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Performance and Reliability Enhancement of the Durra 
Runtime Environment 

Abstract: Durra is a language designed to support PMS-level programming. 
PMS stands for Processor Memory Switch, the name of the highest level in the 
hierarchy of digital systems. An application or PMS-level program is written in 
Durra as a set of task descriptions and type declarations that prescribes a way to 
manage the resources of a heterogeneous machine network. The application de- 
scribes the tasks to be instantiated and executed as concurrent processes, the 
types of data to be exchanged by the processes, and the intermediate queues 
required to store the data as they move from producer to consumer processes. 

A runtime environment for Durra has been operational for some time. There are 
two major problems with this initial implementation: it makes no significant attempt 
to tune the performance of the system, and reliability has not been designed into 
the system. This report describes a new design for the Durra runtime environ- 
ment that addresses these two issues. The new runtime environment consists of 
two major components: a local executive which runs on every processor and is 
responsible for process and queue management, and a global executive which 
runs replicated on several processors and is responsible for configuration man- 
agement and reliability services. 

1. Introduction 

Durra is a language designed to support PMS-level programming. PMS stands for Proces- 
sor Memory Switch, the name of the highest level in the hierarchy of digital systems. An 
application or PMS-level program is written in Durra as a set of task descriptions and rype 
declarations that prescribes a way to manage the resources of a heterogeneous machine 
network. The application describes the tasks to be instantiated and executed as concurrent 
processes, the types of data to be exchanged by the processes, and the intermediate 
queues required to store the data as they move from producer to consumer processes. 

Execution of Durra processes is under control of the Durra runtime environment, an initial 
implementation of which has been successfully running for some time. The environment 
consists of three active components: the application tasks, the Durra server, and the Durra 
scheduler. After compiling the type declarations, the component task descriptions, and the 
application description, the application can be executed by starting an instance of the server 
on each processor, starting an instance of the scheduler on one of the processors, and 
downloading the component task implementations (i.e., the programs) to the processors. 
The scheduler receives as an argument the name of the file containing the scheduler pro- 
gram generated by the compilation of the application description. This step initiates the ex- 
ecution of the application. Figure 1-1 shows the structure of the present runtime environ- 
ment. 
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Figure 1-1:   The Original Durra Runtime Environment 

In the first implementation, some essential features of Durra were omitted, 
the present Durra runtime environment include: 

Deficiencies in 

• Not all features of the Durra language are supported, most notably reconfigura- 
tion. 

• No serious attempt has been made to balance processor and communication 
load. The scheduler simply assigns an equal number of tasks to all processors. 

• Reliability has not been designed into the system.  The centralized scheduler 
represents a single point of failure. 

This report presents a design for a new implementation of the Durra runtime environment to 
address these concerns. The new design replaces most functions of the Scheduler and the 
Server with a new process called the local executive which executes on each processor, 
and introduces the global executive which executes on some processors and provides 
reliability services. The new structure is depicted in Figure 1-2. 

Figure 1-2.a shows a process graph for a hypothetical application.  Figure 1-2.b shows the 
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Figure 1-2:  The New Durra Runtime Environment 

actual communication patterns between these processes through the local executive. There 
are two global executives represented in the Figure, one active and one passive as de- 
scribed in Section 6.3.1.1. 

The remainder of this report begins with a brief description of the Durra language and its 
current runtime environment.  Readers already familiar with Durra may want to skip ahead 
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to Chapter 3. Chapter 3 critiques the current Durra runtime environment. Chapter 4 is an 
overview of the design for the new Durra runtime environment as presented in Chapters 5 
and 6. Chapter 5 considers load balancing enhancements to the Durra runtime environ- 
ment. Chapter 6 describes how to make the Durra runtime environment reliable. It begins 
with a discussion of implementing the reconfiguration mechanism already in Durra, and con- 
cludes with a discussion of adding a degree of fault-tolerance once the reconfiguration 
mechanism is in place. Chapter 7 summarizes the report and suggests directions for future 
enhancements to the runtime environment. 
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2. Introduction to Durra 
Durra [Barbacci 86, Barbacci 88a] is a language designed to support PMS-level program- 
ming. PMS stands for Processor Memory Switch, the name of the highest level in the hier- 
archy of digital systems introduced by Bell and Newell in [Bell 71]. An application or PMS- 
level program is written in Durra as a set of task descriptions and type declarations that 
prescribes a way to manage the resources of a heterogeneous machine network. The appli- 
cation describes the tasks to be instantiated and executed as concurrent processes, the 
types of data to be exchanged by the processes, and the intermediate queues required to 
store the data as they move from producer to consumer processes. 

Because tasks are the primary building blocks, we refer to Durra as a task-level description 
language. We use the term "description language" rather than "programming language" to 
emphasize that a Durra application is not translated into object code in some kind of ex- 
ecutable (conventional) "machine language" (the domain of the Instruction Set Processor or 
ISP level introduced in [Bell 71]). Instead, a Durra application is a description of the struc- 
ture and behavior of a logical machine to be synthesized into resource allocation and 
scheduling directives, which are then interpreted by a combination of software, firmware, 
and hardware in each of the processors and buffers of a heterogeneous machine (the 
domain of PMS). This is the translation process depicted in Figure 2-1.a. 

2.1. Task Descriptions 

Task descriptions are the building blocks for applications. Task descriptions include the fol- 
lowing information (Figure 2-2): (1) its interface to other tasks (ports) and to the scheduler 
(signals); (2) its attributes; (3) its functional and timing behavior; and (4) its internal 
structure, thereby allowing for hierarchical task descriptions. 

2.1.1. Interface Information 
The interface information defines the ports of the processes instantiated from the task and 
the signals used by these processes to communicate with the scheduler: 

ports 
inl: in heads; 
outl, out2: OUt tails; 

signals 
stop, start, resume: In, 
range_error, format_error: OUt; 

A port declaration specifies the direction and type of data moving through the port. An in 
port takes input data from a queue; an out port deposits data into a queue. A signal decla- 
ration specifies only the direction of the scheduler messages. An In signal is a message 
that a process can receive from the scheduler; an out signal is a message that a process 
can send to the scheduler; an In out signal is used for both directions of communication. 
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task task-name 
ports — Used for communication between a process  and a queue 

port-declarations 

Signals — Used for communication between a process  and scheduler 
signal-declarations 

attributes — Used to  specify miscellaneous properties of the task 
attribute-value-pairs 

behavior — Used to specify task functional and timing behavior 
requires predicate 
ensures predicate 
timing timing expression 

Structure — A graph describing the internal  structure of the task 
process-declarations —Declaration of instances of internal subtasks 

bind-declarations — Mapping of internal ports to this task' s ports 

queue-declarations — Means  of communication between processes 

reconfiguration-statements — Dynamic modifications to the structure 
end task-name 

Figure 2-2:   A Template for Task Descriptions 

2.1.2. Attribute Information 
The attribute information specifies miscellaneous properties of a task. Attributes are a 
means of indicating pragmas or hints to the compiler and/or scheduler. In a task descrip- 
tion, the developer of the task lists the actual value of a property; in a task selection, the 
user of a task lists the desired value of the property. Example attributes include author, 
version number, programming language, file name, and processor type: 

attributes 
author = "jmw"; 
implementation = "program_name"; 
Queue_Size = 25; 

2.1.3. Behavioral Information 
The behavioral information specifies functional and timing properties about the task. The 
functional information part of a task description consists of a pre-condition on what is re- 
quired to be true of the data coming through the input ports, and a post-condition on what is 
guaranteed to be true of the data going out through the output ports. The timing expression 
describes the behavior of the task in terms of the operations it performs on its input and 
output ports. For additional information about the syntax and semantics of the functional 
and timing behavior description, see the Durra reference manual [Barbacci 86]. 
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2.1.4. Structural Information 
The structural information defines a process-queue graph (e.g., Figure 2-1.a) and possible 
dynamic reconfiguration of the graph. Three kinds of declarations and one kind of statement 
can appear as structural information. This is illustrated in Figure 2-3, which shows the Durra 
(i.e., textual) version of the example in Figure 2-1.a. 

