
,

Technical Report

CMU/SEI-89-TR-8
ESD-TR-89- 89-016

Carnegie-Mellon University

Software Engineering Institute

Performance and Reliability Enhancement
of the Durra Runtime Environment

Charles B. Weinstock

February 1989

ADA2.07^I5"

Technical Report
CMU7SEI-89-TR-8

ESD-TR-J 89-016
February 1989

Performance and Reliability Enhancement
of the Durra Runtime Environment

Charles B. Weinstock
Software for Heterogeneous Machines Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position. It is pub-
lished in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1989 Carnegie Mellon University

This document is available through the Defense Technical Information Center. DT1C provides access to and transfer of scientific and
technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government agency personnel
and their contractors. To obtain a copy, please contact DT1C directly: Defense Technical Information Center, Attn: FDR A, Cameron
Station. Alexandria. VA 22304-6T45.

Copies of this document are also available through the National Technical Information Service. For information on ordering, please
contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents
1. Introduction 1

2. Introduction to Durra 5
2.1. Task Descriptions 5

2.1.1. Interface Information 5
2.1.2. Attribute Information 7
2.1.3. Behavioral Information 7
2.1.4. Structural Information 8

2.2. Scenario 9
2.3. Runtime Components 10

2.3.1. The Scheduler 10
2.3.2. The Server 11
2.3.3. Application Tasks 11

3. Critique of the Present Runtime Environment 13
3.1. Load Balancing Problems 13
3.2. Reliability Problems 13

4. Preview 15
4.1. Load Balancing Enhancements 16
4.2. Reliability Enhancements 16
4.3. Other Possible Enhancements 17

5. Load Balancing Enhancements 19
5.1. Literature Review 19
5.2. The Load Balancing Difficulty in Durra 21
5.3. De-Centralizing Communication 21
5.4. Task Allocation 22
5.5. Cost of Communication 23

6. Reliability Enhancements 25
6.1. Literature Review 25

6.1.1. Replicated Systems 25
6.1.2. Reliable Communication Protocols 27

6.2. Reconfiguration 28
6.2.1. Reconfiguration in Durra 28
6.2.2. Problems with the Durra Reconfiguration Statement 29
6.2.3. The Global Executive 29
6.2.4. How the New Configuration Is Determined 31
6.2.5. When Is It Safe to Reconfigure? 32
6.2.6. The Reconfiguration Process 32

CMU/SEI-89-TR-8

6.3. Adding Fault-Tolerance 33
6.3.1. Durra Level Fault-Tolerance 33
6.3.2. Application Level Fault-Tolerance 35

7. Summary 37

Appendix A. New or Redefined Remote Procedure Calls 39
A.1. Application Remote Procedure Calls 39
A.2. Global Executive Remote Procedure Calls 39

References 43

CMU/SEI-89-TR-8

List of Figures

Figure 1-1: The Original Durra Runtime Environment 2
Figure 1-2: The New Durra Runtime Environment 3
Figure 2-1: Scenario 6
Figure 2-2: A Template for Task Descriptions 7
Figure 2-3: Structural Information 8
Figure 4-1: Issues in Performance and Reliability in Durra 15
Figure 5-1: Overlapping Processor Classes 21
Figure 6-1: A Sample Reconfiguration Statement 28
Figure 6-2: Implementation of N-Way Voting 36

CMU/SEI-89-TR-8 Hi

Performance and Reliability Enhancement of the Durra
Runtime Environment

Abstract: Durra is a language designed to support PMS-level programming.
PMS stands for Processor Memory Switch, the name of the highest level in the
hierarchy of digital systems. An application or PMS-level program is written in
Durra as a set of task descriptions and type declarations that prescribes a way to
manage the resources of a heterogeneous machine network. The application de-
scribes the tasks to be instantiated and executed as concurrent processes, the
types of data to be exchanged by the processes, and the intermediate queues
required to store the data as they move from producer to consumer processes.

A runtime environment for Durra has been operational for some time. There are
two major problems with this initial implementation: it makes no significant attempt
to tune the performance of the system, and reliability has not been designed into
the system. This report describes a new design for the Durra runtime environ-
ment that addresses these two issues. The new runtime environment consists of
two major components: a local executive which runs on every processor and is
responsible for process and queue management, and a global executive which
runs replicated on several processors and is responsible for configuration man-
agement and reliability services.

1. Introduction

Durra is a language designed to support PMS-level programming. PMS stands for Proces-
sor Memory Switch, the name of the highest level in the hierarchy of digital systems. An
application or PMS-level program is written in Durra as a set of task descriptions and rype
declarations that prescribes a way to manage the resources of a heterogeneous machine
network. The application describes the tasks to be instantiated and executed as concurrent
processes, the types of data to be exchanged by the processes, and the intermediate
queues required to store the data as they move from producer to consumer processes.

Execution of Durra processes is under control of the Durra runtime environment, an initial
implementation of which has been successfully running for some time. The environment
consists of three active components: the application tasks, the Durra server, and the Durra
scheduler. After compiling the type declarations, the component task descriptions, and the
application description, the application can be executed by starting an instance of the server
on each processor, starting an instance of the scheduler on one of the processors, and
downloading the component task implementations (i.e., the programs) to the processors.
The scheduler receives as an argument the name of the file containing the scheduler pro-
gram generated by the compilation of the application description. This step initiates the ex-
ecution of the application. Figure 1-1 shows the structure of the present runtime environ-
ment.

CMU/SEI-89-TR-8

scheduler

(r
processor3

runjask
shutdown
restart

init
finish
get_portid
get_typeid
sendjort
get_port
testjnputjDort
test_output_port

processorl

-*
server

exec
ikL

task2

processor2

Figure 1-1: The Original Durra Runtime Environment

In the first implementation, some essential features of Durra were omitted,
the present Durra runtime environment include:

Deficiencies in

• Not all features of the Durra language are supported, most notably reconfigura-
tion.

• No serious attempt has been made to balance processor and communication
load. The scheduler simply assigns an equal number of tasks to all processors.

• Reliability has not been designed into the system. The centralized scheduler
represents a single point of failure.

This report presents a design for a new implementation of the Durra runtime environment to
address these concerns. The new design replaces most functions of the Scheduler and the
Server with a new process called the local executive which executes on each processor,
and introduces the global executive which executes on some processors and provides
reliability services. The new structure is depicted in Figure 1-2.

Figure 1-2.a shows a process graph for a hypothetical application. Figure 1-2.b shows the

CMU/SEI-89-TR-8

ProcessorT

B

Processor 2

•fflE-

Processor3

3ID-^ D —HID F -+-UJE— G

a -- Process Graph with Processor Allocation

i Processor 1

Global
Executive

Local
Executive

ABC

["Processor 2

i

Local
Executive

• v A

t
D i E

Processors

Global
Executive

Local
Executive

H

b -- Actual Communication Patterns

Figure 1-2: The New Durra Runtime Environment

actual communication patterns between these processes through the local executive. There
are two global executives represented in the Figure, one active and one passive as de-
scribed in Section 6.3.1.1.

The remainder of this report begins with a brief description of the Durra language and its
current runtime environment. Readers already familiar with Durra may want to skip ahead

CMU/SEI-89-TR-8

to Chapter 3. Chapter 3 critiques the current Durra runtime environment. Chapter 4 is an
overview of the design for the new Durra runtime environment as presented in Chapters 5
and 6. Chapter 5 considers load balancing enhancements to the Durra runtime environ-
ment. Chapter 6 describes how to make the Durra runtime environment reliable. It begins
with a discussion of implementing the reconfiguration mechanism already in Durra, and con-
cludes with a discussion of adding a degree of fault-tolerance once the reconfiguration
mechanism is in place. Chapter 7 summarizes the report and suggests directions for future
enhancements to the runtime environment.

CMU/SEI-89-TR-8

2. Introduction to Durra
Durra [Barbacci 86, Barbacci 88a] is a language designed to support PMS-level program-
ming. PMS stands for Processor Memory Switch, the name of the highest level in the hier-
archy of digital systems introduced by Bell and Newell in [Bell 71]. An application or PMS-
level program is written in Durra as a set of task descriptions and type declarations that
prescribes a way to manage the resources of a heterogeneous machine network. The appli-
cation describes the tasks to be instantiated and executed as concurrent processes, the
types of data to be exchanged by the processes, and the intermediate queues required to
store the data as they move from producer to consumer processes.

Because tasks are the primary building blocks, we refer to Durra as a task-level description
language. We use the term "description language" rather than "programming language" to
emphasize that a Durra application is not translated into object code in some kind of ex-
ecutable (conventional) "machine language" (the domain of the Instruction Set Processor or
ISP level introduced in [Bell 71]). Instead, a Durra application is a description of the struc-
ture and behavior of a logical machine to be synthesized into resource allocation and
scheduling directives, which are then interpreted by a combination of software, firmware,
and hardware in each of the processors and buffers of a heterogeneous machine (the
domain of PMS). This is the translation process depicted in Figure 2-1.a.

2.1. Task Descriptions

Task descriptions are the building blocks for applications. Task descriptions include the fol-
lowing information (Figure 2-2): (1) its interface to other tasks (ports) and to the scheduler
(signals); (2) its attributes; (3) its functional and timing behavior; and (4) its internal
structure, thereby allowing for hierarchical task descriptions.

