
Technical Report

CMU/SEI-88-TR-34
ESD-TR-88-035

Carnegie-Mellon University

Software Engineering Institute

Mode Change Protocols
for Priority-Driven Preemptive Scheduling

Lui Sha
Ragunathan Rajkumar

John Lehoczky

Krithi Ramamritham

November 1988

ADA207^H

Technical Report
CMU/SEI-88-TR-34

ESD-TR-88-035
November 1988

Mode Change Protocols
for

Priority-Driven Preemptive Scheduling

Lui Sha
Real-Time Scheduling in Ada Project

Ragunathan Rajkumar
John Lehoczky

Carnegie Mellon University

Krithi Ramamritham
University of Massachusetts

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
HanscomAFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler v^
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1988 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DT1C provides access to and transfer of
scientific and technical information for DoD personnel. DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center. Ann: FDRA. Cameron Station. Alexandria. VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering.
please contact NTIS directly: National Technical Information Service. U.S. Department of Commerce. Springfield. VA 22161.

The use of any trademark in this publication is not intended in any way to infringe on the rights of the trademark holder.

Reviewed and edited by Information Management, a function of the Technology Transition Program, Software Engineering
Institute.

Table of Contents
1. Introduction 1

2. Scheduling Periodic Tasks 3
2.1. Scheduling Independent Periodic Tasks 3
2.2. Task Synchronization 5
2.3. An Example 7

3. Mode Change Protocols 9
3.1. Mode Changes for Independent Tasks 9
3.2. The Basic Mode Change Protocol 10
3.3. Properties of The Basic Mode Change Protocol 14
3.4. Mode Change Delays 15

4. Extensions of the Basic Mode Change Protocol 17
4.1. Variations of the Basic Protocol 17
4.2. Stability Under Transient Overload 18
4.3. Scheduling Both Periodic and Aperiodic Tasks 20

5. Conclusions 23

Acknowledgement 25

CMU/SEI-88-TR-34

CMU/SEI-88-TR-34

List of Figures
Figure 3-1: Sequence of Events Described in Example 4 12
Figure 4-1: Scheduling Both Aperiodic and Periodic Tasks 21

CMU7SEI-88-TR-34 Hi

Iv CMU/SEI-88-TR-34

List of Tables
Table 2-1: Worst-Case Scheduling Bounds as a Function of Number of

Tasks

CMU/SEI-88-TR-34

Mode Change Protocols
for

Priority-Driven Preemptive Scheduling

Abstract: In many real-time applications, the set of tasks in the system as well as
the characteristics of the tasks change during system execution. Specifically, the
system moves from one mode of execution to another as its mission progresses.
A mode change is characterized by the deletion of some tasks, addition of new
tasks, or changes in the parameters of certain tasks, e.g., increasing the sampling
rate to obtain a more accurate result. This paper discusses a protocol for sys-
tematically accomplishing mode change in the context of a priority-driven preemp-
tive scheduling environment.

1. Introduction

To successfully develop a large-scale real-time system, we must be able to manage both
the logical complexity and timing complexity by using a disciplined approach. The logical
complexity is addressed by software engineering methodology, while the timing complexity
is addressed by research in real-time scheduling algorithms [2,3, 5, 6, 7, 8, 10,12,14]. An
important class of scheduling algorithms is known as static priority scheduling algorithms.
These algorithms have several attractive properties. First, they are simple to implement.
Second, they have good performance. The utilization bound of a randomly chosen periodic
task set is 88% [4], while the worst-case bound for any task set is 69% [7]. In many applica-
tions, periodic tasks are often harmonic or nearly harmonic, and this leads to utilization
bounds at or near 100%.

In addition to good performance found in practice, static priority scheduling algorithms are
analyzable for a wide variety of practical conditions such as the scheduling of a mixture of
periodic and aperiodic tasks [3], the handling of transient overloads [11], and the effect of
using semaphores [12] and Ada rendezvous [1] for synchronization. From a software engi-
neering point of view, these algorithms translate complex timing constraints into simple
resource utilization constraints. As long as the utilization constraints of the CPU, I/O chan-
nels and communication media are observed, the deadlines of periodic tasks and the re-
sponse time requirements of aperiodic tasks will both be met [2]. This means that the real-
time software can be modified freely as long as the utilization bounds are observed. Fur-
thermore, should there be a transient overload, the tasks that will miss deadlines will miss
them in reverse order of importance, and the number of tasks missing their deadlines will be
a function of the overload [11].

However, in many applications neither the task set nor the task parameters can remain
static throughout the mission. A change in operational mode often leads to the modification
of task parameters (e.g., task period and execution time) as well as the addition of some

CMU/SEI-88-TR-34

new tasks and deletion of some existing tasks. For example, a phase array radar can adjust
its sampling rate for the tracking task. Generally speaking, there are two types of mode
change issues: application issues and runtime management issues. Application issues deal
with the semantics of mode change: the condition for initiating a mode change, the set of
tasks to be replaced or modified, and the sequence in which to carry out the mode change
activities. In this paper, we do not address the application issues of mode change. We
assume that when a mode change is initiated, we are given a list of tasks to be modified,
added or deleted, and the sequence to do so.

The focus of this paper is on the runtime management of the mode change process. Specifi-
cally, we focus upon the scheduling of mode change activities and of tasks during the transi-
tion period of mode change. Our objective is to accomplish the mode change process
quickly subject to keeping the consistency of shared data and to meeting the deadlines of
tasks that must execute before, during, and after a mode change. This paper is organized
as follows. In Section 2, we first review the rate-monotonic algorithm and the priority ceiling
protocol for scheduling periodic tasks since our mode change protocol will be designed to be
compatible with them. In Section 3, we develop the basic mode change protocol and ana-
lyze the properties of the basic protocol. In Section 4, we first examine some possible alter-
natives to the basic protocol. Next, we consider the interplay between this basic protocol
and other scheduling issues, namely, the period transformation method for maintaining sta-
bility under transient overload and the server algorithms for scheduling both periodics and
aperiodics. Finally in Section 5, we present the concluding remarks.

CMU/SEI-88-TR-34

2. Scheduling Periodic Tasks
In this section, we first review the rate-monotonic scheduling algorithm for independent peri-
odic tasks and then review the priority ceiling protocol designed for the synchronization of
periodic tasks using the rate-monotonic scheduling approach. We shall first define the basic
concepts and state our assumptions before presenting a review of the scheduling algo-
rithms. A ;'ob J with execution time C is a sequence of instructions that will continuously use
the processor until its completion if it is executing alone on the processor. That is, we as-
sume that a job J does not suspend itself, say for I/O operations; however, such a situation
can be accommodated by defining two or more jobs. In addition, we assume that the critical
section of a job is properly nested and a job will release all of its locks, if it holds any, before
or at the end of its execution. In all our discussions below, we assume that jobs Jy, J2, • • • •
Jn are listed in descending order of priority with J, having the highest priority. A periodic
task x is a sequence of the same type of job J occurring at regular intervals, [kT, k = 0,1, 2,
• • •}, where Tis the period of task x. An aperiodic task is a sequence of the same type of

job occurring at irregular intervals. Each task is assigned a fixed priority P, and every job of
the same task is initially assigned that task's priority. If several jobs are eligible to run, the
highest priority job will be run. Jobs with the same priority are executed in a first-come
first-serve discipline. When a job J is forced to wait for the execution of lower priority jobs,
job J is said to be "blocked." When a job waits for the execution of higher priority jobs or
equal priority jobs that have arrived earlier, it is not considered as blocked.

