
! IF E MPY

_, Carnegie-Mellon University

Software Engineering Institute

SKernel User's Manual
c) Version 1.0

i TIM Coddington
\ Robert Firth

\\ Daniel Klein
i \ David StlnchoombRoger Van Scoy

February 1989

IDTIC
SS ELECTE

DISTRIBUTIONA

Approved pubi c fok *=
lion WWiI~ 0\ 9 5 \4 0 1\

February 1989

Kernel User's Manual
Version 1.0

Judy Bamberger
Tim Coddington

Robert Firth
Daniel Klein

David Stinchcomb
Roger Van Scoy

Distributed Ada Real-Time Kernel Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

I
I

User's Manual
CMUSEI-89-UG-1 IESD-89-TR-1 5

This manual was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this manual should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange. i
Review and Approval

This manual has been reviewed and is approved for publication. I
FOR THE COMMANDER I
Karl H. Shingler i
SEI Joint Program Office

I

This work is sponsored by the U.S. Department of Defense. i
Copyright @ 1989 Carnegie Mellon University

Ths document is avadlable dmgfh the DefeniseTechnical Information Center. DTIC provides access to and transfer ofscicntific and 3
technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government agency personnel
and their contractors. To obtain a copy, please contact DTIC directly: DefenseTechnicalInformation Center. Atn: FDRA.Cameron
Station. Alexandria, VA 22304-6145. 3
Copies of this document a also available through the National Technical Inbrimation Service. For information on ordering, please
comic NTIS directly: Naional Technical Information Service. U.S. Department of Commerce, Springfield, VA 22161. i

Use of any triarnwin thbi mp.rt is not intended in any way to infringe on the rights of the trademark holder.

I
I

Table of Contents

1. Scope 1
1.1. Identification 1
1.2. Motivation 1

1.2.1. Ada Runtime Environment 1
1.2.2. Application and System Code 2
1.2.3. Abstractions and Their Breakdown 2
1.2.4. Distributed Applications 3
1.2.5. Real-Time Requirements 3
1.2.6. Purpose and Intended Audience 4

1.3. Document Overview 4
1.4. Applicable Documents 6

1.4.1. DARK Reports 6
1.4.2. Other Documents 7

2. Kernel Models, Concepts and Restrictions 11
2.1. Definitions and Models 11

2.1.1. Process Model 11
2.1.2. System Model 13

2.2. ISO-to-Kemel Mapping 15
2.2.1. Physical Layer 15
2.2.2. Data Link Layer, 15
2.2.3. Network Layer 16
2.2.4. Transport Layer _ 17
2.2.5. Session Layer iA sesiCon For 17
2.2.6. Presentation Layer N-IS c x- t 18
2.2.7. Application Layer rD:c T,' I] 18

2.3. Processor Management 18
2.4. Schedule Management 20
2.5. Time Management 23
2.6. Process Management Dl st r :_'; + ionf 25
2.7. Semaphore Management _,AvaU1it- Coees 25
2.8. Communication Management -AV::- /or 26
2.9. Interrupt Management "Dist I Pnolal , 27
2.10. Alarm Management tl 128
2.11. Tool Interface 1 29

.2.12. Error Model "-"--30
2.12.1. Assumptions 30
2.12.2. Preconditions 30
2.12.3. Postconditions 31
2.12.4. Mechanism for Error Reporting 31
2.12.5. Enabling and Disabling Error Reporting ' 31

2.13. Restrictions 33

Kernel User's Manual, Version 1.0 1

I

3. Concept of Operations 35 i
3.1. Kernel Processes 35

3.1.1. Form of a Kernel Process 35 i
3.1.2. Setting Up a Kernel Process 35

3.1.2.1. Writing the Code 36
3.1.2.2. Naming the Process 36 I
3.1.2.3. Computing the Resources 37
3.1.2.4. Creating the Process Environment 38

3.1.3. Process Life Cycle 39 U
3.1.4. Examples 40

3.1.4.1. Network Configuration and NCT Initialization 40
3.1.4.2. Software Configuration for Processor a 41 I
3.1.4.3. Software Configuration For Processor b 45

3.2. Preparing the Kernel for Use 48
3.3. Building an Application Using the Kernel 48

4. Kernel PrimItives 51
4.1. Hardware Interface 52 I

4.1.1. Introduction 52
4.1.1.1. Purpose 53
4.1.1.2. Mechanism 53 I

4.1.2. Exported Constants 53
4.1.3. Exported Types 54
4.1.4. Exported Data Structures 55
4.1.5. Subprograms 55
4.1.6. Related Information 55

4.1.6.1. Referenced Constants 55 I
4.1.6.2. Referenced Types 55
4.1.6.3. Relevant Generic Parameters 55

4.2. Time Globals 56 U
4.2.1. Introduction 56

4.2.1.1. Purpose 56
4.2.1.2. Mechanism 56

4.2.2. Exported Constants 57
4.2.3. Exported Types 57
4.2.4. Exported Data Structures 58
4.2.5. Subprograms 58

4.2.5.1. Base_time 58
4.2.5.2. Creation 58 !
4.2.5.3. Arithmetic Operations Returning Elapsed Time 58
4.2.5.4. Arithmetic Operations Returning Epoch Time 58
4.2.5.5. Comparison Operations on Elapsed Time 59 I
4.2.5.6. Comparison Operations on Epoch Time 59
4.2.5.7. Conversion Functions 59

4.2.6. Related Information 59 I
4.2.6.1. Referenced Constants 59

K
Kernel User's Manual, Version 1.0

I 4.2.6.2. Referenced Types 60
4.2.6.3. Relevant Generic Parameters 60

4.3. Schedule Types 60
4.3.1. Introduction 60

4.3.1.1. Purpose 60
4.3.1.2. Mechanism 60

4.3.2. Exported Constants 60
4.3.3. Exported Types 61
4.3.4. Exported Data Structures 61
4.3.5. Subprograms 61
4.3.6. Related Information 62

4.3.6.1. Referenced Constants 62
4.3.6.2. Referenced Types 62
4.3.6.3. Relevant Generic Parameters 62

4.4. Network Configuration Table 62
4.4.1. Introduction 62

4.4.1.1. Purpose 62
4.4.1.2. Mechanism 62

4.4.2. Exported Constants 63
4.4.3. Exported Types 63
4.4.4. Exported Data Structures 64
4.4.5. Subprograms 64
4.4.6. Related Information 64

4.4.6. 1. Referenced Constants 64
4.4.6.2. Referenced Types 64
4.4.6.3. Relevant Generic Parameters 64

4.5. Processor Management 65
4.5.1. Introduction 65

4.5.1.1. Purpose 651 4.5.1.2. Mechanism 65
4.5.2. Subprograms 66

4.5.2.1. InitializeMasterprocessor 66
4.5.2.2. Initializesubordinateprocessor 67
4.5.2.3. Initializationcomplete 67

4.5.3. Related Information 683 4.5.3.1. Exported Constants 68
4.5.3.2. Exported Types 68
4.5.3.3. Exported Data Structures 68
4.5.3.4. Referenced Constants 68
4.5.3.5. Referenced Types 68
4.5.3.6. Relevant Generic Parameters 69

4.6. Process Managers 69
4.6.1. Introduction 69

4.6.1.1. Purpose 69
4.6.1.2. Mechanism 69

4.6.2. Subprograms 71

I
Kernel User's Manual, Version 1.0 IIII

I

4.6.2.1. Declareprocess 71
4.6.2.2. Create..process 72

4.6.3. Related Information 73
4.6.3.1. Exported Constants 73
4.6.3.2. Exported Types 73
4.6.3.3. Exported Data Structures 73
4.6.3.4. Referenced Constants 73
4.6.3.5. Referenced Types 73
4.6.3.6. Relevant Generic Parameters 73

4.7. Communication Management 74
4.7.1. Introduction 74

4.7.1.1. Purpose 74 m
4.7.1.2. Mechanism 74

4.7.2. Subprograms 75
4.7.2.1. Sendmessage 75
4.7.2.2. Sendmessageand-wait 76
4.7.2.3. Receivemessage 77
4.7.2.4. Allocatedevicereceiver 79 U

4.7.3. Related Information 79
4.7.3.1. Exported Constants 79
4.7.3.2. Exported Types 80 I
4.7.3.3. Exported Data Structures 80
4.7.3.4. Referenced Constants 80
4.7.3.5. Referenced Types 80 1
4.7.3.6. Relevant Generic Parameters 80

4.8. Process Attribute Modifiers 80
4.8.1. Introduction 80 I

4.8.1.1. Purpose 80
4.8.1.2. Mechanism 81

4.8.2. Subprograms 81 I
4.8.2.1. Die 81
4.8.2.2. Kill 81
4.8.2.3. Set.process_preemption 82
4.8.2.4. Setprocess_.priority 82
4.8.2.5. Wait 83

4.8.3. Related Information 83 U
4.8.3.1. Exported Constants 83
4.8.3.2. Exported Types 83
4.8.3.3. Exported Data Structures 83 U
4.8.3.4. Referenced Constants 83
4.8.3.5. Referenced Types 83
4.8.3.6. Relevant Generic Parameters 84 I

4.9. Process Attribute Readers 84
4.9.1. Introduction 84

4.9.1.1. Purpose 84 I
4.9.1.2. Mechanism 84

I
lv Kernel User's Manual, Version 1.0

! I I I |

I

4.9.2. Subprograms 84i4.9.2. 1. Get..process_preemption 84

4.9.2.2. Getprocesspriority 85
4.9.2.3. WhoamI 85
4.9.2.4. Name_of 85

4.9.3. Related Information 86
4.9.3.1. Exported Constants 86
4.9.3.2. Exported Types 86
4.9.3.3. Exported Data Structures 86
4.9.3.4. Referenced Constants 86
4.9.3.5. Referenced Types 86
4.9.3.6. Relevant Generic Parameters 86

4.10. Interrupt Management 86
4.10.1. Introduction 86

4.10.1.1. Purpose 87
4.10.1.2. Mechanism 88

4.10.2. Subprograms 90
4.10.2.1. Bindinterrupthandler 90
4.10.2.2. Disable 91
4.10.2.3. Enable 91
4.10.2.4. Enabled 92
4.10.2.5. Simulateinterrupt 92

4.10.3. Related Information 92
4.10.3.1. Exported Constants 92
4.10.3.2. Exported Types 92
4.10.3.3. Exported Data Structures 93
4.10.3.4. Referenced Constants 93
4.10.3.5. Referenced Types 93
4.10.3.6. Relevant Generic Parameters 93

4.11. Semaphore Management 94
4.11.1. Introduction 94

4.11.1.1. Purpose 94
4.11.1.2. Mechanism 94

4.11.2. Subprograms 94
4.11.2.1. Claim 94
4.11.2.2. Release 95

4.11.3. Related Information 95
4.11.3.1. Exported Constants 96
4.11.3.2. Exported Types 96
4.11.3.3. Exported Data Structures 96
4.11.3.4. Referenced Constants 96
4.11.3.5. Referenced Types 96
4.11.3.6. Relevant Generic Parameters 96

4.12. Alarm Management 96
4.12.1. Introduction 96

4.12.1.1. Purpose 96

K
Kernel Users Manual, Version 1.0 vI

I

4.12.1.2. Mechanism 97
4.12.2. Subprograms 97

_ I
4.12.2.1. Set_alarm 97
4.12.2.2. Cancelalarm 98

4.12.3. Related Information 98
4.12.3.1. Exported Constants 98 3
4.12.3.2. Exported Types 98
4.12.3.3. Exported Data Structures 98
4.12.3.4. Referenced Constants 98
4.12.3.5. Referenced Types 98
4.12.3.6. Relevant Generic Parameters 98

4.13. Time Management 99 3
4.13.1. Introduction 99

4.13.1.1. Purpose 99
4.13.1.2. Mechanism 99 I

4.13.2. Subprograms 99
4.13.2.1. Adjust elapsed jime 99
4.13.2.2. Adjustepochjime 100 3
4.13.2.3. Synchronize 100
4.13.2.4. Readclock 101

4.13.3. Related Information 101 3
4.13.3.1. Exported Constants 101
4.13.3.2. Exported Types 101
4.13.3.3. Exported Data Structures 101 3
4.13.3.4. Referenced Constants 101
4.13.3.5. Referenced Types 102
4.13.3.6. Relevant Generic Parameters 102 3

