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DICE: An Object Oriented Programming Environment for
Cooperative Engineering Design

Abstract
The development and testing of knowledge based computer tools for the integration and coordination of various

phases and participants of the engiaieering process are described. A system architecture - DICE - is presented which
is intended to provide cooperation and coordination among multiple designers working in separate engineering
disciplines, using knowledge to estimate interface conditions between disciplines, recording who used any piece of
design data created by others, and how such dat was used, and checking for conflicts among disciplines,
manufacturability. and manufacturing cost and schedule impacts of design decisions. The system is being developed
using object oriented programming and blackboard control techniques. Current status of DICE, along with examples
in the domain of civil engineering are presented.

1 Introduction
On July 17, 1981, two skywalks in the lobby of the Hyau Regency Hotel in Kansas City collapsed. It was cited as

the "most devastating structural collapse ever to take place in the United States"; 114 people died and 186 were
injured [24). This was not only a failure of a physical structural system, but also a failure of the process by which
most projects in the U. S. are designed and built. The objective our current research is to provide computer based
tools which would help during design and construction to avoid errors of the type made in Kansas City.

The Hyatt failure was attributed to a combination of three events. First. in progressing from the preliminary to
detailed design, where joint and connection detailing occurs, the design of the hanger to spandrel beam connection
was inadequate. Second, in developing shop drawings, the connection detail was changed by the steel fabricator,
thereby "compounding an already critical condition." Third, this second error was not caught during approval
checking of the shop drawings by the struc'mral engineers. These were all errors of communication anc coordination
in the design process, errors caused by the structure of the process, lack of tools used in this process, and focus on
documenting the product of design while neglecting "process" and "intent" documentation. These problems also
exist in other engineering application areas.

Large engineering projects involve a large number of components and the interaction of multiple technologies.
The components included in the product are decided in an iterative design process. In each iteration, interfaces and
interface conditions among these components are designed with slack to account for potential variations created
when the components and interface values become better known. Iteration proceeds towards increasing detail;
design personnel may change, and their numbers expand with increasing level of detail.

The problems facing the engineering industry in the U. S. will be highlighted by considering the design and
construction1 of structures. On a single project, interacting design technologies often come from separate firms or
functional groups within a firm, and there is little coordination between designers and contractor(s) during design.
Because designers find coordination among themselves difficult, they leave this task to construction managers or the
contractor. Thus, working drawings, use.: to inform the contractor of the product, lack detail. Shop or fabrication
drawings are required from the contractor to document details, but potential conflicts among trades are often
unrecognized until construction begins. Several undesirable effects are caused by this lack of coordination.

3Mma.ufacwuring in the civil engineering industry is known as coartructsi. There are several differences between the cmttruction industry and
the manufacturing industry. For example, in manufacturing several hundreds of a single type of product art produced, wt,ereas censutactm
involves the productin of one-.-kind products. However, the ovenl engineering process is similar. In this paper the terms manufacturmg md
cmstrUucaon will be used to dent the reatWwn or cretion oft de signed anact.
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1. The consmttion process is slowed, work stops when a conflict is found.

2. Prefabrication opportunities are limited, because details must remain flexible.

3. Opportunities for automation are limited, because capital intensive high speed equipment is
incompatible with work interruptions from field recognized conflicts.

4. Rework is rampant, because field recognized conflicts often require design and field changes.

5. Conservatism prevades design, because designers provide excessive slack in component interface., to
avoid conflicL

6. The industry is unprepared for the advent of automated construction, as the need for experience in
design limits choice to available materials placed by hand.

All of these problems decrease productivity. In addition, failures, such as the Hyatt collapse, occur more often then
they should. Overcoming these problems requires significant changes to the design process, together with superior
compter integrated design and construction/manufacturing (CIDCAM) tools. Those tools must be tailored to the
needs of designers who are [2]:

"constantly engaged in searching out various consequences of design decisions [especially those made by others]"

This paper details the development of a prototype system to test new concepts for computer tools to integrate
various stages involved in the engineering of a product. The major objectives of this system are to:

1. Facilitate effective coordination and communication in various disciplines involved in engineering.

2. Capture the process by which individual designers make decisions, that is, what information was used,
how it was used and what did it create.

3. Forecast the impact of design decisions on manufacturing or construction.

4. Provide designers interactively with detailed manufacturing process or construction planning.

5. Develop intelligent interfaces for automation.

Computer aided tools, which will be collectively called DICE (Distributed and Integrated environment for
Computer-aided Engineering), are being currently developed to address the above objectives. DICE will
significantly improve productivity by,.

" reducing error in design;

" providing more detailed design;

" providing better manufacturing or construction planning;

" allowing easier recognition of design and manufacturing (construction) problems;

" using manufacturability criteria throughout design; and

" advancing automation.

Lessons from the Hyatt failure show that such tools are required. Had the connection designer had access to the
concepts of load transmission underlying the preliminary design, local buckling might have been recognized and the
joint details changed. Had the fabricator preparing the shop drawings had access to that information, he would have
seen that his change violated the purpose of the connection scheme. Had the shop drawing checker seen all these
changes together with their intent, he would have recognized the faults in the design.

The engineering design process and problems associated with this process are described in Section 2. Using this

2Engineers from several industries that we visited felt that computer aided tods for cooperation and coordination can gready incrnse their
-rodu-wit.
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background, an overview of DICE is given. Background material on computer-based technologies used in this work
and systems relevant to the current work are presented in Sections 3. A system architecture which utilizes concepts
from knowledge-based systems and database management systems is described in Section 4. This is followed by a

description of the current status of DICE.

2 Scope of Work
The problems that engineers normally solve fall along the derivaton-formatwn specmm [1]. In derivation-type

problems, solutions consist of identifying an outcome or hypothesis from a finite set of ouComes known to the

problem solver. By contrast, in formation-type problems, the problem solver has only the knowledge of how to

form the solution. A variety of problem solving techniques are invoked to arrive at a solution.

Design and manufacturing (or construction planning) problems fall at the formation end of this spectrum. Design
and manufacturing are accomplished by a team of engineers, each knowledgeable in a particular aspect of the
problem, but with little knowledge of the decision processes of others. Each could be considered as one of many
sources of knowledge, and hence, design and manufacturing (construction) could be viewed as a process of
constructing an artifact which satisfies constraints from many sources by using knowledge which also comes from
many sources. The extent of interactions can be seen by looking at the diverse set tasks, listed in Table 1, that must
be performed by a diverse set of professionals during the design, for example, for a high rise building [303.

Planning Architectural design
Spatial layout Site planning
Preliminary structural design Analysis modeling
Component design Geometric modeling
Substructure design Cost estimating
Electrical distribution design Elect. distribution analysis
Mechanical design Mechanical analysis
HVAC design I-VAC analysis
Vertical transportation design Regulatory compliance
Various design critics Fire safety analysis

Table 1: Tasks involved in the Design of a Tall Building

As CAD/CAE becomes more widespread, each of these consultants will be performing increased amount of their
work with computer tools, tools which will embody and use their knowledge in their speciality area.

From this view, the stages of design and construction might be described as3 :
1. Problem Identification. The problem, necessary resources, target technology, etc., are identified at

this stage.

2. Specification Generation. Design requirements and performance specifications are listed.

3. Concept Generation. The selection or synthesis of potential design solutions, such as a structural
system, is performed. Several alternative designs may be generated.

4. Analysis. The response of the system to external effects is determined by using the appropriate model
for the system.

5. Evaluation. Solutions generated during the Concept Generation stage are evaluated for consistency
with respect to the specifications. If several designs are feasible then (normally) an appropriate
evaluation function is used to determine the best possible design to refine further.

3Similar "aes occur in the manufaerinr industry.
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6. Detailed Design. Various components of the system ae refined so that all applicable constraints (or
specifications) are satisfied.

7. Design Review. The detailed design is checked for global consistency.

8. Construction. This :-.volves the preparation of shop drawings, development of detailed construction
schedules, actual construction, and construction monitoring.

There may be significant deviations between the properties of components assumed or generated at the Concept
Generation stage and those determined at the Detailed Design stage, which would necessitate a reanalysis. The
process continues until a satisfactory or optimal design is obtained.

