 1978

TM-112 Parikh, R.
A Decidability Result for a Second Order Process Logic, September
1978

TM-113 Pratt, V.R.
A Near-optimal Method for Reasoning about Action, September 1978

TM-114 Dennis, J.B., Fuller, S.H., Ackerman, W.B., Swan, R.J. and Weng, K-
S.
Research Directions in Computer Architecture, September 1978; AD
A061-222

TM-115 Bryant, R.E. and Dennis, J.B.
Concurrent Programming, October 1978; AD A061-180

TM-116 Pratt, V.R.
Applications of Modal Logic to Programming, December 1978

TM-117 Pratt, V.R.
Six Lectures on Dynamic Logic, December 1978

267

PUBLICATIONS

TM-118 Borkin, S.A.
Data Model Equivalence, December 1978; AD A062-753

TM-119 Shamir, A. and Zippel, R.E.
On the Security of the Merkle-Hellman Cryptographic Scheme,
December 1978; AD A063-104

TM-120 Brock, J.D.
Operational Semantics of a Data Flow Language, S.M. Thesis, EE &
CS Department, December 1978; AD A062-997

TM-121 Jaffe, J.
The Equivalence of R.E. Programs and Data Flow Schemes, January
1979

TM-122 Jaffe, J.
Efficient Scheduling of Tasks Without Full Use of Processor
Resources, January 1979

TM-123 Perry, H.M.
An Improved Proof of the Rabin-Hartmanis-Stearns Conjecture, S.M.
& E.E. Thesis, EE & CS Department, January 1979

TM-124 Toffoli, T.
Bicontinuous Extensions of Invertible Combinatorial Functions,
January 1979; AD A063-886

TM-125 Shamir, A., Rivest, R.L. and Adelman, L.M.
Mental Poker, February 1979; AD A066-331

TM-126 Meyer, A.R. and Paterson, M.S.
With What Frequency Are Apparently Intractable Problems
Difficult?, February 1979

TM-127 Strazdas, R.J.
A Network Traffic Generator for Decnet, S.B. & S.M. Thesis, EE &
CS Department, March 1979

TM-128 Loui, M.C.
Minimum Register Allocation is Complete in Polynomial Space,
March 1970

TM-129 Shamir, A.
On the Cryptocomplexity of Knapsack Systems, April 1979; AD
A067-972

268

PUBLICATIONS

TM-130 Greif, I. and Meyer, A.R.
Specifying the Semantics of While-Programs: A Tutorial and
Critique of a Paper by Hoare and Lauer, April 1979; AD A068-967

TM-131 Adelman, L.M.
Time, Space and Randomness, April 1979

TM-132 Patil, R.S.
Design of a Program for Expert Diagnosis of Acid Base and
Electrolyte Disturbances, May 1979

TM-133 Loui, M.C.
The Space Complexity of Two Pebble Games on Trees, May 1979

TM-134 Shamir, A.
How to Share a Secret, May 1979; AD A069-397

TM-135 Wyleczuk, R.H.
Timestamps and Capability-Based Protection in a Distributed
Computer Facility, S.B. & S.M. Thesis, EE & CS Department, June
1979

TM-136 Misunas, D.P.
Report on the Second Workshop on Data Flow Computer and
Program Organization, June 1979

TM-137 Davis, E. and Jaffe, J.M.
Algorithms for Scheduling Tasks on Unrelated Processors, June 1979

TM-138 Pratt, V.R.
Dynamic Algebras: Examples, Constructions, Applications, July 1979

TM-139 Martin, W.A.
Roles, Co-Descriptors, and the Formal Representation of Quantified
English Expressions (Revised May 1980), September 1979; AD
A074-625

TM-140 Szolovits, P.
Artificial Intelligence and Clinical Problem Solving, September 1979

TM-141 Hammer, M. and McLeod, D.
On Database Management System Architecture, October 1979; AD
A076-417

269

PUBLICATIONS

TM-142 Lipski, W., Jr.
On Data Bases with Incomplete Information, October 1979

TM-143 Leth, J.W.
An Intermediate Form for Data Flow Programs, S.M. Thesis, EE &
CS Department, November 1979

TM-144 Takagi, A.
Concurrent and Reliable Updates of Distributed Databases, November
1979

TM-145 Loui, M.C.
A Space Bound for One-Tape Multidimensional Turing Machines,
November 1979

TM-146 Aoki, D.J.
A Machine Language Instruction Set for a Data Flow Processor, S.M.
Thesis, EE & CS Department, December 19I9

TM-147 Schroeppel, R. and Shamir, A.
A T = 0 (2 n/2), S - 0(2 n/4) Algorithm for Certain NP-Complete
Problems, January 1980; AD A080-385

TM-148 Adelman, L.M. and Loui, M.C.
Space-Bounded Simulation of Multitape Turing Machines, January
1980

TM-149 Pallottino, S. and Toffoli, T.
An Efficient Algorithm for Determining the Length of the Longest
Dead Path in an "Lifo" Branch-and-Bound Exploration Schema,
January 1980; AD A079-912

TM-150 Meyer, A.R.
Ten Thousand and One Logics of Programming, February 1980

TM-151 Toffoli, T.
Reversible Computing, February 1980; AD A082-021

TM-152 Papadimitriou, C.H.
On the Complexity of Integer Programming, February 1980

TM- 153 Papadimitriou, C.H.
Worst-Case and Probabilistic Analysis of a Geometric Location
Problem, February 1980

270

PUBLICATIONS

TM-154 Karp, R.M. and Papadimitriou, C.H.
On Linear Characterizations of Combinatorial Optimization
Problems, February 1980

TM-155 Atai, A., Lipton, R.J., Papadimitriou, C.H. and Rodeh, M.
Covering Graphs by Simple Circuits, February 1980

TM-156 Meyer, A.R. and Parikh, R.
Definability in Dynamic Logic, February 1980

TM-157 Meyer, A.R. and Winklmann, K.
On the Expressive Power of Dynamic Logic, February 1980

TM-158 Stark, E.W.
Semaphore Primitives and Starvation-Free Mutual Exclusion, S.M.
Thesis. EP & CS Department, March 1980

TM-159 Pratt, V.R.
Dynamic Algebras and the Nature of Induction, March 1980

TM-160 Kanellakis, P.C.
On the Computational Complexity of Cardinality Constraints in
Relational Databases, March 1980

TM-161 Lloyd, E.L.
Critical Path Scheduling of Task Systems with Resource and
Processor Constraints, March 1980

TM-162 Marcum, A.M.
A Manager for Named, Permanent Objects, S.B. & S.M. Thesis, EE &
CS Department, April 1980; AD A083-491

TM-163 Meyer, A.R. and Halpern, J.Y.
Axiomatic Definitions of Programming Languages: A Theoretical
Assessment, April 1980

TM-164 Shamir, A.
The Cryptographic Security of Compact Knapsacks (Preliminary
Report), April 1980; AD A084-456

TM-165 Finseth, C.A.
Theory and Practice of Text Editors or A Cookbook for an Emacs,
S.B. Thesis, EE & CS Department, May 1980

271

PUBLICATIONS

TM-186 Bryant, R.E.
Report on the Workshop on Self-Timed Systems, May 1980

TM-167 Pavelle, R. and Wester, M.
Computer Programs for Research in Gravitation and Differential
Geometry, June 1980

TM-168 Greif, I.
Programs for Distributed Computing: The Calendar Application,
July 1980; AD A087-357

TM-169 Burke, G. and Moon, D.
LOOP Iteration Macro, (revised January 1981) July 1980; AD
A087-372

TM-170 Ehrenfeucht, A., Parikh, R. and Rozenberg, G.
Pumping Lemmas for Regular Sets, August 1980

TM-171 Meyer, A.R.
What is a Model of the Lambda Calculus?, August 1980

TM-172 Paseman, W.G.
Some New Methods of Music Synthesis, S.M. Thesis, EE & CS
Department, August 1980; AD A090-130

TM-173 Hawkinson, L.B.
XLMS: A Linguistic Memory System, September 1980; AD AOQO-033

TM-174 Arvind, Kathail, V. and Pingali, K.
A Dataflow Architecture with Tagged Tokens, September 1980

TM-175 Meyer, A.R., Weise, D. and Loui, M.C.
On Time Versus Space I1, September 1980

TM- 176 Seaquist, C.R.
A Semantics of Synchronization, S.M. Thesis, EE & CS Department.
September 1980; AD A091-015

TM-177 Sinha, M.K.
TIMEPAD - A Performance Improving Synchronization Mechanism
for Distributed Systems, September 1980

272

PUBLICATIONS

TM-178 Arvind and Thomas, R.E.
I-Structures: An Efficient Data Type for Functional Languages,
September 1980

TM-179 Halpern, J.Y. and Meyer, A.R.
Axiomatic Definitions of Programming Languages, II, October 1980

TM-180 Papadimitriou, C.H.
A Theorem in Database Concurrency Control, October 1980

TM-181 Lipski, W. Jr. and Papadimitriou, C.H.
A Fast Algorithm for Testing for Safety and Detecting Deadlocks in
Locked Transaction Systems, October 1980

TM-182 Itai, A., Papadimitriou, C.H. and Szwarefiter, J.L.
Hamilton Paths in Grid Graphs, October 1980

TM-183 Meyer, A.R.
A Note on the Length of Craig's Interpolants, October 1980

TM-184 Lieberman, H. and Hewitt, C.
A Real Time Garbage Collector that can Recover Temporary Storage
Quickly, October 1980

TM-185 Kung, H-T. and Papadimitriou, C.H.
An Optimality Theory of Concurrency Control for Databases,
November 1980; AD A092-625

TM-186 Szolovits, P. and Martin, W.A.
BRAND X Manual, November 1980; AD A093-041

TM-187 Fischer, M.J., Meyer, A.R. and Paterson, M.S.
f2(n log n) Lower Bounds on Length of Boolean Formulas, November
1980

TM-188 Mayr, E.
An Effective Representation of the Reachability Set of Persistent
Petri Nets, January 1981

TM-189 Mayr, E.
Persistence of Vector Replacement Systems is Decidable, January
1981

273

PUBLICATIONS

TM-190 Ben-Ari, M., Halpern, J.Y. and Pnueli, A.
Deterministic Propositional Dynamic Logic: Finite Models,

Complexity, and Completeness, January 1981.

TM-191 Parikh, R.
Propositional Dynamic Logics of Programs: A Survey, January 1981.

TM-192 Meyer, A.R., Streett, R.S. and Mirkowska, G.
The Deducibility Problem in Propositional Dynamic Logic, February
1981

TM-193 Yannakakis, M. and Papadimitriou, C.H.
Algebraic Dependencies, February 1981

TM-194 Barendregt, H. and Longo, C.
Recursion Theoretic Operators and Morphisms on Numbered Sets.
February 1981

TM-195 Barber, G.R.
Record of the Workshop on Research in Office Semantics, February
1981

TM-196 Bhatt, S.N.
On Concentration and Connection Networks, S.M. Thesis, EE & CS
Department, March 1981

TM-197 Freekin, E. and Toffoli, T.
Conservative Logic, May 1981

TM-198 Halpern, J. and Reif, J.
The Propositional Dynamic Logic of Deterministic Well-Structured
Programs, March 1981

TM-199 Mayr, E. and Meyer, A.R.

The Complexity of the Word Problems for Communative Semigroups
and Polynomial Ideals, June 1981

TM-200 Burke, G.S.

LSB Manual, June 1981

TM-201 Meyer, A.R.
What is a Model of the Lambda Calculus? Expanded Version, July
1981.

