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UPDATING NUCLEAR EFFECTS IN THEATER MODELS 

ABSTRACT 

Large-scale, low-resolution simulation models frequently group nuclear weapons effects against 
area targets into a few aggregated state vectors. This can create serious inaccuracies in the treatment 
of multiple burst and other time-dependent effects. This paper presents improved techniques for 
updating nuclear weapon effects against area targets, allowing the analyst to model the processes of 
delayed injury (damage), recovery (repair) over time, and the effects of subsequent nuclear bursts. 
Our approach is to store the effects in a state vector of coefficients for a piecewise Pare to 
distribution. Examples illustrating the benefits of this approach are provided. 

This procedure will be implemented in the US Army Concepts Analysis Agency IWFORCEM 
theater model, but is applicable to any low-resolution simulation that includes nuclear effects 
representation. 

THE METHODOLOGY MAY BE APPLIED TO any simulation model (a "low resolution" model) 
that combines or aggregates the exposure history and location, for each target element (personnel 
and equipment represented in the simulation model) receiving nuclear effects in a unit, across that 
unit, rather than tracking each element separately. The simulation should have a nuclear effects 

• module that calculates the amount of target area covered by any given level of effect, given target 
area size and shape, actual ground zero, weapon characteristics, etc. 

MAJOR ASSUMPTIONS  include the following: 
1. Target elements are uniformly dispersed over a circular or rectangular target area. 
2. The effects received by target elements are aggregated into a single state vector for each unit; 

the unit (e.g., division) may be composed of subordinate units (e.g., battalions). 
3. The probability that any given target element has received a given level of effect is identical 

for all target elements; this is equivalent to assuming that the unit population is randomly "mixed" 
after the effects of each detonation have been calculated. This assumption may not hold if a target 
receives effects from multiple bursts within a short interval of time; however, it is consistent with 
the manner in which multiple effects are normally computed in simulation models. 

4. For each type of target element separately represented in the simulation, there is either a 
single dominant effect which is consistent throughout the simulation, or the previous exposure 
history for each effect is recorded in separate state vectors. 

THE MAJOR LIMITATIONS  of this methodology are: 
1. The assumption of uniform dispersion of target elements with respect to the target area and 

with respect to the previous exposure history. This assumption should be consistent with the 
simulation model's treatment of conventional casualties and other combat effects. 

2. The methodology computes each nuclear effect separately, but does not provide a mechanism 
for adding exposures to different effects (e.g., exposure to both blast and nuclear radiation). 

THE RESEARCH PAPER IS DIRECTED TOWARD     analysts  working  in  simulation  modeling 
that are familiar with basic probability theory. It is not intended for a lay audience. 

THE RESEARCH PAPER WAS COMPLETED IN  November 1988. 

THE RESEARCH PAPER WAS WRITTEN BY MAJ Mark A. Youngren, D.Sc. 

COMMENTS AND QUESTIONS   may be directed to MAJ Mark A. Youngren, US Army Concepts 
Analysis Agency, CSCA-RQN, 8120 Woodmont Ave., Bethesda, MD 20814-2797. 
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CHAPTER 1 

SUMMARY 

1-1.  INTRODUCTION 

Large-scale, low-resolution simulation models cannot model the history of nuclear effects 
exposure for every soldier and piece of equipment on the battlefield. As a result, such models group 
nuclear weapons effects against area targets into a few aggregated state vectors. This can create 
serious inaccuracies in the treatment of multiple burst and other time-dependent effects when 
updating the current state of each unit in the simulation. 

This paper develops a methodology, based on a probability model, which permits us to 
determine the current levels of exposure to nuclear effects within a unit at any point in time during 
a simulation with reasonable accuracy. Furthermore, the model will: 

- Represent the effects of delayed injury or damage that degrade unit capabilities over time. 
- Represent the effects of recovery or repair that improve unit capabilities over time. These two 

processes will oppose each other. 
- Determine the effect of subsequent nuclear bursts on a previously exposed unit. 
- Represent the impact of residual nuclear radiation. 
- Account for protection provided by vehicles, emplacements, etc. 
- Account for the impcict of conventional casualties and replacements. 
- Aggregate small unit effects into larger unit effects. 

This model does not attempt to solve the real problem of translating the level of effect into an 
operational impact on each target element or on the unit. Assumptions on how personnel and 
equipment exposures to given levels of effect will affect the unit are, of necessity, already present in 
combat simulation models. Given whatever assumptions already found in our large, low-resolution 
simulation model, the techniques discussed in this paper will more accurately record and update the 
nuclear effects on the unit over time. 

1-2.   RESULTS 

We can approximate the distribution of nuclear effects such as nuclear radiation, thermal 
radiation, or blast received by a target element using a piecewise Pareto distribution with a discrete 
component. The levels of each nuclear effect are divided into categories i, i = 0,1,...,A^, according to 
the operational effect that each category has upon the unit within the combat simulation (see 
paragraph 2-2). The parameters of the piecewise Pareto distribution are formed from the percentages 
of elements P,- that are initially placed within each category i based on the nuclear effects algorithms 
invoked at the time of burst, and the threshold levels used to define the upper level of each category 
«, U,-, for i = 0,1, ..., N, where a total of iVcategories are defined. The probability that any element 
receives a level of effect X (for example, a dose of radiation) at the time of the detonation is: 

P[X = x]=Po       _ x = 0 
PiC.x   2 U.._i ^x<U.. ,i= 1, ..., iV;    U 
0 otherwise 

where c^   = P,- / 

N = '^ 

This distribution requires only the storage of the percent P. of elements that fall within each 
category j of the nuclear effect for each unit. 

1-1 
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The processes of delayed injury and recovery will cause the percentages of elements falling 
within each category to shift. If the rate of delayed injury or recovery is time-dependent, we store an 
additional value 6^ for each unit, where 6, is a multiplying f£ictor that indicates the amount of 
increase or decrease in the level of effect experienced after a time t has elapsed, due to delayed injury 
or recovery. An example of the updating formulas that result from this approach is given in 
Appendix A. We may also store an additional value Jt for each unit if we track exposure to effects 
such as residual nuclear radiation. Given the P,'s, 5„ and 7,, we can compute at any time the 
current number of elements falling within each category «', as well as the probability that any 
element receives a particular level of effect. 

At any time t, the current level of effect Xj is 
X« = 5, X + 7« [1.2] 

where X is distributed as [1-1], a piecewise Pareto distribution. 

We also use the piecewise Pareto distribution to ficcount for the additive effect of multiple 
bursts. Although the sum of two random variables having Pareto distributions is not Pareto, we 
show that we may closely approximate this sum with a Pareto random variable. Provided we 
assume that the target unit population is "mixed" between bursts, we can use our distribution [1-1] 
for any unit in our simulation, regardless of how many weapons have detonated near the unit.An 
example of the updating formulas used for multiple bursts is given in Appendix A. 

Details on how to separately account for blast, thermal radiation, and residual nuclear radiation, 
as well as protection from nuclear effects, is provided in the main body, using the piecewise Pareto 
approach. We also discuss the procedure used to aggregate and disaggregate the effects distributions 
between smaller and larger units. 

The piecewise Pareto distribution allows us to easily compute equations that can be used to 
update the nuclear effects to units over time. The details are provided in the main body of this 
paper; an example is summarized below. 

1-3.  AN EXAMPLE 

To illustrate the applications of the techniques given in this paper, we develop an example 
showing two nuclear bursts and the effect of radiation on personnel, to include biological recovery 
from radiation exposure. The results are summarized in Tables 1-1 through 1-4. Comparable results 
have been included using a simple unclassified nuclear effects algorithm (the "actual" results) 
( USANCA [1981] ).and using a uniform distributional assumption. 

We assume that we have an circular area target with a radius of 1,300 meters, with previously 
unexposed, unprotected personnel distributed uniformly within the target area. The unit personnel 
are exposed to the effects of a 1-kiloton weapon aimed at the unit detonating 100 meters from the 
center of the target area. After the burst, we get the results shown in Table 1-1. 

Table 1-1.   Parameters P, for the First Nuclear Burst, Day 0. 