task ALV 
ports 

inl,   in2:   In map_database; 
in3:   In  destination; 

structure 
process 

navigator: task navigator 
attributes author = "jaw"; 

end navigator; 
road_predictor: task  roadjpredictor; 
landmark_predictor:     task landmark_predictor; 

ct_process: task corner_turning; 
queue 

ql:   navigator.out1 > > road_predictor.in2; 
q2:   navigator.out2 > > landmark_predictor.ini; 

ql2 : position_computation.out2> >  landmark_predictor.in2; 
bind 

inl = road_predictor.ini; 
in2 = navigator.ini; 
in3 = navigator.in2; 

end ALV; 

Figure 2-3:   Structural Information 

A process declaration of the form 

process_name : task task_selection 

creates a process as an instance of the specified task. Since a given task (e.g., 
convolution) might have a number of different implementations that differ along different 
dimensions such as algorithm used, code version, performance, processor type, the task 
selection in a process declaration specifies the desirable features of a suitable implemen- 
tation. The presence of task selections within task descriptions provides direct linguistic 
support for hierarchically structured tasks. 

A queue declaration of the form 

queue_name [queuejsize]: port_name_1 > data_transformation > port_name_2 

creates a queue through which data flow from an output port of a process (port_name_1) 
into the input port of another process (port_name_2). Data transformations are operations 
applied to data coming from a source port before they are delivered to a destination port. 
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A port binding of the form 

task_port = process_port 

maps a port on an internal process to a port defining the external interface of a compound 
task. 

A reconfiguration statement of the form 

If condition then 
remove   process-names 
process process-declarations 
queues    queue-declarations 

end if; 

is a directive to the scheduler. It is used to specify changes in the current structure of the 
application (i.e., process-queue graph) and the conditions under which these changes take 
effect. Typically, a number of existing processes and queues are replaced by new proc- 
esses and queues, which are then connected to the remainder of the original graph. The 
reconfiguration predicate is a Boolean expression involving time values, queue sizes, and 
other information available to the scheduler at runtime. 

2.2. Scenario 
We see three distinct phases in the process of developing an application using Durra: the 
creation of a library of tasks, the creation of an application using library tasks, and the ex- 
ecution of the application. These three phases are illustrated in Figure 2-1.b. 

During the first phase, the developer of the application writes descriptions of the data types 
(image buffers, map database queries, etc.) and of the tasks (sensor processing, feature 
recognition, map database management, etc.). 

Type declarations are used to specify the format and properties of the data that will be pro- 
duced and consumed by the tasks in the application. As we will see later in this section, 
tasks communicate through typed ports; and for each data type in the application, a type 
declaration must be written in Durra, compiled, and entered in the library. 

Task descriptions are used to specify the properties of a task implementation (a program). 
For a given task, there may be many implementations, differing in programming language 
(e.g., C or assembly language), processor type (e.g., Motorola 68020 or IBM 1401), perfor- 
mance characteristics, or other attributes. As in the case of type declaration, for each imple- 
mentation of a task, a task description must be written in Durra, compiled, and entered in the 
library. A task description includes specifications of a task implementation's performance 
and functionality, the types of data it produces or consumes, the ports it uses to commu- 
nicate with other tasks, and other miscellaneous attributes of the implementation. 

During the second phase, the user writes an application description. Syntactically, an appli- 
cation description is a single task description and could be stored in the library as a new 
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task. This allows writing of hierarchical application descriptions. When the application de- 
scription is compiled, the compiler generates a set of resource allocation and scheduling 
commands or instructions to be interpreted by the scheduler. 

During the last phase, the scheduler loads the task implementations (i.e., programs cor- 
responding to the component tasks) into the processors and issues the appropriate com- 
mands to execute the programs. 

2.3. Runtime Components 
There are three active components in the Durra runtime environment: the application tasks, 
the Durra server, and the Durra scheduler. Figure 1-1 shows the relationship among these 
components. 

After compiling the type declarations, the component task descriptions, and the application 
description, as described previously and illustrated in Figure 2-1, the application can be ex- 
ecuted by performing the following operations: 

1. The component task implementations (Chapter 2.3.3) must be stored in a spe- 
cial directory in the appropriate processors. The directory name is known to 
the Durra servers and scheduler. 

2. An instance of the Durra server (Chapter 2.3.2) must be started in each 
processor. 

3. The scheduler (Chapter 2.3.1) must be started in one of the processors. The 
scheduler receives as an argument the name of the file containing the 
scheduler program generated by the compilation of the application description. 
This step initiates the execution of the application. 

2.3.1. The Scheduler 
The scheduler is the part of the Durra runtime system responsible for starting the tasks, 
establishing communication links, and monitoring the execution of the application. In addi- 
tion, the scheduler implements the predefined tasks (broadcast, merge, and deal) and the 
data transformations described in [Barbacci 86]. The scheduler is invoked with the name of 
the file containing the scheduler instructions generated by the Durra compiler. A complete 
description of the scheduler instructions can be found in [Barbacci 88b]. 

After these instructions have been read and processed, the scheduler is ready to start the 
execution of the application. In the current UNIX implementation, this is done by performing 
the following steps: 

1. Allocate a UNIX socket for communication with the application tasks. A UNIX 
socket is a special intertask communications port defined by the UNIX operat- 
ing system. 

2. Establish communication with each of the processors running a Durra server 
(Chapter 2.3.2). 
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3. For each of the task load instructions, issue to the appropriate server a 
run_task remote procedure call (Chapter 2.3.2). 

4. Listen in on the UNIX socket allocated in the first step for remote procedure 
calls from the application tasks (Chapter 2.3.3). 

5. Process the remote procedure calls from the application tasks (Section 2.3.3). 

The scheduler waits until all tasks have completed their execution before it, in turn, finishes 
its execution. 

2.3.2. The Server 
The server is responsible for starting tasks on its corresponding processor, as directed by 
the scheduler. One instance of the server must be running on each processor that is to 
(potentially) execute Durra tasks. 

When a server begins execution, it listens in on a predetermined socket for messages from 
the scheduler. Once a communication channel is open, the scheduler communicates with 
the server using a set of remote procedure calls to initiate task execution (run_task), or to 
shutdown or restart the server (shutdown, and restart). Complete details of these remote 
procedure calls can be found in [Barbacci 88b]. The server sits in a loop responding to the 
requests from the scheduler, executing them as directed. 

2.3.3. Application Tasks 
The component task implementations making up a Durra application can be written in any 
language for which a Durra interface has been provided. As of this writing, there are Durra 
interfaces for both C and Ada. The complete interfaces appear in [Barbacci 88b]. 

When a task is started, the scheduler supplies it with the following information (via a server): 
the name of the host on which the scheduler is executing, the UNIX socket on which the 
scheduler is listening for communications from the task, a small integer to be used in identi- 
fying the task, and an application specific string as specified in the "source" attribute in the 
task description. The first three parameters are necessary to establish proper communi- 
cation with the scheduler. The source parameter is provided for the convenience of the task 
implementation. These parameters are provided to the task by the server, which in turn 
obtains them, via the runtask instruction, from the scheduler (See Section 2.3.2). 

Application tasks use the interface to communicate with other tasks. From the point of view 
of the task implementation, this communication is accomplished via procedure calls, which 
return only when the operation is completed. The following remote procedure calls (RPCs) 
are provided: 

init Opens a connection to the scheduler. 

finish Informs the scheduler that the task is terminating. 

get_portid Returns a descriptor for the application task to use when referring to a 
port. 

CMU/SEI-89-TR-8 11 



get_typeid Returns a descriptor for the application task to use when referring to a 
type. 

send_port Sends through an output port of the application task. 

get_port Gets data from an input port of the application task. 

test_input_port     Tests whether data is available on an input port. 

test_output_port   Tests whether there is room in a queue attached to an output port (e.g., 
whether the process will block if doing a send_port). 

