
m-f27 -51 -AS-IWCPT SYSTEM ZN C FOR CDIMPujtK-"IUEV DIGIITME? __

CIC EIN (U I OC TO MRIGHT-PATTERSON AF8 OH SCHOOL OF ENGINEERING
UNLASIIE JS ANOSJUN 89 RFIT/GCS/ENG/89J-i F/G 201/3 N

m llllh.ffffff

11111 JL2512 f~.

MiC-RornPy RESOL IJION TE Sl CHART
%.- N' 1 PEL AI I 1 N AP[- A .

Lfl

0

DTIC
S ELECTEMAYO 5 1989 0

AN EXPERT SYSTEM IN C FOR COMPUTER-AIDED
DIGITAL CIRCUIT DESIGN

THESIS

Jorge da Silva Santos
Captain, BRAZILIAN AIR FORCE

AFIT/GCS/ENG/89J- 1

Approved for public release; distribuition unlimited

l II II89 I

UNCLASSIFIED
SCURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/89J-1

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

school of Engineering A F

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)

An Expert System in C for Computer-Aided Digital Circuit Design
NcL PSTSFIED ,,

12. PERSONAL AUTHOR(S)

Jorge da Silva Santos, Captain, Brazilian Air Force
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

MS Thesis FROM TO 7 1989 June 91
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Expert System, C, Digital Circuit
12 05 Computer Aided Design

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Advisor: David W. Fautheree, Captain, USAF
Instructor of Electrical Engineering

\N and Computer Science

Abstract:
1rhis thesis effort documents the design, development, implementation,
and test of an expert system which decomposes digital circuits into
subproblems in order to detect wiring errors, which consist of improperly
connected gates, missing connections, and violation of fanout or race
conditions. Information needed to connect chips together is viewed as
knowledge base information for the expert system. Information such type as
number of pins, value of each pin (input, output, power, ground, clock),

cont on reverse

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

9] UNCLASSIFIED/UNLIMITED 0l SAME AS RPT. 0 DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

David W. Fautheree, Captain, USAF 513-255-3576 AFIT/ENG
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

Box 19 continued:

fanout for a particular type of chip are retrieved from a central database
where they are represen±d) The approach to this effort includes a
examinati qn of existing expert system in AFIT and available commercial
packages. Implementation was done in the C programming language, which
although is not design specially for dealing with problems in the Artificial
Intelligence (AI) field could be used with success. An integration with a
graphics package and a central database was achieved.) The integrated system
is currently loaded in an engineering workstation-u-ld in the Department of
Computer science and EI6 tial--Eg-heering at the Air Force Institute of
Technology.4Tests conducted with the system running in a personal computer
Zenith 248 and compatible microcomputers under the Disk Operational System
(DOS) version 3.2 proved the portability and efficiency of the expert system.
A user's manual is included for the operation of the InterConnect Expert

system (ICE). Recommendations for future research are considered.

UNCLASSIFIED

AFIT/GCS/ENG/8 9J -1

AN EXPERT SYSTEM IN C FOR COMPUTER-AIDED

DIGITAL CIRCUIT DESIGN

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Systems

LOTIC {;L3 CI

Jorge da Silva Santos, B.S. ,i.,,b: .

Captain, BRAZILIAN AIR FORCE !: ;, tiily C'odcs

:.'pi IA o

June 1989

Approved for public release; distribution unlimited

/
.0o

" /i

Preface

The purpose of this thesis was to design and implement a portable

microcomputer rule-based expert system capable of detecting wiring

errors in digital circuits constructed of TTL ICs. Computer listings of

the system are not included in this document; but they can be obtained

through the Air Force Institute of Technology, School of Engineering,

Wright-Patterson AFB OH 45433.

This extensive, hard, but rewarding work could not be finished

without a great deal of help from others.

I wish to express my sincere appreciation to my thesis advisor,

Captain David W. Fautheree, who reviewed this work so many times for his

patience and guidance. Thank you also to the members of my thesis

committee, Captain Bruce L. George, who was always available and ready

to show me the best way to improve my work, and Captain Wade H. Shaw,

who gave me important and opportune suggestions to refine this document.

A word of thanks is also owed to Captain Sue A. Ehrhart, for having

helped me, in many ways, during the development phase.

My personal and special thanks to the Brazilian Air Force for putting

me in touch with such advanced technology, that certainly will be used

when I return to my country.

I want to dedicate this work to my family, my loving and often times

neglected wife Gleide, whithout whose support and understanding this

thesis would never have been completed; my daugthers Giselle, Luciana,

Renata, and Miriam for their sacrifice, patience, and love that made it

possible for me undertake and complete this thesis.

Jorge da Silva Santos

ii

Table of contents

Page

Preface..................................ii

List of Figures.............................vii.

Abstract..................................ix

I - Introduction.............................1-1

Background.............................1-1

Problem statement.........................1-6

Assumptions............................1-6

Scope................................1-7

Approach..............................1-7

Sequence of presentation 1-8

II -Literature Review 2-1

Expert Systems...........................2-1

Building Expert Systems.....................2-2

Applicable languages to expert systems 2-3

Analog and Digital Circuits....................2-4

Current Technology 2-5

Summary..............................2-5

iii

Page

III -Requirements Analysis and Design 3-1

Introduction............................3-1

Information Description.....................3-1

Information Flow 3-2

Information Content....................3-4

Information Structure....................3-4

Functional Description 3-6

Input phase.........................3-8

Processing phase 3-8

Output Phase 3-11

Performance requirements...................3-11

Validation criteria.......................3-12

Performance bounds.....................3-12

Classes of tests......................3-12

IV -Detailed Design...........................4-1

Top level design 4-1

Module DEL FILES..........................4-1

Module OPEN TEMP-TXT 4-2

Module READ TEMP-TXT 4-3

Module SCAN FPKG..........................4-3

Module FILL ICETABLE 4-4

Module QUERY-PIN 4-4

Module MAKE PTICLIST 4-5

iv

Page

Module SCAN TPKG..........................4-5

Module FPKG or TPKG = TTL 4-6

Module ICERULE...........................4-7

Module PRINT-YMISTAKE....................4-9

Module CIRCLEV 4-11

Module QUERY-FANOUT..................4-12

Module CHIPLEV.....................4-13

Module GATELEV.....................4-15

Module QUERY-GATE 4-16

Module PRINT-RMISTAKE 4-17

Module WRAPUP..........................4-17

V -Testing and Results.........................5-1

Functionality Tests.......................5-1

Integration........................5-1

Efficiency Tests..........................5-1

Portability.........................5-1

Independence of Commercial Package 5-2

Response Time.......................5-2

Space requirements 5-2

Results..............................5-3

Response Times........................5-3

v

Page

Space Requirements......................5-14

Summary.............................5-15

VI - Conclusions and Recommendations 6-i

Conclusions............................6-i

Recommendations..........................6-2

Appendix A: ICE Rules Set.......................A-1

Appendix B: User's Guide For ICE B-1

Bibliography..............................BIB-i

Vita..................................VITA-i

vi

List of Figures

Figure Page

I - 1 AFIT environment . .. 1 - 5

3 - I Old ICE Interface 3 - 2

3 - 2 New ICE Interface 3 - 3

3 - 3 Input File Structure 3 - 4

3 - 4 Digital Circuit Example 3 - 5

3 - 5 Output File Structure 3 - 6

3 - 6 ICE System Conception 3 - 7

3 - 7 Production System Structure 3 10

4 - 1 Top Level Flowchart 4 - 2

4 - 2 SCAN FPKG Flowchart 4 - 3

4 - 3 SCAN TPKG Flowchart 4 - 6

4 - 4 Matrix of External Sources to TTL Connections 4 - 7

4 - 5 Matrix of TTL to TTL Connections 4 - 8

4 - 6 ICERULE Flowchart 4 - 9

4 - 7 CIRCLEV Flowchart 4 11

4 - 8 CHIPLEV Flowchart 4 13

4 - 9 GATELEV Flowchart 4 15

5 - 1 Performance New ICE vs Old ICE 5 - 4

5 - 2 Performance Characteristic of the New Ice (Time vs TTLs). 5 - 6

5 - 3 Correct Circuit with 2 TTLs / 2 Gates per TTL 5 - 7

5 - 4 Incorrect Circuit with 2 TTLs / 2 Gates per TTL 5 - 7

vii

Figure Page

5 - 5 Correct Circuit with 2 TTLs / 4 Gates per TTL 5 - 8

5 - 6 Incorrect Circuit with 2 TTLs / 4 Gates per TTL 5 - 8

5 - 7 Correct Circuit with 4 TTLs / 2 Gates per TTL 5 - 9

5 - 8 Incorrect Circuit with 4 TTLs / 2 Gates per TTL 5 - 9

5 - 9 Correct Circuit with 4 TTLs / 4 Gates per TTL 5 - 10

5 - 10 Incorrect Circuit with 4 TTLs / 4 Gates per TTL 5 - 10

5 - 11 Correct Circuit with 8 TTLs / 2 Gates per TTL 5 - 11

5 - 12 Incorrect Circuit with 8 TTLs / 2 Gates per TTL 5 - 11

5 - 13 Correct Circuit with 8 TTLs / 4 Gates per TTL 5 - 12

5 - 14 Incorrect Circuit with 8 TTLs / 4 Gates per TTL 5 - 12

5 - 15 Correct Circuit with 16 TTLs / 2 Gates per TTL 5 - 13

5 - 16 Incorrect Circuit with 16 TTLs / 2 Gates per TTL 5 - 13

5 - 17 Comparison of Disk Space Requirements(Old ICE vs New ICE) 5 - 14

viii

AFIT/GCS/ENG/89J-X

Abstract

This thesis effort documents the design, development, implementation,

and test of an expert system which decomposes digital circuits into

subproblems in order to detect wiring errors, which consist of

improperly connected gates, missing connections, and violation of fanout

or race conditions. Information needed to connect chips together is

viewed as knowledge base information for the expert system. Information

such type as number of pins, value of each pin (input, output, power,

ground, clock), fanout for a particular type of chip are retrieved from

a central database where they are represented. The approach to this

effort includes a examination of existing expert system in AFIT and

available commercial packages. Implementation was done in the C

programming language, which although is not design specially for dealing

with problems in the Artificial Intelligence (AI) field could be used

with success. An integration with a graphics package and a central

database was achieved. The integrated system is currently loaded in an

engineering workstation used in the Department of Computer Science and

Electrical Engineering at the Air Force Institute of Technology. Tests

conducted with the system running in a personal computer Zenith 248 and

compatible microcomputers under the Disk Operational System (DOS)

version 3 2 proved the portability and efficiency of the expert system.