274

PUBLICATIONS

TM-202 Saltzer, J.H.
Communication Ring Initialization without Central Control.

December 1981

TM-203 Bawden, A., Burke, G. and Hoffman. C.
Maclisp Extensions, July 1981

TM-204 Halpern, J.Y.
On the Expressive Power of Dynamic Logic, II, August 1981

TM-205 Kannon, R.
Circuit-Size Lower Bounds and Non-Reducibility to Sparce Sets.
October 1981.

TM-206 Leiserson, C. and Pinter, R.
Optimal Placement for River Routing, October 1981

TM-207 Longo, G.
Power Set Modelq For Lambda-Calculus: Theories, Expansions.
Isomorphisms, November 1981

TM-208 Cosmadakis, S. and Papadimitriou, C.
The Traveling Salesman Problem with Many Visits to Few Cities.

November 1981

TM-209 Johnson, D. and Papadimitriou, C.
Computational Complexity and the Traveling Salesman Problem.

December 1981

TI-210 Greif, I.
Software for the 'Roiels' People Play, February 1982

TM-211 Meyer, A.R. and Tiuryn, J.
A Note on Equivalences Among Logics of Programs. December 1981

TM-212 Elias, P.
Minimax Optimal Universal Codeword Sets, January 1982

TM-213 Greif, 1.
PCAL: A Personal Calendar, January 1982

275

PUBLICATIONS

TM-214 Meyer, A. and Mitchell, J.
Terminations for Recursive Programs: Completeness and Axiom-atic
Definability, March 1982

TM-215 Leiserson, C. and Saxe J.
Optimizing Synchronous Systems, March 1082

TM-216 Church, K. and Patil. R.
Coping with Syntactic Ambiguity or flow to Put the Block in the BOX
on the Table, April 1982.

TNI-217 Wright, D.
A File Transfer Program for a Personal Computer, April 1982

T\1-218 Greif. 1.
Cooperative Office WVork, Teleconferencing and Calendar
Management: A Collection of Papers, May 1982

TMI-219 Jouannaud. J-P.. Lescanne. P. and Reinig. F.
Recursive Decom posit ion Ordering and Nlultiset Orderings. June 1082

T\1-220 Chu, T-A.
Circuit Analysis of Self-Tim-es Elements for NMOS VLSI Svstenm-.
May 1982

T\1l-221 Leighton. F.. Leptey. M. -and Miller. G.
Layouts for !lhe Shuffle-Exchiange Graph Based onl the Complex Plane
Diagram, June 1982

TM -222 Mecier zu Sie ker. F.
A Telex (;:tewavy for the Internet. S.B. Thesis. Electricalj En:gincein
D~epartmnt, May 11)82

'l'\-22:l di -wssa. A.A.
.\Primepled D~esigni Ior an lilt egr-fitel (Iii) it:ttioI Ell %i rqItIIIll.

Jul.% I982

TM~-224 Barber. G;.
Supporting Organizatinual Plob"-fii S 61 'Iic ii a \\rkst:ition, Iiil.

1982

JA 1- 2 2- Barber. (;. arl I lfe\it t. C.
1cutiluti~uusfr Oc(ffifSuu. u '-. 1 l

PUBLICATIONS

TM-226 Bergstra, J., Chmielinska, A. and Tiuryti. J.
Hoares's Logic Not Complete When it Could Be. August 1982

TM-227 Leighton, F.T.
New Lower Bound Techniques for VLSI, August 1982

TNI-228 Papadimitriou, C. and Zachos, S.
Two Remarks on the Power of Counting, August 1982

TNI-229 Cosmadakis. S.
The Complexity of Evaluation Relational Queries. August 1982

TM-230 Shamir, A.
Embedding Cryptographic Trapdoors in Arbitrary Knapsack Systems.
September 1982

TM-231 Kleitman, D.. Leighton, F.T., Lepley. M. and M',iller G.
An Asymptotically Optimal Layout for the S huffle-Exchange Graph.
October 1982

TNI-232 Yeh. A.
PLY: A System of Plausibility Inference with a Probabilistic Basis,
December 1982

TM-233 Konopeiski, L.
Implementing Internet Remote Login on a Personal Computer. S.B.
Thesis. Electrical Engineering Department. December 1982

TM1-23-i Rivest. 11. and Shermnan. A.
Raini(00zed E ncryp tion Technii ques. J1anumary 13,0.

T \ - 23 5Mitchell, ..
The Implication of I'roblemu for Funtctional ind lInclusion
De penlen ci es. Ic brmarl cV I13

TIN-235 Leightomn. F.T1. and Leisersmn. (C.
W\after-Scaile Integramtionm of Systolic .-\r:l.\--. liPmiuv N3

TNI-237 Dolev'. D.. L~eighmtonm. I.T. and 1'rickey. if.

PUBLICATIONS

TM-238 Baker, B.S., Bhatt, S.N. and Leighton, F.T.
An Approximation Algorithm for Manhattan Routing, February 98

TM-239 Sutherland, J.B. and Sirbu, M.
Evaluation of an Office Analysis Methodology, March 1983

TM-240 Bromley, H.
A Program for Therapy of Acid-Base and Electrolyte Disorders. S.B.
Thesis, Electrical Engineering Department, June 1983

T%1-241 Arvind and lannucci, R.A.
Two Fundamental Issues in Multiprocessing: The Dataflow Solution.
September 1983; AD A134239

T-M-242 Pingali, K. and Arvind.
Efficient Demand-driven Evaluation (1), September 1983; AD A133477

TM-243 Pingali, K. and Arvind.
Efficient Demand-driven Evaluation (11), September 1083: AD
A 133879

TM-244 Goldreich, 0., G~oldwasser. S. and Micali. S.
How to Construct Random Functions. November 1983

TN 1-245 Meyer, A.
Understanding Algol: The View of the Recent Convert to
Denotational Semantics. October 1983

T\1-246 Trakhtenhrot. B.A.. Halpern. J.Y. and Meyer. A.R.
From Denotational to Operational and Axiomatmic Semnantics for
Algol-Like L~anguiages: An Overview. October 1983

TN1- 2.47 Leighton, T. and Lepley. NI.
Probabilistic Searching in Sorted linked Lists. November 108S3

T.\I- 2 .8 Leighton, F.T. and Rivest. H.L.
Estimating a P~rob ability U~ sing Finite Memnory . Nov endlmr 18

T\ 1- 2 19 Leighton. F.T. andl Rivest. RI.
The Nlarkov Chain Tree The~oreii Ieetier18

's

PUBLICATIONS

TM-250 Goldreich, 0.
On Concurrent Identification Protocols, December 1983

TM-251 Dolev, D., Lynch, N., Pinter, S. Stark, E. and Weihl, W.
Reaching Approximate Agreement in the Presence of Faults,
December 1983

TM-252 Zachos, S. and Heller, H.
On BPP, December 1983

TM-253 Chor, B., Leiserson, C., Rivest, R. and Shearer, J.
An Application of Number Theory to the Organization of Raster
Graphics Memory, April 1984; AD A140638

TM-254 Feldmeier, D.C.
Empirical Analysis of a Token Ring Network, April 1984; AD
A138905

TM-255 Bhatt, S. and Leiserson, C.
How to Assemble Tree Machines, April 1984; AD A139963

TM-2-56 Goldreich, 0.
On the Number of Close-and Equal Pairs of Bits in a String (With
Implications on the Security of RSA's L.S.B., April 1984

TM-257 Dwork, C.. Kanellakis, P. and Mitchell, J.
On the Sequential Nature of Unification, April 1984: AD A139939

TM-258 Halpern, M., Meyer A. and Trakhtenbrot, B.
The Semantics of Local Storage, or What Makes the Free-list Free?.
April 1984

TM-259 Lynch, N. and Fredrickson, G.
The Impact of Synchronous Communication on the Problem of
Electing a Leader in a Ring, April 1984

TM-260 Chor. B. and Goldreich, 0.
RSA/Rabin Least Significant Bits are 1/2 + 1/poly(logN) Secure,
May 1984

TM-261 Zaks, S.
Optimal Distributed Algorithms for Sorting and lanking. May 1981

279

PUBLICATIONS

TM-262 Leighton, T. and Rosenberg, A.
Three-dimensional Circuit Layouts, June 1984; AD A143430

TM-263 Sirbu, M.S. and Sutherland, J.B.
Naming and Directory Issues in Message Transfer Systems, July 1984;
AD A154727

TM-264 Sarin, S.K. and Greif, I.
Software for Interactive On-Line Conferences, July 1984; AD A154742

TM-265 Lundelius, J. and Lynch, N.
A New Fault-Tolerant Algorithm for Clock Synchronization, July
1984; AD A154771

TM-266 Chor, B. and Coan, B.A.
A Simple and Efficient Randomized Byzantine Agreement Algorithm,
August 1984; AD A153240

TM-267 Schooler, R. and Stamos, J.W.
Proposal for a Small Scheme Implementation, October 1984: AD
A148707

TM-268 Awerbuch, B.
Complexity of Network Synchronization, January 1985

TM-269 Fisher, M., Lynch, N.A., Burns, J. and Borodin, A.
The Colored Ticket Algorithm, August 1983; AD A148696

TM-270 Dwork, C., Lynch, C. and Stockmeyer. L.
Consensus in the Presence of Partial Synchrony (Preliminary
Version), July 1984; AD A154705

TM-271 Dershowitz, N. and Zaks. S.
Patterns in Trees, January 1985

TM-272 Leighton, T.
Tight Bounds on the Complexity of Parallel Sorting, April 1985: AD
A154726

TN%-273 Berman, F., Leighton, T., Shor, P.W. and Shor. L.
Generalized Planar Matching. April 1985: AD A15.1770

28(0

PUBLICATIONS

TM-274 Kuipers, B.

Qualitative Simulation of Mechanisms, April 1985

TM-275 Burns, J.E. and Lynch, N.A.
The Byzantine Firing Squad Problem, April 1985; AD A154809

TM-276 Dolev, D., Lynch., N.A., Pinter, S.S., Stark, E.W. and Weihl, W.E.

Reaching Approximate Agreement in the Presence of Faults, May

1985; AD A156541

TM-277 Frederickson, G.N. and Lynch, N.A.
A General Lower Bound for Electing a Leader in a Ring, March 1985;
AD A156241

TM-278 Fisch, M.J., Griffeth, N.D., Guibas, L.J. and Lynch, N.A.
Probabilistic Analysis of a Network Resource Allocation Algorithm.
June 1985; AD A157553

TM-279 Fischer, M.J., Lynch, N.A. and Merritt, M.
Easy Impossibility Proofs for Distributed Consensus Problems, June
1985; AD A157402

TM-280 Kuipers, B. and Kassirer, J.P.
Qualitative Simulation in Medical Physiology: A Progress Report,
June 1985

TM-281 Hailperin, M.
What Price for Eliminating Expression Side-Effects?, June 1985

TM-282 Sarin, S. and Greif, I.
Computer Based Real-Time Conferences, July 1985

TM-283 Chor, B. and Goldreich, 0.
Unbiased Bits from Sources of Weak Randomness and Probabilistic
Communication Complexity, September 1986

TM-284 Leiserson, C.E. and Saxe, J.B.
A Mixed-Integer Linear Programming Problems Which Is Efficiently

Solvable, July 1985; AD A159.196

TM-285 Kilian, J.J
Two Undecidability Results in Probabilistic Automata Theory. S.B.
Thesis, EE & CS Department, June 1985

281

PUBLICATIONS

TM-286 Hastad, J.