4.14. Timeslice Management 102
4.14.1. Introduction 102

4.14.1.1. Purpose 102
4.14.1.2. Mechanism 102

4.14.2. Subprograms 102
4.14.2.1. Disabletime-_slicing 102 I
4.14.2.2. Enable timeslicing 103

4.14.2.3. Set timeslice 103
4.14.3. Related Information 103 3

4.14.3.1. Exported Constants 104
4.14.3.2. Exported Types 104
4.14.3.3. Exported Data Structures 104 I
4.14.3.4. Referenced Constants 104
4.14.3.5. Referenced Types 104
4.14.3.6. Relevant Generic Parameters 104 I

4.15. Index of Kernel Names 104
4.16. Summary of Example 112 !

v Kernel User's Manual, Version 1.0

I

I 5. Kernel Data Structures 123
5.1. External Data Structures 123

5.1.1. Network Configuration Table 123
5.1.1.1. Exporting Package 123
5.1.1.2. Structure 124
5.1.1.3. Initialization 127
5.1.1.4. Additional Allocation Requirements 127
5.1.1.5. Constraints on Usage 128

5.1.2. Semaphores 128
5.1.2.1. Exporting Package 128
5.1.2.2. Structure 128
5.1.2.3. Initialization 138
5.1.2.4. Additional Allocation Requirements 138
5.1.2.5. Constraints on Usage 138

5.1.3. Process Table 138
5.1.3.1. Exporting Package 139
5.1.3.2. Structure 139
5.1.3.3. Initialization 162
5.1.3.4. Additional Allocation Requirements 162
5.1.3.5. Constraints on Usage 165

5.2. Internal Data Structures 165
5.2.1. Datagrarn Queues 165

5.2.1.1. Exporting Package 165
5.2.1.2. Structure 165
5.2.1.3. Initialization 175
5.2.1.4. Additional Allocation Requirements 176
5.2.1.5. Constraints on Usage 176

5.2.2. Time Event Queue 176
5.2.2.1. Exporting Package 176
5.2.2.2. Structure 176
5.2.2.3. Initialization 183
5.2.2.4. Additional Allocation Requirements 183
5.2.2.5. Constraints on Usage 184

5.2.3. Process Index Table 184
5.2.3.1. Exporting Package 184
5.2.3.2. Structure 184
5.2.3.3. Initialization 186
5.2.3.4. Additional Allocation Requirements 186
5.2.3.5. Constraints on Usage 186

5.2.4. Interrupt Table 187
5.2.4.1. Exporting Package 187
5.2.4.2. Structure , 187
5.2.4.3. Initialization 193
5.2.4.4. Additional Allocation Requirements 193
5.2.4.5. Constraints on Usage 193

5.2.5. Kernel Time 194

I
iKernel User's Manual, Version 1.0 vii

I

5.2.5.1. Exporting Package 194
5.2.5.2. Structure 194
5.2.5.3. Initialization 195
5.2.5.4. Additional Allocation Requirements 195
5.2.5.5. Constraints on Usage 195

6. Application Evaluation 197
6.1. Tool Interface 197

6.1.1. Concept of Operations 197
6.2. Subprograms 198

6.2.1. Begin -collection 198
6.2.2. Ceasecollection 198
6.2.3. Read_processtable 198
6.2.4. Readinterruptjable 198

6.3. Related Information 199
6.3.1. Exported Constants 199
6.3.2. Exported Data Structures 199
6.3.3. Referenced Constants 199 I
6.3.4. Referenced Types 199
6.3.5. Relevant Generic Parameters 199

6.4. Monitoring Performance 199

7. Notes 201
7.1. Glossary of Terms 201 5

Appendix A. Kernel Packages 205

Appendix B. Kernel Exceptions 207 1
Appendix C. Tailoring and Preparing the Kernel 223

C.1. Tailoring the Network 223 I
C.1.1. Tailoring the Hardware Network Configuration 223
C.1.2. Tailoring to the Real-Time Clock 223
C.1.3. Tailoring Communication Umitations 225 I
C.1.4. Tailoring Data Structure Storage 225
C.1.5. Summary of Network-Wide Tailoring Parameters 225

C.2. Tailoring Eac) Processor 225 I
C.2.1. Tailoring the Process Environment 226
C.2.2. Tailoring the Range of Process Priorities 226
C.2.3. Tailoring Time Constants 226 U
C.2.4. Tailoring Interrupt Name Usage 227
C.2.5. Tailoring Data Structure Storage 227
C.2.6. Summary of Processor-Specific Tailoring Parameters 227 I

C.3. Kernel Umitations 227
C.4. Tailoring Error Checking and Reporting 231 5

I
viii Kernel User's Manual, Version 1.0 ,

I

Appendix D. Scheduling Algorithms 233

Appendix E. Building Abstractions 235
E.1. Typed Message Passing 235
E.2. Safe Critical Regions 238
E.3. Cyclic Processes 240
E.4. Periodically Scheduled Processes 242
E.5. Time-Critical Transactions 243
E.6. Monitors 244

E.6.1. Example Requirements and Justification 244
E.6.2. PDL of Example 245

E.7. Mutually Self-Scheduling Processes 247
E.7.1. Example Requirements and Justification 247
E.7.2. PDL of Example 248

E.8. Message Router 250
E.8.1. Example Requirements and Justification 250
E.8.2. PDL of Example 251

E.9. Process Monitor (A Sample Tool) 252
E.10. Network Integrity 252
E.1 1. Prioritized Messages 252

Appendix F. Application Example 253

I Appendix G. Relation to Standard Design Models 255
G.1. Introduction 255
G.2. Basic Models 255

G.2.1. Process Model 255
G.2.2. Data Flow Model 255
G.2.3. Time Model 255
G.2.4. Event Model 255
G.2.5. Device Model 255

G.3. Corresponding Design Models 255
G.3.1. System Decomposition Models 255
G.3.2. Data Flow Models 255
G.3.3. Transaction Models 256
G.3.4. Temporal Models 256

G.4. Suggested Standard Techniques 256

Appendix H. 68020 Specifics 257

i Appendix I. Index 259

I
I

iKernel User's Manual, Version 1.0 Ix

I
I
3
I
I
I
U
I
I
I
I
I

I

EI
I

List of Figures
Figure 2-1: Load Image Creation 12
Figure 2-2: System View 14
Figure 2-3: ISO Model to Kernel Mapping 16
Figure 2-4: Sample Network Configuration Table (NCT) 18
Figure 2-5: Process States 22
Figure 2-6: Datagram Network Model 27
Figure 2-7: Template for Enabling / Disabling Kernel Error Checking 32
Figure 5-1: Network Configuration Table Structure 125
Figure 5-2: Semaphore Structure - Part 1 of 8 129
Figure 5-3: Process Table Structure 140
Figure 5-4: Process Table Process Attributes Component Structure - Part 1 143

of 2
Figure 5-5: Process Table Schedule Attributes Component Structure 149
Figure 5-6: Process Table Communication Attributes Component Structure 152
Figure 5-7: Process Table Pending Activity Attributes Component Structure 155
Figure 5-8: Process Table Acknowledged Message Information Component 158

Structure
Figure 5-9: Process Table Semaphore Attributes Component Structure 161
Figure 5-10: Datagrarn Structure - Part 1 of 2 166
Figure 5-11: Time Event Queue Structure - Part 1 of 4 177
Figure 5-12: Process Index Table Structure 185
Figure 5-13: Interrupt Table - Part I of 3 188

Kernel user's Manual, Version 1.0 x

| • • •U

I
U
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

xll Kernel User's Manual, Version 1.0

List of Tables
Table 5-1: Process Table Defined Default Values 163
Table 5-2: Initialization Via Call to Create process 164
Table C-1: Processor-Specific Tailoring Parameters 228
Table C-2: Kernel Limitations 229
Table C-3: Error Checking Tailoring Parameters 232
Table H-1: Tailoring Parameters 258

Kernel User's Manuel, Verslon 1.0 AllI

1. Scope

\ 1. Identification
This manual describes the models underlying the Kernel and its concept of operations, presents
the primitives available to the application program, and provides a number of abstractions that
may readily be built on top of Kernel primitives.

The Kernel is a body of code that implements real-time facilities which can be invoked by
applications written in Ada for execution on a distributed target. The requirements for the Kernel,
both behavior and performance, are provided in the Kernel Facilities Definition, and its design will
be provided in the forthcoming Kernel Architecture ModeL The Kernel was built at the Software
Engineering Institute by the Distributed Ada Real-Time Kernel (DARK) Project.

This Kernel User's Manual provides the information needed by a program er to understand and
use Version 1.0 of the Kernel to support a distributed application.,-e host system is the
MicroVAX II (under MicroVMS 4.2). The Kernel is implemented in Ada (see Section 1.4.2), using
the TeleSoft Telegen2 Compiler, Release 3.22 (see Section 1.4.2), and MC68020 assembler (the
OASYS XA68000 V4.12 Cross-Assembler; documentation bundled with TeleSoft documentation;
see Section 1.4.2). The target system is a network of distributed MC68020 processors and
peripherals.

Target dependencies (on the Ada compiler, on the 68020, and on the DARK hardware testbed
configuration) are described in detail in Appendix H and in documentation that will be provided
with the code.

Motivation
Ada is now being mandated for a large number of DoD development projects as the sole
programming language to be used for developing software. Many of these projects are trying to
build distnbuted real-time systems. Many project managers and contractors are anxious to
support this effort, to reap the advantages of Ada, and to use the newer techniques of software
engineering that Ada can support. This transition, however, has not always been smooth: some
serious problems have been encountered. 4A N _.

1.2.1. Ada Runtime Environment
One of the most persistent and worrying problems is the suitability of the Ada runtime system,
most notably the tasking features, and especially on distributed systems. There are issues
concerning functionality (amply documented in [ARTEWG 86b), customization, tool support
(especially target debuggers and performance monitors); issues of inter-process communication
and code distribution; and, perhaps most intractable, issues of execution-time efficiency.

One way of approaching this problem is to press for better, "more mature" Ada implementations:
more optimization; user-tailorable runtime systems (as in [ARTEWG 86a); special-purpose

Kernel User's Manual, Version 1.0

I
U

hardware. This is a valid route, but one that will take time, money, and experience, and many of
the solutions will be compiler dependent, machine dependent, or application dependent. Many
developers are still unsure even how to use the new language features of Ada, and at least one 3
cycle of application use, performance measurement, and methodology review will be needed
before users can be sure which parts of the Ada language and runtime are indeed critical. 1
The Kernel described by this document implements another route to a possible solution (defined
at length in [KFD 881) which is being pursued at the Software Engineering Institute (SEI). It
should be a quicker and cheaper route, and hence a feasible short-term alternative.

1.2.2. Application and System Code
In conventional programming, application code (which is what has to be written to meet the user 1
requirements) is distinguished from system code (which is obtained with the target machine, and
which is intended to support applications generally). With Ada and embedded systems, these
distinctions are not so clear cut. First, it has been traditional, when developing real-time systems
in other programming languages, for the application programmer to write specific code down to a
far lower level, including special device drivers, special message or signaling systems, and even
a custom executive. There is far less general-purpose system code. Secondly, the Ada language
complicates the distinction between application and system code. In older languages, almost all
system functions were invoked through a simple and well-understood interface - the system call 3
- expressed as a normal subroutine call. In Ada, however, many traditionally system-level
functions are explicit in the language itself, or implied by language constructs; for example,
tasking, task communication, interrupt acquisition, and error handling. In fact, the work is really i
done by the old familiar system code, now disguised as the Ada runtime.

1.2.3. Abstractions and Their Breakdown 3
If the user is satisfied with the Ada level of abstraction - with its view of what tasks are, what
time is, and so on - then the Ada view is a simplification: the application code in fact performs
system calls, but the compiler inserts them automatically as part of the implementation of
language constructs.

Unfortunately, many users are dissatisfied with the Ada abstraction, and seek either finer control I
or access to lower-level concepts, such as semaphores, send/wait or suspend/resume primitives,
and bounded delays. Under the above circumstances, the extra language features, and the
hidden system calls they generate, are an active hindrance to the application programmer, and
an obstruction to the work of implementation.

For example, the programmer may need a strong delay primitive - one that guarantees 1
resumption as soon as possible after the expiration of the delay. But Ada already has a "delay"
statement, with different semantics. When implementing a different delay primitive, the user risks
damaging the Ada runtime behavior, since Ada assumes it has sole control of the Ada tasks and
does not expect an extra routine to perform suspensions and resumptions. To implement the
new delay robustly, the user has to interface with the internals of the Ada runtime, which may be 3
very hard to do and will surely be hard to maintain. Moreover, the Ada delay statement
composes naturally into timed entry calls and timed select statements. If the user wishes to do

2 Kernel User's Manual, Version 1.0

=4I

these things with the new delay statement, a substantial part of the Ada semantics must be
rebuilt, and a substantial part of the runtime must be modified.

