
Row.? 449 SOS SOFTWARE NERSUlffHENT RItNENTS(U) NALYTIC 1/2
SCIENCES CORP ARLINGTON YR 06 APR 69 TRSC-T-9023-1
SDIO64-66-C-001S

UNCLASSIFIED F/O 12/5S M

.ntI...rnomN~INf
Slflfllflfflofflfllflf

ImmhEmhEmhohhE
I IhEEmhEmhEshhI



19 V2 112.2
f1- OIM -

___ III2.0

1.25 1. 3 116

UTION TEST CHART



EILE..ce

1 00 Conracor) _ _



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

I Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASS IFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILABILITY OF REPORT

Approved for Public Release

2b. DECLASSIF:ICATION IDOWNGRADING SCHEDULE Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

TR-9033-1

6a. NAME OF PERFORMING ORGANIZATION |6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

The Analytic Sciences (If applicable) Strategic Defense Initiative Organization
Corporation (Prime Contractor) I

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

1700 N. Moore Street Room 1E149

Suite 1800 The Pentagon

Arlington, VA 22209 Washington, D.C. 20301-7100

$a. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

S t9 TAe9cfense Initiative [ (,fappicable)
Organization

Bc ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Room 1E149 PROGRAM PROJECT TASK WORK UNIT
The Pentagon ELEMENT NO. NO. NO ACCESSION NO.

Washington, D.C. 20301-7100

11. TITLE (Include Security Classification)

SDS Software Measurement Requirements (U)

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT
Technical FROM 5Dec88 TO 6Apr89 1989, April,6 90

16. SUPPLEMENTARY NOTATION Task Report No. TR-9033-1

Prepared by SPARTA, Inc, Teledyne Brown Engineering, and The Analytic Sciences Corporation

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD I GROUP j SUB-GROUP ioSDS SOFTWARE, EVALUATIONqMEASUREMENTTPROCESS, METRICS,
IMEASUREMENT PLAN Lc-, -c , 4 )

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
his report addresses the criteria for evaluation of SDS software and measurement requirements
y identifying the standards and attributes required for SDS software products and the software

development process. The identification of measurement requirements for SDS software was

erformed into three phases. The first phase was a review of standards and development process
relevant to SDS, as they pertained to software metrics. The second phase was a detailed
examination of SDS software characteristics, definition of software domains, and quality and
roductivity measurement requirements. The third phase integrated the measurement requirements

identified previously into a methodology for the application of software metrics. y,, .... .

he software measurement is defined as the act of capturing metrics and comparing them to
standards. A metric is defined as a quantitative standard of measurement used to represent

and compare some software process or product attribute. The primary objective of software
metrics is to predict, throughout the development phase of the software, the quality and overal
schedule and cost of the final product. (see reverse)

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION
03UNCLASSIFIEDOMMMt 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22b.(IrIude Area Code) 22c. OFFICE S /MB

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



19. ABSTRACT (continued)

The process was begun with the identification of potentially relevant standards and development
guidelines in order to define the software quality and productivity factors relevant to SDS

software. This identification spanned the software development life cycle from requirement

definition through operation and maintenance. The methodology requirements were then defined

for incorporation of software measurement into the software development process.



THE ANALYTIC SCIENCES CORPORATION

I
TR-9033-1

TASK ORDER 33
SOFTWARE MEASUREMENT

* PROCESS

SDS Software Measurement Requirements
* Technical Report

6 April 1989I
Prepared Under:

Contract No. SD1084-88-C-0018

I Prepared For:

I STRATEGIC DEFENSE INITIATIVE ORGANIZATION
Office of the Secretary of Defense
Washington, D.C. 20301-7100

Prepared By:

* DTIC
EECTE

SPARTA, Inc. 8% D
Teledyne Brown Engineering

The Analytic Sciences Corporation

I
THE ANALYTIC SCIENCES CORPORATION

1700 North Moore Street
Suite 1800

Arlington, VA 22209
!SNhIUT1014 SrT&EM A TwiA

*Approved for public isleczs TAC UAiRYI 1 OID!:brbutin 8U9mite 021 'q iS

II8 89 021 ' '



i5

THE ANALYTIC SCIENCES CORPORATION

I TABLE OF CONTENTS

*Page

LIST OF FIGURES v

EXECUTIVE SUMMARY ES-1

1 0.0 INTRODUCTION

1. IDENTIFICATION OF STANDARDS AND PROCESSES
FOR SDS PRODUCTS 1-1
1.1 Review of the Relevant Standards 1-1

1.1.1 SDIO Standards 1-2
1.1.1.1 Strategic Defense System Software Policy

and Management Directive No. 7 1-3
1.1.1.2 SDS Security Policy 1-5

1.1.2 DOD Standards 1-6
1.1.2.1 DoD-STD-480B, Configuration Control 1-6
1.1.2.2 DoD-STD-2167A, Defense System Software

Development 1-6
1.1.2.3 DoD-STD-2168, Software Quality Evaluation 1-10
1.1.2.4 DI-QCIC-80572, Software Quality Program Plan 1-10

1.1.3 MIL Standards and Policies 1-10
1.1.3.1 MIL-STD-1521B, Reviews and Audits 1-10
1.1.3.2 MIL-STD-1815A, ADA Programming Language

Reference Manual 1-11
1.1.3.3 MIL-Q-9858, Quality Program Requirements 1-11

1.1.4 Federal Aviation Agency (FAA) Standards 1-11
1.1.5 NASA Standards 1-12
1.1.6 NATO Standards 1-13

1.2 Integration of Software Metrics in the Software Development
Process 1-13
1.2.1 Application of Metrics to Software Development

Processes 1-14
1.2.2 Integration of Software Metrics in the WF Development

Process 1-15
1.2.3 Integration of Software Metrics in the RP Development

Process 1-15

2. PRODUCTS AND PROCESS ATITRIBUTES 2-1
2.1 Software Quality Factors 2-1

2.1.1 Performance 2-3
2.1.1.1 Reliability 2-3
2.1.1.2 Survivability 2-4
2.1.1.3 Integrity 2-5
2.1.1.4 Efficiency 2-5S2.1.2 Design and Adaptation 2-7

IRI
TA9 

II | 
"I



i THE ANALYTIC SCIENCES CORPORATION

I TABLE OF CONTENTS (Continued)

* Page

2.2 SDS Software 2-9
2.2.1 SDS Software Structure 2-9
2.2.2 Decomposition of Major SDS Functions 2-10

2.2.2.1 Detect 2-11
2.2.2.2 Identify 2-11
2.2.2.3 Track 2-12
2.2.2.4 Communicate 2-12
2.2.2.5 Assess Situation 2-13
2.2.2.6 Assign and Control Weapons 2-13
2.2.2.7 Guide and Control Weapons 2-14
2.2:2.8 Control Platforms 2-14
2.2.2.9 Simulate 2-14
2.2.2.10 Support Development 2-15
2.2.2.11 Support Acquisition 2-15
2.2.2.12 Support Management 2-15

2.3 Characteristics of Software 2-16
2.3.1 Criticality 2-18
2.3.2 Embedded vs. general purpose (real/non real time) 2-18
2.3.3 Space/Ground Based 2-19
2.3.4 fe cycle 2-19
2.3.5 Algorithmic Content 2-20
2.3.6 Size 2-20
2.3.7 Risk 2-20
2.3.8 Intended Use 2-21

2.4 Preliminary Requirements for Software Quality Domains 2-22
2.4.1 Detect Plumes 2-22
2.4.2 Detect Cold Bodies 2-23
2.4.3 RF Detect 2-24
2.4.4 Resolve Objects 2-25
2.4.5 Discriminate 2-25
2.4.6 Assess Kills 2-26
2.4.7 Correlate 2-27
2.4.8 Initiate Track 2-27
2.4.9 Estimate State 2-28
2.4.10 Predict Intercept and Impact Points 2-29
2.4.11 Interplatform Data Communication 2-29
2.4.12 Ground -Space Communication 2-30
2.4.13 Ground Communication 2-31
2.4.14 Assess Threat 2-31
2.4.15 Assess SDS 2-32
2.4.16 Assign and Control SBI Weapons 2-33
2.4.17 Assign and Control GBI Weapons 2-332.4.18 Guide and Control SBI Weapons 2-342.4.19 Guide and Control GBI Weapons 2-35

ISPARqTA

iii if u AY,jIX
"4 WTWO WTKA



3 ITHE ANALYTIC SCIENCES CORPORATION

I TABLE OF CONTENTS (Continued)

I Page

2.4.20 Command Environment Control 2-35
I 2.4.21 Control Onboard Environment 2-36

2.4.22 Command Attitude and Position Control 2-37
2.4.23 Control Onboard Attitude and Position. 2-37
2.4.24 Sense Onboard Status 2-38
2.4.25 Assess Status 2-39
2.4.26 Command Reconfiguration 2-39
2.4.27 Reconfigure 2-40
2.4.28 Development tools 2-40
2.4.29 Hardware-in-the-loop (HWIL) simulators 2-41
2.4.30 Demonstration Simulations 2-42

I 2.4.31 Support Development Test 2-42
2.4.32 Provide Development Environment. 2-43
2.4.33 Support Factory Test 2-44
2.4.34 Support Acceptance Test 2-44
2.4.35 Maintain and Control Management Information

Database 2-45
2.4.36 Management Information Tracking 2-45

2.5 Process Typing 2-46
2.6 Productivity Measurement Requirements 2-49

2.6.1 Prediction of Program Size 2-50
2.6.2 Estimation of Program Cost 2-52
2.6.3 Estimation of time to complete 2-54

3. METHODOLOGY REQUIREMENTS FOR SOFTWARE METRICS 3-1

3.1 Software Quality Specification 3-1
3.2 Software Domain 3-5
3.3 Metrics Scope and Phases 3-8
3.4 User Feedbacks. Accession For 3-9
3.5 Metrics Tuning l1TTS GRA-I 3-9

1 DTIC TAB 0
Unannounced 5I ~Justification ~II

By---- -Cori
Distribution/ sgpiCts

Availability Codes

jAyail and/or

Dist Special

4 I I I

iv DO S,

I A C



I
THE ANALYTIC SCIENCES CORPORATION

5 LIST OF FIGURES

Figure Page
No. No.

3 1-1 Software Acquisition Quality Metric Functions 1-8

1-2 Required Softward Standards by Prototype Class 1-19

3 2-1 Preliminary Requirements for Software Quality 2-47

2-3 Nominal Software Production Pattern 2-56

2-4 Nominal Computer Utilization Pattern 2-57

3 2-5 Nominal Software Change Pattern 2-58

3-1 Flow Model for Establishing and Applying the Software 3-6
Measurement Process

I
I
I

I
I
I
3

TRE
i USPAI TA-9, -AA



I
THE ANALYTIC SCIENCES CORPORATION

U EXECUTIVE SUMMARY

U Purpose and Scone

1 The work presented in this report was performed under Subtask 1 of Task Order 33

of the SDIO Systems SETA contract. The purpose of the subtask was to develop SDS software3 measurement requirements by identifying the standards and attributes required for SDS software
products and the software development process. SPARTA was the technical lead on the subtask,3 with support from Teledyne Brown and TASC.

The subtask was broken into three phases. The first phase was a review of
standards and development process relevant to SDS, as they pertained to software metrics. The
second phase was a detailed examination of SDS software characteristics, definition of software

domains, and quality and productivity measurement requirements. The third phase integrated the
measurement requirements identified previously into a methodology for the application of software

I metrics.

3 Standards and Process Identification

For purposes of this document, software measurement is defined as the act of
capturing metrics and comparing them to standards. A metric is defined as a quantitative standard

of measurement used to represent and compare some software process or product attribute. The
primary objective of software metrics is to predict, throughout the development phase of the
software, what the quality and overall schedule and cost of the final product will be. The process
was begun with the identification of potentially relevant standards and development guidelines.

Many were found to be of too high a level for specific guidance, or had no relevance to software

metrics technology. The ones which were found to most directly address metric requirements
were:

a) SDS Software Policy and Management Directive No. 7;

b) DoD-STD-2167A, Defense Systems Software Development;

c) RADC-TR-85-37, Vols. 1, 2, and 3, Specification of the
Software Quality Attributes.

GIPANVlAJ

ES-I W ",1 S-
I T 0 e mso



I
THE ANALYTIC SCIENCES CORPORATION

These documents formed the core of the analysis, as they most directly addressed3 the development process and the associated software attributes. Integration of software metrics
into the software development process was examined, including both the waterfall development

method and the rapid prototyping development method. While metrics integration with the

waterfall development method was relatively straightforward to define, integration with the rapid
i prototyping development method (itself not well understood) was not as complete.

Products and Process AttributesI
The second phase of this subtask was to define the software quality and5 productivity factors relevant to SDS software. This identification spanned the software

development life cycle from requirement definition through operation and maintenance. For the

quality factors, the thirteen factors identified by RADC were examined and analyzed for

applicability to SDS needs. Several were redefined or merged together, to give a new set of nine

quality factors. Productivity factors were also examined, with factors relating to schedule, budget,

and feedback for improvement. Primary sources for analysis were based on line of code estimates

for software components, or the identification of function points. Both quality and productivity3 metrics are believed to be much more accurate when applied against subsets of "like" software

(software domains). Accordingly, the SDS software functions were categorized and decomposed

5into 36 SDS software domains have distinct measurement requirements. Each domain was

described through the function implemented, its level of criticality, time constraints, location, size,

risk, use, and intended life cycle, as well as its quality attributes. This division served then as the

basis for further measurement requirements definition.

I Nlethodologjv Reguirements

3, The third phase of this subtask was to define methodology requirements for

incorporation of software measurement into the software development methodology. Four phases

of methodology were defined: specification, estimation, evaluation, and tuning. The specification

phase is perhaps the most difficult, requiring negotiation among developers, users, and contracting

agencies to set specific requirements. The estimation phase uses the appropriate metrics to obtain

predicted measures of product and process. Upon delivery, the user evaluates the actual product,

I
ES-2 "a ....... "DS'] g

I / 11 ! iOW rm SM



I
THE ANALYTIC SCIENCES CORPORATION

n and that evaluation is compared to the metrics predictions. Finally, the metrics are adjusted as

necessary to provide more accurate assessments for future developments.

ConclusionsU
There are several major conclusions from this subtask. The results of our review of

3 available standards revealed that formalization of the process of estimating quality by embedding it

in the development process is not well-defined. Rapid prototyping, in particular, must be directly

addressed. For the waterfall development, we identified the incorporation process. We proposed

a modified set of quality factors tailored to SDS requirements, reducing metric application

requirements while targeting specific needs. We developed a methodology for setting quality

factors based on SDS software characteristics. The SDS software was decomposed into 36

software domains for purposes of measurement application. We described the concept of

software level to determine the extent of software metrics application. We identified promising

productivity metrics, which appear applicable to the SDS software domains. We also developed a3 four phase methodology requirement of software metrics application.

One major open issue is the establishment of procedures for audit and review

activities for the rapid prototype development process. After that is complete, then software

metrics application can be integrated with it. A formal methodology for rating quality must be

3 developed. Without that, unstable metrics models can result. Also, a formal methodology to
"tune" metrics models must be defined. This includes developing formal quality rating criteria, as

3 well as guidelines for modifying scores. Without this definition, attempts to "trade off" one quality

factor against anot!er are not likely to provide the desired results. Finally, software reuse must be

aggressively encouraged. Software metrics can provide estimates of software reusability, which

can be compared with actual reuse, providing a measure of one of the most promising sources of
g cost/schedule redirection.

To It
ES-3 "4KfMWM1V

IT1



I
THE ANALYTIC SCIENCES CORPORATION

E 0.0 INTRODUCTION

I Section 1 of this document defines generic SDS software development processes which integrate

software metrics technology with existing development and auditing standards. Section 2 specifies

the methods for tailoring the software development process to specific software products and

process attributes. Section 3 describes a methodology for defining and monitoring quality and

productivity requirements for SDS software, and for establishing feedback paths for validating and

tuning the metrics.