Using this collection of scheduler calls, Durra tasks typically would exhibit the following be- 
havior: 

1. Call the inlt function to establish communication with the scheduler. 
2. Call get_portid for each of the task ports (these ports must correspond to the 

ports used in the task description). 
3. Call get_typeid for each of the task types (these types must correspond to the 

data types used in the task description). 
4. Call send_port and get_port as necessary to send and receive data. 
5. Call finish to break communication with the scheduler. 
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3. Critique of the Present Runtime Environment 

There are two main problems with the current implementation of the Durra runtime system 
that will be addressed in the new one. The first, load balancing, refers to ensuring that 
processing and communication resources are utilized effectively. The second, reliability, 
refers to being able to detect and adapt to problems in the execution environment. This 
section critiques the current Durra runtime environment with respect to these problems. 

3.1. Load Balancing Problems 
To effectively use a heterogeneous machine network, processes must be allocated to 
processors in such a manner that no processor is overloaded. This would seem to dictate 
maximal dispersion of the processes. However, the more dispersed the processes, the 
higher the potential inter-process communications load. Minimizing communication load dic- 
tates minimal dispersion of the processes. These two criteria are in fundamental conflict so 
the goal becomes one of minimizing the total load; applying some balance to processor load 
and communication load. 

Because Durra is designed for heterogeneous machines, particular processes may only be 
allocated to particular subsets of the processors in the configuration as specified by the 
processor attribute in the task description. This both simplifies the allocation decision in the 
sense that it limits choices, and complicates it in the sense that it limits flexibility of process 
assignment. 

The present implementation of the runtime environment effectively ignores all of these is- 
sues. Although it tries to equalize the count of processes running on each of the proces- 
sors, it makes no attempt to minimize load, either processing or communication. 

Chapter 5 discusses this problem and how it will be solved in the new Durra runtime envi- 
ronment. 

3.2. Reliability Problems 
As currently implemented, the Durra runtime environment ignores most issues of reliability. 
Although it uses a reliable communication protocol (TCP/IP), and is a reasonably robust 
piece of software, it provides no reliability functionality either at the system or application 
level. 

The current Durra runtime environment suffers from two potential reliability problems: 

1. There is a single Scheduler for the entire system. A failure of this Scheduler 
effectively aborts the entire application. 

CMU/SEI-89-TR-8 13 



2. Because all communication is routed through the Scheduler, it is a potential 
bottleneck. While this is also an issue related to communication load balanc- 
ing, the bottleneck could also potentially effect application reliability in terms of 
the timeliness of inter-process communication. 

In addition the reconfiguration mechanism, a major method of achieving reliability has not 
been implemented in the current Durra runtime environment. 

Chapter 6 discusses these issues in detail and presents the approach taken to achieve 
reliability in the new Durra runtime environment. 
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4. Preview 
There are two major areas of improvement in the design of the new Durra runtime environ- 
ment, load balancing enhancements and reliability enhancements. By necessity, the mate- 
rial is complex. The purpose of this Chapter is to guide the reader through the material 
discussed in detail in Chapters 5 and 6. 

<    V 
V % v^ 

Load Balancing 
• Processing Load 
• Communication Load 

• System Bottlenecks 

•Cost 

Reliability 
• Reconfiguration: 

- Keeping the Graph Connected 

- Insufficient Trigger Conditions 
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- Reliable Communication 
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Figure 4-1:   Issues in Performance and Reliability in Durra 

Figure 4-1 shows the issues that have been considered in designing the new Durra runtime 
environment, and shows the specific sections of the report which discuss them. 
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4.1. Load Balancing Enhancements 
Load balancing enhancements involve improving processor loads and communication loads. 
Section 5.2 discusses why existing algorithms for improving processor loads will not work 
without modification. Section 5.4 discusses the modifications necessary to address these 
problems. Removing the communication bottleneck represented by the single scheduler is 
discussed in Section 5.3. This is accomplished by replacing the single scheduler with a 
local executive executing on each processor. Each local executive will take responsibility 
for implementing some of the queues in the application and will only handle communication 
through those queues. Finally, a brief discussion of the costs and benefits of choosing a 
common protocol like TCP is discussed in Section 5.5. 

4.2. Reliability Enhancements 

Sections 6.2 and 6.3 discuss the proposed design for reliability in the Durra runtime environ- 
ment. 

Reconfiguration in Durra provides the application designer with a means of changing the 
way processes are interconnected at runtime. This may involve removing some processes 
and queues and instantiating new ones. The intent of this part of the language is to allow 
the application to react to events or change modes of operation. Reconfiguration may also 
be necessary as the result of a processor failure. In this case, the Durra runtime environ- 
ment is responsible for initiating it. 

Section 6.2.1 describes the reconfiguration statement in Durra and gives an example of its 
use. Section 6.2.2 discusses problems with the present model of reconfiguration, including 
the potential for dangling queues, and the highly restricted set of conditions which can trig- 
ger a reconfiguration. 

Section 6.2.3 describes the global executive a new component of the Durra runtime which 
has responsibility for configuration management including reconfiguration. The global ex- 
ecutive runs the load balancing algorithm, as already discussed in Section 5.4, and informs 
the local executives of which processes to run and which queues to implement. Section 
6.2.5 discusses the problem of safely migrating a process, without losing state, as a part of 
a reconfiguration. The method used is similar to that in Conic [Kramer 88] involving making 
processes quiescent before a reconfiguration. However, given Durra's black-box view of 
application processes, the Conic model cannot be used intact. Application processes must 
cooperate at runtime and provide the information necessary to carry out a safe reconfigura- 
tion. Finally, Section 6.2.6 describes how the global executive carries out a reconfiguration. 

The present implementation of the Durra runtime environment pays little attention to 
reliability. In fact, the present Scheduler represents a single point of failure in the Durra 
system. Section 6.3 extends the design of the new Durra runtime environment to provide a 
higher level of reliability. 
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Fault-tolerance in the proposed Durra runtime environment is achieved via replication of the 
global executive. Section 6.3.1.1 introduces this idea and describes the active and passive 
global executives. There is one active global executive; all the rest are passive. The active 
global executive keeps the passive updated with configuration information. The active and 
the passive global executives detect processor failure by repeated query of the local execu- 
tives as described in Section 6.3.1.2. A fail-stop model {Schlichting 83] of failure is as- 
sumed. In the event that the active global executive fails, one of the passive global execu- 
tives becomes active using an election protocol similar to that described in [Kim 88]. In the 
event that a passive global executive fails, a new passive global executive is started on a 
functioning processor. In either event a reconfiguration as described in Section 6.2.4 is per- 
formed. 

Application level reliability, discussed in detail in Section 6.3.2 is achieved via several 
mechanisms including an extended reconfiguration statement as described in Section 6.2.3. 
Error detection is accomplished by implementation of n-way voting in the application. Also 
provided in the new Durra runtime environment is an atomic broadcast facility which 
guarantees that if any process receives a message they all do. Aborts are dealt with by the 
Durra runtime environment. 

4.3. Other Possible Enhancements 

This report does not deal with processor restart. Once a processor has failed it is presumed 
to be gone forever. Thus transient faults and therefore the problems of orphans and 
partitions [Liskov 87] are not discussed. These are important topics and will be considered 
in a later report. 
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5. Load Balancing Enhancements 
This chapter of the report discusses adding true load balancing to the Durra runtime envi- 
ronment. It begins with a review of the literature, and continues with a discussion of task 
and communication load balancing techniques to be utilized. 

5.1. Literature Review 

The literature on load balancing can be roughly divided into two categories. The first cate- 
gory is static load balancing, which refers to making an assignment of processes to proces- 
sors once, without considering the possibility of migrating tasks as processor loading char- 
acteristics change. Static load balancing also ignores the potential for new processes to be 
created during the execution of the application. 