All this, of course, is a distraction from the real work - the work of implementing the application.
One of the main motivators of the Kernel is the observation that many contractors using Ada are
spending most of their time worrying about the Ada system level and far too little time solving the
application problems, some of which are not easy.

3 In sum, it can be harder to build applications using Ada language features than it would be to
implement the required functionality without them. But it is also undesirable for every application
to reinvent specific incarnations of real-time functional abstractions.

1.2.4. Distributed Applications
A further and equally difficult problem is the issue of executing applications on a distributed target
configuration. Good software development methods teach decomposition of large applications
into functional units communicating through well-defined interfaces. The physical allocation of
such units to individual processors in the target environment can be done in many ways, withoutimpairing their functionality. Good design therefore requires that the specification of these
functional units and interfaces be independent, as far as possible, of their physical distribution.

I In a real-time system, this implies that the mechanisms by which units interact - to synchronize,
communicate with, schedule one another, or alert one another - should be uniform, regardless
of whether the units are sited on the same processor or at some distance across a distributed
network. If the implementation language is Ada, this leads to a requirement for distributed Ada.

Unfortunately, nearly all current commercially-available Ada implementations do not support this
requirement. They implement the real-time mechanisms of the language only on individual or
isolated processors, and provide no help with communication between processors, and hence
between units on different machines. This situation leads to systems where Ada tasks
communicate by different mechanisms, with different style, semantics and implementations,
merely because the Ada tasks are local in one case, and remote in the other. Overall, there is a
substantial loss of application clarity, maintainability, reconfigurability, and conceptual economy.

1.2.5. Real-Time Requirements
This brings us to the crux of the Kernel's rationale. Users - people who have to write application
code - do not want language features: they want language functionality. In Ada, much of the
real-time functionality is captured in the form of special features. This may well be (the) correct
solution in the long term ([Firth 87), since by making real-time operations explicit in the language,
the compiler is permitted to apply its intelligence to their optimization and verification. But in the
short term, it is palpably not working: the users either cannot use, or do not know how to use, the
given features to achieve the required functionality; the implementors of the language do not
know how to satisfy the variety of needs of real-time applications; the vendors are unable to
customize extensively validated implementations; and commercial support for distributed targets
is rare, even as the need for such support is becoming end mic among application developers.

I IKernel Users Manual, Version 1.03

I
I

Accordingly, it is opportune to revert to the former method of providing functionality: by specific
system software implemented as a set of library routines and invoked explicitly by the user. The
Kernel has taken this approach.

1.2.6. Purpose and Intended Audience
The main purpose of the Distributed Ada Real-Time Kernel (DARK) Project is to demonstrate that
it is possible to develop application code entirely in Ada that will have acceptable quality and
real-time performance. This purpose is achieved by providing a prototype artifact - a Kernel -

that implements the necessary functionality required by real-time applications, but in a manner
that avoids or mitigates the efficiency and maturity problems found in current Ada runtime
implementations. 3
This prototype embodies a tool-kit approach to real-time systems, one that allows the user to
build application-specific, real-time abstractions. This prototype is not intended to solve all the
problems of embedded, real-time systems, nor is it the only solution to these problems. However,
it is intended to be a solution where efficiency and speed are the primary motivation and, where
warranted, functionality has sometimes been limited accordingly. 3
The Kernel provides one solution to the problem of using Ada in distributed, real-time, embedded
applications - one that can readily be accomplished in the near term. The Kernel is truly "in the 3
spirit of Ada" - that is, it uses the Ada language features (e.g., packages, subprograms) to
provide needed adjunct capabilities. This alternative returns explicit control of scheduling to the
application implementor and provides a uniform communication mechanism for supporting 3
distributed systems.

Other difficult areas, such as fault tolerance and multi-level security, are not directly addressed in 3
the Kernel definition. The primitives have been studied in light of these and other equally
demanding issues, and are simple and flexible enough to accommodate future development in
these areas. I
The goal of the Kernel is to provide a viable paradigm of near-term support to a wide number of
real-time embedded applications currently being required to use Ada for implementation. This I
Kernel is based on the belief that applications builders, not compiler vendors or language
designers, best know the system-level behavior required for their programs; and that
standardization of such behavior should be provided via a library package interface under the I
control of the application implementor, not via modifications to the Ada language. The strategy
embodied in this Kernel provides that kind of support. 3
1.3. Document Overview

This document serves as both a traditional user's manual and as a reference manual. As such,
there is information in it that is appropriate to different audiences at different times of analysis and
development. The following section summarizes the organization and usage of each section of I
the Kernel User's Manual. Appendix A is bound as a separate volume, and Appendices F and I
will be provided in the next version of this document. 3
4 Kernel User's Manual, Version 1.0

U

I The Kernel User's Manual is organized as follows:

Chapter I - Scope
Defines the scope of this document, describes the motivation for designing and
implementing the Kernel, and introduces the overall manual organization.

Chapter 2 - Kernel Models and Restrictions
Describes the models on which the Kernel is based and delimits the scope of Kernel
functionality. This information is first presented in the context of the International
Standards Organization/Open System Interface (ISO/OSI) model, followed by an overview
of each of the capabilities exported by the Kernel. The error model used by the Kernel is
presented, as well as an enumeration of the limitations and restrictions on general Kernel
functionality. This chapter should be read by all users evaluating, tailoring, or writing
applications using the Kernel. The network example introduced in this chapter is used3 throughout the remainder of this manual.

Chapter 3 - Concept of Operations
Explains the Kernel process model in more depth. This chapter continues the description
of a Kernel process-what form it takes, how to name it, how the Kernel manipulates the
Kernel process environment (at a conceptual level), and the life cycle of a Kernel process.
This chapter also outlines the steps required to prepare the Kernel for use (full details are
given in documentation that will be provided with the code), and provides a simplified
step-by-step "how to" guide for those building an application using the Kernel (e.g., what
packages must be available, defining the network configuration). This chapter should be
read by all users evaluating or writing applications using the Kernel.

I Chapter 4 - Kernel Primitives
Provides an overview of each of the functional areas of the Kernel and describes each
Kernel primitive. Beginning with visible data type packages and continuing through each
area of Kernel functionality, this chapter introduces all packages comprising the functional
area, all names exported and referenced by the functional area, sample invocations of
Kernel primitives, and conditions that would cause the Kernel primitive to block. This
chapter should be read by all users evaluating or writing applications using the Kernel; it is,
effectively, a reference manual for the Kernel packages.

Chapter 5 - Kernel Data Structures
Provides an overview of each of the key data structures exported by the Kernel or used by
it internally. With the goal of providing insight into the working of and the resource usage
by the Kernel, this chapter describes each of the key external and internal data structures,
its structure, initialization and storage allocation requirements, and any constraints on
usage that apply. This chapter should be read by all users evaluating or writing
applications using the Kernel.

Chapter 6 - Application Evaluation
Describes the Kernel facilities to obtain real-time performance metrics to manage
degradation within the distributed network. This information will be provided in the next
version of this document.

Chapter 7 - Notes
Provides a list of acronyms and a glossary of terms.

Appendix A - Kernel Packages
Provides the Kernel specification and primitives. (This appendix is bound as a separate
volume.)

Appendix B - Kernel Exceptions
Lists all exceptions that may be raised by execution of the Kernel.

Appendix C - Tailoring and Preparing the Kernel
Enumerates the steps required to tailor the Kernel for a specific target network or
application. This appendix discusses tailoring those parameters that must be consistent

Kernel Users Manual, Version 1.0 5I

I

across the entire network on which the Kernel is to execute and those parameters that may
be unique from processor to processor. Parameters that may be tailored include those
interfacing to the real-time clock, granularity of time as perceived by the application, data
structure storage, and more. Each tailoring parameter is identified, and, where appropriate,
analysis to determine rational settings for each is provided. The default settings for all
generic parameters for the 68020 target are provided in Appendix H. Appendix C should
be read by all users responsible for tailoring the Kernel for a particuiar target network or I
application.

Appendix D - Scheduling Algorithms
Provides the Kernel's scheduling algorithms. This appendix provides a description of the 3
algorithms used by the Kernel Scheduler.

Appendix E - Building Abstractions
Provides example abstractions that can be built using the Kernel primitives. These
examples include: building typed message passing, safe critical regions, cyclic and
periodically scheduled processes, time-critical transactions, monitors, mutually
self-scheduling processes, and a message router. The examples provided in this appendix
can be used as templates for application builders who need to construct I
application-specific code that can be based on the paradigms herein.

Appendix F - Application Example
Provides an example Ada application that is implemented using the Kernel. This I
information will be provided in the next version of this document.

Appendix G - Relation to Standard Design Models
Provides an outline of the relation of the Kernel to standard design models. I

Appendix H - 68020 Specifics
Enumerates all 68020-dependent data structures and tailorings. This appendix outlines the
limitations placed on the Kernel by the Motorola 68020 hardware and network 1
communication protocol used by the DARK tested. The communication protocol and the
DARK testbed are described in detail in documentation that will be provided with the code.
Included in this appendix is detailed information about the structure of the Interrupt Table,
the resources consumed by each Kernel primitive, the size of Kernel data structures, the
default values for Kernel tailoring parameters.

Appendix I - Index
An index to the Kernel User's Manual. This will be provided in the next version of this Idocument.

1.4. Applicable Documents
The following DARK Project reports describe the DARK Project and the Kernel. 3
1.4.1. DARK Reports
[Bamberger 88a] Bamberger, J. and Van Scoy, R. 3

Distributed Ada Real-Time Kernel.
In Proceedings NAECON "88. May, 1988.

(Bamberger 88b] Bamberger, J. and Van Scoy, R. 3
Returning Control to the User (where it belongs).
Position paper presented at the 2nd International Workshop on Real Time
Ada Issues, Devon, UK, June 1-3 1988. 3

[Bamberger 88c] Bamberger, J., Colket, C., Firth, R., Klein, D., Van Scoy, R.
Kernel Facilities Definition.

I
6 Kernel User's Manual, Version 1.0

Technical Report CMU/SEI-88-TR-16, ADA198933, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA 15213, July, 1988.

[Bamberger 88d] Bamberger, J., Colket, C., Firth, R., Klein, D., Van Scoy, R.
Distributed Ada Real-time Kernel.
Technical Report CMU/SEI-88-TR-17, ADA199482, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA 15213, August, 1988.

1.4.2. Other Documents
In addition, the following documents are applicable to the Kernel:

1. Reference Manual for the Ada Programming Language: ANSI/MIL-STD-1815A;
American National Standards Institute, Inc., New York, NY, 1983.

2. Motorola hardware manuals:

a. MVME225-1/MVME225-2 lMb/2Mb Dynamic Memory Module User's
Manual: Motorola Inc., 1988; Motorola publication: MVME225/D2.

b. The VMEbus Specficaion; Motorola Inc., October 1985, Motorola
publication: HB212/D.

c. MVME133A Debug Monitor User's Manual, Motorola Inc., June 1987,
Motorola publication: MVME133ABUG.

d. MVME133A-20 VMEmodule 32-Bit Monoboard Microcomputer User's
Manual; Motorola Inc., April 1987, Motorola publication: MVME133A/D1.

e. MVME945 Chassis User's Manual; Motorola Inc., February 1988, Motorola
publication: MVME945/D1.

f. MC68020 32-Bit Microprocessor User's Manual, Motorola Inc., 1985,
Motorola publication: MC68020UM.

g. M68000 Family Resident Structured Assembler Reference Manual;
Motorola Inc., April 1988, Motorola publication: M68KMASM/D1 1.

h. MC68230 Parallel Interface/imer (PI/T); Motorola Inc., 1983, Motorola
publication: ADI-860.

i. MC68881 Roating-Point Coprocessor User's Manual; Motorola Inc., 1987,
Motorola publication: MC68881 UM/AD REV 1.

j. MC68901 Multi-Function Peripheral Data Sheet, Motorola Inc., 1984,
Motorola publication: ADI-984.