Improvements of Yao's Results on Parity Circuits, September 1985

TM-287 Rivest, R.L.

Network Control by Bayesian Broadcast, July 1985

TM-288 Chung, J.C.

Dscribe" A Scribe Server, May 1985

TM-289 Toffoli, T. and Margolus, N.

The CAM-7 Multiprocessor: A Cellular Automata Machine, December

1985

TM-290 Fisher, M.J., Lynch, N.A., Burns. J.E. and Borodin, A.

Distributed FIFO Allocation of Identical Resources Using Small

Shared Space, June 1085

TM-291 Goldberg, A.V.

A New Max-Flow Algorithm, November 1985

TIM-292 Jain, R. and Routhier, S.

Packet Trains: Measurements and a New Model for Computer

Network Traffic, November 1985

TM-293 Barrington, D.A.
NVidth-3 Permutation Branching Programs, December 1985

TM-294 Arvind and Culler, D.E.

Dataflow Architectures, February 1986; AD A166235

TM-295 Greif, ., Selinger. R. and Weihl, W.

Atomic Data Abstractions in a Distributed Collaborative Editing
System (Extended Abstract). November 1985

TM-296 Margolus, N., Toffoli, T. and Vichniac. G.

Cellular Automata Supercomputers for Fluid Dynamics Modeiing,

December 1985

TM-297 Bentley, J.L., Leighton, F.T., Lepley, M., Stanat. D.F. and Steele.

J.M.

A Randomized Data Structure for Ordrpd Sets, May 1986

282

PUBLICATIONS

TM-298 Leighton, T. and Shor, P.

Tight Bounds for Minimax Grid Matching, With Applications to the

Average Case Analysis of Algorithms, May 1986

TM-299 Gifford, D.K., Lucassen, J.M. and Berlin, S.T,
The Application of Digital Broadcast Communication to Large Scale

Information Systems, April 1986

TM-300 Dwork, C. and Moses, Y.

Knowledge and Common Knowledge in a Byzantine Environment:
Crash Failures, July 1986

TM-301 Elias, P.
Interval and Recency-Rank Source Coding: Two On-Line Adaptive
Variable-Length Schemes, April 1986

TM-302 Leighton, T. and Leiserson, C.E.
A Survey of Algorithms for Integrating Wafer-Scale Systolic Arrays,

May 1986; AD A171623

TM-303 Li, M., Longpre, L. and Vitanyi, P.M.B.

The Power of the Queue, April 1986

TM-304 Kranakis, E. and Vitanyi, P.M.B.

Distributed Control in Computer Networks and Cross-Sections of

Colored Multidimensional Bodies, April 1986; AD A172224

TM-305 Sacks, E.
Representing Change, May 1986

TM-306 Vitanyi, P.M.B.
Nonsequential Computation and Laws of Nature, May 1986; AD

A171505

TM-307 Greenberg, R.I. and Leiserson, C.E.

Randomized Routing on Fat-Trees. April 1986

TM-308 Meyer, A.R.

Floyd-Hoare Logic Defines Semantics, May 1986

TM-309 Leiserson, C.E. and Saxe, J.B.
Retiming Synchronous Circuitry, May 1986; AD A172144

283

PUBLICATIONS

TM-310 Szolovits, P. Kassirer, J.P., Long, W.J., Moskowitz, AJ., Pauker,
S.G., Patil, R.S. and Wellman, M.P.
An Artificial Intelligence Approach to Clinical Decision Making,
Sep. ember 1986

TM-311 Rivest, R.L.
Game Tree-Searching By Min/Max Approximation, September 1986

TM-312 Sacks, E.
Hierarchical Inequality Reasoning, February 1987

TM-313 Theory of Computation Research Group
Theory of Computation Research Group Summary, 1985-86, August
1986

TM-314 Vitanyi, P.M.B. and Awerbuch, B.
Atomic Shared Register Access By Asynchronous Hardware (Detailed
Abstract), October 1986; AD A178301

TM-315 Goldreich, 0.
Two Remarks Concerning the Goldwasser-Micali-Rivest Signature

Scheme, September 1986

TM-316 Greif, I. and Sarin, S.

Data Sharing in Group Work, October 1986

TM-317 Bennett, E.H., Toffoli, T. and Wolfram, S.
Cellular Automata '86 Conference, December 1986

TM-31.8 Leiserson, C.E., and Maggs, B.M.
Communication-Efficient Parallel Graph Algorithms, December 1986

TM-319 Leong, T-Y.
Murmur Clinic: An Auscultation Expert System, January 1987

TM-320 Goldberg, A.V. and Plotkin, S.A.

Efficient Parallel Algorithms for (- + 1)-Coloring and Maximal
Independent Set Problems, February 1987

TM-321 Cormen, T.H. and Leiserson, C.E.
A Hyperconcentrator Switch for Routing Bit-Serial Messages.
February 1987; AD A178402

284

PUBLICATIONS

TM-322 Cormen, T.H.

Efficient Multichip Partial Concentrator Switches, February 1987; AD

A178334

TM-323 Lelserson, C.E. and Phillips, C.A.
A Space-Efficient Algorithm for Finding the Connected Components

of Rectangles in the Plane, February 1987

TM-324 Fekete, A. Lynch, N., Merritt, M. and Weihl, W.
Nested Transactions and Read/Write Locking, April 1987; AD
A191981

TM-325 Awerbuch, B., Coldreich, 0., and Vainish, R.
On the Message Complexity of Broadcast: A Basic Lower Bound, May

1987

TM-326 Awerbuch. B.
Controlling Worst-Case Performance of a Communication Protocol
and Dynamic Resource Management, May 1987

TNI-327 Awerbuch, B.
Adapting Communication Protocols to Dynamic Input and Network
Topology. Research Summary, May 1997

TM-328 Awerbuch. B. and Plotkin, S.A.
Approximating the Size of a Dynamically Growing Asynchronous
Distributed Network, April 1987

TM-329 Herlihy, M., Lynch, N., Merritt, M. and Weihl, W.
On the Correctness of Orphan Elimination Algorithms, May 1987; AD

A182175

TM-331 Russ, T.A.
Temporal Control Structure Reference Manual, June 1987

TM-332 Wellman, M.P.

Formulation of Tradeoffs in Planning Under Uncertainty, June 1987

285

PUBLICATIONS

Technical Reports

TR-15 Bobrow, D.G.
Natural Language Input for a Computer Problem Solving System,

Ph.D. Dissertation, Math. Department, September 1964; AD 604-730

TR-2 Raphael, B.
SIR: A Computer Program for Semantic Information Retrieval,
Ph.D. Dissertation, Math. Department, June 1964; AD 608-499

TR-3 Corbato, F.J.
System Requirements for Multiple-Access, Time-Shared Computers.
May 1964; AD 608-501

TR-4 Ross, D.T. and Feldman, C.G.
Verbal and Graphical Language for the AED System: A Progress
Report, May 1964; AD 604-678

TR-6 Biggs, J.M. and Logcher, R.D.
STRESS: A Problem-Oriented Language for Structural Engineering.
May 1964; AD 604-679

TR-7 Weizenbaum, J.
OPL-I: An Open Ended Programming System within CTSS, April

1964; AD 604-680

TR-8 Greenberger, M.
The OPS-1 Manual, May 1964; AD 604-681

TR-11 Dennis, J.B.
Program Structure in a Multi-Access Computer, May 1964; AD
608-500

TR-12 Fano, R.M.
The MAC System: A Progress Report, October 1964: AD 609-296

TR-13 Greenberger, M.
A New Methodology for Computer Simulation. October 1964: AD
609-288

TR-14 Roos, D.

Use of CTSS in a Teaching Environment, November 1964; AD
661-807

5
TRs 5, 9, 10, 15 were never issued

286

PUBLICATIONS

TR-16 Saltzer, J.H.
CTSS Technical Notcs, March 1965; AD 612-702

TR-17 Samuel, A.L.
Time-Sharing on a Multiconsole Computer, March 1965; AD 462-158

TR-18 Scherr, A.L.
An Analysis of Time-Shared Computer Systems, Ph.D. Dissertation,
EE Department, June 1965; AD 470-715

TR-19 Russo, F.J.
A Heuristic Approach to Alternate Routing in a Job Shop, S.B. &
S.M. Thesis, Sloan School, June 1965; AD 474-018

TR-20 Wantman, M.E.
CALCULAID: An On-Line System for Algebraic Computation and
Analysis, S.M. Thesis, Sloan School, September 1965; AD 474-019

TR-21 Denning, P.J.
Queueing Models for File Memory Operation, S.M. Thesis, EE
Department, October 1965; AD 624-943

TR-22 Greenberger, M.
The Priority Problem, November 1965; AD 625-728

TR-23 Dennis. J.B. and Van Horn, E.C.
Programming Semantics for Multi-programmed Computations,
December 1965; AD 627-537

TR-24 Kaplow, R., Strong, S. and Brackett, J.
MAP: A System for On-Line Mathematical Analysis, January 1966;
AD 476-443

TR-25 Stratton, W.D.
Investigation of an Analog Technique to Decrease Pen-Tracking Time
in Computer Displays, S.M. Thesis, EE Department, March 1966: AD
631-396

TR-26 Cheek, T.B.
Design of a Low-Cost Character Generator for Remote Computer
Displays, S.M. Thesis, EE Department., March 1966; AD 631-269

TR-27 Edwards, D.J.
OCAS - On-Line Cryptanalytic Aid System, S. 1. Thesis, EE
Department, May 1966; Al) 633-678

287

PUBLICATIONS

TR-28 Smith, A.A.

Input/Output in Time-Shared, Segmented, Multiprocessor Systems.
S.M. Thesis, EE Department, June 1966; AD 637-215

TR-29 Ivie, E.L.
Search Procedures Based on Measures of Relatedness between

Documents, Ph.D. Dissertation, EE Department, June 1966; AD

636-275

TR-30 Saltzer, J.H. Traffic Control in a Multiplexed Computer System.

Sc.D. Thesis, EE Department, July 1966; AD 635-966

TR-31 Smith, D.L.

Models and Data Structures for Digital Logic Simulation, S.M. Thesis,

EE Department, August 1966; AD 637-192

TR-32 Teltelman, W.

PILOT: A Step Toward Man-Computer Symbiosis. Ph.D.

Dissertation, Math. Department, September 1966: AD 638-446

TR-33 Norton, L.M. ADEPT - A Heuristic Program for Proving Theorems

of Group Theory, Ph.D. Dissertation, Math. Department, October

1966; AD 645-660

TR-34 Van Horn, E.C., Jr.

Computer Design for Asynchronously Reproducible Multiprocessing.

Ph.D. Dissertation, EE Department, November 1966; AD 650-407

TR-35 Fenichel, R.R.

An On-Line System for Algebraic Manipulation. Ph.D. Dissertation,

Appl. Math. (Harvard), December 1966; AD 657-282

TR-36 Martin, W.A.

Symbolic Mathematical Laboratory. Ph.D. Dissertation, EE

Department, 7anuary 1967; AD 657-283

TR-37 Guzman-Arenas. A.
Some Aspects of Pattern Recognition by Computer. SA.L Thesis. :E

Department, February 1967: AD 656-011

TR-38 Rosenberg, R.C., Kennedy, D.W. and Humphrey, R.A.

A Low-Cost Output Terminal For Time-Shared ('omputers. March

1967; AD 662-027

TR-39 Forte, A.