During each stage in this process, representatives from the various interacting disciplines meet and discuss

potential interactions between the components they envision designing. They use estimates of space needs,
structural, heat, and electrical loads, and other factors to set requirements for their systems based on the needs of
others. Experience is used to estimate these interfaces. Explanations on how these estimates were determined is
seldom sought, except where they cause conflicts between objectives. When individual designers select components
and systems during any stage of design, they use and try to develop solutions which satisfy the interface estimates.

The problem with this process is that individual designers often lack sufficient experience in both estimating their
interfaces (assessing their impact on others) and in asking for information needed from others. They assume,
instead, situations similar to other designs. Similarly, they seldom think about and may even lack knowledge of

constructability or management and control of the construction process. This may lead to incompatible component
selection and poor choice of design parameters. For example, the use of wide rooms in low cost housing is

incompatible with inexpensive construction techniques. The designer is assumed in this process to have sufficient
knowledge of construction techniques, materials, and equipment to make proper decisions. This is seldom the case.
Also, since the present design process does not document reasons behind decisions, others cannot easily question
decisions or improve designs. DICE's framework was developed to obviate the above problems. A simplified view
of DICE is shown in Figure 1, where users within their discipline interact with individual CAD tools and KBS for
component design and solution generation. These systems automatically communicate with a global system which
provides data and support facilities.

An initial (prototype) version of DICE operates on two SUN workstations. The final system will operate on
several interacting computers, which will be high speed workstations with good knowledge representation tools.
Knowledge representations for support facilities are required to:

1. Estimate and negotiate interface parameters between stages of design, doing so in an interactive
manner, when a designer asks for information (i.e., if a designer asks for information that has not yet
been developed, knowledge will be used to estimate values);

2. Keep track of who used design information, when, and whether it was estimated or actual values (so
that when values change, the design can remain coordinated);

3. Use coded individual knowledge sources to assist in or automate component design, retaining
component information about sources of data used in the design, the algorithms or knowledge used,
and inputs on design rationale from the user,

4. Operate numerous background processes to check design choices for interferences, violations of
interface assumptions, constructability, and cost and schedule impacts;

5. Allow user input and design alterations from either a commercial CAD system or the knowledge
representation workstation; and

6. Inform designers of the impacts of initial designs and changes by others on their design choices.
We extend the simplified version of DICE, shown ir. Figure 1, to address the above issues in Section 4.



Architect HVAC Designer Structural Fabricator

Figure 1: A Simplified View of a Distrbuted Design Environment

3 Background
There are five technologies are required to realize DICE: Artificial Intelligence (knowledge-based systems, object

oriented programming, negotiation theory, etc.), Distributed Databases, Local Area Networks, Deisgn
Methodologies (design for assembly. Taguchi's methods, house of quality, hierarchical design models), and Visual
Computing (geometric reasoning and user interfaces). In the next section, we will describe some of the computer-
based technologies that are utilized in the current DICE prototype. This is followed by a summary of work on
negotiation. A review of relevant research work is provided in Section 3.3.

3.1 Relevant Computer-Based Technologies

Developments in computer science and engineering methodologies have provided engineers with a variety of
software development tools. The computer-based software development tools that are relevant to this project are:

1. Object Oriented Programming (00P) Methodologies;
2. Knowledge based systems (KBoS)c

3. Database management systems (DBMS);
4. Visual computing, and
5. Local area networks.

Object Oriented Programming. Object Oriented Programming (00?) is a style of programming that involves
the use of objects and messages. Objects are defined by Stefik and Bobrow as [37]:

Objects aen entities that combine the properties of procedres and data since they pefom computations md save ocka
stle.

Objects contain slots and slots may consist of a number of facets. A slot may simply be an aribute or it may be a
relation. The facets contain meta-information about the slo l

Al actions in object oriented programming are performed through messages. Messages tell the object what to do
and not how to do at. Methods are attached to the object to execute the actions associated with the messages. The
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message passing ability in OOP supports the concept of data abstraction.

Objects can be grouped into "classes," where each class of objects knows how to perform several actions.
Individual instances of objects can be created from a parucular class. The Object Oriented programmer builds a
system by specifying new classes of objects and their associated methods. Most OOP systems support the concept
of "inheritance," where a class of objects may be specified as a "subclass" of another "superclass" of objects.
Subclasses and instances inherit methods from their superclass, and am usually mor specific entities than their
(usually) more general superclass. An object may inherit methods and data from multiple classes through a network
of srucutral relationships. In short, every object has the ability to: sore information, process information, crease
new buformation, and communicate with other objects. Ths OOP facilitates encoding design and construction
knowledge in a disaggregated and modular form.

As an example consider the following object

BEAM-1
instance: "Beam"
M :
Methods: Display-moment, Calcul.ate-moment

The message (send beam-] calculate-moment), where beam-I is the object to which the message is addressed,
would compute the moment in accordance with the Calculate-moment method. For further details about object
oriented programming see [37].

Knowledge-based systems. KBS are computer programs which incorporate knowledge and reason through the
application of their knowledge to data about a specific problem. If these systems incorporate human expertise then
they are called knowledge-based expert systems (KBES) 4. A typical KBES consists of three components:
Knowledge-base, Context, and Inference Mechanism or Control Mechanism. Several problem solving architectures
used in the Inference Mechanism are described in [36].

In this work, a knowledge-based framework - the Blackboard architecture - that facilitates the integration of
diverse sources of knowledge is used [16]. In addition, the work on truth maintenance systems will also be utilized
[9, 101.

The Blackboard architecture provides a framework for. 1) integrating knowledge from several sources, and 2)
representing multiple levels of problem decomposition. It uses two basic strategies [25]: 1) divide and conquer, and
2) opportunistic problem solving. The divide and conquer strategy is realized by decomposing the context, which is
called a Blackboard, into several levels depicting the problem solution decomposition, while opportunistic problem
solving is achieved by focusing on the parts of the problem that seem promising. The Blackboard architecture has
been successfully used in solving a wide range of tasks, such as speech recognition [12], signal processing [26],
and planning [16].

Database management systems. Engineers have always dealt with large amounts of data in diverse applications.
Hence, storing and manipulating data forms an integral part of the engineering process. Database management
systems (DBMS) provide means to store large amounts of data in databases for use by a variety of applications. Data
access is controlled through a dictionary so that individual programs need not be changed when the database

"For the pupose of this raper, the term KBS and KBES wil be used intermhangeably.
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stucture changes. If a problem requires the integration of several geographically distributed databases then we enter

the realm of distributed databases. A system that manages these distributed databases is termed as a distributed

database management system (DDMS). There are several issues that arise in the development of a DDMS:

concurrency control, query processing, reliability, efficiency, etc. (See [3,7,27] for further discussion of these

issues).

Visual Computing. Engineers make extensive use of diagrams (images) to convey their ideas. They also like to

see scientific information (or data) to be conveyed by visual diagrams (images). Hence computer-based systems for

engineering should have the ability to: 1) recognize and understand diagrams, and 2) generate diagrams. The study

and development of the methodologies required to provide above capabilities in a computer program falls under the

realm of Visual Languages. Visual languages can be classified into: 1) Visual Information Processing Languages

(VIPL), and 2) Visual Programming Languages (VPL) [4). In VIPL, the objects that are displayed on the screen (by

the engineer) have inherent visual meaning, i.e., the object has some semantic meaning associated with it. The task

here is to map these objects into their semantic content. An example of VIPL is spatial reasoning about engineering

objects. On the other hand in VPL, the visual diagrams are generated on the screen from scientific (or otherwise)

data and it is left to the engineer to extract the semantic meaning of these diagrams, e.g., current work on solid

modelling. It is also important to realize that these visual languages should be portable. Hence, they should be

developed in an environment that is portable across a variety of hardware, such as the X Window system, which is

rapidly gaining acceptance as an industry standard.

3.2 Negotiation Theory
Negotiation is a process by which a joint decision is made by two or more parties. The parties first verbalize

contradictory demands and then move toward agreement by a process of concession making or search for new

alternatives. The parties can range in size and importance from children trying to decide how to divide up a set of

toys to nations trying to end a w.,r (which might not be as different as it seems once you really think about it).

Irrespective of the size and the type of the parties involved, there seems to be a general body of principles that are
applicable to address the negotiation problem. Pruitt's approaches to the negotiation problem has considerable
relevancy for DICE [28).