2.1. Scheduling Independent Periodic Tasks

Tasks are considered as independent if they do not synchronize their executions with each
other. Given a set of independent periodic tasks, the rate-monotonic scheduling algorithm
gives a fixed priority to each task and assigns higher priorities to tasks with shorter periods.
A task set is said to be "schedulable" if all its deadlines are met, i.e., if every periodic task
finishes its execution before the end of its period. Any set of independent periodic tasks is
schedulable by the rate-monotonic algorithm if the condition of Theorem 1 is met [7].

Theorem 1: A set of n independent periodic tasks scheduled by the rate-
monotonic algorithm will always meet its deadlines, for all task phasings, if

_L+ ... + J!£n(21"M)

where C, and 7) are the execution time and period of task TJ respectively.

Theorem 1 offers a sufficient (worst-case) condition that characterizes the schedulability of
the rate-monotonic algorithm. This bound converges to 69% {In 2) as the number of tasks
approaches infinity. Table 2-1 shows values of the bound for 1 to 10 tasks.

The utilization bound of Theorem 1 is very pessimistic because the worst-case task set is
contrived and rather unlikely to be encountered in practice. For a randomly chosen task set,

CMU/SEI-88-TR-34

Scheduling Bounds

of Tasks Utilization Bound

1 1.0

2 0.828

3 0.779

4 0.756

5 0.743

6 0.734

7 0.728

8 0.724

9 0.720

10 0.718

Table 2-1: Worst-Case Scheduling Bounds as a Function
of Number of Tasks

bound of Theorem 1 can meet its deadlines, the conditions of Theorem 2 can be
checked [4].

Theorem 2: A set of n independent periodic tasks scheduled by the rate-
monotonic algorithm will always meet its deadlines, for all task phasings, if and
only if

V/, 1 <i<n, min Yd
U'ITk

ITL

TJ
<1

(k, /) 6 R,
where C} and Tj are the execution time and period of task Xj respectively and
Rt={ (k, l)\ 1 < k< i, I = 1, • • • .LTfa}}.

Theorem 2 provides the exact criterion for testing the schedulability of independent periodic
tasks using the rate-monotonic algorithm. In effect, the theorem checks if each task can
complete its execution before its first deadline by checking all the scheduling points.1 The
scheduling points for task x are T'S first deadline and the end of periods of higher priority
tasks within T'S first deadline. In each application of the formula, /corresponds to the task x{

whose deadline is to be checked, and k corresponds to each of the tasks that affects the
completion time of task Xj, i.e., task Xj itself and the higher priority tasks. For given / and k, I
represents the scheduling points of task xk. For example, suppose that we have tasks x1

and x2 with periods T1 = 5 and T2 - 14. For task (Xj, i = 1) we have only one scheduling
point, the end of task x^s first period, i.e., /» *• 1 and (1=1, • • •, \JfTk\ = Lr/TrJ = 1).

1tt was shown in [7] that when all the tasks are initiated at the same time, if the first job of a task meets its
deadline, that task will never miss a deadline.

CMU/SEI-88-TR-34

The scheduling point is, of course, t/s first deadline (ITk = 5, /= 1,k = 1). For task (tj, i = 2),
there are two scheduling points from all higher priority tasks, (xk, k = 1), i.e., (/=1,

• •, LTj/TkJ = LT2/T1J = 2). The two scheduling points correspond to the two end-points of
task 1,'s period within the first deadline of task t2 at 14, i.e., (ITk = 5,1 = 1, k= 1) and (ITk =
10,1 = 2, km 1). Finally, there is the scheduling point from x2's own first deadline, i.e., (ITk =
14,1 m 1, k = 2). At each scheduling point, we check if the task in question can complete its
execution at or before the scheduling point. A detailed illustration of the application of this
theorem and its generalization is given in Example 3 in Section 2.3.

2.2. Task Synchronization

In the previous sections we have discussed the scheduling of independent tasks. Tasks,
however, do interact. In this section, we will discuss how the rate-monotonic scheduling the-
ory can be applied to real-time tasks that must interact. The discussion is limited in this
paper to scheduling within a uniprocessor. Readers who are interested in the multiproces-
sor synchronization problem are referred to [9].

Common synchronization primitives include semaphores, locks, monitors, and Ada rendez-
vous. Although the use of these or equivalent methods is necessary to protect the consis-
tency of shared data or to guarantee the proper use of non-preemptable resources, their use
may jeopardize the ability of the system to meet its timing requirements. In fact, a direct
application of these synchronization mechanisms may lead to an indefinite period of priority
inversion and low schedulability.

Example 1: Suppose J^, J2, and J3 are three jobs arranged in descending order of priority
with J^ having the highest priority. Let jobs J1 and J3 share a data structure guarded by a
binary semaphore S. Suppose that at time fv job J3 locks the semaphore S and executes
its critical section. During the execution of job J3's critical section, the high priority job J-, is
initiated, preempts J3 and later attempts to use the shared data. However, job J-, will be
blocked on the semaphore S. One might expect that Jv being the highest priority job, is
blocked no longer than the time for job J3 to complete its critical section. However, the
duration of blocking is, in fact, unpredictable. This is because job J3 can be preempted by
the intermediate priority job J2- The blocking of J3, and hence that of J1t will continue until
J2 and any other pending intermediate jobs are completed.

The blocking period in this example can be arbitrarily long. This situation can be partially
remedied if a job in its critical section is not allowed to be preempted; however, this solution
is only appropriate for very short critical sections, because it creates unnecessary blocking.
For instance, once a low priority job enters a long critical section, a high priority job which
does not access the shared data structure may be needlessly blocked.

The priority ceiling protocol is a real-time synchronization protocol that ensures (1) freedom
from mutual deadlock and (2) that a high priority task will be blocked by lower priority tasks
for the duration of at most one critical section [1,12]. Two ideas underlie the design of this

CMU/SEI-88-TR-34

protocol. First is the concept of priority inheritance: when a task x blocks the execution of
higher priority tasks, task x should execute at the highest priority level of all the tasks
blocked by x. Secondly, we must guarantee that each newly started critical section ex-
ecutes at a priority level that is higher than the (inherited) priority levels of the preempted
critical sections. It was shown in [12] that such a prioritized total ordering in the execution of
critical sections leads to the two desired properties. To achieve such prioritized total order-
ing, we define the concept of the priority ceiling of a binary semaphore S to be equal to the
highest priority task that may lock 5. When a job J attempts to execute one of its critical
sections, it will be blocked unless its priority is strictly higher than all the priority ceilings of
semaphores currently locked by jobs other than J. If job J blocks, the job that holds the lock
on the highest priority ceiling semaphore is said to be blocking Jand hence inherits Js prior-
ity. A job J can, however, always preempt another job executing at a lower priority level as
long as Jdoes not attempt to enter a critical section.