PQ PI P2 P3 P4 P5 

0 .009 .146 .295 .393 .157 

When we account for biological recovery from radiation over 3 days, we get Table 1-2: 

1-2 
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Table 1-2.   Parameters P, for the First Nuclear Burst, Day 3. 

>(3) 

0 .027 

p(3) 

.155 

p(3) 

.293 

p(3) 

.367 

j(3) 

.157 

On day 3, a weapon detonates at a distance of 2.3 kilometers away from the center of the target 
area. The results for this burst only are displayed in Table 1-3. 

Table   1-3.   Parameters P, for the Second Nuclear Burst. 

.017 

Pi 

.920 .039 

Pa 

.024 

P4 

0 0 

Using the formulas provided in Appendix A to combine the effects of the two bursts yields the 
combined effects of the two doses: 

Table   1-4.   Parameters P,' for the Combined Bursts, Day 3. 

Po' Pi' P2' P3' P4' P5' 

0 .026 .146 .295 .376 .157 

For comparison, we update the effect after 30 days and compare the results of this model with 
those calculated using a simple uniform distribution within each category and using a detailed 
simulation. The results are displayed in Figure 1-1. We can see that the model proposed within this 
paper provides a 30-day distribution fairly close to that obtained from a detailed high-resolution 
simulation, while the uniform distribution did not. Using our model, we can realize an improvement 
in the representation of the status, over time, of elements in a theater simulation model; this 
improved representation should improve the fidelity of simulation results which depend upon the 
status of elements within each modeled unit. 

pdf X100 

SIMULATED 

PARETO 

UNIFORM 
♦ 

0      75    150  225  300  375  450  525  600  675  750  825  900  975 

DOSE RANGE 

Figure 1-1.     Simulated and Calculated Segments of the Radiation Exposure Probability 
Density Function (pdf) 27 Days After the Second Nuclear Burst 
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CHAPTER 2 

BACKGROUND 

2-1.  MOTIVATION 

Combat models incorporating tactical nuclear warfare generally simulate the effect of the 
detonation of nuclear weapons using standard algorithms to compute the level of various weapon 
effects (e.g., blast, thermal, and nuclear radiation) that will be experienced. Regardless of the level of 
resolution of the model, the levels of effects caused by the weapon can be categorized according to 
the operational impact of the damage or injury caused by each level of effects upon the unit. For 
example, radiation exposures against personnel falling within a given range are classed as latent 
lethal; exposures falling within a higher range are immediate transient incapacitating, etc. Once the 
categories have been defined, the percentage of personnel and equipment that receive specified levels 
of effect within each category is treated as proportional to the area of the target covered by the 
corresponding levels of effect. 

High-resolution models generally maintain information on the effects experienced by and the 
location of each combat element modeled (a combat element is something we represent explicitly in 
a simulation ~ e.g., a soldier, a tank, etc.). The impact on the unit at any time is determined by 
computing the proportion of elements within each category. When the model keeps track of the 
previous exposure suffered by each target element, the effects of subsequent nuclear bursts (which 
will create damage or injury additive to the previous injury) and other time-dependent effects, such 
as delayed injury and recovery, can easily be determined. 

Low-resolution models involving large forces, such as corps and armies, cannot afford to 
simulate every element. They compute the percentage of assets exposed to effects within each 
category, storing only the percentages pertaining to each unit. In this case, the computation of time- 
dependent effects becomes difficult. For example, when we compute the probability that any person 
within that category will become sick so many days after exposure (and thereby become combat 
ineffective), the probability will depend upon the actual dose received within the category. If that 
person is exposed to radiation at a later date, the combined effect will clearly depend upon the 
previous exposure. 

In the absence of the cictual distribution of effect received by elements within each category, a 
uniform distribution is frequently assumed. For example, if an element has received a previous 
exposure to radiation within a category from 150 to 450 rad, all values between 150 and 450 are 
considered equally likely. Unfortunately, this uniform assumption yields significantly different results 
from those obtained from high-resolution simulations. Our intermediate goal is to establish a 
reasonable, analytically tractable approximating distribution for the effects received by any target 
element. Meeting our intermediate goal allows us to meet our objective: to create a set of algorithms 
that will allow us to update nuclear effects over time, accounting for delayed injury, recovery, and 
multiple burst exposures with a reasonable degree of accuracy, without having to perform a high- 
resolution simulation of each target element. 

Because low resolution models do not track the location and exposure history for each individual 
combat element, it is necessary to make some assumptions. First, elements are assumed to be evenly 
(randomly) distributed across the target unit area, which has a single recorded location (normally 
center-of-mass) and defined shape. Because we do not know the previous exposure history for any 
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given element in the unit, we must assume an equal probability for each element with respect to the 
distribution of previous exposures. This methodology is applied to compute conventional effects 
within models (for example, attrition is applied evenly within each category of element within the 
smallest entity defined as a unit), and these assumptions carry over to the nuclear effects 
representation. The author is not aware of any method for avoiding these assumptions short of 
keeping track of the individual locations and previous exposures, which makes the model "high 
resolution". The assumptions employed to compute the nuclear effects must be consistent with those 
employed to compute other combat effects. 

2-2.  THE SCENARIO 

We begin by considering a target unit that is affected by the detonation of a nuclear weapon at 
or near the target location. The detonation of a nuclear weapon will cause levels of several effects 
(blast, thermal radiation, and immediate nuclear radiation) which we model as a circular pattern 
around the actual ground zero (AGZ) of the weapon. 

In a theater-level model, we generally adopt a simple target representation. Each target area is 
represented by a circle of known radius R^, with personnel and equipment of various types 
distributed uniformly within it. A rectangular target area with elements uniformly distributed may 
also be used (see page 3-3). 

As mentioned above, low-resolution models do not attempt to track the actual level of effect 
received by each target element. Rather, the set of all possible values of each effect is partitioned 
into categories and the percent of the unit area covered by effects within each category is 
determined. Treating all target elements as uniformly distributed within the target area allows us to 
translate the area calculation into a percentage of the unit onhand assets that receive an effect 
within each category. The unit status is stored in a state vector P = { Pg, Pj, ..., P^ }, where each 
P, equals the proportion of unit assets receiving effects in category i. 

The number of categories k to use depends on how these categories are used within the 
simulation. For example, if the simulation only represented the operational impact of 3 categories 
within the model - unhurt, walking wounded, and dead, then a logical choice for it might be 2 
(category 0 = level of effect less than that required to create "walking wounded" however that is 
defined within the model, category 2 = level of effect required to kill, and category 1 = everything in 
between). More categories would give a better fit for the piecewise Pareto distribution, but would 
not improve the representation of the operational impact within the model. 

This paper uses the radiation effect against personnel to demonstrate the techniques involved. 
However, the techniques described may be applied separately to blast, thermal radiation, or 
immediate nuclear radiation against any defined target element type, using any consistent set of 
category definitions. The detailed issues of combining various effects (e.g., the cumulative effect of 
blast damage, thermal burns, and radiation exposure) are outside the scope of this paper. Standard 
techniques may be used, such as assuming a dominant effect (assuming that one effect dominates the 
others, so only it needs to be represented) for various weapons against type target elements. 

For the purpose of demonstration, we categorize r£idiation effects against personnel as follows: 

Category 0:0-2 rad (no significant exposure) 
Category 1 : 2 - 75 rad (exposure; no operational effect) 
Category 2 : 75 - 150 laA (operational radiation casualty) 
Category 3 : 150 - 450 rad (rsidiation burdened) 
Category 4 : 450 - 8000 rad (radiation disabled) 
Category 5 : Over 8000 rad (radiation fatality). 
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These categories are currently used in CAA's Integrated Warfare Force Evaluation Model 
(IWFORCEM) (Booz-Allen & Hamilton [1988]) [except for category 0, which we added to refine our 
representation of the axiditive effects of subsequent bursts]. These definitions are useful for 
IWFORCEM; other categories may prove useful in other applications. The breadth of some of the 
categories (e.g., category 4) makes the need to distinguish between exposures at the upper and lower 
end of the category evident. 

