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ABSTRACT Kriging and conditional simulation algorithms have been
developed for estimating the water level elevation at a fixed reference
location from the measured water level locations on a moving platform.
Theory and mathematical procedures are presented.
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EXECUTIVE SUMMARY
As the title suggests;ﬁhis document provides analytical algorithms
for computation of water level elevation time series at a fixed location from
water level measurements made on a moving ocean platform. The algorithms are
based on geostatistical techniques, including kriging methods and conditional

simulation.

Wave or water elevation time histories are usually measured from a fixed
reference location.. Wave elevation measurements made using a wave measurement
attached to a floating ocean platform need to be corrected for the motions of
the platform. Most computer simulation programs, including the conditional wave
model. require wave input for a fixed reference location. The report presents
the two basic methods (kriging and conditional simulation), develops a rapid
procedure for computing the wave elevation covariance matrix for both methods,
and concludes that the kriging method is the, best choice. SR AR

Py b RS T IR ' - - C e

This contract report was prepared 5; Dr. Leon Borgman, professor of .,
Statistics and Geology at the University of Wyoming, working for the Naval
Civil Engineering Laboratory (NCEL) through his statistical consulting firm,
Leon E. Borgman, Inc. The work was principally funded by the Mineral
Management Service through Charles Smith of the Technology Assessment &
Research Branch. The work has been useful for analyzing data from the NCEL
motion measurement experiment which is a part of the tactical aircrew combat .
training range system research program for the Naval Facilities Engineering

Command.
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ALGORITHMS FOR COMPUTATICN OF WATER LEVEL ELEVATION
AT A FIXED LOCATION FROM THE WATER LEVEL
ELEVATIONS AT A MOVING PLATFORM

by Leon Borgman

INTRODUCTION

The hasic input data for this problem consists of water level elevations measured at a
succession of times from a moving platform. Let ti, ts, t3, ---, v be the tix‘nes at which
measurements are made. Positioning devices are used to establish the platiorm positions
{x(tp), y(ta); n =1, 2, -+, M}. The corresponding sequence of water level elevations at
the platform are {7y, n = 1, 2, .-+, M}. For the reference position (xq, vo), let no(tn) be
the water level elevation at the reference location at time t,. The basic problem is to
predict {no{tn), 0 = My, My+1, ---, Ma} for 1 { M; < My < M from {p,n =1, 2, ---,
M}.

This problem can be investigated with geostatistical techniques if the directional

wave spectrum S(f, 6) is available from nearby measurements. Here, and in the above,

f = frequency in cycles per second, Hertz.

x = a horizontal direction.

y = asecond horizontal direction perpendicular to the x—axis.

§ = an angle measured from the positive x—direction toward the positive
y—direction so that the positive y—axis is at 6 = 90°% (Note: this
definition of 4 is (x, y) — axes dependent, may differ markedly from

compass directions, and may end up clockwise or counter—clockwise.)




S({, 6) = a spectral density function defined so that

27 '
zrj S(1, 6)dddf = o?
-0

where

02 = variance of sea surface elevation.

Algorithms for estimating 70(t) by the two geostatistical techniques of simple linear
kriging and conditional simulation will be developed in the following report. Both of these

techniques depend on the covariance matrix of the vector

- m -
/]
b/
= | ™M
no r’o!M‘
”o)M‘+1
| "O,M‘_’, ]

Hence, some time will be spent initially defining the covariance matrix and developing
procedures by which it can be computed from S({,6). This will be followed by two sections:
the first on kriging methods, and the second on conditional simualtion. Finally a summary

and conclusions section will be given.




The algorithms for the kriging and conditional simulation are quite straightforward
once the covariance matrix is developed. The main task to be completed is the
development of a rapid procedure for computing the covariances. The major part of the

report will be concerned with this problem.




THE SPATIAL-TEMP L ARIANCE FUNCTION

Let (xi, y1) and (X2, y2) be any two locations and (t,, ts) be any two times. The
water level elevation above mean water level at (x, y, t) will be denoted by 7(x, y, t).

The covariance between two random variables U and V is defined as the statistical
average of (U — py)(V — py) where py is the statistical average of U and u is the statistical
average of V. It is convenient to denote the statistical averaging process with E [ ]. Then

the covariance definition may be expressed in symbols as

Cov(U, V) = E{(U — pu)(V = pv}]

where

E(U] = pu
E[V]=p

Now replacing U with 7(xy, yi, t1) and V with 7(xs, ya, t2), and noting that, by definition
of 5, the average of n(x), yi, t1) and n(xs, yo, t2) is zero, the covariance between the two

can be written as

Cov[n(xi, y1- t1), X2, V2, t2)] = E[x1, ¥1, t1) Wx2, ¥2, t2)]