A user's manual is included for the operation of the InterConnect Expert

system (ICE). Recommendations for future research are considered.

ix

AN EXPERT SYSTEM IN C FOR COMPUTER-AIDED DIGITAL CIRCUIT DESIGN

I. Introduction

This chapter discusses the background of the problem addressed by

this thesis effort. The problem statement is presented, followed by

assumptions, scope, and approach taken for solving the problem. At the

end of the chapter a synopsis of the remaining chapters is offered.

Background

Logic circuits for digital systems can be designed utilizing

combinational or sequential logic. A combinational circuit consists of

logic gates whose outputs are derived directly from the present state of

the inputs without consideration of previous inputs. Unlike

combinational circuits, sequential circuits, which employ memory

elements in addition to the logic gates, present outputs are a function

of the inputs and the state of the memory elements. The state of memory

elements in turn is a function of previous inputs. Consequently,

sequential circuits depend not only on present inputs but also on past

inputs, and the circuit behavior must be specified by a time sequence of

inputs and internal states.

Before it is ready for implementation, a circuit must be designed.

The design phase includes dtcomposition into the input and output

signals, boolean functions, and logic diagrams. There are several

i -1

methods for implementing digital circuits, one of these is the classical

method, which tries to reach the following design objectives:

" minimum number of gates,

" minimum number of inputs to a gate,

" minimum propagation time of signal through the circuit, and

• minimu;n number of interconnections (Mano,1979:116-118).

Quite often is difficult to satisfy these constraints all the time.

According to the classical method, given two circuits performing the

same function, one with fewer gates is preferable because it costs less,

but this is not always true for integrated circuits.

Mano emphasizes that it may be more economical to use as many of the

gates from an already used package, even if the number of gates is

increased (Mano,1979). Moreover, some of the gate interconnections are

internal to the chip and it is more economical to use as many of these

interconnections as possible, in order to reduce the number of wires

between pins. In integrated circuits, the number of gates does not

determine the cost, so much as the number and type of integrated

circuits used and the number of external connections utilized in the

implementation. Considering all those mentioned facts, it is easy to

conclude that designing digital circuits is not a trivial task; many

factors come into play. Making the digital circuit design more complex

is the fact that manually building the circuit on a circuit board is a

tedious, time consuming task, and prone to errors.

Joseph Greenfield estimated that a circuit with five integrated

circuits has "no better than 50% chance of working, due to wiring

errors, when power is first applied"(Greenfield,1977). He states that

1 - 2

the probability of the circuit's working on the first try decreases as

the complexity of the circuit increases.

Greenfield also states that the art of debugging, the process of

locating and correcting errors, separates the expert engineer from the

novice engineer, with the ability of the expert engineer being much

greater than the novice engineer. To debug a circuit, it is necessary

to know exactly what the circuit is supposed to do and the value for

each pin that is wired. Comparing the results obtained from the circuit

and the expected results should reveal the source of the errors as

either wiring or logic. Wiring errors consist of missing connections,

improperly connected gates, and violations of fanout, which is the

number of standard loads that the output of gate can drive without

impairing its normal operation. Logical errors are more complex to

detect and require more detailed information about the chip performance.

The way to find a solution to the problem is to functionally decompose

it (Descartes' principle of analysis); then by assembling the partial

solutions to a problem, the problem is solved incrementally (Descartes'

principle of synthesis).

Expert systems are especially successful with problems that can be

decomposed into subproblems. An expert system, in general, is composed

of three main parts: knowledge base (expertise), inference engine

(deductive part), and user interface. The knowledge base provides the

material for the inference engine. As questions are posed by the user,

the inference engine infers partial solutions from the knowledge base.

The sum of the partial solutions provides the completed answer.

1 -3

A rule-based expert system is one in which the knowledge base is

represented by rules, with each rule having a premise (also called LIiS-

left hand side) and a conclusion (also called RHS-right hand side).

Another critical part of an expert system is the user interface. The

interface should provide a friendly development environment to the user,

offer easy access to stored data, and give rapid of problem resolution.

Many of the current uses of expert systems are in computer aided

design (CAD) work at the component level. Many assume that the circuit

is wired properly and limit the aid to component layout or selection.

Using an expert system to debug a digital circuit at the gate level

seems to be a quite novel idea.

The Air Force Institute of Technology (AFIT) School of Engineering

had developed a prototype computer-aided design (CAD) workstation that

is built of a simulator (LOGSIM) and a VAX based expert system (ICE).

LOGSIM is a pin-level logic simulator which verifies circuit

performance. Although ICE (InterConnect Expert) is used to identify

wiring errors, ICE does not detect logic errors. Through the use of

these two independent systems, a designed circuit can be tested without

having to wire the actual components for verification (Estes,1986).

The tools which are available are hosted on separate machines. To use

the tools, the designer has to learn how to operate each system. In

addition to the fact that the VAX is isolated from the lab, the expert

system does not have a library or common interface, lacks responsiveness

and also limits the number of integrated circuits that can be used

(Wagner,1987).

1 - 4

All students attending the AFIT School of Engineering must have a

background in digital electronics. Supporting this requirement, an

initial course in discrete component design and analysis using

transistor-to-transistor(TTL) devices is presented. Although, the

system in AFIT should be a basic tool for students attending that

course, its location in more than one environment (VAX and workstation)

greatly reduced the system's utility.

In order to make the system useful for students attending AFIT, it

was necessary put the entire system in one environment. In 1987 a

integrated system was developed on a microcomputer. The system was

composed of the simulator (LOGSIM) developed by Captain Wayne DeLoria;

the graphics part, developed by Captain Charles A. Adams; and the

expert system, developed by lLt Steven Wagner. Figure 1-1 illustrates

how the graphics part, LOGSIM and ICE are combined into one environment.

LOGIC INTERCOHHECT

SIMULATOR EXPERT

(LOGSIM) (ICE)

GRAPHICS
PRCKAGE

(GRAPH)

Figure 1-1 AFIT environment

1- 5

The expert system was built using the development environment in the

commercial package GURU. The system on the microcomputer proved be very

useful, but still some enhancements were necessary.

Problem statement

This thesis addresses some problems in the ICE installed on the

microcomputer. The first problem is to make the expert system portable,

i. e., capable of installation in a different machine from the one in

which it has been developed without modifications on the code of the

system. The second problem is to reduce the size of the expert system

due to constraints on the microcomputer memory. The third problem is to

integrate the expert with the microcomputer version of the LOGSIM, the

graphics package, and a database. The effort of this thesis is to

design, develop, test, and evaluate a portable microcomputer rule-based

expert system capable of detecting wiring errors in digital circuits

constructed of TTLs ICs using a commercial high order language.

Assumptions

Rule-based expert systems can be built with forward chaining or

backward chaining. In a forward chaining system; when the premise

clauses match the situation, the conclusion clauses are asserted. In

backward chaining system, the goal clause is matched with the conclusion

of rules. The matched rules premises then become new goals. For solving

the problem, forward chaining was assumed as best choice, because the

branching factor,i.e. the average number of nodes that can be reached

directly from a single node, is lower than using backward chaining.

1 - 6

The programming language "C" is highly portable, powerful, and can be

used to code an expert system with relative ease. "C" was determined the

ideal language to codify the expert system.

Scope

In the construction of the expert system, special attention will be

given to the database interface, to the user interface, and to the

graphics package interface. The entire system should be able to be

implemented on a microcomputer. An evaluation of the system, in

relation to the previous one, will be conducted by means of submitting

several circuits to both systems and recording their performances as

well as comparing size of code, and size memory used to perform their

tasks. That evaluation will assess the benefits that the new system

will bring.

Approach

This effort was accomplished in five stages. The first stage was the

analysis of the existing system that pointed to the weak points of that

system such as: poor response time, a complete dependency of a

copyrighted commercial package that implied a very limited utilization

of the system because few sites were authorized to use that package, a

large disk space necessary to accommodate the code, the large amount of

memory necessary to accommodate the executable code. The second stage

was to take the result of the analysis conducted in the previous stage

and the current literature about CAD development related to expert

systems in order to obtain the directives that led to the construction

1 - 7

of the expert system prototype. Also, in this stage, meetings were held

with Capt Ehrhart and Capt Matuszek, who were making concurrent

enhancements to the environment. In those meetings it was established

how the common information would be manipulated and displayed. Also, a

consensus about the programming language was reached. In the third

stage the prototype expert was designed, developed in the C programming

language, and tested stand alone. The fourth stage included an

integration with the database developed by Capt Ehrhart and with the

graphics package, testing the expert system performance after

integration, and final evaluation of the expert system. The delivery of

a final expert system, derived from the refinement of the prototype, as

well as the documentation necessary to maintain and operate the system,

took place in the fifth stage.

Sequence of presentation

Chapter 2 covers the research that has been done into the expert

systems field to support the effort of this thesis, and also shows how

the result of the literature review has been used to produce the new

prototype of ICE. Chapter 3 identifies the necessary data elements, how

they were organized, giving the criteria utilized for such construction

of ICE. Chapter 4 describes each module of ICE, and the method of

operation of each module which resulted from the implementation phase.

Chapter 5 discusses the outcome of tests conducted during all the

implementation phase of the new prototype of ICE, as well as the

analysis of those results confronted against the results obtained when

running the old version of ICE, the one that relies on GURU. Chapter 6

1 -8

contains final directives for future research and improvement in the

field covered by this thesis. Appendix A encapsulates the set of rules

used by ICE. The subject addressed by Appendix B is the user's guide

for the ICE.

1 - 9

II - Literature Review

This chapter briefly traces the expert system history. The importance

of the book Building Expert Systems in the expert system era is emphasized. A

discussion about applicable languages is also done. Next there is an

introduction to analog and digital circuits, a description of the effort of

AFIT students who applied expert systems to analyze digital circuits, the

current technology, and a summary.