Example 2: Suppose that we have two jobs Jj and J2 in the system. In addition, there are
two shared data structures protected by binary semaphores S^ and S2 respectively. Sup-
pose the sequence of processing steps for each job is as follows.

4 ={••.P(Si). ••.P(S2), •••.V(S2), ••,V(S1), •••}

4> = {-"-.p(S2). ••.p(si). ••.V(S1), •••.V(S2), •••}

Recall that the priority of job Jt is assumed to be higher than that of job J2. Thus, the priority
ceilings of both semaphores S, and S2 are equal to the priority of job Jj. Suppose that at
time IQ, J2 is initiated and it begins execution and then locks semaphore S2. At time t:, job
J, is initiated and preempts job J2 and at time t2, job J, tries to enter its critical section by
making an indivisible system call to execute P(S1). However, the runtime system will find
that job J/s priority is not higher than the priority ceiling of locked semaphore S^ Hence,
the runtime system suspends job J^ without locking Sv Job J2 now inherits the priority of job
J1 and resumes execution. Note that J, is blocked outside its critical section. As J^ is not
given the lock on S1 but suspended instead, the potential deadlock involving J^ and J2 is
prevented. Once J2 exits its critical section, it will return to its assigned priority and immedi-
ately be preempted by job Jv Then, J, will execute to completion, and finally J2 will resume
and run to completion.

Let 8j be the longest duration of blocking that can be experienced by a job of task x{. The
following two theorems indicate whether the deadlines of a set of periodic tasks can be met
if the priority ceiling protocol is used.

Theorem 3: A set of n periodic tasks using the priority ceiling protocol can be
scheduled by the rate-monotonic algorithm if the following condition is
satisfied [12]:

^1
^+ma*/^,....^l\sn(2i'<M)
'n \ '1 'n-1/

Theorem 4: A set of n periodic tasks using the priority ceiling protocol can be

CMU/SEI-88-TR-34

scheduled by the rate-monotonic algorithm for all task phasings if the following
condition is satisfied [12].

V /, 1 < /'< n, min /vr 1 N C> e'\<i

(k, I) G Rj

where Cv TJ and R{ are defined in Theorem 2, and B, is the worst-case blocking
time for a job of task ij.

Remark: Theorems 3 and 4 generalize Theorems 1 and 2 by taking the blocking duration of
a job into consideration. The Bj's in Theorems 3 and 4 can be used to account for any delay
caused by resource sharing. Note that the upper limit of the summation in the theorem is (/' -
1) instead of /, as in Theorem 2.

In the application of Theorems 3 and 4, it is important to realize that under the priority ceiling
protocol, a task x can be blocked by a lower priority task xL if xL may lock a semaphore S
whose priority ceiling is higher than or equal to the priority of task x, even if x and xL do not
share any semaphore. For example, suppose that xL locks S first. Next, x is initiated and
preempts xL. Later, a high priority task xH is initiated and attempts to lock S. Task xH will be
blocked. Task xL now inherits the priority of xH and executes. Note that x has to wait for the
critical section of xL even x and xL do not share any semaphore. We call such blocking,
"push-through blocking". Push-through blocking is the price for avoiding unbounded priority
inversion. If task xL does not inherit the priority of xH, task xH can be indirectly preempted by
task x and all the tasks that have priority higher than that of xL. Finally, we want to point out
that even if task xH does not attempt to lock S but attempts to lock another unlocked
semaphore, xH will still be blocked by the priority ceiling protocol because xH's priority is not
higher than the priority ceiling of S. We call this form of blocking, "ceiling blocking". Ceiling
blocking is the price for ensuring the freedom of deadlock and the property of a task being
blocked at most once.

2.3. An Example
In this section, we give a simple example to illustrate the application of the scheduling
theorems.

Example 3: Consider the following task set.

1. Periodic task x,: execution time = 40 msec; period = 100 msec; deadline is at
the end of each period.
In addition, x3 may block x., for 10 msec through the use of a shared communi-
cation server and task x2 may block %^ for 20 msec through the use of a
shared data object.

2. Periodic task x2: execution time = 40 msec; period = 150 msec; deadline is 20
msec before the end of each period.

3. Periodic task x3: execution time = 100 msec; period • 350 msec; deadline is at
the end of each period.

CMU/SEI-88-TR-34 7

Solution: Since under the priority ceiling protocol a task can be blocked by lower priority
tasks at most once, the maximal blocking time for task x1 is 61 = max(10, 20) msec = 20
msec. Since x3 may lock the semaphore Sc associated with the communication server and
the priority ceiling of Sc is higher than that of task x2, task x2 can be blocked by task x3 for 10

msec.2 Finally, task x2 has to finish 20 msec earlier than the nominal deadline of a periodic
task. This is equivalent to saying that x2 will always be blocked for additional 20 msec but its

deadline is at the end of the period. Hence, B2 = (10 + 20) msec = 30 msec.3 Using
Theorem 4:

1. Task x.,: Check C1 + B, < 100. Since 40 + 20 < 100, task x1 is schedulable.

2. Task x2: Check whether either

C1+C2 + B2<100 80 + 30 > 100
or 2q + C2 + B2<150 120 + 30 = 150

Task x2 is schedulable and in the worst-case phasing will meet its deadline
exactly at time 150.

3. Task x3: Check whether either

C^+C2 + C3< 100 40 + 40 +100 > 100

or 2C,+ C2+C3 < 150 80+40 +100 > 150

or 2^ + 2C2 + Gj < 200 80+ 80 + 100 > 200

or 3C, + 2C2 + Ca < 300 120 + 80 + 100 = 300

or 4C, + 3C2 + Oj £ 350 160 + 120 + 100 > 350

Task x3 is also schedulable and in the worst-case phasing will meet its deadline exactly at
time 300. It follows that all the three periodic tasks can meet their deadlines.

^is may occur if tg blocks T, and inherits x,'s priority.

3Note that the blocked-at-most-once result does not apply here. It only applies to blocking caused by task
synchronization using the priority ceiling protocol.

CMU/SEI-88-TR-34

3. Mode Change Protocols
We now discuss the protocols needed to support mode changes in the context of our
scheduling algorithms for periodic tasks. First, we discuss the characteristics of mode
change. This is followed by a simple protocol when only independent tasks are involved.
Finally, we discuss the mode change problems in the presence of task interactions.

3.1. Mode Changes for Independent Tasks

From a scheduling point of view, typical mode change operations can be classified into two
types:

1. Operations that increase a task set's processor utilization:

a. Adding a task
b. Increasing the execution time of a task
c. Increasing the frequency of execution of a task.

2. Operations that decrease a task set's processor utilization:

a. Deleting a task
b. Decreasing the execution time of a task
c. Decreasing the frequency of a task.