N The primary objective of the metrics is to predict, throughout the development

phases of the software, what the quality and the overall schedule and cost of the final product will

be. In most practical cases, however, very little correlation has been consistently demonstrated

between the software quality and productivity attributes as predicted by the metrics, and the real

world data which are represented by the user perceived quality of the final product and the actual

schedule and cost incurred. It must be realized that such weaknesses can not be easily and

immediately overcome. The methodology which is proposed addresses these concerns and

identifies three methods for improving the effectiveness of the current metrics. The methodology

3 is to a great extent based on the RADC methodology which is described in "Specification of

Software Quality Attributes", RADC-TR-85-37, Vols 1, 2, and 3. Several important modifications

have been proposed to that methodology, which include:

a) Simplification of the existing metrics structure and redefinition
* of some rating assessment criteria,

b) Development of a taxonomy of software products and processesg for identifying distinct software domains, and

c) Definition of user feedback paths and criteria so that the models
can be continuously tuned, during the life cycle of many SDS3 software products.

3 Only those aspects of the RADC methodology that we propose modifying are

discussed here. For a comprehensive treatment of the topic, see the complete set of reports

3 referenced above.

• • m fm TO W|



I
THE ANALYTIC SCIENCES CORPORATIONI

E1. IDENTIFICATION OF STANDARDS AND
PROCESSES FOR SDS SOFTWARE PRODUCTSI

Government and industry standards have been identified and reviewed with the purpose of

defining generic development processes, including all required auditing activities, for SDS
software. The metrics technology is then synergistically integrated with such processes. The3 metrics are intended to complement, not replace, the existing quality and productivity auditing

requirements.

U The two principal methodologies for SDS software development are the classical

Water Fall (WF) method and the rapid prototype (RP) method. The WF method, where

development proceeds through several well-defined phases, is well developed and understood and

it is supported by a wealth of standards and other documentation, which include precisely defined

review processes. The RP method was only recently introduced. It has generally received good
acceptance, but it is not as well understood and supported by proper documentation, as is the WF

method. The DoD-STD-2167A explicitly identifies these two methods as acceptable development

methods for DoD software, although it does not exclude other methods.

I Subsections of this section describe:

5 a) the standards which have been reviewed;

b) development processes which integrate quality and
productivity metrics with existing auditing activities.

I 1.1 REVIEW OF THE RELEVANT STANDARDS

The standards which have been analyzed include:

a) SDIO Standards and Policies including: SDS software
policy, Management Directive No. 7, and SDS security3 policy;

b) DoD Standards and policies including: DoD-STD-480, DoD-
STD-2167A, DoD-STD-2168, DI-MCCR-80025A, DI-
MCCR-80026A, DI-MCCR-80027A, DI-MCCR-80029A,
DI-MCCR-80030A, DI-QCIC-80572, and DoD-5000.3;

I~ AITA9!c A;
USA

MM"Mvrl To 0*O



I
THE ANALYTIC SCIENCES CORPORATION

I c) MIL Standards and Policies including: MIL-STD-470, MIL-
STD-471, MIL-STD-481, MIL-STD-490, MIL-STD-499,
MIL-STD-785A, MIL-STD-882A, MIL-STD- 1521, MIL-
STD-1815A, MIL-STD-52779A, MIL-F-9490, MIL-Q-
9858;

d) Federal Aviation Agency (FAA) standards;

e) NASA standards;

i f) NATO standards;

g) Industry Standards and Policies including: IEEE, ACM;

h) System Engineering Management Guide;

3 i) Test and Evaluation Master Plan;

j) Current SDS software development contracts.I
Most of the standards have been found to have minimal or no relevance at all to3 software metrics technology. These standards are not further described. The standards which

have been found of relevance relative to the inclusion of software metrics within the development3 process of SDS software are briefly described and critically reviewed. Gaps, redundancies and

other weaknesses are identified.

I.I. I SDIO Standards

.Strategic Defense System Software Policy and
Management Directive No. 7

5 The SDS Software Policy and the associated Management Directive No. 7 is a broad outline of

general guidelines and specific requirements to be applied to all SDS software systems to be
I developed, and in particular to the development, integration, operation and support of mission-

critical software. As such, it attempts to address the requirements of a software engineering

environment that would promote "software reliability, correctness, security, interoperability,

portability, maintainability, and usability throughout the system life cycle." These requirements
outline a framework for employing advanced software engineering practices.

ZZZZZPAM

U1-2 WW W%



I
THE ANALYTIC SCIENCES CORPORATIONI

I The primary vehicle of the requirements is to call out specific software engineering

goals and provide the implementation details in the form of references to specific government

standards and publications (e.g. DoD-STD-2167A, DoD-STD-2168, etc.). In general, analysis of

many of the referenced documents is performed elsewhere in this document and will not be3 covered here.

One referenced document that has been scrutinized for both discussion here and
elsewhere in this document is the Institute for Defense Analysis (IDA) paper P-2018, "Guidelines

i for Tailoring DoD-STD-2167 for SDS Software Development."

Prototyping has clearly been shown to be a critical step in developing complete and

accurate requirements for major (and therefore expensive) software systems. SDIO has officially

supported this cost effective and timely approach to developing requirements in both the
Stechnology areas and Demonstration Validation (DemVal) phase. One of the fundamental reasons

for modifying DoD-STD-2167, "Defense Systems Software Development," was to allow for£ prototyping to be incorporated in the system development life cycle. Unfortunately, the revised

standard DoD-STD-2167A does not present a discussion or guidelines for a rapid prototyping

process model. This is left to the contractor for incorporation into a particular program's Software

Development Plan.

5 Aside from specific areas in Management Information Systems, rapid prototyping

has not received the level of scrutiny and analysis given the more traditional waterfall model. The

IDA paper mentioned above does present a prototyping process model for incorporation in the

DoD-STD-2167 life cycle model. It is not, however, a MIL-STD or management directive.

I Rapid prototyping deserves a more in depth treatment and, in particular,

development of a Government approved standard of requirements. Measurement requirements
should be considered for inclusion in this stnadard. Further discussion of the integration of
software metrics in the rapid prototyping development process is covered in section 1.2.3.

Other than the referenced documents, specific requirements of the SDS Policy and

I Management Directive call out additional procedures to be followed during development and the
desired goals to be achieved. The requirements generally do not specify individual measurement

1-3 7W A



I

THE ANALYTIC SCIENCES CORPORATION

1requirements to be levied against the software development process or resulting products. Some of

the requirements do, however, clearly indicate that measurement requirements should be, or in

some instances, must be developed in order to accurately assess conformance. In other

requirements, measurement requirements could be levied to assist in achieving the stated goals.

In particular, the following requirements (as stated in Section D of the Management

I Directive) were considered for derivation of specific measurement requirements.

Requirement 2, Prototyping, states that an incremental prototyping approach should

be encouraged in order to facilitate early detection of errors, quick validation of requirements and

timely determination of feasibility. The principle of "build a little-test a little-learn a lot" is

emphasized. In an attempt to "learn a lot," measurement requirements levied against the iterative
phases of the prototyping model (as detailed in IDA Paper P-201, "Guidelines for Tailoring DoD-

STD-2167 for SDS Software Development"), measurements of incremental size and complexity as

well as reliability and performance could provide early insights into determination of feasibility.I
Requirement 3, Supportability, calls for a plan to address support for both3 operational and support software, procedures used for software operation and maintenance,

growth patterns to accommodate lessons learned and technological advances, among other items.

This plan must also include specific supportability criteria used to evaluate software to assess

compliance with supportability requirements. Specific measurements dealing with usability,
interoperability, maintainability, etc. could be incorporated as part of the supportability criteria.

Requirement 4, Risk Reduction, calls for several actions to be incorporated in the

Ssoftware development and program management plans in order to minimize the risk associated with

a development effort. In particular, this requirement calls for a software failure mode, effects and

I criticality analysis such that the appropriate actions can be taken to ensure a successful software life
cycle. Specific software reliability measurement requirements should be levied against each of the

life cycle phases.

Requirement 9, Portability, outlines specific goals that must be achieved with

respect to the ability to port delivered software across computational environments. Measurement

TASC AM

*1-4 VA9OM A A

!aom OW



I
THE ANALYTIC SCIENCES CORPORATION

Irequirements levied against early phases of development therefore may assist in avoiding potential

redesign and recoding late in the development life cycle.

Requirement 10, Testing, calls for a testing strategy for detecting errors in3 requirements, designs, and code in addition to identifying the need for metrics to predict, estimate,

and evaluate critical software quality attributes at each software development stage. To some

degree, the above requirement could be viewed as a high level measurement requirement.

However, it allows the contractor to select the measurements to be applied. More specific

measurements could be specified to provide for a more uniform application of metrics and provide

for a more meaningful interpretation of the results (with respect to similar development efforts).

Requirement 11, Reuse, calls for the establishment of a controlled repository for

software in order to promote reuse. Contractors must evaluate software available for reuse3 including a review of the values for pertinent software quality factors. In addition, RFPs will

identify components to be developed that may be included in the repository. Past history has5 shown a reluctance towards reuse of components developed outside of the development

environment where it could be used. This is due in part to the risk incurred in using components
whose quality attributes are unknown or unreliable. There is a clear need to establish uniform

measurement requirements to be applied against components being considered for inclusion in a

code repository or reuse library.

1.1.1.2 SDS Security Policy

3 This policy, as stated in CDRL J001 for TASK 6.6 of the SDI System Architecture and Key
Tradeoff Study, Phase IIC, under contract number MDA 903-85-C-0064, outlines the rules and3guidelines for the development and maintenance of information systems' security. This document

sets forth thirty five specific policy statements which cover computer security, communications3 security and those aspects of physical, administrative, personnel, operations and emanations

security that pertain to the protection of information within the system.

IThese policy statements address the high level needs for security through the SDS
Development Phases (Research, DemVal, Full Scale Development (FSD),

Production/Development, and Operations and Maintenance). However, they do not directly levy
specific requirements against specific SDS components. Their primary use would be to assist in

1 1-5



I THE ANALYTIC SCIENCES CORPORATION

deriving security requirements for a specific program. Indirectly, policy statement thirteen calls for

the enforcement of life cycle assurance provisions and policy statement seventeen calls for security

relevant and mission critical elements to be verified. In addition, policy statement twenty four calls

for secure, fail-safe, and fault-tolerant information systems to be used during launch of SDS
components.

3 The above statements, however, do not provide direct metric requirements against

specific software components. They can be used as general guides in selecting the appropriate

* measurements.

3 1.1.2 DOD Standards

Only a few DoD standards have been found to have any significant impact relative to the

application of metrics to the software development environment. Those standards are discussed in
the following paragraphs of this document.

1. 1.2.1 DoD-STD-480B, Configuration Control

3 This standard establishes the requirements, formats and procedures for maintaining and

documenting configuration control of all configuration items (software and hardware), and for5 controlling the Engineering Changes Proposals, Deviations and Waivers, Revisions and Changes.

The standard does not have direct implications on Software Quality or Productivity.

3 1.1.2.2 DoD-STD-2167A, Defense System Software
Development

I The DoD-STD-2167A, Defense System Software Development, is the standard most relevant to

software metrics. DoD-STD-2167A establishes the requirements for software development which3 are applicable throughout the system life cycle. The standard was updated in Feb. 1988. The

major motivating issues for updating the standard were the following:

U a) Removal of the restrictions on development methodologies.
The new version explicitly states that the contractor is
responsible for selecting development methods, like the RP.
It removes top-down, and the sequential development
phasing implications, as the default methodology;

I
~~JSART5 I -6a



I
THE ANALYTIC SCIENCES CORPORATIONI

3 b) Removal of excessive "How To" requirements like the use
of structured analysis tools, top-down design methodology,
Program Design Languages, etc.;

c) Encouragement of development and use of reusable
software;

d) Removal of language specific terminology so that
incompatibility with Ada are removed.U

The DoD-STD-2167A requires the contractor to specify a software development

i process which supports all the formal reviews and audits which the contract requires, and which

must include the following major phases:

5 System Requirements Analysis/Design

* Software Requirements Analysis

I Preliminary Design; Detailed Design

5 • Coding and CSU Testing

* CSC Integration and Testing

3 * CSCI Testing

* System Integration and Testing

These System Development Phases are shown in Fig. 1-1, Software Acquisition

Quality Metric Functions. Such activities may overlap, and may apply iteratively or recursively.
The DoD-STD-2167A requires that reviews and audits be consistent with the guidelines provided3 in MIL-STD-1521B, which is discussed later in this document.

I
I

I

3To-I4 P I a I



* THE ANALYTIC SCIENCES CORPORATION

$D5R SMR

SYSTEMSISOFTWARE WREQUIREMENTS
REQUIREMENTS ANALYSIS ANALYSIS D

SOFTWARE PRESIINAR CDR
DEVELOPMENT DSGI

CYCLEv DEAIE
DESIGN

CODING AND
UNIT TESTING

CSC INTEGRATION
AND TESTINGJ

TTR PCA/FOR

CSCI -LEVEL

TESTINGI

SYSTEM
INTEGRATION

EXISTINGAN 
TESTING

SOFTWARE _____

MANAGER SPECIFYING MONITORING1 FUNCTIONS

SPECIFYING MEASUREMENT
REQUIREMENTS

*IDENTIFYING QUALITY AND
PRODUCTIVITY FACTORS TO BE
INCLUDED

*DETERMINE REQUIREDIDESIRED GOALS
FOR EACH

-SELECTION OF APPROPRIATE METRICSI AND TOOLS

SOFTWAREI ~ ~~~FUNCTIONS_________________

CORRECT DEFICIENCIES

Figure 1-1 Software Acquisition Quality Metric Functions M8=202 o

"Il .FTGMTO ETA TL1M



I
THE ANALYTIC SCIENCES CORPORATION

3Figure l-I refers to the WF development model, and it defines reviews at the end of

all major development phases. Review activities include:

a) System Requirement Review (SRR), at the completion of the
System Requirement Analysis;

b) System Design Review (SDR), at the completion of the
system design. these first two phases are often considered3 part of the system, rather than software, life cycle;

c) Software Specification Review (SSR), at the completion of
the software requirements analysis. SSR is generally
considered the first review within the software life cycle;

d) Preliminary Design Review (PDR), at the completion of the
software preliminary design;

e) Critical Design Review (CDR), at the completion of the
software detail design;

f) Test Readiness Review (TRR) at the completion of the CSC
integration and testing;

g) Functional Configuration Audit (FCA), at the completion of
the CSCI testing;

h) Physical Configuration Audit (PCA) and the Formal
Qualification Review (FQR), at the completion of the system
integration and testing. FQR is considered outside the
software life cycle.

I The DoD-STD-2167A defines the high level activities which must be conducted in
each development phase; examples are: the software development plan, the interface requirements3 specifications, etc. It also defines a common set of evaluation criteria which apply to all items to be

evaluated. Typically a subset only of the criteria apply to each item. The evaluation criteria are the

3 following.

a) Internal Consistency;

b) Understandability;

I c) Traceability to the indicated documents;

d) Consistency with the indicated documents;

Tow

TAISC AM~t
S1-9RA COKAT .. .... OI/ R



U THE ANALYTIC SCIENCES CORPORATION

I e) Appropriate analysis, design, or coding techniques used;

f) Appropriate allocation of sizing and timing resources;

g) Adequate test coverage of the requirements.

Many of these criteria are included among the measurands which contribute to the scoring of

software metrics. The example also indicates the role of the Software Measurement Process in the

timeline of the system acquisition process.

3 1.1.2.3 DoD-STD-2168, Software Quality Evaluation

The standard describes the requirements for the development, documentation, and implementation

of a software quality program, including conducting evaluations of the quality of the software.
The Data Item Description (DID) applicable to this standard is DI-QCIC-80572. As with DoD-3 STD-2167A, this standard is designed to be tailored for each contract. The standard does not
address the specific quality requirements which must be addressed and demonstrated during the3development process. Such requirements are addressed in MIL-STD- 152 1B.

3 1.1.2.4 DI-QCIC-80572, Software Quality Program Plan

This Data Item Description, Software Quality Program Plan, identifies the procedures to be used3 by the contractor to perform and document the activities related to the Software Quality Program

specified in DoD-STD-2168. The DID, however, describes those procedures at so high a level that3 it does not affect software metrics.

1.1.3 MIL Standards and Policies

1.1.3.1 MIL-STD-1521B, Reviews and Audits

I This standard prescribes the requirements for the conduct of technical reviews and audits on

Systems, Equipments, and Computer Software. They include: SRR, SDR, SSR, PDR, CDR,3Test Readiness Review (TRR), Functional Configuration Audit (FCA), Physical Configuration

Audit (PCA), Formal Qualification Review (FQR), and Production Readiness Review (PRR).3 This standard must be tailored to the specific contract requirements. The software quality factors'

requirements of each CSCI are reviewed during the SSR. The software quality factors are not

5 discussed in any detail, however.