3. MM58274 Real-Time Clock, Logic Data Book, Volume 1; National Semiconductor
Corp, 1984, IM-RRDISOMIZY.

4. MZ8305 Quad Parallel Port Module User's Manual; Mizar Inc., 1985, Publication
number: 7101-00024-0001.

5. Z8030 Z-BUS SCC/Z8530 SCC Serial Communications Controller, Zilog Inc.,
November 1987.

6. TeleGen2 - The TeleSoft Second Generation Ada Development System for
VAXIVMS to Embedded MC680X0 Targets User Guide;.TeleSoft, 1988.

7. OASYS User's Manual; Motorola 68000/10/20+68881 Cross-Assembler
Development System; OASYS, 1987.

8. Digital VAXIVMS manuals:

Kernel User's Manual, Version 1.0 7

I

a. VAX DEC/rest Manager UserlReference Manuaf, Digital Equipment Corp,
December 1985, Order number: AI-Z330B-TE.

b. VAX Language-Sensitive Editor User's Guide; Digital Equipment Corp, July 3
1985, Order number: AA-FY24A-TE.

c. Developing Ada Programs on VAX/VMS; Digital Equipment Corp, February
1985, Order number: AA-EF86A-TE. m

d. Guide to Using DCL and Command Procedures on VAX/VMS; Digital
Equipment Corp, September 1984, AA-Y501A-TE.

e. MicroVMS User's Manual, Digital Equipment Corp, April 1986, Order
numbers: 0LN55-GZ, Part 1 and Part 2, AI-FW62B-TN, Part 1,
AI-FW63B-TN, Part 2.

f. VAX DEC/MMS Users Guide; Digital Equipment Corp, August 1984, Order
number: AA-P1 19B-TE.

g. User's Introduction to VAX DEC/CMS; Digital Equipment Corp, November I
1984, Order number: AA-L371B-TE.

Other references:

[ALRM 83] American Nat!--:- , , ;
Refet,;:.. -aanual for the Ada Programming Language.
Technical Report ANSI/MIL-STD 1815A-1983, ANSI, New York, NY, 3
1983.

[ARTEWG 86a] Ada Runtime Environment Working Group.
A Catalog of Interface Features and Options for the Ada Runtime I

Environment.
Technical Report Release 1.1, SIGAda, November, 1986.
Version 2.1 (dated December 1987) is also available, but not
addressed by this document.

[ARTEWG 86b] Ada Runtime Environment Working Group.
A White Paper on Ada Runtime Environment Research and I

Development.

Technical Report, SIGAda, November, 1986.

[Dykstra 65] Dykstra, E. W. I
Cooperating Sequential Processes.
In Genuys, F. (editor), Programming Languages.
Academic Press, 1965.

[Firth 87] Firth, R.
A Pragmatic Approach to Ada Insertion.
In Proceedings of the International Workshop on Real- Time
Ada Issues, pages 24-26. May, 1987.

[KFD 88] Bamberger, J., Colket, C., Firth, R., Klein, D., Van Scoy, R.
Kernel Facilities Definition. I
Technical Report CMU/SEI-88-TR-16, ADA198933, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA 15213, July, 1988. m

[Rosenblum 87] Rosenblum, D.S.
An Efficient Communications Kernel for Distributed Ada Runtime

8 Kernel User's Manual, Version 1.0 I

I

I Tasking Supervisors.
Ada Letters, VII(2):102-117, March/April, 1987.

[Tanenbaum 811 Tanenbaum, S.
Network Protocols.
Computing Surveys, 13:453-489, 1981.

[Zimmermann 80] Zimmermann, H.
OSI Reference Model - The ISO Model of Architecture for Open
Systems Interconnection.
IEEE Transactions on Communications, COM-28:425-432, 1980.

II
I
I
I
I
I
I
I
I
I
I
I

IKernel Users Manual, Version 1.09

U
I
U
U
I
I
I
I
I
I
I
I
I
I
I
I
I
I

10 Kernel Useras Manual, Version 1.0

I
2. Kernel Models, Concepts and Restrictions

3 This chapter presents a set of models, concepts and restrictions on which the Kernel is based.

2.1. Definitions and Models
Two definitions are key to understanding Kernel models:

I . Ada task: An Ada language construct that represents an object of concurrent
execution managed by the Ada run-time environment (RTE) supplied as part of a
compiler (under the rules specified in the Ada Language Reference Manual (LRM),3 see [ALRM 83).

* Kernel process: An object of concurrent execution managed by the Kernel outside
the knowledge and control of the Ada RTE.

3 The preceding terminology is deliberately different from that of Ada. This is for two reasons:

1. To remind the application developer to think not in Ada terms, but rather in the
terms used by the Kernel.

2. To avoid the implication that the Kernel implements any specific function in a way
that resembles an existing Ada feature with that function.

I 2.1.1. Process Model
The Kernel presents to the application the abstraction of a process; that is, a concurrent thread of5execution. Elaborating on this general concept yields the Kernel's general process model:

1. Each process executes a unit of code, developed as a functional unit.

2. For each processor, the software engineer performs the following steps (illustrated
in Figure 2-1):

a. Develop the process code.

b. Develop the Main Unit for the processor; the function of the Main Unit is
explained later.

c. Compile the code of the processes and the Main Unit.
d. Link the Kernel, Main Unit, and processes together to form the load image

for that processor.

1 3. The load image begins execution at the initialization point of the Kernel, which in
turn invokes the Main Unit.

3 When developing a process, the software engineer need not know where the other processes will

be located - on a single processor or across multiple processors. The Kernel-supplied
communication primitives can be used for all inter-process communication, local or remote, with
the Kernel optimizing the local case. The load image begins execution in the Ada Main Unit (after
Kernel initialization). This Main Unit declares, creates, and schedules the processes in turn, and

then declares that process creation is completed. After that, the Main Unit is descheduled while

the processes continue to run independently.

Kernel User's Manual, Version 1.0 11

(a I Iri II 3 P 4 I , iva

I
. I

(b) 3

(C) Compile Compile U

(d) Kenl Ln enl Link

Processor a Processor b
Load Image Load Image

I

p " Process #i running on processor q. I
Main Unit: The Ada Main Unit running on the processor.

Merlin and Vivian are named for use in examples.

Figure 2-1: Load Image Creation I

I

12 Kernel User's Manual, Version 1.0 I

I

I The Main Unit is responsible for configuring the processor to meet the requirements of the
application. This must include:31. Participating in the network initialization protocol.

2. Declaring all remote communication partners.3 3. Declaring and creating all locally executing processes.

There are several optional activities that may be performed by the Main Unit, including:

3 1. Allocating non-Kernel devices to processes.

2. Reading time-of-day clock (which is required for the Main Unit of the Master
Processor).

3. Reporting system initialization failures to the external world.

4. Binding interrupt handlers,

5. Performing any system-dependent initializations (devices, buses, etc.).

In general, the Main Unit is the application entity that is responsible for configuring a processor in3 the manner needed by the application.

Given that there is one load image for each processor, which creates a set of processes as part
of its initialization, the issue of multiprogramming is moot. The application really comprises the
set of processes; the Main Unit exists only to ensure that all the processes get linked together
and started.

3 2.1.2. System Model
In light of the process model discussed previously, consideration must be given to the
environment in which these collections of processes are executed. This requires stepping back
from the "process-in-the-small" issues and considering some system-level or
"process-in-the-large" issues. The system model on which the Kernel is based is shown in Figure3 2-2. This view illustrates all the Kernel assumes about the target system:

" Three types of hardware objects in the network:

3 1. Kernel processors

2. Non-Kernel processors or devices (attached to the system bus)

3. Devices that may interrupt a processor

" No shared memory assumed (or excluded).

" No mass storage devices assumed (or excluded).

* Kernel alone interfaces directly to the system bus.

Given this model, the Kernel considers that:
The application comprises n Kernel processes formed into m Ada programs (load
images) running on m processors.

3 This requires that:

1. The user has a process or tool that allows for the static distribution of the m images
over the m processors in the configuration.

Kernel User's Manual, Version 1.0 13I

I

Main main Main
Unit Unit Unit

\-II
Merlin F9a b Vivian p1c 2 p3 P4 I
KERNEL KERNEL KERNEL I

Processor a Processor b Processor c

Device System Bus

Processor d Device Processor m 3
KERNEL KERNEL

main MainI
Unit Unit

p * d ,pl.Lancelot m I
I

q Process #i running on processor q. IPi

Main Unit: The Ada Main Unit running on the processor. 3
Merlin, Vivian, and Lancelot are named for use in
examples. I

Figure 2-2: System View

I
14 Kernel User's Manual, Verslon 1.0

U

2. The application developer has a process or tool to download the images into
processor memory.

3. The application developer has a mechanism to commence execution of the loaded
programs.

4. The application developer has tools to manipulate all needed disk/tape/bulk
memory accesses (if these are available in the embedded configuration).

3 2.2. ISO-to-Kernel Mapping
The Kernel communication model presents a set of primitives to the application, and implements
those primitives on an underlying set of distributed processors connected by data paths. The
model, the implementation, and the intended mode of use, can all be related to the International
Standards Organization (ISO) Reference Model (see (Zimmermann 801 and (Tanenbaum 81]),
which provide a conceptual framework for organizing the Kernel primitives, as shown in Figure
2-3. The ISO Reference Model identifies seven layers, named, from lowest to highest:

1. Physical

2. Data Link

3. Network

4. Transport

5. Session

6. Presentation

7. Application

U The target hardware provides Layer 1. The Kernel implements Layers 2 to 4, and therefore
presents to the application the Transport layer. The Kernel thus encapsulates within itself the
Data Link and Network layers, rendering them invisible to the application. The application code
can implement Layers 5 to 7, in part by using other Kernel primitives.

2.2.1. Physical Layer
The Physical layer Is represented by the hardware data paths, which support the transmission of
a serial bitstream between processors. These hardware data paths are used by the Kernel in a
packet switching mode; that is, a sequence of bits-a frame-is sent at the discretion of the
originator, with no implied reservation of resources or preservation of state between frames.

2.2.2. Data Link Layer
This is the layer at which basic error detection and recovery and flow control may be provided.
The Kernel uses a simple datagram model, in which a frame is transmitted with no
acknowledgment, no error correction, and no flow control. Minimal error detection is achieved by
using a datagram checksum,1 but any recovery is performed by application code, i.e., above the
Transport layer. Similarly, datagram storage overflow is recognized and reported by the
Transport layer.

3 I'NuIl in the current implementabion.

Kernel User's Manual, Version 1.0 15

I
I

Layer Kernel Equivalent

7 Application Created by user

6 Presentation Created by user

I
Kernel primitives: declare process, create process,5 Session allocate device receiver, and initialization complete

Kernel primitives: send message,
4 Transport send message and wait, and receive message

3 Network Null (can be built by user)

I 1 I
2 Data Link Datagrarn model

1 Physical Built by using Kernel primitives: network configuration I
table, initialize master processor, and initialize
subordinate processor

1 7I
Figure 2-3: ISO Model to Kernel Mapping

2.2.3. Network Layer I
Currently, the Kernel has a null Network layer. The Kernel assumes that point-to-point
communication is available between any pair of nodes (processors). Routing is accomplished
trivially in the sender by dispatching a point-to-point datagram directly to the receiver; no
alternative routing is provided.

I
16 Kernel User's Manual, Version 1.0 I

I

However, since the abstraction presented to the application is above this layer, a real Network
layer could subsequently be added without requiring any application code to be changed.

2.2.4. Transport Layer
The Kernel builds the Transport layer by performing physical network connections and
subsequent logical-to-physical mappings, actions that together implement the abstraction of direct
process-to-process communication by means of messages.

The physical network is described by a Network Configuration Table (shown in Figure 2-4), a
copy of which is maintained in each processor. This table is created by the application developer
and is communicated to the Kernel during application initialization. Once that information is
provided, the Kernel verifies the network connectivity and opens the physical connections
between processors.

ISubsequently, the logical processes and their physical sites are communicated to the Kernel.
The model on which the Kernel is based assumes that all processes are created at initialization
time, that a process never moves, and that a process once dead is never restarted. The Kernel
therefore computes the logical-to-physical mapping once only and never subsequently changes it.
Attempts to communicate with dead processes are treated as transport errors.

The Transport layer also performs the conversions between messages and the underlying
datagrams. Currently, this is done trivially by using one datagram per message or per
acknowledgment, and i necessary by restricting the maximum message size accordingly.

The Transport layer is the layer visible to the application. It supports unacknowledged send
operations and end-to-end acknowledged send operations. All errors detected in this or any
lower layer are reported at this layer, in the form of status codes returned by the Kernel primitives.