The second category is dynamic load balancing, which continually considers processor 
loading and migrates processes to keep the application running efficiently. The Durra proc- 
ess structure is very static. New processes start and old processes terminate only as the 
result of a reconfiguration (Section 6.2.1), making dynamic load balancing not applicable to 
the Durra runtime environment. 

Chu et. al [Chu 80] present an overview of the problems inherent in load balancing on distri- 
buted systems. The obvious solution of splitting the processor load evenly among the 
processors does not result in the maximal usage of resources because of the relatively 
higher cost of inter-process communication when two processes run on different processors. 
Chu assumes that the cost of inter-process communication when the processes are co- 
resident is significantly less than when they are not. 

As a rule assigning two processes that do not communicate with each other to different 
processors will typically speed up the overall computation. Assigning two processes that 
communicate heavily to different processors will slow the application down. 

The first of three strategies for load balancing that Chu considers is a graph theoretic ap- 
proach. In this approach, the nodes represent processes and the weighted arcs represent 
the communication behavior. The higher the weight on an arc, the more the communication 
cost between any two processes if they are not co-resident. The arc weight is zero if the 
processes are assigned to the same processor. There is also a processing cost associated 
with each processor/process pair, allowing for the possibility that a particular process will 
execute more efficiently on a particular processor. Then the cost of any particular task as- 
signment is computed by summing up the arc weights along with the processing costs. The 
cost is minimized by performing a max-flow, min-cut algorithm on the graph. The graph 
theoretic approach is straightforward, but rapidly becomes computationally NP-hard as the 
number of processors increases beyond two. Furthermore it assumes infinite resources on 
each processor, and extending it to account for resource limits results in an NP-complete 
solution. 
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The second strategy considered involves integer 0-1 programming. This solves the 
resource constraint problem but also is computationally expensive and would probably re- 
quire off-line computation for any particular application. 

The final strategy presented involves the use of heuristics. Assuming homogeneous, fully 
connocted pro*- .ors, a clustering algorithm is proposed. The algorithm locates the two 
processes which will reduce inter-process communication cost the most by being assigned 
to the same processor. If the resources available allow the assignment to be made, that 
process pair is "fused" and considered as a single process for the next iteration of the algo- 
rithm. The system is considered load balanced if the loading of the processors is within a 
certain tolerance. While the heuristic strategy does not result in an optimal allocation of 
processes to processors, it does a reasonable job and it is computationally tractable. 

Chou and Abraham [Chou 82] consider seven characteristics of processes in a distributed 
system. In addition to execution time and inter-process communication time, these charac- 
teristics include process failure probabilities, process start-up costs, etc. They model the 
execution of a set of processes in a distributed system using a semi-Markov process with 
rewards. A state in the model represents the execution of a process on a particular proces- 
sor. The reward structure is used to model the time behavior of a program module. A policy 
iteration algorithm is applied to determine the optimal (reward maximizing) process- 
processor assignment. The resulting algorithm is more general than the graph theoretic 
approach previously described in that it can be used for an N-processor system, and that it 
considers the effects of system reliability on pc ribrmance. 

Lo [Lo 87] develops another heuristic which o' ;o makes use of the graph-theoretic approach 
described above. Choose a single processor in the distributed system, and consider all of 
the other processors to be another single processor. Perform the two processor max-flow, 
min-cut algorithm which will result in some processes being assigned to the chosen proces- 
sor. Do this for each processor in the system. If all processes have been assigned to 
processors at completion of this part of the heuristic, the task assignment is complete. 
Otherwise, other heuristics are applied to complete the assignment. 

Lo points out that all of the approaches that make use of total execution and communication 
costs make no explicit attempt to fully utilize the processors available, and often end up 
leaving some of them idle. To achieve higher degrees of parallelism, Lo introduces inter- 
process interference costs. Two CPU bound processes executing on the same processor 
will have high interference costs. A CPU bound task and an I/O bound task executing on 
the same processor might have a low interference cost. Interference cost, then, serves as a 
force of repulsion between processes to counterbalance the force of attraction due to high 
communication costs. The heuristic already presented, with minor modification, will also 
work when interference costs are included. 
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5.2. The Load Balancing Difficulty in Durra 

The initial implementation of the Durra runtime environment routes all inter-process commu- 
nication through a centralized scheduler. This means that there is no way to optimize the 
inter-process communication costs. With the exception of those tasks that happen to be 
allocated to the same processor as the scheduler, the communication costs will be high. 
Thus to better utilize resources in Durra, inter-process communication must be freed from 
going through a centralized switch. 

Even de-centralizing inter-process communication will not allow any of the heuristics de- 
scribed in the literature to be directly applicable. In Durra the application designer specifies 
the set of processors a process is allowed to execute on. These sets are in general not 
disjoint as illustrated by Figure 5-1. 

VAX 

UVAX 

I ( « ) 
(        C         j      VAX1 

C • ) f       D         |      VAX2 

Figure 5-1:   Overlapping Processor Classes 

An application designer can specify that a process must run on processor A, that it can run 
on any MicroVAX (UVAX), that it can run on any VAX, or that it can run on VAX class one 
(VAX1) or VAX class two (VAX2). Since the heuristics discussed above assume a homoge- 
neous set of processors, or at least a disjoint set of processor classes, they will have to be 
modified to deal with the Durra environment. 

5.3. De-Centralizing Communication 

To allow for more efficient inter-process communication, and to remove the bottleneck 
represented by the present scheduler. We propose to replace the centralized scheduler 
with a local executive which runs on all of the processors in the Durra environment. The 
local executive also replaces the Server on each of the machines. The local executive will 
have the following responsibilities: 
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• process start-up and termination. The local executive will be responsible for 
loading application processes on the local processor and seeing that they are 
started with the correct parameters. (The present Server function.) 

• queue Implementation. The local executive will implement all queues associ- 
ated with the output ports of processes running on the local processor. (A por- 
tion of the current Scheduler functionality.) 

• buffer task implementation. Broadcast and Deal buffer tasks will be imple- 
mented by the local executive on the processor where the data to be broadcast 
is originating. Merge buffer tasks will be implemented by the local executive on 
the processor where the merged data is to be used. 

As an optimization, where possible (e.g., in UNIX based systems) a simplified (but reliable) 
communication protocol will be utilized for communication between a process and the local 
executive executing on the same processor. See Section 5.5. 

The remainder of the functionality of the present scheduler is assumed by a new component 
of the Durra runtime environment, called the global executive. The global executive will be 
discussed extensively in Chapter 6. 

An effect of this change is to make it reasonable to consider inter-process communication 
costs when allocating processes to processors. 

5.4. Task Allocation 

For task allocation in Durra, the heuristic described by Lo, with some modification, is appro- 
priate. For this method to work in the Durra environment, the set of processors a process 
may execute on must be taken into account. This is accomplished by setting the cost of a 
process executing on any other processor to be infinity. Thus the heuristic will prefer to 
allocate those processes to the appropriate processor. The global executive will have the 
responsibility for carrying out this heuristic. 

For the heuristic to work effectively, the inter-process communication cost, and the process 
interference costs must also be taken into account. This can be inferred from the behavior 
specification of the task descriptions when available (Section 2.1.3). In the event the appli- 
cation designer has not written behavior parts, a constant will be substituted for the inter- 
process communication cost if the processes are allocated to different processors. 
Similarly, a constant will be substituted for the process interference cost if the processes are 
allocated to the same processor. Tuning these constants will require some experimentation. 
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5.5. Cost of Communication 

Implementing the Durra runtime environment on a heterogeneous machine network requires 
a common communication protocol across all of the processors of the network. Since the 
project was not concerned with inventing new protocols we have chosen to use TCP. This 
provides us with the major benefit of wide availability, which simplifies porting of the Durra 
runtime environment to additional host systems. 