Syntax-Based Analytic Reading of Musical Scores, April 1967: AD

661-806

288

PUBLICATIONS

TR-40 Miller, J.R.
On-Line Analysis for Social Scientists, May 1967; AD 668-009

TR-41 Coons, S.A.
Surfaces for Computer-Aided Design of Space Forms, June 1967; AD
663-504

TR-42 Liu, C.L., Chang, G.D. and Marks, R.E.
Design and Implementation of a Table-Driven Compiler System, July

1967; Al) 668-960

TR-13 Wilde, D.U.
Program Analysis by Digital Computer, Ph.D. Dissertation. EE
Department, August 1967; AD 662-224

TR-44 Gorry, G.A.
A System for Computer-Aided Diagnosis, Ph.D. Dissertation, Sloan
School, September 1967; AD 662-665

TR-45 Leal-Cantu, N.
On the Simulation of Dynamic Systems with Lumped Parameters and
Time Delays, S.M. Thesis, ME Department, October 1967: AD
663-502

TR-46 Alsop, J.W.
A Canonic Translator, S.B. Thesis, EE Department, November 1967;
AD 663-503

TR-47 Moses, J.
Symbolic Integration, Ph.D. Dissertation, Math. Department,
December 1967; AD 662-666

TR-48 Jones, M.M.
Incremental Simulation on a Time-Shared Computer, Ph.D.

Dissertation, Sloan School, January 1968: AD 662-225

TR-49 Luconi, F.L.
Asynchronous Computational Structures, Ph.D. Dissertation, EE
Department, February 1968: AD 667-602

TR-50 Denning, P.J.
Resource Allocation in Multiprocess Computer Systems, Ph.D.

Dissertation, EE Department, May 1968; AD 675-554

TR-51 Charniak, E.
CARPS, A Program which Solves Calculus Word Problems, S.M.

Thesis, EE Department, July 1968; AD 673-670

289

PUBLICATIONS

TR-52 Deitel, H.M.
Absentee Computations in a Multiple-Access Computer System, S.M.
Thesis, EE Department, August 1968; AD 684-738

TR-53 Slutz, D.R.
The Flow Graph Schemata Model of Parallel Computation. Ph.D.
Dissertation, EE Department, September 1968; AD 683-393

TR-54 Grochow, J.M.
The Graphic Display as an Aid in the Monitoring of a Time-Shared
Computer System, S.M. Thesis, EE Department, October 1968; AD
689-468

TR-55 Rappaport, R.L.
Implementing Multi-Process Primitives in a Multiplexed Computer
System, S.M. Thesis, EE Department, November 1968; AD 689-469

TR-56 Thornhill, D.E., Stotz, R.H., Ross, D.T. and Ward, J.E.
An Integrated Hardware-Software System for Computer Graphics in
Time-Sharing, December 1968; AD 685-202

TR-57 Morris, J.H.
Lambda-Calculus Models of Programming Languages, Ph.D.
Dissertation, Sloan School, December 1968; AD 683-394

TR-58 Greenbaum, H.J.
A Simulator of Multiple Interactive Users to Drive a Time-Shared
Computer System, S.M. Thesis, EE Department. January 1969: AD
686-988

TR-59 Guzman; A.
Computer Recognition of Three- Dimensional Objects in a Visual
Scene, Ph.D. Dissertation, EE Department, December 1968; AD
692-200

TR-60 Ledgard, H.F.
A Formal System for Defining the Syntax and Semantics of Computer
Languages, Ph.D. Dissertation, EE Department, April 1969; AD
689- 305

TR-61 Baecker, R.M.
Interactive Computer-Mediated Animation, Ph.D. Dissertation, EE
Department, June 1969; AD 690-887

290

PUBLICATIONS

TR-62 Tillman, C.C., Jr.
EPS: An Interactive System for Solving Elliptic Boundary-Value
Problems with Facilities for Data Manipulation and General-Purpose
Computation, June 1969; AD 692-462

TR-63 Brackett, J.W., Hammer, M. and Thornhill, D.E.
Case Study in Interactive Graphics Programming: A Circuit Drawing
and Editing Program for Use with a Storage-Tube Display Terminal,
October 1969; AD 699-930

TR-64 Rodriguez, J.E.
A Graph Model for Parallel Computations, Sc.D. Thesis, EE
Department, September 1969; AD 697-759

TR-65 DeRemer, F.L.
Practical Translators for LR(k) Languages, Ph.D. Dissertation, EE
Department, October 1969; AD 699-501

TR-66 Beyer, W.T.
Recognition of Topological Invariants by Iterative Arrays, Ph.D.
Dissertation, Math. Department, October 1969; AD 699-502

TR-67 Vanderbilt, D.H.
Controlled Information Sharing in a Computer Utility, Ph.D.
Dissertation, EE Department, October 1969; AD 699-503

TR-68 Selwyn, L.L.
Economies of Scale in Computer Use: Initial Tests and Implications
for The Computer Utility, Ph.D. Dissertation, Sloan School, June
1970; AD 710-011

TR-69 Gertz, J.L.
Hierarchical Associative Memories for Parallel Computation, Ph.D.
Dissertation, EE Department, June 1970; AD 711-091

TR-70 Fillat, A.I. and Kraning, L.A.
Generalized Organization of Large Data-Bases: A Set-Theoretic
Approach to Relations, S.B. & S.M. Thesis, EE Department, June
1970; AD 711-060

TR-71 Fiasconaro, J.G.
A Computer-Controlled Graphical Display Processor, S.M. Thesis, EE
Department, June 1970; AD 710-479

TR-72 Patil, S.S.
Coordination of Asynchronous Events, Sc.D. Thesis, EE Department.
June 1970; AD 711-763

291

PUBLICATIONS

TR-73
Griffith, A.K.
Computer Recognition of Prismatic Solids, Ph.D. Dissertation, Math.
Department, August 1970; AD 712-069

TR-74 Edelberg, M.
Integral Convex Polyhedra and an Approach to Integralization, Ph.D.
Dissertation, EE Department, August 1970; AD 712-070

TR-75 Hebalkar, P.G.
Deadlock-Free Sharing of Resources in Asynchronous Systems, Sc.D.
Thesis, EE Department, September 1970; AD 713-139

TR-76 Winston, P.H.
Learning Structural Descriptions from Examples, Ph.D. Dissertation,
EE Department, September 1970; AD 713-988

TR-77 Haggerty, J.P.
Complexity Measures for Language Recognition by Canonic Systems,
S.M, Thesis, EE Department, October 1970; AD 715-134

TR-78 Madnick, S.E.
Design Strategies for File Systems, S.M. Thesis, EE Department &
Sloan School, October 1970; AD 714-269

TR-79 Horn, B.K.
Shape from Shading: A Method for Obtaining the Shape of a Smooth
Opaque Object from One View, Ph.D. Dissertation, EE Department.
November 1970; AD 717-336

TR-80 Clark, D.D., Graham, R.M., Saltzer, J.H. and Schroeder, M.D
The Classroom Information and Computing Service, January 1971;
AD 717-857

TR-81 Banks, E.R.
Information Processing and Transmission in Cellular Automata, Ph.D.
Dissertation, ME Department, January 1971; AD 717-951

TR-82 Krakauer, L.J.
Computer Analysis of Visual Properties of Curved Objects, Ph.D.
Dissertation, EE Department, May 1971; AD 723-647

TR-83 Lewin, D.E.
In-Process Manufacturing Quality Control, Ph.D. Dissertation. Sloan
School, January 1971; AD 720-098

292

PUBLICATIONS

TR-84 Winograd, T.
Procedures as a Representation for Data in a Computer Program for
Understanding Natural Language, Ph.D. Dissertation, Math.
Department, February 1971; AD 721-399

TR-85 Miller, P.L.
Automatic Creation of a Code Generator from a Machine Description,
E.E. Thesis, EE Department, May 1971; AD 724-730

TR-86 Schell, R.R.
Dynamic Reeonfiguration in a Modular Computer System, Ph.D.
Dissertation, EE Department, June 1971; AD 725-859

TR-87 Thomas, R.H.
A Model for Process Representation and Synthesis, Ph.D.
Dissertation, EE Department, June 1971; AD 726-049

TR-88 Welch, T.A.
Bounds on Information Retrieval Efficiency in Static File Structures,
Ph.D. Dissertation, EE Department, June 1971; AD 725-429

TR-89 Owens, R.C., Jr.
Primary Access Control in Large-Scale Time-Shared Decision Systems,
S.M. Thesis, Sloan School, July 1971; AD 728-036

TR-90 Lester, B.P.
Cost Analysis of Debugging Systems, S.B. & S.M. Thesis. EE
Department, September 1971; AD 730-521

TR-91 Smoliar, S.W.
A Parallel Processing Model of Musical Structures, Ph.D. Dissertation,
Math. Department, September 1971; AD 731-690

TR-92 Wang, P.S.
Evaluation of Definite Integrals by Symbolic Manipulation, Ph.D.
Dissertation, Math. Department, October 1971; AD 732-005

TR-93 Greif, I.G.
Induction in Proofs about Programs, S.M. Thesis, EE Department,
February 1972; AD 737-701

TR-94 Hack, M.H.T.
Analysis of Production Schemata by Petri Nets, S.M. Thesis, EE
Department, February 1972; AD 740-320

293

.. ..,

PUBLICATIONS

TR-95 Fateman, R.J.
Essays in Algebraic Simplification (A revision of a Harvard Ph.D.
Dissertation), April 1972; AD 740-132

TR-96 Manning, F.
Autonomous, Synchronous Counters Constructed Only of J-K Flip-
Flops, S.M. Thesis, EE Department, May 1972; AD 744-030

TR-97 Vilfan, B.
The Complexity of Finite Functions, Ph.D. Dissertation, EE
Department, March 1972; AD 739-678

TR-98 Stockmeyer, L.J.
Bounds on Polynomial Evaluation Algorithms, S.M. Thesis, EE
Department, April 1972; AD 740-328

TR-99 Lynch, N.A.
Relativization of the Theory of Computational Complexity, Ph.D.
Dissertation, Math. Department, June 1972; AD 744-032

TR-100 Mandl, R.
Further Results on Hierarchies of Canonic Systems, S.M. Thesis, EE
Department, June 1972; AD 744-206

TR-101 Dennis, J.B.
On the Design and Specification of a Common Base Language, June
1972; AD 744-207

TR-102 Hossley, R.F.
Finite Tree Automata and 12-Automata, S.M. Thesis, EE Department,
September 1972; AD 749-367

TR-103 Sekino, A.
Performance Evaluation of Multiprogrammed Time-Shared Computer
Systems, Ph.D. Dissertation, EE Department, September 1972; AD
749-949

TR-104 Schroeder, M.D.
Cooperation of Mutually Suspicious Subsystems in a Computer
Utility, Ph.D. Dissertation, EE Department, September 1972; AD
750-173

TR- 105 Smith, B.J.
An Analysis of Sorting Networks, Sc.D. Thesis, EE Department,
October 1972; AD 751-614

294

PUBLICATIONS

TR-106 Rackoff, C.W.
The Emptiness and Complementation Problems for Automata on
Infinite Trees, S.M. Thesis, EE Department, January 1973; AD
756-248

TR-107 Madnick, S.E.
Storage Hierarchy Systems, Ph.D. Dissertation, EE Department, April
1973; AD 760-001

TR- 108 Wand, M.
Mathematical Foundations of Formal Language Theory, Ph.D.
Dissertation, Math. Department, December 1973.