That is, the covariance is the expected product.
It will be asusmed that the sea surface is a stationary, Gaussian process. Then the

covariance defined above will only be a function of the differences in position and time. Let




T=ty—1¢
X =x9=-1x
Y=Y2—Yx

be these differences, and define the covariance function as C(X, Y, r) where
C(X, Y, r) = Cov[xxy, 71, t1), A x2, ¥2, t2)]

It can be shown that (Borgman, 1969, p. 723) the spatial, temporal covariance

function can be expressed in terms of the directional spectrum as
e WL
C(X,Y,n= QF S(f,8) cos{wk(Xcosd + Ysin6) — 2xfr|d 6df
070

where

_ [ +1,if Gis the direction toward which waves travei
= 1 =1, if 41is the direction from which waves travel

k = wave number
= function of { defined by (21r'f)2 = gk tank (kd)
d = water depth

g = acceleration due to gravity.

The functions involved can be defined for negative frequency by

S(H, 6) = S({, 9)




k() = ~k(f)
Then, through the complex—valued definition of the cosine as
cos ¢ = [exp(i @) ~ exp(~i ¢)]/2

the formula for C(X, Y, 7) can be rewritten as

27
C(X, Y, 1) = r J S(f, 8) exp[—iwk(Xcosd + Ysinf) + i2rfrld &if
-0 -0




A POLAR FORM FOR THE CQVARIANCE FUNCTION

Suppose (X, Y) is re—~expressed in polar coordinates (p, a), with
X=pcosa
Y =psin a
then
X cos @+ Ysin 8= pcos acos § + psin asin § = p cos (§a)

With these definitions

C(X, Y, 7) = r “"S(t, ) expl—iwk p cos( ~a)] exp[i2rirJd &

- 0

Without loss of generality, S({,4) can be expressed in the product form
S{{, 8) = S(f) D¢(6)

where D¢( d) is the spreading function defined so that

2r
D¢ 6)d6 = 1.0
0

De(9) 20




The spreading function gives the distribution of wave energy or variance with direction at

frequency f. The covariance function can be written in terms of the product form as

C(X, Y, 7) = r 5(1) { JQT De( §) e~ 1Wkp cos (8-a)y 9}
0

—
* J2MT4s _ 0¥ (p,a)

(where * denotes multiplication).

In summary, the covariance can be expressed in rectangular and polar form as

27 \
CX, Y, nN= QJQ S(f) { D¢( 8) cos[wk(Xcosd + Ysind) — Qﬁﬂdgjdf
0 0

-

C*p, o 7) = r S(f) { J 2' De(6) e""“PC“(""’)do} el27ys
0

Either form can be used as a basis for computaitons. In practice, it is usually best to pre

compute a table of the Covariance function values for a given S({, §) and a grid of values,

or

0<p <
0<al2r

0<rsm




It is only necessary to compute these for positive time lag because, from the definitions
C(=X, =Y, -n=C(XY,
C*(p, a+T, "T) = C*(Pr a, T)
For the Navy application, where the S(f,6) function is estimated from a buoy, further
simplications are often appropriate. It is often satisfactory to take D¢( 6) as only depending
on 6. When this happens, the spreading function will be denoted by D(§). Three common

formulas for the spreading function that are used as approximations are

The generalized cosine—squared model,
D(6) = ¢ cos?s((8-4)/2]
The von Mises model,
D(8) = {exp(a cos( f—p)]}/{271o(a)}
where Io(a) = modified Bessel function of order zero.

and the wrapped—normal model

DO =3 exp|-[ &2 ] 12 ] )15 o)

j=—

All models have about the same shape and are unimodal and symmetric about u

Approximate equivalent values between 8, a, and o2 are given in the appendix to the




10

report.

Since all three models have very nearly the same shape for most typical wave
spreading conditions, it is just a matter of mathematical convenience which is used. If one
is a reasonable approximati.on, then any other of the three will also be a reasonable
approximation.

In the polar covariance function with the spreading function independent of

frequency, it is particularly convenient to use the von Mises model.

Cpan) =[S0

-

{] o ECEY Je
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BESSEL FUNCTION SERIE P ENTATION

There is a nice series approximation of

cacos( 8-)
in terms of the modified Bessel functions given by Oliver (1964, p. 376, eq. 9.6.34) as

e308(04) _ 115) +2 3 In(a)cos(n(6~)]

n=1

After a little algebra, the formula for C* can be expressed in series form as

2r . i
Ct(p, a, T) = %‘;r S(f) J e-kaPCOS( a_a)dg el2rfrdf
= 0

o 2 . ' '
* nzl I;?%%%y Em S(9) J‘:’ cos[n( e_p)]e—lkaCOS( a-a)dg elQﬂTdf

The integration over (0, 27) is really just an integration over the full circle of 3600.
The full circle integration could just as well range over (a — r, @ + 7). If the limits of
integration are changed to this new choice and the variable of integration is changed to

