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EXECUTIVE SUMMARY

As the title suggests tIhis document provides analytical algorithms
for computation of water level elevation time series at a fixed location from
water level measurements made on a moving ocean platform. The algorithms are
based on geostatistical techniques, including kriging methods and conditional
simulation.

Wave or water elevation time histories are usually measured from a fixed
reference location.- Wave elevation measurements made using a wave measurement
attached to a floating ocean platform need to be corrected for the motions of
the platform. Most computer simulation programs including the conditional wave
modeb require wave input for a fixed reference location. The report presents
the two basic methods (kriging and conditional simulation), develops a rapid
procedure for computing the wave elevation covariance matrix for both methods,
and concludes that the kriging method is the"'si choice. (

This contract report was prepared Sy Dr. Leon Borgman, professor of
Statistics and Geology at the University of Wyoming, working for the Naval
Civil Engineering Laboratory (NCEL) through his statistical consulting firm,
Leon E. Borgman, Inc. The work was principally funded by the Mineral
Management Service through Charles Smith of the Technology Assessment &
Research Branch. The work has been useful for analyzing data from the NCEL
motion measurement experiment which is a part of the tactical aircrew combat
training range system research program for the Naval Facilities Engineering
Command.
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ALGORITHMS FOR COMPUTATION OF WATER LEVEL ELEVATION
AT A FIXED LOCATION FROM THE WATER LEVEL

ELEVATIONS AT A MOVING PLATFORM

by Leon Borgman

INTRODUCTION

The basic input data for this problem consists of water level elevations measured at a

succession of times from a moving platform. Let t1, t2, t3 , --', tM be the times at which

measurements are made. Positioning devices are used to establish the platform positions

{x(tn), y(t,); n = 1, 2, *., M}. The corresponding sequence of water level elevations at

the platform are n = 1, 2, -.. , M}. For the reference position (xo, yo), let 77o(tn) be

the water level elevation at the reference location at time tn. The basic problem is to

predict {j(t 0 ), n =MI, M1+1, ,M 2 } for 1 < Mi < M2 .M from {, n =1, 2

M}.

This problem can be investigated with geostatistical techniques if the directional

wave spectrum S(f, 9) is available from nearby measurements. Here, and in the above,

f = frequency in cycles per second, Hertz.

x = a horizontal direction.

y = a second horizontal direction perpendicular to the x--axis.

0 = an angle measured from the positive x-direction toward the positive

y-direction so that the positive y-axis is at 9 = 900. (Not'e: this

definition of 0 is (x, y) - axes dependent, may differ markedly from

compass directions, and may end up clockwise or counter--clockwise.)
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S(f, 0) - a spectral density function defined so that

2f 12, S(f, O)d Odf = o-2

where

7 2 = variance of sea surface elevation.

Algorithms for estimating q1o(t) by the two geostatistical techniques of simple linear

kriging and conditional simulation will be developed in the following report. Both of these

techniques depend on the covariance matrix of the vector

,1

7)2

.q

10o'MllK]~ '0M1+

170'M2

Hence, some time will be spent initially defining the covariance matrix and developing

procedures by which it can be computed from S(f,O). This will be followed by two sections:

the first on kriging methods, and the second on conditional simualtion. Finally a summary

and conclusions section will be given.
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The algorithms for the kriging and conditional simulation are quite straightforward

once the covariance matrix is developed. The main task to be completed is the

development of a rapid procedure for computing the covariances. The major part of the

report will be concerned with this problem.
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THE SPATIAL-TEMPORAL COVARIANCE FTNCTION

Let (xi, yl) and (x2, Y2) be any two locations and (ti, t2 ) be any two times. The

water level elevation above mean water level at (x, y, t) will be denoted by rXx, y, t).

The covariance between two random variables U and V is defined as the statistical

average of (U - pu)(V - j) where p is the statistical average of U and 1, is the statistical

average of V. It is convenient to denote the statistical averaging process with E [ . Then

the covariance definition may be expressed in symbols as

Cov(U, V) = E[(U - pu)(V - )]

where

E[ U pu

Now replacing U with ifxi, yl, t1 ) and V with r~X2, y2, t2 ), and noting that, by definition

of % the average of rxl, yt, t,) and rXX2, Y2, t2) is zero, the covariance between the two

can be written as

Cov(IxI, y,. ti), TX2, y2, t2 )] = E(xt, yi, t1 ) XX2, y?, t2)]

That is, the covariance is the expected product.