Expert Systems

Destined to drastically reduce the price of computers, early

research in electronic device fabrication brought about the microchip

technology. Meanwhile the software specialists, people responsible for

designing and building programs to control computers, were working in

the software area. They were not trying to discover a new way to encode

information in microchips; they were laying the basis of a field of

computer science known as artificial intelligence (AI).

The main idea of the Al scientists was to provide some sort of

thinking to the computer programs, so the computer could solve problems

in the same way that a intelligent human being would do it. In the

1960's, Al scientists tried to simulate a complex method of thinking,

that phase yielded some progress but no breakthroughs occurred.

Later, AI scientists tried another manner to provide intelligence to

a computer. They concentrate on techniques like representation, a way to

formulate a problem in order to facilitate its solution, and search

mechanisms to reduce the time and utilization of computer memory when

2 -1

solving a problem. Again some success was obtained but no breakthroughs

occurred.

In the early seventies the AI scientists realized an important point.

The power for solving a problem that a computer should have was not

provided by the formalism and the inference schemes that the computer

employs; rather, the power is a consequence of the knowledge that the

program possesses. This concept was embraced and stated as:

"To make a program intelligent, provide it with lots of high-quality.

specific knowledge about some problem area" (Waterman,86).

This breakthrough made possible the development of special-purpose

computer programs, systems that were expert in some narrow problem area.

These programs were called expert systems, and a new field began

(Waterman, 86).

Building Expert Systems

The efforts of more than forty AI scientists, that are compiled in

the book Building Expert Systems, which organizes the technical state of

art and describes several possible expert-system-building techniques

when solving a common problem.

The book discusses the interaction between the knowledge engineer,

expert system builder, and one or more human experts in some specific

problem area. The knowledge engineer has as his main task extraction

from the human experts their methods and strategies for problem solving,

and construction of the expert system based on this knowledge. The

result should be a computer program that solves the problem in a manner

close to that one used by the human experts.

2 - 2

Most AI scientists, agree that the main parts of an expert system,

are the knowledge base and inference engine.

Mike Van Horn (Horn,86), explains both, the knowledge base and

inference engine, and concludes that the knowledge engineer derives

rules from the experts' statements and separates the rules into

knowledge rules and inference rules. Some AI scientists prefer

"reasoning" instead of "inference", which is considered a fancy term.

Horn admitted also that the knowledge engineer, based on his experience

in dealing with expert systems, adds some inference rules. The

knowledge rules become the knowledge base and the inference rules the

inference engine.

Applicable languages to expert systems

Among programming languages, the most appropriate to deal with an

expert system is LISP, a symbol manipulation language. That is, a

language designed for representing and manipulating complex concepts.

But LISP with its great power and flexibility brings a high cost.

First, in order to achieve the enormous power and flexibility, LISP

requires a complex and convoluted code, which is difficult to program.

Also LISP programmers are rare and expensive. Second, more extensive

code requires more computer processing time, and more processing time

means that more money is spent when the system is running. Third, the

more extensive is the code, the more extensive is the amount of memory

required for running the code.

Because the language most appropriate to handle expert systems

presents so many drawbacks, the AI scientists turned their attention to

2 - 3

other languages that were not addressed to expert systems, and among

those languages, "C" presents excellent performance. Programming in "C"

is generally easy, it requires few lines of code, and programs coded in

"C" have great portability. That is, when moved to a computer different

from that one where they have been developed they require few or no

adaptations. The drawback of "C" is the necessity of having all the

basic functions, such as openfile and display character, developed by

the programmer; but even this drawback is not serious because there are

many C-programmers, they are not expensive, and many basic functions are

already commercially available, usually known as "C libraries".

Analog and Digital Circuits

There are two types of circuit, digital and analog. The most

frequently used is digital. Several researches have reported various

techniques for working with analog or digital circuits. Lieutenant

Steven Wagner in his thesis (Wagner,87) reports on the efforts of AFIT

students who examined the effects of an expert system on digital

circuits. Those students designed and built a system called

InterConnect Expert (ICE), which was an expert system used to identify

wiring errors in a digital circuit by using a rule-based system. The

circuit was checked without having to wire the actual components of

circuit.

Later, Lieutenant Wagner introduced significant modifications in that

project in order to improve the performance of the InterConnect Expert.

This experience is reported in Wagner's thesis (Wagner,87).

2 - 4

Current Technology

The current technology available in the market is limited. Wagner

pointed out two of the more advanced systems, and from that time to now,

they are still the most advanced systems. They are: the HIWIRE,

addressed to IBM PC, with the capacity to utilize up to 700 TTL

components when designing a digital circuit, and the HP Electronic

Design Circuits, developed by Hewlett Packard (HP), addressed to the HP

workstations.

Summary

Expert systems are excellent tools for checking digital circuits

without having to wire the actual components.

Although the most specific language to code an expert system is the

LISP, its utilization is not encouraged due to the fact that is

difficult to code in LISP, also because it is not easy to find a LISP

programmer, and furthermore because LISP requires large amount of

memory. On other hand, is very easy to find a "C" programmer. "C" is a

multipurpose language, very powerful, easily learned and highly portable

which makes it the language suitable to be used in codification of an

expert system.

The commercial packages available in the market do not fill the needs

of AFIT, due in part to the necessity of specific equipment to operate

them, and also in part to the necessary licenses for site operation.

Which in both cases imply cost and reduced flexibility in the operation

of those packages.

2 - 5

The expert system developed in AFIT needs some improvements such an

increase in the processing speed, and especially a divorce from the

commercial package GURU on which the expert system was developed on.

The natural answer to the AFIT needs, in face of what resulted from

the literature review, was to recode in "C" a new expert system that was

completely independent from any commercial package, and which could

bring an improvement in the processing speed.

2 - 6

III - Requirements Analysis and Design

Requirements analysis is the first technical step in the software

engineering process. It is at that point that a general statement of

software scope is refined into a concrete specification that becomes the

foundation for the development phase (Pressman,87).

This chapter reports the results of the requirements analysis

conducted in the ICE development effort.

Introduction

The effort of this thesis, as described in the Problem Statement

section, is to design, develop, test and evaluate a portable

microcomputer rule-based expert system capable of detecting wiring

errors in digital circuits constructed of TTL ICs using a commercial

high order language. The expert system should present a better response

time than the older system. Also, the utilization of main, and secondary

memory should be reduced.

One of the constraints for developing the expert system is the

microcomputer in which the expert system should operate. It is a

microcomputer compatible with Zenith Z-248 with 640 Kbytes of main

memory, graphics card, and a hard-disk drive.

Information Description

This section provides a description of the information flow,

information content, and information structure.

3 -1

Information Flow

The old expert system relied heavily on the interface to the

graphics package. This interface is shown in Figure 3-1. The graphics

package placed an ASCII file in the Disk Operating System (DOS)

environment, then invoked GURU. Guru automatically executed the expert

system by invoking a startup file which acted as a mainline program. The

expert system used the input file to start the processing and generated

an output file, containing any circuit errors, upon completion. The

output file signaled the end of execution and control was returned to

DOS, which invoked the graphics package (Wagner,87).

Graphics

input fMe]output file

from frorn expert
grphics ytem

Figure 3-1 Old ICE interface

3 - 2

The old ICE system contained hardcoded, information pertaining to

TTLs. This information was condensed in a table called Engineering

Workstation Chip Library. That table could only be "seen" and used by

the old ICE system. But ICE was, and still is, part of a larger system.

So, any modification forced updates in more than one place throughout

the larger system, because the other integrated parts also had their

private tables of TTL information. With the improvement that resulted

from using a central database, used by all integrated parts of the

larger system, the ICE interface assumed a new form as shown in Figure

3-2. The basic idea of the new interfaces is the same as the one posted

in the old system. But now, the information about TTLs are extracted

from a central database, and ICE no longer uses GURU.

Graphics

dat abase Sy te

from from expert
zraph/es system

Figure 3-2 New ICE interface

3 -3

Information Content

The input file from the Graphics interface, a flat file called

TEMP.TXT, contains all connections used to build the digital circuit.

Connections can be of two types: TTL to TTL, or TTL to external source.

The output file from ICE, a flat file called ICEOUT.TXT, contains all

flagged missing connections, at least one pin of an used gate had been

not wired, as well as all the flagged wrong connections, those that are

not allowed in digital circuits - e. g. input of a gate to the input of

another gate. The output file can have only missing connections, or

only wrong connections, or missing and wrong connections, or neither

missing nor wrong connections, when then the sentence "No output from

ICE" is posted in the output file.

Information Structure

The input file structure, represented in Figure 3-3, is made in

such way that each line of file stands for a connection in the circuit.

The connection record is divided into two parts: FROM and TO. FROM

registers from where the connection is originated, and TO brings all

information of where the connection ends. Each part has the following

information: unique identification for the package (TTL or external

source), package type, pin of the package where the connection starts or

ends.

FPKG FTTL I FPIN TPKG I TTTL TPIN

Figure 3-3 Input file structure

3 - 4

For example the following shows the input file corresponding to

the digital circuit shown in the Figure 3-4.

TO01 074193 08 GOOO GROUND 00

P00 OPOWER 00 T001 074193 16

TO01 074193 04 COOO OCLOCK 00

T002 007400 14 PO00 OPOWER 00

G000 GROUND 00 T002 007400 07

TO01 074193 13 T002 007400 13

I001 0000il 00 T002 007400 12

T@92

Figure 3-4 Digital circuit example

3 5

The output file structure, as can be seen in Figure 3-5, is

simple. Each line brings a description of the problem found, and the

location of the problem. Each region, missing links and questionable

links, is preceded by pertinent heading.

I LINE

Figure 3-5 Output file structure

An example of an output file is below depicted.

Example:

The link(s) between the following pin locations are questionable:

two INPUT's are tied together -- pin 01 of T002 and pin 09 of TO01

package TOOl has a race condition present between pins 01 and 02

There are also missing connections at the following pin locations:

package TO01 a 7400 is missing an OUTPUT at pin 03

package TOO1 a 7400 is missing an OUTPUT at pin 08

package T002 a 7400 is missing an INPUT at pin 10

Functional Description

The new InterConnect Expert system, like its old version, presents

three distinct phases, with each phase performing the necessary

transformations to achieve the expected result. Figure 3-6 shows how,

conceptually, the system is divided.