Y=0-~a

the formula simplifies to

L] . .
C‘(py a, 1) = %;Jm S(f) ‘e—lwkftoswdd}elgﬁrdf
- -
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® x . .
+ I %r S(f) cos[n( Yp—p+ oz)]e-'ka"')C °s¢dw LAY
n=1 "0 - -r
The cosine in the second expression can be expanded to

cos{n( $—u+a)] = cos(n)cos(n( a—u)] — sin(n¥)sin[n( a—p)]

With this,

L i . .
C¥p, o 7) = %;r S(f) I e-'*WkPCOdeeszrdf
- -7 ‘

+ 5 ek coln(amp) [

-0

5(f) J " cos(ny)
-

%

. . r
» miwkpcosyy  i2rdTy, 31 I"Oaa sin[n( a—p)] r 5(f) j sin(n)
n= ~o -r

*+ e—iwkpcoswdw ei%{"df

The last expression is zero since the integrand

sin(n ) e--iwkpcosw

is an odd function of ¢ integrated over (—x, ). The othertwo integrands

e-iwkpcosw
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and

cos(n¥) e—iwkpcos¢'

are even functions of ¥, so the range of integration can be changed to (0, 7) with a

multiplication by 2. Thus
8 . .
C*p, o )= L[ s [ emiwhemONgy oi2rIryy
-0 0
+2 § L?L?-L; cos{n( a—p)] r S(f) JT cos(ny)
n=]1 Trol2 - &
* e—iwkpcos¢d¢ei21frdf

The reason for all these manipulations will now become apparent. the integrals over

¥ can be expressed as Bessel functions. Oliver (op.cit., p. 360, eq. 9.1.21) gives
* _iwkpcosy .
J e cos(n9)d¥ = iaxTq(—wkp)
° .
g .
J e—-kapCOS’dew = rJo(—wkp)
0

By Gliver (op.cit., P. 360, eq. 9.1.20) if the argument, z, is real—valued

Jo(=2) = (-1)® Ju(z)
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Combining all these results

C*p, 1) = r S(f) Jo(kp) eaﬂrdf +2 gl (—wi)n {—%‘-&}cos[n( a—p)]
- n=

. r S(f) Ta(kp) €277 df
-
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COMPUTATION QOF THE BESSEL SERIES FORM

The last equation is in a form appropriate for approximation with the fast Fourier
Transform. Let N and Af be chosen so that S(f) Jn(kp) is essentially zero for f > NAf/2
andn=20,1,2 3,4, ---. This is equivalent to choosing a frequency beyond which S(f)

will be treated as though it is exactly zero. Then define
Ar = (NAf)"
A(:) = S(mAT) Jo(ka p)

where ky, is the wave number corresponding to f = mAf, and set

A =4

Then, introducing a new function, Ra(p, 7)

- Nol (oo
Ra(p, i87) = [ 500 Iuep)e 2B 7ag 2 a1 5 _alplei2mm/N

-0 m=0

the function Rn(p, 7) can be computed quite rapidly for a selected list of p—values to
develop a matrix. whose rows are the p—values and whose columns are the r = jAr
time—lag values.

An algorithm for the rapid computation of Ju(z) for real—-valued z is given by Oliver
(op.cit., bottom of page 385). An exactly parallel procedure can be applied to compute
[a(a) with eq. 9.6.36 (Oliver, op.cit.)
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In terms of the function Ry(p, 7) defined above

®
C*(p &) = Ralpy ) +2 3 ()" SAEAT) cosfn( )
n=

The nature of values of Ra(p, 7) can be combined with any @ to compute rapidly the value

of C*p, a, 7).
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THE COVARIANCE MATRIX
Let Cy; be the M by M matrix whose (n, ny) element is the covariance between T,

and ", for the water level elevations in the series
{ﬂm n=1’ 27 "'7M}

defined in the introduction. Similarly let Cy9 be the (Ms — M,+1) by (M2 — M;+1) matrix
whose (ji, j2) element is the covariance between 77°(tMl+j|—1) and T’°(tMl+jg—l)’ in the
series {no(tn), n = My, M+1, -+, My} defined in the introduction. Finally let Cy2 be the
M by (M; — M;+1) matrix whose (n, j) element is the covariance between 7, and

170(tMl +j—1)' With these definitions, the covaraince matrix of (7, go)T is
1 Cii C
2 Ci2Ca

All of the covariances in Cy;, C2, and Cyy can be computed by first determining X,

Y, and 7 for the pair of locations and times involved, then getting p and « from
p=VvXT + Y*
a = arc tan (Y/X),

and finally interpolating for Ra(p, 7) and computing C*(p, a, 7).
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CONDITIONAL SIMULATION OF g,

The matrix formula for conditional simulation of 5, given the values of p was

derived previously by Borgman (1984, p. 533, eq. 85.). The following steps are involved.
(1) Compute the eigenvectors and eigenvalues of

Cu Cie

C=

Ci2 Ca2
Let A; be the eigenvalues and yj be the corresponding eigenvectors. Define V as a matrix
whose columns are the eigenvectors and L as the diagonal matrix whose main diagonal
elements are A; and whose off—diagonal elements are zero. Then

C=VLVTY

in the well known eigenvector, eigenvalue decomposition (Jennings, 1977, p. 32, eq. 1.130).