It will be asusmed that the sea surface is a stationary, Gaussian process. Then tHe

covariance defined above will only be a function of the differences in position and time. Let



-- t2 -t

X = X2 -X

Y = 2-Y1

be these differences, and define the covariance function as C(X, Y, r) where

C(X, Y, -) = Cov[?x,, Y,, t,), 02, Y2, t2)]

It can be shown that (Borgman, 1969, p. 723) the spatial, temporal covariance

function can be expressed in terms of the directional spectrum as

C(X, YN r) = 2 Ff S(f, 0) cos~wk(Xcos9 + Ysin90) - 2,r 1d df
00

where

+1, if Ois the direction toward which waves travei{ -1, if Ois the direction from which waves travel

k = wave number

= function of f defined by (2vf) 2 = gk tank (kd)

d = water depth

g = acceleration due to gravity.

The functions involved can be defined for negative frequency by

S(-, 9) = S(f, 9)
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kf)= -k(f)

Then, through the complex-valued definition of the cosine as

cos = (exp(i 0) - exp(-i 6)]/2

the formula for C(X, Y, r) can be rewritten as

C(X, Y, r) = S(f, 0) exp[-iwk(XcosO + YsinO) + i2ifr]d df
0
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A POLAR FORM FOR THlE CO VARIANCE FUNCTION

Suppose (X, Y) is re-expressed in polar coordinates (p, a), with

X = p Cos a

Y = p sin a

then

X cos, 9 + Y sin 9 p cos a cos 9 + p sin a sin 9 = p cos (0-ct)

With these definitions

CMXY ) ) FjM S(f,B9) expf--iwk p cos(0 B-a)] exp~i2-zf rddif

Without loss of generality, S(f,O) can be expressed in the product form

where Df( 0) is the spreading function defined so that

JDf(fi)dO = 1.0

Df( B) 0
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The spreading function gives the distribution of wave energy or variance with direction at

frequency f. The covariance function can be written in terms of the product form as

C(X, Y, -r) = S(f) { xJ D ( 0) e-4WkP '0 ( -a)d 9}

* ei21rdf = C*(pa)

(where * denotes multiplication).

In summary, the covariance can be expressed in rectangular and polar form as

Either form can be used as a basis for cornputaitons. In practice, it is usually best to preI

compute a table of the Covariance function values for a given S(f, 0) and a grid of values,

-ho X < h0

--h Y < h0

0 < _ <r0

or

0 < P S PO

0 < a< 27r

0O<r"< ro



It is only necessary to compute these for positive time lag because, from the definitions

C(-X, -Y, -r) = C(X, Y, T)

C*(p, a+T, -T-) C*(p, o, r)

For the Navy application, where the S(f,O) function is estimated from a buoy, further

simplications are often appropriate. It is often satisfactory to take Dr( 0) as only depending

on 0. When this happens, the spreading function will be denoted by D(0). Three common

formulas for the spreading function that are used as approximations are

The generalized cosine-squared model,

D(9) = c cosl,[( O-#)/2

The von Mises model,

D(O) = {exp(a cos(G-p)J}/{2rIo(a)}

where Io(a) = modified Bessel function of order zero.

and the wrapped-normal model

ex

All models have about the same shape and are unimodal and symmetric about .

Approximate equivalent values between s, a, and i.2 are given in the appendix to the
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report.

Since all three models have very nearly the same shape for most typical wave

spreading conditions, it is just a matter of mathematical convenience which is used. If one

is a reasonable approximation, then any other of the three will also be a reasonable

approximation.

In the polar covariance function with the spreading function independent of

frequency, it is particularly convenient to use the von Mises model.

C *(p,a,r) S(f)I r2r e aos(O) - wko(a) -ad ei1xfrdff-m 2,lo( a
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A BESSEL FUNCTION SERIES REPRESENTATION

There is a nice series approximation of

eacos( O--/)

in terms of the modified Bessel functions given by Oliver (1964, p. 376, eq. 9.6.34) as

eac s( -' ) = Ioa) + 2 S I.(a)cosfn( 0-1)]
ni=1

After a little algebra, the formula for C* can be expressed in series form as

a, r) =, 7 f S(f) j2 eIwkpcos( OLa)d 9 e i2xfdf
27

+ E I ... S(f) ) cos[n(]-)e -4wkpc s( -a)d 9 e i21Tdf
n=1 riosn(

The integration over (0, 2,r) is really just an integration over the full circle of 3600.