2.1.1. Interface Information
The interface information defines the ports of the processes instantiated from the task and
the signals used by these processes to communicate with the scheduler:

ports
inl: in heads;
outl, out2: OUt tails;

signals
stop, start, resume: In,
range_error, format_error: OUt;

A port declaration specifies the direction and type of data moving through the port. An in
port takes input data from a queue; an out port deposits data into a queue. A signal decla-
ration specifies only the direction of the scheduler messages. An In signal is a message
that a process can receive from the scheduler; an out signal is a message that a process
can send to the scheduler; an In out signal is used for both directions of communication.

CMU/SEI-89-TR-8

Status and Task requests
Get/Put data
Test port
Terminate task

U
]=> [Scheduler]=>
Schedule Messages

Conectlvlty Start task
Task names Allocate queue
Transformations Shutdown

a -- Compilation of a PMS-Level Program Graph

^ Durra
Compiler 3 1

Application
Description

Scheduler
"program"

Heterogeneous
Machine

1 1

Library <
Descnpl
(Durra}

V

>f Tas
ions

k Library <
Impleme
(C.Lisp.

)f Tas
static
Ada.e

k
ms
to.)

b -- Developing a Durra Application

Figure 2-1: Scenario

CMU/SEI-89-TR-8

task task-name
ports — Used for communication between a process and a queue

port-declarations

Signals — Used for communication between a process and scheduler
signal-declarations

attributes — Used to specify miscellaneous properties of the task
attribute-value-pairs

behavior — Used to specify task functional and timing behavior
requires predicate
ensures predicate
timing timing expression

Structure — A graph describing the internal structure of the task
process-declarations —Declaration of instances of internal subtasks

bind-declarations — Mapping of internal ports to this task' s ports

queue-declarations — Means of communication between processes

reconfiguration-statements — Dynamic modifications to the structure
end task-name

Figure 2-2: A Template for Task Descriptions

2.1.2. Attribute Information
The attribute information specifies miscellaneous properties of a task. Attributes are a
means of indicating pragmas or hints to the compiler and/or scheduler. In a task descrip-
tion, the developer of the task lists the actual value of a property; in a task selection, the
user of a task lists the desired value of the property. Example attributes include author,
version number, programming language, file name, and processor type:

attributes
author = "jmw";
implementation = "program_name";
Queue_Size = 25;

2.1.3. Behavioral Information
The behavioral information specifies functional and timing properties about the task. The
functional information part of a task description consists of a pre-condition on what is re-
quired to be true of the data coming through the input ports, and a post-condition on what is
guaranteed to be true of the data going out through the output ports. The timing expression
describes the behavior of the task in terms of the operations it performs on its input and
output ports. For additional information about the syntax and semantics of the functional
and timing behavior description, see the Durra reference manual [Barbacci 86].

CMU/SEI-89-TR-8

2.1.4. Structural Information
The structural information defines a process-queue graph (e.g., Figure 2-1.a) and possible
dynamic reconfiguration of the graph. Three kinds of declarations and one kind of statement
can appear as structural information. This is illustrated in Figure 2-3, which shows the Durra
(i.e., textual) version of the example in Figure 2-1.a.

task ALV
ports

inl, in2: In map_database;
in3: In destination;

structure
process

navigator: task navigator
attributes author = "jaw";

end navigator;
road_predictor: task roadjpredictor;
landmark_predictor: task landmark_predictor;

ct_process: task corner_turning;
queue

ql: navigator.out1 > > road_predictor.in2;
q2: navigator.out2 > > landmark_predictor.ini;

ql2 : position_computation.out2> > landmark_predictor.in2;
bind

inl = road_predictor.ini;
in2 = navigator.ini;
in3 = navigator.in2;

end ALV;

Figure 2-3: Structural Information

A process declaration of the form

process_name : task task_selection

creates a process as an instance of the specified task. Since a given task (e.g.,
convolution) might have a number of different implementations that differ along different
dimensions such as algorithm used, code version, performance, processor type, the task
selection in a process declaration specifies the desirable features of a suitable implemen-
tation. The presence of task selections within task descriptions provides direct linguistic
support for hierarchically structured tasks.

A queue declaration of the form

queue_name [queuejsize]: port_name_1 > data_transformation > port_name_2

creates a queue through which data flow from an output port of a process (port_name_1)
into the input port of another process (port_name_2). Data transformations are operations
applied to data coming from a source port before they are delivered to a destination port.

8 CMU/SEI-89-TR-8

A port binding of the form

task_port = process_port

maps a port on an internal process to a port defining the external interface of a compound
task.

A reconfiguration statement of the form

If condition then
remove process-names
process process-declarations
queues queue-declarations

end if;

is a directive to the scheduler. It is used to specify changes in the current structure of the
application (i.e., process-queue graph) and the conditions under which these changes take
effect. Typically, a number of existing processes and queues are replaced by new proc-
esses and queues, which are then connected to the remainder of the original graph. The
reconfiguration predicate is a Boolean expression involving time values, queue sizes, and
other information available to the scheduler at runtime.

2.2. Scenario
We see three distinct phases in the process of developing an application using Durra: the
creation of a library of tasks, the creation of an application using library tasks, and the ex-
ecution of the application. These three phases are illustrated in Figure 2-1.b.

During the first phase, the developer of the application writes descriptions of the data types
(image buffers, map database queries, etc.) and of the tasks (sensor processing, feature
recognition, map database management, etc.).

Type declarations are used to specify the format and properties of the data that will be pro-
duced and consumed by the tasks in the application. As we will see later in this section,
tasks communicate through typed ports; and for each data type in the application, a type
declaration must be written in Durra, compiled, and entered in the library.

Task descriptions are used to specify the properties of a task implementation (a program).
For a given task, there may be many implementations, differing in programming language
(e.g., C or assembly language), processor type (e.g., Motorola 68020 or IBM 1401), perfor-
mance characteristics, or other attributes. As in the case of type declaration, for each imple-
mentation of a task, a task description must be written in Durra, compiled, and entered in the
library. A task description includes specifications of a task implementation's performance
and functionality, the types of data it produces or consumes, the ports it uses to commu-
nicate with other tasks, and other miscellaneous attributes of the implementation.

During the second phase, the user writes an application description. Syntactically, an appli-
cation description is a single task description and could be stored in the library as a new

CMU/SEI-89-TR-8

task. This allows writing of hierarchical application descriptions. When the application de-
scription is compiled, the compiler generates a set of resource allocation and scheduling
commands or instructions to be interpreted by the scheduler.

During the last phase, the scheduler loads the task implementations (i.e., programs cor-
responding to the component tasks) into the processors and issues the appropriate com-
mands to execute the programs.

2.3. Runtime Components
There are three active components in the Durra runtime environment: the application tasks,
the Durra server, and the Durra scheduler. Figure 1-1 shows the relationship among these
components.

After compiling the type declarations, the component task descriptions, and the application
description, as described previously and illustrated in Figure 2-1, the application can be ex-
ecuted by performing the following operations:

1. The component task implementations (Chapter 2.3.3) must be stored in a spe-
cial directory in the appropriate processors. The directory name is known to
the Durra servers and scheduler.

2. An instance of the Durra server (Chapter 2.3.2) must be started in each
processor.

3. The scheduler (Chapter 2.3.1) must be started in one of the processors. The
scheduler receives as an argument the name of the file containing the
scheduler program generated by the compilation of the application description.
This step initiates the execution of the application.

2.3.1. The Scheduler
The scheduler is the part of the Durra runtime system responsible for starting the tasks,
establishing communication links, and monitoring the execution of the application. In addi-
tion, the scheduler implements the predefined tasks (broadcast, merge, and deal) and the
data transformations described in [Barbacci 86]. The scheduler is invoked with the name of
the file containing the scheduler instructions generated by the Durra compiler. A complete
description of the scheduler instructions can be found in [Barbacci 88b].

After these instructions have been read and processed, the scheduler is ready to start the
execution of the application. In the current UNIX implementation, this is done by performing
the following steps:

1. Allocate a UNIX socket for communication with the application tasks. A UNIX
socket is a special intertask communications port defined by the UNIX operat-
ing system.

2. Establish communication with each of the processors running a Durra server
(Chapter 2.3.2).

10 CMU/SEI-89-TR-8

3. For each of the task load instructions, issue to the appropriate server a
run_task remote procedure call (Chapter 2.3.2).

4. Listen in on the UNIX socket allocated in the first step for remote procedure
calls from the application tasks (Chapter 2.3.3).

5. Process the remote procedure calls from the application tasks (Section 2.3.3).

The scheduler waits until all tasks have completed their execution before it, in turn, finishes
its execution.

2.3.2. The Server
The server is responsible for starting tasks on its corresponding processor, as directed by
the scheduler. One instance of the server must be running on each processor that is to
(potentially) execute Durra tasks.

When a server begins execution, it listens in on a predetermined socket for messages from
the scheduler. Once a communication channel is open, the scheduler communicates with
the server using a set of remote procedure calls to initiate task execution (run_task), or to
shutdown or restart the server (shutdown, and restart). Complete details of these remote
procedure calls can be found in [Barbacci 88b]. The server sits in a loop responding to the
requests from the scheduler, executing them as directed.

2.3.3. Application Tasks
The component task implementations making up a Durra application can be written in any
language for which a Durra interface has been provided. As of this writing, there are Durra
interfaces for both C and Ada. The complete interfaces appear in [Barbacci 88b].