TR-109 Johnson, D.S.
Near-Optimal Bin Packing Algorithms, Ph.D. Dissertation, Math.
Department, June 1973, PB 222-090

TR-110 Moll, R.
Complexity Classes of Recursive Functions, Ph.D. Dissertation, Math.
Department, June 1973; AD 767-730

TR-111 Linderman, J.P.
Productivity in Parallel Computation Schemata, Ph.D. Dissertation,

EE Department, December 1973, PB 226-159/AS

TR-112 Hawryszklewycz, I.T.
Semantics of Data Base Systems, Ph.D. Dissertation, EE Department,
December 1973, PB 226-061/AS

TR- 113 Herrmann, P.P.
On Reducibility Among Combinatorial Problems, S.M. Thesis, Math.
Department, December 1973, PB 226-157/AS

TR-114 Metcalfe, R.M.
Packet Communication, Ph.D. Dissertation, Applied Math., Harvard
University, December 1973; AD 771-430

TR-115 Rotenberg, L.
Making Computers Keep Secrets, Ph.D. Dissertation, EE Department,
February 1974, PB 229-352/AS

TR-116 Stern, J.A.
Backup and Recovery of On-Line Information in a Computer Utility,
S.M. & E.E. Thesis, EE Department, January 1974; AD 774-141

295

PUBLICATIONS

TR-117 Clark, D.D.
An Input/Output Architecture for Virtual Memory Computer
Systems, Ph.D. Dissertation, EE Department, January 1974; AD
774-738

TR-118 Briabrin, V.
An Abstract Model of a Research Institute: Simple Automatic
Programming Approach, March 1974, PB 231-505/AS

TR-119 Hammer, M.M.
A New Grammatical Transformation into Deterministic Top-Down
Form, Ph.D. Dissertation, EE Department, February 1974; AD
775-545

TR-120 Ramchandani, C.
Analysis of Asynchronous Concurrent Systems by Timed Petri Nets,
Ph.D. Dissertation, EE Department, February 1974; AD 775-618

TR-121 Yao, F.F.
On Lower Bounds for Selection Problems, Ph.D. Dissertation, Math.
Department, March 1974, PB 230-950/AS

TR-122 Scherf, J.A.
Computer and Data Security: A Comprehensive Annotated
Bibliography, S.M. Thesis, Sloan School, January 1974; AD 775-546

TR-123 Saltzer, et al.
Introduction to Multics, February 1974; AD 918-562

TR-124 Laventhal, M.S.
Verification of Programs Operating on Structured Data, S.B. & S.M.

Thesis, EE Department, March 1974, PB 231-365/AS

TR- 125 Mark, W.S.

A Model-Debugging System, S.B. & S.M. Thesis, EE Department,
April 1974; AD 778-688

TR-126 Altman, V.E.
A Language Implementation System. S.B. & S.M. Thesis, Sloan
School, May 1974; AD 780-672

TR-127 Greenberg, B.S.
An Experimental Analysis of Program Reference Patterns in the
Multics Virtual Memory, S.M. Thesis, EE Department, May 1974; AD
780-407

296

PUBLICATIONS

TR-128 Frankston, R.M.
The Computer Utility as a Marketplace for Computer Services, S.M.
& EE Thesis, EE Department, May 1974; AD 780-436

TR-129 Weissberg, R.W.
Using Interactive Graphics in Simulating the Hospital Emergency
Room, S.M. Thesis, EE Department, May 1974; AD 780-437

TR-130 Ruth, G.R.
Analysis of Algorithm Implementations, Ph.D. Dissertation, EE
Department, May 1974; AD 780-408

TR-131 Levin, M.
Mathematical Logic for Computer Scientists, June 1974.

TR-132 Janson, P.A.
Removing the Dynamic Linker from the Security Kernel of a
Computing Utility, S.M. Thesis, EE Department, June 1974; AD
781-305

TR-133 Stockmeyer, L.J.
The Complexity of Decision Problems in Automata Theory and Logic,
Ph.D. Dissertation, EE Department, July 1974, PB 235-283/AS

TR-134 Ellis, D.J.
Semantics of Data Structures and References, S.M. & E.E. Thesis, EE
Department, August 1974, PB 236-594/AS

TR-135 Pfister, G.F.
The Computer Control of Changing Pictures, Ph.D. Dissertation, EE
Department, September 1974; AD 787-795

TR-136 Ward, S.A.
Functional Domains of Applicative Languages, Ph.D. Dissertation, EE
Department, September 1974; AD 787-796

TR-137 Seiferas, J.1.
Nondeterministic Time and Space Complexity Classes, Ph.D.
Dissertation, Math. Department, September 1974.

PB 236-777/AS

TR-138 Yun, D.Y.Y.
The Hensel Lemma in Algebraic Manipulation, Ph.D. Dissertation,
Math. Department, November 1974; AD A002-737

297

PUBLICATIONS

TR-139 Ferrante, J.
Some Upper and Lower Bounds on Decision Procedures in Logic,
Ph.D. Dissertation, Math. Department, November 1974.
PB 238-121/AS

TR-140 Redell, D.D.
Naming and Protection in Extendable Operating Systems, Ph.D.
Dissertation, EE Department, November 1974; AD AOO1-721

TR-141 Richards, M., Evans, A. and Mabee, R.
The BCPL Reference Manual, December 1974; AD A003-599

TR-142 Brown, G.P.
Some Problems in German to English Machine Translation, S.M. &
E.E. Thesis, EE Department, December 1974; AD A003-002

TR-143 Silverman, H.
A Digitalis Therapy Advisor, S.M. Thesis, EE Department, January
1975.

TR-144 Rackoff, C.
The Computational Complexity of Some Logical Theories, Ph.D.
Dissertation, EE Department, February 1975.

TR-145 Henderson, D.A.
The Binding Model: A Semantic Base for Modular Programming
Systems, Ph.D. Dissertation, EE Department, February 1975; AD
A006-961

TR-146 Malhotra, A.
Design Criteria for a Knowledge-Based English Language System for
Management: An Experimental Analysis, Ph.D. Dissertation, EE
Department, February 1975.

TR-147 Van De Vanter, M.L.
A Formalization and Correctness Proof of the CGOL Language
System, S.M. Thesis, EE Department, March 1975.

TR-148 Johnson, J.

Program Restructuring for Virtual Memory Systems, Ph.D.
Dissertation, EE Department, March 1975; AD A009-218

TR-149 Snyder, A.
A Portable Compiler for the Language C, S.B. & S.M. Thesis, EE
Department, May 1975; AD AO1O-218

298

PUBLICATIONS

TR-150 Rumbaugh, J.E.
A Parallel Asynchronous Computer Architecture for Data Flow
Programs, Ph.D. Dissertation, EE Department, May 1975; AD
AO1O-918

TR-151 Manning, F.B.
Automatic Test, Configuration, and Repair of Cellular Arrays, Ph.D.
Dissertation, EE Department, June 1975; AD A012-822

TR-152 Qualitz, J.E.
Equivalence Problems for Monadic Schemas, Ph.D. Dissertation, EE
Department, June 1075; AD A012-823

TR-153 Miller, P.B.
Strategy Selection in Medical Diagnosis, S.M. Thesis, EE & CS
Department, September 1975.

TR-154 Greif, 1.
Semantics of Communicating Parallel Processes, Ph.D. Dissertation,
EE & CS Department, September 1975; AD A018-302

TR-155 Kahn, K.M.
Mechanization of Temporal Knowledge, S.M. Thesis, EE & CS
Department, September 1975.

TR-156 Bratt, R.G.
Minimizing the Naming Facilities Requiring Protection in a Computer
Utility, S.M. Thesis, EE & CS Department, September 1975.

TR-157 Meldman, J.A.
A Preliminary Study in Computer-Aided Legal Analysis, Ph.D.
Dissertation, EE & CS Department, November 1975; AD A018-997

TR-158 Grossman, R.W.
Some Data-base Applications of Constraint Expressions, S.M. Thesis,
EE & CS Department, February 1976; AD A024-149

TR-159 Hack, M.
Petri Net Languages, March 1978.

TR-160 Hosyj, M.
A Program for the Design of Procurement Systems, S.M. Thesis, EE
& CS Department, May 1976; AD A02-688

,. 299

PUBLICATIONS

TR-161 Hack, M.
Decidability Questions, Ph.D. Dissertation, EE & CS Department,
June 1976.

TR-162 Kent, S.T.
Encryption-Based Protection Protocols for Interactive User-Computer
Communication, S.M. Thesis, EE & CS Department, June 1976; AD
A026-9 11

TR- 163 Montgomery, W.A.
A Secure and Flexible Model of Process Initiation for a Computer
Utility, S.M. & E.E. Thesis, EE & CS Department, June 1976.

TR-164 Reed, D.P.
Proce&.)r Multiplexing in a Layered Operating System, S.M. Thesis,
EE & CS Department, July 1976.

TR- 165 McLeod, D.J.
High Level Expression of Semantic Integrity Specifications in a
Relational Data Base System, S.M. Thesis, EE & CS Department,
September 1976; AD A034-184

TR-166 Chan, A.Y.
Index Selection in a Self-Adaptive Relational Data Base Management
System, S.M. Thesis, EE & CS Department, September 1976; AD
A034-185

TR-167 Janson, P.A.
Using Type Extension to Organize Virtual Memory Mechanisms,
Ph.D. Dissertation, EE & CS Department, September 1976.

TR-168 Pratt, V.R.
Semantical Considerations on Floyd-Hoare Logic, September 1976.

TR-169 Safran, C., Desforges, J.F. and Tsichlis, P.N.
Diagnostic Planning and Cancer Management, September 1976.

TR-170 Furtek, F.C.
The Logic of Systems, Ph.D. Dissertation. EE & CS Department.
December 1976.

TR-171 Huber, A.R.
A Multi-Process Design of a Paging System, S.M. & E.E. Thesis, EE
& CS Department, December 1976.

300

PUBLICATIONS

TR-172 Mark, W.S.
The Reformulation Model of Expertise, Ph.D. Dissertation, EE & CS

Department, December 1976; AD A035-397

TR-173 Goodman, N.
Coordination of Parallel Processes in the Actor Model of
Computation, S.M. Thesis, EE & CS Department, December 1976.

TR-174 Hunt, D.H.
A Case Study of Intermodule Dependencies in a Virtual Memory
Subsystem, S.M. & E.E. Thesis, EE & CS Department, December
1976.

TR-175 Goldberg, H.J.
A Robust Environment for Program Development, S.M. Thesis, EE &
CS Department, February 1977.

TR-176 Swartout, W.R.
A Digitalis Therapy Advisor with Explanations, S.M. Thesis, EE &
CS Department, February 1977.

TR-177 Mason, A.H.
A Layered Virtual Memory Manager, S.M. & E.E. Thesis, EE & CS
Department, May 1977.

TR-178 Bishop, P.B.
Computer Systems with a Very Large Address Space and Garbage
Collection, Ph.D. Dissertation, EE & CS Department, May 1977; AD
A040-601

TR-179 Karger, P.A.
Non-Discretionary Access Control for Decentralized Computing
Systems, S.M. Thesis, EE & CS Department, May 1977; AD A040-804

TR- 180 Luniewski, A.W.
A Simple and Flexible System Initialization Mechanism, S.M. & E.E.
Thesis, EE & CS Department, May 1977.

TR-181 Mayr, E.W.
The Complexity of the Finite Containment Problem for Petri Nets,
S.M. Thesis, EE & CS Department, June 1977.

TR-182 Brown, G.P.
A Framework for Processing Dialogue, June 1977; AD A042-370

301

PUBLICATIONS

TR-183 Jaffe, J.M.
Semilinear Sets and Applications, S.M. Thesis, EE & CS Department,
July 1977.