-SPARA

1-10W MAWI WIOWoa



I

THE ANALYTIC SCIENCES CORPORATION

1.1.3.2 MIL-STD-1815A, ADA Programming Language3Reference Manual

This standard establishes the specifications of the Ada language. Compatibility with Ada3 terminology and structures was one of the motivators for updating the old DoD-STD-2167. No

significant direct impact on software metrics requirements have been found as a consequence of3 the identification of Ada as the standard SDS software language.

1.1.3.3 MIL-Q-9858, Quality Program Requirements

This standard, Quality Program Requirements, refers to the organizational requirements of a3 Quality Program, and it specifically addresses hardware considerations. It does not impact

software quality metrics.

1 1.1.4 Federal Aviation Agency (FAA) Standards

3 The FAA is the Government agency with the responsibility of certifying the airworthiness of civil

aircraft. The FAA issues Federal Air Regulations (FAR) which establish broad guidelines for the

3 development, verification and certification processes. Details are covered in Advisory Circulars

(AC) which in turn reference specific documents which are typically generated by industry3 consortiums. One of these documents with considerable relevance to this study is the Radio

Technical Commission for Aeronautics (RTCA) Document No. RTCA/DO-178A, March. 1985,
titled "Software Considerations in Airborne Systems and Equipment Certification". The document

is referenced by AC 25.1309-1 (Airplane System Design Analysis), and deals with the

development, verification and validation process of flight software. The document has provided3 the guidelines for the certification of the latest generation of aircraft with digital flight control

systems.I
During the preparation of the document, techniques were examined for estimating

the post verification probabilities of software errors and therefore of the resulting operational

failure rates. The objective was to develop numerical targets for maximum failure rate as a function

of the criticality of the system. The conclusion reached, however, was that the current level of

technology could not develop those estimates with the required level of confidence. As a result the

document did not address numerically expressed reliability targets.

USA3 1-11 N =. !



I
I THE ANALYTIC SCIENCES CORPORATION

I
The document outlines a software development process which is consistent with the

WF model described in the DoD-STD-2167A. The DO-178A model, similar to the DoD-STD-
2167A model, needs to be tailored to the specific requirements of the application, specifically its3 criticality. For this purpose, three levels of criticality were identified: critical, essential and non-

essential. The corresponding software was identified as being of Level I (the most critical), Level3 2, or Level 3. The determination of the criticality is negotiated during the earliest phases of system

definition, among all parties involved, including the certification agency, the avionics manufacturer

and the airframer. The implications of the criticality classification are extremely important because

the development effort required, and therefore the development cost, is much higher for moreg critical software than it is for less critical software.

It is very cost effective to apply the concept of software levels to SDS software. By3 doing so, the development of software which is not critical can be scaled down, while the
development of more critical software requires correspondingly more formal, stringent and3 elaborate, and therefore more costly, development strategies. The following must be defined:

a) The levels for SDS software, as a function of the criticality
and possibly of other factors such as size, complexity and
cost;

b) A methodology for establishing the level of criticality of a
software product;

c) The level of development, auditing and reviewing effort,
including software metrics, which is appropriate for each
software level.I

1.1.5 NASA Standards

The only NASA-wide standard on software development was developed in 1976, and is applicable

to mission critical flight software. The standard is very high level (six pages) and seldom used.
Currently, each NASA project publishes its own standards, which typically are quite good and
reflect current accepted software engineering practices. As an example, NASA/Goddard has

developed its own standards for the development of ground based software. The NASA Space

/-PARTAJ

CSA
I 1-12 / OMMT



THE ANALYTIC SCIENCES CORPORATION

I Station program has also developed a set of standards for software development. They are not yet

available for review.

1.1.6 NATO StandardsU
NATO has not published a standard for software development. A document is soon to be3 published by the Working Group #8 of the Advisory Group for Aerospace Research and

Development (AGARD) relative to software development. It includes a description of the

software development process which is consistent with the WF model of the DoD-STD-2167A

(although a brief reference to the RP model is also made), the supporting methodologies, and the
required documentation. Reference is made to DOD-STD-2168 relative to quality requirements.

but no reference is made to metrics technology. No NATO standard or publication was identified
which has significant effects on metrics technology.

I 1.2 INTEGRATION OF SOFTWARE METRICS IN THE SOFTWARE
DEVELOPMENT PROCESS

The two processes which are best suited for SDS software development are the WF and RP
models. Other development process models exist, in addition to the WF and RP. They are all,

however, derivatives and/or combinations of these two primary models. An example is the Spiral
Model (SM) which is an iterative development process which may include both the WF and RP
models for supporting different development phases of system components depending on the

estimated technology risks. The inclusion of a Risk Analysis (RA) in the development process is
an important component of the SM. High risk items need to be resolved at the earliest phases of
development to prevent costly bottlenecks in the later phases. The SM model can be adjusted for3 accommodating the development of products with different technology risks; RA can and must

also be included in the WF and RP models. [IDA PQ018]

I The auditing, review and software metrics requirements of only the RP and WF
models are discussed in this document. The corresponding requirements of other development

processes can be developed from these two requirements.

I

1-13 
n"

Im'i oV



I
THE ANALYTIC SCIENCES CORPORATION

1 1.2.1 Application of Metrics to Software Development Processes

5 An extremely important and traditionally overlooked requirement of metrics is the need for
meaningful results early in the development process. Statistics gathered on software development

Sfor several complex weapon systems have shown that approximately 70% of all "software errors"

actually occur early in the development cycle, but are not detected soon enough, and propagate into3 software production, deployment, and operation. The impact of this delay is typified by enormous
overruns, large slips in schedules, and systems delivered with less than the required capability.
Some of the causes of this situation are improper flow-down of requirements to design to code,

inadequate integration of modifications during development, and incomplete development testing.
Correction of software problems often cost more than the development cost of the original software
involved because of extensive de-bugging, replanning, redevelopment and revalidation.

An important consideration, then, is to make sure that metrics are identified that
give early insight into requirements generation, preliminary design, detailed design, test3 requirements, interface requirements, and so on. This is especially true for the Waterfall

development, since code is not developed until significant amounts of development funds have
been spent. Metrics that have been shown to have moderate to high precision and accuracy, such

as McCall and Matsumott, various linear regression techniques, and analyzers such as McCabe's
Cyclic, have little to moderate use during the requirements phase when assessment is most needed.
Careful attention to this problem leads to selection of other metrics that can be used at the top of the
Waterfall. Examples are the extraction of metric data from requirements generation tools, such as

Technology for the Automated Generation of Systems (TAGS), and even from formal document

review results.

In the case of rapid prototyping, the inherent advantage exists of early development
of code, implementation of interfaces, and testing, so that quantitative measures can be utilized

early enough to indicate how to avoid problems rather than where problems exist and need to be
fixed. Many metric techniques should lend themselves to Initial and Advanced Prototypes, as well
as Full-Scale Development. Techniques should also be defined to address Concept Formulation
phase as well.

I SI A

31-14 V M" T U

GON= O!



I
THE ANALYTIC SCIENCES CORPORATION

1 1.2.2 Integration of Software Metrics in the WF Development Process

I The DoD-STD-2167A, as previously stated, does not enforce the WF development method as a

standard, but also encourages other development models, like the RP. The entire methodology

described in the DoD-STD-2167A, however, is consistent with the specify, then design, then
build, then test, document driven, WF model. The WF model progresses from one phase to3 another in an orderly and predictable fashion. The review and audit activities are then scheduled at

the end of each phase, according to the scheme described in section 1.1.2.2. Software metrics

review activities should occur concurrently with the review and audit activities. Software metrics

review can be effectively integrated with the auditing reviews as they are outlined in the DoD-STD-
2167A, at least relative to the WF development processes. The scores of each metric can be
reviewed as a part of, and concurrently with, the corresponding audit activities. This approach
minimizes the cost of the review process, prevents duplication of tasks, and provides a more5 complete overall assessment of progress, which neither the audit activities alone, nor the metrics,

could otherwise provide. Furthermore, the approach provides some feedback paths early in the3 development process, to tune the metrics, by measuring the correlation between metrics scores and
the outcome of the audit activities specified in the DoD-STD-2167A. These early feedback paths,
and most importantly the paths at the end of the development phases, are important elements of the

proposed methodology, and are further discussed in later sections of this document.

1.2.3 Integration of Software Metrics in the RP Development Process

A development approach based on the RP model has the promise to be very effective, at least in

some applications. The specification of the requirements of a large system is a most complex and5challenging task, which until recently has not been supported by well developed methodologies.

Direction for Software Development using an RP process is provided in the draft Guidelines for
Tailoring DOD-STD-2167A for SDS Software Development. The RP model, as defined in the

guidelines, provides the user with the capability of interacting with embryonic implementations of

the requirements, very early during the development cycle, so that any inconsistency,
incompleteness, or misinterpretation of the requirements can be identified and corrected. A
prototype is built after a minimum effort is spent for developing the requirements and the design3 specifications. The RP approach is best suited for resolving high risk items, like communications

SPARTA

I ASC At
15SRC,

1-15 W tUr



I
THE ANALYTIC SCIENCES CORPORATION

I within a distributed architecture, and complex user interfaces. The prototype implementation must

be very flexible so that it can be easily modified.

The RP process may either produce a throw-away model which only supports the

early phases of the development process (the acronym of that process is TA-RP) or may produce a

model which is evolutionary during the entire development process (E-RP). In the latter case, each

successive design and implementation version includes an increasing number of functional

specifications and design details. In either case, the process benefits from the active participation

of the User who has the opportunity to gain a better understanding of the requirements, and to

communicate them directly to the system designers. The interaction with the User in these early

development phases, is a most noteworthy characteristic of the RP process.

The TA-RP process implies the development of a prototype version of the system3 for the purpose of refining the User requirements and/or resolving high risk, critical design

specifications. The useful life of the prototype ends when the objectives have been achieved.3 During its useful life the prototype supports the System Requirements Analysis/Design and,

possibly, the Preliminary Design, limited, of course, to the scope of the prototype. The prototype

must then support the corresponding audit and review activities, including SRR, SDR, SSR and

PDR. Software metrics must be concurrent to, and synergistic with, such activities. The

remaining development phases are supported by the WF model, and the corresponding audit and

review activities, and the software metrics are consistent with that model.

3 The E-RP model is a continuous, iterative process which is repeated several times.

Every new cycle implies the development of a prototype which satisfies an increasingly refined set

3of requirements, and enhanced design and implementation.

The insertion of the metrics technology within an RP driven development process is
a difficult task because little or no guidance is available. The RP model is more recent and less

understood than the WF model, and is not supported by clear and precise guidelines relative to

activities and documentation requirements. The establishment of review and audit activities for the

E-RP process presents unique challenges. For example, the phasing process from the RP to the3 WF model, as the specifications get more and more complete and understood, is not adequately

described in any standard, military or otherwise. The resulting difficulties apply not only to the

" F.

1-16 (.
3 TO i i



I
* THE ANALYTIC SCIENCES CORPORATION

1 application of metrics technology, but also to the definition of products, of review and audit
activities, and of documentation requirements.

Recently, the SDS System Engineer (SE) has been tasked with developing a3 prototyping model and methodology along with associated standards and guidelines. These

guidelines are to be incorporated into a Computer Resource Life-Cycle Management document due3 for external review in the June 1989 time frame. They intend to follow up with a white paper on
prototyping methodology in mid to late summer 1989. It is unclear, at this point, what will be5 included in this report.

In a technical interchange meeting, the SE presented a preliminary prototyping

model. The model is currently only described at a very high level with minimal detail regarding
specific application of the model and associated requirements.

The approach of the SE prototyping model emphasizes an incremental development
via iterative refinement and includes formal control mechanisms. Each iteration results in a

specified degree of functionality (baseline). Although this closely parallels the Evolutionary Rapid
Prototyping (E-RP) model presented earlier, the primary goal of the SE model is correctness of
requirements. Once the requirements have been completed, the prototypes are discarded and a

formal software development cycle begins (they did feel that some code, at the lower levels, could

be reused). The E-RP model discussed earlier assumes that, depending on the level of review and
audit activities employed during the development, some significant portions of the prototype could

be migrated into the production development. The SE asserts that the role of prototyping ends with

the completion of the DemVal phase.I
The SE model is very similar to a spiral model of S/W development where each

* iteration follows four steps:

1 ) Determine objectives/constraints

2) Experiment/demonstrate/test

3 3) Assess risk/evaluate alternatives

4) Refine/define specifications

UpSA

1-17 OCA ? P

I



I
I THE ANALYTIC SCIENCES CORPORATION

I
Each iteration results in an incremental build (PI,P2,...Pn) of the software and the

associated requirements. This process continues until "some point" at which full scale

development may begin. The SE did not quantitatively define the "point" at which the prototyping3 is complete, nor did they present a methodology for measurement of progress through iterations.

g The SE model proposes four classes of prototypes:

1) Proof of Concept - used to prove technical feasibility of a
new technology in order to reduce risk

2) Requirements Definition/Clarification - used to define/clarify
requirements that are unknown, vague or unclear

3) Design/Implementation Refinement - used where
requirements are known but implementation
methodAechnique is uncertain or altemate approaches exist

4) Product Approximation - used as a model of the final
software product

The SE has provided a proposed mapping of the four classes of prototypes to the5 recommended required software standards (see Figure 1-2).

I
I
I

I~~~TS "I1 f. o° s I



I
THE ANALYTIC SCIENCES CORPORATION

PROTOTYPE CLASS

DATAITEMS 1 2 3 4 COMMENTS

SOFTWARE DESIGN DOCUMENT (SDD) X X X X TOP LEVEL FOR 1 & 2
VERSION DESCRIPTION DOCUMENT (VDD) X X
SOFTWARE TEST PLLAN (STP) X
SOFTWARE TEST DESCRIPTION (STD) X
SOFTWARE TEST REPORT (STR) X X X X PROTOTYPE REPORT

FOR 1,2 &3
SOFTWARE PROGRAMMERS MANUAL (SPM) X
SOFTWARE REQUIREMENTS SPECIFICATION (SRS) X X X X
INTERFACE REQUIREMENTS SPECIFICATION (IRS) X X X
INTERFACE DESIGN DOCUMENT (IDD) X X
SOFTWARE DEVELOPMENT FOLDER (SDF) x x x x ENGINEERING NOTEBOOK

FOR 1, 2, & 3

ITEM TOTAL (4) (5) 1

CLS =POFOF CONCEPT CLASS 3:= DESIGNIIMPLEUENTATIO4 REFINEMENT
CLASS 2 = REQUIREMENTS DEFINITION CLASS 4= PRODUCT APPROXIMATION

U 03891002-003

Figure 1-2 Required Software Standards by Prototype Class

The SE did not provide definitions or proposed tailoring for the required documents

(however, the SE indicated this would be forthcoming in the Computer Resource Life Cycle

Management document). They also did not propose any recommended software measurements to

be used during the prototyping process.

3 It is clear that in order for this proposed prototyping model to fulfill its stated

objective of "reduction of risk and cost" it must include a specific measurement approach as part of

the iterative development methodology, without which selection of specific metrics and their

associated insertion points into the development process would be very difficult and probably

would be of limited value.

I
f , P"A.JD

TA C AIDI



I

I THE ANALYTIC SCIENCES CORPORATION

I 2. PRODUCTS AND PROCESS ATTRIBUTES

I Section 1.2.2 discusses a generic methodology for inserting metrics technology in the SDS
software development process. That methodology must be tailored to the specific characteristics of

Seach product (software typing) and of each development process (process typing). A most critical
step of this process is to assign the proper software quality attributes to each software product. We3 started this study by analyzing the suitability of using the hierarchical framework of quality

attributes developed for RADC, and which is also referenced in the SDS TEMP document. During

our study we found that the RADC framework is excellent. We identified, however, several areas

of improvement which are consistent with the pragmatic objectives of this project. The proposed
changes decrease the total number of quality attributes from thirteen to nine. The definitions of
reliability and efficiency have been considerably modified to better reflect the user concerns in that

areas. New measurands must be developed which are consistent with the new definitions.