2.2.5. Session Layer
This layer is implemented by application code. Since it establishes logical connections between
processes, its presence is required, and the application developer must write specific code to
create it. This code is part of the application Initialization code; it must be present on every
processor and, in Ada terms, must be part of the Main Unit on that processor.

The model is one of a set of logical processes, each with an application-defined name and each
with a single message port for the reception of messages from other processes.

The Kernel primitive declare.process indicates an intent to create or communicate with a given
named process. It establishes the mapping between application-level process names and Kernel
internal names.

The Kernel primitive createprocess creates the process, establishes its message port, and
makes that port available to the network. Thereafter, one process may communicate with

*another.

I
Kernel User's Manual, Verslon 1.0 17I

I

2.2.6. Presentation Layer i
In the Kernel model, the Presentation layer performs no transformation of data. Rather, it
performs the translation between Ada values - values of application-defined data types - and I
message values. This is done by application code. The purpose of the Presentation layer is to
establish above the Transport layer the strong typing of the Ada language, by ensuring that
communicating processes pass only strongly typed data and do so by referencing a common set I
of data conversion routines bound to a common Ada data type.

2.2.7. Application Layer I
This layer uses the Presentation layer for whatever purpose the code requires. The model here
is of parallel independent threads of control executing Ada code, identifying each other by
application-level symbolic names, and communicating by passing values of Ada data types.

2.3. Processor Management I
There are two steps to using the system model shown in Figure 2-2. Note that the initialization of
the system topology has been deliberately kept simple. This facilitates the development of the I
Kernel, keeps the initialization interfaces simple and allows the users of the Kernel to develop
more readily their own system-specific initialization software. First, the physical topology of the
system must be defined; secondly, the system must be initialized. The approach taken to I
achieve the first step requires that the application engineer first define the network configuration
in a manner that the Kernel understands. This is done using the Network Configuration Table
(NCT) shown in Figure 2-4.

I
I

Logical Physical Kernel Needed Allocated Initialization Initialization
Name Address Device To Run Process ID Order Complete

I
I
I

Figure 2-4: Sample Network Configuration Table (NCT)

This table provides the minimum information needed by the Kernel to perform system initialization
and its inter-process communication functions. It is supplied by the application to the Kernel; it is

I
18 Kernel User's Manual, Version 1.0

I

I implementation and hardware dependent and is available to the application for implementation of
higher levels of network integrity. For each device accessible over the network, this table defines
the following information:

* Logical name: Logical (string-valued) name for the device.

* Physical address: Hardware-specific information needed to access the device over
the system bus.

" Kernel device: Identifies those devices that are able to respond to messages. It is
possible to communicate with non-Kernel devices, but they are not expected to
participate in the network initialization protocol or to understand the Kernel's
datagram. Non-Kernel devices place the burden of initialization and message
formatting upon the application. That is, the Kernel routes messages to and receives
messages from non-Kernel devices, but it is the responsibility of the application to
format and unformat these messages.

" Needed to run: Identifies those devices that must be available at initialization time in
order for the application to begin execution. This could be used to mark failed or
spare devices at startup.

* Allocated process ID: Identifies the recipient of all messages that originate from a
non-Kernel device. This approach requires that the non-Kernel device be able to
route the message to the appropriate node.

" Initialization order: Identifies the order in which the Kernel nodes of the network are
to be initialized. The default, unless specifically overridden, is for the nodes to
initialize in the order in which their entries occur in the NCT.

* Initialization complete: Identifies those Kernel nodes whose initialization sequence
has successfully terminated.

To achieve the second step, the Kernel has defined a simple initialization protocol. This protocol
requires that one processor, called the Master, be in charge of the initialization process. All other
processors in the network are subordinate to this processor during the Kernel's initialization
process. The Master is responsible for:

e Ensuring the consistency of the NCT among all the subordinate processors.

e Issuing the "Go" message to all the subordinate processors.

Some key points about this protocol are:

" The Master processor is a single point of failure in the system. If the Master fails toinitialize, however, a subordinate may attempt recovery by declaring itself Master
and attempting to reinitialize the network.

i The Master assumes it has the correct and complete version of the Network
Configuration Table.

" The distinction between Master and subordinate used by the Kernel is in force only
during system initialization.

* All subordinates must be running before the Master may run.

i If any of the following problems occurs at initialization, then the network may fail to
become operational:

1. No Master processor declares itself.

Kernel User's Manual, Version 1.0 19

I

2. The Master processor fails to initialize successfully. I

3. More than one Master processor declares its presence.

4. The Network Configuration Tables are found to be inconsistent.

These points can be addressed by application-specific fault tolerant techniques (redundant
hardware, voting schemes, etc.), which are in the domain of the application, not the Kernel.

The primitives provided by the Kernel to support this functionality are:
" Initialize_Master processor. Identifies the invoking processor as responsible for

network initialization.

" Inittalizesubordinate processor. Identifies all other processors and instructs each
to wait for the go command from the Master.

2.4. Schedule Management
The scheduling paradigm used by the Kernel is a simple, prioritized, event-driven model that
permits the construction of preemptive, cyclic, and non-cyclic processes. To achieve this, there
are four types of events in this model:

1. Receipt of a message (synchronous event).

2. Receipt of a message acknowledgment (asynchronous event).

3. Expiration of a primitive timeout (asynchronous event).

4. Expiration of an alarm (asynchronous event).

The scheduling primitives are discussed below, and the alarm primitives are discussed later. This
paradigm allows an application process to be implemented as:

* A non-cyclic process that executes until preempted by a higher-priority process.

" A set of non-cyclic processes that execute in a round-robin, time sliced manner.

" An event-driven process that blocks when trying to receive a message. It is
resumed, from the point of suspension, when it is able to proceed and when the
priority admits. I

* An event-driven process that blocks itself for a specified period of time (or
equivalently, until a specific time) and is resumed at a specific priority (this allows a
"hard" delay to be implemented). I

* A cyclic process that continuously executes a body of code (and that can detect
frame overrun).

To support these paradigms, the following set of scheduling attributes is defined:

ePriority:

* Every process has a priority.

• Priorities are relative within one processor; priorities are incommensurable
across processors.

* A process may change its priority dynamically.

20 Kernel Usw's Manual, Version 1.0 I

1

• Priorities are strict and preemptive; higher-priority processes always shut out
lower-priority processes.

• Blocking primitives allow the caller to specify a resumption priority, which may
be different from the priority at the point of invocation. The resumption priority
becomes the priority of the process when it unbiocks.

I Timeslice:

- The maximum length of time a process may run before another process of the
same priority is allowed to run.

• A property of a set of processes on the same processor and all of the same
priority.

* Time slicing cannot override priority; it applies only among processes of equal

priority.

i Any process may enable or disable time slicing for the entire processor.

* Any process may set the timeslice quantum.

- A process may allow (or disallow) itself to be sliced by setting its preemption
status (if preemptable, the process may be time sliced; if not preemptable, the
process may not be preempted by another time sliced process of the same
priority).

Thus, the following Scheduler rules are universally applied:

1. Scheduler order does not change spontaneously.

2. Scheduler ordering is decided by:

a. Higher priority before lower priority

b. Prefer a process in an error state (to one in a normal state)

c. First-in first-out (FIFO) order otherwise

In other words, in all Scheduler situations, where priorities are equal, a process in
an error state will be resumed preferentially; otherwise, the process first to become
unblocked will be resumed.

3. When two processes become unblocked simultaneously, the process that has been
blocked longest is considered to become unblocked first.

These scheduling rules are simple, fast and easy to implement. This allows for a quick
implementation and a clean interface to be specified. Thus, when combined with the scheduling
primitives outlined below, the application developer has the capability to tailor the Scheduler to
meet the application's needs (rather than tailoring the application to fit into the Scheduler's
regime).

Given this scheduling regime, a process is always in one of four states:

*Running A running process is executing on its processor, and it continues to run
until something happens. If interrupts are enabled, they occur transparently unless
they cause a change of process state. A running process ceases to run when it:
dies, invokes a blocking Kernel primitive, is time sliced, is killed by another process,
or is preempted by a higher-priority process. The first three are voluntary actions on
the part of the process, while the last two are actions performed by the Kernel.

I
Kernel User's Manual, Version 1.0 21I

I

" Suspended: A suspended process is able to run, but cannot run because a process
of higher or equal priority is running. A process may be resumed when the running
process blocks, lowers its own priority, or is time sliced.

* B/ocke. A blocked process is unable to run. A process may only become blocked
as a result of its own actions. These blocking actions are waiting for the arrival of a
message, the arrival of a message acknowledgment, a specific duration, a specific
time, or the availability of a semaphore. A process becomes unblocked when the
awaited event occurs (at which time the process transitions to the suspended state).
An unblocked process does not immediately resume execution; it resumes execution
only when the Scheduler so decides. But, the process can affect this decision by I
specifying a resumption priority in the primitive invocation.

" Dea. A dead process is unable to run again. A process dies in one of five ways: by
completing execution, an unhandled exception, an unrecoverable error, by killing I
itself, or by being killed by another process. Processes are not expected to die, and
any subsequent attempts to interact with a dead process result in errors.

These states and the transitions between them are shown in Figure 2-5. I

Dead KilBlocked laI spne

Label: Krn-itaad actbon

Label: Kerne#lnltlated action

Figure 2-5: Process States

For instance, a running process becomes blocked by trying to receive when no message is
pending. It becomes unblocked (but suspended) when the message arrives. It becomes running I
when its priority permits. A running process can also call wait, to block itself at any time. A
blocked process becomes suspended and thus ready to run when its delay expires. Further, a
running process may be preempted, that is, forcibly suspended by the Scheduler, to allow a I
higher-priority process to resume or to be time sliced.

I
22 Kernel User's Manual, Version 1.0 I

!

IThe primitives provided by the Kernel to support this functionality are:

i Set processjpriority. A process may set its own priority.

* Get processpriority. A process may get its own priority.

* Setprocesspreemption. A process may set its own preemption status.

Getjprocess preeption. A process may get its own preemption status.

* Wait. The invoking process suspends itself for a specified duration or until a
specified time occurs. The priority at which the process is to be resumed may also
be specified.

" Set_timeslice. Defines the time slice quantum (only processes of equal priority are
time sliced).

" Enable_time_slicing. Enables the Scheduler to perform round-robin, timeslice
scheduling.

-* Disable_time_slicing. Disables round-robin, timeslice scheduling.

2.5. Time Management
The concept of time permeates the entire Kernel. Many of the Kernel concepts and primitives
rely on time, specifically:

* Network management uses time for initial clock synchronization and for timeout
parameters in the primitives initialize_-Master processor and
initializesubordinatejprocessor.

* Process management requires time for the timeout parameter, in the
initializationcomplete primitive.

*Schedule management uses time for round-robin, timeslice scheduling and for
delays via the wait primitive.

" Communication management requires time for timeout operations in the
receive_message and sendjmessage_and_wait primitives.

" Alarm management uses time for setting alarms via the set alarm primitive.

* Semaphore management requires time for a timeout operation in the claim primitive.

To support these primitives, the Kernel contains facilities for time management, both for its own
use and to make available to the application code. In all cases, two forms of delay are available
to the application:

" Delay For: This computes the delay as elapsed time from the moment the primitive is
called. The delay is therefore a value similar to Ada type DURATION.

" Delay Until: This delays until a specified time of resumption. The delay is therefore a
value similar to Ada type TIME.

The rationale for the two types of delay is that they express fundamentally different concepts. For
example, if a certain action should be performed daily at midnight, it is not correct to perform the
action "every 24 hours," since successive midnights are not always 24 hours apart. Similarly, if
an action should be performed every 5 minutes, it is not correct to schedule three such actions for

I
Kernel User's Manual, Version 1.0 23I

I

0155, 0200, and 0205, since 65 minutes might elapse between the second and third (i.e., the
clock might have been reset).

The application programmer must be able to choose the type of delay needed. Note also that
resetting the system time affects the two types of delay differently.

The current design assumes that all the target processors can use a common time base and
record the passage of time at the same uniform rate. There are some real-time applications for
which this assumption is unrealistic, however, since the processors will be distributed across 3
several different inertial frames of reference, but it will serve for the current implementation.

At any moment, on any processor, the current time is given by a combination of three values: 3
1. Elapsed. The elapsed time is the number of ticks since the end of the application

initialization process.

2. Epoch. The epoch time is a value representing the moment at which the
processors began to compute elapsed time.

3. Base. The base time is the calendar date corresponding to an epoch of zero, i.e.,
the base of the representation of time.