We assume that standard nuclear effects algorithms are available to compute the following: 
given the detonation of a weapon of yield W at distance D from the center of a circular target of 
radius R^, find the area of the target covered by radiation (or other nuclear effects) at or above a 
specified level U. For example, a weapon that creates radiation levels at or above 150 rad out to a 
distance of 1200 m, detonating 1500 m from a target with reidius 700 m, will cover approximately 20 
percent of the target area with radiation at or above 150 rad [NOTE: All nuclear effects computed in 
this paper are based on UNCLASSIFIED algorithms provided by the US Army Nuclear and 
Chemical Agency.] 

2-3. THE APPROACH 

In order to provide a reasonable basis for defining the distribution of nuclear effects, we regard 
the components of our unit state vector P not as the relative proportions of assets in each category, 
but instead as parameters which characterize the probability distribution function for the level of 
effect realized by any randomly selected element within the unit. 

If we define the random variable X< as the level of the (dominant) effect experienced by a target 
element in a unit t units of time after the most recent nuclear detonation affecting that unit, then 
we model Xj as: 

X« = 5, Xo + 7t [2-1] 

where Xg is the level of effect at the time < = 0, 5« is a multiplying factor that indicates the amount 
of increase or decrease in the level of effect exp)€rienced after a time t has elapsed, due to delayed 
injury or recovery, and 7^ is an offset parameter. We will show that the distribution of X, can be 
closely approximated by an offset piecewise Pareto distribution for both single and multiple bursts. 
To implement this concept, we replace the ^-dimensional vector P with a (it-F2)-dimensional vector 
P       — { Pot Pi) •••) Pfci ^o> 7o }» which chareicterizes the distribution of X,. 

We justify our distribution for Xj by establishing the distribution of individual target elements 
as a function of range from the weapon AGZ. From this, we derive a piecewise Pareto distribution 
for the level of effect realized by any target element. We show that subsequent burst effects can also 
be approximated by a piecewise Pareto distribution, which allows us to establish our procedures for 
updating nuclear effects on the target unit over time. We discuss various modifying factors such as 
protection, conventional attrition, and exposure to residual radiation, demonstrate how to aggregate 
small unit distributions into larger unit distributions, and conclude with a brief discussion of 
implementation. 

The appendices provide examples illustrating how these techniques may be used in a nuclear 
simulation. Appendix A gives sample equations for updating radiation effects over time and 
combining multiple bursts. Appendix B develops a specific example using two weapons directed at a 
unit at different times, updating the effects over a 30-day period. The results are compared to a 
high-resolution simulation and to those obtained using a uniform distribution for the levels of effect. 
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2-4.  A PERSPECTIVE ON P 

The vector P * = { PQ* , F[*\ ..., Pg , S„ j, } describes at any time t the current state of a 
unit in our simulation. The transitions from one state to another over time, representing the 
processes of delayed injury (damage) or recovery (repair), depend upon the distribution of personnel 
and equipment within ecich category. P defines the parameters of the distribution of the levels of 
effect relative to the distribution computed at the time of the most recent detonation; thus, our 
transition to a new state, say P * ', may be calculated from the vector P . If subsequent bursts 
are not anticipated, it is simple to develop analytic results in lieu of simulation. 

In the case of subsequent bursts, we shift from a state vector P to a combined effects state 
vector P and eidjust our base time ig to t. The transition matrix from P to P will depend 
upon the location and type (size, height of burst, etc.) of the burst causing the transition and the 
time t elapsed since the previous detonation. Direct analysis of subsequent bursts (which defines the 
weapon and location parameters) in the context of a model arid scenario is straightforward; the 
techniques introduced in this paper may be used to determine P       . 

2-4 
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CHAPTER 3 

METHODOLOGY DEVELOPMENT 

3-1.   THE DISTRIBUTION OF TARGET ELEMENTS AS A FUNCTION OF RANGE 
TO THE AGZ 

In order to compute the level of nuclear effects received by target elements, it is necessary to 
determine the distribution of elements as a function of their range to the point of detonation (actual 
ground zero, or AGZ). We begin by considering the distribution of elements within the target area 
relative to the center of the target. An element could be a soldier, an item of equipment, etc. 

Let S = radial coordinate of an individual element,  0 < S < R^ 
Let T = angular coordinate of an individual element,   0 < T < 2 T 

Since we assume that the elements are uniformly dispersed over a circular target area, 

lim„ P[s<S<s-|-ds, t<T<t-|-dt;0<s<Rt:0<t<2n-l 
as ■"+ 0 •• ■' 
dt—»-0 

is equal to a constant for all s, t. Equivalently, if we pick any reidial distance s, each point on the 
circumference of a circle of radius s is equally likely to be the location of a target element. Thus 

r / X  , [area of circle of radius s+dsl — [area of circle of radius si 
fc(s) ds   ~      ■ p -—-J—t = i 

[ area of the target J 

Similarly, fy(t) = 2^   ,   0 < t < 27r. A uniform dispersion implies that S 

and T are independent; thus 

P[S = s,T = t]=   ^.   ^   =  -^  ,0<s<Rt,0<t<2T. [3-1] 

The areas that receive the levels of effect in category 0, 1, 2, etc., form a series of concentric 
circles with an outside radius Ryy , where R^ is defined to be the maximum distance at which the 
weapon is assumed to affect a particular type of target element. Since category 0 denotes levels of 
effect equivalent to no exposure, R^ will be the distance from the AGZ at which category 0 begins. 
Let us label the radial distances from outer to inner as follows (see Figure 3-1. Also note that 
RQ = Rw ): 

RQ = closest distance to AGZ at which Category 0 begins. 
Rj = closest distance to AGZ at which Category 1 begins. 
R2 = closest distance to AGZ at which Category 2 begins. 
R3 = closest distance to AGZ at which Category 3 begins. 
R4 = closest distance to AGZ at which Category 4 begins. 
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We define constants U; as the level of effect received by a target element at each distance R^. 
Note that U^ can also be viewed as the upper threshold or upper boundary of category i, i = 0, ..., 
5. For convenience in notation, we define R5 as 0 and U5 as 00. If we examine Figure 3-1, we see 
that the potential coverage area for the effect within each category (except Category 5) forms a ring 
or annulus shape. Therefore, the geometry of the area within a target that receives an effect within a 
particular category is defined by the intersection of a ring or disk (representing the weapon effects) 
with another disk (representing the target). 

Figure 3-1. Weapon Effects Radii Overlapping a Target Unit 

Consider the following possible geometries (see Figure 3-2): Case 1 represents a miss for a given 
level of effect against a type target element within the target area. The effect against elements 
within the target is obviously nil, and we need not consider this case further in this paper. Cases 2 
through 4 are more interesting. The shaded area « indicates the area of the target overlapped by the 
effect within Category i. Case 3 includes the case where we examine the overlap of Category 5 on the 
target area. 

CASE1 CASE 2 

CASES CASE 4 

3-2 
Figure 3-2. Some Possible Overlap Geometries 
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In each case, we can compute the area of the overlap, A,-, using standard disk-on-disk 
calculations (cf. DeRiggi and Helmbold [1987]). This value is an output of any standard effects 
algorithms. In order to obtain the distribution of the target elements as a simple function of the 
range to the AGZ, we will approximate the overlap i with a shape f, where i and i' have identical 
areas A,. The overlap area f is defined as the segment of a ring formed by R, and R,_i within an 
angular measure a,- (see Figure 3-3). The areas T are shown in Figure 3-4 for Cases 2 through 4. It is 
clear that «' is very close to » in Case 2; the fit is not as good in Cases 3 and 4, but should provide a 
reasonable approximation that is analytically tractable. If we assume a rectangular target, we also 
approximate the area of the overlap of the circular weapon effects radii on the rectangular target 
area by segments i' of a ring. The fit is not as good as disk-on-disk, but it still forms a reasonable 
approximation. 

Figure 3-3. Example of Approximating Area i' 

CASE 2 

CASE 3 CASE 4 

Figure 3-4. Examples of Area i' for Cases 2, 3, and 4. 

In all cases, if P, is the proportion of the target area covered by effects within Category i. 

P. = •       target area        ^p2 [3-2] 

3-3 
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Note that P, can also be regarded as the probability that any randomly selected target element 
received a level of effect within Category j. 

Let us consider the area A,- formed by T (see Figure 3-4). Since the areas are the same, 

?,- = P[ element in area i] ~ P[ element in area »' ]   = —'-^. 