3 - 6

YII TflK I I TAIE

INPUT PHASE PRnCESSING PHAE;F OUTPUT PHH5E

Figure 3-6 ICE system conception

Although the division of the ICE system in three phases follows the

same pattern applied in old version of the system, the way that each

phase is performed differs substantially from the previous model.

For instance, in the new version a field was suppressed in TEMP.TXT.

That suppression brought a considerable economy in the processing time

because less time is spent in reading and writing. Furthermore the

field was used for comments, which often represented forty percent of

the record length.

The manner in which the processing phase is conducted - without GURU,

"lighter", and much less avid for memory and time - contributed to an

3 - 7

upgrade in the response time. A comparison between the performances of

the new and the old version of ICE is presented in Chapter 5.

In the output phase, a better strategy related to the intermediate

files Ymistake and Rmistake resulted in a better use of the memory and

an abbreviation in the composition time of the output file. Instead copy

them all into a third file a combined action of renaming and appending

was used.

Input phase

The system makes sure the file TEMP.TXT, which contains all

links designed in the digital circuit, is present. If the file is

present, it is opened and made available for the processing phase. If

the file is not present, the ICE is halted after issuing a message which

alerts the absence of the input file.

Processing phase

The processing phase starts by building from the TEMP.TXT a

larger table, ICETABLE, which, besides the previous information,

contains the gate related to each pin in the package as well as the

value associated to the gate (input, output, clock, ground, power, non

connecting). This additional information comes from the central

database, which is accessed by means of a specific query. After that,

the processing phase continues by constructing a file, ICLIST,

containing the links in it that involve at least one TTL. Continuing

the processing phase a set of rules is then applied to ICETABLE to

determine questionable links. A rule is a conditional statement of two

3 -8

parts: the first part, comprised of one or more IF clauses, establishes

conditions that must be satisfied and the second part, comprised of one

or more THEN clauses, is to be acted upon.

In case of the existence of one or more questionable link, the

file Ymistake is constructed. Once the ICLIST is completed, it is

sorted by a composed key made of TTL type, package identification, gate

and pin number. Once finished, the file is analyzed at circuit level,

chip level, and gate level for determining if there are missing links or

fanout errors. In these tasks, several accesses to the central database

are made in order to validate the connections found in the circuit.

In case validation failure, implying existence of missing links or

fanout errors a file, Rmistake, is built to conclude the processing

phase.

The set of rules early mentioned is part of the production system

utilized to detect questionable links. A product system consists of a

collection of production rules (rules in the form of an IF-THEN or

CONDITION-ACTION statements), together with a database of "state

information" and a procedure for invoking the production rules. The

overall structure of a production system is shown in Figure 3-7.

The problem addressed by this thesis was solved by making use of

forward chaining (inference engine where the IF portion of rules are

matched against facts to establish new facts) and a production system

where the base of production rules was named ICERULE (described in more

detail in Chapter 4), the database of state information representing

the circuit design was taken from ICLIST, and with the control scheme

put into the main procedure. The control scheme works scanning through

3 -9

a list of production rules. The condition part of each rule is tested

in turn, until one of the condition is found to be true or there is no

more condition to test. When one is true, it is said that the

production rule "fires" or "triggers". Then, the action for that rule

is executed.

With ICE implemented in this manner, and because the production rules

hold for all TTL, it is possible to analyze any TTL provided TTL data

is in the central database. This means that is possible to add TTLs to

the system, and analyze them without any required modification in ICE.

Control scherme

(MAIN procedure)

base of condition action
database

Product n condition action Of

rules state

0 0 information(OCERULE) ,: ,: _

(ICETRBLE)

condition action

Figure 3-7 Production System Structure

3 - 10

Output Phase

The output phase consists in the construction of the output

file. The construction of the output file can be carried out in one of

the following four possible manners:

I - if Ymistake and Rmistake exist, Ymistake is renamed

ICEOUT.TXT and Rmistake is appended to it,

2 - if only Ymisti.ke exists, it is renamed ICEOUT.TXT,

3 - if only Rmistake exists, it is renamed ICEOUT.TXT,

4 - and if neither Ymistake nor Rmistake exist, ICEOUT.TXT is

created having just one record that is the sentence

"No output from ICE".

Performance requirements

The performance requirements addressed in this thesis effort

are those mainly concerned with the system time response that is

considered extremely long in the old system. The goal was to reduce the

response time to at least half that on the old system. A desired

quality of ICE was to be completely independent of any commercial

package, which would help the ICE distribution into the educational

system. Special attention to the utilization of memory was taken, and

since ICE is not a general system, but a very specific system, it could

be reduced either in disk space as well as in main memory space.

3 - 11

Validation criteria

The special purpose of validation criteria is to make possible

recognize if the implementation was well succeeded or not. In this task

aspects as performance bounds, classes of test, expected software

response are examined.

Performance bounds

The performance bounds imposed to the new iCE system were

mainly those related to the hardware used, a microcomputer Z-248 with

640 Kbytes of main memory, graphics card, and a 20 Mbytes hard disk.

The time response of the new system could in the worst case be equal

to the time of the old system, but could never exceed that time.

Classes of tests

The tests were divided in classes in such way that all the

rules were fired at least once.

The same circuit was submitted to both systems, the old and

new, and the response times were registered, compared and mapped into a

graph for analysis.

The results of ICE tests, the expected ICE response, as well as

the comparison graph between the old and new system are shown in the

Chapter 5, that follows.

3 - 12

IV - Detailed Design

The purpose of the sections of this chapter is to show details of the

system design. To support the explanations, flowcharts are incorporated

into the chapter. In a flowchart, a box with double lines at its left

and right ends, means that the particular box, most of the cases

representing a procedure, will be decomposed later in the chapter.

Boxes with single lines are not further decomposed. Diamond shapes

represent points where a decision has to be taken, with Y meaning the

answer "yes" to the question enclosed in the diamond shape, and N

standing for "no". The text inside diimond shapes reveals the kind of

test used, and inside a box names represent the procedure or set of

statements utilized in that part of the design. Arrows show the

direction in which the flow of information is carried out.

Top level design

The flowchart that best describes the system is shown in the

Figure 4-1. Those modules depicted in zhe figure are described in more

details in the sections that follow.

Module DEL FILES

The module DEL FILES represents a deletion of the files

iceout.txt, ymistake, and rmistake that could have been resulted from

previous ICE execution. In this way it is ensured that no previous

results interfere with the results obtained in the current ICE

execution. This module was implemented as a set of statements in the

main procedure.

4 -I

TEJP.TXT

r E ' 1 . "l L L ":

"-,P. LE W 9-"

E ',F I C- -
F'F F K,

EN IRrAD

Figure 4-1 Top Level Flowchart

Module OPEN TEMP-TXT

In this module, an attempt to open the input file TEMP.TXT is

made. Any case of failure in the file opening, meaning that the file

does not exist or has any sort of reading problems, is always flagged by

module "NULL ?". If there is a failure the module "EXIT I" issues a

message to the user warning him about this fact, and the system ends

its processing because it is totally impossible to start the analysis of

the circuit without the input file. The modules "NULL ?" and "EXIT I"

are shown in the Figure 4-1.

4- -

Module READ TEMP-TXT

In case of a successful opening, the system keeps reading the file

until end-of-file (EOF) is reached. Between two consecutive readings,

and between the last reading and EOF the following tasks are done.

Module SCAN FPKG

This module scans the FROM part of input file structure, to

obtain the kind of component used as "from package" (FPKG). A schematic

flow is shown in the Figure 4-2.

N T' -1: WE

[r LTI: Q]

TIF-FIIN FILL IQETHELE FILL I' E iE; LE F LL ICETAEBLE] FILL IC.'ETAIBLE

FILL "ETFELE

itAVE PTIC LIT

E NJ t

Figure 4-2 SCAN FPKG flowchart

4- 3

Depending on the icon type used as "from package" different action is

taken by the module FILL ICETABLE.

Module FILL ICETABLE

The set of statements represented by FILL ICETABLE has as its

main purpose to complete the information about the component utilized

putting a new piece of information into the structure ICETABLE. If the

component is not a TTL such new piece of information is composed of the

word ICON, and depending on the kind of icon INPUT, POWER, GROUND, or

CLOCK. If the component is a TTL, the structure ICETABLE is completed

with the name of the gate (e. g. A, B, C, etc) and with its respective

value (e. g. INPUT, POWER, CLOCK, OUTPUT, GROUND). The additional

information about the TTL comes from the central database accessed by

the module QUERY-PIN.

Module OUERY-PIN

This module interacts with the central database searching for

the attributes of a specific pin of a specific TTL. The searching is

carried out on the relation PINS of the database. As an access key, a

combination of TTL type (e.g 7400) and pin number (e.g 14) is passed to

the database. The module returns a pointer to a memory location where

the information, name and value, about the gate associated to this pin

can be found.

4 - 4

Module MAKE PTICLIST

Making this module a procedure would force the utilization of a

large number of parameters, or utilization of global variables. Since

none of those options presented a high cost benefit rate ,this module

was implemented as a set of statements in the main procedure. This

approach achieved the same result that would be reached with the other

options but with a much less complex code . The main module function

is to construct, in memory, pointers to the structures which will serve

as basis for the file ICLIST. Those structures contain the information

about the FROM part of the input file structure (what means TTL type,

package identification, and pin number), and the information retrieved

by QUERY-PIN from the central database (gate name and gate value related

to the pin number).

Module SCAN TPKG

This module as shown in the Figure 4-3, is a repetition of the

module SCAN FPKG, but now the scanning is made on the "TO" part of the

input file structure. Its main purpose is to obtain the kind of

component used as "to package" (TPKG). The explanations given for FILL

ICETABLE, QUERY-PIN, and MAKE PTICLIST in the module SCAN FKPG are also

applicable to their counterpart in the module SCAN TPKG. Considering

the similar behavior encountered in SCAN FPKG, and in SCAN TPKG no

further discussions about the second will be conducted.

4 - 5

FCT AC TF: T

I:"c CO N. T V" F E".

- .. IN
-

W
"

.