Pruitt's Princliples of Negotiation. Two basic principles of negotiation - the goal/expectation hypothesis and

the strategic choice model - are presented in [28].
1. The goal/expectation hypothesis states that for most forms of coordinative behavior to be enacted, it is

necessary to have both a goal of achieving coordination and some degree of trust in the other party's
readiness for coordination.

2. The strategic choice model postulates three basic strategies for moving toward agreement: unilateral
concession; competitive behavior, and coordinative behavior. These are assumed to be at least
partially mutually exclusive. Hence, tradeoffs among them can be expected. Conditions that
discourage the use of one strategy should encourage the use of the others and vice versa.

Since negotiation itself can be viewed as a form of coordination, the theory of how coordination develops provides

insight into the conditions under which negotiation begins.

Coordination. Coordination occurs when bargainers work together in search of a mutually acceptable
agreement. Without the possibility of coordination, negotiation would often take an inordinate amount of time,
create much psychological strain, end in disagreement, and/or poison future relations between the participants.

Coordination is very common, especially in the later stages of negotiation, when competitive behavior no longer
seems very productive. According to Pruitt., two main types of coordination occur in negotiation [28]:

1. Concession exchange, in which the parties move toward one another on a single dimension or swap
concessions on different dimensions; this is a form of compromise bargaining.



2. Problem-solving &scussions, in which the parties share information about goals and priorities in
search of an option that will satisfy both parties' needs, that is, an integrative agreement.

For further background on negotiation theory see [15].

3.3 Relevant Systems
The following systems, developed in recent years, address home of the capabilities needed for DICE 5. However,

these systems do not address the problem from a global perspective. Further, full scale implementations of many of

these systems do not yet eXiSL

3.3.1 CAE Systems
The following systems have been developed for computer aided engineering.

The DARPA Initiative in Concurrent Engineering (DICE). The primary goal of DICE26 is the development

of an advanced design and engineering environment that facilitates rapid prototyping of electro-mechanical parts
and high-density eectronic assemblies [29]. In DICE2, each workstation is connected to the DICE2
Communication Channel (DCC) through which all information flows, with the help of a Concurrency Manager

(CM). Each workstation has a Local Concurrency Manager (LCM). LCM coordinates the flow of Info-Paks
(extended NFS-Network File Servers) with the CM to provide transparency. In addition, the workstation also has a
local database (LDB) and a set of analysis and support tools, with isolated interfaces. Using, the LCM, LDB and the
tools, a domain expert will be able to access remote data, perform computations and communicate the results to
others in the network. The LCM will also be used to access External Networks and remote Compute Servers.

Conclusions drawn from local analysis are used to influence design by asserting decision parameters on a
Blackboard. A Knowledge Server (KS) is used to retrieve generic information such as that which may be found in a

handbook, or transformed information from the Pan-Process Organization (POP) database. The simulated
Production Facility (SPF) at one end of the DCC i.; a multi-level simulator that may be used by production
engineers, plant designers and others to validate producibility before designs are finalized. The Advanced

Prototyping center (APC), at the other end of the DCC, consists of programmable machine tools which may be used
to produce actual prototypes prior to production runs at the pilot plant level.

DICE2 is still in a development stage and is yet to be demonstrated on a real world problem. If successfully
implemented, this system should provide answers to most of the problems stated here. It is interesting to note that
DICE and DICE2 have many similar characteristics.

An Integrated Software Environment for Building Design and Construction (IBDE). Fenves et al.

developed an integrated environment - called IBDE (Integrated Building Design Environment) - of processes and
information flows for the vertical integration of architectural design, structural design and analysis and construction
planning [13]. The integrated environment makes use of a number of Al techniques. The processes are implemented

as KBES. A Blackboard architecture is used to coordinate communication between processes. The global
information shared among the processes is hierarchically organized in an Object Oriented Programming language.

The Integrated Building Design Environment (IBDE) system is implemented in the form of five vertically
integrated Knowledge-Based processes:

1. An architectural planner (ARCHPLAN).

'In addition, a reent summary of sorne of the work in computer aided coopeaive work appeared in 121].

Fw the make of prevewting onfusion, this systan will be referred to as DICE2 und not as DICE.
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2. A preliminary structural designer (Hn-RISE).
3. A component designer (SPEX).
4. A foundation desirner (FOOTER).
5. A construction planner (CONSTRUCTION PLANEX).

The processes communicate with each other in two ways:
1. a message Blackboard is used to communicate project status information such as whether a process is

ready to execute, has successfully performed its task or has encountered a failure, and

2. a project database used for storing the information generated and used by the processes

A controller uses the information posted on the Blackboard to initiate the execution of individual processes. The

controller also directs the data manager to provide and receive the information shared between the processes. Since
the different processes may reside on different machines, the data manager and the Blackboard rely on a local area

communication network.

DESTINY. DESTINY is a knowledge-based framework developed for integrating all stages of the structural
design process [34]. It consists of several Knowledge Modules (KMs) that communicate through a Blackboard.
The Blackboard consists of several levels that define the abstraction hierarchy of objects. The entities generated at
various levels in the Blackboard are connected through relational links to form a solution to the structural design
problem. The KMs are grouped into: Strategy, Specialist, and Resource KMs. The Specialist KMs perform various

tasks of the structural design process. Example KMs are: ALL-RISE, for preliminary stmcutral design: MASON, for
structural analysis; DATON, for detailing: and CRITIC for evaluating designs. The Strategy KM controls the design

process, while the Resource KMs contain algorithm programs such as Finite Element Analysis.

KADBASE. KADBASE was developed to provide a kiowledge-based interface for communication between

multiple knowledge-based expert systems and databases [17]. The main components of KADBASE ae: 1) The
Knowledge-based System Interface (KBSI), which provides the translations (semantic and syntactic) for each KBES
for communicating with the Network Data Access Manager (NDAM); "& Knowledge-Based Database Interface
(KBDI), which provides the translations needed for each DBMS for communicating with NDAM; and 3) NADM,
which decomposes queries and updates and sends them to the appropriate KBES/DB. A good review of of the work
on the use of databases in engineering can be found in [17].

GEMSTONE. GEMSTONE combines the advantages of Object Oriented Programming (OOP) languages with
the storage management of traditional DBMS [23]. In addition to the OOP language (called OPAL), GEMSTONE's
programming environment also provides an interactive interface: for defining new objects; 2) a windowing package
for building user interfaces, and 3) interfaces to conventional programming languages. GEMSTONE was developed
for a multi-user environment and has a disk manager for swapping objects to and fro from resident memory into the
hard disk.

Katz's Work. Several issues in the management of large design databases, in the realm of VLSI design, are

discussed in [18]. The design data management system, described in [18], consists of the following components: 1)
Storage component, which manages design data on secondary storage; 2) An Object Oriented database, which
supports several semantic relationships between objects of the database; 3) Design Librarian, which coordinates all
access to shared design data by making design objects available to various workstations; 4) Recovery subsystem,
which manages changes from workstations to database servers; 5) Design Validation subsystem, which assists in
determining the validity of an object when changes occur, and 6) Design Transaction manager, which uses the
Design Librarian, Recovery subsystem, and the Design Validation subsystem, to ensure that the design objects

created are in a consistent state.

Eastman's Work. Eastman and his colleagues have addressed the issue of integrating multiple design databases



10

in considerable detail [11]. Eastman points out, with an example of piping system design. tha a DBMS must be

able to handle interactions of several forms, such as: "the lo? - - generated by piping that must be picked up by the

structure" and "spatial conflicts between piping and structurl systems". He recommends the use of transaction

graphs, where nodes denote transactions on a database and links provide the precedence relationships, as a potential

solution to the above problem. In addition, he also addresses the problem of concurrent users and communication

among multiple users. He proposes that a design database should "have attached methods that other users of the

database may be made aware of any assumptions". Although Eastman addressed several important issues in his

work, a full scale implementation was hindered by lack of adequate programming methodologies, such as OOP

systems and KBS, at that time.

3.3.2 Computer-Aided Negotiation
The following computer-based systems address the negotiation problem.

CALLISTO. The engineering of large complex artifacts involves a number of activities which require the close

cooperation of a number of departments. The CALLISTO project emerged out of the realization that classical
approaches to project management is inadequate [33]. A prototype, MINI-CALLISTO, was developed to support the

needs of an organizational unit by providing means for communication and coordination during the pre-planning

stage of the project management process. MINI-CALLISTO has several Knowledge Modules (KMs), each with a

similar architecture to MINI-CALLISTO, that communicate through messages. The coordination between various

KMs is achieved through a constraint-negotiaton algorithm, specially designed to address project management

problems.