The full circle integration could just as well range over (a - r, a + r). If the limits of

integration are changed to this new choice and the variable of integration is changed to

b= -a

the formula simplifies to

a -iwkcosdC'(p, a, r)= rf_ S(f) -_re deI27frd f

,, = ,= .,.=ml ,, = ,= mmnu n EI r



12

-~i iwkpros O exbd

oa S(f)j cosn(-j+a)e r~~e- d

The cosine in the second expression can be expanded to

cos(n( *-ps-s-)] =cos(n*)cos~n( o-.p)] - sin(n*)sin~n( a-#)]

With this,

C( a, r)= S(f) eWkOS(d 1Tf

+ Eir.9(a4 cosln( G-s)] S(f) f cos(nW)n=1 f j

.-4wkpcos4 i2,rfrdf Ina sz~na.~

e eiwkpcos~d 0 ei2-xfdf

The last expression is zero since the integrand

is an odd function of ~'integrated over (-, -T). The other-two integrands

e -wkpcos*
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and

cos(n i) e- iwkpcos o

are even functions of 0i, so the range of integration can be changed to (0, w) with a

multiplication by 2. Thus

C*(p, a, r) f S(f) ewkPcos~d-0 ei 2;Tdf
0

+ 2 S Ia os[n(a-#)] S(f) cos(n*)
n=1 0 coM 0

* e-iwkPcos0d0 ei 2 xTdf

The reason for all these manipulations will now become apparent. the integrals over

can be expressed as Bessel functions. Oliver (op.cit., p. 360, eq. 9.1.21) gives

j e-iwk °S0cs(n0)d* = i" rJ"(-wkp)

0
fT e -awkpcod o, =r Jo-WkP)

By Oliver (op.cit., P. 360, eq. 9.1.20) if the argument, z, is real-valued

Jn(--z) = (-1) J(z)
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Combining all these results

~, ) f S(f) Jo~kp) e"".Tdf + 2 2 (-Wi), a) cosn(c-P)J
C*(P n=1 Lopa)

fS(f) J(kp) ei2lfT df
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COMPUTATION OF THE BESSEL SERIES FORM

The last equation is in a form appropriate for approximation with the fast Fourier

Transform. Let N and Af be chosen so that S(f) J0 (kp) is essentially zero for f > NAf/2

and n = 0, 1, 2, 3, 4, -.. This is equivalent to choosing a frequency beyond which S(f)

will be treated as though it is exactly zero. Then define

Ar = (NAf) "

A(' ) = S(mAf) J.(k. p)

where k, is the wave number corresponding to f = mAf, and set

N-m

Then, introducing a new function, Rl(p, r)

Ni-

R,(p, jar) - J S(f) J (kp)ei xf(JAr)df = Af 2 A(-)ei2 rjm/N

the function RFt(p, r) can be computed quite rapidly for a selected list of p--values to

develop a matrix whose rows are the p-values and whose columns are the r = jAr

time-lag values.

An algorithm for the rapid computation of Jn(z) for real-valued z is given by Oliver

(op.cit., bottom of page 385). An exactly parallel procedure can be applied to compute

1,(a) with eq. 9.6.36 (Oliver, op.cit.)
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In terms of the function RD(p, r) defined above

C*(P, C1, ) = l (p, -r) + 2 S (-wi)n [n(a)R,,(e,11cos[n(a -u)]
n=1 i o (a)

The nature of values of Rn(p, r) can be combined with any a to compute rapidly the value

of C*(p, a, r).
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THE COVARIANCE MATRIX

Let C11 be the M by M matrix whose (ni, 112) element is the covariance between ?n

and , for the water level elevations in the series

{%, n = 1, 2, ... , M}

defined in the introduction. Similarly let C22 be the (M2 - M1+1) by (M 2 - MI+1) matrix

whose (ii, j) element is the covariance between iq(tM,+j,_i ) and q(tM,+j.1), in the

series {io(tn), n = MI, M1+1, ... , M2} defined in the introduction. Finally let C12 be the

M by (M 2 - MI+1) matrix whose (n, j) element is the covariance between % and

71otMl+j_l). With these definitions, the covaraince matrix of (.U, .0) T is

Co v [ -I I = [cT 2  22]

All of the covariances in C11, C12, and C22 can be computed by first determining X,

Y, and r for the pair of locations and times involved, then getting p and a from

p=/X2 + yT

a = arc tan (Y/X),

and finally interpolating for R,,(p, r) and computing C*(p, a, r).
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CONDITIONAL SIMULATION OF .