.1 1['> l
-FI FILL I ETHIELE FILL Ir;E-HE:LE F LL ICETtFLE FILL I'ETtIE:LE4 -1

iLL I;;ETtELE

t EE NTICL'

Figure 4-3 SCAN TPKG flowchart

Module FPKG or TPKG - TTL ?

At this point a decision is made to know if at least one of the

components used in the link is a TTL. If that is not true a new record

from the input is read. If at least a TTL is present on the link the

procedure ICERULE is invoked, and after it is finished a new reading is

provided

4 - 6

Module ICERULE

This module applies the set of rules listed in the appendix A to each

link that contains at least one TTL in order to find out any possible

questionable link. The set of rules used is based in the same principles

used to define the set of rules in the older version of ICE (WAGNER,87).

Since two kinds of connections are use in a circuit (external sources to

TTL, and TTL to TTL), two matrices of information were built.

The external sources that can be connected to a TTL are: INPUT port,

POWER, GROUND, and CLOCK. Those external sources can be connected to

the following kinds of TTL pins: INPUT, POWER, GROUND, CLOCK, and

OUTPUT. In the matrix, shown in Figure 4-4, each connection is labeled

as legal or illegal (L or I). Its better to point out that some

connection marked as illegal could be used in a circuit and the circuit

would function. For instance, although a connection between a external

source CLOCK to a TTL pin INPUT could be legitimate, it is seen as

illegal by ICE.

TTL k.,iues

Input Power Ground Clock Output

TInrut L L L L !

I.-L
P!w',- L L I I !

("rtuind L I L I !
IL

,; Clock I I ! L !

Figure 4-4 Matrix of External Sources to TTL Connections

4 - 7

The second kind of connection, TTL to TTL, was treatead in analagous

manner as the external connections to TTL. Figure 4-5 shows the defined

matrix for connection TTL to TTL.

TTI ualup

Input Powor Ground Clock Output

Input I I I I L

I Power I I I I I

SG,-u,,d 1 ! I i I

Clock ! ! ! I

Output L ! ! !

Figure 4-5 Matrix of TTL to TTL connections

The module ICERULE compares the current Icetable structure against

the rules, and if one of the rules is fired a call to module PRINT-

YMISTAKE is done to put the message corresponding to the event in the

YMISTAKE file. A flowchart of the module is depicted in the Figure 4-6.

4 - 8

i~FUILE # F. IRL E # R' I~ "ILE i a RULE
I -EA.. Ew Be ~

TT TT T-

F 15-LE D

7(m"I T F1K

Figure 4-6 ICERULE Flowchart

Module PRINT-YMISTAKE

This module is responsible to put the questionable link

message into the file Ymistake. To perform its tasks, this module takes

from ICERULE the current ICETABLE structure and the rule number which

flagged the questionable link. The message corresponding to the rule

number is then recorded onto Ymistake.

After EOF of the input file is reached, we have the following

situation in the system:

4 -9

a) all questionable links in the circuit were detected and the

correspondent messages are in the file Ymistake.

b) the memory contains a set of ICLIST pointers which will be used to

construct the ICLIST file, such file is used to decompose the circuit

into chip and gate levels.

Constructing the file ICLIST requires writing on disk the memory

contents pointed to by each ICLIST pointer. But the order of the

pointers on the memory is dictated by the order that the user put the

links in the circuit. Trying to improve the efficiency of the system

when decomposing the circuit at chip, and gate levels a particular order

was adopted, and that adoption implies sorting the content of the file

ICLIST.

The sorting could be done in one of two ways:

a) write the pointer's contents on the disk file, and then sort

the file;

b)sort the pointers on the memory and then with the pointer's

contents already sorted make all the writing into the disk file.

The option of sorting the pointers before writing was adopted because

it proved be the faster, and more efficient than sorting the file on

disk which would imply many accesses to disk, and thus time consuming.

In order to perform the sorting the procedure SORTICLIST was built.

4 - 10

Module SORT-ICLIST

This module uses the merge-sort algorithm to order the pointers

according to TTL type, package identification, gate identification and

pin number.

Module CIRCLEV

This module decomposes the entire circuit into chips, for further

analysis. The flowchart contained in the Figure 4-7 gives an idea about

how the task of the module CIRCLEV is accomplished.

El IT 1

.,-...PE N ".-

" ' K

ET J

'.O IR IAR 'LE

IT I
ICC IF J~l %. C1 K

Figure 4-7 CIRGLEV Flowchart

4 I)

The module CIRCLEV, implemented as a procedure has its construction

based on two loops. In the outer loop, attempts are made to open the

file ICLIST for reading, and the file ICCHIP for writing. The file

ICLIST is opened just once, but the file ICCHIP is opened and closed as

many times as there are chips in the circuit. The failure, for any

reason, in the opening of either one of those files causes the emission

of an error message notifying the fact and immediate abandon of ICE.

Still in the outer loop is the module SET VARIABLES, implemented as a

set of statements, which functions to set global variables (TTL type and

package identification from the chip currently investigated). Once the

kind of TTL under examination is established, an access to the central

database is done to determine and retrieve the fanout corresponding to

the TTL. This access is made through the module QUERY-FANOUT.

Module QUERY-FANOUT

The module QUERY-FANOUT, implemented as a procedure

accesses the relation TTLS in the central database. The access key is

the TTL type (e. g. 7408), passed to the procedure as an argument. The

procedure returns an integer which indicates the fanout attributed to

the type of TTL passed as an argument.

The inner loop is composed of a module that reads ICLIST, and another

the writes the file ICCHIP. The inner loop is traversed while the EOF

of ICLIST is not reached and the TTL type constant in the record

recuperated from ICLIST is the same as the one placed by SET VARIABLES

and used as TTL type comparison. If a different TTL type is read from

ICLIST and is not EOF of ICLIST, the module CHIPLEV, last part of the

4 - 12

outer loop, is executed and after the execution the process restart

having as TTL type comparison the last different accessed. If EOF is

reached the module CHIPLEV is performed and the module CIRCLEV finishes

its execution.

Module CHIPLEV

In this module each chip is decomposed into gates for an

detailed analysis. The flowchart in the Figure 4-8 diagrams the tasks

performed in the module CHIPLEV.

T
TO O F: R T'-

E:K T 1 [- : :HIP .-

HIF

W1T 01:

F~~gue1 Q- HHIPL. Flowchar

4 1

[-- Jl I r: ,0HIP

""-~C. .- "I:r8TE
6' TEL L' 1':6RIC -. 8. .

Figure 4-8 CHIPLEV Flowchart

4 13

The module CHIPLEV, implemented as a procedure, is very similar to

the module CIRLEV. This module also has its construction based on two

loops. In the outer loop attempts are made to opening the file ICCHIP

for reading and the file ICGATE for writing. Each version of the file

ICCHIP implies as many versions of the file ICGATE as the number of

gates ,of that particular chip, utilized in the circuit. If for any

reason it is impossible to open ICCHIP and ICGATE, the ICE system is

abandoned with first happening an generation of an error message

corresponding to the problem encountered.

The module SET GLBGATE, still part of the outer loop and implemented

as a set of statements, sets the global variable GLBGATE that is used

for comparison in the rest of the procedure.

The inner loop performs reading in the file ICCHIP and writing in the

file ICGATE while the EOF of ICCHIP is not reached and the type of gate

found in the record retrieved from ICCHIP is the same as the one placed

by SET GLBGATE.

If a different gate is read from ICCHIP and it is not EOF of ICCHIP

the module GATELEV, last part of the outer loop, is executed. After

GATELEV execution the process is reactivated having as GLBGATE the last

different gate accessed.

If EOF of ICCHIP is found, the module GATELEV still is performed, but

after its execution, the module CHIPLEV finishes its performance passing

the control to the calling procedure CIRCLEV.

4 - 14

Module GATELEV

At this module, implemented as a procedure, is made the

analysis to find out about the existence of missing links. The Figure

4-9 depicts how the tasks are performed in the module.

E: 17

E

~TFE

A I 0T ,I.,.-',)FET "-..

"1 ...
°

E TOE' P.T 1,C47
11 7

Figure 4-9 "ATELEV Flowchart

4 -15

The module GATELEV starts making an access to the central database

through the module QUERY-GATE.

Module QUERY-GATE

This module, implemented as a procedure, accesses the

relation PINS in the central database for retrieving all information

related to a specific gate of a specific TTL. This module returns a

file called ICGTMAST containing all information retrieved from the

central database which means that each record in the file has pin number

associated to the gate, gate name (e. g A,B,C, etc), and gate value (e.g

INPUT, OUTPUT, CLOCK, GROUND, POWER, and NC meaning that this particular

pin should not be connected).

After completion of the QUERY-GATE, attempts to open ICGTMAST and

ICGATE are made. If the attempts fail, error messages are issued to the

user and ICE ends its execution. If the attempt succeeds, the execution

of GATELEV continues setting the matching between the information

contained in the files ICGTMAST and IGGATE. This match setting try,

represented by the module SET MATCH is made until EOF of ICGATE is

reached or a True match is done. The value of the match is set to

False, if the information existing in the files are non consistent, or

in other words a port of a gate exists in the master gate file

(ICGTMAST) but the respective connection to this port of the gate is not

present in the circuit. After the completion of SET MATCH the match

value is checked. If the match value is False, the module PRINT-

RMISTAKE is executed.

4 - 16

Module PRINT-RMISTAKE

This module, implemented as a procedure has as its basic

function to place, in the file RMISTAKE, all messages concerned with

missing links, as well as the messages concerned with fanout errors.

The handling of fanout errors message is explained later in this

chapter.

After the execution of the match test clause, with accomplishment or

not of the module PRINT-MISTAKE, another record from ICGTMAST is read,

and the cycle is restarted. The cycle is executed until EOF of ICGTMAST

is found, then a test is performed to find out if the links to the gate

do not violate the limits imposed by the fanout. If there is violation

of the fanout the module PRINT-RMISTAKE is executed in order to put the

corresponding message into RMISTAKE, after that GATELEV is finished and

the control is passed to the calling procedure CHIPLEV. If there is not

a fanout violation GATELEV finishes and the calling procedure, CHIPLEV,

assumes the control of the ICE system.

Module WRAPUP

This module is responsible for constructing the output file

called ICEOUT.TXT. As described earlier in the section OUTPUT PHASE of

the chapter 3, there are four possible manners to accomplish the

ICEOUT.TXT.