Resources Reallocation Problems. A theory of negotiation to solve resource reallocation problems among
multiple agents was developed and tested by Sathi [32]; the resource allocation problem deals with the optimal

allocation of resources to agents. In a typical resource allocation situation, there are a set of agents, each with a set
of allocated resources working apast a set of activities requiring resources. A typical reallocation transaction
specifies ownership exchange for one or more resources among agents. A simple transaction involves selling of a

resource from one agent to another. A trade involves a two way exchange of resources between two agents. A
cascade involves an open or closed chain of buy and sell among more than two agents. In his work, Sathi defines
Constraint-Directed Negotiation as a set of qualitative evaluation and relaxation techniques based on human

negotiation problem solving. The three constraint relaxation techniques experimented are as follows:
1. Bridging: A grouping of buy/sell bids or transactions in order to meet a complex constraint.

2. Reconfiguration: A change in the resource attribute value in order to meet the requirements of a buyer.

3. Logrolling: Selective constraint violation on less important constraints in order to accept a transaction
which is acceptable on more important constraints.

While initial evaluations on constraints were done locally by each agent, the above relaxations were performed

during a group problem-solving session, as if performed by a mediator. The automated problem solver uses a mix of

local and global knowledge to facilitate cooperative reasoning where some problem solving is done by each agent

and some as a group. The individual and group search processes use several aspects of constraints, such as constraint

importance and looseness to prioritize the search steps.

Deals Among Rational Agents. A formal framework is presented in [31] that models communication and
promises in multi-agent interactions. This framework extends previous work on cooperation without communication

and shows the ability of communication to resolve conflicts among agents having disparate goals. Using a deal-
making mechanism, agents are able to coordinate and cooperate more easily than in the communication-free model.

In addition, there are certain types of interactions where communication facilitates mutually beneficial activity that
is otherwise impossible to coordinate.



11

Negotiatiou a a Metaphor for Distributed Problem Solving. A framework, called Contract Net,that specifies

communication and control in a distributed problem solver was developed by Davis and Smith [8]. The kinds of

information which must be passed between nodes in order to obtain effective problem-solving beavior is the origin

of the negotiation metaphor; task distribution is viewed as & form of contract negotiation. The use of the Contract

Net framework is demonstrated in the solution of a simulated problem in area surveillance. The system is based on

the assumption that three issues are central to constructing frameworks for distributed problem solving [8):

1. The fundamental conflict between the complete knowledge needed to ensure coherence and the
incomplete knowledge inherent in any distribution of problem solving effort.

2. The need for a problemr solving protocol.

3. The utility of negotiation as an organizing principle.

Davis & Smith feel that negotiation is an important aspect of distributed problem solving and consists of three

important components: I) there is a two-way exchange of information, 2) each party to the negotiation evaluates the

information from its own perspective, and 3) final agreement is achieved by mutual selection.

Multistage Negotiation in Distributed Planning. Multistage negotiation provides a means by which an agent

can acquire enough knowledge to reason about the impact of local activity on non-local state and modify its

behavior accordingly. Conry describes a multistage negotiation paradigm for planning in a distributed environment
with decentralized control and limited interagent communication (61. The application domain of interest involves the

monitoring and control of a complex communications system. In this domain, planning for service restoral is

performed in the context of incomplete and possibly invalid information which may be updated dynamically during

the course of planning. In addition, the goal of the planning activity may not be achievable - the problem may be

over constrained. Through multistage negotiation, which involves negotiating on primary goals at first and taking
secondary goals into account later, a planner is able to recognize when the problem is overcontrained and to find a

solution to an acceptable related problem under these conditions. A key element in this process is the ability to
detect subgoal interactions in a distributed environment and reason about their impact.

Run-time Conflict Resolution in Cooperative Design. Klein and Lu proposed a conceptual framework for

conflict resolution in cooperative design [20]. The basic assumption in this approach is that the different kinds of

conflicts that occur in design can be arranged into a set of abstract classes and that conflict resolution strategies can
be associated with each conflict class. Klein and Lu define model-based negotiation as the incremental relaxation of

constraints derived from one or more KSs involved in a conflict situation. Examples of constraint relaxation include
broadening a numerical range or adding members to a constraint. The goal of this relaxation is to produce a

satisfiable constraint set while minimizing the decrement in performance from the perspective of the conflicting
KSs. This negotiation is called model-based because it is based on a model of how changes in the design lead to
changes in performance. The result of such negotiation is a compromise that may be less than optimal locally, but
removes the conflict situation so design can continue. To be able to engage in negotiation, each KS must be able to

[20]: 1) relate suggested design changes to performance changes; and 2) express the performance changes using a
common yardstick so that a reasoned decision can be made.

Negotiation of Conflicts Among Design Experts. Lander and Lesser propose two major types of negotiation
operations, with examples from the domain of kitchen design, and describe the design and prottype implementation
framework for knowledge-based systems [22]. They identify two types of negotiation based on Pruitt's work:

1. Compromise bargaining. It is appropriate when differences in proposed solutions are not too severe,
constraints have some built-in flexibility and there are well-defined mechanisms for relaxing or
strengthening constraits as necessary.

2. Integrative bargaining. When the above conditions don't apply, it may s-l be possible to come to an
agreement by reevaluating the long.term goals and knowledge available. There may be an acceptable
solution that is not obvious in the current problem formulation but which could be discovered by
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resucmuring some underlying assumptions.

Table 2 summarizes the problems addressed, technologies used, and relevanc) to the current work.

4 A Framework for A Distributed and Integrated Environment for Computer-Aided
Engineering
In Section I (page 2) several objectives for a Distributed Integrated environment for Computer-aided Engineering

(DICE) have been enumerated. To achieve these goals, a system architecture based on current trends in

programming methodologies, object oriented databases, and knowledge based systems is proposed. An overview of

DICE is provided in Section 4.1. This is followed by a discussion of various components comprising the system.

4.1 Overview of DICE
DICE can be envisioned as a network of computers and users, where the communication and coordination is

achieved, through a global database, by a control mechanism. DICE consists of several Knowledge Modules, a

Blackboard, and a Control Mechanism. These terms are clarified below.
I. Control Mechanism. The communication, coordination, data transfer, and all other functions define

the Control Mechanism; the Control Mechanism could be viewed as an Inference Mechanism.

2. Blackboard. The Blackboard is the medium through which all communication takes place. The
Blackboard in DICE is divided into three partitions: Coordination, Solution, and Negotiation
Blackboards. The Solution Blackboard partition contains the design and construction information
generated by various Knowledge Modules, most of which is referred to as the Object Hierarchy
containing information about the design product and process, while the Negotiation Blackboard
partition consists of the negotiation trace between various engineers taking pan in the design and
manufacturing (construction) process. The Coordination Blackboard partition contains the information
needed for the coordination of various Knowledge Modules.

3. Knowledge Module. Each Knowledge Module can be viewed either as: a knowledge based expert
system (KBES), developed for solving individual design and construction related tasks, or a CAD tool,
such as a database structure, i.e., a specific database, an analysis program, etc., or an user of a
computer, or a combination of the above. A KBES could be viewed as an aggregation of Knowledge
Sources (KSs). Each KS is an independent chunk of knowledge, represented either as rules or objects.
In DICE, the Knowledge Modules are grouped into three categories: Strategy, Specialist. Critic, and
Quantitative. The Strategy KMs help the Control Mechanism in the coordination and communication
process. The Specialist KMs perform individual specialized tasks of the design and construction
process, while the Quantitative KMs are mostly algorithmic CAD tools.

A conceptual view of DICE for design and construction is shown in Figure 2. In it, any of the KMs can make
changes or request information from the Blackboard; requests for information are logged with the objects
representing the information, and changes to the Blackboard may initiate either of the two actions: finding the
implications and notifying various KMs, and entering into a negotiation process, if two or more KMs suggest
conflicting changes.

Details of individual components are provided in the following sections.