A simple mode change protocol can be defined in terms of the deletion of existing tasks and
the addition of a new task. If a task modifies its parameters, e.g., changes its sampling rate,
it is modeled as the deletion of the original task and the addition of a new task. In addition,
we assume that all the tasks are periodic and that a task which has started its execution will
not be deleted until it has completed its execution in the current period. These assumptions
will be relaxed later in this paper.

When tasks are independent, the addition, deletion, or modification of a task's parameters is
merely an application of Theorems 1 or 2.

Theorem 5: At any time t, a task t can be added, or its computation time C in-
creased or its frequency increased without causing any task to miss their dead-
lines if the conditions of Theorems 1 or 2 are satisfied.

Proof: It directly follows the fact that a task set is schedulable if it satisfies the
conditions of Theorems 1 or 2.
Theorem 6: At any time t, a task x can be deleted, or its computation time C
reduced or its frequency reduced without causing any task to miss their deadlines.

Proof: It directly follows the fact that if a given task set satisfies the conditions of
Theorems 1 or 2, then the modified task set will also satisfy the conditions in
question.

It may seem that once a task is deleted, its allocated processor capacity can be immediately

CMU/SEI-88-TR-34

reused by other tasks. However, this is not true. The schedulability of a set of tasks using
the rate-monotonic algorithm is determined under the assumption that once a job J of a task
x is initiated, task x cannot request additional processing until the beginning of T'S next
period. Thus, even if job J has finished its execution m units before the end of x's current
period, task x has used up the processor capacity for the given period. Hence, task x must
be included in the application of Theorems 1 and 2 3 and 4 until the end of the current
period. In other words, the processor capacity allocated to x cannot be used by new tasks
until the end of x's current period.

3.2. The Basic Mode Change Protocol

In this section, we will develop a basic mode change protocol for periodic tasks using binary
semaphore for synchronization. There are two basic concepts in the design of this protocol.
The first is the notion of sufficient processor capacity to add a task "on the fly" when
synchronization is involved. The second is the preservation of the characteristic of the prior-
ity ceiling protocol: each newly started critical section is guaranteed to execute at a priority
level that is higher than the maximum priority that any of the preempted critical sections can
inherit.

Definition: Processor capacity is said to be sufficient for adding a task x, if the resulting n
tasks, including x, can meet all their deadlines using the rate-monotonic algorithm and the
priority ceiling protocol.

Theorems 3 and 4 provide us with sufficient conditions for processor capacity to be suf-
ficient. Theorem 4 allows for a higher degree of processor utilization while Theorem 3 is
easier to apply.

We have defined the concept of having sufficient capacity to add a task. A related concept
is the deletion of a task x and reclaiming the processor capacity used by x.

Definition: The processor capacity used by a deleted task x is said to be reclaimed at time f
if after t task x does not need to be included in the application of Theorems 3 and 4.

We now define the basic mode change protocol. We assume that during mode transition,
tasks are deleted/added in an order that is consistent with the semantics of the application.

1. The addition and/or the deletion of tasks in mode change may lead to the
modification of the priority ceilings of some semaphores across the mode
change. Upon the initiation of mode change,

• For each of the unlocked semaphores S, whose priority ceiling needs to
be raised, S*s ceiling is raised immediately and indivisibly.

• For each locked semaphore 5, whose priority ceiling needs to be raised,
S"s priority ceiling is raised immediately and indivisibly after S is un-
locked.

10 CMU/SEI-88-TR-34

• For each semaphore S, whose priority ceiling needs to be lowered, S"s
priority ceiling is lowered when all the tasks which may lock S and which
have priorities greater than the new priority ceiling of S are deleted.

2. A task x, which needs to be deleted, can be deleted immediately upon the
initiation of mode change, if x has not yet started its execution in its current
period. In addition, the processor capacity used by x is reclaimed immediately.
On the other hand, if x has started execution, x can be deleted after the end of
its execution and before its next initiation time. The processor capacity al-
located to x will, however, not be reclaimed until the next initiation time.

3. A task x can be added into the system if the following two conditions are met:

• If task x's priority is higher than the priority ceilings of locked
semaphores S1 S^, then the priority ceilings of Sy ... ^ must be
first raised before adding task x.

• There must be sufficient processor capacity for adding task x.

We now illustrate the mode change protocol using an example.

Example 4: Suppose that the task set {x1(x2, x3} is replaced by the task set {x0, x^ x4, x5}. In
other words, tasks x1 and x2 are to be deleted and replaced with x0, x4 and x5 in the new
task set. x3 is to be modified to x3 resulting in a change of parameters. Suppose that x0

cannot be added until x1 is deleted because of insufficient processor capacity or semantic
requirements. Similarly, suppose that x4 and x5 cannot be added until x2 is deleted and its
processor capacity reclaimed. We assume that we add tasks x0, x4 and x5 in that order when
a mode change is initiated. In addition, we assume that tasks that need to be deleted can be
deleted in any order.

Let the jobs of each task execute the following sequences of instructions in the current task
set.

4={--.P(Si). ••.V(S1), •••}

J2 = { ••••P(S1), •••.P(S2). ••,y(S2), •••.V(S1). •••}

J3 = {--,P(S2), •••,V(S2), •••}

Let the jobs in the new mode execute the following sequences of events:

4>»{---.p(sy. • -.v^), •}

J3={-..,P(S2), •••,V(S2), •••}

4 = {---.p(S2). ••.P(S1). ••.V(S1), •••.V(S2), •••}

*-{•••.P«S,), •••.V(S1). •••}

As before, we assume that the priority of Jj+1 is lower than the priority of Jr Before the mode

CMU/SEI-88-TR-34 11

; locked S i ""locked

hrl
End of J'i period

I
S„ locked S unlocked

2 I 2y

j
2 n

S„ locked

Mocked by J}

1 'iMrf
S. unlocked E"° of r« period

I

i
S unlocked

2

n
End of J'(period

n r

I 1 1 1 1 1 H i 1 h -• time

l2 l4 l6 l8 l10 l12 l14 l16 l18 l20 l22

"t t "
Mode change initiated

S ' s ceiling raised Land J, ready to execute

J ready to execute

and

S ' t ceiling lowered

Figure 3-1: Sequence of Events Described in Example 4.

change, the priority ceilings of S-, and S2 are the priorities of x., and x2 respectively. How-
ever, after the mode change, the priority ceilings of S1 and S2 are the priorities of T4 and T0

respectively. Thus, after the mode change, the priority ceiling of S1 is lowered, while that of
S2 is raised.

Consider the following sequence of events depicted in Figure 3-1. A line at a low level
indicates that the corresponding job is blocked or has been preempted by a higher priority
job. A line raised to a higher level indicates that the job is executing. The absence of a line
indicates that the job has not yet been initiated or has completed. Shaded portions indicate
execution of critical sections.

12 CMU/SEI-88-TR-34

• At time /Q. the task set that is being run is {x^ x2, X3}. J3 arrives and begins
execution.

• At time f.,, J3 locks ^ and enters its critical section.

• At time t2, J2 arrives and preempts J3.
• At time t3, J2 attempts to lock S^ and is blocked by the priority ceiling protocol.

J3 inherits J2's priority and resumes execution.