Since the target elements are uniformly disp>ersed within T, they will be uniformly dispersed with 
respect to coordinates defined at any origin. If we define coordinates Syy and Tyy relative to the 
we apon AGZ, then from [3-1], P[ Sw = s, Tw = t ] oc -^ . Therefore, 

:rR^ 
fR.-i 
s = R.- 

TrRyyj 

R     A- 1 
Clearly,   k = -!^ —-i-   -—^—i—-=- . However, from Figure 3-3 it is clear that 

Rt oii/z   ( R._j _ R. ) 

^ ( R^_i - Rf) , so k =   ^ 

P[ Sw = s, Tw = t; element in i'] =   -^ ,   R, <s< R.-j; 9 <t< ^-f-a,-. 
xR^ 

From this, 

P[ Sw = s and element is in T ] = fg^.^, (s) =   ^   , R,- < s < R,_i , [3-3] 

which is the probability density for-the distance from the AGZ of an element in a target unit 
receiving effect levels within Category j . 

3-2.  COMPUTING THE DISTRIBUTION OF THE EFFECTS 

We approximate the nuclear effects of interest using the inverse square law ~ that is, the level of 
the effect is inversely proportional to the square of the distance. Although there are other factors 
(scattering, air absorption, etc.) that will cause the cictual effect to deviate from the inverse square 
ideal, it forms a reasonable first order approximation. 

Let X = level of effect received by a target element. We wish to determine f^(x) = P[ X = x ] 
for each Category J. From the inverse square law, there exists a constant k,- such that 

X =   -^ ,    for R,. < Sw < R,_i ; 
Ow 

these bounds are equivalent to U,_i < X < U,- , j = 1, ...,5. 

s a 

5Sw 

We know that fg   (s) =  —^   ,      R,- < s < R^.^ , J = 1, ..., 5 

fxW = dX fs^W =   ^ ^~' -      U,_i < X < U, , .• = 1, ..., 5. 

Since P[ U,_i < X < U, ] = P, =   \^'_ ^ x'^ dx =   ^ 

1  C T}2 D2 

rB4 :,B4 

k.. = _   2 ( R.—1 — R. ) 
_i 1 
u,_, 

3-4 
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An easier expression to evaluate can be derived if we define c, =     '   ^ . Clearly, 
7rR| 

Finally, we let PQ = P[ X = 0 ] = proportion of target area outside of the largest effects circle, 

where PQ = 1 — £] P, . Alternatively, we can define PQ as P[ X < UQ ], since we have assumed 

that exposures less tlian UQ are equivalent to no exposure. 

We now have a complete description of the probability density function of the level of effect X, 
derived from the proportion of target covered by a particular level of effect, P, [which comes from 
standard effects codes], and the threshold levels for eeich category, U,- [which we define], for 
i = 0, ..., 5. 

fx(x) = Po X = 0 , 
U.-i ^ 
otherwise. [3-5] 

c.x   ' U,—1 <x<U..,.= 1, ..., 5, 

We recognize that this is a piecewise  Pareto  distribution with a discrete component at 0  (c.f. 
Johnson and Kotz [1970], pp. 233 - 249). 

This density establishes the distribution immediately after detonation of any nuclear effect 
modeled using the inverse square law. We record the values P, for j = 0,1,...,5 in our state vector 
for each target. If the number of personnel or equipment found in each category did not change over 
time, this density would hold at any later time given PQ through P5 and UQ through U5. This 
density may be useful in analyses which consider only the effects immediately after a nuclear pulse, 
where any given target receives effects from only one nuclear burst. Of interest here, however, is how 
we can update these effects over time, and how we can account for effects derived from multiple 
bursts. 

3-3.  COMPUTING THE DISTRIBUTION OF EFFECTS FROM MULTIPLE BURSTS 

It is possible that personnel or equipment within a particular unit may receive effects from more 
than one nuclear detonation. This will occur when a unit is in the area of secondary or bonus effects 
from detonations intended for other targets, or when a unit is engaged more than once by nuclear 
weaf)ons. These additional exposures may occur at points separated in time. 

We begin by examining the effect of a second detonation occurring some time (however brief) 
after an initial engagement. 

Let Xi denote the effect received by an element from the first detonation. 
Let X2 denote the effect received by the same element from the second detonation. 
Let P^ denote the proportion of the target area overlapped by levels of effect within Category i 

produced by the first detonation. 
Let P,2 denote the proportion of the target area overlapped by levels of effect within Category i 

produced by the second detonation. 
Let UQ through U5 denote the upper level of categories 0 through 5 as before. 

Let Cj - ^'^ I \_ u,^_i     u, ]' '■ - = 1, ..., 5;j = 1,2 

3-5 
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We assume that the effects of the first detonation are dispersed uniformly over the target area 
prior to the second detonation; that is, the density of X^ is the same at any location within the 
target area. We also assume that Xj and Xj are independent given the values P,   and U,- . 

We are interested in the sum of X^ and Xj. This sum is not distributed as Pareto, but we will 
show that we may closely approximate it as a Pareto random variable with certain parameters. This 
allows us to use the piecewise Pareto distribution to represent the levels of effect experienced by the 
target elements for multiple as well as for single bursts. 

Let W = Xi + Xj. We wish to determine P[ W < w ] for each Category j. It will be more 
convenient to work with the cumulative distribution function (cdf), so we derive FY(X) = 
P[X<x]. ^ 

FxW = 0 
Po 
« —1 c 
EPt + 

t=0 Ui-1 

X < 0, 

X = 0 , 

U.._i <x<U.. ,.= 1, ..., 5. [3-6] 

We use the notation "X € H," to denote { X | U,_i < X < U,- }. For each Category i (W G 
H,), we can derive the cdf of W by conditioning on X^ and Xj, recalling that X^ and Xj are 
independent. 

P[ W < w and W G H,.] = P[ Xi + Xj < w ; W e H,- ] 

= 4    E    P[ Xi + X2 < w ; W € H,. I Xi € Hfc, X2 e H,- ] 
; = 0   k=0 ■* 

•   P[XiGH,]P[X2€Hj 

= t    t   f     P[ X2 < w - xi ; W G H, I Xi = xi, Xi € H^, Xj G H.- ] 
j = 0  k=0 J^l •' 

•   P[ Xi = xi I Xi G Ht ] P[ Xi G Ht ] P[ X2 G H^- ]   dxi 

For W G Ho : 

P[ W < w and W G Ho ] = P[ W < w I W G Ho ] P[ W G Ho ] 

= 1 • Poi P02 w = 0 

For W G Hi : I 

P[ W < w and W G Hi ] = P[ Xi + Xj < w ; W G Hi ] 

= 4    i    P[ Xi + X2 < w ; W G Hil Xi G Hj, X2 G H.- ] 
j=0 t=o 

P[XiGH,]P[X2GHj 

^12 

Un 
^12 
W 01 + r £11 _ £11"] 

L Uo     w j 02 Uo < w < 2Uo 
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P[ W < w and W e Hi ] = P[ Xj + X2 < w ; W € Hi ] 

_rci2     ci2-| 4. r *^ii     '^iil   P 
~ L Uo   "^ J   °i "^ L ^ ~ ^ j   " 

_cii   [w - 2Uo1 r C12      C12  -| 2 cii C12      pw       ,-| 

2Uo < w < Ui [3-7] 

We recognize that all of the terms in [3-7], except the last two for w > 2Uo, are of the form 
Ki — Kj/w for some constants Ki, Kj. This is the form of the piecewise Pareto cdf. When w is 
large, the order of the last term is 1/w^ ~ 0 and the ratio [ w — 2Uo ] / [ w — UQ ] 2; 1. When w 
is small, 1/w^ is no longer negligible, but the term In [ W/UQ — 1 ] is, and the error introduced into 
these calculations by assuming that the ratio [ w — 2Uo ] / [ w — UQ ] 2; 1 will have little tactical 
significance. Therefore, a reasonable approximation to the cdf of W for W G Hi is piecewise Pareto: 

P[ W < w and W e HJ = 

r £12 _ C12 -|      . r ^ - £111. p  -u *=ii r *^i2  <=i21 
|_  Uo       ^ J    *^°^   +  L  Uo       w J     *^02   +    u^  |_  u^ -  w-  J   . 