•4.2 Control Mechanism
The Control Mechanism performs two tasks: 1) evaluate and propagate implications of actions taken by a

particular KM; and 2) assist in the negotiation process. This control is achieved through the object oriented nature of
the Blackboard and a Strategic KM. One of the major and unique differences between DICE and other Blackboard
systems is that DICE's Blackboard is more than a static repository of data; DICE's Blackboard is an intelligent
database, with objects responding to different t)pes of messages.
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Task I is accomplished through
1. methods associated with objects in the Object-Hierarchy of the Solution Blackboard partition (SBB);

and

2. a iruth maintenance system which keeps the global database in a consistent state.
If two or more KMs try to access the same object, then the priorities are determined by the Strategy KM and the
scheduling information is stored in the Coordination Blackboard partition (CORDBB). A possible trace of events

for the Hyatt Regency case is shown in Figure 3, and outlined below.
1. A preliminary design of a building (in the form of objects) which includes loading details and

designer's intentions in making certain decisions is posted on to the Solution Blackboard partition by
the Concepaual Designer.

2. Let the connection details of a particular joint be represented by the Connection objecL The
Connection Designer will send a message with details of connections and any assumptions made
during the design.

3.The truth maintenanci system (TMS) chcckc to see whether earlier assumptions made by the
Conceptual Designer are violated or not.

4. Associated with the Connection object are methods, which indicate the possible KMs that can modify
the object. Assume that Fabricator KM is one of them. A message is sent to Fabricator KM to find out
whether the connection can be fabricated in the field.

5. Notify the Connection Designer if any problems are anticipated.

6. Sometimes two or more KMs may want to modify or access a particular object in the Solution
Blackboard partition. This information is stored in Coordination Blackboard partition and is used by
the Control Mechanism.

A possible scenario for task 2 for an interior design problem, which involves the cooperation of an architect and a
HVAC engineer, is given below (See Figure 4).

1. Let the Architectural KM post the location and other details of beams in the beam object, whose
primary owner is Architectural KM.

2. The HVAC KM would post a design, which makes the assumption that ducts can pass through the
beams.

3. Since the object is modified by more than one KM. Solution Blackboard partition checks to see if the
object (or objects) being modified has any interaction (interface) constraints. If so then appropriate
constraints are stored in the Negotiation Blackboard partition.

4. Solution Blackboard partition, then, sends a message to Strategic KM to check the constraints.

5. Strategic KM sends a message to the Constraint Handling KM (CHKM). CHKM checks to see if the
interaction (interface) constraints are satisfied. If so, a message is sent to the Solution Blackboard
partition and appropriate actions are taken (step 6).

6. If the interaction constraints are not satisfied then the Strategic KM performs a constraint negotiation.
Constraint negotiation may involve relaxing constraints by a particular KM. If constraint negotiation
fails then system goes into a deadlock and alerts the KMs. Constraint negotiation can be performed at
several levels. In the current system it will be assumed that refinement of levels in the Solution
Blackboard partition occurs only after appropriate interaction (interface) constraints are satisfied.

7. If above process succeeds then Strategic KM sends a message to the Solution Blackboard partition, at
which stage the details required for the next level in the Solution Blackboard partition are set up and
appropriate KMs are activated.
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4.3 Blackboard: Global Database
The purpose of the Blackboard is to: 1) provide a means for storing information that is common to more thn one

KM; 2) facilitate communication and coordination; and 3) ensure that designs and plans generated during design and
construction are consistent.

The Blackboard in DICE is partitioned into: Coordination (CBB). Solution (SBB) and Negotiation BB (NBB)
(Figure 5).

.................

ICORDINATION SOLUTION

OBJECT-HIERARCHY

Figure 5: The Blackboard

4.3.1 Coordination Blackboard Partition
The Coordination Blackboard partition (CBB) contains the bookkeeping information needed for the coordination

of KMs.

4.3.2 Solution Blackboard Partition
*The Solution BB partition (SBB) is divided into levels (object-hierarchy). Each level contains objects that

represent certain aspects of the engineering process (design and construction). The SBB does not contain all the
information generated by all KMs, only information that is I) required by more than one KM. and 2) useful in the
engineering process is posted on the SBB. For example, the 3D space level will contain objects that represent
spaces allocated to structural systems, piping systems, mechanical systems, crc. This level can be reduced to detailed
levels, such as system and component levels.

The objects in SBE can be connected through relational links, where the relational links provide means for objects
to inherit information; these relationships provide a framework to view the object from different perspectives. F=or
the purpose of this work, the following relationships will be used in the SBB: generali-,tion (IS-A) for grouping
objects into classes, classificauion (INSTANCE) for defining individual elements of a class, aggregation (PART-OF,
COMPONENT) for combining components, alternation (IS-ALT) for selecting between alternative concepts, and
verswrdzauwon (VERSION-OF) for representing various versions of an object. The semantics of these relationships
are provided in [35]. Various planes that depict these relationships are shown in Figure 6.

The objects also contain justifications, assumptions, time of creation, creator, constraints, ownership KM, other
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concerned KMs, etc. The justification information will provide a designer's rationale and intent for the creation of

the object. Assumptions made during design and construction are also stored with the object. For example, the
architect, while placing the structural elements, may assume certain spatial characteristics for the HVAC systems.

He may record this assumption and the rationale for such an assumption in the objects denoting the appropriate

structural elements and the HVAC system. In DICE, status facets are associated with data attributes (slots). The

status facet, for example, can take the following values: unknown, assumed and calculated. Additional slots will be

needed for the source of data and its change, uses of data, assumptions made, etc..

Associated with these objects are methods which provide a means for 1) performing some procedural

calculations; 2) propagating implications of performing some actions, for example if the status (assumed or actual)
or the value for a particular object changes then these changes can be broadcast to all concerned KMs; 3) helping to
perform the coordination process. For exampie methods can be used as demons to perform the following

construction related tasks:
1. Estimating, whict& involves continuous cost forecasting capabilities, from early estimates to detailed

costs considering the equipment that will be available. This estimating will start with material and
quantity modeling based on building standards for tenant work, and would first be updated with
characteristics of the tenant. As layout work proceeds, material and quantity estimates would be
updated.

2. Scheduling, which is similar in structure to Estimating, and uses much of the quantity data developed
from the estimate forecast, passed to it with messages.

3. Constructability, where constant critics look for incompatible materials, space use, construction space
needs, equipment requirements, etc.

Knowledge for all of these inputs will come from working with expert on all phases of the project, owner, designer
and constructor. Further details of the use of methods in the communication process are provided in Section 4.2.

A typical object that resides in the SBB is structured as follows:

SBB-Object

status:
CREIt.LD-BY :
orosTZb-3!T :

JUSTIFICATIONi:
PART-OF:

IS-ALT:

VUSION-OF:
VZR.SION-NO:

OWNWD-sY:
CONCPJ-I=LS:
COMSTLS :

range: (IS-A COXS~TR&N-OB..C2')
------ (and so on)

MTiRODS-m

433 Neogotiation Blackboard Partition
The Negotiation BB (NBB) could be viewed as consisting of two parts. The frst part contains various interaction

constraints that are imposed on the designed object. These constraints am developed during the definition of various
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levels in SBB7 . The second pan consists of a trace of the negotiation process

An object describing an interaction constraints is:

Constraint-Object
CONSTh INs:

range: (IS-A SRR-OBJ-CT)
fITZRACTZON:

status:
range: (S-A ZINTKRACTION-CONSTRAINT)

O¢ms: (as nedad)
ICTRNODS:

The status facet can take values like satisfied, suspended, violated, etc. A taxonomy of these constraints can be
defined by the user. Adequate facilities will be provided for the user to incorporate these constraints.

4.4 Knowledge Modules
The Knowledge-base (KB) consists of a number of Knowledge Modules (KMs). Each of these KMs are further

decomposed into small units called Knowledge Sources (KSs). The architecture of most KMs is similar to the
overall architecture of DICE, i.e., knowledge is distributed among several objects (or KSs) and communicate
through message passing. KSs can also be decomposed into smaller units, if desired. Thus the KB reflects the
hierarchical design process.

Some KMs may incorporate both textbook and heuristic (surface) knowledge, while other KMs may includefairly
deep knowledge. Surface knowledge consists mainly of production rules encoding empirical associations based on
experience. This type of knowledge is useful for setting interface coi|straints between disciplines and between levels
oi design interaction. In a system with deep knowledge, both causal knowledge and analytical models would be
incorporated. A fully deep system may be difficult to realize with the current state of the art of KBES. However, it
is possible to encode analytical models. In this study, the term fairly deep knowledge will be used to denote
analytical models.