2.1 SOFTWARE QUALITY FACTORS

The set of software quality factors spans the life cycle from requirements definition through

development and test and the maintenance and modification of operational software. In the
requirements phase, software quality is assured by 1) verifying traceability from system

requirements to software requirements, 2) expansion of software specific performance

requirements such as port-to-port timing and accuracy and operational requirements such as

reliability, availability and survivability, and 3) allocation of these requirements to CSCIs, CSCs

and CSUs appropriate to the functional hierarchy and the nature of the software process. In the

development phase, software quality is enhanced by the use of a user-friendly software
development environment that provides developer and tester access to data required for their3 function including appropriate requirements, data interfaces for each task whether it is development

of CSUs, Unit testing, integration into CSCs/CSCIs and testing. The software development

3 environment should:

a) enforce development standards;

b) provide metrics for managing development progress;

c) provide configuration management throughout the multi-user
development process;

STSPARTA
2-1 " MA=W tI" T , '



I
THE ANALYTIC SCIENCES CORPORATION

3 d) automate traceability and documentation to the maximum

extent possible, and

3 e) provide a re-use library.

The development phase also involves the use of simulations/emulations, including

hardware/software in the loop, for verifying that the developed code meets the software
requirements and validating that system requirements are met. The development process

culminates in the successful initial operational capability of the host system. In the operational
phase, software functions include: modifications, upgrading and maintenance. Related software

quality factors are:

a) change requirements;

b) software documentation;

c) software modularity;

d) field-site testability and diagnostics; and

3 e) verification and validation.

The ability to achieve software quality in the operational phase is built into the

system during the requirements and development phases. The implementation of operational phase

functions is accomplished through the hardware and software provided for this function and the

level of proficiency attained by proper selection and training of personnel.

Considerable work toward defining software quality factors has been accomplished

by RADC. This section describes the RADC software quality framework and their quality factors.3 The RADC quality factors address three areas of user concerns:

a) operational performance,

b) design, and

3 c) adaptation.

3 The design area addresses correctness (a measure of the extent to which the design

conforms to specifications and standards; not correctness of the software in the sense of being fault
free) and maintenance and verification. Adaptation concerns address the issues of the ease of the

TASPARTA



I
THE ANALYTIC SCIENCES CORPORATION

I software to operate in different environments, to be flexible, easy to change and reuse. These

issues are further expanded in the following sections of this report.

In the following paragraphs we discuss the RADC quality factors and our proposed3 modifications to improve their applicability to SDS software.

2.1.1 Performance

Performance issues address the capability of the SDS software of producing correct results within

the allocated time. The quality factors included in software acquisition are:

3 a) efficiency;

b) integrity;

I c) reliability;

I d) survivability; and

e) usability.

3 Usability is a design consideration, so we propose to move this criteria from the

performance area to the design area.

I The best interpretation of the meaning of each quality factor is the proposed rating

factor. The rating factor is the software product attribute which the metrics attempts to estimate

during the software development process. The rating factor must reflect the user concerns relative

to the specific issue under consideration. During this analysis, however, we found that some

rating factors did not address the core of the user concerns in some specific areas, and therefore we

modified the definition of the quality factor by changing the quality rating criteria.

2.1.1.1 Reliability

I The RADC quality rating for this quality factor is expressed in terms of number of software errors

per 1000 source lines of code (SLOC), occurring during a specified software development phase.

3 The corresponding quality metrics and metrics elements are based on:

TBug
TAT

2-3 WftW= AA nM



THE ANALYTIC SCIENCES CORPORATION

a) testing if the requirements for accuracy have been

appropriately included;

b) the simplicity of the design and of the implementation; and

c) the robustness of the software (i.e., the capability of the
software handling off-nominal situations).

We have the fundamental concem that neither the quality rating, nor the metrics

elements address the primary user concern in the area of software reliability.

For this report, software reliability is defined as the probability that the software

will not cause the failure of a system for a specified time under specified conditions. This

definition is consistent with the IEEE standard glossary of Software Engineering Terminology

definition for software reliability. The parameter of reliability is failure rate, defined as the ratio of
number of failures to a given unit of measure, for example failures per unit time.

We propose that the definition of reliability be consistent with the IEEE standard3 definition. The corresponding quality factor rating criteria must be based on measured reliability or

failure rates. Changing the metrics elements is a challenging task which is not well supported by3 the current technology. We propose to initiate an effort in this area which has the very worthwhile

objective of analyzing and developing the technology for predicting operational failure rates of

3 critical software.

2.1.1.2 Survivability

The RADC rating factor of survivability is again expressed in terms of number of errors per

SLOC. The only errors considered, however, are the subsets of total errors which affect

survivability. The IEEE standard definition of survivability is the built-in capability of providing

continued execution in the presence of a limited number of faults. In other words survivability is

the capability of the software to perform the required functions when a portion of the system is

inoperable. This definition directly addresses the user concerns in this area. The rating of this3 quality factor can be based on measures of:

a) the fault detection capability or coverage (percent of total
possible faults which the system is capable of detecting); and

I \jPARTA

2-4INWGAIMATA TOI



THE ANALYTIC SCIENCES CORPORATION

3 b) the reconfiguration capabilities expressed as the percentage
of the software which is at different levels of fault tolerance.

1 By combining these two measures, the probability that the software will perform in

the presence of faults can be assessed.

U 2.1.1.3 Integrity

3 The same considerations previously made for reliability and survivability (errors per SLOC, subset

of total errors affecting quality factor) also apply to integrity. For sake of conciseness, they are not

repeated here. The issue of integrity is complex, and there is the possibility that metrics may not

be an appropriate technique for providing accurate estimate of such critical requirements. Integrity
performance requirements and evaluation criteria are described in DoD-STD-5200.28, which may

far exceed what can be reasonably expected from metrics, in this very complex area. This

consideration is made for the purpose of analyzing the possibility of removing integrity from the

proposed quality factors. We have not made a firm decision on this matter, at the present time.

1 2.1.1.4 Efficiency

RADC metrics address the user concern for high thro.ighput and minimal wastage of computing

resources by means of the quality factor efficiency. Efficiency refers to the effective use of

resources. The rating of efficiency is accordingly defined as the ratio between actual resources3 utilization and allocated resources. The RADC metric elements address effectiveness of:

a) processing;

b) data usage;

* c) data storage.

There are two aspects of this quality parameter that cause it to be incomplete, as it is

defined. First, the proposed rating is dependent on the estimate of the allocated resources. A

generous allocation can make a poor design and implementation look good relative to a good

design. Second, the user is generally concerned more with performance efficiency, like

computational or communication throughput, than resource utilization. However, the requirements

for efficiency must be included, because much of the SDS software will execute in environments

3 2-5 ["G W 0HLPA1 IA , VLT&W



I
THE ANALYTIC SCIENCES CORPORATION

where weight, size, and power allocations are tightly constrained. Efficiency requirements must be

applied very judiciously, however, to minimize the undesirable impact on cost and schedule.

There are several levels of efficiency requirements. At the low end, some minimum

efficiency requirements are clearly necessary, easy to achieve, and must be required to prevent
designs which needlessly waste resources. Such requirements must always be stated, implicitly or

explicitly. At the other end of the spectrum, maximum efficiency requirements must be established
for those cases where a software function can only be performed if very stringent efficiency

requirements are satisfied. In such cases, nothing is more important than efficiency. All other

quality requirements, even those which are in negative correlation with efficiency, must be set to a
level which is not in conflict with the high efficiency requirement. Only a very small fraction, if

any, of SDS software is expected to have such efficiency requirements. Such a degree of efficient

use of the resources almost never needs to be a critical requirement of an entire software system. It

has been demonstrated many times, and often very painfully, however, that the price paid for
"super efficient" code can be very high as proven by the fact that that criterion is in negative
correlation with almost all other quality factors, even within the RADC framework. Previous

studies have shown that 90 percent of execution time is spent executing within approximately ten
percent of the code. Putnam Texel, a recognized Ada development expert, further asserts that

typically only three percent of the Ada source code of a large system is a candidate for a very high
level of performance optimization. Efficiency targets set for the software as a whole can be

extremely detrimental to the total development effort. An additional consideration to make is that
the rapid advances of hardware technology which we are experiencing puts less premium on

efficient code. SDIO is clearly aware of the negative impact efficiency requirements may have with
respect to other necessary requirements, and it is stated in the last revision of the SDS TEMP

document that hardware limitations or constraints will not drive the software requirements.

In between the extremes of only minimal efficiency requirements, and overriding
efficiency requirements, is that applicable to most of the SDS software. For that software,
efficiency requirements are important, but not so important that all other quality requirements can

be overridden by it. In these cases, a difficult negotiation must be made among the requirements
for efficiency, and the requirements for all other factors which are negatively correlated with
efficiency. This is an area requiring further research, as discussed in section 3.1.

|Tag
~scljSPAnA

3 2-6

• akewI TO M



I
THE ANALYTIC SCIENCES CORPORATION

IThe recommendation is to augment the "efficiency" quality factor as it is currently

stated in the RADC metrics context. An additional quality factor "throughput" is proposed which

addresses the user concerns of computational and communication throughputs. A rating based on

the comparison between throughput requirements and demonstrated throughput capabilities is

suggested. The development of appropriate quality metrics elements for this new quality factor, is
beyond the scope of this study.

I 2.1.2 Design and Adaptation

I In the RADC metrics framework a distinction is made between user concerns related to design

validity like maintainability, verifiability, etc.; and those related to the adaptability of the product

like expandability, flexibility, interoperability, etc. The distinction is not justified because
adaptation concerns are themselves much related to the design, as previously discussed. The major

problem, however, with the quality factors in both categories as currently defined, is that many of
the "ilities" are overlapping and redundant. For example, a product which is easy to maintain,

must also be easy to verify; the converse must also be true. Both factors are estimated by the same

set of criteria: modularity, self-descriptiveness, simplicity, and visibility. Maintainability also uses
the consistency criterion, which is the only difference between the two criteria sets. Two metrics

apply to the factor consistency: procedure consistency and data consistency. Procedure
consistency is aimed at estimating the use of standard procedures for control flow and data flow
representation, calling sequences and I/0 protocols, error handling, and naming conventions. Data

consistency is aimed at estimating the use of standard procedures for naming conventions, data

representation, and database structures. The two metrics are applicable to verifiability because if

standard procedures and standard data conventions are throughout the design, then the software is
easier to verify than in the case where several types of procedures and data representation must be
verified. In the former case only standard procedure and data representation must be verified. In

the latter case each procedure and representation, and the compatibility among them, must be

verified. The conclusion of overlapping and redundant factors is further substantiated by the fact

that considerable overlap also exists among the metrics elements which support the estimate of the

remaining quality factors. We propose to reduce the number of quality factors to a smaller number
than in the RADC metrics, by grouping together several highly related quality factors. The

advantages of such approach include:

2-7 i RAO ATI



I
n "THE ANALYTIC SCIENCES CORPORATION

I The quality factor reuse is a new factor which includes:

a) the old Reusability factor, which is a measure of the ease of

reuse of an existing product, or elements of that product; and

b) a new factor which evaluates the amount of reused products
in the new product being evaluated.

3 This new definition is important because it may be used to encourage software
reuse, probably the most effective single tool available for improving software productivity. The
development of the metrics elements which support the new structure of software quality factors

and the new factors is beyond the scope of this study.

* 2.2 SDS SOFTWARE

Twelve major SDS software functions were broken down into thirty-six software components.

This decomposition does not intend to represent earlier functional decomposition into subfunctions
and sub-subfunctions; rather, it is an attempt to break down the software into components that pose

distinct requirements for quality metrics.

2.2.1 SDS Software Structure

In this section the different types of SDS software are identified using a variety of documents like
"SDS System Level Functional Analysis and Requirement Definition" and "TEMP." SDS
software falls into one of the following classifications:

a) Support software elements, such as development and
verification environment and tools (compilers, static and
dynamic analyzers, operating systems, run-time support,
communications, etc.).

5 b) Simulations and emulations (scenarios, technoloy, etc.).

c) Management tools (configuration management, metrics,
* etc.).

d) Operational software (space based, ground based, training,3 communications, etc.).

To
TA 5C 0I1

5 2-9 T WGU, WANIA,
I cow 'TO =*lO



I
THE ANALYTIC SCIENCES CORPORATIONI

I The decomposition structure is developed to the point that each software program in
the lowest tier has uniform characteristics so that it entirely fits in a single software domain. All
identified SDS software elements are then classified according to the software domain in which
they fit. Other decomposition schemes are also appropriate for other purposes. A categorization3 scheme based on cost categories has been previously used. Similarly, the decomposition and
categorization to be used by the SE is expected to be different from what is developed here,
although it is not yet available. However, the intent here is to differentiate SDS software based on

similarity of characteristics and functions, then to aggregate based on similarity of quality
requirements. This provides relatively homogeneous sets of software domains, which is expected

to improve metrics correlations.

I 2.2.2 Decomposition of Major SDS Functions

In order to develop software quality domains, the ciajor SDS functions were first composed ,n a
lower level of detail. The resulting categories of major SDS functions to be considered are listed

below:

a) Detect

I b) Identify

i c) Track

d) Communicate

e) Assess Situation

f) Assign and Control Weapons

I g) Guide and Control Weapons

h) Control Platforms

i) Simulate

P) Support Development

k) Support Acquisition

I 1) Support Management

Tat

2-10 V MAOSAnI0W "s



I
THE ANALYTIC SCIENCES CORPORATION

3 2.2.2.1 Detect

Determine the presence of threat objects and potential threat objects. For SDS, detection is
performed by several system elements of differing sensor types, operating singly or in groups, and
having different basing and timelines. Detection software is broken down into the following

components. All are critical components, but differ somewhat in characteristics. For instance,
real-time processing to detect cold bodies at long range involves higher Technology Risk than does

3 detection of plumes.

a. Detect Plumes - Use of short-wave infrared (SWIR) optical
sensors to detect plumes of boosters and Post-Boost
Vehicles. Because of the limited viewing time available, and
the long range required of these sensors, much quicker
response will be required for detection processing than for
the other components of this function.

b. Detect Cold Bodies - Use of long-wave infrared (LWIR)
optical sensors to detect reentry vehicles. Although this
component also involves processing of optical sensor
detections, the process is much different; it is performed
over many more targets, but does not involve processing
against a cluttered background. Basing requirements alsovary.

c. Radio Frequency (RF) Detect - Use of ground-based radars
to detect boosters, post-boost vehicles (PBVs) and reentry
vehicles (RVs). This software component has differences in
basing and in the type and amount of processing that must be
performed.

1 2.2.2.2 Identify

Differentiate threats from non-threats. Several components are involved in separating these two

classes.

I Resolve Objects - To a large extent this subfunction is
performed by sensor hardware, but a software component is
involved when stereo viewing is required from multiple
passive sensor platforms, where computations may be
performed onboard spacebome platforms.

b. Discriminate - This software component must fuse a priori
information, learned information, and measurements to
identify threatening objects. Primarily a Battle Management

135
SPA/RTA

I2-11 WG WQI A nM
caoimA1/l TO W1o



I
THE ANALYTIC SCIENCES CORPORATIONI

software function, this software differs from object

resolution software in basing, timeline, and the class of
algorithms that may be employed (parallel, artificial3intelligence (AI), etc.).

c. Assess Kills - This software component must operate on
data from sensors and weapons to predict and assess kill
event parameters.

2.2.2.3 Track

This SDS function keeps track of thousands of objects, estimating their state vectors and predicting

potential intercept and impact points involves four software components that implement distinctly

different types of processing requirements.

a. Correlate - Processing of detection data from many sensors
of several types, and relating current detections with prior
detections, or relating new clusters or objects to prior
clusters.

b. Initiate Track - Use of a priori data and logical schema to
establish track on objects.

c. Estimate State - Typically, computational-intensive
processing of multi-state filters to estimate state of object or
clusters of objects.

d. Predict - Forward propagation of object to intercept and earth
impact. This requires an for iterative solution for intercept
point.

2.2.2.4 Communicate

Communication is a critical complex function that impacts several areas. The categories listed

below illustrate the primary areas of SDS communication.

a. Inter-platform data communication - Distribution of
extremely large amounts of data between large numbers of
space based platforms in a dynamically changing network
topology present unique software development
requirements.

I b. Ground-space communication - This integrates the ground
based command and control function with the sensors,
weapon platform and the space based battle managers. Such

I I iI I
2-1C 2 

1IR



THE ANALYTIC SCIENCES CORPORATION

3 data communication has unique requirements in that
communication must be fault tolerant, highly reliable (in a
hostile environment) and trusted/secure.

c. Ground communication - This integrates the various
command and control (C2) centers and ground based weapon
installations. Although the security and reliability
requirements are less stringent, this type of communication
is highly distributed among diverse heterogeneous networks.
Of primary importance is interoperability and flexibility.