Uo < w < Ui [3-8] 

Example 1: 

Let us compute P[ W  <  Ui and W  G  HJ, using the U,- categories 
found in IWFORCEM.       P[ W < Ui and W G HJ = 

rCi2_Ci2-] .      r^-*^ll1.    P -L       ^11    rCl2 C12    -] 

= p 12 01 

P02     +     T^-P u. 12 

+    Pi P02   +    73 Pu 12 

If we calculate the exact probability instead of the approximation, we get 
P12 ■ PQI + Pu ■ P02 + Pu • P12 instead of the above, for a difference 
of 2/73 Pu P12. 

Calculations for W G H2, H3, etc. are carried out in a similar manner. For example, 

P[ X2 < w - Xi ; W e H2I Xi G Hi, X2 G H2 ] P[ Xi G Hi ] P[ Xj G Hj ] 

^_cii   w - (Up-mj r S22 _ £22 "I 
Uo    L     w - Ui     JL   Ui w   J 

UQUI 

(w-Uo)(w-Ui) 

UQ + Ui < w < U2. 
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Once again, if we approximate w - [ (UQ+UI) / (W - UJ ] by 1 and ignore the order 1/w^ 
term, we have a piecewise Pareto distribution. If we continue for W G H3, W € H4, and W € H5, 
we find that the distribution continues to be approximately piecewise Pareto. 

Although the piecewise Pareto parameters for other combinations of X^ and X2 are easy to 
derive for all w > 0, we only need to determine the percentage of the target elements (P,) in each 
category after the second detonation. To do this, we calculate the c.-^'s from the P.-j and P^^ values 
(the P.i's would be found in the state vector; the P.-j's will be output from the standard effects 
algorithms at the time of the second detonation), and then calculate the piecewise Pareto 
distribution for W only at UQ, UJ, etc., to derive the new values for the state vector. For example, if 
P* denotes the updated state vector after the second detonation, Pj = P[ W < UQ and W 6 HQ ], 
Pf = P[ W < Ui and W € Hi ], etc. 

Complete formulas for updating the state vector given the P,'s from the first and second burst 
are given in Appendix A using the IWFORCEM personnel radiation exposure categories. The same 
formulas apply to any subsequent bursts. 

Most effects calculations compute the areas A,- separately for each burst and simply add the 
resulting exposures; this is worse (in terms of accuracy) than using the assumption that the 
population is "mixed" between bursts, as it ignores the fact that, for example, two category 1 
exposures may yield a category 2 exposure. If we make the approximation that the sum of two 
Pareto distributed variables is also distributed as Pareto, then we can use these techniques for any 
unit in our simulation, regardless of how many weapons have detonated near the unit. If the effects 
module can accurately add the effects of multiple, essentially simultaneous bursts on a single unit, 
then the net contribution of the bursts should be fitted to a piecewise Pareto to use this 
methodology. The fit will probably not be as good - so it is a tradeoff between the accuracy of the 
P      calculation and the goodness of fit for subsequent updates. 

3-4.  UPDATING NUCLEAR EFFECTS OVER TIME 

Personnel and equipment categorized ciccording to the impact of nuclear effects will tend to shift 
over time from one category to another as the processes of recovery or latent injury/damage 
manifest themselves. This may be regarded either as a decrease or increase in the effective level of 
effect experienced by an individual or piece of equipment over time, or it may be regarded as a shift 
in the category boundaries over time. In terms of determining the percentage shift from one category 
to another, the viewpoints are the same; the difference lies in interpretation. Because the categories 
are defined according to their impact on the current operational capability of personnel and 
equipment, we have chosen to regard the process of recovery and latent injury as equivalent to a 
decrease or increase in the level of effect with which the individual or piece of equipment is 
burdened. For example, a 1 percent biological recovery by an individual exposed to radiation is 
equivalent to reducing his exposure history by 1 percent. We represent the change in the current 
level of effect, X^, after t time units have elapsed as a multiplier 6^ which may change over time. 
Thus 

X, = S^Xo [3-9] 

where Xg is the level of effect immediately after the detonation. 

3-8 
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Example 2: 
We will illustrate the method of updating P = { PQ, P^, ..., Pg } of our 

piecewise Pareto distribution for the unit with an example involving 
recovery to radiation exposure. Although biological repair to r£idiation is a 
subject of some controversy, several formuleis have been proposed; we use 
one developed by Blair, referenced by SAIC [1984]: 

D, = Do • [ a + ( 1 - a ) e"'''* ] , where 
DQ is the dose received by an individual on day 0, 
D, is the equivalent dose on day t, 
a is the irreparable injury freiction ( ~ 0.1 ), 
7 is the repair time constant ( ~ 0.024 ), and 
t is the time in days. 

After the first day, we would estimate that D, = 0.979 DQ. In this case, 
Sf = D(/Do = 0.979. If we denote the percentages of personnel in each 
category i on day t, t = 0,1, as P-    , then for « = 1, 

'(^^ ^ pr 9 .^   2l Y ^   71^ 1 — pr   2_ ^   Y ^    75 Pr = P[2<   ^X<   75] = P[-gf-9<  X<  -ifg] 

= P[ 2.04 < X < 76.6 ] 

Pp^ = P[ X < 75 ] - P[ X < 2.04 ] + P[ 75 < X < 76.6 ] 

-L^o     +^^1    J     [Po     +22:04j+L75~76:6j 

■'    =   PS°^ - 0.0098 ci + 0.00028 c^ . 

0.0098 ci = 0.02 PS°^ and 0.00028 Cj = 0.042 P^°\ Thus 

PS'^ = 0.98 Pi°> + 0.042 P^°>. 

Other values of P^     would be calculated similarly. 

(2) To calculate  P,    ,  we  need  to calculate  the recovery over a 2-day 
period. From above, we see that 6^ = DJ/DQ — 0.958. Thus 

-L^o     +Pi    J      [Po     +22:08j+L75~78:3j 

After some algebra, we see that Pp^ = 0.96 P^^ + 0.084 Pj"^ 

Alternatively, we could note that ^r '   "rT — TT ■ Thus 
Ui Ug UQ 

PpUp[2<   §-^X<75] = P[2<g2.Dlx<75] 

Since ^2 - iM8 _ 0 QTSt;        p^^) _ pr __2_ ^ ^i 75   i 
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Pp) = [ P(^) + Pp) ] _ 
°     ^    2        2.04 J ^ L 75        761 _ 

,(1)      .(1) 

= 0.98 Pp^ + 0.042 ?[^\ 

Ideally, these two calculations would yield identical results. In actuality, each time we compute 
P , we approximate a fit to the actual distribution of effect X by recalculating cp^ for i = 0,1,...,4. 
The second method repeats this approximation at each time step, losing a little accureicy each time. 
Thus, for small <, the results are approximately the same, but for large t, the first method yields 
more nearly accurate results. 

When our updating factor depends on time, we need to store one additional bit of information: 
the base time <o of the update (the time of the most recent detonation when we updated our vector 
P), or the most recent updating factor. If we wish to retain P^°' and compute (5, = DJ/DQ at each 
time t to get P , then we store the base time <„. Alternatively, we can calculate Dt/Dt_i at each 
time t to get P * from P * ^ if we store either Dt — i or the base time for t, whichever is more 
convenient. The method chosen will depend upon the model being used to represent the recovery and 
latent injury processes, and the degree of accureicy desired. 

If we need to account for the effects of a second nuclear burst after recovery or delayed damage 
from the first, we use the adjusted vector P^*^ for the first burst rather than the original vector P^^ 
in our computations. We assume that, for purposes of updating the effects over time, the process of 
delayed injury or recovery attributable to the initial burst is interrupted at the time of the second or 
subsequent bursts. Thus, delayed injury or recovery calculations subsequent to the second burst are 
performed based on the distribution of the sum of the effects of the bursts ( W ), with a new base 
time equal to the time of the most recent burst. It can be easily shown that for any multiplying 
factor (5 > 0, if X is piecewise Pareto, then so is SX. 