The KMs, although distributed, can be classified into the following categories: the Strategy, Specialist, and
Quantitative KMs. These KMs are briefly described below.

" Strategy KMs analyze the current solution state to determine the course of next action. A scenario
using the Strategic KM is described in Section 6.2. Since this level may used to control various tasks,
such as the activation of Specialist KMs during the coordination process, it comprises the task control
knowledge.

" Specialist kMs contribute to various stages of design and construction (or manufacturing). Most
KMs at this level are K3ES that have a local Blackboard which may be divided into various levels of
abstraction, and several KSs that interact with the local BE. The possible KMs that could be used in
DICE for the domain of interior finishes are:

1. Architectural Designer, for layout and finishes, including flooring and ceiling systems, etr.

2. HVAC, for heat load calculations, duct layout, diffusers, etc.

7Constraimts m ngineering design mn be of two types: onstraints local to the object (designed) and ineraction (interface) construrns that
several object& should satisfy sinulanecusly. An example of a local constrmint is Beam.beadng-uztes$ should be less then
O.66Betam.material.yitld.strtus, while the exunple of an interaction constraint is Paper greaser uhao 2 inches camwo go through meet beam or
co011591.
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3./gating, for layout, lighting levels, heat generation, etc.

4. Plumbing, for layout, etc.

5. Construction Planning, for schedules, costs, constructability checking, etc.

6. Structural, only for detailing attachments.
Individual KMs will, most probably, be residing on different machines and will make extensive use of
networking protocols for communicating with the Blackboard.

" Critic KMs contain the knowledge and mechanisms to check the consistency of the designs.
Constraint Handling KM is an example of a Critic KM.

" Quantitative KMs contain the analytical knowledge and reference information required for analysis
and design. These KMs are typically comprised of algorithimic programs and databases. Quantitative
KMs comprise the algorithmic knowledge of the domain. The Specialist KMs mostly communicate with
the Quantitative KMs through a Blackboard that is local to the Specialist KM.

The user forms an integral part of these KMs. An important issue in the development of KMs is the aian-machine
intwrface and how the information generated by the user is transmitted to other KSs. We assume that the user
interacts with the computer through a high resolution bit mapped display (or appropriate system). Hence, there is a
need to provide the appropriate semantic translations from the information provided by user to the form required by
other KMs or KSs. In DICE this is achieved by the interface definition module. Further changes made by the user
will be recorded in the local and global Blackboards (if needed) and appropriate actions triggered. Hence, the user

can be viewed as a KS taking pan in the solution process.

The Kids (mostly Specialist and Strategy) can post and retrieve information from the global Blackboard.

However, an object (and associated attributes) in the Blackboard can have varied connotations (most semantic) in
different KMs. Hence, there is a need to define the semantic mappings (translations) between the objects in the KMs

to the objects in the Blackboard. As an example, consider the object Beam. In the architectural KM. the beam may

be defied as follows [17]:

Beam
LKFT-ZND-COLUMOW-LZNX:
LENGTH:
WZDTH:

MATZRUL:
TYPE:
DE PTH:

VIEW

While the same object may be defined in the HVAC KM as:

Beam
L-In:
R-ZtID:

D:

bU TflTA.L:

R-EZD-NOMIET:

METHODS : possible-cut-outs
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In the Blackboard, the same object may be defined as:

Beam
LECFT-END:
IGRT-END:

DEPTH:
TYPE:
NXTEZAL:
CUTOUTS:

locittion:
size:

LUT-:D-MObW:
RZOT-U)-NO M:

In DICE the methodology used in [17] is being adapted for developing the necessary semantic translations.

4.5 The Negotiation Activity
The negotiation process takes place once a conflict is detected by the Truth Maintenance System. Negotiation is

achieved through the help of the Strategic KM.

Conflicts can occur either due to interface constraint violation or due to contradictory modifications of a single
object. For example, a HVAC KM can decide to place pipes at the same location that the architect decided to place a
beam. These conflicts can only be detected once the two designs have been posted and sufficient constraint
propagation and/or modeling has been performed. Another type of constraint violation occurs when a KM changes
to a partial solution posted by another KM. The two participants may or may not have similar roles in the system.
For example, two architects may disagree on the location of the walkway, or the HVAC KM might want to change
the depth of a beam posted by the structural engineer in order to put some pipes through it.

Once a conflict has been identified, a two fold mechanism helps the conflicting KMs in negotiating towards a
mutually agreed solution. Constraint relaxation is first attempted and is followed by goal negotiation in case of
failure.

The first attempt to negotiate involves traditional constraint relaxation techniques and implements compromise
bargaining. Assuming that the conflict is due to constraint violations of certain design parameters, the system can act
as a third party and offer compromise values to each party until an agreement is reached. In order to allow this
scheme to function properly, each value posted on the Blackboard has to be accompanied by a constraint. Each
constraint must specify the range of possible values. These constraints can be either soft or hard constraints.

The soft constraints can be negotiated upon and are not imperative. For example, an architect can decide that the
aesthetic proportions of a particular beam imposes a certain width to depth ratio, while the structural engineer finds
another ratio guided by strength requirements.

The hard constraints always have to be satisfied. These are usually bounds imposed by code regulations or
physically existing constraints such as a neighboring building, etc. In this case, no relaxation is possible and another

negotiation mechanism has to be triggered. In the case of hard constraints, the range of possible values is
automatically set to a uniqu, value. If the system detects a conflict involving soft constraints which have a non-
empty range intersection, it can directly modify these values and notify the KM of the change. If the ranges do not
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show compatibility, the Strategic KM has to contact the conflicting KMs and initiate constraint relaxation.-In some
cases, it is hoped that the ranges themselves have soft constraints and that a compromise can be found.

The second set of techniques involves the redefinition of design goals. The KMs are asked to negotiate on a more

abstract plane. It is considered that the set of conflicting constraints are the concrete expression of an abstract

hierarchy of goals. At the root of this hierarchy is the goal of designing and constructing the artifact for which the

design team has been set up. Each participant develops his own hierarchy of personal goals (see Figure 7 and Figure

8). By helping the KMs frd an agreement goal and developing a common set of more detailed goals, the system

achieves integrative agreement.

The example of the Hyatt Regency walkway connection design will serve as an illustration of the multiple levels

at which this goal negotiation can take place.

At the lowest level, the conflict is in the goals assigned by each participant to the connection and the rod(s). The
designer wants the connection to transfer the load of only one walkway, and wants the rod to transfer the load of the
two walkways to the roof. The fabricator wants each rod to transfer the load of only one walkway, and wants the

connection to bear twice the load. Goal negotiation at this level can lead to a solution where two rods are connected
at some level below the box-beam (see Figure 9). Then, each rod transfers the load of only one walkway and so

does the connection.

At the next level, the system suggests that the connection need not be designed at all. That means that a different

solution can be sought, avoiding the connection of the two parts of the rod and the box-beam. Such a solution could
consist of hanging each walkway from its own rod directly to the roof as in Figure 10. The aesthetic of this solution
might not please the architect, but this is another conflict story!

The next level of abstract negotiation would consist of avoiding the design of walkways. This could be done by
• )roviding fast convenient elevator service or preventing direct level to level access across the lobby, etc. Even
further, the system could suggest to get rid of the lobby and design the whole building differently. By rearranging

the layout, a new solution might be found which doesn't require a lobby. Finally, the participants might come to the
conclusion that they have no common goal and that they do not wish to design and construct the building. Some

negotiations are bound to end that way.

5 Current Status
During the intial stages our major focus has been the development of: 1) utilities for defining the SBB object

hierarchy, 2) transactions for posting, modifying and deleting information from the Blackboard, 3) a simulation
program to demonstrate the utility of DICE, and 4) a prototype which involves the automatic generation of
construction schedules from an architectural drawing. DICE is being implemented in a hybrid programming
environment called PARMENIDES/FRULEKIT; PARMENIDES/FRULEKIT supports programming in frames and

rules and was developed in LISP at Carnegie-Mellon University by Carbonell and Shell.

These topics are briefly described below.