1 - YMISTAKE and RMISTAKE exist. In this case Ymistake is

renamed ICEOUT.TXT and RMISTAKE is appended to it;

4 - 17

2 - Just Ymistake exists. This case requires only the renaming

of the file YMISTAKE to ICEOUT.TXT;

3 - Only Rmistake exists. Here, Rmistake is renamed ICEOUT.TXT;

4 - There is no YMISTAKE, or RMISTAKE. If this case happens,

ICEOUT.TXT is created having as its unique record the sentence "No

output from ICE", what means that ICE was executed and no error was

flagged in the circuit.

The description of the module WRAPUP closes this chapter.

4 - 18

V - Testing and Results

This chapter shows the criteria utilized in the testing phase as well as

the results obtained.

In order to evaluate the New Ice, the conducted tests aimed to inspect

either the functional capability and the efficiency of the new system.

Functionality Tests

Several tests cases were developed to prove that each rule could be

"fired". The tests covered the cases of no errors in the circuit, one case

of each possible error, and also diverse combinations of errors. The system

always reached the expected results. During this phase, it has been made a

monitoring in each module to assure their correct functioning.

Integration

The integration of ICE to the central database, logsim, and graphics

interface was tested, and the test succeeded.

Efficiency Tests

The efficiency tests were conducted to see if the requirements

established in the design phase and in the problem statement were satisfied.

A description of the tests follows.

Portability

The portability exists with the new ICE. The system was installed in

several types of computer (Zenith, IBM PCAT, IBM clone) and ran without any

5-1

modification. The outcomes from the system in all environments were the

same.

Independence of Commercial Package

A complete independence from any commercial package was reached. The

new ICE exists by itself. Unlike the old system that relies on GURU, the new

system does not need any tool as support.

Response Time

The response time has been measured from the starting of the execution

of ICE until first moment when the output file was made available to the

user. The response time of the new ICE, in all occasions, was better than

the response time obtained with the old system analyzing the same circuit.

The goal of reducing the response time to half was achieved. In the section

RESULTS are shown graphics with the response time tests outcomes.

Space requirements

The amount of external memory (disk) required for the new ICE is much

less than the space required by the old system. The old system requires, for

its 54 files, nearly 1600 Kbytes of disk space. The new system, with 3

files, requires nearly 125 Kbytes. The space required on main memory also

favors the new system, since it can run with other resident system (e.g.

Norton Commander), what is totally impossible by the old system that

allocates all the memory.

5 - 2

Results

Response Times

The tests were conducted running identical circuits under the NEW ICE

and the OLD ICE. The machine at the systems were tested has been a personal

computer Zenith 248 with the following characteristics:

base memory size - 640 kbytes,

* expansion memory - 2560 kbytes,

* video display enhanced graphics,

• video refreshing rate 60 Hz,

* hard drive 21 Kbytes of capacity.

The results obtained were put into the graph shown in Figure 5-1.

The legends are explained in the following way: the first part means the

system were the circuit was tested and the second part says how many gates

per TTL were used in the circuit. So, NEW 4GATES is the legend of curve

resulted from running circuits under the new system with each TTl of the

circuit utilizing 4 gates.

5 -3

4--E -H]E'_ W vs OLD S STEM

7 TL _
'7 ' T mg-

NEW 2(,., E S

NEW 4GATES

4-- /OLD 2GATES

3 - OLD 4GATES

IC.

2 4 8 16

NUMBEQ OP TTLs

Figure 5-1 Performance New ICE vs Old ICE

5 - 4

The following table shows that the goal of reducing the response time to

half of time required by the old system was totally achieved.

CKT TYPE Response Time in seconds

Denomination Under New System Under Old System

CKT022c 14 64

CKT022i 15 63

CKT024c 30 125

CKT024i 31 124

CKT042c 30 120

CKT042i 31 119

CKT044c 54 204

CKT044i 55 210

CKT082c 54 188

CKT082i 54 195

CKT084c 108 405

CKT084i 110 410

CKTI62c 110 382

CKT162i i1 390

CKT164c 225 650

CKT164i 228 654

The denomination of circuits types were obtained applying the following

name formation rule, CKTXXZY, where:

CKT - identifies a digital circuit,

XX - the tw(first digits shows how many TTLs were used in the circuit,

Z how many gates per TTL were used, and

Y - assuming "c" for correct and "i" for incorrect circuits.

5 -5

The overall response time performance of the new ICE seems to obey a

linear function of the number of gates. As the number of the gates

increases, there is a linear increase in time. Figure 5-2 illustrates the

linear feature of the new ICE.

'

x -

y4 jM E; DC TTLS

Figure 5-2 Performance Characteristic of the New ICE (Time vs TTLs)

From this graphs and from the previous table it is possible infer that

although, it highly desired and recommended to use all gates of a TTL before

put a new TTL in the circuit, the new ICE does not show a significant

difference in response time between a circuit that uses 32 gates either using

8 chips with 4 gates on each chip or 16 chips with 2 gates on each chip.

This reenforces the idea that the system is more sensible to the number of

gates than to the number of TTLS.

5 - 6

Follow some graphs showing results obtained from new ICE when after

testing correct and incorrect circuits with variable number of gates. Wrong

means the time spent finding the wrong connections, MISSING the time spent

finding missing connections, and I/O the time spent with input and output.

3ATESre >-r T

Wrong = 02 sec

,issing = 11 sec

/0 = Ol sec

Total time - 14 sec

Figure 5-3 Correct Circuit with 2 TTLs / 2 Gates per TTL

I t,,--P ECT ! ! 'Ctj T

L -TLc- Aitn 2 GATES per T TL

Wrong = 02 sec ,

lissing = 11 sec ----, 3%)

1/0 - 02 sec

rotal Time - 15 sec

Figure 5-4 Incorrect Circuit with 2 TTLs / 2 Gates per TTL

5 - 7

CJPPEJ-T C lPCL1IT

2TT s w th -4 Gates per- TTL

rang =06 sec

1issing - 23 se.

1/0 =O01sec

otal Time = 30 sec

Figure 5-5 Correct Circuit with 2 TTLs /4 Gates each TTL

!4,y%0PFElCT CIPIIT

2 TTLS wtn ' Gates per TTL

rang - 06 sec \~ K

qissing - 24 sgsc '

1/0 -02 sec

otal Time -32 sec

Figure 5-6 Incorrect Circuit with 2 TTLs /4 Gates per TTL

5 -8

-. A 2 Sa~tes eacri TTL

Wrong 05 sec

Missing 24 sec

/0 01 sec

rotal Time =30 sec 1/0 CA)

Figure 5-7 Correct Circuit with 4 TTLs /2 Gates per TTL

[fl'XJ)PPECT C 1PCLJI T
4-, tr 2 es ea Cn T TL

Wrong -05 sec \\~

gissing -24 sec r'6

1/0 -02 sec

rotal Time =31 sec \

Figure 5-8 Incorrect Circuit with 4 TTLs /2 Gates per TTL

5-9

u 4GATES per T,

ro-ng - 09 sec

Hissing = 44 sec

1/0 01 se

Total time = 54 sec ,2,

Figure 5-9 Correct Circuit with 4 TTLs /4 Gates per TTL

h t 4 GATES per TT

Wrong = 09 sec

Hissing = 44 secM

1/0 = 02 sec .

Total Time =55 sec 1. 4%

Figure 5-10 Incorrect Circuit with 4 TTLs I4 Gates per TTL

5 - 10

P7 1iT

TT[r

Wrong - 07 sec

Hissing =46 sec

/0 01 sec

rotal Time = 54 sec

Figure 5-11 Correct Circuit with 8 TTLs /2 Gates per TTL

JZPPECT
.Y2 [ATES per T7L

Wrong = 07 sec

Kissing = 45 sec

rotal time =54 sec c

Figure 5-12 Incorrect Circuit with 8 TTLs /2 Gates per TTL

5 - 11

Wrong - 18 sec

Kissing = 89 sec

lotal Time = 108 sec

Figure 5-13 Correct Circuit with 8 TTLs /4 Gates per TTL

Wrong =18 sec,

Kissing =90 sec \ \wT

1/0 =02 sec <~

rotal Time =110 sec

Figure 5-14 Incorrect circuit with 8 TTLs /4 Gates per TTL

5 - 12

Wrong =16 sec

Hissing =93 sec

1/0 =01 sec V''

Total time = 110 sec

Figure 5-15 Correct Circuit with 16 TTLs /2 Gates per TTL

r 7~3 Le

Wrong =16 sec

Kissing =93 sec Y/A

1/0 02 se

Total time =111 sec 0(%

Figure 5-16 Incorrect Circuit with 8 TTLs /2 Gates per TTL

5 - 13

The percentage of time spent on finding missing connections is consistently

of the total time spent to analyze the entire circuit. There are several

reasons for the long delay in finding the missing connections. One of the

causes for the delay is the algorithm used that checks the connections

individually. Another reason is the time spent read/writing to the disk.

The new ICE uses intermediate file extensively during the processing phase.

Space Requirements

The relation between the occupied space in disk by both systems can be

seen in Figure 5-11. The implementation of the new ICe brought a reduction

of an order of 93 % in the size of the old system.

- 1

- I

Figure 5-17 Comparison of Disk Space Requirements (Old Ice vs N4ev Ice)

5 - 14

Summary

The new ICE which resulted from this thesis effort satisfied all the

requirements formulated. The space on disk was reduced, the amount of memory

also was reduced, there is no longer any dependency of a commercial package,

the response time was reduced to less than half time of the old system, the

new ice is portable, and an integration with the central database, LOGSIM,

and Graphics Interface was established.

5 - 15

VI - Conclusions and Recommendations

In this chapter, the main research findings related to design and

implementation of ICE are summarized. Recommendations for further research

are indicated.

Conclusions

The main research findings are summarized as follow:

I - Although the programming language "C" was not design specially

designed to deal with problems in the AI field, it can be used with success.

2 - The technique "Divide and Conquer" or the Descartes' Principles of

Analysis and Synthesis", where a complex problem is decomposed in small

solvable subproblems, once more shown be applicable and efficient.