If the ratio D,/D(_i is approximately constant (not dependent upon t), we need not store the 
base time. A moment's consideration will show that in this case, the vectors P define a Markov 
chain (for fixed time interval updates) or a semi-Markov process (for updates that occur 
stochastically), using a single transition matrix. This simplifies the representation and permits some 
analytic results; the utility of approximating 0^/0,_i with a constant depends upon the physical 
model and the degree of JiccureM;y desired. 

Complete formulas for updating the state vector given P^ and a general multiplying fcictor Sf 
are given in Appendix A for the IWFORCEM personnel radiation exposure categories. 
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CHAPTER 4 

ADDITIONS AND VARIATIONS TO THE METHODOLOGY ' 

4-1. ACCOUNTING FOR PROTECTION FROM NUCLEAR EFFECTS 

Typically, many individuals and some equipment are within some type of protection at the time 
of detonation, which reduces the level of effects experienced. A particular protective status, such as 
being within an armored vehicle, will afford different amounts of protection to different effects 
(blast, thermal, and nuclear rcuiiation). We chareicterize the protection provided as a factor between 
0 and 1 that acts to reduce the effect received. That is, if X is a level of effect (e.g., blast) that 
would be received by an unprotected target element (e.g., a soldier), and F^ is the factor pertaining 
to the jth type of protection (e.g., a foxhole) for this effect, the target element receives a level of 
effect equal to F X. 

Let Fj be defined as above, and let Y^ = FyX. Then 

P[ Y,. G H, ] = P[ U,_i < Y^. < U, ] = P[ U,_i < F^. X < U, ] 

P[Y^. €H,]=P[X<^]-P[X<   ^]. [4-1] 

As a result, for any target element provided protection with a factor F^, we can compute the 
probability that any given target element receives a level of effect Y^ within category i, i = 1, ..., 5, 
based on the distribution of unprotected elements, X. 

Ex£imple 3: 

An example using our radiation criteria will help to clarify this point. 
Let Pyij = P[ Yj e H, ]. Let i = 2, and let F^ = 0.7 for some ;. Then 

P,2;=P[X<^]-P[X<    g] 

Pj,2j =   P[ X < 214.3 ] - P[ X < 107.1 ] 

=  [Po + P. + P, + j^„ -2^73] -  [Po + PI +a - ife] 

= P2 - 0.0039 cj + 0.002 C3 . 

Recalling the relationship between c,- and P,, we can restate this equation 
as: 

Pj,2; =   0.4 P2 + 0.45 P3  , 

where Pj and P3 refer to the total percentages found in categories 2 and 3, 
as before. 
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We can combine the different values of Pj,,^- for different j simply by summing the P, 
coefficients, weighted by the proportion of elements provided the jth level of protection. For 
example, if PF^- denotes the proportion of elements provided protection with a factor F • (an input to 
our simulation), then P,- =   J2 ^^j * (the ith coefficient of Pj^.-^- ). 

i 

4-2.   REPRESENTING BLAST, THERMAL RADIATION, AND RESIDUAL 
NUCLEAR RADLiTION 

Until now, we have used nuclear radiation for our examples. However, we can characterize the 
effects of blast and thermal radiation using the same techniques. The P/s for each effect will be 
different, reflecting a difference in category definitions and the distance at which a particular effect 
will be realized. The inverse square law will actually provide a closer approximation to the effects of 
blast and thermal raxliation than to immediate nuclear radiation. 

Exposure to residual nuclear rzidiation can be treated through an additive factor 7 to the 
original or current dose. 

Example 4: 

Suppose all members of a unit are exposed to 30 rads while crossing a 
contaminated area (outside dose — the actual dose received may be less 
when adjusted for protection). A new value for P^ at a time t after the most 
recent detonation is calculated as follows: let Xf denote the previous 
exposure to radiation, X< the new exposure level, and 7^ the cidditional 
dosage. Clearly, X< = X," + ft- Thus 

p[ Uo < X, < Ui ] = p[ Uo < xr + 7* < Ui ] 

= p[ xr = 0 ] + p[ xr < 75 - 30 ] 

= P^*^ + ^ - U = PS*^ + 0.98 p;*>. 

Combining this offset 7, with the multiplying factor 5, (for example, 6^ = D,/Do) obtained 
from modeling the processes of recovery and delayed injury, we get the following expression for the 
level of effect at time t after the most recent detonation, where XQ denotes the level of effect 
calculated at the time of that detonation: 

X, = S,Xo + 7< • [4-2] 

Xj is no longer distributed as piecewise Pareto, but is distributed according to a two-parameter 
or offset piecewise Pareto distribution, where 7, is the offset parameter. The best way to handle this 
is to store the offset parameter 7, and update it ecich time by 5, (if 7, is received some time after 
the process of recovery or delayed injury is underway, we initialize 7, to the equivalent dose at the 
base time 70 = Jt/S^ and store 70). In the most general case, then, our piecewise Pareto 
distribution requires the storage of two cidditional values, S^ (or t^, the hase time for t) and 70. The 
most convenient way to store the information is to expand the dimension of the vector P by 2. 

Combining effects remains a thorny problem. We know that an individual exposed to one effect 
will often be exposed to all three, and their combined effect exceeds any single one of them. 
Nevertheless, proposed ways of combining effects have not been generally accepted. We recommend 
using the standard (albeit less satisfying) methods of eiccounting for multiple effects ~ either 
compute and carry forward ecich effect separately (increasing the dimension of P), or assume a 
dominant effect for each type of target element (P thus referring to the dominant effect). 
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4-3.  IMPROVING THE MODEL ACCURACY FOR LOW LEVELS OF EFFECT 

The offset parameter jt can also be used to improve the «u;curacy of the distribution at the 
lower levels of effect, if desired. If the weapon ladii of effect completely overlap the unit area, every 
target element is exposed to some level of effect auid there exists some level 77 > UQ such that 
P[ X < Tj ] = 0. For example, all personnel might receive at least 30 rjid of radiation exposure, thus 
Tf = 30. When we fit our Pareto distribution to the proportion of elements within category 1, Pj, 
the distribution has positive density over the entire category; thus we predict that 
P[ 2 < X < 30 ] > 0. In many cases, this is unimportant; the simulation treats all elements in a 
given category alike by definition, and there is no transition from category 1 (exposed) to category 0 
(unexposed). In other cases, such as having a significiint delayed injury rate or a high value of jj, it 
may be useful to correct this problem. 

We correct this by setting our offset parameter 70 at time 0 (when the exposures are calculated) 
equal to r; - UQ. If XQ" denotes the actual level of effect realized at time zero, we let XQ" = XQ + 
7o. We then calculate our initial parameters to store in the model, PQ through P5, from the actual 
proportions calculated by our effects model, PQ" through P5", using the initial offset parameter 7o- 

Example 5: 

This example uses the data developed for the first burst of our example 
in Appendix B. Let r; = 67 (all personnel were exposed to at least 67 rad). 
Then 7o = »? — UQ = 67 — 2 = 65. The cictual proportions of personnel 
exposed in categories 0, 1, and 2 are: 

PQ" = 0,     Pi" = 0.009, and     P^" = 0-146 . 

Po = P[ Xo < 2 ] = P[ Xo"- 7o< 2 ] = P[ Xo''< 6/] = 0 

Pi = P[ 2 < Xo < 75 ] = P[ 2 < Xo"- 7o< 75 ] 

= P[67 < Xo''< 140] 

= P[ 67 < Xo''< 75 ] + P[ 75 < Xo''< 140 ] = Pi" + ^ - flj 

= Pi" + 0.929 P2" = 0.009 + 0.136 = 0.145 . 

When we calculate our current level of effect at time t, X^, we use our formula 
Xj = 6f XQ + jf as given in the previous section. 

P/'^ = P[ U,_i < X< < U, ] = P[ U,_i < ^, Xo + 7« < U, ] = 

p/t> = P[U|=i _ ^. < Xo < H^Ill _ ^J , [4.3] 

which is a function of P     , 61, and 7^. 