5.1 Graphic Definition of Objects
The user can interactively define class objectsO in the Blackboard and the KMs. Classee can either be created in

$A class denotes the grouping of objects (instance or class) whic& have similar characteristic&, while A instance is a panicular individual
which belongs to a class.
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Figure 8: The Fabricator's Goal Hierarchy
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Figure 9: The Connected Rods Solution

LISP or through a menu interface provided to the user. Each class has a name, several slots which describe various
attributes, and associated with each slot are facets which provide further information about the slot, the facets also
contain methods.

A class object is created by clicking on CREATE-CLASS in a menu on the screen. After creating a class object, the
user can display the class using the DISPLAY-CLASS option, as shown in Figure 11. In Figure 12, the class BuildI is
made a subclass of the Hierarchy-object class, which becomes Buildi's superclass. When this fink is made, all
slots in the Hierarchy-object class are inherited by Buildl. In addition, the user can create new slots or delete slots.
For example, in Figure 13 the user created two Slots, namely NAME and HAS-PARTS. Slots can be faceted or
non-faceted. The creation of facets is shown in Figure 14.

Instances of a class can either be defined interactively through a menu or by LISP functions. For example the
function (create-instance 'Build] 'Hyatt-regency) would create an instance, Hyatt-regency, of Build 1.

In addition to defining classes and instances, the user can also display the class hierarchy, in the form of a tree.
Nodes in the tree depict classes and instances. Each node is displayed in a box with the name of the class or
instance. If the name does not fit in the box then it is abbreviated. The user can drag the mouse pointer over the tree
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Figure 10: The Split Connections Solution

RESTORE-CLASS
SELECT-CLASS
CREATE-CLASS

NAME-SUPECLASS

SELECT-SLOT
CREATE-SLOT
REMOVYE-SLOT

GIVE-SLOT-VALUE *::
SELECT-FACET
CREATE-FACET

'.OV FACE : (menu-create-class)
GIYE-FACET-VAUE efnn class BUILDI
DISPLAY-STATVS ; Warning: Redefining MAKE-BUILD1

PUSH-PUT rame Class 1:500L1: (:CACHE (:*kCLASS) :13-A NIL)
QUIT

Figure 11: Displaying a Class

to an appropriate node. This will display the full name of the node (Figure 15 a). If the user wants more detail about
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RESTOR.E-CLASS
SELECT-CLASS etinng class BUILD1
CREATrE-CL.ASS Wann:Redefining MAKE-BUILD1

* rame Class I:BUILDI: (:CACHE (:%CLASS :LINKED-7O-ROOI :COM.
DISPLAY-CASS ONEN7S :PARENT :X :Y :SPACE :POSTED :MODIFIED :DELETED :HI
SELECTSLOT TORY :CURREN7-SOLITION) :IS-A (HIERARCHY-OBJECT))
SELEC-SLOT INKED-10-ROOT (:VALUE NIL :DEPTH 2)

CREATE-SLOT i OMPONENTS (:VALUE NIL :DEPTH 2)
*~ RENT (:VALUIE NIL :DEPTH 2)

R(VSLT x (:VALUE NIL :DEPTH 2 :CHANGEABLE 7)
GIE-LT ALE(:VALUE NIL :DEPTH 2 :CHANGEABLE 7)

SELEXCT-FACET ':*SPACE (:VALUIE NIL :DEPTH 2 :CHIANGEABLE 1)
CRE.ATE-FACET POSTED (:VALUE NIL :DEPTH 1)

FAET ODIFIED (:VALUE NIL :DEPTH 1)REKOVE EETD(:ALENI :ETh1
GIVE-AEVAU HIS70RY (:VALUE NIL :DEPTH 1)
DISPLAY-STATUS CURRENI SOLUTION (:VALUE NIL :DEPTH I :POST-IF-SET (NOTIFY-

PUSH- PUTi KMS))

QUIT

Figure 12: Linking a Class to its Supwiclass

E (:VALUE "building-I" :DEPTH 8 :CHANGEABLE 1)
S-PARTS (:VALUE NIL :DEPTH 8)

stifling class BUILD1
RESTORE-CLASS ,;; Warning: Redefining MAKE-BUILD1
SELECT-CLASS -rants Class 1:BUILD1: (:CACHE (:%.CLASS :LINKED-TO-ROOT :COMPO

CREATE-CUSS NENTS :PARENT :X :Y :SPACE :POSTED :MODIFIED :DELETED :HIS7OR
NAKESUPRCLAS :CURRENI-SDLUTION) : IS-A (HIERARCMY-OBJECT))

'-~SP~LS ~.INKED-70-ROOT (:VALUE NIL :DEPTH 2)
DISPLA!-CLASS 1ZOMPONENTS (:VALUE NIL :DEPTH 2)

SELECT-SLOT PARENT (:VALUE NIL :DEPTH 2)
. -V I x(:VALUE NIL :DEPTH 2 :CHANGEABLE 1)
PM40E-SLT y(:VALUJE NIL :DEPTH 2 :CHANGEABLE T)

RIOESPACE (:VALUE NIL :DEPTH 2 :CHIANGEABLE T)
CIV -SLO)T-VALUE 'OSTED (:VALUE NIL :DEPTH 1)
SELECT-FACET ODIFIED (:VALUE NIL :DEPTH 1)

CREATE-FACET ELETED (:VALUE NIL :DEPTH 1)

REMOVE-FACET H ISTORY (:VALUE NIL :DEPTH 1)

CURRENT-SOLUTION (:VALUE NIL :DEPTH I :POST-IF-SET (NOTIFY-Q4
GIVE-TACET-YAWUE
DISPLAY-STATUS NME (:VALUE "building-i" :DEPTH 8 :CHANGEABLE T)

PUI-PUT RAS-PARTS (:VALUE NIL :DEPTH 8)

QUIT

Figure 13: Creation of Slots

the node, he can click on the node and hc will be shown the Slots of the object corresponding to the node (Figure 15



;; Warning: Redefining MAKE-BUILD1
rame Class I:BUILDI: (:CACHE (:%CLASS :LINKED-7D-RO07 :COMPD
ENTS :PARENT :X :Y :SPACE :POSTED :MODIFIED :DELETED :HISTOR
f :CURRENT-SOLUTION) :IS-A (HIERARCHY-OBJECT))

RESTORE-CLASS ,INKED-TO-ROO1 (:VALUE NIL :DEPTH 2)
SELECT-CLASS COMPONENTS (:VALUE NIL :DEPTH 2)
CREATE-CLASS PARENT (:VALUE NIL :DEPTH 2)

K (:VALUE NIL :DEPTH 2 :CHANGEABLE 7)
KA~~UP CL S (:VALUE NIL :DEPTH 2 :CHANGEABLE 1)
DISPL.Y-CLASS 5PACE (:VALUE NIL :DEPTH 2 :CHANGEABLE T)
SELECT-SLOT DOSTED (:VALUE NIL :DEPTH 1)
CREATE-SLOT MODIFIED (:VALUE NIL :DEPTH 1)
REMOVE-SLOT DELETED ( :VALUE NIL :DEPTH 1)-ISTORY (:VALUE NIL :DEPTH 1)

GIVE-SLOT-VALUE CURRENT-SOLUTION (:VALUE NIL :DEPTH 1 :POST-IF-SET (NOTIFY-IK
SELECT-FACET S))
CREATE-FACET NAME (:VALUE "building-l" :DEPTH B :CHANGEABLE T)

R-XOVE-FACET LIS-PARTS (:VALUE NIL :DEPTH 0)

1 , :1: selected class BUILD
DISPLA¥-STATUS' selected slct NAME

SH-PUT selected facet (VALUE DEPTH CHANGEABLE)

QUIT

Figure 14: Creation of Facets

b). Facet information for any slot can be obtained by clicking on the slot (Figure 15 c).

5.2 Blackboard Transactions
Communication between KMs is achieved through the Blackboard. The communication channels are established

in special slots of the object hierarchy in the SBB. Whenever a new KM is attached to DICE, its address is placed in
a special frame in the Coordination Blackboard partition.

Currently, three types of messages can be sent to the Blackboard from the KMs (and in some cases vice versa).
All messages are put in a mail-box object and processed sequentially. These messages are described below.