! 2.2.2.5 Assess Situation

Because of the requirement to support weapon release, weapon launch, and weapon abort, all

Iaspects of this function are critical to SDS operation. Characterization of software differs between

the following two components.

a. Assess Threat - Logically intensive software that must
deduce situation from a mixture of a priori data, intelligence
data, and surveillance information internal to SDS.

I b. Assess SDS - Software that uses available status information
available within SDS to support optimal allocation of SDS3 resources in battle.

2.2.2.6 Assign and Control Weapons

These functions fall into two basic categories:

I a. Assign and Control Space Based Interceptor (SBI) Weapons
- Because of high absentee ratio, this software component
must optimize weapon utilization over a wide range of
situations. This component requires rapid response
(especially for boost phase intercepts), and an ability to
operate in a target-rich or weapon-rich environment but
hedge against a shift between these alternatives, and must be
able to implement an adaptive preferential strategy within
these constraints.

I b. Assign and Control Ground Based Interceptor (GBI)
Weapons - Because of known interceptor coverage capability
and relatively late intercept times, this ground-based
component has a less stressing timeline, and must implement
preferential target coverage.

ITAC IWA
2-13 OVA %M

aOM TO aml



THE ANALYTIC SCIENCES CORPORATION

2.2.2.7 Guide and Control Weapons

3 Components of this function differ similarly to the Assign and Control Weapons function.

a. Guide and Control SBI Weapons

b. Guide and Control GBI Weapons

2.2.2.8 Control Platforms

3I  Components of this function are required to provide the housekeeping and control of space-based,

and ground-launched (probe) sensor and weapon platforms.

a. Command Environment Control - Command Center
Component;

b. Control Onboard Environment - Spacebome Component;

c. Command Attitude and Position Control - Command Center
Component;

d. Control Onboard Attitude and Position - Spaceborne
Component;

e. Sense Onboard Status - Spacebome Component;

f. Assess Status - Command Center Component;

g. Command Reconfiguration - Command Center Component;

h. Reconfigure - Spacebome Component.

2.2.2.9 Simulate

Simulations are used throughout the Life Cycle of the SDS software. Earliest use supports

development of system and software requirements, including system logic and equations. Various

simulations are used during software development such as:

a. Development tools - These include timing and performance
estimation simulations, threat and environment emulators,
etc. Development simulations include non-real-time and
real-time software;

2-14 US-



I
* THE ANALYTIC SCIENCES CORPORATION

U b. Hardware-in-the-loop (HWIL) simulators - These are used
to troubleshoot interface software and embedded operational
software, and are used in the performance of acceptance
testing;

c. Demonstration Simulations - Finally, simulations are used to
interact with SDS experiments, including those performed
with the National Test Bed (NTB).

1 2.2.2.10 Support Development

3 Software components are required to support rapid prototyping, or to support unit level, CSC, and

CSCI testing during WF software development. Two general components exist, as follows:

a. Support Development Test - Typically this component
includes software developed specifically to support testing -
drivers, post-processors, etc;

b. Provide Development Environment - This component may
include commercial off-the-shelf (COTS), modified, and
special software, and supports the coding and de-bugging
process.

12.2.2.11 Support Acquisition

During fabrication and delivery of System Element Hardware, support software is required for

testing of hardware.

a. Support Factory Test - Typically, this component is a mix of
COTS and developed software that is hosted in a wide
variety of test equipment, both general-purpose, and peculiar3 to each tested hardware configuration item;

b. Support Acceptance Test - This component is typically
developed software involved in the support of an integrated
test of an assembly, platform, or system that demonstrates
that it meets requirements for acceptance by the customer.

1 2.2.2.12 Support Management

A wide variety of COTS and developed software is used in the management of software

development. Characterization of the software can be differentiated between two categories, as

3 follows:

2-15 T A~ 'SPATA~

I 3dIOAA =C A 1AR



I
THE ANALYTIC SCIENCES CORPORATION1

a. Maintain and Control Management Information Database -
Emphasis in this system is on control and assured backup.

b. Tracking - COTS and developed applications that interface
with a variety of users and the database(s).

2.3 CHARACTERISTICS OF SOFTWARE

11 The list of software characteristics which we first analyzed included sixteen elements. Our initial

goal was to reduce that list to a maximum of ten elements. As the result of our effort to date, the
proposed list has been pared down to only eight elements. The set is almost orthogonal, with

minimum overlap among elements, which is the property we used for scaling down the original5number. As an example, the original list had two entries, one for embedded, another for real time.

We decided to combine the two entries into one, embedded, because it can be stated that the largest3 percentage of embedded applications imply real time execution. Another example was to combine

available experience with hardware maturity and availability and with technology risk. Lack of

experience, and immature hardware are in fact reasons for technology risk. As a result they were

all combined in a single characteristic called technology risk.

IThe final minimum set of software characteristics which affect the quality or the
productivity requirements, or the metrics scope are:

a) Criticality;

b) Embedded vs. general purpose;

c) Space/Ground based;

d) Life cycle;

e) Algorithmic Content;

f) Size;

3 g) Risk; and

h) Intended use.1

TAI I IIM
2-16 a MOMUn3O~m oa



U
i THE ANALYTIC SCIENCES CORPORATION

afe This section describes the final minimum set of software characteristics which, in

turn, affect the requirements of quality attributes. The technique of requiring most quality factors

for most software products is very tempting on the surface, as it appears to be a safe policy with no

negative effects on the software process or product. However, this is not the case. It is important

3 to maintain the sets of quality factors to a minimum because it:

3 a) enhances the cost effectiveness of the metrics;

b) focuses on the quality factors which are really critical for that
product; and

c) may eliminate or minimize application of conflicting
requirements.I

It must also be considered that each software product has several characteristics,

and the quality factors applicable to a product are the combination of the quality factors applicable

to each of the product's characteristics. As an example, assume that the characteristics of a3 software product are: critical, embedded, and high risk. Then the applicable quality factors are:

a) reliability, survivability, integrity (due to criticality);

b) efficiency and throughput (due to embeddedness);

c) maintainability, usability, portability (due to risk).

3 The proposed allocation scheme is intended to provide guidelines, not firm

requirements, for the selection of quality factors. That selection must be performed by a team of

experts composed of users, procurement personnel, and developers, during the earliest

development phases, on a product by product basis. The following considerations are intended to

be a good starting point for the negotiation process.

A single Computer Software Configuration Item (CSCI) may have Computer

I Software Components (CSC) which have different characteristics, and therefore may require a

different set of quality targets. The methodology then, of assigning quality targets to software3 must take into account the specific requirements of each CSC. If this is not done, then

overdesigned or underdesigned software may result. As noted above, the guidelines are intended

to be just that. Specific products may require deviations from the guidelines. To date, we

T~s~:A
2 -17 M N ,VA i PART I



U
THE ANALYTIC SCIENCES CORPORATIONI

I broken down major SDS functions to elements which, although more typically at the CSCI level
than the CSC level, can be characterized adequately to apply quality attributes. The following set3 of software characteristics follow generally but have been modified somewhat from the set
furnished in the outline for this report.

2.3.1 Criticality

I Criticality is a most important software characteristic, which applies primarily to operational
software, but also to elements of the support software. Key characteristics to be considered in

determining level of criticality are whether the function and timing are critical (such as in real-time
signal processing of sensor detections), where the function is critical but the timing less critical5 (software that drives command center status update displays) or non-critical (management report
generation applications, for instance). The relevant quality factors are: reliability, survivability,5 and integrity. Metrics elements supporting those quality factors must encompass a broad range of

development and verification activities including error rate detection and discrepancy report and

discrepancy resolution records. We must realize, however, that the technology for predicting

operational failure rates, based on development effort, error rate, or other techniques is not

available yet, as previously discussed. The importance of establishing research programs for

satisfying these technology needs, can not be underestimated, in our opinion.

2.3.2 Embedded vs. general purpose (real/non real time)

3 Embedded software executes in real time, and it interfaces with external equipment and possibly

operational users. The primary quality factors for embedded software are throughput and

efficiency. It is important to have computational and transmission duty cycles not higher than 60%

because:

5 a) the computational requirements may grow beyond the
original estimates; and

b) it has been consistently demonstrated that the failure rate ofreal time systems tends to increase as the computational and
transmission duty cycle approaches 100%.

U Highly efficient software may be desirable, for the above considerations. It must
be realized, however, that high throughput can not be achieved at the cost of other quality factI _ I "lDii

2-18 u



I
THE ANALYTIC SCIENCES CORPORATION

like maintenance or reusability, if they are also important for that specific product. In those cases,
then more efficient hardware must be utilized and developed, if not available. The appropriate

compromises must be resolved in a case to case basis.

3 2.3.3 Space/Ground-Based

The primary quality factors of space based software are:

a) reliability which is required because of the inherent difficulty
of maintaining software in space;

b) survivability which is required because of the need of5 operating in a war environment; and

c) integrity which is required because of the need to be3protected relative to unauthorized access.

The issue of integrity is very complex, and the suitability of metrics for dealing with

that requirement is uncertain, as it was previously discussed.

3 2.3.4 Life Cycle

SDS software products have typically a long life cycle. The primary quality factors of products
with a long life cycle are:

a) Maintainability. The evolving requirements of the software,the needs of upgrading and fixing bugs require high level of
maintainability;

I b) Usability, primarily in the area of ease of de-bugging and
modification. Several generations of users will interface
with the software and easy of use and learning may be very
cost and operational effective; and

c) Portability. It may be important for the software to be
portable to other environments and of being capable of
interfacing with a variety of other software products.

3 The relevance of the three identified requirements is expected to be increasingly
higher as a function of the life cycle length. SDS software will be developed and used throughout3 the system life cycle, including development, acquisition, deployment, and operational p -

2-19 V PA 2rA 7M,
G O VD*



THE ANALYTIC SCIENCES CORPORATION

The importance of usability, maintainability, and portability depends on the extent of the life cycle.

The intended use of the software may be an important modifier of that relevance.

2.3.5 Algorithmic Content

Software may be viewed as having higher or lower levels of

a) logic computations; and

b) mathematical equation computation.

Quality attributes include Survivability (ability to deal with decision conflicts and

data inconsistency, for example), and Throughput (ability to process large numbers of matrix

calculations in real time).

2.3.6 Size

ICost increases proportionally with size, all other factors being equal. The primary quality factors

of large, high cost, programs are Maintainability, Integrity, and Reusability. Large programs3 require large maintenance cost, which can be significantly reduced if the programs are easy to

maintain, verify, expand, etc. The assumption made here is that large programs also have long life

U cycles, which reinforce the need for high maintainability. Development of very large programs

mean relatively large numbers of people involved throughout the life cycle of the software, placing

a high level of importance on integrity across the life cycle, and between many CSCs. Large

programs also often include capabilities which can be reused, and they can themselves include

software previously designed. However, reuse may be not very significant in the case of

embedded software which often has environmental constraints and hardware dependencies which

make it difficult to reuse.

2.3.7 Risk

A software program can be a high risk item because the available experience on the application is

3 low, the hardware within the hosting environment is not developed and mature, or the required

performance far exceeds previous experiences. High risk software is a category for which RP

development approach may be very effective, as it was previously described. Independently fr 1 T._

T~sC SPARTA2-20 UmSA WA n1x

-- ~r TO W O



THE ANALYTIC SCIENCES CORPORATION

U the development approach, however, high risk software most likely requires an evolutionary

development which may require several requirements and design specification changes. For this

reason primary quality factors for high risk software are:

a) Maintainability, so that design and implementation changes
can be easily implemented and verified. Product
requirements and characteristics will most likely evolve
during the development process which will, in turn, require
modifications to be implemented and effects to be analyzed;

b) Usability, so that a large number of users/developers can
easily exercise it and evaluate it. The software will likely be
exercised and analyzed by personnel with different
backgrounds, some with little or no experience in computer5 science;

c) Portability, so that can be interfaced with different products
for evaluation and hosted in different environments. Also,
as noted in b) above, it may be required to be exercised by
different groups of people in different environments.

3 Quality factors such as integrity, reliability, and survivability, on the other hand, are required in the

case of critical or space based products which may, or may not, have high development risk. As3 such, they are not in and of themselves prime factors for high risk product development.

3 2.3.8 Intended Use

SDS software can be divided in the following categories:

a) operational software, which includes all the software which3 is required for mission success;

b) simulations of operational scenarios and emulations of
technology;

Ic) development and verification environments and tools; and

5 d) management tools, like the metrics.

Major discriminants for quality include whether the software is to be used in
peacetime, during battle, or both; whether it is related to the use of weapons or not (since weapon

control software has a higher level of criticality); and whether the software is operational or non-

,e2-21 " MPT T A



I
THE ANALYTIC SCIENCES CORPORATIONI

U operational. Each category has distinct requirements relative to quality metrics. Operational
software typically has a high degree of criticality (see next paragraph). Development software may
include off the shelves products, like compilers, environments, general purpose tools etc. Most
simulations are designed for validating concepts and estimating effectiveness of configurations.3 Management tools include configuration management and control, data bases, and metrics.

Primary quality factors for support (i.e., non-operational) software are maintainability and
usability. Such software needs to be easy to use, as many different users with a wide range of

backgrounds and interests will utilize the software. It must also be easy to maintain, as during its
useful life, support software will often be enhanced to include capabilities in addition to those
originally implemented. Note that the application of development metrics for predicting the user
quality ratings during the development process of a product, is not necessary for off-the-shelf3 software. That software can be directly exercised and evaluated relative to the user requirements,
which eliminates the need for predicting quality factors. Development software is often less critical3than operational software. Some development tools may be very critical, however, like in the case
of Ada compilers, which must be validated to very strict standards.

I The need of defining intended use as a software characteristic is not clearly

established because intended use is not completely orthogonal relative to the other characteristics

previously described, such as Criticality. Our proposed approach is to include it, at least initially.
It can be later removed if proven unnecessary.

2.4 PRELIMINARY REQUIREMENTS FOR SOFTWARE QUALITY
DOMAINS

The impact that each characteristic has on the metrics is discussed below. Each combination of
characteristics defines the needs for a software domain with unique quality requirements, which are
represented by a unique combination of the following quality factors: Reliability, Efficiency,
Throughput Integrity, Survivability, Usability, Maintainability, Portability, and Reuse. Based on

the application of these factors to the software characteristics, a relative level of importance for
software metrics is defined for each quality attribute.

2.4.1 Detect Plumes

I Level of Criticality; time and function critical;

I TASPARA

2-22
I U T am



I
THE ANALYTIC SCIENCES CORPORATION

3 Embedded real-time;

* Space Based;

I Length of Life Cycle; through development, acquisition,
deployment, operation;

3 Algorithmic Content; equation-computation intensive;

* Size; small;

0 Technology Risk; moderate;

I Intended Use; Peacetime and Battle, non-weapon-related,
operational.

I Quality Attributes: Relatiie Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput High
Usability Low
Maintainability Low
Portability Low
Reuse Low

I 2.4.2 Detect Cold Bodies

0 Level of Criticality; time and function critical;

I * Embedded real-time;

* Space Based or Probe-based;

* Length of Life Cycle; through development, acquisition,
deployment, operation;

Algorithmic Content; logic-intensive, equation-computation
intensive;

3Size; large;

i Technology Risk; moderate;

* Intended Use; Battle, non-weapon-related, operational.

2-23 / RA WTA TUM
IUCOW= TO



I
THE ANALYTIC SCIENCES CORPORATIONI

Quality Attributes: Relative Ranking:
Reliability High

Survivability High
Integrity High
Efficiency High
Throughput High
Usability Low
Maintainability Low
Portability Low
Reuse Low

3 2.4.3 RF Detect

5 Level of Criticality; time and function critical;

0 Embedded real-time;

5 Ground Based;

a Length of Life Cycle; through development, acquisition,5 deployment, operation;

* Algorithmic Content; logic-intensive, equation-computation3intensive;
• Size; large;

I • Technology Risk; moderate;

* Intended Use; Peacetime and Battle, Weapon-related and3 non-weapon-related, operational.