3 - A well done plan is essential for the success of a task. With the

plan is possible to solve all interfaces problems when integration with other

parts is necessary. During the effort of this thesis many problems did not

arise because was planned interactions with the people responsible for

developing the other integrating parts of the system. A good example was the

utilization of the database by ICE. Meetings held with Captain Sue A.

Ehrhart resulted in benefits either to me, because I found out the database

potential, as well as to Captain Ehrhart that became aware of the necessities

of the database user.

4 - Prototyping demonstrated be a very useful technique, because by

means of the prototype utilization bugs or situations not predicted in the

design phase are met, and corrected with a low cost for the entire project.

6 -1

5 - General programs or packages are good but they bring an extra cost

to perform simple tasks. The case GURU-ICE is typical, GURU is a powerful

tool, it has many features but just for that it requires a great deal of

memory and the processing time required to perform simple tasks increases.

The relation cost/benefit in the case proved not be favorable to GURU. The

developed ICE is limited in its scope but solve the AFIT problem with much

more property.

Recommendations

The speed in the new ICE was increased but it certainly would be better

if instead checking the entire circuit it could check an individual chip.

Also, utilization of a virtual disk, ram disk, would minimize the time spent

in the process of finding missing connections which represents, in average,

80% of the total time spent by ICE during the analysis of a digital circuit.

In this way it is recommended to make researches in order to provide ICE

with a "mechanism" that could detect the existence of a ramdisk which would

be used as scratch pad for the intermediate files necessary for the ICE

execution.

6 -2

AD~endix A: ICE Rules Set

Rule : R1.

IF : (iceta.fgate - INC") or (iceta.tgate 'I"NC")

THEN :(iceta.clor <- error)

Rule :R2

IF :(iceta.fpkg[O] - iceta.tpkg[O])

THEN : (same <- TRUE)

Rule :R3

IF :(iceta.fpkg = iceta.tpkg)

THEN : (samechip <- TRUE)

Rule : R4

IF : (iceta.fgate - iceta.tgate)

THEN :(samegate <- TRUE)

Rule :R5

IF : Ciceta.fpinval - iceta.tpinval)

THEN : (sarneval <- TRUE)

A-I

Rule :R6

IF :(((iceta.fpinval - "INPUT") and (iceta.tpinval -"OUTPUT")) or

((iceta.fpinval - "OUTPUT") and (iceta.tpinval ="INPUT")) and

(not (sainechip and samegate)))

THEN :(iceta.clor <- OK)

Rule :R7

IF :(same and samechip and samegate)

THEN :((iceta.clor <- ERROR)

(print in Ymistake " y package iceta.fpkg has a race condition

present between pins iceta.fpin and iceta.tpin"l))

Rule :R8

IF :(same and sameval)

THEN :((iceta.clor <- ERROR)

(print in Ymistake "ly Two iceta.fpinval are tied together pin

iceta.fpin of iceta.fpkg and iceta.tpin of iceta.tpkg"))

Rule :R9

IF :(iceta.fpinval - POWER) and (iceta.tpinval in (INPUT, CLOCK,

GROUND, OUTPUT))

THEN :((iceta.clor <- ERROR)

(print in Ymistake "ly Pin iceta.fpin, a iceta.fpinval of

iceta.fpkg is incorrectly tied to iceta.tpkg, pin iceta.tpin a

iceta. tpinval))

A - 2

Rule :10

IF :(iceta.fpinval = GROUND) and (iceta.tpinval in (INPUT, CLOCK,

POWER, OUTPUT))

THEN :((iceta.clor <- ERROR)

(print in Ymistake "y Pin iceta.fpin, a iceta.fpinval. of

iceta.fpkg is incorrectly tied to iceta.tpkg, pin iceta.tpin a

iceta. tpinval))

Rule :R11

IF :(iceta.fpinval - CLOCK) and (iceta.tpinval in (INPUT, POWER,

GROUND, OUTPUT))

THEN :((iceta.clor <- ERROR)

(print in Ymistake "y Pin iceta.fpin, a iceta.fpinval of

iceta.fpkg is incorrectly tied to iceta.tpkg, pin iceta.tpin a

iceta tpinval))

Rule :R12

IF :(iceta.fpinval = INPUT) and (iceta.tpinval in (POWER, CLOCK,

GROUND, OUTPUT))

THEN :((iceta.clor <- ERROR)

(print in Ymistake "y Pin iceta.fpin, a iceta.fpinval of

iceta.fpkg is incorrectly tied to iceta.tpkg, pin iceta.tpin a

iceta .tpinval))

A - 3

Rule :R13

IF :(iceta.fpinval = OUTPUT) and (iceta.tpinval in (INPUT, CLOCK,

GROUND, POWER))

THEN :((iceta.clor <- ERROR)

(print in Ymistake "y Pin iceta.fpin, a iceta.fpinval of

iceta.fpkg is incorrectly tied to iceta.tpkg, pin iceta.tpin a

iceta tpinval))

Rule :R14

IF :(not (iceta.fpkg[O] - iceta.tpkg[O]))

THEN :(notsame <- TRUE)

Rule :R15

IF :((notsame) and (iceta.fpkg - TTL) and (iceta.fpinval = CLOCK) and

(iceta.tpinval in (INPUT, CLOCK)))

THEN :(iceta.clor <- OK)

Rule :R16

IF :((notsame) and (iceta.fpinval in (INPUT,CLOCK)) and (iceta.tpkg=

TTL) and (iceta.tpinval = CLOCK))

THEN :(iceta.clor <- OK)

Rule :R17

IF :((notsame) and (iceta.fpkg -TTL) and (iceta.fpinval = GROUND) and

(iceta.tpinval in (INPUT, GROUND)))

THEN :(iceta.clor <- OK)

A-4

Rule :R18

IF :((notsame) and (iceta.fpinval in (INPUT,GROUND)) and (iceta.tpkg

TTL) and (iceta.tpinva. = GROUND))

THEN :(iceta.clor <- OK)

Rule :R19

IF :((notsame) and (iceta.fpkg - TTL) and (iceta.fpinval - POWER) and

(iceta.tpinval in (INPUT, POWER)))

THEN :(iceta.clor <- OK)

Rule :R20

IF :((notsame) and (iceta.fpkg = TTL) and (iceta.fpinval = INPUT) and

(iceta.tpinval in (INPUT, GROUND, POWER)))

THEN :(iceta.clor <- OK)

Rule :R21

IF :((notsame) and (iceta.fpinval in (INPUT,POWER)) and (iceta.tpkg

TTL) and (iceta.tpinval = POWER))

THEN :(iceta.clor <- OK)

Rule :R22

IF :((notsame) and (iceta.fpinval in (INPUTGROUND,POWER)) and

(iceta.tpkg - TTL) and (iceta.tpinval =INPUT))

THEN :(iceta.clor <- OK)

A- 5

Rule :R23

IF :((notsame) and (iceta.fpkg - TTL) and (iceta.fpinval - OUTPUT) and

(iceta.tpinval in (INPUT, POWER, GROUND, CLOCK)))

THEN :((iceta.clor <- ERROR)

(print in Ymistake "y external iceta.tpinval is mistakenly

connected to a iceta.fpinval pin of iceta.fpkg, pin iceta.fpin"))

Rule :R24

IF :((notsame) and (iceta.fpkg - TTL) and (iceta.fpinval - CLOCK) and

(iceta.tpinval in (POWER, GROUND)))

THEN :((iceta.clor <- ERROR)

(print in Ymistake "y external iceta.tpinval is mistakenly

connected to a iceta.fpinval pin of iceta.fpkg, pin iceta.fpin"))

Rule :R25

IF :((notsame) and (iceta.fpkg - TTL) and (iceta.fpinval = GROUND) and

(iceta.tpinval in (POWER, CLOCK)))

THEN :((iceta.clor <- ERROR)

(print in Ymistake "y external iceta.tpinval is mistakenly

connected to a iceta.fpinval pin of iceta.fpkg, pin iceta.fpin"))

A - 6

Rule :R26

IF :((notsame) and (iceta.fpkg - TTL) and (iceta.fpinval - POWER) and

(iceta.tpinval in (GROUND, CLOCK)))

THEN :((iceta.clor <- ERROR)

(print in Ymistake "ly external iceta.tpinval is mistakenly

connected to a iceta.fpinval pin of iceta.fpkg, pin iceta.fpin"))

Rule :R27

IF :((notsame) and (iceta.fpkg = TTL) and (iceta.fpinval -INPUT) and

(iceta.tpinval = CLOCK))

THEN :((iceta.clor <- ERROR)

(print in Ymistake "y external iceta.tpinval is mistakenly

connected to a iceta.fpinval pin of iceta.fpkg, pin iceta.fpin"))

Rule :R28

IF :((notsame) and (iceta.fpinval in (INPUT, POWER, GROUND, CLOCK)) and

(iceta.tpkg[O] = TTL) and (iceta.tpinval - OUTPUT))

THEN :((iceta.clor <- ERROR)

(print in Ymistake "ly external iceta.fpinval is mistakenly

connected to a iceta.tpinval pin of iceta.tpkg, pin iceta.tpin"))

A - 7

Rule :R29

IF :((notsame) and (iceta.fpinval in (POWER, GROUND)) and

(iceta.tpkg[O] -TTL) and (iceta.tpinval - CLOCK))

THEN :((iceta.clor <- ERROR)

(print in Ymistake "y external iceta.fpinval is mistakenly

connected to a iceta.tpinval pin of iceta.tpkg, pin iceta.tpin"))

Rule :R30

IF :((notsame) and (iceta.fpinval in (POWER, CLOCK)) and (iceta.tpkg[OJ

-TTL) and (iceta.tpinval - GROUND))

THEN :((iceta.clor <- ERROR)

(print in Ymistake "y external iceta.fpinval. is mistakenly

connected to a iceta.tpinval pin of iceta.tpkg, pin iceta.tpin"))

Rule :R31

IF :((notsame) and (iceta.fpinval in (GROUND. CLOCK)) and

Ciceta.tpkg[O] -TTL) and (iceta.tpinval - POWER))

THEN :((iceta.clor <- ERROR)

(print in Ymistake "y external iceta.fpinval is mistakenly

connected to a iceta.tpinval pin of iceta.tpkg, pin iceta.tpin"))

A-S8

Rule :R32

IF :((notsame) and (iceta.fpinval = CLOCK) and (iceta.tpkg[O] - TTL)

and (iceta.tpinval =INPUT))

THEN :((icetaclor <- ERROR)

(print in Ymistake "y external iceta.fpinval is mistakenly

connected to a iceta.tpinval pin of iceta.tpkg, pin iceta.tpin'))

A - 9

Appendix B:

User's Guide for ICE

To use any of the ICE menu options, the user must click the left button

while pointing to the "ICE" option on the "MAIN MENU" of the GRAPH system

(See Figure B-l).