When a task is started, the scheduler supplies it with the following information (via a server):
the name of the host on which the scheduler is executing, the UNIX socket on which the
scheduler is listening for communications from the task, a small integer to be used in identi-
fying the task, and an application specific string as specified in the "source" attribute in the
task description. The first three parameters are necessary to establish proper communi-
cation with the scheduler. The source parameter is provided for the convenience of the task
implementation. These parameters are provided to the task by the server, which in turn
obtains them, via the runtask instruction, from the scheduler (See Section 2.3.2).

Application tasks use the interface to communicate with other tasks. From the point of view
of the task implementation, this communication is accomplished via procedure calls, which
return only when the operation is completed. The following remote procedure calls (RPCs)
are provided:

init Opens a connection to the scheduler.

finish Informs the scheduler that the task is terminating.

get_portid Returns a descriptor for the application task to use when referring to a
port.

CMU/SEI-89-TR-8 11

get_typeid Returns a descriptor for the application task to use when referring to a
type.

send_port Sends through an output port of the application task.

get_port Gets data from an input port of the application task.

test_input_port Tests whether data is available on an input port.

test_output_port Tests whether there is room in a queue attached to an output port (e.g.,
whether the process will block if doing a send_port).

Using this collection of scheduler calls, Durra tasks typically would exhibit the following be-
havior:

1. Call the inlt function to establish communication with the scheduler.
2. Call get_portid for each of the task ports (these ports must correspond to the

ports used in the task description).
3. Call get_typeid for each of the task types (these types must correspond to the

data types used in the task description).
4. Call send_port and get_port as necessary to send and receive data.
5. Call finish to break communication with the scheduler.

12 CMU/SEI-89-TR-8

3. Critique of the Present Runtime Environment

There are two main problems with the current implementation of the Durra runtime system
that will be addressed in the new one. The first, load balancing, refers to ensuring that
processing and communication resources are utilized effectively. The second, reliability,
refers to being able to detect and adapt to problems in the execution environment. This
section critiques the current Durra runtime environment with respect to these problems.

3.1. Load Balancing Problems
To effectively use a heterogeneous machine network, processes must be allocated to
processors in such a manner that no processor is overloaded. This would seem to dictate
maximal dispersion of the processes. However, the more dispersed the processes, the
higher the potential inter-process communications load. Minimizing communication load dic-
tates minimal dispersion of the processes. These two criteria are in fundamental conflict so
the goal becomes one of minimizing the total load; applying some balance to processor load
and communication load.

Because Durra is designed for heterogeneous machines, particular processes may only be
allocated to particular subsets of the processors in the configuration as specified by the
processor attribute in the task description. This both simplifies the allocation decision in the
sense that it limits choices, and complicates it in the sense that it limits flexibility of process
assignment.

The present implementation of the runtime environment effectively ignores all of these is-
sues. Although it tries to equalize the count of processes running on each of the proces-
sors, it makes no attempt to minimize load, either processing or communication.

Chapter 5 discusses this problem and how it will be solved in the new Durra runtime envi-
ronment.

3.2. Reliability Problems
As currently implemented, the Durra runtime environment ignores most issues of reliability.
Although it uses a reliable communication protocol (TCP/IP), and is a reasonably robust
piece of software, it provides no reliability functionality either at the system or application
level.

The current Durra runtime environment suffers from two potential reliability problems:

1. There is a single Scheduler for the entire system. A failure of this Scheduler
effectively aborts the entire application.

CMU/SEI-89-TR-8 13

2. Because all communication is routed through the Scheduler, it is a potential
bottleneck. While this is also an issue related to communication load balanc-
ing, the bottleneck could also potentially effect application reliability in terms of
the timeliness of inter-process communication.

In addition the reconfiguration mechanism, a major method of achieving reliability has not
been implemented in the current Durra runtime environment.

Chapter 6 discusses these issues in detail and presents the approach taken to achieve
reliability in the new Durra runtime environment.

14 CMU/SEI-89-TR-8

4. Preview
There are two major areas of improvement in the design of the new Durra runtime environ-
ment, load balancing enhancements and reliability enhancements. By necessity, the mate-
rial is complex. The purpose of this Chapter is to guide the reader through the material
discussed in detail in Chapters 5 and 6.

< V
V % v^

Load Balancing
• Processing Load
• Communication Load

• System Bottlenecks

•Cost

Reliability
• Reconfiguration:

- Keeping the Graph Connected

- Insufficient Trigger Conditions

- Safely Relocating a Process

• Fault-Tolerance

- Single Point Failures

- Detecting Failure

- Failure Recovery

- Reliable Communication

Section

• 5.2,5.4
• 5.2-3

• 5.3
• •

•

5.5

6.3.2
• • 6.3.3
•

•

• 6.3.5

6.4.1
• • 6.4.1-2

• 6.4.1-2
• 6.4.2

Figure 4-1: Issues in Performance and Reliability in Durra

Figure 4-1 shows the issues that have been considered in designing the new Durra runtime
environment, and shows the specific sections of the report which discuss them.

CMU/SEI-89-TR-8 15

4.1. Load Balancing Enhancements
Load balancing enhancements involve improving processor loads and communication loads.
Section 5.2 discusses why existing algorithms for improving processor loads will not work
without modification. Section 5.4 discusses the modifications necessary to address these
problems. Removing the communication bottleneck represented by the single scheduler is
discussed in Section 5.3. This is accomplished by replacing the single scheduler with a
local executive executing on each processor. Each local executive will take responsibility
for implementing some of the queues in the application and will only handle communication
through those queues. Finally, a brief discussion of the costs and benefits of choosing a
common protocol like TCP is discussed in Section 5.5.

4.2. Reliability Enhancements

Sections 6.2 and 6.3 discuss the proposed design for reliability in the Durra runtime environ-
ment.

Reconfiguration in Durra provides the application designer with a means of changing the
way processes are interconnected at runtime. This may involve removing some processes
and queues and instantiating new ones. The intent of this part of the language is to allow
the application to react to events or change modes of operation. Reconfiguration may also
be necessary as the result of a processor failure. In this case, the Durra runtime environ-
ment is responsible for initiating it.

Section 6.2.1 describes the reconfiguration statement in Durra and gives an example of its
use. Section 6.2.2 discusses problems with the present model of reconfiguration, including
the potential for dangling queues, and the highly restricted set of conditions which can trig-
ger a reconfiguration.

Section 6.2.3 describes the global executive a new component of the Durra runtime which
has responsibility for configuration management including reconfiguration. The global ex-
ecutive runs the load balancing algorithm, as already discussed in Section 5.4, and informs
the local executives of which processes to run and which queues to implement. Section
6.2.5 discusses the problem of safely migrating a process, without losing state, as a part of
a reconfiguration. The method used is similar to that in Conic [Kramer 88] involving making
processes quiescent before a reconfiguration. However, given Durra's black-box view of
application processes, the Conic model cannot be used intact. Application processes must
cooperate at runtime and provide the information necessary to carry out a safe reconfigura-
tion. Finally, Section 6.2.6 describes how the global executive carries out a reconfiguration.

The present implementation of the Durra runtime environment pays little attention to
reliability. In fact, the present Scheduler represents a single point of failure in the Durra
system. Section 6.3 extends the design of the new Durra runtime environment to provide a
higher level of reliability.

16 CMU/SEI-89-TR-8

Fault-tolerance in the proposed Durra runtime environment is achieved via replication of the
global executive. Section 6.3.1.1 introduces this idea and describes the active and passive
global executives. There is one active global executive; all the rest are passive. The active
global executive keeps the passive updated with configuration information. The active and
the passive global executives detect processor failure by repeated query of the local execu-
tives as described in Section 6.3.1.2. A fail-stop model {Schlichting 83] of failure is as-
sumed. In the event that the active global executive fails, one of the passive global execu-
tives becomes active using an election protocol similar to that described in [Kim 88]. In the
event that a passive global executive fails, a new passive global executive is started on a
functioning processor. In either event a reconfiguration as described in Section 6.2.4 is per-
formed.

Application level reliability, discussed in detail in Section 6.3.2 is achieved via several
mechanisms including an extended reconfiguration statement as described in Section 6.2.3.
Error detection is accomplished by implementation of n-way voting in the application. Also
provided in the new Durra runtime environment is an atomic broadcast facility which
guarantees that if any process receives a message they all do. Aborts are dealt with by the
Durra runtime environment.

4.3. Other Possible Enhancements

This report does not deal with processor restart. Once a processor has failed it is presumed
to be gone forever. Thus transient faults and therefore the problems of orphans and
partitions [Liskov 87] are not discussed. These are important topics and will be considered
in a later report.

CMU/SEI-89-TR-8 17

18 CMUSPI-89-TR-8

5. Load Balancing Enhancements
This chapter of the report discusses adding true load balancing to the Durra runtime envi-
ronment. It begins with a review of the literature, and continues with a discussion of task
and communication load balancing techniques to be utilized.

5.1. Literature Review

The literature on load balancing can be roughly divided into two categories. The first cate-
gory is static load balancing, which refers to making an assignment of processes to proces-
sors once, without considering the possibility of migrating tasks as processor loading char-
acteristics change. Static load balancing also ignores the potential for new processes to be
created during the execution of the application.

The second category is dynamic load balancing, which continually considers processor
loading and migrates processes to keep the application running efficiently. The Durra proc-
ess structure is very static. New processes start and old processes terminate only as the
result of a reconfiguration (Section 6.2.1), making dynamic load balancing not applicable to
the Durra runtime environment.