3 Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput High
Usability Low
Maintainability Moderate
Portability Moderate

* Reuse Low

W 2R2A4TOS L



I
THE ANALYTIC SCIENCES CORPORATIONI

U 2.4.4 Resolve Objects

3 Level of Criticality; time and function critical;

0 Embedded real-time;

I Space Based;

* Length of Life Cycle; through development, acquisition,
deployment, operation;

* Algorithmic Content; logic-intensive, equation-computation5 intensive;

* Size; moderate;

5 . Technology Risk; moderate;

Intended Use; Battle, non-weapon-related, operational.

Quality Attributes: Relative Ranking:

I Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput Moderate
Usability Low
Maintainability Low
Portability Low
Reuse Low

1 2.4.5 Discriminate

3 * Level of Criticality; time and function critical;

* Embedded real-time;

£ * Space Based and/or Ground Based;

I Length of Life Cycle; through development, acquisition,I deployment, operation;

Algorithmic Content; logic-intensive, equation-computation
intensive;

* Size; large;

2ASC,2
I2-25 T# 0MPAI SrA %W ,



THE ANALYTIC SCIENCES CORPORATION

1 * Technology Risk; high;

3 • Intended Use; Battle, non-weapon-related, operational.

Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput Moderate
Usability Low
Maintainability Low
Portability Low
Reuse Low

2.4.6 Assess Kills

I • Level of Criticality; time and function critical;

I • Embedded real-time;

• Space Based and/or Ground Based;

* Length of Life Cycle; through development, acquisition,
deployment, operation;

3 Algorithmic Content; logic-intensive;

* Size; moderate;

3 • Technology Risk; moderate;

* • Intended Use; Battle, Weapon-related, operational.

Quality Attributes: Relative Ranking:

5 Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput Moderate
Usability Moderate
Maintainability Moderate
Portability Moderate
Reuse Low

2-26 "0 PRI, ,,O ALUOAr OI



THE ANALYTIC SCIENCES CORPORATION

2.4.7 Correlate

* Level of Criticality; time and function critical;

0 Embedded real-time;

* Space Based and/or Ground Based;

0 Length of Life Cycle; through development, acquisition,
deployment, operation;

* Algorithmic Content; logic and equation-computation
intensive;

* " Size; small;

* Technology Risk; moderate;

• Intended Use; Battle, Weapon-related, operational.

Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput High
Usability Low
Maintainability Low
Portability Low
Reuse Low

2.4.8 Initiate Track

- Level of Criticality; time and function critical;

* Embedded real-time;

a Space Based and/or Ground Based;

- Length of Life Cycle; through development, acquisition,
deployment, operation;

- Algorithmic Content; logic-intensive;

0 Size; small;

!r~BPARTA

2-27



n
THE ANALYTIC SCIENCES CORPORATION

n . Technology Risk; moderate;

3 . Intended Use; Battle, Weapon-related, operational.

3 Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput High
Usability Low
Maintainability Low
Portability Low3 Reuse Low

2.4.9 Estimate State

I Level of Criticality; time and function critical;

3 • Embedded real-time;

* Space Based and/or Ground Based;

3 • Length of Life Cycle; through development, acquisition,
deployment, operation;

I * Algorithmic Content; equation-computation intensive;

* Size; small;

I • Technology Risk; moderate;

Intended Use; Battle, Weapon-related, operational.

Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput High
Usability Low
Maintainability Low
Portability Moderate
Reuse LowI

Ta

2-28 " MA7 AnIoar T D



I
THE ANALYTIC SCIENCES CORPORATIONI

2.4.10 Predict Intercept and Impact Points

1 • Level of Criticality; time and function critical;

U • Embedded real-time;

* Space Based and/or Ground Based;
Length of Life Cycle; through development, acquisition,

deployment, operation;

3 * Algorithmic Content; equation-computation intensive;

* Size; small;

3 * Technology Risk; low;

* Intended Use; Battle, Weapon-related vs. non-weapon-3related, operational.

3 Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput Moderate
Usability Low
Maintainability Low
Portability Low
Reuse Low

2.4.11 Interplatform Data Communication

1Level of Criticality; time and function critical;

3 • Embedded real-time;

• Space Based;

3 • Length of Life Cycle; through development, acquisition,
deployment, operation;

* Algorithmic Content; logic-intensive (network);

• Size; moderate (highly distributed);

USA_
2-29 I S TUMacawivrm TO weD



THE ANALYTIC SCIENCES CORPORATION

U Technology Risk; very high;

3 • Intended Use; Peacetime and Battle, operational.

3 Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency High
Throughput High
Usability Low
Maintainability Low
Portability Low

i Reuse Moderate

2.4.12 Ground - Space Communication

I Level of Criticality; time and function critical;

3 Embedded real-time;

• Space Based and Ground Based;

3 Length of Life Cycle; through development, acquisition,
deployment, operation;

* Algorithmic Content; logic-intensive (computation,
encryption);

30 Size; small;

• Technology Risk; low;

3 * Intended Use; Peacetime and Battle, operational.

3 Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput Moderate
Usability Low

2 3, S A ,
2-30 

OAMTI



THE ANALYTIC SCIENCES CORPORATION

IMaintainability Moderate

Portability Moderate

Reuse Low

2.4.13 (;round Communication

I Level of Criticality; time and function critical;

• Embedded real-time;

* Ground Based;

• Length of Life Cycle; through development, acquisition,
deployment, operation;

* Algorithmic Content; logic-intensive;

• Size; moderate;

• Technology Risk; low;

• Intended Use; Peacetime and Battle, operational.

Quality Attributes: Relative Ranking:

* Reliability Moderate
Survivability Moderate
Integrity Moderate
Efficiency Low
Throughput Moderate
Usability Moderate
Maintainability High
Portability Moderate
Reuse High

I 2.4.14 Assess Threat

• Level of Criticality; time and function critical;

• Embedded real-time;

3 • Space Based and/or Ground Based;

• Length of Life Cycle; through development, acquisition,
deployment, operation;

S Algorithmic Content; logic-intensive;

2-31 I MUOWAnIUO~TE OO



U
THE ANALYTIC SCIENCES CORPORATIONI

Size; small;

Technology Risk; moderate;

Intended Use; Peacetime and Battle, Weapon-related,
operational.

Quality Attributes: Relative Ranking:

U Reliability High
Survivability High
Integrity High
Efficiency Low
Throughput Low
Usability Low
Maintainability Low
Portability Low
Reuse Low

1 2.4.15 Assess SDS

a Level of Criticality; time and function critical;

* Embedded real-time;

Space Based and/or Ground Based;

* Length of Life Cycle; through development, acquisition,
deployment, operation;

* Algorithmic Content; logic-intensive;

* Size; small;

U • Technology Risk; low;

• Intended Use; Peacetime and Battle, Weapon-related vs.3 non-weapon-related, operational.

Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Low
Throughput Low

ITASC AI

2-32M MPO A UII~xm O=



I
THE ANALYTIC SCIENCES CORPORATION

Usability Low

Maintainability Low
Portability Low

* Reuse Low

2.4.16 Assign and Control SBI Weapons

* Level of Criticality; time and function critical;

a Embedded real-time;

* Space Based;

I • Length of Life Cycle; through development, acquisition,
deployment, operation;

• Algorithmic Content; logic-intensive, equation-computation
intensive;

I Size; moderate;

* Technology Risk; moderate;

I • Intended Use; Battle, Weapon-related, operational.

Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput High
Usability Low
Maintainability Low
Portability Low
Reuse Low

1 2.4.17 Assign and Control GBI Weapons

a Level of Criticality; time and function critical;

3 • Embedded real-time;

0 Ground Based;

I Length of Life Cycle; through development, acquisition,
deployment, operation;

2-33 " K*O,,rn"
I



THE ANALYTIC SCIENCES CORPORATION

* Algorithmic Content; equation-computation intensive;

* Size; small;

* Technology Risk; moderate;

* Intended Use; Battle, Weapon-related, operational.

Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput Moderate
Usability Low
Maintainability High
Portability Low
Reuse Low

2.4.18 Guide and Control SB! Weapons

* Level of Criticality; time and function critical;

* Embedded real-time;

* Space Based;

* Length of Life Cycle; through development, acquisition,
deployment, operation;

* Algorithmic Content; equation-computation intensive;

* Size; small;

• Technology Risk; moderate;

* Intended Use; Battle, Weapon-related, operational.

Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency High
Throughput High

TAPRTA1
2-34 T MAT T L



I

THE ANALYTIC SCIENCES CORPORATION

U Usability Low
Maintainability Low
Portability Low
Reuse Low

1 2.4.19 Guide and Control GBI Weapons

Level of Criticality; time and function critical;

I Embedded real-time;

i Interceptor Based and Ground Based;

Length of Life Cycle; through development, acquisition,
deployment, operation;

U Algorithmic Content; equation-computation intensive;

Size; small;

Technology Risk; moderate;

I Intended Use; Battle, Weapon-related, operational.

Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput Moderate
Usability Low
Maintainability High
Portability Low* Reuse Low

2.4.20 Command Environment Control

I Level of Criticality; function critical;

I Embedded real-time;

* Ground Based;

3 0 Length of Life Cycle; through development, acquisition,
deployment, operation;

SPARTA

32-35 6WUNRA? Sr.A %AM



I
THE ANALYTIC SCIENCES CORPORATIONI

& Size small;

Technology Risk; low

I • Intended Use; Peacetime and Battle, Weapon-related and
non-weapon-related, operational.

I Quality Attributes: Relative Ranking:

Reliability High
Survivability Moderate
Integrity High
Efficiency Moderate
Throughput Moderate
Usability Moderate
Maintainability High
Portability Moderate
Reuse Low

2.4.2 1 Control Onboard Environment

Level of Criticality; function critical,

Embedded real-time;

* * Space Based;

* Length of Life Cycle; through development, acquisition,
deployment, operation;

* Size; small;

* * Technology Risk; low;

• Intended Use; Peacetime and Battle, Weapon-related and3 non-weapon-related, operational.

Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput High
Usability Low
Maintainability Low
Portability Low
Reuse Low TIR

2-36 V %A A%IONET D



I
THE ANALYTIC SCIENCES CORPORATION

2.4.22 Command Attitude and Position Control

1 Level of Criticality; function critical;

Embedded real-time;

Ground Based;

* Length of Life Cycle; through development, acquisition,
deployment, operation;

Size; small;

Technology Risk; low;

fl Intended Use; Peacetime and Battle, Weapon-related and
non-weapon-related, operational.

U Quality Attributes: Relative Ranking:

I Reliability High
Survivability Moderate
Integrity High
Efficiency Moderate
Throughput Moderate
Usability Moderate

Maintainability High
Portability Moderate
Reuse Low

5 2.4.23 Control Onboard Attitude and Position

a * Level of Criticality; function critical;

0 Embedded real-time;

3 Space Based;
* Length of Life Cycle; through development, acquisition,

deployment, operation;

* Size; small;

0 Technology Risk; low;

IAC /FRI

3 2-37 O D 4 TO M



I
THE ANALYTIC SCIENCES CORPORATIONI

Intended Use; Peacetime and Battle, Weapon-related and
non-weapon-related, operational.

I Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput High
Usability Low
Maintainability Low
Portability Low
Reuse Low

2.4.24 Sense Onboard Status

Level of Criticality; finction critical;

• Embedded real-time;

Space Based;

* Length of Life Cycle; through development, acquisition,
deployment, operation;

Size; small;

• Technology Risk; low;

* Intended Use; Peacetime and Battle, Weapon-related and
non-weapon-related, operational.

Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput Moderate
Usability Low
Maintainability Low
Portability LowReuse Low

TASCAT
2-38 ISDGA r U



I THE ANALYTIC SCIENCES CORPORATION

I 2.4.25 Assess Status

Level of Criticality; function critical;

* Embedded real-time;

I • Ground Based;

• Length of Life Cycle; through development, acquisition,
deployment, operation;

* Size; small;

I • Technology Risk; low;

* Intended Use; Peacetime and Battle, Weapon-related and
non-weapon-related, operational.

Quality Attributes: Relative Ranking:

Reliability High
Survivability Moderate
Integrity High
Efficiency Moderate
Throughput Moderate
Usability Moderate
Maintainability High
Portability Moderate
Reuse Low

2.4.26 Command Reconfiguration

* Level of Criticality; function critical;

• Embedded real-time;

* Ground Based;

Length of Life Cycle; through development, acquisition,
deployment, operation;

I * Size; small;

i Technology Risk; !.,w:

* Intended Use; Peacetime and Battle, Weapon-related and
non-weapon-related, operational. Tog

II anc'
2-39 M oM, T



I
THE ANALYTIC SCIENCES CORPORATION

I Quality Attributes: Relative Ranking:

Reliability High
Survivability Moderate
Integrity High
Efficiency Moderate
Throughput Moderate
Usability ModerateMaintainability High

Portability Moderate
Reuse Low

2.4.27 Reconfigure

i * Level of Criticality; function critical;

a Embedded real-time;

• Space Based;

* Length of Life Cycle; through development, acquisition,
deployment, operation;

• Size; small;

• Technology Risk; low;

* Intended Use; Peacetime and Battle, Weapon-related and
non-weapon-related, operational.

Quality Attributes: Relative Ranking:

Reliability High
Survivability High
Integrity High
Efficiency Moderate
Throughput High
Usability Low
Maintainability Low
Portability Low

* Reuse Low

2.4.28 Development Tools

I * Level of Criticality; typically, time or function critical;

TASC lPNIlr

r 
1  

A

2-40 RGAOTTAIOAM OO



I
THE ANALYTIC SCIENCES CORPORATION

Real-time and Non-real-time General Purpose;

0 Ground Based;

I Length of Life Cycle; through development;

* Algorithmic Content; logic-intensive, equation-computation
intensive;

i Size; large;

* Technology Risk; low;

* Intended Use; non-operational.

Quality Attributes: Relative Ranking:

Reliability Moderate
Survivability Moderate
Integrity Moderate
Efficiency Moderate
Throughput Low
Usability Moderate
Maintainability Moderate
Portability Moderate

* Reuse Moderate

2.4.29 Hardware-in-the-loop (HWIL) Simulators

Level of Criticality; time and function critical;

Embedded real-time;

* Ground Based;

* Length of Life Cycle; through development, acquisition,
deployment, operation (includes operational trouble-
shooting);

Algorithmic Content; logic-intensive, equation-computation
intensive;

I • Size; large;

i Technology Risk; moderate;

* Intended Use; Peacetime, non-weapon-related, non-
operational.

Tal

2-4 1 WRMASA TA



I
THE ANALYTIC SCIENCES CORPORATION

1 Quality Attributes: Relative Ranking:

Reliability Moderate
Survivability High
Integrity High
Efficiency Moderate
Throughput Moderate
Usability Moderate
Maintainability Moderate
Portability Low
Reuse Low

2.4.30 Demonstration Simulations

3 • Level of Criticality; time and function critical;

* Embedded and other real-time and Near-real-time;

Ground Based;

• Length of Life Cycle; through development;

1 Algorithmic Content; logic-intensive, equation-computation
intensive;

* Size; large;

* Technology Risk; moderate;

IIntended Use; non-operational.

I Quality Attributes: Relative Ranking:

Reliability Moderate
Survivability High
Integrity Moderate
Efficiency Moderate
Throughput Moderate
Usability Moderate
Maintainability Moderate
Portability Moderate
Reuse Low

3 2.4.31 Support Development Test

* Level of Criticality; function critical;
T2,

32-42 G MqMS.ALM



1
THE ANALYTIC SCIENCES CORPORATIONI

I Real-time and Non-real-time General Purpose;

0 • Ground Based;

• Length of Life Cycle; through development;

0 Size; large;

* Technology Risk; moderate;

* Intended Use; non-operational.

I Quality Attributes: Relative Ranking:

Reliability Moderate
Survivability Moderate
Integrity ModerateEfficiency Moderate

Throughput Moderate
Usability High
Maintainability High
Portability High
Reuse High

2.4.32 Provide Development Environment

* Level of Criticality; function critical;

I * Embedded real-time and Non-real-time General Purpose;

• Ground Based;

a Length of Life Cycle; through development, acquisition,
deployment, operation;

Size; moderate;

3 * Technology Risk; low;

• Intended Use; non-operational.