The price we pay for this simplification is one of performance. Although implementation of 
the TCP protocols have been optimized in some environments there are still inefficiencies 
caused by the protocols generality. A custom designed protocol for Durra could reduce 
these inefficiencies at the cost of making it harder to move the runtime environment from 
system to system. There is nothing in the Durra runtime environment design that precludes 
a change in protocol at some future time. 
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6. Reliability Enhancements 

That a single Scheduler represents a single point of failure and is a potential communication 
bottleneck was effectively addressed in the previous section. But, there are two other 
reliability issues to be considered, reconfiguration and fault-tolerance. These issues will be 
discussed in the following sections. 

6.1. Literature Review 

For a system to be reliable it must be able to: 

• avoid errors where possible, 
• detect errors when they occur, 
• mask errors when possible, and 
• recover from errors that cannot be masked. 

A major means of achieving reliability in distributed systems is via replication of program 
modules. Error detection and reliable communication between program modules is neces- 
sary for replication to be effective. Finally, dynamic system reconfiguration is a common 
means of recovering from errors that cannot be masked. This section considers some of the 
existing work in these areas, looking first at replicated systems, and then at reliable commu- 
nication protocols. 

6.1.1. Replicated Systems 
Wensley et al [Wensley 78] describe the SIFT architecture. The SIFT computer is designed 
to operate fly-by-wire commercial aircraft and as such is ultra-reliable. A replicated task 
structure is used to achieve this, with n-way voting used to detect and mask errors. A sum- 
mary of errors is periodically reported to a replicated global executive. The global execu- 
tives use these error reports to make reconfiguration decisions. When a majority of the 
global executives decide on a reconfiguration, a local reconfiguration task, running on all 
processors (but not replicated) carries out the reconfiguration. The SIFT computational 
model requires all tasks to broadcast important state at the end of each iteration, and to 
retrieve it at the start of the next iteration. Thus restart problems are minimized. Weinstock 
and Green [Weinstock 78] describe the implementation of reconfiguration in the SIFT sys- 
tem in more detail. 

Seifert [Seifert 80] discusses reconfiguration in two types of systems, those with structural 
redundancy (hot-standby), and those with functional redundancy. For hot-standby to work 
properly, the state of the back-up process must remain consistent with the state of the pri- 
mary process. Upon failure of a primary process, the system activates the passive hot- 
standby process and attempts to repair the failed process. A repaired process becomes a 
new hot-standby process, ready for a subsequent failure. In a functionally redundant sys- 
tem, failure of a process causes the other already executing processes to assume the func- 
tionality of the failed process, possibly at the cost of some degradation in overall system 
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performance. Once the failed process is repaired, it is re-integrated into the system and 
re-assumes its old responsibilities. 

Cristian [Cristian 82] compares programmed exception handling to default exception han- 
dling. The former deals with errors anticipated by the programmer in advance. In this case 
the programmer has inserted post-conditions in the program to detect and recover from an 
error. The later deals with unanticipated errors. The recovery block mechanism [Anderson 
76], is used to deal with them. 

Cooper [Cooper 85a] builds a reliable distributed system around replicas of modules which 
he calls a troupe. Individual members of a troupe do not communicate among themselves, 
and in fact don't even know of each others existence. A replicated procedure call mecha- 
nism, based on remote procedure call, deals with the many-to-many communication pattern 
between troupes. A distributed system built around troupes is reliable because the system 
will continue to function properly as long as one member of each troupe remains opera- 
tional. A mechanism is provided for re-populating a troupe decimated by member failure. 

Zicari [Zicari 86] proposes a system structure similar to that adopted by Durra. An allocation 
manager provides a set of "programming in the large" operations through which the user 
programmer can control the configuration of the system. "Programming in the small" opera- 
tions, which correspond to programming the "virtual nodes" in the system are kept separate. 
The allocation manager allows virtual nodes to be migrated from one processor to another, 
complete with execution state information. 

Kramer and Magee [Kramer 88] discuss the reconfiguration mechanism for the Conic sys- 
tem running at Imperial College. They also separate application concerns from those at the 
configuration level. They define the concept of a quiescent node. A node is said to be 
quiescent if it is not currently engaged in a transaction, will not initiate a new transaction, 
and if no other node will initiate a transaction that requires a response from this node. A 
quiescent node can pass consistent up-to-date information in the event of a reconfiguration. 
A passive node is one which will not initiate any transactions, but which will respond to 
transactions from other nodes. Both are desirable states for reconfiguration. The paper 
shows that to achieve the quiescent state in some target node, the configuration manager 
must first make it passive and also create a region of passive nodes around it. Such a node 
can be removed from the configuration safely. Unlinking (or linking) a node from the config- 
uration requires that the node from which the connection is directed be in the passive state. 

In many replicated systems, one process must be more equal than the others. For instance, 
all processes need to share consistent view of a new configuration. One means of achiev- 
ing this is to require one of the processes collect the information, develop the configuration, 
and broadcast it to the other processes. The problem then becomes one of deciding which 
of the equal processes is going to take on this responsibility and become the "master." Kim 
and Belford [Kim 88] describe an election protocol which solves this problem. The essential 
idea is for each process to have a different election priority. When a system status change 
is detected because of a failure or recovery, an election is held wherein all processes an- 
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nounce their candidacy. A process seeing a candidacy from a process with higher priority 
abandons its candidacy and votes for the other. A two-phased commit protocol is used to 
ensure that all of the processes have made the same decision, even in the case of lost 
messages. 

6.1.2. Reliable Communication Protocols 
Chang and Maxemchuk [Chang 84] describe a family of reliable protocols for an unreliable 
broadcast network which guarantees that all of the broadcast messages are received by all 
operational processes in a broadcast group. It also guarantees that all processes receive 
messages in the same order, a feature which simplifies distributed algorithms. The different 
protocols trade-off the number of control messages per broadcast message, the internal 
storage required, and the resiliency of the system. 

Cooper [Cooper 85a], already discussed above, describes replicated procedure calls which 
allow troupes to communicate with troupes in a reliable many-to-many fashion. When a 
client troupe makes a replicated procedure call to a server troupe, each member of the ser- 
ver troupe performs the requested procedure exactly once, and each member of the client 
troupe receives all the results. Performance can suffer if a server troupe member must 
await calls from all of the client troupe members before execution. This requirement is 
relaxed by allowing the server to begin operation, but to check that all requests are finally 
received. Similarly, a client troupe should not have to await the return of values from all 
members of the server troupe, but should be allowed to proceed as long as the return 
values are all eventually received. In [Cooper 85b] he gives a detailed implementation of 
replicated procedure calls. 

Lin and Gannon [Lin 85] describe an atomic remote procedure call mechanism. Atomicity is 
a property encompassing two concepts: totality and serializability. If an atomic action com- 
pletes successfully, then the action requested has taken place everywhere. If the action 
fails anywhere, it takes place nowhere. This is totality. Serializability requires that the ef- 
fects of executing several operations concurrently be equivalent to the effects if they are 
executed in some sequential order. Because remote procedures can call other remote pro- 
cedures, committing the operation is quite complex and may require multiple steps. For 
cases where atomicity is not needed, a standard remote procedure call mechanism is pro- 
vided. 

Birman and Joseph [Birman 87] present three communications primitives and their imple- 
mentation as used in the ISIS system. These are group broadcast, atomic broadcast, and 
causal broadcast. All of these broadcast mechanisms are atomic, but they differ in other 
important ways. Group broadcast is intended to inform group members of changes in the 
global state of the group (e.g., a process joins the group, fails, etc.) Group broadcast has 
two additional properties of interest. First, the order in which a group broadcast is delivered 
relative to the delivery of all other broadcast messages (of any type) is identical at all over- 
lapping destinations. Second, if the group broadcast is a failure message (e.g., one that is 
generated because of a process failure) it is required to be delivered as the list message 
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from that process. Once a process has failed, it will never be heard from again. Because of 
these properties, a process receiving a group broadcast message can act on that informa- 
tion without further agreement from other processes. 