Main Menu

Desig.n

Ci r c u it

P e t r i e v e

Ci r c itj it

Del CKT

Save CKT

ICE

LOGSIM

Help

EXIT

7 - EE F: 1.11.T F - T - FRE. A kN'" KEY YT- T C: N,':3

Figure B - I Clicking on "ICE" option

If there is no circuit in progress at the time the user will be prompted

with : "Sorry - need a circuit first - press any key to cont-" and the ICE

title will be highlighted. Once a key is pressed the title will return to

normal color. If a circuit is in progress the "ICE Menu" will replace the

"Main Menu" (See Figure B-2).

B - 1

ICE Menu

Execute

Vzeu Rslt

Pr in t

Help

Main Menu

Figure B-2 ICE Menu

Evaluating a circuit

To evaluate a circuit using the ICE program, the user clicks left button

while pointing to the "Execute" option in the "ICE Menu". The "Execute"

title will remain highlighted until this option is terminated. The user will

be advised : "Currently executing ICE - please standby". When ICE has

finished, the "Execute" title returns to normal color, and the sentence

"Currently executing ICE - please standby", disappears.

B - 2

Viewing ICE results

To view the output results from ICE the user clicks the left button

while pointing to the "View Rslt" option in the "ICE Menu". The current

screen display will be replaced by a screen showing the results of the last

ICE execution (See Figure B-3). To return to "ICE Menu" screen, the user is

prompted at the bottom of the screen (in yellow) to "press any key to cont-".

If there exists more than one output screen display the user will need to

press a key more than once, until the "ICE Menu" screen reappears.

There are n c .ietionable lir, s- however,

t h , ar rA , i ngr E.srnn ,!tHi ne_.. t. tlhn follitlin.g pin 16o atia ne'

pacKage T901 a 007488 is iiiissing an output at pin 03

Pres.s ary K.etj to continue

Figure B-3 ICE Execution Results

B - 3

Note: THE RESULTS DISPLAYED ARE THE OUTPUTS OF THE LAST EXECUTION OF

ICE. THESE RESULTS ARE NOT CHANGED UNTIL ICE IS EXECUTED AGAIN.

Interpreting ICE results

The information provided by ICE can be categorized into two categories:

missing connections and questionable connections. If the ICE program finds

any missing connections, they are identified. If ICE finds any questionable

connections, the end points of the link are specified.

Printing ICE Results

To get a print of the ICE results described above, the user must click

the left button on the "Print" option of the "ICE Menu". The "Print" title

will remain highlighted until the printing of results is finished. The user

will be prompted with: "Ensure the printer is turned ON and then press any

key to cont-". Once the user presses any key, the following prompt is

displayed: "Printing is being initiated - press Return to cont-". Once the

information has been sent to the printer, the "Printer" title will no longer

be highlighted and the user may continue.

NOTE: THE USER MUST PRESS THE "RETURN" KEY TO ACTIVATE THE PRINTER

DEFAULT OPTION, IF IT HAS NOT BEEN SET. IF IT HAS BEEN SET PREVIOUSLY, NO

FURTHER ACTION IS REQUIRED. IF IS HAS NOT BEEN SET, THE USER WILL PROMPTED

TO "PRESS ANY KEY TO CONTINUE".

B - 4

Error Messages

1 - Temp.txt cannot be opened

Indication: The input file for ICE was not found. This file is created

by the program INTICE.

Correction: a - Make room in the hard disk for the file.

b - If there is available space, increase the parameter

FILES inside the CONFIG.SYS for 20. See the DOS manual

for executing this task.

c - Verify the existence of the executable code INTICE.

2 - File ICLIST cannot be opened

Indication: The file ICLIST cannot be created, probably due to lack of

space in the hard disk.

Correction: a - Make room in the hard disk for the file.

b - If there is available space, increase the parameter

FILES inside the CONFIG.SYS for 20. See the DOS manual

for executing this task.

3 - File Ymistake cannot be opened

Indication: The file Ymistake cannot be created, probably due to lack of

space in the hard disk.

Correction: a - Make room in the hard disk for the file.

b - If there is available space, increase the parameter

FILES inside the CONFIG.SYS for 20. See the DOS manual

for executing this task.

B - 5

F

4 - Routine CIRCLEV cannot open ICLIST

Indication: The routine CIRLEV tried to open the file ICLIST for reading

and failed.

Correction: a - Make sure ICLIST is created and run the system again.

5 - Routine CIRCLEV cannot open ICCHIP

Indication: The file ICCHIP cannot be created, probably due to lack of

space in the hard disk.

Correction: a - Make room in the hard disk for the file.

b - If there is available space, increase the parameter

FILES inside the CONFIG.SYS for 20. See the DOS manual

for executing this task.

6 - Routine CHIPLEV cannot open ICCHIP

Indication: The routine CIRLEV tried to open the file ICCHIP for reading

and failed.

Correction: a - Make sure ICCHIP is created and run the system again.

7 - Routine CHIPLEV cannot open ICGATE

Indication: The file ICCATE cannot be created, probably due to lack of

space in the hard disk.

Correction: a - Make room in the hard disk for the file.

b - If there is available space, increase the parameter

FILES inside the CONFIG.SYS for 20. See the DOS manual

for executing this task.

B - 6

8 - Routine GATELEV cannot open ICGTMAST

Indication: The routine GATELEV tried to open the file ICGTMAST for

reading and failed.

Correction: a - Make sure ICGTMAST is created and run the system again.

9 - File Rmistake cannot be opened

Indication: The file Rmistake cannot be created, probably due to lack of

space in the hard disk.

Correction: a - Make room in the hard disk for the file.

b - If there is available space, increase the parameter

FILES inside the CONFIG.SYS for 20. See the DOS manual

for executing this task.

10 - If a power failure occurs or if for any reason the system is halted

while executing ICE, chances are that the index of the TTLS and PINS are

corrupted.

Correction: To recover the indexes run the utility batch file

INDEXTTL.bat.

B -7

Bibliogra~hv

1. Adams, Capt Charles A., Jr. A Digital Circuit Design Environment.
MS thesis, AFIT/GCS/ENG/87D-I. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, December 1987
(AD-A188831).

2. Deloria, Capt Wayne C. A Digital Logic Simulator with Concurrent
Programming Considerations. MS thesis, AFIT/GCS/ENG/87D-10. School
of Engineering, Air Force Institute of Technolology (AU), Wright-
Patterson AFB OH, December 1987 (AD-A188823).

3. Ehrhart, Capt Sue A. A Database Management System for Computer-Aided
Digital Circuit Design. MS thesis, AFIT/GCS/ENG/88D-4. School of
Engineering, Air Force Institute of Technolology (AU), Wright-
Patterson AFB OH, December 1988.

4. Estes, A. and others. ICE - an Interconnect Expert, unpublished
manuscript. Departament of ENG, Air Force Institute of Technology,
1986.

5. Greenfield, Joseph D. Practical Digital Design Using IC's. New York,
John Wiley & Sons, 1977.

6. Hayes-Roth, Frederick and others. Building Expert Systems.
Massachussets, USA, 1983.

7. Kernighan, Brian W., Dennis M. Richie. The C Programming Language.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1978.

8. Mano, Morris M. Digital Logic and Computer Design. Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., 1979.

9. Pressman, Roger S. Software Engineering A Practitioner's Approach.
Second Edition, New York: McGraw-Hill Book Company, 1987.

10. Rich, Elaine. Artificial Intelligence. New York: McGraw-Hill Book
Company, 1983.

11. Schildt, Herbert. Artificial Intelligence Using C. Berkeley,
California: Osborne McGraw-Hill, 1987.

12. Schildt, Herbert. Advanced C. Second Edition, Berkeley, California:
Osborne McGraw-Hill, 1988.

13. The TTL Data Book for Design Engineers. Second Edition, Texas
Instruments, 1981.

BIB - 1

14. Wagner, iLt Steven M. An Expert System for Discrete Component
Digital Circuit Design. MS thesis, AFIT/GCS/ENG/87D-28. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1987 (AD-A189680).

15. Waterman, Donald A. A Guide to Expert Systems. Reading,
Massachussets: Addison-Wesley Publishing Company, 1986.

16. Winston, Patrick H., Horn, Berthold K. P. LISP. Second Edition,
Reading, Massachussets: Addison-Wesley Publishing Company, 1984.

BIB - 2

VITA

Captain Jorge da Silva Santos was born January 01, 1949 in Rio de

Janeiro, Rio de Janeiro, Brazil. He graduated from Escola de Oficiais

Especialistas e de Infantaria de Guarda (School for Specialist and Infantry

Officers), Parana, Brazil in 1976 with a Bachelor of Science (B.S.) degree

and from ITA - Instituto Tecnologico de Aeronautica (Aeronautical Institute

of Technology), Sao Paulo, Brazil in 1983 with a B.S degree in Computer

Science.

As an officer in the Brazilian Air Force he was stationed at the Grupo

Especial de Inspecao em Voo (Flight Inspection Special Group), where he was

Chief of the Supply Section. He attended the Curso Superior de Tecnologia de

Computacao (Superior Computation Technology Course) at ITA from February 1982

to December 1983. Upon graduation in December 1983, he was assigned to

Centro de Computacao da Aeronautica de Brasilia (Aeronautical Computation

Center of Brasilia) where he became Chief of Support Subdivision, Operational

Systems Section, Systems Evaluations Section and Teleprocessing Section. In

March 1987, Captain Santos entered the School of Engineering, Air Force

Institute of Technology.

Permanent address: Estrada Intendente Magalhaes, 739

Vila Valqueire - Rio de Janeiro

Rio de Janeiro - Brazil - CEP 21330

Vita - I

4,

/6