• At time f4, Jy arrives and preempts J3.
• At time ^, J, successfully locks S1t since its priority is higher than the priority

ceiling of locked semaphore S2.

• At time tQ, J1 releases the semaphore Sv At the same time, a mode change is
initiated due to external requirements. x0 is the first task to be added at the
mode change and it cannot be added until the processing capacity is reclaimed
from xv Hence, x0 cannot be added until the end of jys current period (at f12).
Similarly, x4 and x5 cannot be added until the end of J2's current period (at f17).
The priority ceiling of ^ gets raised in the new mode but cannot be raised until
it is unlocked.

• At time t7, Jt completes execution and J3 resumes execution at its inherited
priority of J2.

• At time f8, J3 releases the semaphore S2 and resumes its original priority. The
priority ceiling of S2 is raised now. J2 immediately preempts J3 and locks Sv

• At time tQ, J2 makes a nested access to S2 and locks S2.
• At time f10, J2 releases the semaphore S2.
• At time ^ 1, J2 releases the semaphore S1.
• At time f12, J2 completes execution. The current period of x1 ends here and x1 is

deleted. Hence, x0 is added into the system and immediately becomes eligible
for execution.

• At time r13, J0 locks semaphore S2 since there is no other locked semaphore in
the system.

• At time f14, J0 releases S2.
• At time f15, J0 completes execution and J3 resumes execution.
• At time f16, J3 completes execution.

• The processor remains idle during the interval [f16, f17]4.

• At time f17, the current period of x2 ends and it can be deleted from the system.
The priority ceiling of S^ is lowered and x0 is added into the system. Now, x4

and x5 can also be added into the system. Having the highest priority among
tasks ready to run, JA begins execution.

• At time f18, x3's current period ends and x3 can be replaced with x3 The mode
change is now complete. Job ^preempts J4 and begins execution.

4ldling of the processor can occur for two reasons: the rate-monotonic algorithm does not guarantee a 100%
schedulability level for all task sets. Secondly, task sets in some modes may have lower processor utilization
levels than task sets in other modes.

CMU/SEI-88-TR-34 13

• At time f2-|. ^completes execution, locking and releasing ^ at f19 and f20 re-
spectively. Now, J4 resumes execution.

• Processing proceeds normally in the new mode.

The above example illustrates the following properties of the mode change protocol. First,
tasks can be added as long as they are schedulable in the resulting task set. However, a
task to be added may have to wait for the deletion of an existing task even though there is
idle capacity available. We shall further study this mode change delay in Section 3.4. Task
modifications, such as the modification of x3 into x'j can be carried out relatively easily.

3.3. Properties of The Basic Mode Change Protocol

Under the priority ceiling protocol, there is no mutual deadlock, and a job can be blocked by
lower priority jobs for at most the duration of a single critical section [12]. We shall now
prove that both these properties are preserved under the mode change protocol.

Lemma 7: Under the mode change protocol, when a job J enters its critical sec-
tion and preempts job Jt while Jt is in its critical section, the priority of J is higher
than the priority that can be inherited by Jt.
Proof: Under the definition of the mode change protocol, the priority ceiling of a
semaphore S will not be lower than the priority of any job that may lock S. Since a
job J is allowed to enter its critical section only if Js priority is higher than the
priority ceilings of all the semaphores locked by jobs other than J and since the
highest priority that a job can inherit is bounded by the priority ceiling of the
semaphores locked by this job, it follows that when job J enters its critical section,
its priority will be higher than the (inherited) priority of the jobs preempted by J.
Theorem 8: There is no mutual deadlock under the mode change protocol.
Proof: Suppose that there is a mutual deadlock. Let the highest priority of all the
jobs involved in the deadlock be P. Due to the transitivity of priority inheritance, all
the jobs involved in the deadlock will eventually inherit the same highest priority P.
This contradicts Lemma 7.
Lemma 9: A job J can be blocked by a lower priority job JL at most for the dura-
tion of executing one critical section.
Proof: First, if job JL

is not already in its critical section when job J arrives, then
job JL will be preempted by J and cannot block J. Suppose that JL is in its critical
section when J arrives and that JL blocks J. JL inherits the priority of J and con-
tinues its execution. Once JL exits its critical section, by the definition of the prior-
ity ceiling protocol, JL will be assigned its original priority and be immediately
preempted by J. Hence, JL cannot block J again.
Theorem 10: Under the mode change protocol, a job J can be blocked by lower
priority jobs for at most the duration of a single (outermost) critical section.
Proof: Suppose that job J is blocked by lower priority jobs more than once. By
Lemma 9, job J must be blocked by n different lower priority jobs, Jv Jn, where
the priority of Jx is assumed to be higher than or equal to that of Ji+1. Since a
lower priority job cannot block a higher priority job unless it is already in its critical

14 CMU/SEI-88-TR-34

section, jobs J, Jn must be in their critical sections when J arrives. By as-
sumption, J is blocked by Jn and Jn inherits the priority of J. It follows that job Js
priority cannot be higher than the highest priority P that can be inherited by Jn. On
the other hand, by lemma 7, job Jn_i's priority is higher than P. It follows that job
Jn.-\'s priority is higher than that of job J. This contradicts the assumption that Js
priority is higher than that of jobs J^ Jn.

Remark: It is important to point out that the property of a job being blocked for at most one
critical section depends upon our model of a job, an instance of a periodic task. We assume
that when a job executes alone on the processor, input data from I/O devices will be ready
when the job is initiated and it will continue to execute until it completes without suspension
for I/O activities. In some applications, an instance of a periodic task may need to suspend
itself for I/O. In this case, we have the following corollary:

Corollary 11: If a generalized job J suspends itself n times during its execution, it
can be blocked for the duration of at most n+1 critical sections.

3.4. Mode Change Delays
In this section, we analyze the delays that can occur before a mode change is completed. In
the following analysis, we assume that the given task set is schedulable using the rate-
monotonic algorithm and the priority ceiling protocol.

Notation: Let t0 denote the time at which the mode change is initiated. Let Ds be the delay
in elevating semaphore priority ceilings, that is, the delay between t0 and the time at which
all the semaphores whose ceilings need to be raised are raised. Let Dc be the delay in
reclaiming processor capacity, that is, the delay between t0 and the time at which all the
tasks that need to be deleted are deleted and their allocated processor capacity becomes
available. Finally, let D be the mode change delay, that is, the duration between t0 and the
time at which the mode change is completed.

The following lemmas and theorems are based on the assumption that the task sets before
and after a mode change are schedulable.

Lemma 12: Let St be a semaphore whose priority ceiling needs to be raised
across a mode change. Let x be a task whose priority is equal to the priority ceil-
ing of semaphore Sr The delay in elevating the priority ceiling of S, is bounded by
the period of task T, T.
Proof: The priority ceiling of a semaphore S can be raised only if it is not locked.
Semaphore S may have been locked when the mode change is initiated. How-
ever, under the assumption that task x can meet its deadline, the locking of S
cannot be longer than Tand the lemma follows.