1. Post allows a KM to store an object or objects at the appropriate levels in the SBB. The syntax of post
is: (Post local-object remote-object &file), where local-object is the object or pointer to a tree of
objects in a KM. remote-object is the object/level in SBB,file is the name of the file that local-object
is stored in; the & sign indicates that the file name is optional and the system creates its own name if
the file name is not provided. As soon as the Blackboard receives the posted message it accesses the
appropriateffle in the KM and updates the SBB. This process is depicted in Figure 16.

2. Retrieve gets the information from the SBB to a KM. The syntax of this command is (Retrieve
remote-object &fAle). If object does not contain any information, Le., it has a value ail, in the SBB
then the Blackboard relays a message across the network to the appropriate KM that can provide the
information; it is assumed that objects in SBB contain the names of the KMs that can update the
objects. The retrieving process is depicted in Figure 17.

3. Delete provides a KM the ability to delete information on the Blackboard (SBB). The syntax of delete
is (Delete remote-object). Delete does not erase predefined classes, but only removes the instances.
This function is currently being updated.
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Figure 1: Retrieing Informnaton to~ the Blackboard
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5.3 A Simulation
A simulation of the Hyatt Regency design process was developed on two SUN computers to demonstrate some of

the capabilities of DICE. A Blackboard, a Critic KM. a Constraint Manager KM, and a Strategic KM exist on the
first machine (Figure 18). while a Connection Designer KM and a Structural Fabricator KM reside on the second
machine (Figure 19).

The design-fabrication sequence is described below and shown in Figures 19 through 24.
1. Connection designer KM posts the connection design (denoted by I -rod-connection) of the fourth floor

walkway on the Blackboard (Figure 19 a).

2. Blackboard receives the design (Figure 20 a and b).

3. The connection object has a method that indicates that the connection design should be checked by the
Critic KM. Hence. the Blackboard sends the connection design to the Critic KM (Figure 20 c and d).

4. The Critic KM replies that the connection design is acceptable9 (Figure 20 e).

5. The Structural Fabricator KM is sent a message that a connection design has been completed and
needs fabrication (Figure 21 a). The Fabricator retrieves the connection design, makes modifications
and sends it back to the Blackboard (Figure 22 a, Figure 23 a and b).

6. Blackboard notifies the Strategic KM to check for possible conflicts (Figure 23 c).

7. Strategic KM retrieves the two connection (rod) designs (Figure 23 d) and sends it to the Constraint
Manager KM to check for violation of interface constraints (Figure 23 e).

8. Constraint Manager KM notifies the Strategic KM that the designs are incompatible (Figure 23 f).

9. Strategic KM notifies this to both the Connection Designer and the Structural Fabricator (Figure 22 b
and c, Figure 24 a and b).

The above simulation program was completed in December 1987. In the next section, a project that was
undertaken during January 1988 to September 1988 to demonstrate the interface definition modules is described1 ° .
Implementation details can be found in [15].

91n the actual design the original connection design itself was faulty. but we assume heme that it is an sceptable design.

2°The 'RB was not uilized in the above simulation.
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5.4 BUILDER in DICE
BUILDER automates the task of generating and maintaining schedules from architectural drawings. The initial

version of BUILDER [5] was developed in KEE", which is a hybrid knowledge-based programming environment
(14, 19]. In this version, BUILDER had three major components - a drawing interface, a construction planning

expert system, and a CPM algorithm - implemented as a layered knowledge-base, as shown in Figure 25. The

various components of BUILDER are briefly described below.
1. Drawing Interface. The drawing interface layer provides for graphic input of an architectural plan. It

is a menu-driven drafting system that incorporates the following features.
a. Provides a convenient drawing system.

b. Does the initial processing necessary to identify and classify the building components in a
drawing, producing a representation of tL. drawing using a frame-based representation.

c. Extracts the geometric features and produces a semantic network representation of the drawing;
this semantic network repro.sentation links together the frame representation of building
components.

The friendly interface is facilitated by access to the underlying knowledge structures about building
components. The menu driven system can automatically access the meanings of the symbols that it
draws.

2. Construction Planning KBES. In an architectural drawing, the semantics of objects is normally not
explicitly represented. For example there may be doors, walls, and plumbing in the drawing, but
information about ordering materials for walls and doors, or having the plumbing inspected is not
encoded. Neither is there any information about sequencing of tasks, or task durations, quantities, and
costs. The first step in scheduling the job is to make a complete list of the tasks that need to be done.
BUILDER utilizes an object-base, which is a database of engineering entities represented as frames (or
objects), to complete the task list. Rules about construction methods are then activated to generate the
precedence relationships between tasks. Next, BUILDER accesses a conventional database and
generates an estimate of the quantities required and associated costs.

3. CPM Algorithm. An object oriented and a conventional CPM algorithms are implemented in
BUILDER. The object oriented approach offers some efficiency and modularity over the traditional
technique in project updating, reporting, and modifying. The standard CMP algorithm is implemented
for initial scheduling efficiency.

In the second version of BUILDER - DICEY-BUILDER, we are implementing the above three components as
three separate KMs, as shown in Figure 26. The purpose here is two fold: 1) to demonstrate communication between
heterogenous KMS, and 2) to utilize this prototype to develop a protocol mechanism - similar to the Local Area
Netework's OSI model - for the domain of building design and construction.

The Blackboard in DICEY-BUILDER is represented as frames in PARMENIDES, while the KMs are
implemented in KEE. The translation to the Blackboard from a KM and vice versa is achieved by first transforming
the frames to an intermediate representation language ([ML) and then translating from IRL to the appropriate KM;
the syntactic and the semantic translations are similar to the approach described in [17]. The initial Blackboard
structure is generated using the editing facilities described earlier (Figure 27). Figure 28 a shows an object in the
DRAW-KM. The intermediate representation format, which is a list in the current implementation, is shown in
Figure 28 b, while the corresponding Blackboard frame is shown in Figure 28 C.

6 Summary and Future Work
In this paper, we have described DICE, which is a collection of computer-based tools for cooperative engineering

design. DICE facilitates coordination and communication in engineering design by utilizing an object oriented
Blackboard architecture, where the various participants involved in the engineering process communicate through a
global database - called Blackboard. We have demonstrated the DICE framework through a simulation of the Hyan
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Regency Disaster and an implementation of a construction planning KBES. Our current efforts are being focused in
the following areas: 1) a theory of constraint negotiation for resolving conflicts between various designers, 2) a
layered communication protocol that will facilitate an effective communication process between participants in

different engineering disciplines, 3) an user interface in the X window system, 4) effective secondary storage
management facilities, and 5) demonstrate DICE in an industrial setting.
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Unit: WALL144 in knowledge base DRAW
Created by jonathan on 5-27-88 13:18:25
Modified by nick on 5-27-88 13:20:34

lMntv~ WALLS

Own slot: BOUND from WALLS
Inheriance: OVERRIDE.VALUES

Vaks, UNKNOWNA~

Own slot: CONNECTED-TO from WALL144
Inheritance: OVERRIDE. VALUES

Vakjss((WALL185 ((311.0 95.0) (301.0 95.0)))) (walll44

Own~ slut: CONNEiCTION-MANAGER fiorn WALL 144 (c1*iss walls)
Inheritanoe: METHOD (contains l)

Vle:IDRAW.WALLS:CONNECTION-MANAGER'metdhod (picture-representation
Vakiss:walxectaragle145)

Own slot: CONSTRAINED-BY from WALL144 (constrained-by wall1185)
Inheritance: OVERRIDE.VALUES Mbound ril)

Vakac WALL 185 (connecied-to
((wausS

Own slot: CONTAINS from SYMBOLS (p1.095)
lnhertance: OVERRIDE.VALUES PJ9X)))

Vakws UNKNOW#N

Own slot: MOTION-CONSTRAINTS from WALLS b
Inheritance: METHOD
VWuiusus: METHOD
Vakas: IDRAW>WALLS:MOTlON-CONSTRAINTSlmfethod)

Own slot: PICTURE-REPRESENTATION from WALLI 44a
Inheriance: OVERRIDE.VALUESa

Values: WALLRECTANGLE145

Frame WALLi 44:
(,CACHE 0)

CONTAINS NIL
PICTURE-REPRESENTATION (:VALUE WALLRECTANGLE1 45)
CONSTRAINED-BY (:VALUE WALL185)
BOUND (:VALUE NIL)
CONNECTED-TO (:VALUE ((WALLI 85 ((311.0 95.0) (301.0 95.0))))))) C

Figure 28: Representaive Objects
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