The matrix formula for conditional simulation of %, given the values of _U, was

derived previously by Borgrnan (1984, p. 533, eq. 85.). The following steps are involved.

(1) Compute the eigenvectors and eigenvalues of

C=[ C H C212

C 12 C 2

Let Ai be the eigenvalues and £j be the corresponding eigenvectors. Define V as a matrix

whose columns are the eigenvectors and L as the diagonal matrix whose main diagonal

elements are Ai and whose off-diagonal elements are zero. Then

C = VLVT

in the well known eigenvector, eigenvalue decomposition (Jennings, 1977, p. 32, eq. 1.130).

Consequently,

C = (VL'/2)(VL1/2)T

(2) Let Z* be a vector of independent, standard normal random numbers. Then

an c ins o fV L '/2 Z.a

is an unconditional simulation of -U and .



(3) A conditional simulation of _%, given the values of .U is

-%n, given Uj} C1 C~, I~ CU- ) + ~



KRIGING FORMULAS FOR

The kriging procedure estimates each o(tj) by a linear combination of the interval of

values of % surrounding the time tj. The idea here is to use all values of ) that are

correlated with i1o(t,). A reasonable choice would be to include all % measured from the

platform within two wave periods of the time tj. Here a good value for the wave period

would be the inverse of the frequency at the peak of the spectra. The value n(ti) is

estimated by

i1o(t 1) = n

where the summation extends over the times surrounding t i . The coefficients, an, are

computed to minimize

Q = E[{[Iq(tj)- o(ti)))

subject to the constraint that

E['7o(ti)- 10(t)] = 0

A full discussion of this procedure is given by (cr-' - 1985, p. 14), a copy of which is

forwarded with this report.

The computations may be summarized as follows. Let n1 _ n < n2 be the interval of

values of % used.
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C = (nr-ni+l) by (n2-n,+1) covariance matrix of the % for n, < n < n2

- vector whose --th element is-the covariance between and ro(tj)

j = vector of n2-nl+l components, all of which equal 1.0

a = vector of coefficients to be multiplied by the %/ in the interval

The kriging equations which solve the constrained minimization are computed from

*

'iT0 1.0

where, A is the Lagrangean multiplier imposing the constraint. Thus

I = 0T' 1.0

The mean--square-error of the estimate of q7o(ti) is

mean square error = E({j 0 (ti) - ^ (t)} 2] = 2- A a T

where

72 = 2 S(f)df
0

from the sea surface spectral density.
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SUMMARY AND CONCLUSIONS

1. Kriging and conditional simulation algorithms have been developed for estimating

the water level elevation at a fixed reference location from the measured water level

locations on the moving platform.

2. Both kriging and conditional simulation have straightforward mathematical

formulas, once the appropriate covariance matrices have been computed.

3. An algorithm based on a Bessel function series and the use of the fast Fourier

Transform to compute a subsidiary function, R,(p, -r), is derived. This is the main work in

the report. Both kriging, and conditional simulation procedures are completely derived in

cited references.

4. Recommendations are given for procedures to compute the Bessel functions in the

formula and the other aspects of the algorithm.

5. The kriging procedure will probably be the best choice of the geostatistical

techniques for use in estimating the water level elevations at the reference location. A

convenient error measure arises naturally from the computations and the procedure is

relatively rapid to compute.
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APPENDIX

The equivalences between the spreading function models are most easily derived from

the half-peak width of the functions. The half-peak with of D19) is two times the (O-p)

value at which

D(O,) = 0.5 D(p)

Let AHP be this value

AHp = 2(0*-s)

For the generalized cosine-equared model

D(l,) = c

so the equation becomes

c cos2s((G*-/)/2] = 0.5c

cos[( ,-/,)121 = (0.5)'I(2s)

CS =2(0,-/a) = 4 arc cos[O.5'I(2S)
AHP

For the von Mises model

D(/I) = 1/{21o(a)}
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Hence the equation is

eacos(O*-p) = 0.5

acos(O,--) = Log(O.5)

AVM - 2( *-) = 2 arc cos Log(0.5)
HP a

Finally, for the wrapped-normal model, in the -case most common in ocean wave

work where

9(p,) = I

and the equation to be solved is

= 0.5

-( , u)2

= LogO.5)
2o,2

,-4)2 = -2, 2Log(0.5)

A WN -2( ,-#) = 24 2o_,7o~g(.)

.. . ............... . . P = i m llm m mm nlm i
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Thus, a reasonable equivalence between parameters is given by

arc coso.51/2) arc cos[To(5]=o-LgUo
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