Lemma 13: Let S* be the semaphore that has the lowest priority ceiling of all the
semaphores whose ceilings need to be raised. The ceiling elevation delay for
mode change, Ds, is bounded by 7*, the period of a task whose priority is equal to
the priority ceiling of S*.

CMU/SEI-88-TR-34 15

Proof: It directly follows from Lemma 12 and from the fact that a task associated
with a lower priority ceiling has a longer period under the rate-monotonic schedul-
ing algorithm.
Lemma 14: Let task x be the lowest priority task needed to be deleted. The delay
due to the reclamation of processor capacity, D^- 's bounded by the period of task
x.
Proof: Let the periods of the tasks that need to be deleted be {7^...,Tm}, where
Tf£T: ifk>j. Under the assumption that the set of given tasks is schedulable, each
of the tasks needed to be deleted can be deleted by the end of its current period
and its allocated processor capacity can be reclaimed. Hence, we have
Dc = max{Ty,...,Tm}. Under the rate-monotonic scheduling algorithm, a task with
a longer period has lower priority. It follows that the delay due to reclaiming all the
processor capacity is bounded by the period of task xm, Tm.
Theorem 15: The mode change delay D is bounded by max{Ds, Dc).
Proof: Suppose that the mode change request occurs at time ^. By (^ + Ds), all
the semaphore priority ceilings that need to be raised have been raised. By (f0 +
Dc), all the tasks in the current mode that need to be deleted are deleted. That is,
the processor capacity that needs for all the new tasks is available by (t0 + Dc). It
follows that all the new tasks can be added by the time (t0 + max{Ds, Dc)). Finally,
by the definition of the basic mode change protocol, all the semaphore priority
ceilings that need to be lowered have been lowered by (<Q + Dc). Hence, the mode
change delay is bounded by max(Ds, Dc).

Remark: In the worst case, the longest period in a task set can be equal to the least com-
mon multiple (LCM) of all the periods. By Theorem 15, the mode change delay for such a
task set is bounded by this longest period. Thus, the worst-case mode change delay is
equal to that of the cyclical executive. In the cyclical executive approach, the major cycle is
the LCM of all the periods and a mode change will not be initiated until the current major
cycle completes. However, the delay to complete a mode change using the mode change
protocol would typically be much shorter than the delay using the cyclical executive ap-
proach. In addition, the mode change protocol also provides the flexibility of adding the
most urgent task in the new mode first.

16 CMU/SEI-88-TR-34

4. Extensions of the Basic Mode Change Protocol
In this section, we will examine some design alternatives to the mode change protocol as
well as the integration of our basic mode change protocol with other scheduling algorithms.

4.1. Variations of the Basic Protocol

The objective in the design of the mode change protocol is to minimize the mode change
delay subject to keeping the shared data consistent and to meeting all the deadlines of tasks
that must be continuously executing. We also made an implicit assumption that the mode
change protocol should not lower the system schedulability in any given mode.

However, assumptions and objectives are, of course, application dependent. Generally,
there is relatively little that one can do about mode change delay caused by reclaiming
processor capacity, because a task could have started its execution when the mode change
is initiated. Once a task begins execution, it may well be desirable to let it complete be-
cause the abortion of a task may lead to complications that makes later correction and/or
recovery time-consuming. There is an exception to this general observation, however. In
certain applications, one can define a set of tasks that constitutes an atomic configuration
unit. Such an unit encapsulates all the shared variables for the task set in question. In this
case, the application semantic may allow the entire unit to be deleted immediately and in-
divisibly at the initiation of mode change.

Generally, when Ds > Dc, there is an incentive to minimize Ds. We can minimize the mode
change delay associated with elevating the priority ceilings if we are willing to pay a
schedulability cost. For example, we define the global ceiling mode change protocol as fol-
lows. In this protocol, the priority ceiling of a semaphore S is defined as the priority of the
highest priority task that may access S across all modes. The disadvantage of this mode
change protocol is rather obvious. In any mode, the "actual" ceiling of a semaphore can be
much lower than the "global" priority ceiling. As a consequence, the blocking duration is
longer and it translates into schedulability cost, due to which, some, otherwise schedulable,
task sets may become unschedulable. The priority ceiling elevation cost can be fine-tuned,
however. Since Ds is determined solely by the period of the task whose priority equals the
lowest priority ceiling that needs to be raised, Ds can be shortened by deliberately assigning
a higher priority ceiling to the semaphore with this lowest priority ceiling that needs to be
raised in mode changes.

Finally, we may want to emphasize the simplicity of managing a mode change process. In
this case, we do not raise the semaphore priority ceiling of any semaphore until all the tasks
that need to be deleted are deleted and the priority ceilings of associated semaphores are
lowered. New tasks will be added at time ^,dd = tQ+iDg+D^. We need apply neither
Theorem 3 nor Theorem 4 during runtime as long as tasks are known to be schedulable in
each mode. This is because at time ^dd all the deleted tasks' processor capacity have
already been reclaimed and the priority ceilings are at the correct level. That is, the condition
under which we may apply Theorem 3 or 4 is the same as in the new mode.

CMU/SEI-88-TR-34 17

4.2. Stability Under Transient Overload

In the previous section, the computation time of a task is assumed to be constant. However,
in many applications, task execution times are often stochastic, and the worst-case execu-
tion time can be significantly larger than the average execution time. In order to have a
reasonably high average processor utilization, we must deal with the problem of transient
overload. We consider a scheduling algorithm to be stable if there exists a set of critical
tasks such that all tasks in the set will meet their deadlines even if the processor is over-
loaded. This means that under worst-case conditions, tasks outside the critical set may
miss their deadlines. The rate monotonic algorithm is stable in the sense that the set of
tasks that never miss their deadlines does not change as the processor gets more over-
loaded or as task phasings change. Of course, which tasks are in the critical task set de-
pends on the worst-case utilizations of the particular tasks being considered. The important
point is that the rate monotonic theory guarantees that if such a set exists, it always consists
of tasks with the highest priorities. This means that if a transient overload should develop,
tasks with longer periods will miss their deadlines.

Of course, a task with a longer period could be more critical to an application than a task
with a shorter period. One might attempt to ensure that the critical task always meets its
deadline by assigning priorities according to a task's importance. However, this approach
can lead to poor schedulability, i.e., with this approach, deadlines of critical tasks might be
met only when the total utilization is low.

The period transformation technique can be used to ensure high utilization while meeting
the deadline of an important, long-period task. Period transformation means turning a long-
period important task into a high priority task by splitting its work over several short periods.
For example, suppose task x with a long period T is not in the critical task set and must
never miss its deadline. We can make x simulate a short period task by giving it a period of
T/2 and suspending it after it executes half its worst-case execution time, C/2. The task is
then resumed and finishes its work in the next execution period. It still completes its total
computation before the end of period 7. From the viewpoint of the rate monotonic theory,
the transformed task has the same utilization but a shorter period, T/2, and its priority is
raised accordingly. It is important to note that the most important task need not have the
shortest period. We only need to make sure that it is among the first n high priority tasks
whose worst-case utilization is within the scheduling bound. A systematic procedure for
period transformation with minimal task partitioning can be found in [11].