The representation chosen for both epoch and elapsed is fine enough to allow accurate
measurement and large enough to allow code to run for a very long time. Thus the current time I
of day = Base + Epoch + Elapsed.

Time is set initially on the Master processor by the application. This is done either by hand, I
during operator dialogue, or by reading a continuously running hardware device. The processors
may then synchronize system time by having this processor use the Kernel primitive synchronize.
This gives the application complete control over when to synchronize system time. Once the
clocks are synchronized, the Kernel does not attempt to maintain the synchronization. The
processors resynchronize only as a result of deliberate action by application code. 3
Three forms of resynchronization are supported:

1. The elapsed time for any processor can be changed by an explicit command. This
is to be used when one processor's time computation has gone awry. It has the
effect of changing pending delays of either kind, since increasing the number of
elapsed ticks makes the machine think both that it has been running longer and that
it is later in the day.

2. The epoch time of any processor may be changed. This is to be used if it is
discovered that the original time setting was wrong. It has the effect of changing
any pending delay-until actions, since increasing the epoch makes the machine
think it is later in the day, but does not change how long it thinks it has been
running.

3. The Kernel provides a primitive that explicitly synchronizes all the clocks in the
network.

The primitives provided by the Kernel to support this functionality are: I
* Adustiepoch-ime. Resets the local processor's epoch time to the specified

date/time.

24 Kernel User's Manual, Version 1.0

I
I_

* Adjust_elapsed_time. Increases or decreases the local processor's elapsed time by
the specified amount.

* Read_clock. Reads the current elapsed time from the local processor clock.

* Synchronize. Resets the clocks on all the processors in the system the time on the
I invoking processor.

2.6. Process Management
To use the process model, the application must have a globally unique name for each process.
These names have two forms:

1. The logical name given to the process by the developer, encoded in Ada as a
character string, and

2. The internal name given to the process at runtime by the Kernel.

Hereafter, the internal name of a process is called the process ID or process identifier, the term
process name refers to the logical name of the process. However, knowing the name of a
process does not guarantee the availability of the process at runtime. This is one class of faults
that the Kernel is able to detect and report.

The primitives provided by the Kernel to support this functionality are:

" Declare process. The Main Unit on a processor declares all locally executing
processes and all remote processes and non-Kernel devices with which
communication occurs.

" Create process. The Main Unit on a processor creates all Kernel processes that are
to execute on that processor (these may be cyclic or non-cyclic).

" Initializationcomplete. The Main Unit indicates to the Kernel that all process
declarations and creations are now complete.

* Die. A Kernel process may indicate that it is complete and ready to terminate
normally. Once terminated, the process may not run again.

" Kill. A Kernel process may cause itself or another process to be abnormally
terminated. This is an emergency stop operation on a process.

1 2.7. Semaphore Management
The Kernel provides the traditional Boolean ("Dykstra") semaphore facility [Dykstra 651, slightly3 modified to be consistent with the overall philosophy of the Kernel primitives.

A semaphore Is an abstract data type. Objects of this type may be declared anywhere, but since
semaphores are used to build process synchronization systems, they are clearly best declared in
the Main Unit of a processor. A semaphore is visible only on the processor on which it is
declared, and therefore can be used only by processes local to that processor.

I At any time, a semaphore is in one of two states:

* FREE: The semaphore is free, or

Kernel Users Manual, Version 1.0 25

* CLAIMED(N): The semaphore is claimed, and N processes are awaiting its release.
These processes are blocked on a FIFO queue associated with the semaphore.

The primitives provided by the Kernel to support this functionality are:

* Claim. The invoking process attempts to claim the semaphore. The claiming
process blocks until the semaphore becomes available or the timeout expires. I

" Release. The invoking process releases a previously claimed semaphore. I
2.8. Communication Management
The communication model is based on the following premises (and is similar to that presented in
[Rosenblum 87]):

* All communication is point-to-point.

" A sender must specify the recipient.

" A recipient gets all messages and is told the sender of each.

" A recipient cannot ask to receive only from specific senders.

" Messages do not have priorities.

The purpose of a message is to convey information between processes. To the Kernel, a I
message is just a sequence of uninterpreted bits. The Kernel provides the untyped primitives; the
application developers may build above them whatever application-specific functionality is
needed. Communication between processes on a single processor is optimized.

Figure 2-6 illustrates this communication model. In this figure, process Merlin on Processor a 3
sends a message to process Vivian on Processor b. This is accomplished by Merlin informing
the Kernel of the message content and the logical destination of the message (i.e., Vivian). The
Kernel on Processor a takes this message, formats the datagram to hold the message, and I
transmits the datagram over the network to Processor b, where it knows Vivian resides. When
the message arrives at Processor b, the Kernel there rebuilds the message from the datagram
and queues it for Vivian until Vivian requests the next message. If Merlin had wanted I
acknowledgment of message receipt by Vivian, the Kernel on Processor b would have formatted
an acknowledgment datagram and sent it back to Processor a after Vivian had asked for (and
received) the message.

The primitives provided by the Kernel to support this functionality are: 3
* Send_message. Sends a message from one process to another, without waiting for

acknowledgment of message receipt.

" Send_mesageand_wat. Sends a message from one process to another, and the
sender blocks while waiting for acknowledgment of message receipt or until an
optional timeout expires.

" Receivemessage. Receives a message from another process, blocking until a 3
message is available or an optional timeout expires. The Kernel automatically
perfcrms any required acknowledgments.

26 Kernel User's Manual, Version 1.0

I

Processora Processor b

Unit Unit

'
I5n Mssg 3 P Receive

to Vivian Message

I Send Reive

Primitive Kom PrimitiveI

5 Message Text

0Message Tag

oMessage Length

Receiver's Process Identifier

Sender's Process Identifier

i.--fo Receiver's Processor Identifier

6 Sender's Processor Identifier

" Remote Timeout
L-40-Message Identifier

I Kernel Operation

Figure 2-6: Datagram Network Model

* Allocatedevicereceiver. Identifies a Kernel process to receive all messages from a3 "non-Kernel device.

I 2.9. Interrupt Management
This section outlines the interrupt control prmitives provided by the Kernel. There are two parts
to the Kernel's view of interrupts: interrupts themselves and interrupt handlers. The interrupt
model used by the Kernel is based on the following premises:

There are devices that can interrupt the processor.

3 * There are three classes of interrupts:

1. Those reserved by the hardware and the Ada runtime environment3(divide-by-zero, floating-point overflow, etc.).

Kernel User's Manual, Version 1.0 27I

I

2. Those reserved by the Kernel (such as the clock interrupt). I

3. Those available to the application (everything not in 1 and 2 above).

All the primitives described below apply only to the third class of interrupts.

" The device interrupt may be either enabled or disabled. If the interrupt is disabled,
the device cannot interrupt, regardless of how badly it might want to. I

" The Kernel does not queue interrupts nor does it hide hardware-level interrupt
properties, such as queueing of interrupts, interrupt priorities, or non-maskable
interrupts.

" Interrupts are events local to a processor and cannot be directly handled or bound by
processes running on a different processor.

The model used for interrupt handlers is:

" An interrupt handler is an Ada procedure with no parameters (or some other code
unit following the Ada procedure-call conventions of the target compiler).

" Interrupt handler code can access procedure local or processor global memory.

" Interrupt handler code has access to all the Kernel primitives; the only restriction is
that a handler is not allowed to block its own execution.

" If an interrupt is enabled and a handler is bound, then the occurrence of the interrupt
transfers control to the bound handler, which is code the application developer has I
supplied.

The primitives provided by the Kernel to support this functionality are: 3
" Enable. Allows processing for a specific interrupt to occur.

" Disable. Disallows processing for a specific interrupt from occurring. 3
" Enabled. Queries whether a specific interrupt is enabled or disabled.

" Simulate interrupt. Simulates the occurrence of a specific interrupt in software. 3
" BindinteffupLhandler. Asserts that an Ada procedure has been identified as an

interrupt handler and is to be executed when the specified interrupt occurs. I
2.10. Alarm Management
Alarms are: !

" Enforced changes in process state.

" Caused by the expiration of a timeout. 3
" Asynchronous events that are allocated on a per-process basis (each process may

have no more than one alarm). 3
Processes view alarms as a possible change in priority with an enforced transfer of control to an
exception handler. Alarms are requested to expire at some specified time in the future. When an
alarm expires, the Kernel raises the alarm expired exception, which the process is expected to I
handle as appropriate. If a zero or negative duration or an absolute time in the past is specified,
the alarm expires immediately. Alarms are intended for use in the construction of cyclical
processes. I
28 Kernel User's Manual, Version 1.0

I

i The primitives provided by the Kernel to support this functionality are:

i Set_alarm. Sets a timer to expire after the specified duration or at the specified time.

* Cancelalarm. Cancels an unexpired alarm.

i 2.11. Tool Interface
The Kernel is a utility intended to support the building of distributed Ada applications. As such, it3 is important that the Kernel work in harmony with user-developed support tools. To provide that
support, the Kernel must provide a window into its internal workings. It is envisioned that a tool is
simply another Kernel process executing on one or more of the processors in the network. As
such, the tool has access to all the Kernel primitives. Using the Kernel primitives along with the
tool interface primitives, tools to monitor system activities (such as process performance, network3performance, processor performance or message throughput) can be built.

Given the above motivation for the tool interface, the actual form of the interface is driven by the
following concepts:I The tool needs easy access to all the information of the Kernel without expending

system resources to do so.
The extraction of information based on what the Kernel knows is left to the tool (and
indeed, it is deemed to be the function of a tool).

i The internal Kernel information must be provided in a manner that does not
compromise the integrity of the Kernel; this implies a read-only access to the
Kernel's internal data structures.

i The performance impact of using the tool interface must be predictable and
bounded.

" An application should never have to be modified simply to use a tool (while this may
not always be possible, it is nevertheless a desirable goal).

In general there are two classes of Kernel information that may be of interest to a tool: process
information and interrupt information. The primitives defined below describe the information
available and the mechanisms provided to access this information.

• Begincollection. Begins logging state change information for the specified process.
The data are logged via a message formatted by the Kernel and delivered to the tool
process.

• Endcollection. Terminates the logging of state change information for the specified3 process.

* Read processtable. Copies the Kernel's process table into application memory.
i * Read interrupt_table. Copies the Kernel's interrupt table into application memory.

I
I

Kernel User's Manual, Version 1.0 29I

I
U

2.12. Error Model

All Kernel specifications document those assumptions, preconditions, and postconditions that
hold for all Kernel primitives. This section describes the context in which that documentation is to
be interpreted.

The Kernel provides the capability to selectively enable and disable error processing. This
provides an application with the capability to detect and handle only those errors that cannot be
asserted by the application never to occur once the application has become operational. This U
capability is also described in this section.

2.12.1. Assumptions I
There are certain conditions for which the Kernel does not explicitly check but assumes hold true
prior to any invocation of a Kernel primitive. These assumptions must be guaranteed valid by the
application prior to any Kernel call. Examples include:

" The Kernel assumes that the Network Configuration Table is never modified by the
application. 3

" The Kernel assumes that a process identifier has been created via a correct and
legal invocation of the Kernel primitive declarejprocess.

" If error checking for ifflegaL context_for_call is disabled, the application Is asserting,
and the Kernel assumes, that no Kernel primitive will be called in an illegal context.
If this assumption is violated, the Kernel protects itself, but does not guarantee
correct or sensible execution from the point of view of the application.

2.12.2. Preconditions
There are certain conditions that the Kernel checks upon invocation. These preconditions, once
validated, are assumed to remain valid during the processing of the Kernel primitive. Should a
precondition not be satisfied (i.e., the validity test fails), then an error condition exists. If the
respective error checking is enabled, the application is notified via a Kernel exception. If error I
checking is not enabled, the Kernel takes action to protect itself but then returns to the application
program; no exception is raised. The following examples constitute error conditions:

* Precondition is false on call; there is an error on Kernel invocation. For example:
the calling unit of the Kernel primitive declarejprocess is not the Ada Main Unit.

* Precondition is asynchronously invalidated before call terminates; an asynchronous
problem arises. For example: a timeout on a call to the Kernel primitive
sendmessageaand_wait has expired.

An error of the first kind, where the precondition is false on call, always results in an immediate
return to the application, without blocking. An error of the second kind, where the precondition is
invalidated before completion, causes a return after some interval of time, during which the caller 3
is blocked.