Chu et. al [Chu 80] present an overview of the problems inherent in load balancing on distri-
buted systems. The obvious solution of splitting the processor load evenly among the
processors does not result in the maximal usage of resources because of the relatively
higher cost of inter-process communication when two processes run on different processors.
Chu assumes that the cost of inter-process communication when the processes are co-
resident is significantly less than when they are not.

As a rule assigning two processes that do not communicate with each other to different
processors will typically speed up the overall computation. Assigning two processes that
communicate heavily to different processors will slow the application down.

The first of three strategies for load balancing that Chu considers is a graph theoretic ap-
proach. In this approach, the nodes represent processes and the weighted arcs represent
the communication behavior. The higher the weight on an arc, the more the communication
cost between any two processes if they are not co-resident. The arc weight is zero if the
processes are assigned to the same processor. There is also a processing cost associated
with each processor/process pair, allowing for the possibility that a particular process will
execute more efficiently on a particular processor. Then the cost of any particular task as-
signment is computed by summing up the arc weights along with the processing costs. The
cost is minimized by performing a max-flow, min-cut algorithm on the graph. The graph
theoretic approach is straightforward, but rapidly becomes computationally NP-hard as the
number of processors increases beyond two. Furthermore it assumes infinite resources on
each processor, and extending it to account for resource limits results in an NP-complete
solution.

CMU/SEI-89-TR-8 19

The second strategy considered involves integer 0-1 programming. This solves the
resource constraint problem but also is computationally expensive and would probably re-
quire off-line computation for any particular application.

The final strategy presented involves the use of heuristics. Assuming homogeneous, fully
connocted pro*- .ors, a clustering algorithm is proposed. The algorithm locates the two
processes which will reduce inter-process communication cost the most by being assigned
to the same processor. If the resources available allow the assignment to be made, that
process pair is "fused" and considered as a single process for the next iteration of the algo-
rithm. The system is considered load balanced if the loading of the processors is within a
certain tolerance. While the heuristic strategy does not result in an optimal allocation of
processes to processors, it does a reasonable job and it is computationally tractable.

Chou and Abraham [Chou 82] consider seven characteristics of processes in a distributed
system. In addition to execution time and inter-process communication time, these charac-
teristics include process failure probabilities, process start-up costs, etc. They model the
execution of a set of processes in a distributed system using a semi-Markov process with
rewards. A state in the model represents the execution of a process on a particular proces-
sor. The reward structure is used to model the time behavior of a program module. A policy
iteration algorithm is applied to determine the optimal (reward maximizing) process-
processor assignment. The resulting algorithm is more general than the graph theoretic
approach previously described in that it can be used for an N-processor system, and that it
considers the effects of system reliability on pc ribrmance.

Lo [Lo 87] develops another heuristic which o' ;o makes use of the graph-theoretic approach
described above. Choose a single processor in the distributed system, and consider all of
the other processors to be another single processor. Perform the two processor max-flow,
min-cut algorithm which will result in some processes being assigned to the chosen proces-
sor. Do this for each processor in the system. If all processes have been assigned to
processors at completion of this part of the heuristic, the task assignment is complete.
Otherwise, other heuristics are applied to complete the assignment.

Lo points out that all of the approaches that make use of total execution and communication
costs make no explicit attempt to fully utilize the processors available, and often end up
leaving some of them idle. To achieve higher degrees of parallelism, Lo introduces inter-
process interference costs. Two CPU bound processes executing on the same processor
will have high interference costs. A CPU bound task and an I/O bound task executing on
the same processor might have a low interference cost. Interference cost, then, serves as a
force of repulsion between processes to counterbalance the force of attraction due to high
communication costs. The heuristic already presented, with minor modification, will also
work when interference costs are included.

20 CMU/SEI-89-TR-8

5.2. The Load Balancing Difficulty in Durra

The initial implementation of the Durra runtime environment routes all inter-process commu-
nication through a centralized scheduler. This means that there is no way to optimize the
inter-process communication costs. With the exception of those tasks that happen to be
allocated to the same processor as the scheduler, the communication costs will be high.
Thus to better utilize resources in Durra, inter-process communication must be freed from
going through a centralized switch.

Even de-centralizing inter-process communication will not allow any of the heuristics de-
scribed in the literature to be directly applicable. In Durra the application designer specifies
the set of processors a process is allowed to execute on. These sets are in general not
disjoint as illustrated by Figure 5-1.

VAX

UVAX

I («)
(C j VAX1

C •) f D | VAX2

Figure 5-1: Overlapping Processor Classes

An application designer can specify that a process must run on processor A, that it can run
on any MicroVAX (UVAX), that it can run on any VAX, or that it can run on VAX class one
(VAX1) or VAX class two (VAX2). Since the heuristics discussed above assume a homoge-
neous set of processors, or at least a disjoint set of processor classes, they will have to be
modified to deal with the Durra environment.

5.3. De-Centralizing Communication

To allow for more efficient inter-process communication, and to remove the bottleneck
represented by the present scheduler. We propose to replace the centralized scheduler
with a local executive which runs on all of the processors in the Durra environment. The
local executive also replaces the Server on each of the machines. The local executive will
have the following responsibilities:

CMU/SEI-89-TR-8 21

• process start-up and termination. The local executive will be responsible for
loading application processes on the local processor and seeing that they are
started with the correct parameters. (The present Server function.)

• queue Implementation. The local executive will implement all queues associ-
ated with the output ports of processes running on the local processor. (A por-
tion of the current Scheduler functionality.)

• buffer task implementation. Broadcast and Deal buffer tasks will be imple-
mented by the local executive on the processor where the data to be broadcast
is originating. Merge buffer tasks will be implemented by the local executive on
the processor where the merged data is to be used.

As an optimization, where possible (e.g., in UNIX based systems) a simplified (but reliable)
communication protocol will be utilized for communication between a process and the local
executive executing on the same processor. See Section 5.5.

The remainder of the functionality of the present scheduler is assumed by a new component
of the Durra runtime environment, called the global executive. The global executive will be
discussed extensively in Chapter 6.

An effect of this change is to make it reasonable to consider inter-process communication
costs when allocating processes to processors.

5.4. Task Allocation

For task allocation in Durra, the heuristic described by Lo, with some modification, is appro-
priate. For this method to work in the Durra environment, the set of processors a process
may execute on must be taken into account. This is accomplished by setting the cost of a
process executing on any other processor to be infinity. Thus the heuristic will prefer to
allocate those processes to the appropriate processor. The global executive will have the
responsibility for carrying out this heuristic.

For the heuristic to work effectively, the inter-process communication cost, and the process
interference costs must also be taken into account. This can be inferred from the behavior
specification of the task descriptions when available (Section 2.1.3). In the event the appli-
cation designer has not written behavior parts, a constant will be substituted for the inter-
process communication cost if the processes are allocated to different processors.
Similarly, a constant will be substituted for the process interference cost if the processes are
allocated to the same processor. Tuning these constants will require some experimentation.

22 CMU/SEI-89 TR-8

5.5. Cost of Communication

Implementing the Durra runtime environment on a heterogeneous machine network requires
a common communication protocol across all of the processors of the network. Since the
project was not concerned with inventing new protocols we have chosen to use TCP. This
provides us with the major benefit of wide availability, which simplifies porting of the Durra
runtime environment to additional host systems.

The price we pay for this simplification is one of performance. Although implementation of
the TCP protocols have been optimized in some environments there are still inefficiencies
caused by the protocols generality. A custom designed protocol for Durra could reduce
these inefficiencies at the cost of making it harder to move the runtime environment from
system to system. There is nothing in the Durra runtime environment design that precludes
a change in protocol at some future time.

CMU/SEI-89-TR-8 23

24 CMU/SEI-89-TR-8

6. Reliability Enhancements

That a single Scheduler represents a single point of failure and is a potential communication
bottleneck was effectively addressed in the previous section. But, there are two other
reliability issues to be considered, reconfiguration and fault-tolerance. These issues will be
discussed in the following sections.

6.1. Literature Review

For a system to be reliable it must be able to:

• avoid errors where possible,
• detect errors when they occur,
• mask errors when possible, and
• recover from errors that cannot be masked.

A major means of achieving reliability in distributed systems is via replication of program
modules. Error detection and reliable communication between program modules is neces-
sary for replication to be effective. Finally, dynamic system reconfiguration is a common
means of recovering from errors that cannot be masked. This section considers some of the
existing work in these areas, looking first at replicated systems, and then at reliable commu-
nication protocols.

6.1.1. Replicated Systems
Wensley et al [Wensley 78] describe the SIFT architecture. The SIFT computer is designed
to operate fly-by-wire commercial aircraft and as such is ultra-reliable. A replicated task
structure is used to achieve this, with n-way voting used to detect and mask errors. A sum-
mary of errors is periodically reported to a replicated global executive. The global execu-
tives use these error reports to make reconfiguration decisions. When a majority of the
global executives decide on a reconfiguration, a local reconfiguration task, running on all
processors (but not replicated) carries out the reconfiguration. The SIFT computational
model requires all tasks to broadcast important state at the end of each iteration, and to
retrieve it at the start of the next iteration. Thus restart problems are minimized. Weinstock
and Green [Weinstock 78] describe the implementation of reconfiguration in the SIFT sys-
tem in more detail.