4-4.  ACCOUNTING FOR CONVENTIONAL ATTRITION AND TROOP REPLACEMENT 

We can account for conventional attrition easily by assuming that all target elements are 
equally at risk ~ thus the conventional attrition is uniform across all categories. As a result, we can 
m^u^tiply P,' or P, by 1 minus the percent attrition for j = 0,1,...,4 and add the difference to 
P5 /^ to P5 • Replacements are assumed to have zero previous exposure; they are added to PQ or 
to PQ    and the unit totals and the remaining P^'s are normalized accordingly. 
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4-5.  AGGREGATING UNIT DISTRIBUTIONS 

Until now, we have used the term target or target unit to mean any type of tactical formation 
that may be engaged by or affected by nuclear weapons. Depending upon the scenario, nuclear 
weapons may be targeted against units as small as a maneuver company or firing section. However, 
in large-scale, low-resolution corps or theater models, we generally do not represent units at levels 
below divisions or brigades. We therefore must aggregate the effects of nuclear weapons against 
small units into totals for the larger units represented in the model. 

Fortunately, aggregation is straightforward. Suppose that we wish to determine the distribution 
of the levels of a nuclear effect in an aggregated unit which has K subunits. Let X" denote the 
exposure to this effect of an element in subunit it, it = 1, 2, ..., iif. Let N" denote the number of such 
elements in the kth subunit, and N denote the total number of elements in the aggregated unit; 
clearly, 

^    k ^■ = x: N-. 
k=l 

k k 
Let P^ denote P[ U,_i < X" < U, ]; these numbers will be the result of calculating the coverage of 
a weapon targeted on unit k. If P ■ denotes the probability that any element in the larger aggregated 
unit receives an effect within category j, then 

P,- = P[ U,_i < X < U, ] 

K 
= E  P[ U._i < X < Ui I element € k] P[ element € k] 

Ji L XT— 

P. =   E^ Pf • ^ . ^ [4-4] 

Thus we simply sum the individual P^ 's from each subunit k, k = l,2,...,K, weighted by the 
number of such elements in subunit k divided by the total in the aggregated unit. 

Example 6: 

For example, suppose we had a brigade formed of three battalions; each 
battalion has an initial strength of 300 men, and we have the following 
exposures to raxiiation: 

Unit Po Pi P2 P3 P4 P5 
Bn 1 1.0 0 0 0 0 0 
Bn2 .35 .30 .20 .10 .05 0 
Bn3 0 .25 .25 .20 .15 .15 

Then the brigade totals are: 

Unit Po       Pi P2 P3 P4 P5 

Brigade     .45      .18        .15 .10        .07        .05 
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CHAPTER 5 

CONCLUSIONS 

5-1.  IMPLEMENTATION 

To implement the nuclear effects model into a low-resolution simulation: 

- For each unit, define a vector P = { PQ, PJ, ..., Pj, t^, JQ } for storing the parameters of 
the distribution, k depends upon the number of categories treicked in the simulation; associated with 
ecw:h category i is a threshold U,-. 

- At the time of the first detonation affecting the unit, determine the area A,- of a target 
covered by threshold radius R^ (from any standard effects model); compute P, = A, / TrR^ . If 
desired, compute an offset 70 and adjust the parameters P, accordingly. Store the results in P. 

- Determine the processes of delayed injury and recovery to be modeled; express their effect 
as a factor 6, for any time /. Store 5, or ig in P. 

- If subsequent bursts may occur that will affect the unit, compute the transition matrix to 
convert P^ to P^* for i = 1, ..., k, updating to account for the time elapsed between bursts. This is 
simply a function of P, the areas A, of the later burst, and the time of the later burst. Store each 
P, in P. The time of the most recent detonation will be the base time IQ for the future 
determination of 6<. 

- For any future time t after the most recent detonation, the current proportion of target 
elements in category i is: 

P[ U,_i < X, < U, ] =   P[ ^ - 7, < Xo < ^ - 7, ], 

which is a function of the current P     . 

-  Adjustments can  be made,  if desired,  to account  for  protection,  residual  radiation, 
aggregation, and conventional effects. 

5-2.  SYNOPSIS 

The techniques outlined in this paper allow the analyst to model the processes of delayed injury 
(damage) and recovery (repair) over time resulting from nuclear warfare, as well as the effect of 
subsequent nuclear bursts. We accomplish this by defining a state vector P which contains the 
proportion of elements (personnel and equipment) that can be found in each of several categories of 
effect. This vector P is used by the simulation to determine the combat effectiveness of a unit, 
requirements for medical and maintenance supjxjrt, etc. As discussed in this pajjer, we can regard P 
as a vector of coefficients of a piecewise Pareto distribution. This representation of P allows us to 
accurately update the effects of nuclear weapons against units simulated in low-resolution (corps and 
theater-level) models. 

5-1 



CAA-RP-88-1 

These techniques are limited by some of the same assumptions that are found in alternative 
updating techniques. We assume a circular target area with a uniform dispersion of target elements 
and account for the impact of multiple injuries (damages) caused by several effects by determining 
each effect separately or by assuming a priori a dominant effect. We also use the inverse square law 
to approximate the decrease in effect due to range. Nevertheless, these techniques provide a 
significant improvement in the procedures used to update nuclear effects in theater-level models. An 
example comparing the techniques derived in this paper to a high-resolution simulation and the 
uniform distribution updating technique is provided in Appendix B. 

The research presented in this paper is intended to be a stepping stone toward a larger goal. 
Currently, we resort to large simulation models to determine the effect of a nuclear laydown on a 
target set, taking into account probabilities of acquisition, target location error, and weapon delivery 
errors, as well as target aggregation doctrine. However, the physical factors generally affect only the 
range from weapon detonation to target. Once we have a general form for the probability density of 
nuclear effects as a function of range, such as the piecewise Pareto, we can work toward deriving 
distributions for detonation locations and an unconditional distribution for the probability of 
achieving a given level of effect against a type target. 
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APPENDIX A 

FORMULAS FOR IWFORCEM APPLICATIONS 

A-1. FORMULAS FOR UPDATING THE STATE VECTOR P 

Valid for the following radiation category thresholds in rads: 
Uo: :2 (category 0 ; ; 0 - 2 rad) 
Ui: ; 75 (category 1 ; ; 2 - 75 rad) 
U^: : 150 (category 2 ; ; 75 - 150 rad) 

U3 :450 (category 3 ; : 150 - 450 rad) 

U4 : 8000 (category 4 ; ; 450 - 8000 rad) 
U5: : 00 (category 5 ; : 8000+ rad) 

Let Xi be the exposure from the first burst and Xj the exposure from the second burst. After 
the second burst, we are interested in the cumulative effect W = X^ + Xj. 

Let P,* = P[ U,_i < W < U, ], 
P.-i = P[ U,_i < Xi < U, ], and 
P,2 = P[ U,_i < Xj < U, ] . 

PQ    = PQI P02 

Pi    = PQI P12 + Pii P02 + Pu P12 

P2* = P21 ( P02 + P12 ) + P22 ( Poi + 0.941 Pn ) 

P3* = P22 ( 0.059 Pn + P21 ) 
+ P31 ( P02 + 0.991 P12 + 0.848 P22 + 0.403 P32 ) 
+ P32 ( Poi + 0.991 Pn + 0.848 P21 ) 

P4* = P31 (  0.009 Pi2 + 0.152 P22 ) 
+ P32 (  0.009 Pn + 0.152 Pji + 0.597 P31 ) 
+ P41 (   P02 + P12 + P22 + P32 + 0.976 P42 ) 
+ P42 (  Poi + Pu + P21 + P31 ) 

P5* = 0.024 P41 P42 

+ P51 (  P02 + P12 + P22 + P32 + P42 + P52 ) 
+ P52 (  Poi + Pii + P21 + P31 + P41 ) 
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A-2. ADJUSTMENT FORMULAS FOR 5, X 

These equations allow us to update the percent of the unit assets that fall into each operational 
category. We assume that the current level of effect present at any time t after the last detonation, 
Xj, can be represented as S^XQ, where XQ is the level of effect present at the time of detonation. 

NOTE: St formulas are given for ^ < (5^ < 2 due to the fact that Uj = 2 Uj. Factors outside 
this range can easily be derived but will require different formulas. 

Letp/'^ = P[U,._i <i5, Xo<U..]. 