Period transformation allows important tasks to have higher priority while keeping priority
assignments consistent with rate-monotonic rules. This kind of transformation should be
familiar to users of cyclic executives. The difference here is that we don't need to adjust the
code segment sizes so different code segments fit into shared time slots. Instead, x simply
requests suspension after performing C/2 amount of work. Alternatively, the runtime
scheduler can be instructed to suspend the task after a certain amount of computation has

18 CMU/SEI-88-TR-34

been done, without affecting the application code.5

The period transformation approach has another benefit—it can raise the rate-monotonic
utilization bound. Suppose the rate-monotonic utilization bound is Umax < 100%, i.e., total
task utilization cannot be increased above Umax without missing a deadline. When a period
transformation is applied to the task set, Umax will rise. For example:

Example 1: Let

• Taskx,: C1 -4; 7., -10; l/j - .400
• Task T2: C2 = 6 ; T2 = 14 ; Uy = .428

The total utilization is .828, which just equals the bound of Theorem 1, so this set of two
tasks is schedulable. If we apply Theorem 2, we find:

C1+C2<71 4 + 6 = 10 /= 1,fc=1

or 2C1 + C2!ST2 8 + 6 = 14 /= 1, Ac=2

So Theorem 2 says the task set is just schedulable. Now suppose we perform a period
transformation on task x1, so C\ = 2 and T\ = 5. The total utilization is the same and the set
is still schedulable, but when we apply Theorem 2 we find:

C^ + C2<T^ 2 + 6>5 l=\,k=\

or 2C1 + C2<2T1 4 + 6 = 10 1=2, /c=1

or 3C1 + C2<T2 6 + 6<14 /=1,/c=2

The second equation shows that the compute times for tasks T, and/or x2 can be increased
without violating the constraint. For example, the compute time of Task x1 can be increased
by 2/3 units to 2.667, giving an overall schedulable utilization of 2.667/5 + 6/14 = .961, or the
compute time of Task x2 can be increased to 8, giving an overall schedulable utilization of
2/5 + 8/14 = .971. So the effect of the period transformation has been to raise the utilization
bound from .828 to at least .961 and at most .971. Indeed, if periods are uniformly har-
monic, i.e., if each period is an integral multiple of each shorter period, the utilization bound
of the rate-monotonic algorithm is 100%.6 So the utilization bound produced by the rate
monotonic approach is only an upper bound on what can be achieved if the periods are not
transformed. Of course, as the periods get shorter, the scheduling overhead utilization in-
creases, so the amount of useful work that can be done decreases. For example, before a
period transformation, the utilization for a task, including scheduling overhead, is (C + 2S)/T.

5The scheduler must ensure that x is not suspended while in a critical region since such a suspension can
cause other tasks to miss their deadlines. If the suspension time arrives but the task is in a critical region, then
the suspension should be delayed until the task exits the critical region. To account for this effect on the
schedu I ability of the task set, the worst-case execution time must be increased by c, the extra time spent in the
critical region, i.e., t's utilization becomes (0.5C+c)/0.5T.

6For example, by transforming the periods in Example 3 so i\ and x'2 both have periods of 50, the utilization
bound is 100%, i.e., 4.7% more work can be done without missing a deadline.

CMU/SEI-88-TR-34 19

After splitting the period into two parts, the utilization is (.5C+ 2S)/.5T, so scheduling over-
head is a larger part of the total utilization. However, the utilization bound is also increased,
in general. If the increase in utilization caused by the scheduling overhead is less than the
increase in the utilization bound, then the period transformation is a win—more useful work
can be done while meeting all deadlines.

Period transformation does not affect the mode change protocol except that to delete a
transformed task that has already started execution, we must wait for its completion which
may take several "transformed periods". In addition, we cannot reclaim the processor
capacity of a transformed task until the end of the last transformed period, which is also the
end of the task's original period.

4.3. Scheduling Both Periodic and Aperiodic Tasks

It is important to meet the regular deadlines of periodic tasks and the response time require-
ments of aperiodic events. ("Aperiodic tasks" are used to service such events.) Let us
begin with a simple example.

Example 2: Suppose that we have two tasks. Let x1 be a periodic task with period 100 and
execution time 99. Let x2 be an aperiodic task that appears once within a period of 100 but
the arrival time is random. The execution time of task x2 is 1 unit. If we let the aperiodic task
wait for the periodic task, then the average response time is about 50 units. The same can
be said for a polling server, which provides 1 unit of service time in a period of 100. On the
other hand, we can deposit 1 unit of service time in a "ticket box" every 100 units of time;
when a new "ticket" is deposited, the unused old tickets, if any, are discarded. With this
approach, no matter when the aperiodic event arrives during a period of 100, it will find there
is a ticket for 1 unit of execution time at the ticket-box. That is, T2 can use the ticket to
preempt x1 and execute immediately when the event occurs. In this case, T2'S response time
is precisely 1 unit and the deadlines of T, are still guaranteed. This is the idea behind the
deferrable server algorithm [3], which reduces aperiodic response time by a factor of about
50 in this example.

In reality, there can be many periodic tasks whose periods can be arbitrary. Furthermore,
aperiodic arrivals can be very bursty, as for a Poisson process. However, the idea remains
unchanged. We should allow the aperiodic tasks to preempt the periodic tasks subject to
not causing their deadlines to be missed. It was shown in [3] that the deadlines of periodic
tasks can be guaranteed provided that during a period of Ta units of time, there are no more
than Ca units of time in which aperiodic tasks preempt periodic tasks. In addition, the total
periodic and aperiodic utilization must be kept below Ua + ln[(2 + U^/(2Ua + 1)], where Ua =
C/Tg. And the server's period must observe the inequality "Ta £ (T- CJ', where Tis the
period of a periodic task whose priority is next to the server.

Compared with background service, the deferrable server algorithm typically improves
aperiodic response time by a factor between 2 and 10 [3]. Under the deferrable server algo-

20 CMUSEI-88-TR-34

rithm, both periodic and aperiodic task modules can be modified at will as long as the utili-
zation bound is observed. Figure 4-1 illustrates the relative performance between back-
ground execution, the deferrable server algorithm, and polling. The workload is 60% peri-
odic and 20% aperiodic. We assume a Poisson arrival process and exponentially distri-
buted execution time for the aperiodic tasks. Since the mean aperiodic workload is fixed at
20%, short mean interarrival times imply short mean execution times. As we can see from
Figure 4-1, the deferrable server is most effective for frequent arrivals with small service
times.

MEAN INTERARRIVAL TIME

Figure 4-1: Scheduling Both Aperiodic and Periodic Tasks

A variation to the deferrable server algorithm is known as the sporadic server algorithm [13].
As with the deferrable server algorithm, we allocate Ca units of computation time within a
period of Ta units of time. However, the Ca of the server's budget is not refreshed until the
budget is consumed.7 From a capacity planning point of view, a sporadic server is equiv-
alent to a periodic task that performs polling. That is, we can place sporadic servers at
various priority levels and use only Theorems 1 and 2 to perform a schedulability analysis.
Sporadic and deferrable servers have similar performance gains over polling, because any
time an aperiodic task arrives, it can use the allocated budget immediately. When polling is
used, however, an aperiodic arrival generally needs to wait for the next instant of polling.
The sporadic server has the least runtime overhead. Both the polling and the deferrable
servers have to be serviced periodically, even if there are no aperiodic arrivals.8 There is no

7Early refreshing is also possible under certain conditions, see [13].