I

I

I

I 2.12.3. Postconditions
The Kernel also requires that all expected postconditions be achievable. Should a required
postcondition not be satisfied, then an error condition exists. The following example constitutes
an error condition:

l The postcondition cannot be established, there is a failure of the virtual machine.
For example: a hardware/network failure has occurred.

A postcondition error might be capable of being detected on invocation or might be detected only
after some time, and so the caller might or might not have been blocked.

2.12.4. Mechanism for Error Reporting
The Kernel reports all error conditions to the invoking process by raising an Ada exception. A list
of Kernel exceptions and the Kernel primitives and actions that may cause them to be raised isg provided in Appendix B.

Wherever possible, the Kernel detects errors locally on the processor running the invoking
process. To do this, the Kernel relies on its local copy of information representing global or
remote state. A rule of this implementation is that a local copy might lag, but cannot lead, the true
remote state it represents. For example, if a local process table indicates that a remote process
is dead, that process has indeed died.

2.12.5. Enabling and Disabling Error Reporting
Many of the status codes reported by the Kernel are diagnostic in nature and appropriate only for
software testing and integration. Given that the Kernel is intended for use in operational real-time
systems, a means is provided to disable run-time error checking and reporting by the Kernel.
Figure 2-7 presents the template used throughout the Kernel to achieve the selective enabling
and disabling of the error checking it performs.

3For each Kernel error check that could raise an exception (label (B) in Figure 2-7), the Kernel
provides a generic formal parameter (label (A)) that is used to enable or disable error checking
and reporting. The default status of all error checking parameters is enabled (i.e., true): error
checking and reporting is to be performed upon every invocation.2 In the body of the subprogram
where the check is performed, there are two if-statements (labels (C) and (F)); tne first for the
case where error checking is enabled; the second for the case where error checking is disabled.
Within each alternative, the error check is performed (labels (D) and (G)); in this case it is a
simple call to a subprogram that encapsulates the check. Should the check fail and checking be
enabled, the appropriate exception will be raised (label (E)). Should the check fail and checking
be disabled, the Kernel will do minimal processing and will return to the invoker of the Kernel
primitive (label (H)).I

2This capability is predicated upon the compiler's ability to detect, and thus not generate code for, non-reachable Ada
source code. Error-checking code that is potentially to be eliminated would be wrapped within an if-statement having the
generic formal parameter aits test Since this depends upon a compiler-dependent optimization, all lines dealing with
error checking and reporting have been tagged with the sentinal: -ERROR at the end of each line; this way, the code
could be "stlpped' of all lines carrying this sentinel, achieving the same effect as though the compile-time optimization
had been performed.

Kernel User's Manual, Version 1.0 31I

I

generic

-(A)--
calling_uniLnotMainUnit_enabled :in Boolean := true;

package generic-process managers Is

callingunit_notMain_Unit exception ...; - (B) --

procedure declare.process (...);
end generic_processmanagers;

package body genericprocessmanagers is

procedure declareprocess (...) is

begin

if callingunit.notMain_Unit_enabled - (C) -- check enabled alternative
then

if not callingunitis_Main_Unit - (D) -- check performed
then 3
raise callingunit_notMainUnit; - (E) -- exception raised

end if; -- check fails
end if; -- check enabled

if not callinguniLnotLMain_Unit_enabled - (F) -- check NOT enabled alternative
then 3
if not callingunit_isMain_Unit - (G) - check performed

then

return process_table.null..process; - (H) -- self-protection processing
end if; - check fails

end if; -- check not enabled 3
end declareprocess;

end genericprocessmanagers;

Figure 2-7: Template for Enabling I Disabling Kernel Error Checking

It should be noted that the Kernel always performs minimal error checking to ensure its own
integrity; the Kernel never endangers itseif.

Should the application developer choose, error checking may be disabled. This is an assertion to
the Kernel that either the specific error does not occur, or if the error does occur, the application
has other means of detecting that the requested action has not been performed as it would have
been under non-error conditions.

3
32 Kernel User's Manual, Verlon 1.0!

I

I 2.13. Restrictions
A number of restrictions are imposed on the form of the application code. They are presented
here with justification in italics:

1. The Kernel neither implements nor supports Ada tasking semantics. This is in
keeping with the design goal of making explicit control that is now implicit. This also
reflects the desire of the project team to be as compiler independent as possible.
Supporting Ada tasking semantics in addition to Kernel process semantics would
require a higher degree of compiler-specific integration than is desired.

2. Inter-process communication is provided by explicit use of Kernel primitives. This is
a manifestation of the explicit operation versus the implicit operation.

3. No Ada tasking primitives may be used by the application. This preserves the goal
to replace the implicit operations of Ada tasking with explicit operations of Kernel
processes and to avoid having two runtime systems in the processor competing for
control of the hardware clock.

4. Each processor has its memory completely loaded at download time. This is a
simplifying assumption for the Kernel implementation. The Kernel operates under
the restriction that all processes and all data are memory resident at all times. This
does not prohibit the application from building processes that can be rolled in andout of memory.

5. The hardware configuration is static throughout the execution of the application.
This is a simplifying assumption imposed to make the development effort of the
Kernel a manageable activity. Hardware description tables are modularized so that
adding dynamic hardware configuration could readily be accomplished.

6. All Kernel processes are created statically and scheduled dynamically. This is a
simplifying assumption imposed to make the development effort of the Kernel a
manageable activity. All internal data structures and subprogram calls are
sufficiently modularized so that adding dynamic reconfiguration could readily be
accomplished. The goal of dynamic reconfiguration was kept in the foreground
during design of the Kernel to achieve this.

1 7. Initialization is not a time-critical function. This is considered to be a simplification,
as system and Kernel initialization is most often hardware- and application-specific.
Initialization-related information is isolated so that an application can readily replace
the Kernel-provided initialization modules. For this prototype, initialization is treated
as a one-time operation done at system startup and, thus, is treated as not time
cntial.

8. The Kernel does not implement fault tolerance, but it does detect the presence of
certain classes of faults (defined in Chapter 4). These include: failure of the
network and the processor on which the application executes. The Kernel detects
certain system faults, but it leaves the recovery from these faults in the hands of the
application. The Kernel provides the capability for an application to build some
rudimentary degree of fault tolerance.

9. The Kernel does not use shared memory between processors. The Kernel's
reliance on special hardware, such as shared memory, would restrict the portability
of the Kernel, which is a project goal. However, there is nothing to preclude a port
of the Kernel to a system that does have shared memory. This task would require
reworking of more than the expected pieces of the Kernel to take full advantage of
shared memory.

10. Any Kernel process may communicate with any other Kernel process. This

I
Kernel User's Manual, Version 1.0 33I

I
U

restriction simplifies the Kernel by placing the burden of restricting communications
on the system or software engineer. Management of system process names thus
becomes a configuration management issue within the application.

11. The Kernel does not implement any paging or memory management facilities. The
Kernel assumes all processes on one processor execute in the same unchanging
address space.

3I
I
I
I
I
I
I
I
I
I
I
I
I

34 Kernel User's Manual, Version 1.0I

I

1 3. Concept of Operations
3 This chapter provides an overview of a Kernel process-what it is, how it is named, how it is

created, what actions it may perform-and presents an outline of how to build an application
using Kernel processes. This section does not provide details about tailoring the Kernel for any
hardware or application (see Appendix C for that information) or descriptions on design
methodologies (see Appendix G).

1 3.1. Kernel Processes
A Kernel process is a unit of code that executes in parallel with other units of code. It can
communicate with other processes (see Section 4.7), can arrange to be executed at certain times
(see Section 4.8), and is otherwise under the control of the DARK Scheduler (see Appendix D).

1 3.1.1. Form of a Kernel Process
In Ada terms, a process is a procedure with no parameters. The process begins execution at the
start of its declarative region and ceases execution if it reaches the end of its statement
sequence. This means that a process that is intended to run forever must be coded with an
explicit loop statement.

A Kernel process may:

* Declare local variables

* Call Ada subprograms

* Call Kernel primitives

* Reference objects declared in packages that are Ada compilation units

* Call the Ada allocator

A Kernel process must not.

" Reference objects declared within other Ada subprograms (the Kernel's process
encapsulation cannot set up the correct access paths to such objects)

" Be anything other than an outer-level procedure

3 * Use the Ada tasking features (Ada Reference Manual, Chapter 9)

3.1.2. Setting Up a Kernel Process
SThere are four steps in setting up a Kernel process:

1. Writing the code as an appropriate Ada procedure, in an appropriate context (see
Section 4.6.1.2).

2. Naming the process uniquely and declaring it to the Kernel

3. Computing the resources that are required to execute the process

3 4. Creating the process environment

K
Kernel User's Manual, Version 1.0 35I

I

These steps are explained in detail below. Note that, even after it has been created, a process is

not yet executing. This is discussed in Section 3.1.3.

3.1.2.1. Writing the Code
In general, the code of a Kernel process follows a standard pattern:

1. Initialization, followed by a !

2. Transaction loop.

Initialization declares local variables, performs any handshake with other processes, sends or I
awaits startup messages, and so on. The transaction loop then executes repeatedly, as long as
the process exists, performing one transaction per iteration. 1

A transaction represents a single execution of the main algorithm of the process, for example:

" Receiving, decoding, and executing a command. I
" Receiving, inspecting and forwarding a message.

" Reading a sensor and updating a data store.

The transaction processing code often does the following:

1. Awaits preconditions,

2. Receives input data,

3. Performs computation, 3
4. Generates output data, and

5. Cleans up and prepares for the next iteration. 3
The preconditions must be true before the process may proceed with that iteration. Some typical
preconditions are: data must be available, a fixed time must have elapsed since the last iteration,
a device must have changed state. The process code therefore invokes the appropriate blocking I
Kernel primitive to wait for the precondition.

3.1.2.2. Naming the Process I
The process should be given a logical name consistent with its function, such as:

" "comm interface" 3
" "data reduction"

9 "control table manager"

These names must be globally unique across the distributed network, and indeed they are the
only names that have a network-wide meaning. I
In addition, a process must have an internal process identifier on the node where it is sited and
on every other node that has to be aware of it. These process identifiers are execution-time
values that are usually stored in named Ada variables. These variables should also be given
useful names, which might simply reflect the process logical name:

36 Kernel User's Manual, Version 1.0

I

crninterfaceID :- declareprocess ("com interface");

I or which might reflect the role the process plays, as viewed by the node in question:

datasource :- declare process ("Position Sensor Reades");

The name of the process identifier is used in all subsequent invocations of Kernel primitives.

3 3.1.2.3. Computing the Resources
For each process, the application programmer must specify the main resources that it requires:

3 !* Incoming message queue, and

e Process stack.

3 The first, the incoming message queue, holds messages sent to the process that have arrived at
its local site but have not yet been requested by the receiver via a call to the Kernel primitive
receivemessage. This buffer should be large enough to hold, in effect, the largest anticipated
queue of pending messages. Its size therefore depends on the logic of the other processes that
are sending to this process, but a reasonable estimate is:

(number of manages ezpected in one iteration) *
(number of iterations the process is allowed to "fall behind"
the mnssage producers)

m If this resource is exceeded, arriving messages are handled in a manner specified during process
environment creation via the parameter messagequeue overflowhandling.

U The other resource, the process stack, is for the allocation of Ada local variables. This depends
in part on the allocation strategy of the compiler, and can be determined only by an analysis of
the generated code or by runtime monitoring. The maximum stack space required is the sum of
all local variables and stack frames down the longest call path. It is probably better to obtain this
value by experiment rather than by analysis. If this resource is exceeded, the KernelU encapsulation ensures that no other process environment is compromised, and the predefined
exception storage_ error is raised.

3 These two values are set by the application when invoking the Kernel primitive createprocess.
The parameters that set these values are messagequeue-size and stacksize. See Section
4.6.2.2 for more information.

A message output buffer is provided automatically by the Kernel to maintain messages originated
by the process but not yet forwarded to its recipient. These resources are allocated during Kernel
initialization, so no tailoring information is required. See the documentation that will be provided
with the code for more information about the structure and sizes of these buffers.

I
I

Kernel User's Manual, Version 1.0 37I

I

3.1.2.4. Creating the Process Environment
When a process is created, the Kernel provides it with a data structure to hold its state and with
an encapsulation to control it. The internal resources are allocated by the Kernel in response to I
parameters supplied at process creation time.