^ < (5j < 1 (decreasing effect over time): 

Po^*^ = Po + g ( 1 - ^, ) Pi 

P/'^ = Pi - ^ ( 1 - 5, ) Pi + 2 ( 1 - 5, ) Pj 

P2^*^  =  P2  -  2 (  1  -  6, ) P2  +    ^{1-6^)?^ 

P3^'^ = P3 -   I ( 1 - 5,) P3 +   M ( 1 - 6, ) P4 

p^^'^ = P4 - SI (1 - ^t) P4 + (1 - 5t) P5 

Ps^'^ = P5 -    ( 1  - i. ) P5 

1 < (5, < 2   (increasing effect over time) : 

p (') _ p 

P/'^ = Pi -   ^ ( 5, - 1 ) P, 

P^^') = P2 - ( 5, - 1 ) P2 +  ^ ( 6, - 1 ) Pi 

Pa^'^ = P3 - i ( 5, - 1 ) P3 +   ( 5, - 1 ) P2 

P"*^*^ = P4 - ill ( ^* - 1 ) P4 +   i ( 5. - 1 ) P3 

Ps^'^ = P5 +   jfi ( 5, - 1 ) P4 
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APPENDIX B 

AN EXAMPLE SHOWING TWO NUCLEAR BURSTS AND RECOVERY FROM RADIATION 

The following simple example has been prepared to illustrate some of the techniques described in 
this paper. Comparable results have been included using a simple unclassified nuclear effects 
algorithm (the "axitnal" results) and using a uniform distributional assumption. 

We assume that we have a circular area target with a radius of 1,300 meters, with previously 
unexposed, unprotected personnel distributed uniformly within the target area. The unit personnel 
are exposed to the effects of a 1-kiloton weapon aimed at the unit detonating 100 meters from the 
center of the target area. For convenience, we designate the day that the detonation occurs as day 
zero. 

An unclassified radiation dose algorithm yields the following results (Table B-1): 

Table B-1.   Ranges R, for 1-kt Weapon 

Threshold Threshold Distance from Range 
U,- dose (rads) AGZ (meters) R. 

Uo 2 3,495 Ro 
Ui 75 1,368 Ri 
Uj 150 1,195 Rj 
U3 450 Om R3 
U4 8,000 515 R4 

Given these ranges, the target radius, and the displaicement distance, standard disk-on-disk area 
calculations yield the areas covered by esxh range band (A,'s in the paper). Using the equality P, = 
P[ U,_i < X < U,- ] = Aj / TTR^ yields the values in Table B-2. For simplicity, we do not use an 
offset parameter 7. 

Table B-2.   Parameters Pj for the First Nuclear Burst, Day 0 

Po Pi P2 P3 P4 P5 

0 .009 .146 .295 .393 .157 
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We assume for this example that the only shift in personnel from one category to another is due 
to biological recovery from radiation, using equation [B-1] below. In reality, there would also be 
some latent injury, causing a countervailing tendency to increase the effective exposure over time. 
Our multiplying factor for this example, accounting only for the biological recovery from radiation, 
will be: 

8, = 0.1 + 0.9 e- 0-024 \^>Q^ ■ ^^_^^ 

From [B-1],   ^3 = 0.937. Using the equations in Appendix A, 

73 
>(3)       = p(0) + 75 ( 1 _ ,3 ) p(0) 

= 0 + ^(1- 0.937 ) 0.009 = 0.0006 ~ 0.001 , etc. 

We apply these equations with the exception of the transfer from Category 5 to Category 4 (which 
would be equal to [ 9P4/I5I ]■[ 6f - 1 ] ), because Category 5 personnel are fatalities without any 
biological recovery. This yields (Table B-3): 

Table B-3.   Parameters Pp^ for the First Nuclear Burst, Day 3 

p(3) p(3) p(3) (3) (3) (3) 

.001 .027 .155 .293 .367 .157 

We continue our example by assuming that the unit personnel are exposed on day 3 to the 
effects of a 1-kiloton weapon intended for a sister unit; the weapon detonates at a distance of 2.3 
kilometers away from the center of the target area. The results for this burst only are displayed in 
Table B-4. 

Table  B-4.   Parameters P, for the Second Nuclear Burst 

Po Pi P2 P3 P4 P5 

.017        .920 .039 .024 0 19 

We use the formulas provided in Appendix A to combine the effects of the two bursts. We 
denote the combined values using the notation P- '*, adjusting the baseline time to the time of the 
second detonation (day 3) ~ thus t^ = 3. P^ '* is formed from the P,- values from the first burst, 
adjusted to day 3, and the P,- values from the second burst. We use the notation P,- • to denote 
the P[ U,_i < Xt < Ui ] for the jth burst. '^ 

Po(°)* = P„/^) P„,(°) = (.001) (.017) c 0 

(0)* _ p    (3) p    (0)   ,   p    (3) „    (0)   ^  p    (3) p    (0) 
^1 — ^01        ^12 + *^11        ^02 + rii        Fi 2 

= (.001) (.92) -f- (.027) (.017) + (.027) (.92) = 0.026 , etc. 
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This yields the results in Table B-5. 

Table  B-5.   Parameters p/°^* for the Combined Bursts, Day 3 ( <o = 3 ) 

p (0)*     p (0)* (0)* (0)* (0)* (0)* 
TQ fi ^2 ra r4 ^5 

.000 .026 .146 .295 .376 .157 

Computation of the actual results is very messy (which is why we recommend the Pareto 
approximation). In order to form a basis for comparison, a simple statistical simulation was 
conducted, drawing 10,000 random coordinates from the target area independently for each burst. 
From this, we computed the empirical distribution of the probability density function for each burst 
(adjusted to day 3 using equation B-1 and the updating formulas in Appendix A), and the combined 
density for both bursts. The simulated values for the parameters Pj are provided in Table B-6. 

For comparison, we also calculated the results that would have been obtained if a simple 
uniform distribution within each category was assumed. The uniform single burst parameters were 
combined using the following rule: any previously injured (exposed) individual who receives a 
second, equal exposure (i.e., exposure within the same category) is advanced by one exposure 
category. Otherwise, the individual is placed in the higher of his first or second exposure category. 
This forms a reasonably good estimate of P,- , provided not too many individuals receive the 
same category of effect from both bursts (i.e., the decision rule is reasonably good provided P,i 
and P,-2 are reasonably dissimilar for each «). Different rules may provide a better fit (although 
we are not aware of any simple ones that are better); however, when we adjust the totals within 
each category to account for the processes of delayed injury and recovery, the uniform assumption is 
poor, regardless of the combination rules used. 

Up to this point, the uniform distribution assumption provides a reasonable fit to the actual 
Pj s because we do not rely very much on the actual distribution of doses received within each 
category. The combined parameters P,      for all three methods are shown in Table B-6: 

Table B-6. Parameters P^ for the Combined Bursts, Day 3 

Type Po Pi P2 P3 P4 P5 
Simulated .000 .005 .134 .311 .391 .159 
Pareto .000 .025 .154 .292 .383 .157 
Uniform .000 .000 .155 .290 .348 .157 

We next compute an empirical probability density function (pdf) for the combined bursts after 
30 days of simulation (27 days after the second burst). At this point, the Pareto approximation still 
provides a reasonable fit to the pdf, while the uniform distributional assumption provides a very 
poor fit to the pdf. The results are illustrated in Figure B-1. 
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Figure B-1. Simulated and Calculated Segments of the Radiation 
Exposure Probability Density Function (pdf) 27 Days 
After the Second Nuclear Burst 

This example demonstrates how some of the techniques discussed in this paper would be 
implemented. In actual simulations, we would want to include the process of latent injury as well as 
recovery and would provide algorithms for other effects, representing (at least) the dominant effect 
for each type of element (personnel and equipment) represented in the model. We would also adjust 
for protection faictors and aggregate these results into higher level unit totals. The effort involved in 
implementing these techniques lies in establishing the initial probability model, which primarily 
involves evaluating a few simple integrals. Once this probability model is established for the 
categories maintained in a particular model, the transition equations (such as found in Appendix A) 
can be coded into the simulation. The result should be an improvement in the representation of the 
status, over time, of elements in a theater simulation model; this improved representation should 
improve the fidelity of simulation results which depend upon the status of elements within each 
modeled unit. 
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