Atomic broadcast is provided for applications which require that the order in which data is 
received at a destination is same as that at all other destinations. The causal broadcast 
primitive is used to enforce a delivery ordering at all destinations when desired, but with 
minimal synchronization. It differs from atomic broadcast in that it requires a particular, 
predetermined ordering of delivery. These primitives can be used to implement the repli- 
cated procedure call of Cooper [Cooper 85a]. The use of the primitives to implement fault- 
tolerant systems (particularly ISIS) is also described. 

6.2. Reconfiguration 

Durra provides the application designer with a means of reacting to external stimuli (e.g., 
sunset or time-of-day). By making use of the reconfiguration mechanism the graph of proc- 
ess interconnections may be modified, by removing old processes and adding new ones, or 
merely by changing the way in which current processes are connected together through 
queues. The reconfiguration mechanism also allows an application to become more reliable 
by giving it a mechanism for reacting to errors detected during its operation. 

The following sections consider the implementation of reconfiguration in the Durra runtime 
environment. First comes a discussion of the various kinds of reconfiguration that Durra 
must be prepared to handle. A design for a Global Executive, in charge of configuration 
management, is presented, followed by a discussion of the difficulties in accomplishing 
reconfiguration. 

6.2.1. Reconfiguration in Durra 
The Durra language includes a mechanism for reconfiguration that allows the user to specify 
both when to reconfigure and how to reconfigure. Figure 6-1 is an example of a recon- 
figuration statement in Durra. 

if Current_Time >=  6:00:00  local  and 
Current_Time < 18:00:00  local 

then 
remove 

p_sonar; 
process 

p_vision:   task vision attributes processor = warp; 
queues 

q_vision:   p_deal.out3  > > p_vision.ini; 
q_obstacles:   p_vision.outl  > > p_merge.in3; 

end if; 

Figure 6-1:  A Sample Reconfiguration Statement 

This example specifies that during the time between 6 am and 6 pm, a sonar process 
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(p_sonar) is to be removed from the application and a vision process (p_vision) is to be 
added. It also specifies how the new process is to be "hooked in" to the application. 

In general there are three ways a reconfiguration can occur in Durra. 

1. The application can require a reconfiguration as a part of its normal opera- 
tions. The example above is an instance of this form of reconfiguration. 

2. An external operator can direct the reconfiguration of the application in re- 
sponse to some external events. For instance it may be necessary to take 
down a processor for preventive maintenance without shutting down the appli- 
cation. This would require reconfiguring the application to stop using that 
processor. 

3. A system failure can cause a reconfiguration. 

In the first two cases Durra has some control over the timing of the reconfiguration, giving 
time to accomplish it smoothly. Reconfiguration in the third case is unpredictable and can- 
not be accomplished as smoothly. 

6.2.2. Problems with the Durra Reconfiguration Statement 
In one important way reconfiguration due to system failure can be simpler to deal with than 
the other two cases. If a processor fails, the graph of the configuration does not have to 
change, merely the allocation of processes to processors. On the other hand, the appli- 
cation designer may design in a graceful degradation of services in the event of a processor 
failure, and this might require an entirely different configuration. In this and the other two 
types of reconfiguration, there is a potential for the graph to become unconnected, with dan- 
gling queues being left around. 

The Durra compiler checks that the graph will not become unconnected in the case in which 
the application designer has specified a reconfiguration statement. However, this checking 
is done in reference to the initial configuration, and subsequent reconfigurations may still 
cause an unconnected graph. It is a runtime error for the graph to be unconnected. 

The present reconfiguration statement in Durra is triggered by a highly restricted set of con- 
ditions all involving time or the number of elements in a queue. Clearly this is not sufficient 
flexibility for being able to specify the complete range of reconfiguration conditions listed in 
the previous section. 

6.2.3. The Global Executive 
The global executive is a part of the Durra runtime environment responsible for Durra config- 
uration and reconfiguration. In normal operation the global executive, functions as follows: 

• Establish Connections: Connections are established with each of the local ex- 
ecutives in the configuration. Once a connection is opened, each local execu- 
tive returns the number of a socket on which it will listen for communication 
from application processes. 
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• Build Graph: After reading the interpretive instructions generated by the Durra 
compiler for the application, a graph representation of the configuration is built. 

• Allocate Processes: The task allocation algorithm discussed in Section 5.4 is 
employed to determine an initial assignment of processes to processors. 

• Initialize the Local Executives: Each local executive is provided the following 
information: 

• A list of processes to execute on its processor. 
• Descriptive information regarding the queues for which it is responsible, 

including process and port information. If a queue overflow condition is 
used in a reconfiguration statement, the local executive is given that in- 
formation so that it may report the occurrence of the overflow to the 
global executive. 

• Process Application Requests and Reconfigurations: Having informed the 
local executives of their duties, the global executive awaits messages from the 
application processes (via the local executive) and reconfiguration events. 

The local executives must be capable of executing a set of remote procedure calls to estab- 
lish a configuration. The philosophy here is that a local executive should only be given the 
knowledge that it needs in order to do its job. This minimizes the information that must be 
updated in the event of a subsequent reconfiguration. The following remote procedure calls, 
issued by the global executive accomplish the transfer of configuration information to a par- 
ticular local executive. They closely parallel the instructions in the .SCHED file generated by 
the Durra compiler. 

create_buff ertaskTells the local executive of the existence of a buffer task. A local execu- 
tive only needs to know of the existence of a buffer task that will be 
implemented by that local executive. 

create_attribute Is used to inform the local executive of attributes associated with a proc- 
ess. These attributes may include: the name of the file that implements 
the process, the mode of a buffer task, or the window geometry for the 
process to use if running under X windows. A local executive only 
needs to know of the attributes of a process that is executing on, or has 
a port connected to a queue implemented on the local processor. 

create_port Tells the local executive of the existence of a port for a particular proc- 
ess. A local executive is informed of a port when it implements a queue 
to which that port is attached. 

create_queue Tells the local executive to implement a particular queue (but not what 
ports to connect to the queue, see attach_port below). 

attach_port Tells the local executive to attach a port to a queue. 

create_size_type  Tells the local executive of the existence of a simple type. 

create_array_type Tells the local executive of the existence of an array type. 

create_unlon_typeTells the local executive of the existence of an union type. 

commitconfiguration 
Tells the local executive to make the new configuration become effec- 
tive. 
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abort_configuration 
Tells the local executive to abort the new configuration and remain with 
the current one. 

The remote procedure calls currently implemented by the Scheduler and issued by the ap- 
plication processes will be implemented by the local executive, with the exception of 
get_portid and get_typeid which are implemented by the global executive. When the local 
executive receives one of these calls from a application process it forwards it to the global 
executive for processing and then forwards the results back to the application process. 
Get_portid will be modified to return a host name, and a socket number for communication 
to that port, in addition to the information already returned. Get_typeid will return the same 
values as before. 

The local executives and the global executive need to remain in communication with each 
other, to facilitate the reconfiguration process. A new remote procedure call. raise_signal is 
used by an application process to send a signal to the global executive (via the local 
executive). The conditional part of the Durra reconfiguration statement is modified to in- 
clude the pre-defined boolean function: 

signal(process,signal number) 

which is true whenever the specified process executes a raise_slgnal(slgnal_number). 
Note that Durra places no semantics upon a particular signal_number. That is the responsi- 
bility of the application developer. 

6.2.4. How the New Configuration Is Determined 
Once the global executive determines that a reconfiguration is appropriate it performs the 
following analysis: 

1. It determines which processes are to be removed from the application. 
2. It determines which processes are to be added to the application. A migrating 

process is just a special case of these two steps. 
3. It determines on which processor the new or migrating processes will execute. 

This is accomplished by running the max-flow, min-cut algorithm again, but 
locking existing, non-migrating processes on their original processors. 

4. It determines which of the queues involved in step 1 are to be deleted, and 
which can be reconnected. A queue is deleted if both its input and output 
processes are deleted from the application. It is also deleted if the local ex- 
ecutive which implements it terminates execution (as either the cause of, or 
the result of a reconfiguration.) 

5. It determines which queues must be newly created, and which local executive 
is responsible for implementing the queue. 