Consequently,
¢ = (vL/2yvL/yT

(2) Let Z* be a vector of independent, standard normal random numbers. Then

*
{"LJ =VL1/2Z*
/2

is an unconditional simulation of gand g,




(3) A conditional simulation of 5, given the values of 7is

{2, given 0} = CT, C7t (2~ 1) + 1,

19




KRIGING FORMULAS FOR gz,

The kriging procedure estimates each no(t;) by a linear combination of the interval of
values of 7, surrounding the time t;. The idea here is to use all values of 7y that are
correlated with no(tj). A reasonable choice would be to include all 7, measured from the
platform within two wave periods of the time t;. Here a good value for the wave period
would be the inverse of the frequency at the peak of the spectra. The value 7o(t;) is

estimated by

To{ti) =2 anm

where the summation extends over the times surrounding t;. The coefficients, a,, are

computed to minimize
Q = El{n(t) - n,(t)} ]

subject to the constraint that

E[ng(t;) = 1o(ti)] = 0

A full discussion of this procedure is givea by Bcrgmman (1985, p. 14), a copy of which is
forwarded with this report.
The computations may be summarized as follows. Let n; < n ¢ ns be the interval of

values of 7, used. .




CT. = (no—n;+1) by (ng—n,+1) covanance matrix of the n, for n; < n < ns

Cig = vector whose {~th element is-the covariance between LW} and 7o(t;)
1 = vector of ng~n 41 components, all of which equal 1.0

a = vector of coefficients to be multiplied by the 7y in the interval

The kriging equations which solve the constrained minimization are computed from

[C r 1 2 Cia
L l.T 0 A - 1.0
where, A is the Lagrangean multiplier imposing the constraint. Thus
* -1
2 Citl Cuo
A LT o) (1o
The mean—square—error of the estimate of 5,(t;) is

mean square error = E({n.(t;) — ;]o(tj)}ﬁ =0 -} - gTQm

where

ﬁ=2ramf

0

from the sea surface spectral density.




MMARY AND CON ION

1. Kriging and conditional simulation algorithms have been developed for estimating
the water level elevation at a fixed reference location from the measured water level

locations on the moving platform.

2. Both kriging and conditional simulation have straightforward mathematical

formulas, once the appropriate covariance matrices have been computed.

3. An algorithm based on a Bessel function series and the use of the fast Fourier
Transform to compute a subsidiary function, Ry(p, 7), is derived. This is the main work in
the report. Both kriging, and conditional simulation procedures are completely derived in

cited references.

4. Recommendations are given for procedures to compute the Bessel functions in the

formula and the other aspects of the algorithm.

5. The kriging procedure will probably be the best choice of the geostatistical
techniques for use in estimating the water level elevations at the reference location. A
convenient error measure arises naturally from the computations and the procedure is

relatively rapid to compute.
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APPENDIX
The equivalences between the spreading function models are most easily derived from
the half—peak width of the functions. The half—peak with of D16) is two times the (8~p)

value at which
D(6,) = 0.5 D(y)
Let App be this value
Apgp = Ao
For the generalized cosine—squared model
D(p) =c
so the equation becomes
c cos?s{( 8,—p) /2] = 0.5¢
cosl(8y=p)/2] = (0.5) /129
Agg = A bp—p) = 4 arc cos[0.5l/(25)]
For the von Mises model

D(4) = 1/{2xlo(a)}
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Hence the equation is
¢200s(u—p) _ 0.5
acos( §,—pu) = Log(0.5)

AIYIII\;I = A y—p) = 2 arc cos{ Lo 2‘5) }

Finally, for the wrapped—normal model, in the -case most common in ocean wave

work where

| 8w/ (20Y)

D(8) = e
1
D(p) P

and the equation to be solved is
B (20%) _ o 5

~ 9#‘#)2
- = Log(0.5)
20?

AY

(Ge—p)?® = =202L0g(0.5)

Av}‘{g = 2 O4—p) = 2y=20"Log(0.5)




Thus, a reasonable equivalence between parameters is given by

2 arc cos [0.51/(25)] = aIC cos [E’S_(g_-fﬁ] = oy~2Log(0,2
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