I Quality Attributes: Relative Ranking:

Reliability High
Survivability Moderate
Integrity HighIUI

2-43ION Os



I
THE ANALYTIC SCIENCES CORPORATION

Efficiency Moderate

Throughput Moderate
Usability High
Maintainability Moderate
Portability Low
Reuse Low

1 2.4.33 Support Factory Test

3 Level of Criticality; function critical;

0 Non-real-time General Purpose;

1 Size; large;

i • Technology Risk; low;

0 Intended Use; non-operational.

I Quality Attributes: Relative Ranking:

Reliability Moderate
Survivability Moderate
Integrity Moderate
Efficiency Low
Throughput Low
Usability High
Maintainability High
Portability High
Reuse High

1 2.4.34 Support Acceptance Test

i • Level of Criticality; function critical;

* Real-time and Non-real-time General Purpose;

3 * Length of Life Cycle; through acquisition;

* Size; large;

a Technology Risk; low;

i Intended Use; non-operational.

I
2-44

I W T



THE ANALYTIC SCIENCES CORPORATION

5 Quality Attributes: Relative Ranking:

Reliability Moderate
Survivability Moderate
Integrity Moderate
Efficiency Moderate
Throughput Moderate
Usability Low
Maintainability Moderate
Portability Low
Reuse Low

2.4.35 Maintain and Control Management Information Database

* Level of Criticality; function critical;

I • Non-real-time General Purpose;

* Length of Life Cycle; through development, acquisition;

1 • Technology Risk; low;

• Intended Use; Peacetime, non-weapon-related, non-
operational.

Quality Attributes: Relative Ranking:

Reliability Moderate
Survivability Moderate
Integrity High
Efficiency Moderate
Throughput Moderate
Usability High
Maintainability High
Portability High
Reuse High

2.4.36 Management Information Tracking

• Non-real-time General Purpose;
* Length of Life Cycle; through development, acquisition;I * Technology Risk; low;
* Intended Use; Peacetime, non-weapon-related, non-

operational.

2-45 WA1r.WIOA= OW



I
THE ANALYTIC SCIENCES CORPORATION

3 Quality Attributes: Relative Ranking:

Reliability Moderate
Survivability Low
Integrity High
Efficiency Moderate
Throughput Low
Usability High
Maintainability High
Portability High
Reuse High

Figure 2-1 summarizes the quality factor ranking for all SDS software functions

which have been identified.

i 2.5 PROCESS TYPING

In this section of the document the characteristics of the software products which affect the

I development process are discussed. These characteristics include:

3 a) Criticality and predicted size and development cost; and

b) Technology risks.

I The former characteristics determine the most appropriate and cost effective

development, auditing, and reviewing level of effort. The latter determine the most appropriate

3 development process model.

3The development of software products which are mission critical must fully comply

with the highest level of formality which is specified for the model of development process best

suited for that product. The level of documentation must fully support all the requirements of the

scheduled auditing and review activities. Software metrics must also be conducted consistently

with the highest standard specified and must be integrated with, and must complement the other

auditing activities. It is essential to monitor the reliability, survivability and integrity metrics, by

I accurately and consistently collecting all discrepancy reports, and their resolution.

The development of large software programs is a very costly process, independent

I from the criticality of such programs. They need to be developed to the highest standard of

formality so that progress and cost can be matched accurately and overruns can be avoided or at

TWE

2-46 , ,,t



THE ANALYTIC SCIENCES CORPORATION

QUALITY ATTRIBUTE
RELATIVE RANKING

Uz
P:UNCTION -

2.4.1 DETECT PLUMES H H H H L L L L M

2.4.2 DETECT COLD BODIES H H H H L L L L H

2.4.3 RF DETECT H H H H L M L L M

2.4.4 RESOLVE OBJECTSH H H m L LM L M

2.4.5 DISCRIMINATE H H H M L L L L. M

2.4.6 ASSESS KILLS H H H M M M L L M

2.4,7 CORRELATEH H H H L LM L

2.4.8 INITIATE TRACK H H H H L L L L M

2.4.9 ESTIMATE STATE H H H H L L L L M

2.4.10 PREDICT INTERCEPT & IMPACT POINTiS H H H M L L M L M.
2.4.11 INTERPLATFORM DATA COMMUNICATION H H 4 -F L L L M H

2.4.12 GROUND-SPACE COMMUNICATION H H H M L M L L M

2.4.13 GROUND COMMUNICATION M M M L M H L H L

2.4.14 ASSESS THREAT H H H L L L M L L

2.4.15 ASSESS SOS H H H L L L L L L2..6ASGI OTO B EPN
2.4.16 ASSIGN CONTROLSGBI WEAPONS H H H HM L HI L M

2.4.18 GUIDE & CONTROL SBI WEAPONS W w H L L L L H

2.4.19 GUIDE &CONTROL GBI WEAPONS H H H MT = -H L L M

2.4.20 COMMAND ENVIRONMENT CONTROL H M H M M H L L M

2.4.21 CONTROL ONBOARD ENVIRONMENT H IH H H L7 L M L M

2.4.22 COMMAND ATTITUDE & POSTION CONTROL H M H M IM H L L M

2.4.23 CONTROL ONBOARD ATTITUDE & POSTION H H H H L L M L IM

2.4.24 SENSE ONBOARD STATUS H H H M L L L L M
2.4.25 ASSESS STATUS H M H M M H L L M

2.4.26 COMMAND RECONFIGURATION H M H M M H M L MI2.4.27 RECONFIGURE H H H H L L L L M
2.4.28 DEVELOPMENT TOOLS M M M L M M M M M

2.4.29 HWIL SIMULATOR M H H M M M L L M

2.4.30 DEMONSTRATION SIMULATIONS M H M M F M M L M

2.4.31 SUPPORT DEVELOPMENT TEST M M M7 M K H M

2.4,32 PROVIDE DEVELOPMENT ENVIRONMENT H M H M H M L L M

2.4.33 SUPPORT FACTORY TEST M M M L H IH H H L

2.4.34 SUPPORT ACCEPTANCE TEST M M M M L M L L M

2.4.35 MAINTAIN &CONTROL MGMT INFO DATABASE M IM H m H H H M

2.4.36 MANAGEMENT INFORMATION TRACKING M I L H L H H H H M

Figure 2-1 Preliminary Requirements for Software Quality 09/0-0 o

I2-47 01r.



THE ANALYTIC SCIENCES CORPORATION

I least minimized. The focus of the activities must be centered on these objectives. Productivity

metrics provide effective means for matching progress and incurred expenses. They are discussed

in Section 2.6.

3 Criticality, size and cost can then be combined to define three levels of software:

Level 1, 2, and 3. Each level differs from the others by a combination of criticality, size and cost,

3 (Level 1 is the most critical, expensive, etc.; and Level 3 the least critical, expensive, etc.). For

each level, different auditing and review activities, including metrics, are specified (See Figure 2-2,

3 Metrics Application and Software Level).

ACTIVITIES/LEVEL LEVEL I LEVEL 2 LEVEL 3

I REQUIREMENTS A A C

PRELIM. DES. A A C

DETAIL DES. A B C

3 CODING & CSU TEST A B

CSC INTEGR. TEST A B

I CSCI INTEGR. TEST A B

3 Figure 2-2 Metrics Application and Software Level

Activity A implies that metrics must be enforced to demonstrate compliance with

preset target values of all quality factors. Level 1 software requires such activities at the end of all

major development phases. Activity B requires a lesser degree of auditing and reviews, which is

limited to the most critical quality factors only. Level 2 software requires a combination of A and

B activities, at different phases of the development process. Finally, level 3 software, the least

5 critical, expensive or complex, and the smallest in size, may require very limited or no metrics

activity at all. It is important to establish different levels of software because auditing and review

activities, including metrics, are costly and it is not cost effective to equally and indiscriminately

apply them to all software.

U Classifications of this kind have been successfully used for supporting the

development process of the software embedded in digital flight control systems with different

TASC 1 I

U2-4 8 TMPG" MS A n "



THE ANALYTIC SCIENCES CORPORATION

levels of criticality and complexity. In that case, the criticality of the software was determined,
very early in the development process, by mutual agreement of manufacturers and responsible3 government agencies. The same process is suggested for SDS software.

3 In the previous sections of this document it was discussed why the RP development
process is particularly effective in the case of large complex user interfaces, and in the case of high

technology risk areas. Clearly an early decision must be made, by mutual consent, as to the most

cost effective development approach for each particular program. In the case that RP is selected, a
clear definition of development and auditing activities must be outlined. As it was previously
discussed, the methodology supporting the RP process is not well developed. It is strongly

suggested to initiate a program which addresses this specific issue.

1 2.6 PRODUCTIVITY MEASUREMENT REQUIREMENTS

j The questions which productivity metrics attempt to answer are:

a) Is the program on schedule?

b) Is the program on budget?

c) What changes to the development process can be made to
improve productivity?

SUniform answers are difficult to obtain because of many different factors, including
different development processes, resource availability, attributes of the products, and, most3 importantly, large differences in engineer/programmer productivity due to personal motivation, job

satisfaction, capability, and other factors difficult to quantify. A source of the confusion which can
and must be eliminated is that which results from the lack of a standard taxonomy. As an example,

two simple measures of productivity include developed lines of code (SLOC), and SLOC per man-
hour. However, SLOC is not uniformly used, and different measures result from taking into

account comments and data statements in one case, but not another, for example.

5 The following assertions are widely accepted and have empirical basis:

a) Most errors are introduced in the earliest phases of the
development process;

2-49 # " rA 1Uo~M Ow



I
THE ANALYTIC SCIENCES CORPORATION

5 b) The cost of correcting errors increases as a function of the
age of the error; that is, the elapsed time from error insertion
to error detection and correction.

A study done by the Software Engineering Laboratory of NASA examining the

I matter ("Metric Analysis and Data Validation Across FORTRAN Projects", IEEE Transactions on

Software Engineering, Vol. SE-9, No. 6, Nov. 1983) shows that neither Software Science, nor

Cyclomatic Number, nor SLOC correlate well to effort spent or errors incurred. Correlations,

however, improve when the variability of the products and the development environment

decreases. This basically proves that productivity metrics, like quality metrics, must be tailored to

the specific project.

SError rate trend appears to be a promising technique for estimating the maturity of

the software during the development process. However, there is not at this time a clear indication3 that error rate trend during development is a good predictor of operational reliability. A study is

needed to determine if that correlation can be improved by appropriately tailoring the software

domain. During this study, a distinction must be made between errors which may prevent the

successful completion of the mission and errors which do not affect the mission. It is essential to
develop a methodology for addressing the former critical class of errors.

This section of the document describes which methods are currently available for:

a) estimating the system size

3 b) estimating development cost

c) estimating completion date.

I A qualitative methodology for identifying causes of deviations from predicted

patterns is also described. The contents of this section of the document is closely related to the

work done in the Software Engineering Lab (SEL) of NASA/Goddard Space Flight Center
(GSFC).I

2.6.1 Prediction of Program Size

It is very important to accurately predict software size because most other required characteristics

depend on predicted size. The best tool for predicting size is past experience with projects f

2-50 n"I ~mkVTTM TO 8"O



THE ANALYTIC SCIENCES CORPORATION

similar requirements and constraints. The estimation of the size evolves during the development

process, and it becomes more detailed and more accurate as more information is available.

In a technical interchange meeting with the SDS System Engineer (General Electric)

two recommended methods were presented for size estimation - Analogy Analysis and Function

Point Analysis.

Analogy analysis relies upon collecting empirical data from similar programs in an

attempt to derive estimates based similarities found in previous efforts. The advantage of this

approach is that it may be applied at a very early phase of the system life cycle. However, the large

number of variables involved in a specific development effort make it very difficult to determine

projected parallels between a planned development and a completed project. Unless the correlation

between the two projects' characteristics is very high, the confidence interval of the size estimate is

likely to be very limited. In addition, the measurands must have been generated using a standard

set of assumptions. For example, in order to draw valid analogies concerning the estimated size in

source lines of code for functions, the implementation language should be the same. In the Ada

language, the Government and industry have not yet agreed on standards on what constitutes a

single line of source code. Unfortunately, standards used for generating measurement data across

empirical databases of prior projects may not agree (and in some instances may not be known). A

less formal invocation of :ue Analogy method would be to make use of application experts with

long term prior experience with similar systems. The specific model for Analogy Analysis

currently recommended by the SE is SSM.

The other technique suggested by the SE is the Function Point method. With this

method, estimates are derived via a parametric based expert system algorithm of SLOC "factors"

for like functions. This, however, requires a significant level of detail for the requirements in

order to obtain estimates with high degrees of confidence. It is likely to be more useful in mid to

later stages of the system life cycle (i.e. after SRR). The specific Function Point model

recommended by the SE is ASSET-R. The SE currently recommends the use of both models

depending upon the stage of the system life cycle in which they applied.

, RCTASUA
2-51 TM1GAMSATAI Lm...rrm TOI=mnr



THE ANALYTIC SCIENCES CORPORATION

2.6.2 Estimation of Program Cost

I Size is clearly a major factor in determining cost. Li fact, most cost models are expressed in terms

of SLOC. A typical equation relating cost to program size is:

MM = A * (KDSI) B
where: MM is the amount of the effort in Man-

months

KDSI is the number of thousands of3 delivered source code instructions

A, B are constants for a given program.

I A and B vary as a function of many characteristics of the product and the process.

The COnstructive COst MOdel (COCOMO) developed by B. Boehm (Software Engineering3 Economics) defines three categories of product/process combinations, called modes:

a) Organic, the least demanding of the three because it implies
personnel experienced with the application and with the
environment, and relatively few constraints (an example
would be production of development tools)

b) Embedded, the most demanding. The product and the
process are tightly constrained by hardware, existing
software, and operational procedures. Examples are
detection, tracking, and communication.

c) Semidetached, which is an intermediate state between
organic and embedded. Examples are simulations.

The values of A and B are the lowest in the case of organic mode, and highest in the

case of embedded mode.

MODE A B
Organic 2.4 1.05

Semidetached 3.0 1.12

5 Embedded 3.6 1.20

Several other models exist which use the same relationship between man-months3 and delivered source instructions. These models differ from each other by the numerical v!-ies

used for the constants A and B. The methodology which we propose is based on the tailoring of

=C I AIM

TAUSA
2-52 V MRT AT4Ima" OS



I
THE ANALYTIC SCIENCES CORPORATION

I that relationship to the same software domains which have been identified for the software quality

attributes.U
A recent study completed by TASC for ESD shows that the cost per source line of3 code can vary approximately by a factor of six (6), as a function of the application. The lowest

cost range of $100 - $150 occurs in the case of non-real-time support utilities; the highest cost

range of $700 - $1000 occurs in the case of mission critical, real-time, attack warning software.

The percentage of software reuse which is included is clearly an important

parameter for estimating overall development cost. Software re-use is dependent on the availability

of the software, the quality of the documentation and support, and the willingness of the3 developers to reuse it. A cost model must be developed similar to the cost model for new

software, but which also includes other parameters that take into account the quality of the3 documentation, quality of the code as measured by appropriate quality attributes, and support

available (the support can be rated as excellent, good, minimum, or none), and the amount of

required changes. Three levels of changes may be appropriate:

a) significant changes required (more than 25% of the product

3 needs to be modified);

b) minor changes (less than 25%),

3 c) no changes are required.

s The parameters discussed may be used as modifiers of the cost equation for new
software.

i The SDS SE has recommended two costing models to be incorporated into the cost

estimation activities conducted by the SDS Software Center.I
The first, COCOMO, was selected because of its wide acceptance and use in current5 software projects. However, the SE did note that the accuracy of this model is limited, and that the

parameters are still open to discussion/debate.

U The second, SoftCost-Ada, is a newer Ada oriented model being developed by
RCI. This model is based on a modified Rayleigh-Norden-Putnam formulation using power la

T, E

TASPARTAa2-53 rQMMrn



U
THE ANALYTIC SCIENCES CORPORATION

I fits of data to determine confidence intervals of estimates for effort, duration, and staffing

predictions. Initial applications of this model have been very encouraging.

2.6.3 Estimation of Time to CompleteI
The initial estimate of time to complete can be based on the overall effort required in

man-months and the level of allocated manpower. Past experiences must be used for:

a) Sizing the efforts (staff-months) required to complete each
major development activity, such as requirement
specifications, preliminary design, etc., and

b) Allocating the proper level of staffing to each development
phase.

The overall time to complete can therefore be easily determined, provided that

process bottlenecks do not materialize which prevent the achievement of the development

milestones in the predetermined sequence.

Past experience must be utilized for building models of the development process.