At this point the global executive has all of the information necessary to perform the recon- 
figuration. 
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6.2.5. When Is It Safe to Reconfigure? 
The major problem with reconfiguration is preserving the state of the application. If a proc- 
esses is migrated at the wrong moment it is easy to lose important state information. The 
Conic approach of making processes quiescent before reconfiguring is that taken here. A 
process is quiescent if it is not currently engaged in a transaction, will not initiate a new 
transaction, and if no other process will initiate a transaction that requires a response from 
this process. The problem is that in Durra, because processes are treated as black boxes, 
there is currently no reliable way of determining when a process is quiescent, unless the 
process itself notifies the runtime system. 

Although the global executive can ask the local executives to prevent a process targeted for 
migration from receiving data from other processes, this does not completely solve the prob- 
lem. First, if the targeted process does not do many (or any) get_ports it will never block 
awaiting input, and will never be deemed quiescent. More importantly, a transaction be- 
tween two processes may consist of multiple get_ports and send_ports. Thus, blocking by 
itself is not a reliable means of telling when a process is quiescent. The process must make 
this explicit. 

To facilitate this, an additional remote procedure call, safe is provided for the application 
process. This call says that it is safe for the process to be migrated instead of returning 
from the remote procedure call. This method of determining when it is safe to reconfigure 
depends on the cooperation of the application programmer. Without that cooperation, it will 
be impossible to reconfigure a Durra application safely. 

6.2.6. The Reconfiguration Process 
Given the above, to accomplish a reconfiguration, the global executive issues the following 
remote procedure calls for execution by the local executives: 

quiesce Causes the local executive to make a process quiescent by not return- 
ing from a safe remote procedure call. 

Is_qulescent Allows the global executive to determine if a process has successfully 
been made quiescent by a local executive. 

resume Causes the local executive to unblock a quiescent process. 

remove_process   Causes the local executive to close all of a processes connections and 
to terminate its execution. 

unattach_port       Causes a local executive to disconnect a port from a queue. 

removequeue      Causes the local executive to delete a queue. 
Once the appropriate processes and queues have been removed from the configuration, the 
create_buffer_task,  create_port,  create_queue,  create_attribute,   and  attach_port 
remote procedure calls defined in Section 6.2.3 are used to build the new configuration. 
The commitconfiguration remote procedure call causes the new configuration to become 
effective. 

To help the application programmer, when a process is restarted it is informed of whether it 
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is being run for the first time (e.g., at application start-up), is being restarted as a result of a 
controlled reconfiguration (e.g., the application or operator caused it to happen, and the 
process was made quiescent before reconfiguration), or is being restarted as the result of a 
system failure (e.g., the process was not made quiescent before reconfiguration). 

6.3. Adding Fault-Tolerance 
In order to become more reliable, the Durra runtime environment must be able to deal with 
errors internal to itself. This would involve, for example, starting up new Local Executives or 
Global Executives in the event of a failure, and the consequent restarting of application 
processes. Durra should also provide a mechanism to make it easier for an application 
designer to incorporate fault-tolerance directly into the application. 

The following sections consider the addition of fault-tolerance to both the Durra runtime en- 
vironment, and the applications running under it. 

6.3.1. Durra Level Fault-Tolerance 
In what follows, it is assumed that Durra applications and the runtime environment execute 
on fail-stop processors [Schlichting 83]. A fail-stop processor is one that halts on error in- 
stead of allowing erroneous computations to proceed. To assume otherwise would require 
Byzantine agreement [Pease 80, Lamport 82] among the processes at a severe perfor- 
mance penalty. In practice, Byzantine errors do not appear to occur frequently enough to 
warrant paying this penalty. 

Fault-tolerance in the Durra runtime environment is achieved via replication of the global 
executive. 

6.3.1.1. Initializing the Global Executives 
A single global executive is started by the user with a parameter specifying the degree of 
replication desired in the global executive. 

A global executive begins execution as described in Section 6.2.3 with the changes (in 
italics): 

• Establish Connections: Connections are established with each of the local 
executives in the configuration. Once a connection is opened, each local ex- 
ecutive returns the number of a socket on which it will listen for communication 
from application processes. 

• Start Replica Global Executives: The running global executive decides on 
which processors to run the replica global executives, and asks local executives 
on those processors to start them. These global executives are started in a 
passive mode. The original global executive is in active mode. 

• Establish Connections: The passive global executives establish connection 
with the active global executive and the local executives. 
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• Build Graph: The active global executive reads the interpretive instructions 
generated by the Durra compiler for the application and sends them, one at a 
time, to the other global executives. An atomic remote procedure call mecha- 
nism, similar to Lin's [Lin 85] is utilized to ensure that all global executives end 
up with the same graph representation of the configuration. 

• Allocate Processors: The task allocation algorithm discussed in Section 5.4 is 
employed by each of the global executives to determine an initial assignment of 
processes to processors. 

• Initialize the Local Executives: Each local executive is provided (by the ac- 
tive global executive) the following information: 

• A list of processes to execute on its processor. 
• Descriptive information regarding the queues for which it is responsible, 

including process and port information. If a queue size is used in a 
reconfiguration statement, the local executive is given that information so 
that it may report the occurrence of the event to the active global execu- 
tive. 

• Process Application Requests and Reconfigurations: Having informed the 
local executives of their duties, the active global executive awaits messages 
from the application processes (via the local executive) and reconfiguration 
events. 

6.3.1.2. Detecting Failure 
Detection of a processor failure is accomplished by having the active global executive probe 
each of the local executives if there has been no communication activity from that local ex- 
ecutive in a specified amount of time. The appropriate frequency of probing is a parameter 
that will be determined empirically. A failure of the active global executive is determined by 
having each of the passive global executives probe the local executive of the processor on 
which the active global executive is running (see Section 6.3.1.3.). 

To accomplish the probe, a processor status remote procedure call is defined on each of 
the local executives in the configuration. 

processor_status(time_out) 
Returns a zero if the local executive has not responded within the period 
of time indicated by the "time_out". Otherwise returns one. 

If the local executive on a processor does not respond within the required period, the 
processor is presumed to have failed. 

6.3.1.3. Recovering From a Failure 
In order to recover from a failed processor, there are three cases to consider: 

1. The failed processor was not running a global executive. 

2. The failed processor was running a passive global executive. 

3. The failed processor was running the active global executive. 

In the first case, the active global executive informs the passive global executives of a 
processor failure, utilizing the atomic remote procedure call mechanism to ensure that they 
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all receive the same information. Then all of the global executives perform the reconfigura- 
tion process described in Sections 6.2.4 through 6.2.6. Of course, only the active global 
executive actually communicates information to the local executives. 

In the case in which a passive global executive was running on the failed processor, before 
doing the above, the active global executive will select a new processor to run a replace- 
ment passive global executive, have the local executive start its execution, and initialize it. 

In the case in which the active global executive ceases to operate, one of the passive global 
executives must become active before doing any of the above. The distributed election 
protocol of Kim and Belford [Kim 88] is utilized to select one of the passive global executives 
and make it the active global executive. 

6.3.2. Application Level Fault-Tolerance 
Application level fault-tolerance is left to the application developer. However, the Durra run- 
time environment will provide mechanisms to make the problem of building fault-tolerant ap- 
plications easier. 

The first of these, the ability to respond to errors by triggering a reconfiguration using the 
raise signal remote procedure call, has already been discussed in Section 6.2.3. But, in 
order for the application to trigger a reconfiguration, it must be aware that an error occurred. 
One way of achieving error detection is via replicated application processes and n-way 
voting. The application designer can specify this replication when writing task descriptions 
and easily implement n-way voting of the results as shown in Figure 6-2. 