TR-184 Levine, P.H.
Facilitating Interprocess Communication in a Heterogeneous Network
Environment, S.B. & S.M. Thesis, EE & CS Department, July 1977;
AD A043-901

TR-185 Goldman, B.
Deadlock Detection in Computer Networks, S.B. & S.M. Thesis, EE &
CS Department, September 1977; AD A047-025

TR-186 Ackerman, W.B.
A Structure Memory for Data Flow Computers, S.M. Thesis, EE &
CS Department, September 1977; AD A047-026

TR-187 Long, W.J.
A Program Writer, Ph.D. Dissertation, EE & CS Department,
November 1977; AD A047-595

TR-188 Bryant, R.E.
Simulation of Packet Communication Architecture Computer
Systems, S.M. Thesis, EE & CS Department, November 1977; AD
A048-290

TR-189 Ellis, D.J.
Formal Specifications for Packet Communication Systems, Ph.D.
Dissertation, EE & CS Department, November 1977; AD A048-980

TR-190 Moss, J.E.B.
Abstract Data Types in Stack Based Languages, S.M. Thesis, EE &
CS Department, February 1978; AD A052-332

TR-191 Yonezawa, A.
Specification and Verification Techniques for Parallel Programs Based
on Message Passing Semantics, Ph.D. Dissertation, EE & CS
Department, January 1978; AD A051-149

TR-192 Niamir, B.
Attribute Partitioning in a Self-Adaptive Relational Database System,
S.M. Thesis, EE & CS Department, January 1978; AD A053-292

TR-193 Schaffert, J.C.
A Formal Definition of CLU, S.M. Thesis, EE & CS Department,
January 1978

302

PUBLICATIONS

TR-104 Hewitt, C. and Baker, H., Jr.
Actors and Continuous Functionals, February 1978; AD A052-266

TR-195 Bruss, A.R.
On Time-Space Classes and Their Relation to the Theory of Real
Addition, S.M. Thesis, EE & CS Department, March 1978

TR-196 Schroeder, M.D., Clark, D.D., Saltzer, J.H. and Wells, D.H.
Final Report of the Multics Kernel Design Project, March 1978

TR-197 Baker, H., Jr.
Actor Systems for Real-Time Computation, Ph.D. Dissertation, EE &
CS Department, March 1978: AD A053-328

TR-198 Halstead, R.H., Jr.
Multiple-Processor Implementation of Message-Passing Systems, S.M.
Thesis, EE & CS Department, April 1978; AD A054-009

TR-199 Terman, C.J.
The Specification of Code Generation Algorithms, S.M. Thesis, EE &
CS Department, April 1978; AD A054-301

TR-200 Harel, D.
Logics of Programs: Axiomatics and Descriptive Power, Ph.D.
Dissertation, EE & CS Department, May 1978

TR-201 Scheifler, R.W.
A Denotational Semantics of CLU, S.M. Thesis, EE & CS
Department, June 1978

TR-202 Principato, R.N., Jr.
A Formalization of the State Machine Specification Technique, S.M.
& E.E. Thesis, EE & CS Department, July 1978

TR-203 Laventhal, M.S.
Synthesis of Synchronization Code for Data Abstractions, Ph.D.
Dissertation, EE & CS Department, July 1978; AD A058-232

TR-204 Teixeira, T.J.
Real-Time Control Structures for Block Diagram Schemata, S.M.
Thesis, EE & CS Department, August 1978; AD AOB1-122

303

PUBLICATIONS

TR-205 Reed, D.P.
Naming and Synchronization in a Decentralized Computer System,
Ph.D. Dissertation, EE & CS Department, October 1978; AD
A061-407

TR-206 Borkin, SA.
Equivalence Properties of Semantic Data Models for Database
Systems, Ph.D. Dissertation, EE & CS Department, January 1979; AD
A066-386

TR-207 Montgomery, W.A.
Robust Concurrency Control for a Distributed Information System,
Ph.D. Dissertation, EE & CS Department, January 1979; AD
A066-996

TR-208 Krizan, B.C.
A Minicomputer Network Simulation System, S.B. & S.M. Thesis, EE
& CS Department, February 1979

TR-209 Snyder, A.
A Machine Architecture to Support an Object-Oriented Language,
Ph.D. Dissertation, EE & CS Department, March 1979; AD A068-111

TR-210 Papadimitriou, C.H.
Serializability of Concurrent Database Updates, March 1979

TR-211 Bloom, T.
Synchronization Mechanisms for Modular Programming Languages,
S.M. Thesis, EE & CS Department, April 1979; AD A069-819

TR-212 Rabin, M.O.
Digitalized Signatures and Public-Key Functions as Intractable as
Factorization, March 1979

TR-213 Rabin, M.O.
Probabilistic Algorithms in Finite Fieldb, March 1979

TR-214 McLeod, D.
A Semantic Data Base Model and Its Associated Structured User
Interface, Ph.D. Dissertation, EE & CS Department, March 1979; AD
A068-112

TR-215 Svobodova, L., Liskov, B. and Clark, D.
Distributed Computer Systems: Structure and Semantics, April 1979;
AD A070-286

304

PUBLICATIONS

TR-216 Myers, J.M.
Analysis of the SIMPLE Code for Dataflow Computation, June 1979

TR-217 Brown, D.J.
Storage and Access Costs for Implementations of Variable - Length
Lists, Ph.D. Dissertation, EE & CS Department, June 1979

TR-218 Ackerman, W.B. and Dennis, J.B.
VAL--A Value-Oriented Algorithmic Language: Preliminary
Reference Manual, June 1979; AD A072-394

TR-219 Sollins, K.R.
Copying Complex Structures in a Distributed System, S.M. Thesis,
EE & CS Department, July 1979; AD A072-441

TR-220 Kosinski, P.R.
Denotational Semantics of Determinate and Non-Determinate Data
Flow Programs, Ph.D. Dissertation, EE & CS Department, July 1979

TR-221 Berzins, V.A.
Abstract Model Specifications for Data Abstractions, Ph.D.
Dissertation, EE & CS Department, July 1979

TR-222 Halstead, R.H., Jr.
Reference Tree Networks: Virtual Machine and Implementation,
Ph.D. Dissertation, EE & CS Department, September 1979; AD
A076-570

TR-223 Brown, G.P.
Toward a Computational Theory of Indirect Speech Acts, October
1979; AD A077-065

TR-224 Isaman, D.L.
Data-Structuring Operations in Concurrent Computations, Ph.D.
Dissertation, EE & CS Department, October 1979

TR-225 Liskov, B., Atkinson, R., Bloom, T., Moss, E., Schaffert, C., Scheifler,
R. and Snyder, A.
CLU Reference Manual, October 1979; AD A077-018

TR-226 Reuveni, A.
The Event Based Language and Its Multiple Processor
Implementations, Ph.D. Dissertation, EE & CS Department, January
1980; AD A081-950

305

PUBLICATIONS

TR-227 Rosenberg, R.L.
Incomprehensible Computer Systems: Knowledge Without Wisdom,
S.M. Thesis, EE & CS Department, January 1980

TR-228 Weng, K-S.
An Abstract Implementation for a Generalized Data Flow Language,
Ph.D. Dissertation, EE & CS Department, January 1980

TR-229 Atkinson, R.R.
Automatic Verification of Serializers, Ph.D. Dissertation, EE & CS
Department, March 1980; AD A082-885

TR-230 Baratz, A.E.
The Complexity of the Maximum Network Flow Problem, S.M.
Thesis, EE & CS Department, March 1980

TR-231 Jaffe, J.M.
Parallel Computation: Synchronization, Scheduling, and Schemes,
Ph.D. Dissertation, EE & CS Department, March 1980

TR-232 Luniewski, A.W.
The Architecture of an Object Based Personal Computer, Ph.D.
Dissertation, EE & CS Department, March 1980; AD A083-433

TR-233 Kaiser, G.E.
Automatic Extension of an Augmented Transition Network Grammar
for Morse Code Conversations, S.B. Thesis, EE & CS Department,
April 1980; AD A084-411

TR-234 Herlihy, M.P. Transmitting Abstract Values in Messages, S.M.
Thesis, EE & CS Department, May 1980; AD A086-984

TR-235 Levin, L.A.
A Concept of Independence with Applications in Various Fields of
Mathematics, May 1980

TR-236 Lloyd, E.L.
Scheduling Task Systems with Resources, Ph.D. Dissertation, EE &
CS Department, May 1980

TR-237 Kapur, D.
Towards a Theory for Abstract Data Types, Ph.D. Dissertation, EE &
CS Department, June 1980; AD A085-877

306

PUBLICATIONS

TR-238 Bloniarz, P.A.
The Complexity of Monotone Boolean Functions and an Algorithm

for Finding Shortest Paths in a Graph, Ph.D. Dissertation, EE & CS
Department, June 1980

TR-239 Baker, C.M.

Artwork Analysis Tools for VLSI Circuits, S.M. & EE Thesis, EE &
CS Department, June 1980; AD A087-040

TR-240 Montz, L.B.
Safety and Optimization Transformations for Data Flow Programs,

S.M. Thesis, EE & CS Department, July 1980

TR-241 Archer, R.F., Jr.
Representation and Analysis of Real-Time Control Structures, S.M.
Thesis, EE & CS Department, August 1980; AD A089-828

TR-242 Loui, M.C.
Simulations Among Multidimensional Turing Machines, Ph.D.

Dissertation, EE & CS Department, August 1980

TR-243 Svobodova, L.
Management of Object Histories in the Swallow Repository. August

1980; AD A089-836

TR-244 Ruth, G.R.

Data Driven Loops, August 1980

TR-245 Church, K.W.

On Memory Limitations in Natural Language Processing, S.M. Thesis,
EE & CS Department, September 1980

TR-246 Tiuryn, J.
A Survey of the Logic of Effective Definitions, October 1980

TR-247 Weihl, W.E.
Interprocedural Data Flow Analysis in the Presence of Pointers.

Procedure Variables, and Label Variables, S.B.- S.M.Thesis, EE &

CS Department, October 1980

TR-248 LaPaugh, A.S.
Algorithms for Integrated Circuit Layout: An Analytic Approach.
Ph.D.Dissertation, EE & CS Department, November 1980

307

V,.

PUBLICATIONS

TR-249 Turkle, S.
Computers and People: Personal Computation, December 1980

TR-250 Leung, C.K.C.
Fault Tolerance in Packet Communication Computer Architectures,

Ph.D. Dissertation, EE & CS Department, December 1980

TR-251 Swartout, W.R.
Producing Explanations and Justifications of Expert Consulting

Programs, Ph.D. Dissertation, EE & CS Department, January 1981

TR-252 Arens, G.C.
Recovery of the Swallow Repository, S.M. Thesis, EE & CS

Department, January 1981; AD A096-374

TR-253 Ilson, R.
An Integrated Approach to Formatted Document Production, S.M.