Seifert [Seifert 80] discusses reconfiguration in two types of systems, those with structural
redundancy (hot-standby), and those with functional redundancy. For hot-standby to work
properly, the state of the back-up process must remain consistent with the state of the pri-
mary process. Upon failure of a primary process, the system activates the passive hot-
standby process and attempts to repair the failed process. A repaired process becomes a
new hot-standby process, ready for a subsequent failure. In a functionally redundant sys-
tem, failure of a process causes the other already executing processes to assume the func-
tionality of the failed process, possibly at the cost of some degradation in overall system

CMU/SEI-89-TR-8 25

performance. Once the failed process is repaired, it is re-integrated into the system and
re-assumes its old responsibilities.

Cristian [Cristian 82] compares programmed exception handling to default exception han-
dling. The former deals with errors anticipated by the programmer in advance. In this case
the programmer has inserted post-conditions in the program to detect and recover from an
error. The later deals with unanticipated errors. The recovery block mechanism [Anderson
76], is used to deal with them.

Cooper [Cooper 85a] builds a reliable distributed system around replicas of modules which
he calls a troupe. Individual members of a troupe do not communicate among themselves,
and in fact don't even know of each others existence. A replicated procedure call mecha-
nism, based on remote procedure call, deals with the many-to-many communication pattern
between troupes. A distributed system built around troupes is reliable because the system
will continue to function properly as long as one member of each troupe remains opera-
tional. A mechanism is provided for re-populating a troupe decimated by member failure.

Zicari [Zicari 86] proposes a system structure similar to that adopted by Durra. An allocation
manager provides a set of "programming in the large" operations through which the user
programmer can control the configuration of the system. "Programming in the small" opera-
tions, which correspond to programming the "virtual nodes" in the system are kept separate.
The allocation manager allows virtual nodes to be migrated from one processor to another,
complete with execution state information.

Kramer and Magee [Kramer 88] discuss the reconfiguration mechanism for the Conic sys-
tem running at Imperial College. They also separate application concerns from those at the
configuration level. They define the concept of a quiescent node. A node is said to be
quiescent if it is not currently engaged in a transaction, will not initiate a new transaction,
and if no other node will initiate a transaction that requires a response from this node. A
quiescent node can pass consistent up-to-date information in the event of a reconfiguration.
A passive node is one which will not initiate any transactions, but which will respond to
transactions from other nodes. Both are desirable states for reconfiguration. The paper
shows that to achieve the quiescent state in some target node, the configuration manager
must first make it passive and also create a region of passive nodes around it. Such a node
can be removed from the configuration safely. Unlinking (or linking) a node from the config-
uration requires that the node from which the connection is directed be in the passive state.

In many replicated systems, one process must be more equal than the others. For instance,
all processes need to share consistent view of a new configuration. One means of achiev-
ing this is to require one of the processes collect the information, develop the configuration,
and broadcast it to the other processes. The problem then becomes one of deciding which
of the equal processes is going to take on this responsibility and become the "master." Kim
and Belford [Kim 88] describe an election protocol which solves this problem. The essential
idea is for each process to have a different election priority. When a system status change
is detected because of a failure or recovery, an election is held wherein all processes an-

26 CMU/SEI-89-TR-8

nounce their candidacy. A process seeing a candidacy from a process with higher priority
abandons its candidacy and votes for the other. A two-phased commit protocol is used to
ensure that all of the processes have made the same decision, even in the case of lost
messages.

6.1.2. Reliable Communication Protocols
Chang and Maxemchuk [Chang 84] describe a family of reliable protocols for an unreliable
broadcast network which guarantees that all of the broadcast messages are received by all
operational processes in a broadcast group. It also guarantees that all processes receive
messages in the same order, a feature which simplifies distributed algorithms. The different
protocols trade-off the number of control messages per broadcast message, the internal
storage required, and the resiliency of the system.

Cooper [Cooper 85a], already discussed above, describes replicated procedure calls which
allow troupes to communicate with troupes in a reliable many-to-many fashion. When a
client troupe makes a replicated procedure call to a server troupe, each member of the ser-
ver troupe performs the requested procedure exactly once, and each member of the client
troupe receives all the results. Performance can suffer if a server troupe member must
await calls from all of the client troupe members before execution. This requirement is
relaxed by allowing the server to begin operation, but to check that all requests are finally
received. Similarly, a client troupe should not have to await the return of values from all
members of the server troupe, but should be allowed to proceed as long as the return
values are all eventually received. In [Cooper 85b] he gives a detailed implementation of
replicated procedure calls.

Lin and Gannon [Lin 85] describe an atomic remote procedure call mechanism. Atomicity is
a property encompassing two concepts: totality and serializability. If an atomic action com-
pletes successfully, then the action requested has taken place everywhere. If the action
fails anywhere, it takes place nowhere. This is totality. Serializability requires that the ef-
fects of executing several operations concurrently be equivalent to the effects if they are
executed in some sequential order. Because remote procedures can call other remote pro-
cedures, committing the operation is quite complex and may require multiple steps. For
cases where atomicity is not needed, a standard remote procedure call mechanism is pro-
vided.

Birman and Joseph [Birman 87] present three communications primitives and their imple-
mentation as used in the ISIS system. These are group broadcast, atomic broadcast, and
causal broadcast. All of these broadcast mechanisms are atomic, but they differ in other
important ways. Group broadcast is intended to inform group members of changes in the
global state of the group (e.g., a process joins the group, fails, etc.) Group broadcast has
two additional properties of interest. First, the order in which a group broadcast is delivered
relative to the delivery of all other broadcast messages (of any type) is identical at all over-
lapping destinations. Second, if the group broadcast is a failure message (e.g., one that is
generated because of a process failure) it is required to be delivered as the list message

CMU/SEI-89-TR-8 27

from that process. Once a process has failed, it will never be heard from again. Because of
these properties, a process receiving a group broadcast message can act on that informa-
tion without further agreement from other processes.

Atomic broadcast is provided for applications which require that the order in which data is
received at a destination is same as that at all other destinations. The causal broadcast
primitive is used to enforce a delivery ordering at all destinations when desired, but with
minimal synchronization. It differs from atomic broadcast in that it requires a particular,
predetermined ordering of delivery. These primitives can be used to implement the repli-
cated procedure call of Cooper [Cooper 85a]. The use of the primitives to implement fault-
tolerant systems (particularly ISIS) is also described.

6.2. Reconfiguration

Durra provides the application designer with a means of reacting to external stimuli (e.g.,
sunset or time-of-day). By making use of the reconfiguration mechanism the graph of proc-
ess interconnections may be modified, by removing old processes and adding new ones, or
merely by changing the way in which current processes are connected together through
queues. The reconfiguration mechanism also allows an application to become more reliable
by giving it a mechanism for reacting to errors detected during its operation.

The following sections consider the implementation of reconfiguration in the Durra runtime
environment. First comes a discussion of the various kinds of reconfiguration that Durra
must be prepared to handle. A design for a Global Executive, in charge of configuration
management, is presented, followed by a discussion of the difficulties in accomplishing
reconfiguration.

6.2.1. Reconfiguration in Durra
The Durra language includes a mechanism for reconfiguration that allows the user to specify
both when to reconfigure and how to reconfigure. Figure 6-1 is an example of a recon-
figuration statement in Durra.

if Current_Time >= 6:00:00 local and
Current_Time < 18:00:00 local

then
remove

p_sonar;
process

p_vision: task vision attributes processor = warp;
queues

q_vision: p_deal.out3 > > p_vision.ini;
q_obstacles: p_vision.outl > > p_merge.in3;

end if;

Figure 6-1: A Sample Reconfiguration Statement

This example specifies that during the time between 6 am and 6 pm, a sonar process

28 CMU/SEI-89-TR-8

(p_sonar) is to be removed from the application and a vision process (p_vision) is to be
added. It also specifies how the new process is to be "hooked in" to the application.

In general there are three ways a reconfiguration can occur in Durra.

1. The application can require a reconfiguration as a part of its normal opera-
tions. The example above is an instance of this form of reconfiguration.

2. An external operator can direct the reconfiguration of the application in re-
sponse to some external events. For instance it may be necessary to take
down a processor for preventive maintenance without shutting down the appli-
cation. This would require reconfiguring the application to stop using that
processor.

3. A system failure can cause a reconfiguration.

In the first two cases Durra has some control over the timing of the reconfiguration, giving
time to accomplish it smoothly. Reconfiguration in the third case is unpredictable and can-
not be accomplished as smoothly.

6.2.2. Problems with the Durra Reconfiguration Statement
In one important way reconfiguration due to system failure can be simpler to deal with than
the other two cases. If a processor fails, the graph of the configuration does not have to
change, merely the allocation of processes to processors. On the other hand, the appli-
cation designer may design in a graceful degradation of services in the event of a processor
failure, and this might require an entirely different configuration. In this and the other two
types of reconfiguration, there is a potential for the graph to become unconnected, with dan-
gling queues being left around.

The Durra compiler checks that the graph will not become unconnected in the case in which
the application designer has specified a reconfiguration statement. However, this checking
is done in reference to the initial configuration, and subsequent reconfigurations may still
cause an unconnected graph. It is a runtime error for the graph to be unconnected.

The present reconfiguration statement in Durra is triggered by a highly restricted set of con-
ditions all involving time or the number of elements in a queue. Clearly this is not sufficient
flexibility for being able to specify the complete range of reconfiguration conditions listed in
the previous section.