3 Examples would be life cycle models of the percentage of effort, and schedule, for each

development phase. The distribution of effort among the several development phases follow3 predictable paths which must be defined for each software domain. Models must be developed for
"successful" programs. Then deviations from successful models may provide early warnings of

pending problems. As an example, a successful model for a certain type of software may imply

that the requirements and design phases consume a certain amount of the resources, and of the

overall schedule. Then, if code is being developed prior to those resources being consumed, that

may be an indication of inadequate design. Some nominal development process patterns have been

developed from the SEL database of NASA/GSFC. Examples of nominal range of behavior are3 shown in Figures 2-3, 2-4, and 2-5 which are assumed to reflect the pattern of "successful"

programs. Figure 2-3 shows the nominal range for code production. Code which is produced too

early in the development process may be a symptom of inadequate design and/or testing. The

converse may be a sign of a development process which is behind schedule. Figure 2-4 shows the3 nominal range for computer usage. Excessive use in the early phases may be a sign of insufficient

design. Low use may be a sign of slow production rate. Figure 2-5 shows the nominal pattern of

software changes per SLOCs. Excessive changes may be a sign of poor design, too few chan Wj t
SPARTA

3 2-54 / V W'O Sr n4



I
THE ANALYTIC SCIENCES CORPORATION

I may be a sign of insufficient testing. Nominal patterns must be tailored to specific software
domains and they may be effectively used to spot suspicious behavior patterns, which may require
further analysis. These type of nominal patterns have only qualitative value. Quantitative models

must be developed for each SDS software domain.

I
I

U
I
I
I
I
I
I
I
I
I

2-55 ra 9MA TV .Sr n

IW*W oa



THE ANALYTIC SCIENCES CORPORATION

I
I

II
10 DESIGN IMPLEMENTATION TEST

I "190

0I
wj 70

I 40 0 I
x

A 20

50

I 10I

0 10 20 30 40 50 60 70 80 90 100

PERCENT OF ESTIMATED SCHEDULE ELAPSED

5 Figure 2-3 Nommal Software Production Pattern

I
TAsc A

2-56 V MAVSAT4I*x= OI



THE ANALYTIC SCIENCES CORPORATION

U I-

* 2t

4(

2 w z

3031 NwQdlA()wd3nwllvoI Toe
U.. UA

0.C pt

0pcS

2-57 ma~m rA %Imo "s



THE ANALYTIC SCIENCES CORPORATION

0.030 IMPLEMENT ATONTE IN

0-025-

0

&* 0.020

0- .05

* lo-
0U 10

. 05

0n

30405 60 70) so 90 0

I PERCENT OF SCHEDULE ELAPSED

Figure 2-5 Nominal Software Change Pattern

2-58 wefamS.An



I
THE ANALYTIC SCIENCES CORPORATION

U 3. METHODOLOGY REQUIREMENTS FOR
SOFTWARE METRICS

The software development process and auditing activities expand from the early phases of the3 system acquisition and development process to the software operation and maintenance phases.

The quality metrics methodology includes four major phases:

I Software Quality Specifications

3 Software Quality Estimation

0 Software Quality User Evaluation

3 Software Metrics Tuning.

The software quality specifications are established early in the development

process. Software scores are calculated at predetermined events which imply the application of

scoring criteria to deliverables available at that event. The auditing activities during the operation

and maintenance phases provide the data necessary for tuning the quality metrics which were

applied during the previous development phases. By doing so, the relationship between metrics5 scores and user perceived quality can be improved and possibly validated. The four phases are

described further in the following sections.

3 3.1 SOFTWARE QUALITY SPECIFICATIONS

This phase starts very early in the life cycle of a product, as soon as a description of

the system, although incomplete and informal, is available. Three major objectives must be

accomplished in this phase:

a) Determine the criticality of the software

I b) Establish the technology risks

c) Specify the software quality criteria and targets.

A cooperative effort is required. Inputs from candidate developers, the System3 Program Office (SPO), the target user command, the logistic command, and the product division

quality assurance department are needed so that all conclusions properly reflect the different needs

'T9

3 3-1 ILW

I |o r" TOI



I
THE ANALYTIC SCIENCES CORPORATIONI

3 and requirements of all parties involved. To change those conclusions during the development

program can be very costly.3
The criticality of the software is the key parameter for establishing the level and

formality of the activities required, as it was previously discussed. It is very important to establish

the proper level of criticality because the development cost of software rapidly increases as a
function of the criticality. The criticality of the software is a function of the criticality of the

application and a function of system design consideration. As an example, if the application has a
high level of criticality and no redundancy is available within the system to perform that same3 function, then the software which implements that function is very critical. On the other hand, if

the system provides some form of redundancy to perform the same function, in the case of a

software failure, then the software may be assigned a lower level of criticality, which would

decrease the development cost.

I The technology risks associated with the software development may be an

important factor for selecting the proper development process, WF or RP. As it was previously

discussed, the RP model, or variations of it like the Spiral model, may be very effective to support
the early phases of the development process in the case of high technology risk areas and in the

case of complex user interface requirements.

3 The software quality criteria and targets must be established as a function of the two
previously discussed considerations, criticality and risk, and as a function of the other relevant3 software characteristics which have been previously identified. They are: embedded vs. general

purpose; space vs. ground based; life cycle; size and cost; and intended use. For each of those

characteristics, quality factors which are typically very relevant have been identified. It must be

realized, however, that any product may require quality factors different from those identified,
because of special requirements or considerations. As an example, portability is a quality factor

identified for products with long life cycle. Some products with short life cycle, however, may
also be required to be portable. The ultimate objective of a software metrics science is to be able to5 precisely correlate numerical scores of metrics, calculated during the development process, to

quantifiable characteristics of the final product. As an example a maintainability score of .9 would3 correspond to an average effort to detect and correct software errors not greater than 1 man-day.
The current technology, however, is far from being capable of supporting such a worthwhile

SPARTA'. .

3-2 "=? A%3OST oa



THE ANALYTIC SCIENCES CORPORATION

objective. As one example of the problems involved, consider attempting to balance conflicting

quality requirements, where high efficiency is required. The process of balancing requirements

implies: a) the knowledge of the quantitative relationships between metrics scores and quality

ratings of the final product, so that the proper targets for metric scores can be established; b) the

knowledge of boundaries of feasibility in the multidimensional space of quality targets, so that

among all combinations of target values, feasible and unfeasible combinations are identified; and c)

the selection of the feasible combination which best approximates the combination of target values

for a specific software product.

The technology for performing the three tasks above, however, is not currently

available. Furthermore, neither Government nor industry has squarely addressed and

quantitatively stated the required compromises to date. We strongly recommend the initiation of a
program to address these important technology requirements. Until that is complete, only

qualitative and approximate judgment is available for supporting the difficult process of balancing

competing quality factors.

Considerable compromises and initial steps must be taken first. We propose the

following approach for each software product with unique combinations of characteristics:

1) Determine the software criticality level (1, 2, or 3);

2) Identify the quality factors which are most critical, and
assign minimum acceptable scores to each of them;

3) Identify the quality factors which are less critical, and assign
a minimum acceptable score to each of them. Scores in this
category are expected to be lower than the scores in the
critical category;

4) Scores of each quality factor must be evaluated at the end of
each relevant development activity.

Scores must met or exceed the minimum acceptable values. The criteria of setting

scores are, at least initially, rather arbitrary because of lack of validated metrics models. As more

knowledge is available, stable correlations can be established between scores and final product

characteristics. Then the scores can be ,assigned in a manner which reflect the desired

characteristics of the final product.

ATC
TSPARTA

TA Mc

..... .....



I
THE ANALYTIC SCIENCES CORPORATIONI

3 The importance of establishing the software criticality is that the criticality

determines, to a large extent, the formality and the extent of the entire development effort,3 including all audit, review and quality metrics activities of the development effort.

3 The targets are defined during the earliest phases of the system development

process, and they are further refined at the end of the software requirement analysis. The metrics

are then applied, for monitoring purposes, throughout the software life cycle at events such as the

end of preliminary design, detail design, unit coding, and integration phases. Requirements for
user feedbacks during the operation and maintenance phases, are also developed so that the metrics

can be validated. The most appropriate phases and events for applying metrics are identified which

satisfy the auditing requirements of the standards and provide estimates of quality and cost in the3 most effective manner. The WF and RP approaches are both considered and separately developed.

Methods for establishing the level to which the final product meets the requirements are also

3 developed.

* The detailed steps of the methodology are:

a) The process starts with the need for developing a software
product. Any constraint which affects the development
process is identified at this time.

b) The software product to be developed must be assigned to a
specific software domain so that quality and productivity
requirements can be set.

c) The metrics methodology is defined so that metrics scope
and phases are defined. The application of the metrics
continues throughout the development process and it
provides estimates of the level to which quality and
productivity requirements will be satisfied, once the product
is fully developed. At product completion, the best
assessment of the quality is made, which takes into account
all scores of each metrics applied during the entire
development process.

d) After the product is put into operation, the final user will
independently re-assess the quality of the product as he
perceives it. He will be the final judge of how well the
product satisfies the quality and productivity requirements
which were established at the earliest phases of the
development processes.

S3SPARA
3-4 " MPT ATA



I
I THE ANALYTIC SCIENCES CORPORATION

I e) The inputs of the user will be utilized for tuning the model of
the metrics. If good agreement exists between the predicted
quality of the product (by the metrics) and the user perceived
quality, then the metrics do not need to be further tuned. If
disagreement exists between predicted and actual, then some
metrics need to be properly modified (tuned). The process
of metrics fine tuning extends for several software products
until good agreement is consistently achieved.

* Figure 3-1 depicts a flow model establishing and applying the software

measurement process for a given system development process.

I 3.2 SOFTWARE DOMAIN

U The software domain for the product is defined based on the guidelines described in Section 2 of

this document. Quality and productivity targets are then grossly defined for the software product3 and the development process. Remaining conflicting requirements are outlined and resolved either

by eliminating less critical requirements, or by upgrading hardware requirements (which decreases

the need to have highly efficient software, a requirement which is in negative correlation with many

others), or by further segmenting the software product so that contrasting requirements are

eliminated or limited to small portions of the software product only. Alternatively, the relative

importance of each quality factor can be weighted and the measurands which are related to a

heavily weighted quality factor, prevail, in the case of conflict over those which are related to a

lightly weighted quality factor.

Final quality and productivity targets must be negotiated between the user and the

developers so that all parties involved realize the impact, the difficulties and the uncertainties.

I As an example of how an actual development of SDS software fits into the

categories and domains defined, we take the Space-Based Experimental Version (SBEV)

prototyping, for which SPARTA is the prime contractor. Under this contract, several prototype

systems are being developed to resolve critical issues and investigate the feasibility of various

approaches. One of the prototypes being developed is the SDS Communications Module (SCM).

The SCM has as its purpose to provide all the interplatform and intraplatform data communication3 services for SDS applications (such as the Battle Manager). The prototype SCM is being

developed in Ada, using the Rapid Prototyping software development model. It is expected to be

3-5 
TM AAT W.A AM



I
THE ANALYTIC SCIENCES CORPORATIONI

SYSTEM CONCEPT

DEFINITION

I SOFTWARE DOMAIN
DEFINITION

I SOFTWARE MEASUREMENT

REQUIREMENT ANALYSIS

I [SOFTWARE MEASUREMENT

INEGOTIATION OF MESUREMENT S ELECTION OF MEASUREMENTI
GOALS AND TARGETS AND GO

USETRI PASEN

FUSTMENTS OF PRODUT
SAND PROCESS DEVELOPMENT

I I REUIREMENTS 
ICOMPARISON WITH PRESENI

II I TARGETS AND GOALS

I OF FINAL PRODUCTUSRASSMNI I AND PROCS

I IT, &, o o% 1 [ M EA:~EA'ENoNTN LEOFODS

N T 
0389/002-004

I Figure 3-1 Flow Model for Establishing and Applying the Software

Measurement Process

I
I SPATA

USA

3-6 IlI SA n"



THE ANALYTIC SCIENCES CORPORATION

comprised of approximately 12000 lines of Ada code. Both the development

systems and target systems are Sun workstations.

From the set of application software domains described in Section 2.2, the

Prototype SCM development effort best fits into the domain of Demonstration Simulation. From

Section 2.4.30, the software characteristics typically associated with that domain are:

Time and Function Critical;

Embedded and Near Real-Time;

Ground-Based;

Life Cycle Through Development;

Algorithmic Intensive;

Large;

Moderate Technology Risk;

Non-Operational Use.

From Section 2.4, the SCM Prototype Development is then Process Typed. From

the descriptions of these levels, the SCM Prototype Development is best classified as Level 2.

While not large in expected development, it is critical that the salient data communications functions

be accurately represented (the eventual goal is to provide an emulation, rather than a

simulation).

At this point we combine the software characteristics with the software level, as we

specifically evaluate the unique properties of the SCM effort. The following restatement (with

modifications) of the software characteristics are:

Time and Function Moderately Critical;

Embedded;

Ground-Based;

Life Cycle Through Development;

Low/Medium Algorithm Intensive;

TAS~fSPARTA

3-7 fIA1WA~~[ D*M O0



I
THE ANALYTIC SCIENCES CORPORATIONI

I Small;

Moderate Technology Risk;

Non-Operational.

I We now select the appropriate quality factors associated with the above

characteristics. For this development effort, they are:

U Reliability: Medium
Survivability: Low
Integrity: High
Efficiency: Medium
Throughput: High
Maintainability: Medium
Usability: Low
Portability: Medium
Re-Use: Low

From the above list, it is apparent that software measures that address Integrity and
Throughput would rank first, followed by Reliability, Efficiency, Maintainability and Portability,

with Survivability, Usability, and Re-Use being the least important.

3.3 METRICS SCOPE AND PHASES

A most important task is to define the criticality of the software product. If the product is assigned
a level of criticality which is excessively high, then the development costs are also unduly high If

the product is assigned a level of criticality which is excessively low, then it will not be developed

to the level of quality which is needed. Software criticality is a function of many system level
attributes like: criticality of the function to be performed; availability of functiornal, analytical, or
hardware redundancy (such availability decreases the level of criticality of the software). Critical

software requires more frequent and stringent audits than non critical software. Criteria are

defined for establishing two or three levels of criticality of the software.

Other important factors are size, complexity and cost. Large and costly programs
require more frequent and stringent audits than small programs. Criteria must be defined for

establishing the optimum monitoring requirements as a function of size, complexity and cost. The

selection of the criteria and of the metrics elements to be applied to each product and process, is
made based on analytical evaluation and published data relative to the effectiveness of each met*I

3,ASC ISPARTA

3-8 TiPGATA~ AM



SCIENCES CORP ARLINGTON V9 06 APR 69 TRSC-TR-9033-1

I CLASSIFIED F/G 12/5 NH.

ME..

L L

-- mom"



I ~ i 2.2u~ *
iiiii 1.0
'ii"- I..sm

lullLA

1.25 .4 1.6

UTION TEST CHARI



THE ANALYTIC SCIENCES CORPORATION

I The SDS software can greatly benefit, in productivity and quality, if software reuse

is encouraged and rewarded. A metric to monitor software reuse, throughout the development

process, needs to be developed so that quantitative and objective measures of the percentage of

reuse in each product can be assessed. It is important to notice that software reuse is not limited to

code, but it includes requirements specifications, design, documentation, process, interfaces

(including user interfaces) and others.

I 3.4 USER FEEDBACKS

A methodology is necessary for formalizing the user feedback, relative to the quality of the

product, once the system is in operation. The user, and his judgement, are the only available

feedback of the quality of the software. Because user judgement can vary from time to time and

clearly from user to user, a methodology must be established to ensure that consistent judgements

are supplied every time. That is, the rigor of the user judgement must be of the same level of

formality used for scoring the metrics. For instance, if the user has to judge the level of
maintainability of a product, first he must use the same scale that was used for the requirements

(high, medium, low for example), and then he must be given exact formulas for evaluating the

product. Then every user will utilize the same formula for every product, every time. The

determination of such formulas is beyond the scope of this document.

3.5 METRICS TUNING

The metrics criteria, elements, and measurands are critically reviewed, based on the correlation

between the predicted quality, based on the metrics, and the perceived quality, based on the user

inputs. If the two values are in agreement, no tuning is required of the metrics. If considerable

disagreement exists between estimated and user perceived quality factors, then further tuning of the

models is required, so that the correlation can be improved for future products.

I
I
I

I 4W ' O TUN