Thesis, EE & CS Department, February 1981

TR-254 Ruth, G., Alter, S. and Martin, W.
A Very High Level Language for Business Data Processing, March
1981

TR-255 Kent, S.T.
Protecting Externally Supplied Software in Small Computers, Ph.D.
Dissertation, EE & CS Department, March 1981

TR-256 Faust, G.G.
Semiautomatic Translation of COBOL into HIBOL, S.M. Thesis, EE
& CS Department, April 1981

TR-257 Cisari, C.
Application of Data Flow Architecture to Computer Music Synthesis,
S.B./S.M. Thesis, EE & CS Department, February 1981

TR-258 Singh, N.
A Design Methodology for Self-Timed Systems, S.M. Thesis, EE & CS
Department, February 1981

TR-259 Bryant, R.E.
A Switch-Level Simulation Model for Integrated Logic Circuits, Ph.D.
Dissertation, EE & CS Department, March 1981

308

PUBLICATIONS

TR-260 Moss, E.B.
Nested Transactions: An Approach to Reliable Distributed
Computing, Ph.D. Dissertation, EE & CS Department, April 1981;
AD A100754

TR-261 Martin, W.A., Church, K.W. and Patil, R.S.
Preliminary Analysis of a Breadth-First Parsing Algorithm:
Theoretical and Experimental Results, EE & CS Department, June
1981

TR-262 Todd, K.W.
High Level Val Constructs in a Static Data Flow Machine, S.M.
Thesis, EE & CS Department, June 1981

TR-263 Street, R.S.
Propositional Dynamic Logic of Looping and Converse, Ph.D.
Dissertation, EE & CS Department, May 1981

TR-264 Schiffenbauer, R.D.
Interactive Debugging in a Distributed Computational Environment,
S.M. Thesis, EE & CS Department, August 1981

TR-265 Thomas, R.E.
A Data Flow Architecture with Improved Asymptotic Performance,
Ph.D. Dissertation, EE & CS Department, April 1981

TR-266 Good, M.
An Ease of Use Evaluation of an Integrated Editor and Formatter.
S.M. Thesis, EE & CS Department, August 1981

TR-267 Patil, R.S.
Causal Representation of Patient Illness for Electrolyte and Acid-Base
Diagnosis, Ph.D. Dissertation, EE & CS Department, October 1981

TR-268 Guttag, J.V., Kapur, D., Musser, D.R.
Derived Pairs, Overlap Closures, and Rewrite Dominoes: New Tools
for Analyzing Term Rewriting Systems, EE & CS Department.
December 1981

TR-269 Kanellakis, P.C.
The Complexity of Concurrency Control for Distributed Data Bases,
Ph.D. Dissertation, EE & CS Department, December 1981

TR-270 Singh, V.
The Design of a Routing Service for Campus-Wide Internet
Transport, S.M. Thesis, EE & CS Department, January 1982

309

!." A

PUBLICATIONS

TR-271 Rutherford, C.J., Davies, B., Barnett, A.I., Desforges, J.F.
A Computer System for Decision Analysis in Hodgkins Disease, EE &
CS Department, February 1982

TR-272 Smith, B.C.
Reflection and Semantics in a Procedural Language, Ph.D.
Dissertation, EE & CS Department, January 1982

TR-273 Estrin, D.L.
Data Communications via Cable Television Networks: Technical and
Policy Considerations, S.M. Thesis, EE & CS Department, May 1982

TR-274 Leighton, F.T.
Layouts for the Shuffle-Exchange Graph and Lower Bound
Techniques for VLSI, Ph.D. Dissertation, EE & CS Department,
August 1981

TR-275 Kunin, J.S.
Analysis and Specification of Office Procedures, Ph.D. Dissertation,
EE & CS Department, February 1982

TR-276 Srivs, M.K.
Automatic Synthesis of Implementations for Abstract Data Types
from Algebriic Specifications, Ph.D. Dissertation, EE & CS
Department, June 1982

TR-277 Johnson, M.G.
Efficient Modeling for Short Channel MOS Circuit Simulation, S.M.
Thesis, EE & CS Department, August 1982

TR-278 Rosenstein, L.S.
Display Management in an Integrated Office, S.M. Thesis, EE & CS
Department, January 1982

TR-279 Anderson, T.L.
The Design of a Multiprocessor Development System, S.M. Thesis, EE
& CS Department, September 1982

TR-280 Guang-Rong, G.
An Implementation Scheme for Array Operations in Static Data Flow
Computers, S.M. Thesis, EE & CS Department, May 1982

TR-281 Lynch, N.A.
Multilevel Atomicity - A New Correctness Criterion for Data Base
Concurrency Control, EE & CS Department, August 1982

310

PUBLICATIONS

TR-282 Fischer, M.J., Lynch, N.A. and Paterson, M.S.
Impossibility of Distributed Consensus with One Faulty Process, EE
& CS Department, September 1982

TR-283 Sherman, H.B.
A Comparative Study of Computer-Aided Clinical Diagnosis, S.M.
Thesis, EE & CS Department, January 1981

TR-284 Cosmadakis, S.S.
Translating Updates of Relational Data Base Views, S.M. Thesis, EE
& CS Department, February 1983

TR-285 Lynch, NA.
Concurrency Control for Resilient Nested Transactions, EE & CS
Department, February 1983

TR-286 Goree, J.A.
Internal Consistency of a Distributed Transaction System with
Orphan Detection, S.M. Thesis, EE & CS Department, January 1983

TR-287 Bui, T.N.
On Bisecting Random Graphs, S.M. Thesis, EE & CS Department,
March 1983

TR-288 Landau, S.E.
On Computing Galois Groups and its Application to Solvability by
Radicals, Ph.D. Dissertation, EE & CS Department, March 1983

TR-289 Sirbu, M., Schoichet, S.R., Kunin, J.S., Hammer, M.M., Sutherland,
J.B. and Zarmer, C.L.
Office Analysis: Methodology and Case Studies, EE & CS
Department, March 1983

TR-290 Sutherland, J.B.
An Office Analysis and Diagnosis Methodology, S.M. Thesis, EE & CS
Department, March 1983

TR-291 Pinter, R.Y.
The Impact of Layer Assignment Methods on Layout Algorithms for
Integrated Circuits, Ph.D. Dissertation, EE & CS Department, August
1982

TR-292 Dornbrook, M. and Blank, M.
The MDL Programming Language Primer, EE & CS Department,
June 1980

311

PUBLICATIONS

TR-293 Galley, S.W. and Pfister, G.
The MDL Programming Language, EE & CS Department, May 1979

TR-294 Lebling, P.D.
The MDL Programming Environment, EE & CS Department, May

1980

TR-295 Pitman, K.M.
The Revised Maclisp Manual, EE & CS Department, June 1983

TR-296 Church, K.W.
Phrase-Structure Parsing: A Method for Taking Advantage of

Allophonic Constraints, Ph.D. Dissertation, EE & CS Department.

June 1983

TR-297 Mok, A.K.
Fundamental Design Problems of Distributed Systems for the Hard-

Real-Time Environment, Ph.D. Dissertation, EE & CS Department,

June 1983; AD A139996

TR-298 Krugler, K.
Video Games and Computer Aided Instruction, EE & CS

Department, June 1983

TR-299 Wing, J.
A Two Tiered Approach to Specifying Programs, June 1983; AD

A133949

TR-300 Cooper, G.
An Argument for Soft Layering of Protocols, May 1983; AD A133948

TR-301 Valente, J.A.
Creating a Computer-based Learning Environment for Physically

Handicapped Children, Ph.D. Dissertation, EE & CS Department,

September 1983

TR-302 Arvind, Dertouzos, M.L. and [annucci, R.A.
A Multiprocessor Emulation Facility, October 1983; AD A136094

TR-303 Bloom T.
Dynamic Module Replacement in a Distributed Programming System.
Ph.D. Dissertation, EE & CS Department, September 1983; AD

A140619

312

PUBLICATIONS

TR-304 Terman, C.J.
Simulation Tools for Digital LSI Design, Ph.D. Dissertation, EE & CS
Department, September 1983; AD A136116

TR-305 Bhatt, S.N. and Leighton, F.T.
A Framework for Solving VLSI Graph Layout Problems, Ph.D.
Dissertation, EE & CS Department. October 1983; AD A136143

TR-306 Leung, K.C. and Lim, W. Y-P.
PADL -- A Packet Architecture Description Language: A Preliminary
Reference Manual, October 1983

TR-307 Guttag, J.V. and Horning, J.J.
Preliminary Report on the Larch Shared Language, October 1983; AD
A136117

TR-308 Oki, B.M.
Reliable Object Storage to Support Atomic Actions. M.S. Thesis, EE
& CS Department, November 1983; AD A136484

TR-309 Brock, J.D.
A Formal Model of Non-determinate Dataflow Computation, Ph.D.
Dissertation, EE & CS Department, November 1983

TR-310 Granville, R.
Cohesion in Computer Text Generation: Lexical Substitution. M.S.
Thesis, EE & CS Department, December 1983; AD A148990

TR-311 Burke, G.G., Carrette, G.J. and Eliot, C.R.
NIL Reference Manual, M.S. Thesis, EE & CS Department, December
1983

TR-312 Lancaster, J.
Naming in a Programming Support Environment, M.S. Thesis, EE &
CS Department, April 1984; AD A142018

TR-313 Koile, K.
The Design and Implementatioi of an Online Directory Assistance
System, M.S. Thesis, EE & CS Deartment, April 1984; AD A140821

TR-314 Weihl, W.
Specification and Implementation of Atomic Data Types. Ph.D.

Dissertation, EE & CS Department, April 1984; AD A141823

313

PUBLICATIONS

TR-315 Coan, B. and Turpin, R.
Extending Binary Byzantine Agreement to Multivalued Byzantine
Agreement, April 1984; AD A143424

TR-316 Comer, M.H.
Loose Consistency in a Personal Computer Mail System, S.B. & S.M.
Thesis, EE & CS Department, May 198.1

TR-317 Traub, K.R.
An Abstract Architecture for Parallel Graph Reduction, S.B. Thesis.
EE & CS Department, May 1984

TR-318 Ashbell, L.J., M.D.
A Constraint Representation and Explanation Facility for RenalPhysiology. S.M. Thesis, EE & CS Department, June 1984

TR-319 Herlihy, M.P.
Replication Methods for Abstract Data Types, Ph.D. Dissertation, EE
& CS Department, May 1984; AD A153648

TR-320 Kornhauser, D.M.
Coordinating Pebble Motion on Graphs, the Diameter of Permutation
Groups, and Applications, S.M. Thesis, EE & CS Department. May
1984

TR-321 Kuszmaul, B.C.
Type Checking in VIMVA,, Ph.D. Dissertation, EE & CS
Department, June 1984

TR-322 Moulton. A.S.
Routing the Power and Ground Wires on a VLSI Chip. S.M. Thesis,
EE & CS Department. May 198.1; AD A145356

TR-323 Ackerman, W.B.
Efficient Implementation of Applicative Languages, Ph.D.
Dissertation, EE & CS Department. April 1984

TR-324 Schooler, R.
Partial Evaluation as a Means of Language Extensibility, S.M. Thesis.
EE &, CS Department, August 1984; AD A148730

TR-325 Weiss, P.G.
Using Untyped Lambda Calculus to Compute With Atoms, SM.
Thesis, EE & CS Department. February 198-1

314

PUBLIC.TIONS

TR-326 Walker, E.F.
Orphan Detection in the Argus System, S.M. Thesis, EE & CS
Department, May 1984; AD A150562

TR-327 Chiu, S.Y.
Debugging Distributed Computations in a Nested Atomic Action
System, Ph.D. Dissertation, EE & CS Department, December 1984;
AD A153617

TR-328 Carnese,D.J.
Multiple Inheritance in Contemporary Programming Languages,
September 1984

TR-329 Sacks, E.
Qualitative Mathematical Reasoning, November 1984

TR-330 Sarin, S.K.
Interactive On-Line Conferences, Ph.D. Dissertation, EE & CS
Department, June 1984; AD A154723

TR-331 Sollins, K.R.
Distributed Name Management, Ph.D. Dissertation, EE & CS
Department, February 1985; AD A154785

TR-332 Culler, D.E.
Resource Management for the Tagged Token Dataflow Architecture,
S.M. Thesis, EE & CS Department, January 1985; AD A154773