6.2.3. The Global Executive
The global executive is a part of the Durra runtime environment responsible for Durra config-
uration and reconfiguration. In normal operation the global executive, functions as follows:

• Establish Connections: Connections are established with each of the local ex-
ecutives in the configuration. Once a connection is opened, each local execu-
tive returns the number of a socket on which it will listen for communication
from application processes.

CMU/SEI-89-TR-8 29

• Build Graph: After reading the interpretive instructions generated by the Durra
compiler for the application, a graph representation of the configuration is built.

• Allocate Processes: The task allocation algorithm discussed in Section 5.4 is
employed to determine an initial assignment of processes to processors.

• Initialize the Local Executives: Each local executive is provided the following
information:

• A list of processes to execute on its processor.
• Descriptive information regarding the queues for which it is responsible,

including process and port information. If a queue overflow condition is
used in a reconfiguration statement, the local executive is given that in-
formation so that it may report the occurrence of the overflow to the
global executive.

• Process Application Requests and Reconfigurations: Having informed the
local executives of their duties, the global executive awaits messages from the
application processes (via the local executive) and reconfiguration events.

The local executives must be capable of executing a set of remote procedure calls to estab-
lish a configuration. The philosophy here is that a local executive should only be given the
knowledge that it needs in order to do its job. This minimizes the information that must be
updated in the event of a subsequent reconfiguration. The following remote procedure calls,
issued by the global executive accomplish the transfer of configuration information to a par-
ticular local executive. They closely parallel the instructions in the .SCHED file generated by
the Durra compiler.

create_buff ertaskTells the local executive of the existence of a buffer task. A local execu-
tive only needs to know of the existence of a buffer task that will be
implemented by that local executive.

create_attribute Is used to inform the local executive of attributes associated with a proc-
ess. These attributes may include: the name of the file that implements
the process, the mode of a buffer task, or the window geometry for the
process to use if running under X windows. A local executive only
needs to know of the attributes of a process that is executing on, or has
a port connected to a queue implemented on the local processor.

create_port Tells the local executive of the existence of a port for a particular proc-
ess. A local executive is informed of a port when it implements a queue
to which that port is attached.

create_queue Tells the local executive to implement a particular queue (but not what
ports to connect to the queue, see attach_port below).

attach_port Tells the local executive to attach a port to a queue.

create_size_type Tells the local executive of the existence of a simple type.

create_array_type Tells the local executive of the existence of an array type.

create_unlon_typeTells the local executive of the existence of an union type.

commitconfiguration
Tells the local executive to make the new configuration become effec-
tive.

30 CMU/SEI-89-TR-8

abort_configuration
Tells the local executive to abort the new configuration and remain with
the current one.

The remote procedure calls currently implemented by the Scheduler and issued by the ap-
plication processes will be implemented by the local executive, with the exception of
get_portid and get_typeid which are implemented by the global executive. When the local
executive receives one of these calls from a application process it forwards it to the global
executive for processing and then forwards the results back to the application process.
Get_portid will be modified to return a host name, and a socket number for communication
to that port, in addition to the information already returned. Get_typeid will return the same
values as before.

The local executives and the global executive need to remain in communication with each
other, to facilitate the reconfiguration process. A new remote procedure call. raise_signal is
used by an application process to send a signal to the global executive (via the local
executive). The conditional part of the Durra reconfiguration statement is modified to in-
clude the pre-defined boolean function:

signal(process,signal number)

which is true whenever the specified process executes a raise_slgnal(slgnal_number).
Note that Durra places no semantics upon a particular signal_number. That is the responsi-
bility of the application developer.

6.2.4. How the New Configuration Is Determined
Once the global executive determines that a reconfiguration is appropriate it performs the
following analysis:

1. It determines which processes are to be removed from the application.
2. It determines which processes are to be added to the application. A migrating

process is just a special case of these two steps.
3. It determines on which processor the new or migrating processes will execute.

This is accomplished by running the max-flow, min-cut algorithm again, but
locking existing, non-migrating processes on their original processors.

4. It determines which of the queues involved in step 1 are to be deleted, and
which can be reconnected. A queue is deleted if both its input and output
processes are deleted from the application. It is also deleted if the local ex-
ecutive which implements it terminates execution (as either the cause of, or
the result of a reconfiguration.)

5. It determines which queues must be newly created, and which local executive
is responsible for implementing the queue.

At this point the global executive has all of the information necessary to perform the recon-
figuration.

CMU/SEI-89-TR-8 31

6.2.5. When Is It Safe to Reconfigure?
The major problem with reconfiguration is preserving the state of the application. If a proc-
esses is migrated at the wrong moment it is easy to lose important state information. The
Conic approach of making processes quiescent before reconfiguring is that taken here. A
process is quiescent if it is not currently engaged in a transaction, will not initiate a new
transaction, and if no other process will initiate a transaction that requires a response from
this process. The problem is that in Durra, because processes are treated as black boxes,
there is currently no reliable way of determining when a process is quiescent, unless the
process itself notifies the runtime system.

Although the global executive can ask the local executives to prevent a process targeted for
migration from receiving data from other processes, this does not completely solve the prob-
lem. First, if the targeted process does not do many (or any) get_ports it will never block
awaiting input, and will never be deemed quiescent. More importantly, a transaction be-
tween two processes may consist of multiple get_ports and send_ports. Thus, blocking by
itself is not a reliable means of telling when a process is quiescent. The process must make
this explicit.

To facilitate this, an additional remote procedure call, safe is provided for the application
process. This call says that it is safe for the process to be migrated instead of returning
from the remote procedure call. This method of determining when it is safe to reconfigure
depends on the cooperation of the application programmer. Without that cooperation, it will
be impossible to reconfigure a Durra application safely.

6.2.6. The Reconfiguration Process
Given the above, to accomplish a reconfiguration, the global executive issues the following
remote procedure calls for execution by the local executives:

quiesce Causes the local executive to make a process quiescent by not return-
ing from a safe remote procedure call.

Is_qulescent Allows the global executive to determine if a process has successfully
been made quiescent by a local executive.

resume Causes the local executive to unblock a quiescent process.

remove_process Causes the local executive to close all of a processes connections and
to terminate its execution.

unattach_port Causes a local executive to disconnect a port from a queue.

removequeue Causes the local executive to delete a queue.
Once the appropriate processes and queues have been removed from the configuration, the
create_buffer_task, create_port, create_queue, create_attribute, and attach_port
remote procedure calls defined in Section 6.2.3 are used to build the new configuration.
The commitconfiguration remote procedure call causes the new configuration to become
effective.

To help the application programmer, when a process is restarted it is informed of whether it

32 CMU/SEI-89-TR-8

is being run for the first time (e.g., at application start-up), is being restarted as a result of a
controlled reconfiguration (e.g., the application or operator caused it to happen, and the
process was made quiescent before reconfiguration), or is being restarted as the result of a
system failure (e.g., the process was not made quiescent before reconfiguration).

6.3. Adding Fault-Tolerance
In order to become more reliable, the Durra runtime environment must be able to deal with
errors internal to itself. This would involve, for example, starting up new Local Executives or
Global Executives in the event of a failure, and the consequent restarting of application
processes. Durra should also provide a mechanism to make it easier for an application
designer to incorporate fault-tolerance directly into the application.

The following sections consider the addition of fault-tolerance to both the Durra runtime en-
vironment, and the applications running under it.

6.3.1. Durra Level Fault-Tolerance
In what follows, it is assumed that Durra applications and the runtime environment execute
on fail-stop processors [Schlichting 83]. A fail-stop processor is one that halts on error in-
stead of allowing erroneous computations to proceed. To assume otherwise would require
Byzantine agreement [Pease 80, Lamport 82] among the processes at a severe perfor-
mance penalty. In practice, Byzantine errors do not appear to occur frequently enough to
warrant paying this penalty.

Fault-tolerance in the Durra runtime environment is achieved via replication of the global
executive.

6.3.1.1. Initializing the Global Executives
A single global executive is started by the user with a parameter specifying the degree of
replication desired in the global executive.

A global executive begins execution as described in Section 6.2.3 with the changes (in
italics):

• Establish Connections: Connections are established with each of the local
executives in the configuration. Once a connection is opened, each local ex-
ecutive returns the number of a socket on which it will listen for communication
from application processes.

• Start Replica Global Executives: The running global executive decides on
which processors to run the replica global executives, and asks local executives
on those processors to start them. These global executives are started in a
passive mode. The original global executive is in active mode.

• Establish Connections: The passive global executives establish connection
with the active global executive and the local executives.

CMU/SEI-89-TR-8 33

• Build Graph: The active global executive reads the interpretive instructions
generated by the Durra compiler for the application and sends them, one at a
time, to the other global executives. An atomic remote procedure call mecha-
nism, similar to Lin's [Lin 85] is utilized to ensure that all global executives end
up with the same graph representation of the configuration.

• Allocate Processors: The task allocation algorithm discussed in Section 5.4 is
employed by each of the global executives to determine an initial assignment of
processes to processors.

• Initialize the Local Executives: Each local executive is provided (by the ac-
tive global executive) the following information:

• A list of processes to execute on its processor.
• Descriptive information regarding the queues for which it is responsible,

including process and port information. If a queue size is used in a
reconfiguration statement, the local executive is given that information so
that it may report the occurrence of the event to the active global execu-
tive.