To make programming applications with replicated tasks easier, an atomic mode is added to 
the broadcast buffer task. If any destination receives the broadcasted data, then all destina- 
tions receive the data. In the event of a failure the reconfiguration mechanism is triggered 
and the broadcast is retried. 
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task a; 
ports 

out1:out byte; 
attributes 

processor = vax; 
implementation = 

end a; 
•a_task"; 

task three_way; 
ports 

in1, in2, in3:byte; 
attributes 

processor = vax; 
implementation = "three_task"; 

end three_way; 

task main; 
structure 

process p1: task a; 
process p2: task a; 
process p3: task a; 
process v: task three_way; 

queues 
q1: pl.outl » v.in1; 
q2: p2.out1 » v.in2; 
q3: p3.out1 » v.in3; 

end main; 

Figure 6-2:   Implementation of N-Way Voting 
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7. Summary 
This report has presented a proposed design for a new Durra runtime environment. The key 
feature of the new design is that it provides for both performance and reliability enhance- 
ments. 

Performance enhancements are achieved in two manners. First the potential communica- 
tion bottleneck represented by the Scheduler in the original Durra runtime environment is 
avoided by introduction of the local executive. The local executive executes on each 
processor and only handles a subset of the communication load. In addition to communi- 
cation, the local executives are responsible local buffer task and queue management, some 
of the functionality of the current Scheduler and Server. 

Configuration management is the second area of performance enhancement in the new 
Durra runtime environment. A new component, the global executive, assumes this respon- 
sibility. It uses a modified version of load balancing algorithms proposed by Lo [Lo 87] to 
assign processes to processors. This algorithm is designed to minimize processor loading, 
communication loading, and process interference costs. 

Reliability in the new Durra runtime environment is achieved via enhancement and imple- 
mentation of the reconfiguration mechanism in the Durra Language, and the addition of 
fault-tolerance. Reconfiguration is handled by the global executive which responds to 
events by changing the configuration as specified by the application designer. The class of 
events that can cause a reconfiguration is expanded from the ones in the original language 
design to include some that can be initiated directly by the application task. Because of the 
black-box view of processes in Durra, the application designer must take responsibility for 
helping the runtime environment to determine when it is "safe" to move a particular process 
as a result of a reconfiguration. 

A degree of fault-tolerance is achieved by removing the single point of failure represented by 
the current Scheduler. A failing local executive will not bring the entire system down. Addi- 
tional fault-tolerance is achieved by replicating the global executive. There is one active 
global executive and multiple passive global executives. Since a fail-stop [Schlichting 83] 
model is assumed, the active global executive has complete authority for configuration man- 
agement unless the processor it is executing on fails. At that point a distributed election 
protocol [Kim 88] is used to select one of the passive global executives to become active. 
Failed processors are detected by probing the local executives in the event of no other com- 
munication activity. Support for fault-tolerance at the application level relies on the recon- 
figuration mechanism, and a reliable communication protocol. 

4 

After we have some experience running with the new Durra runtime environment, we will be 
able to determine further directions for enhancements. An important future enhancement 
will be dealing with transient failures in a fault-tolerant manner. This would allow, for ex- 
ample, a processor to be taken off-line for maintenance with the ability to bring it back on- 
line when the maintenance was done. 
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Appendix A: New or Redefined Remote Procedure 
Calls 

The following is a detailed summary of the new or redefined remote procedure calls de- 
scribed in this report. All of the remote procedure calls described here are implemented by 
the local executive. 

A.1. Application Remote Procedure Calls 
raise signal(in signal_number) 

Informs the global executive that the application is triggering event 
"signal_number". If multiple signals come in from the same process be- 
fore the global executive can react, it only sees the most recent one. 
Durra    places     no     semantics     on     "signal_number". The 
slgnal(process,signal_number) conditional becomes true, and the 
global executive will react as specified by the application designer. 

safe() Informs the local executive that it is safe to migrate the process instead 
of returning from the remote procedure call. In the absence of the oc- 
currence of a reconfiguration, this is simply a no-op. 

get_portid(in name; out portid, bound, size) 
Given a port name, returns a small integer port identifier to be used in 
referring to that port. The name of the port must correspond to one of 
the ports used in the task description. This call also returns the number 
of elements that can be stored in the queue associated with the port 
("bound") and the size of the elements ("size"). If the size is variable, 
"size" is set to zero. Hidden from the application but utilized by the in- 
terface code, get_portid also returns the host and socket to be utilized 
when communicating with that port. 

A.2. Global Executive Remote Procedure Calls 

run_task(ln taskJd,restart_code) 
Tells the local executive to actually start the process "task_id". 
"restart_code" indicates whether the process is being run for the first 
time (e.g., at application start-up), is being restarted as a result of a con- 
trolled reconfiguration (e.g., the application or operator caused it to hap- 
pen, and the process was made quiescent before reconfiguration), or is 
being restarted as a result of a system failure (e.g., the process was not 
made quiescent before reconfiguration.) This will enable the application 
programmer to take action to restore state where possible. 

create_buffer_task(lntask-id,task_name,task-kind) 
Tells the local executive that there is a buffer task named "task_name" 
with "task-id", and that it's kind is "task-kind", "task-kind" can be one of 
broadcast, merge, or deal. A local executive is informed of a buffer task 
only when it has something to do with that process. 
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create_port(in task_id,port_id,type_id,in_flag) 
Defines a port "portjd", to be associated with a process "task-id". The 
port's type is defined by "type_id". The port is an input port if "in Jlag" 
is set. A local executive is informed of a port when it implements a 
queue to which that port is attached. 

create_queue(in task_id,queue_id,type_id,bound) 
Defines a queue "queuejd" having elements of "type_id", and having a 
bound of "bound". The queue is implemented in the process identified 
by "taskjd". A local executive is informed of a queue when it imple- 
ments that queue. 

attach_port(lnqueue_idItask_id,port_id,in_port) 
Tells the local executive to attach the port defined by "taskjd", and 
"portjd" to the queue defined by "queuejd". If "injport" is true, attach 
it to the input side of the queue, otherwise attach it to the output side of 
the queue. Ports are attached to queues in a separate instruction to 
allow for easier reconfiguration. 

create_attribute(intaskjd,name,value) 
Associates an attribute "name" with its value "value" for the process 
"taskjd". The local executive that will be executing a process is in- 
formed of the attribute values. 

createj5lze_type(In type_id,name,low_bound,up_bound) 
Specifies a simple type named "name", identified by "typejd", and with 
lower and upper size bounds of "low_bound", and "up_bound". All lo- 
cal executives are informed of all types. 

create_arrayjype(in typejd.name.element.bounds) 
Specifies an array type named "name", identified by "typejd" and with 
elements of type "element", "bounds" is a list of the array bounds. 

create_unlonJype(in typejd.name.subtypes) 
Specifies a union type named "name", identified by "typejd". 
"subtypes" is a list of the types that make up the union type. 

remove_process(ln task-id) 
Closes connections to all queues, removes the processes ports, and 
returns when the process selected by "task-id" has terminated execu- 
tion. 

remove_queue(ln queue-id) 
Checks to see if all connections to either side of the queue identified by 
"queue-id" have been closed. If not it returns a failure indication, other- 
wise it removes the queue. 

unattachjport(in taskjd,portjd) 
Unattaches the port identified by "taskjd" and "portjd" from whatever 
queue it is connected to. This is used when a running process must 
reconnect a port to a different queue. 

commit_configuration() 
Make the configuration changes already sent become effective. This is 
used to ensure that everyone views the configuration in a consistent 
manner. 
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abort_configuration() 
Abort the configuration changes already sent. This is utilized when 
there is a communication failure during transmission of a new configu- 
ration. 

qulesce(in taskjd) Cause the process selected by "task-id" to become quiescent by block- 
ing the process after it executes the safe remote procedure call. The 
call returns immediately. 

is_quiescent(in taskjd]) 
Tests to see if the process identified by "taskjd" has become quies- 
cent. 

resume(in taskjd) Resumes a quiescent process "taskjd". This will only happen if the 
process has not been migrated to another processor during a recon- 
figuration. 

processor status(in timejDUt) 
Returns a zero if the local executive has not responded within the period 
of time indicated by the "time_out". Otherwise returns one. 
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