TR-333 Arnold, J.M.
Parallel Simulation of Digital LSI Circuits, S.M. Thesis. EE & CS
Department, April 1984; AD A154745

TR-334 Zarmer, C.L.
An Approach to Functional Office Automation, S.M. Thesis. EE £

CS Department, April 1984

TR-335 Lundelius, J.
Synchronizing Clocks in a Distributed System, S.M. Thesis, EE & CS
Department, August 1984

TR-336 Trilling, S.
Some Implications of Complexity Theory on Pseudo-Random Bit
Generation. S.M. Thesis, EE & CS Department, January 1985

315

4.,

PUBLICATIONS

TR-337 Seiler, L.D.
A Hardware Assisted Methodology for VLSI Design Rule Checking,
Ph.D. Dissertation, EE & CS Department, February 1985

TR-338 Koton, P.A.
Towards a Problem Solving System for Molecular Genetics, May 1985

TR-339 Soley, R.M.
Generic Software for Emulating Multiprocessor Architectures, S.M.
Thesis, EE & CS Department, May 1985; AD A157662

TR-340 Wellman, M.P.
Reasoning About Preference Models, S.M. Thesis, EE & CS
Department, May 1985

TR-341 Boughton, G.A.
Routing Networks for Packet Communication Systems, Ph.D.
Dissertation, EE & CS Department, August 1984

TR-342 Stark, E.W.
Foundations of a Theory of Specification for Distributed Systems,
Ph.D. Dissertation, EE & CS Department, August 1984

TR-343 Forgaard, R.
A Program for Generating and Analyzing Term Rewriting Systems,
S.M. Thesis, EE & CS Department, September 1984

TR-344 Yelick, K.A.
A Generalized Approach to Equational Unification, S.M. Thesis, EE &
CS Department, August 1985; AD A163112

TR-345 Estrin, D.L.
Access to Inter-Organization Computer Networks, Ph.D. Dissertation,
EE & CS Department, August 1985

TR-346 Cosmadakis, S.S.
Equational Theories and Database Constraints, Ph.D. Dissertation,
EF & CS Department, August 1985

TR-347 Morecroft, L.E.
A Relative-Motion Microworld, S.M. Thesis, EE & CS Department.
September 1985; AD A161856

316

PUBLICATIONS

TR-348 Yedwab, L.
On Playing Well in a Sum of Games, S.M. Thesis, EE & CS
Department, August 1985

TR-349 Eisenberg, M.A.
Bochser: An Integrated Scheme Programming System, S.M. Thesis,
EE & CS Department, August 1985

TR-350 Seliger, R.
Design and Implementation of a Distributed Program for
Collaborative Editing, S.M. Thesis, EE & CS Department, September
1985

TR-351 Bhatt, S.N.
The Complexity of Graph Layout and Channel Routing for VLSI,
Ph.D. Dissertation, EE & CS Department, February 1984

TR-352 Lucassen, J.M., Gifford, D.K., Berlin, S.T. and Burmaster, D.E.
Boston Community Information System User Manual (Version 6.0),
April 1986 ; AD A171426

TR-353 Jagannathan, S.
Data Backup and Recovery in a Computer Architecture for
Functional Programming, S.M. Thesis, EE & CS Department,
October 1985

TR-354 Stamos, J.W,
Remote Evaluation, Ph.D. Dissertation, EE & CS Department,
January 1986; AD A169739

TR-355 Guharoy, B.
Data Structure Management in a Data Flow Computer System, S.M.
Thesis, EE & CS Department, May 1985

TR-356 Beckerle, M.J.
Logical Structures For Functional Languages, S.M.Thesis, EE & CS
Department, February 1986; AD A169368

TR-357 Gibson, J.C.
Computation Management in a Single Address Space System, S.M.
Thesis, EE & CS Department, January 1986

TR-358 Chaing, C.J.
Primitives for Real-Time Animation in Three Dimensions, S.M.
Thesis, EE & CS Department, April 1986

317

PUBLICATIONS

TR-359 Feidmejer, D.C.
A CATV-Based High-Speed Packet-Switching Network Design, S.M.
Thesis, EE & CS Department, April 1986; AD A171666

TR-360 Kunstaetter, R.
Intelligent Physiologic Modeling, S.M. Thesis, EE & CS Department,
April 1986

TR-361 Barrington, D.A.
Bounded Width Branching Programs, Ph.D. Dissertation, EE & CS
Department, June 1988

TR-362 Kuszmaul, B.C.
Simulating Applicative Architectures on the Connection Machine,
S.M. Thesis, EE & CS Department, June 1986

TR-363 Marantz, J.D.
Exploiting Parallelism in VLSI CAD, S.M. Thesis, EE & CS
Department, June 1986

TR-364 Lynch, N., Blaustein, B. and Siegel, M.
Correctness Conditions for Highly Available Replicated Databases,
June 1986; AD A171427

TR-365 Morais, D.R.
ID World: An Environment for the Development of Dataflow
Programs Written in ID, May 1986

TR-366 Younis, S.G.
The Clock Distribution System of the Multiprocessor Emulation
Facility, S.B.Thesis, EE & CS Department, June 1986

TR-367 Lynch, N.A. and Merritt, M.
Introduction to the Theory of Nested Transactions, July 1986; AD
A171428

TR-368 Scheifler, R.W. and Gettys, J.
The X Window System, October 1986; AD A176476

TR-369 Moses, Y. and Tuttle, M.R.
Programming Simultaneous Actions Using Common Knowledge,
February 1987

318

PUBLICATIONS

TR-370 Traub, K.R.
A Compiler for the MIT Tagged-Token Dataflow Architecture, S.M.
Thesis, EE & CS Department, August 1986

TR-371 Gao G.R.
A Pipelined Code Mapping Scheme for Static Data Flow Computers,
Ph.D. Dissertation, EE & CS Department, August 1986

TR-372 Maley, F.M.
Compaction With Automatic Jog Introduction, S.M. Thesis, EE & CS
Department, November 1986; AD A 176525

TR-374 Goldberg, A.V.
Efficient Graph Algorithms for Sequential and Parallel Computers,
Ph.D. Dissertation, EE & CS Department, February 1987; AD
A178403

TR-375 Osborne, R.B.
Modeling the Performance of the Concert Multiprocessor, S.M. Thesis,
EE & CS Department, May 1987; AD A183619

TR-376 Day, M.S.
Replication and Reconfiguration in a Distributed Mail Repository,
S.M. Thesis, EE & CS Department, May 1987; AD A186967

TR-377 Ng, P.
Long Atomic Computations, Ph.D. Dissertation, EE & CS
Department, October 1986; AD A174788

TR-378 Levitin, S.M.
MACE: A Multiprocessing Approach to Circuit Extraction, S.M.
Thesis, EE & CS Department, October 1986

TR-379 Sloan, R.H.
The Notion of Security for Probabilistic Public Key Cryptosystems,
S.M. Thesis, EE & CS Department, October 1986

TR-380 Bradley, E.
Logic Simulation on a Multiprocessor, S.M. Thesis, EE & CS
Department, October 1986; AD A175776

TR-381 Sherman, A.T.
Cryptology and VLSI, Ph.D. Dissertation, EE & CS Department,
October 1986; AD A175853

319

-.

PUBLICATIONS

TR-382 Chien, A.A.
Congestion Control in Routing Networks, S.M. Thesis, EE & CS
Department, October 1986; AD A175785

TR-383 Strauss, M.M.
The Organization of Research in the Information Sciences, Case
Studies in Japan and in the US, S.M. Thesis, EE & CS Department,
December 1986

TR-384 Gifford, D.K.
Remote Pipes and Procedures for Efficient Distributed
Communications, October 1986

TR-386 St. Pierre, M.A.
A Simulation Environment for Schema, S.M. Thesis, EE & CS
Department, December 1986

TR-387 Lynch, N.A. and Tuttle, M.

Hierarchical Correctness Proofs for Distributed Algorithms, S.M.
Thesis, EE & CS Department, April 1987

TR-388 Hirsch, D.E.
An Expert System for Diagnosing Gait in Cerebral Palsy Patients,
S.M. Thesis, EE & CS Department, May 1987

TR-389 Kohane, I.S.
Temporal Reasoning in Medical Expert Systems, Ph.D. Dissertation,
EE & CS Department, May 1987

TR-390 Goldman, K.J.
Data Replication in Nested Transaction Systems, S.M. Thesis, EE &
CS Department, May 1987; AD A182178

TR-391 Goldman, S.
Efficient Methods for Calculating Maximum Entropy Distributions,
S.M. Thesis, EE & CS Department, May 1987

TR-392 Kolodney, L.K.
MAM: A Semi-Automatic Debugging Tool for Distributed Programs,
S.M. Thesis, EE & CS Department, June 1987

TR-393 Chu, T.-A.
Synthesis of Self-timed VLSI Circuits from Graph-Theoretic
Specifications, Ph.D. Dissertation, EE & CS Department, June 1987

320

PUBLICATIONS

TR-394 Bodlaender, H.L.
Dynamic Programming on Graphs with Bounded Treewidth, June
1987

TR-395 Nuth, P.R.
Communication Patterns in a Symbolic Multiprocessor, S.M. Thesis,
EE & CS Department, June 1987: AD A186896

321

IV,

PUBLICATIONS

Progress Reports

* Project MAC Progress Report I, to July 1964; AD 465-088

* Project MAC Progress Report II, July 1964-July 1965; AD 629-494

" Project MIAC Progress Report III, July 1965-July 1966; AD 648-346

" Project Mac Progress Report IV, July 1966-July 1967; AD 681-342

* Project MAC Progress Report V, July 1967-July 1968; AD 687-770

" Project M.AC Progress Report VI, July 1968-July 1969; AD 705-434

" Project MAC Progress Report VII, July 1969-July 1970; AD 732-767

* Project MAC Progress Report VIII, July 1970-July 1971; AD 735-148

" Project MAC Progress Report IX. July 1971-July 1972; AD 756-689

" Project MAC Progress Report X, July 3972-July 1973; AD 771-428

" Project MAC Progress Report XI, July 1973-July 1974; AD A004-966

" Laboratory for Computer Science Progress Report XII, July 1974-July 1975;
AD A024-527

* Laboratory for Computer Science Progress Report X011, July 1975-July 1976;
AD A061-246

* Laboratory for Computer Science Progress Report XIV, July 1976-July 1977;
AD A061-932

" Laboratory for Computer Science Progress Report 15, July 1977-July 1978;
AD A073-958

" Laboratory for Computer Science Progress Report 16, July 1978-July 1979;
AD A088-355

" Laboratory for Computer Science Progress Report 17. July 1979-July 1980;
AD A093-384

" Laboratory for Computer Science Progress Report 18, July 1980-June 1981:
AD A127586

322

a.

PUBLICATIONS

" Laboratory for Computer Science Progress Report 19, July 1981-June 1982;
AD A143429

" Laboratory for Computer Science Progress Report 20, July 1982-June 1983;
AD A145134

" Laboratory for Computer Science Progress Report 21, July 1983-June 1984;
AD A154810

" Laboratory for Computer Science Progress Report 22, July 1984-June 1985

* Laboratory for Computer Science Progress Report 23, July 1985-June 1986

Copies of all reports with A; AD, or PB numbers listed in Publications may be secured
from the National Technical Information Service, U.S. Department of Commerce.
Reports Division, 5285 Port Royal Road, Springfield, Virginia 22161 (tel: 703-487-4650).
Prices vary. The reference number must be supplied with the request.

323