• Process Application Requests and Reconfigurations: Having informed the
local executives of their duties, the active global executive awaits messages
from the application processes (via the local executive) and reconfiguration
events.

6.3.1.2. Detecting Failure
Detection of a processor failure is accomplished by having the active global executive probe
each of the local executives if there has been no communication activity from that local ex-
ecutive in a specified amount of time. The appropriate frequency of probing is a parameter
that will be determined empirically. A failure of the active global executive is determined by
having each of the passive global executives probe the local executive of the processor on
which the active global executive is running (see Section 6.3.1.3.).

To accomplish the probe, a processor status remote procedure call is defined on each of
the local executives in the configuration.

processor_status(time_out)
Returns a zero if the local executive has not responded within the period
of time indicated by the "time_out". Otherwise returns one.

If the local executive on a processor does not respond within the required period, the
processor is presumed to have failed.

6.3.1.3. Recovering From a Failure
In order to recover from a failed processor, there are three cases to consider:

1. The failed processor was not running a global executive.

2. The failed processor was running a passive global executive.

3. The failed processor was running the active global executive.

In the first case, the active global executive informs the passive global executives of a
processor failure, utilizing the atomic remote procedure call mechanism to ensure that they

34 CMU/SEI-89-TR-8

all receive the same information. Then all of the global executives perform the reconfigura-
tion process described in Sections 6.2.4 through 6.2.6. Of course, only the active global
executive actually communicates information to the local executives.

In the case in which a passive global executive was running on the failed processor, before
doing the above, the active global executive will select a new processor to run a replace-
ment passive global executive, have the local executive start its execution, and initialize it.

In the case in which the active global executive ceases to operate, one of the passive global
executives must become active before doing any of the above. The distributed election
protocol of Kim and Belford [Kim 88] is utilized to select one of the passive global executives
and make it the active global executive.

6.3.2. Application Level Fault-Tolerance
Application level fault-tolerance is left to the application developer. However, the Durra run-
time environment will provide mechanisms to make the problem of building fault-tolerant ap-
plications easier.

The first of these, the ability to respond to errors by triggering a reconfiguration using the
raise signal remote procedure call, has already been discussed in Section 6.2.3. But, in
order for the application to trigger a reconfiguration, it must be aware that an error occurred.
One way of achieving error detection is via replicated application processes and n-way
voting. The application designer can specify this replication when writing task descriptions
and easily implement n-way voting of the results as shown in Figure 6-2.

To make programming applications with replicated tasks easier, an atomic mode is added to
the broadcast buffer task. If any destination receives the broadcasted data, then all destina-
tions receive the data. In the event of a failure the reconfiguration mechanism is triggered
and the broadcast is retried.

CMU/SEI-89-TR-8 35

task a;
ports

out1:out byte;
attributes

processor = vax;
implementation =

end a;
•a_task";

task three_way;
ports

in1, in2, in3:byte;
attributes

processor = vax;
implementation = "three_task";

end three_way;

task main;
structure

process p1: task a;
process p2: task a;
process p3: task a;
process v: task three_way;

queues
q1: pl.outl » v.in1;
q2: p2.out1 » v.in2;
q3: p3.out1 » v.in3;

end main;

Figure 6-2: Implementation of N-Way Voting

36 CMU/SEI-89-TR-8

7. Summary
This report has presented a proposed design for a new Durra runtime environment. The key
feature of the new design is that it provides for both performance and reliability enhance-
ments.

Performance enhancements are achieved in two manners. First the potential communica-
tion bottleneck represented by the Scheduler in the original Durra runtime environment is
avoided by introduction of the local executive. The local executive executes on each
processor and only handles a subset of the communication load. In addition to communi-
cation, the local executives are responsible local buffer task and queue management, some
of the functionality of the current Scheduler and Server.

Configuration management is the second area of performance enhancement in the new
Durra runtime environment. A new component, the global executive, assumes this respon-
sibility. It uses a modified version of load balancing algorithms proposed by Lo [Lo 87] to
assign processes to processors. This algorithm is designed to minimize processor loading,
communication loading, and process interference costs.

Reliability in the new Durra runtime environment is achieved via enhancement and imple-
mentation of the reconfiguration mechanism in the Durra Language, and the addition of
fault-tolerance. Reconfiguration is handled by the global executive which responds to
events by changing the configuration as specified by the application designer. The class of
events that can cause a reconfiguration is expanded from the ones in the original language
design to include some that can be initiated directly by the application task. Because of the
black-box view of processes in Durra, the application designer must take responsibility for
helping the runtime environment to determine when it is "safe" to move a particular process
as a result of a reconfiguration.

A degree of fault-tolerance is achieved by removing the single point of failure represented by
the current Scheduler. A failing local executive will not bring the entire system down. Addi-
tional fault-tolerance is achieved by replicating the global executive. There is one active
global executive and multiple passive global executives. Since a fail-stop [Schlichting 83]
model is assumed, the active global executive has complete authority for configuration man-
agement unless the processor it is executing on fails. At that point a distributed election
protocol [Kim 88] is used to select one of the passive global executives to become active.
Failed processors are detected by probing the local executives in the event of no other com-
munication activity. Support for fault-tolerance at the application level relies on the recon-
figuration mechanism, and a reliable communication protocol.

4

After we have some experience running with the new Durra runtime environment, we will be
able to determine further directions for enhancements. An important future enhancement
will be dealing with transient failures in a fault-tolerant manner. This would allow, for ex-
ample, a processor to be taken off-line for maintenance with the ability to bring it back on-
line when the maintenance was done.

CMU/SEI-89-TR-8 37

38 CMU/SEI-89-TR-8

Appendix A: New or Redefined Remote Procedure
Calls

The following is a detailed summary of the new or redefined remote procedure calls de-
scribed in this report. All of the remote procedure calls described here are implemented by
the local executive.

A.1. Application Remote Procedure Calls
raise signal(in signal_number)

Informs the global executive that the application is triggering event
"signal_number". If multiple signals come in from the same process be-
fore the global executive can react, it only sees the most recent one.
Durra places no semantics on "signal_number". The
slgnal(process,signal_number) conditional becomes true, and the
global executive will react as specified by the application designer.

safe() Informs the local executive that it is safe to migrate the process instead
of returning from the remote procedure call. In the absence of the oc-
currence of a reconfiguration, this is simply a no-op.

get_portid(in name; out portid, bound, size)
Given a port name, returns a small integer port identifier to be used in
referring to that port. The name of the port must correspond to one of
the ports used in the task description. This call also returns the number
of elements that can be stored in the queue associated with the port
("bound") and the size of the elements ("size"). If the size is variable,
"size" is set to zero. Hidden from the application but utilized by the in-
terface code, get_portid also returns the host and socket to be utilized
when communicating with that port.

A.2. Global Executive Remote Procedure Calls

run_task(ln taskJd,restart_code)
Tells the local executive to actually start the process "task_id".
"restart_code" indicates whether the process is being run for the first
time (e.g., at application start-up), is being restarted as a result of a con-
trolled reconfiguration (e.g., the application or operator caused it to hap-
pen, and the process was made quiescent before reconfiguration), or is
being restarted as a result of a system failure (e.g., the process was not
made quiescent before reconfiguration.) This will enable the application
programmer to take action to restore state where possible.

create_buffer_task(lntask-id,task_name,task-kind)
Tells the local executive that there is a buffer task named "task_name"
with "task-id", and that it's kind is "task-kind", "task-kind" can be one of
broadcast, merge, or deal. A local executive is informed of a buffer task
only when it has something to do with that process.

CMU/SEI-89-TR-8 39

create_port(in task_id,port_id,type_id,in_flag)
Defines a port "portjd", to be associated with a process "task-id". The
port's type is defined by "type_id". The port is an input port if "in Jlag"
is set. A local executive is informed of a port when it implements a
queue to which that port is attached.

create_queue(in task_id,queue_id,type_id,bound)
Defines a queue "queuejd" having elements of "type_id", and having a
bound of "bound". The queue is implemented in the process identified
by "taskjd". A local executive is informed of a queue when it imple-
ments that queue.

attach_port(lnqueue_idItask_id,port_id,in_port)
Tells the local executive to attach the port defined by "taskjd", and
"portjd" to the queue defined by "queuejd". If "injport" is true, attach
it to the input side of the queue, otherwise attach it to the output side of
the queue. Ports are attached to queues in a separate instruction to
allow for easier reconfiguration.

create_attribute(intaskjd,name,value)
Associates an attribute "name" with its value "value" for the process
"taskjd". The local executive that will be executing a process is in-
formed of the attribute values.

createj5lze_type(In type_id,name,low_bound,up_bound)
Specifies a simple type named "name", identified by "typejd", and with
lower and upper size bounds of "low_bound", and "up_bound". All lo-
cal executives are informed of all types.

create_arrayjype(in typejd.name.element.bounds)
Specifies an array type named "name", identified by "typejd" and with
elements of type "element", "bounds" is a list of the array bounds.

create_unlonJype(in typejd.name.subtypes)
Specifies a union type named "name", identified by "typejd".
"subtypes" is a list of the types that make up the union type.

remove_process(ln task-id)
Closes connections to all queues, removes the processes ports, and
returns when the process selected by "task-id" has terminated execu-
tion.

remove_queue(ln queue-id)
Checks to see if all connections to either side of the queue identified by
"queue-id" have been closed. If not it returns a failure indication, other-
wise it removes the queue.

unattachjport(in taskjd,portjd)
Unattaches the port identified by "taskjd" and "portjd" from whatever
queue it is connected to. This is used when a running process must
reconnect a port to a different queue.

commit_configuration()
Make the configuration changes already sent become effective. This is
used to ensure that everyone views the configuration in a consistent
manner.