8The ticket box must be refreshed at the end of each deferrable server's period.

CMU/SEI-88-TR-34 21

overhead for the sporadic server until its execution budget has been consumed. In partic-
ular, there is no overhead if there are no aperiodic arrivals. Therefore, the sporadic server is
especially suitable for handling emergency aperiodic events that occur rarely but must be
responded to quickly.

From a scheduling point of view, polling, sporadic or deferrable server algorithms transform
aperiodic activities into equivalent periodic activities that can be accommodated by the rate-
monotonic scheduling algorithm. We can increase or decrease the capacity of a server task
as if it were a normal periodic task.

22 CMU/SEI-88-TR-34

5. Conclusions
In many real-time applications, neither the task set nor the task priorities can remain static
throughout the mission. A change in operational mode often leads to the modification of
task parameters as well as the addition of new tasks and deletion of old tasks. In this paper,
we have developed a simple mode change protocol in a prioritized preemptive scheduling
environment. We have shown that under this mode change protocol, there cannot be mutual
deadlocks, and a high priority job can be blocked by lower priority jobs for at most the dura-
tion of one critical section, despite the addition and deletion of tasks during the mode
change. We have shown that the worst-case mode change delay under this protocol is
bounded and is generally much shorter than that possible in a commonly used cyclical ex-
ecutive.

CMU/SEI-88-TR-34 23

24 CMU/SEI-88-TR-34

Acknowledgement
The authors wish to thank John Goodenough for his helpful comments.

CMU/SEI-88-TR-34 25

References

[I] Goodenough, J. B., and Sha, L
The Priority Ceiling Protocol: A Method for Minimizing the Blocking of High Priority

Ada Tasks.
To appear in the Proceedings of the 2nd ACM International Workshop on Real-Time

Ada Issues, 1988.

[2] Lehoczky, J. P., and Sha, L.
Performance of Real-Time Bus Scheduling Algorithms.
ACM Performance Evaluation Review, Special Issue vol. 14, no. 1, May, 1986.

[3] Lehoczky, J. P., Sha L, and Strosnider, J.
Enhancing Aperiodic Responsiveness in a Hard Real-Time Environment.
IEEE Real-Time System Symposium, 1987.

[4] Lehoczky, J. P., Sha, L., and Ding, Y.
The Rate Monotonic Scheduling Algorithm—Characterization and Average Case

Behavior.
Technical Report, Department of Statistics, Carnegie Mellon University, 1987.

[5] Leinbaugh, D. W.
Guaranteed Response Time in a Hard Real-Time Environment.
IEEE Transactions on Software Engineering, January 1980.

[6] Leung, J. Y., and Merrill M. L.
A Note on Preemptive Scheduling of Periodic, Real-Time Tasks.
Information Processing Letters, vol. 11, no. 3:pp. 115-118, November 1980.

[7] Liu, C. L, and Layland J. W.
Scheduling Algorithms for Multiprogramming in a Hard Real Time Environment.
J/AC/W20(1):46-61,1973.

[8] Rajkumar, R., Sha, L., and Lehoczky, L
On Countering The Effect of Cycle Stealing in A Hard Real-Time Environment.
IEEE Real-Time System Symposium, 1987.

[9] Rajkumar, R., Sha, L, and Lehockzy J.P.
Real-Time Synchronization Protocols for Multiprocessors.
To appear in Proceedings of the IEEE Real-Time Systems Symposium , 1988.

[10] Ramaritham K., and Stankovic J. A.
Dynamic Task Scheduling in Hard Real-Time Distributed Systems.
IEEE Software, July 1984.

[II] Sha, L., Lehoczky, J. P., and Rajkumar, R.
Solutions for Some Practical Problems in Prioritized Preemptive Scheduling.
IEEE Real-Time Systems Symposium, 1986.

[12] Sha, L., Rajkumar, R., and Lehoczky, J. P.
Priority Inheritance Protocols: An Approach to Real-Time Synchronization.
To appear in IEEE Transactions on Computers, 1989.

26 CMU/SEI-88-TR-34

[13] Sprunt, B., Sha, L, and Lehoczky, J. P.
Scheduling Sporadic and Aperiodic Events in a Hard Real-Time System.
CMU/SEI Technical Report (in preparation), 1988.

[14] Zhao, W., Ramamritham, K., and Stankovic, J.
Preemptive Scheduling Under Time and Resource Constraints.
IEEE Transactions on Computers, August 1987.

CMU/SEI-88-TR-34 27

28 CMU/SEI-88-TR-34

UNLIMITFn, iron ASSTFTETI
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
ta REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

NONE
2a. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-88-TR-34

5. MONITORING ORGANIZATION REPORT NUMBEA(S)

ESD-TR-88-035
6a. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INSTITUTEl SEI

5b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE
6c ADORESS (City. State and ZIP Code)
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. ADDRESS (City. Stale and ZIP Code)
ESD/XRS1
HANSCOM AIR FORCE BASE, MA 01731

•a. NAME OF FUNDING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(I f applicable)

SEI JPO

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962885C0003

8c. ADORESS (City. Slate and ZIP Code)

CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE JPO
PITTSBURGH. PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

11. TITLE (Include Security Classification)

MODE CHANGE PROTOCOLS FOR PRIORITY-DRIVEN PI EMPTIVE SCHEIULING

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)

Lui Sha, Ragunathan Rajkumar, John Lehoczky, Krithi Ramamritham
13a. TYPE OF REPORT

FINAL V. 3b. TIME COVERED

FROM TO

14. OATE OF REPORT (Yr.. Mo.. Day)

November 1988
15. PAGE COUNT

35 pp.
16. SUPPLEMENTARY NOTATION

17 COSATI COOES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

mode change protocols scheduling environment
priority-driven scheduling
real-time applications

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

In many real-time applications, the set of tasks in the system as well as the characteris-
tics of the tasks change during system execution. Specifically, the system moves from
one mode of execution to another as its mission progresses. A mode change is character-
ized by the deletion of some tasks, addition of new tasks, or changes in the parameters
of certain tasks, e.g., increasing the sampling rate to obtain a more accurate result.
This paper discusses a protocol for systematically accomplishing mode change in the
context of a priority-driven preemptive scheduling environment.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED XX SAME AS RPT. D OTIC USERS XX

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED

22a. NAME OF RESPONSIBLE INDIVIDUAL

KARL SHINGLER
22b. TELEPHONE NUMBER

(Include Area Code)
(412) 268-7630

22c OFFICE SYMBOL

SEI JPO

r>r> rr\t *• i*-»*> <-»*> * no *-T -r»«T-TM-r* T'xi^y HC"CTTTirr\