40 CMU/SEI-89-TR-8

abort_configuration()
Abort the configuration changes already sent. This is utilized when
there is a communication failure during transmission of a new configu-
ration.

qulesce(in taskjd) Cause the process selected by "task-id" to become quiescent by block-
ing the process after it executes the safe remote procedure call. The
call returns immediately.

is_quiescent(in taskjd])
Tests to see if the process identified by "taskjd" has become quies-
cent.

resume(in taskjd) Resumes a quiescent process "taskjd". This will only happen if the
process has not been migrated to another processor during a recon-
figuration.

processor status(in timejDUt)
Returns a zero if the local executive has not responded within the period
of time indicated by the "time_out". Otherwise returns one.

CMU/SEI-89-TR-8 41

42 CMU/SEI-H9TR-8

References

[Anderson 76]

[Barbacci 86]

[Barbacci 88a]

[Barbacci 88b]

[Bell 71]

[Birman 87]

[Chang 84]

[Chou 82]

[Chu 80]

[Cooper 85a]

[Cooper 85b]

T. Anderson and R. Kerr.
Recovery Blocks in Action.
In Proceedings of the 2nd International Conference on Software

Engineering, pages 447-457,1976.

M.R. Barbacci and J.M. Wing.
Durra: A Task-Level Description Language.
Technical Report CMU/SEI-86-TR-3. DTIC: ADA178975, Software Engi-

neering Institute, Carnegie Mellon University, December, 1986.

M.R. Barbacci, C.B. Weinstock, and J.M. Wing.
Programming at the Processor-Memory-Switch Level.
In Proceedings of the 10th International Conference on Software

Engineering. Singapore, April, 1988.

M.R. Barbacci, Dennis L. Doubleday, and Charles B. Weinstock.
The Durra Runtime Environment.
Technical Report CMU/SEI-88-TR-18, DTIC: ADA199480, Software Engi-

neering Institute, Carnegie Mellon University, July, 1988.

C.G. Bell and Allen Newell.
Computer Structures: Readings and Examples.
McGraw-Hill Book Company, New York, 1971.

Kenneth P. Birman and Thomas A. Joseph.
Reliable Communication in the Presence of Failures.
ACM Transactions on Computer Systems 5(1):47-76, February, 1987.

Jo-Mei Chang and N. F. Maxemchuk.
Reliable Broadcast Protocols.
ACM Transactions on Computer Systems 2(3):251 -273, August, 1984.

Timothy C. K. Chou and Jacob A. Abraham.
Load Balancing in Distributed Systems.
IEEE Transactions on Software Engineering SE-8(4):401 -412, April,

1982.

Wesley W. Chu, Leslie J. Holloway, Min-Tsung Lee, and Kemal Efe.
Task Allocation in Distributed Data Processing.
IEEE Computer, November, 1980.

Eric C. Cooper.
Replicated Distributed Programs.
In Proceedings of the Tenth ACM Symposium on Operating Systems

Principles, pages 63-78,1985.

Eric Charles Cooper.
Replicated Distributed Programs.
PhD thesis, University of California at Berkeley, 1985.

CMU/SEI-89-TR-8 43

[Cristian 82]

[Kim 88]

[Kramer 88]

[Lamport 82]

[Lin 85]

[Liskov 87]

[Lo 87]

[Pease 80]

[Schlichting 83]

[Seifert 80]

[Weinstock 78]

Falviu Cristian.
Exception Handling and Software Fault Tolerance.
IEEE Transactions on Computers C-31(6), June, 1982.

Junguk L. Kim and Geneva G. Belford.
A Robust, Distributed Election Protocol.
In Proceedings of the Seventh Symposium on Reliable Distributed

Systems, pages 54-60,1988.

J. Kramer and J. Magee.
A Model for Change Management.
In Proceedings of the IEEE Distributed Computing Systems in the '90s.

1988.

Leslie Lamport, Robert Shostak, and Marshall Pease.
The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems

4(3):382-401, July, 1982.

Kwei-Jay Lin and John D. Gannon.
Atomic Remote Procedure Call.
IEEE Transactions on Software Engineering SE-11(10):1126-1135, Oc-

tober, 1985.

Barbara Liskov et al.
Orphan Detection.
In Digest of Papers 17th Annual Symposium on Fault-Tolerant Comput-

ing Systems, pages 2-7,1987.

Virginia Mary Lo.
Heuristic Algorithms for Task Assignment in Distributed Systems.
Technical Report CIS-TR-86-13, Department of Computer and Informa-

tion Science, University of Oregon, April, 1987.

Marshall Pease, Robert Shostak, and Leslie Lamport.
Reaching Agreement in the Presence of Faults.
Journal of the Association for Computing Machinery 27(2):228-234, April,

1980.

Richard D. Schlichting and Fred B. Schneider.
Fail-Stop Processors: An Approach to Designing Fault-Tolerant Comput-

ing Systems.
ACM Transactions on Computing Systems 1(3).222-238, August, 1983.

M. Seifert.
Reconfiguration and Recovery of Multiprocess Systems in Fault-Tolerant

Distributed Systems.
In Proceedings IEEE Computer Society's Fourth International Computer

Software and Applications Conference, pages 596-602,1980.

Charles B. Weinstock and M. W. Green.
Reconfiguration Strategies for the SIFT Fault-Tolerant Computer.
In Proceedings IEEE COMPSAC 78. pages 645-650,1978.

44 CMU/SEI-89-TR-8

[Wensley 78] John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W. Green, Karl
N. Levitt, P. M. Melliar-Smith, Robert E. Shostak, and Charles
B. Weinstock.
SIFT: Design and Analysis of a Fault-Tolerant Computer for Aircraft Con-

trol.
Proceedings of the IEEE 60(10):1240-1245, October, 1978.

[Zicari 86] Roberto Zicari.
Operating System Support for Software Migration in a Distributed Sys-

tem.
In Proceedings of the 5th Symposium on Reliability in Distributed Soft-

ware and Database Systems, pages 178-187,1986.

CMU/SEI-89-TR-8 45

__ujjLl>u:r£n,-i]flci.Assirirn
»£CURlTY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

NONE

2« SECURITY CLASSIFICATION AUTHORITY

N/A
Jb DECLASSIFICATION/DOWNGRAOING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

4, PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMSER(S)

CMU/SEI-89-TR-8 ESD-TR- 89-016
6« NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INSTITUTEl SEI

6b. OFFICE SYMBOL
tlf applicable)

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE
6c. AOORESS (Cify. Stale and ZIP Code)
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. AOORESS (City. State and ZIP Code)
ESD/XRS1
HANSCOM AIR FORCE BASE, MA 01731

•a. NAME Of FUNDING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
<l(applicable)

SEI JPO

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962885C0003

Be. AOORESS (City. Slate and ZIP Code)

CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE JPO
PITTSBURGH. PA 15213

10. SOURCE OF FUNOING NOS.

PROGRAM
ELEMENT NO.

11. TITLE (Include Security Clauificauc.nl

PERFORMANCE AND RELIABILITY ENHAHCEMENT DE

PROJECT
NO.

N/A

IMF. nilRRA RITNTIMF FNVIROtJMENT

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(St

CHARLES B. WEINSTOCK
13*. TYPE OF REPORT

FINAL
13b. TIME COVERED

TO

14. OATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

 5H
16. SUPPLEMENTARY NOTATION

COSATI CODES

FIELD GROUP SUB GR.

18. SUBJECT TERMS (Continue on reverte if necetsary and identify by block number)

Abstract: Durra is a language designed to support PMS-level programming.
PMS stands for Processor Memory Switch, the name of the highest level in the
hierarchy of digital systems. An application or PMS-level program is written in
Durra as a set of task descriptions and type declarations that prescribes a way to
manage the resources of a heterogeneous machine network. The application de-
scribes the tasks to be instantiated and executed as concurrent processes, the
types of data to be exchanged by the processes, and the intermediate queues
required to store the data as they move from producer to consumer processes.

A runtime environment for Durra has been operational for some time. There are
two major problems with this initial implementation: it makes no significant attempt
to tune the performance of the system, and reliability has not been designed into
the system. This report describes a new design for the Durra runtime environ-
ment that addresses these two issues. The new runtime environment consists of
two major components: a local executive which runs on every processor and is
responsible for process and queue management, and a global executive which
runs replicated on several processors and is responsible for configuration man-
agement and reliability services. ,

^.j. nisui IUN/A VAIL ABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEO/UNLIMITEO XX SAME AS RPT D DTiC USERS XS UNCLASSIFIED, UNLIMITED

22« NAME OF RESPONSIBLE INOIVIDUAL

KARL SHINGLER
22b TELEPHONE NUMBER

(Include Area CtjdeI
(412) 268-7630

DD FORM 1473,83 APR

22c OFF ICE SYMBOL

SEI JPO

EDITION OF 1 JAN 73 IS OBSOLETE UNLIMITED. UNCLASSIFIED
SECURIT V CLASS IF ICATION OF TMIS PA^_ :