The remainder of the process environment is the set of external resources that it requires. 3
Typically, these include:

" Communication partners,

" Global data objects, and

" Library subprograms, including Kernel primitives. 1
Providing a process with communication partners is straightforward. The process expects to call
a communication primitive, fcr example sendmessage, and supplies as a parameter the name of
the process to which the message is to be sent. This name must therefore be visible to the 1
process, and one obvious way to achieve this is by enclosing it in a package that the process
code imports: I

with process.table;
package ground coro area is

ao= interface ID : processtable.process..identifier; I
end ground corn area;3

This variable is initialized by the Main Unit (see Section 2.1.1 for an overview and Section 4.6.2.1
for more details), and can subsequently be used by any process on that node.

Alternatively, since a process identifier is a value available at execution time, the process can be
sent a message that holds the process identifiers of its communication partners.

The global data objects required by a process can likewise be embedded in package
specifications.

package globaldata is

track-table : array (...) of track;

and global-data;3

The process may access these objects in the normal way, by simply using the Ada name:
_ I

with global data;
procedure cm interface_pocess.code is
begin3

update (global.data. track.table (this bogey));

I
38 Kernel User's Manual, Version 1.0

I

end comm interface process.code;

3 with global data;
procedure control table managerprocesscode is
begin

Sread (global data.track table (this bogey));

end control table_manager processcode;I
However, it must be remembered that such access is unprotected; there is no guard against two
processes (such as comminterface and controltablemanager) simultaneously modifying the
global data. One way to control access to global data is to use a semaphore (see Section 4.11).

Finally, any library subprograms, and of course all the Kernel primitives, may be accessed merely
by importing their defining packages and then calling them explicitly, in the normal Ada manner.

3.1.3. Process Life Cycle
Between its creation and final extinction, a process is always in one of these states:

e Running,

3* Suspended, or

* Blocked.

I A running process is actually executing; exactly one process may be running on a processor at
any given time. A suspended process is able to run, but currently not running because the
Scheduler has chosen another process to execute. A blocked process is unable to run because
a precondition is not satisfied: it has called a Kernel primitive that is as yet unable to return.

When it is initially created, a Kernel process is in the suspended state, and the point of
suspension is the beginning of the subprogram that is the process code. All created processes
remain suspended until initialization is complete, at which point the Scheduler selects oneSprocess to execute.

A process runs until either it blocks itself by calling a Kernel primitive, or until it is forcibly3 suspended to allow another process to run instead. For example, a running process may block
by calling the Kernel primitive wait, or it may be forcibly suspended because a prior call to wait
issued by another process expires, and that other process is at a sufficiently high priority to be3 selected to execute.

Whenever two or more processes are able to run, the Scheduler chooses which one to run,3 according to deterministic rules presented in Appendix D.

A process is not expected to die. However, a process may cease to exist as a result of certain
3 actions:

e Calling the Kernel primitive die.

K
Kernel User's Manual, Verslon 1.0 39

I

* Returning from the subprogram that is the code of the Kernel process (which is
equivalent to a call of die).

* Propagating an exception from the subprogram that is the code of the Kernel I
process.

* Being killed by another Kernel process. 3
Once a Kernel process is dead, it may not be restarted, and all attempts to communicate with it
are rejected by the Kernel. 3
3.1.4. Examples
The scenario demonstrated here is a subset of that illustrated in Figure 2-2 on page 14. 3
3.1.4.1. Network Configuration and NCT Initialization
There are two Kernel nodes in the network: processor a and processor b. There is one
non-Kernel device: device. Processor a is at bus address: 16#01#; processor b is at bus I
address: 16#02#: device is at bus address: 16#03#. The NCT for this network configuration is:

procedure make NCT; 3
with network configuration;
with process table;
procedure makeNCT is
begin

networkconfiguration.NCT : I
(

(logical.name > "processor a
physical address > 16#01#,
Kernel_device -> true,
neodedto run "> true,
allocatedprocess ID > processtable.nullyprocess,
initialization order > 1,
initializationcomplete > false

(logical name> "processor b
physical address -> 16#02#,
Kernel_device U> true,
needed_to run -> true,
allocatedprocess ID => processtable.nullprocess,
initialization_order => 2,
initializationcomplete > false

(logical name -> "device I
physical address -> 16#03#,
Kernel device > false,
neededto Z1 -> false,
allocatedprocess ID -> processtable.nullprocess,
initializationorder => 3,
initialization-complete -> false

);

end make NCT;

40 Kernel User's Manual, Version 1.0

I

I Assumptions (i.e., values determined by tailoring the Kernel):

* Maximumjlengttof processor_name is defined as 16.

* Type busaddress is defined to handle values assigned to it.

For each of the three devices, processor a, processor b, and device, the logical_name and
physicaLaddress fields of the NCT are initialized as described above. Both processor a and
processor b are Kernel devices required to run--thus the settings for the Kerneldevice and
needed torun fields. Device is a non-Kernel device, so Kerneldevice is set false, as is the
needed_to_run field. Since a non-Kemel device is, by definition, unable to participate in Kernel
protocols, and since the needed_to_run field is used to identify those network nodes participating
in the Kernel network initialization protocol, this field is false by convention. The
allocated processlID field is explicitly initialized to the null.process in all three NCT entries;
inifializationorder is set to indicate a prescribed initialization order (processor a first, processor5 b second, device not at all); and initializaton complete is initialized to false, as initialization has
not yet begun.

5 Two Ada Main Units are required: one to configure processor a and one to configure processor
b. As device is a non-Kernel device, it is configured outside Kernel semantics.

3.1.4.2. Software Configuration for Processor a
On processor a, there are two Kernel processes of interest: Merlin (as shown on Figure 2-2)
and Arthur (introduced here for this example). On processor b, there is one Kernel process of3 interest: Vivian (as shown on Figure 2-2). Merlin sends messages to and receives messages
from Arthur; Merlin sends messages to Vivian; Vivian receives messages from the non-Kernel
device.

Based on this information, processor a needs process identifiers for Merlin and Arthur, as those
two processes are to execute on processor a, and a process identifier for Vivian, as messages
are sent to Vivian. Processor a is defined to be the Master processor during initialization. The
following is a template for some general support packages and for the Main Unit for processor a.

with time_globals;
package timouts is

function "+" (left, right : time_globals.elapsed time)
return time_globals elapsed_tim
renames tim* globals. "+';

Master base time : constant time-globals.epochtime
timz;glo-bals .create epoch tims

Maste= timnout : constant timiglobals.elapsed time :=

ti _globals. create-elapsedtime
(

day ">0,

Kernel Users Manual, Version 1.0 41U

second -> 5.0

subordinate timeout :constant time gqlobals.elapsed time:I
time gqlobals .seconds

an -integral-duration -> 5

init complete timeout :constant timejilobals. elapsed time
)aster timeout + subordinate timeout;I

end timeouts;

--- -- -- -- -- --- -- -- -- -- --- -- -- -- -- --- -- -- -- -I
with process-managersg lobals;
package application-unique npames isI

arthur : rcs aaesqoal~rcs-aatp~
'arthur "

device :process maageru~globals.d -enaatp
"deviceI

merlin :process maaesgoaspoesnametype :
'merlin

vivian :process managers"jlobals.procese-name type :
"'vivian.9

end application unique ~names;3

with process table;I
package processor-a-corn area is

merlin ID :process-table process-identifier;3
arthur ID :process-table. process identifier;
vivianlID :process-table process identifier;

end processor-a-corn area;3

with processor a-corn area;I
procedure arthur process-code is

loop3
-- do arthur's algorithm
null;

end loop;

end arthurproceusecode;

with processor-a corn. area;3

42 Kernel User's Manual, Version 1.0

U procedure mrlInyrocess code is

3 loopdo merlin's algorithm
null;

end loop;U end morlizi~process-code;

3with hardware interface;
with process anagers;
with process managersglobals;
with prcasrjanagmnt;
with schedule type.;
with application -unique names;
with arthur procese code;
with mrlinpyrocess code;a with processor a coam area;
with timeouts;
with make WIT;
procedure processor aMiUntis

3 -- do any processor- and application-specific initialization

make CT;

3processor managmnt. initializeMastermprocessor

base epoch ->timeouts.Master base time,3 timeout after ->timeouts.Xaster timeout

processor-&a co area .merlin ZD :-

process managers. declareprocess

application uniquenamss.merlin

processor a corn area. arthur ID
process managers .declareprocess

applicationuniquae names.arthur

I processor a corn area. vivianID
process managers .declarepyrocs

application uniqpe name . vivian

3 process managers. createprocess

process ID ->processor acomm area.merlinID,
address =>

Kernel Users Manual, Version 1.0 43

1

hardware interface. hw address (merlin-process code' address), I
stack size -> 4 096,
message queue_size => 100,
initial_pciority -> schedule types. highestpriority

process managers. createprocess 3
(

process =D => processoracom area.arthur ID,
address- _>

hardware -interface. hvaddress (arthurprocesscode' address),
stack size -> 2048,
message queue_size -> 10,
initialpriority -> 4,
preemptable -> schedule types. enabled

-- complete remaining processor- and application-specific initialization

processor managmnt. initialization complete' I
timeout after -> timeouts.init complete timout

end processor-a Main Unit; 3
Assumptions (i.e., values determined by tailoring the Kernel): 3

* Maximum length of processname is defined as 32 (see Section 4.6.3.1).
" Type priority is defined to handle values assigned to it (see Section 4.3). 3

Package timeouts sets up some timeout values that are used across the example network. This
package demonstrates a variety of ways to obtain elapsed_time and epoch time values from Ada
types and constants; it does not always provide the most direct way to obtain a Kernel time value.
The Kernel uses a different abstraction of time than that provided in Ada, so some strategy of
translating from the Ada time model to the Kernel time model must be used by any application. In
this example, Master_base_time is set to zero. Thus, if any epoch time values are to be
referenced by day/month/year components within the application, the application would need to
track the day/month/year at the time intializeMaster processor is invoked (this is when the base 3
time on the Master processor is initialized) and offset it by the epoch_time of interest. Package
time globals provides arithmetic functions to accomplish this. Two elapsed time timeout values
are defined and initialized by invoking creation or conversion primitives from time globals. A third
elapsed_time timeout value is created by adding two others, simply to demonstrate the existence
and use of arithmetic functions provided to support the Kernel abstraction of time in package
time globals.

Package application unique_names encapsulates the string-valued names for Kernel processes.
These are required to be unique across the application. This package is referenced by both I
Kernel nodes, processor a and processor b.

I
44 Kernel User's Manual, Version 1.0 I

U

1 Package processor.a_comrmarea is used to maintain information about the processes of
interest on processor a: in this case, Merlin, Arthur, and Vivian. A process identifier variable is3 defined for each, as per Section 3.1.2.2 and Section 3.1.2.4.

The code for the Merlin process and the Arthur process Is defined in parameterless procedures3 merlin process_code and arthur procesqcode respectively.

The Ada procedure processorCa_Main_Unit is the Main Unit that configures processor a. (For3 an overview of the Main Unit, see Section 2.1.1.) As processor a is designated the Master
processor for initialization, initialize_Master._processor is called. The two processes that execute
on processor a are declared, as is Marlin's communication partner.

The Merlin process is created. The process code to be executed, merinprocess code, is
associated with the process identifier by which Merlin is referenced,
processora_comm_area.merlinjlD, in all ensuing Kernel operations. The stack_size and
message queue_size parameters to create process are set to values deemed appropriate by the
application designers. As the application designers have determined that Merlin has a high
priority, the initialpriority parameter is set to the highest possible. All other parameters,
preemptable and messagequeue_overflowhandling, have been left to their defaut values.

3 The Arthur process is created. The process code to be executed, arthur process code, is
associated with the process identer by which Arthur is referenced,
processor..a_comr_area.arthur_ID, In all ensuing Kernel operations. The stacksize and
messagequeue_size parameters to createprocess are set to values deemed appropriate by the
application designers. As the application designers have determined that Arthur does not have
the highest priority, the initial-priority parameter is set to some appropriate value (4). As the
application designers have determined that Arthur should be preemptable if there is another
process of equal priority available to run, the preemptable parameter is set to enabled. The other3 parameter, messagequeueoverflow_handling, has been left to its default value.

Once all processes of interest to processor a have been declared and created,
initialization-complete is called. Upon completion of initializationcomplete, the Kernel processesMerlin and Arthur begin execution (see Section 3.1.3). The process code for Merlin and Arthur
may reference global data, access library subprograms, and make calls to Kernel primitives.

3 3.1.4.3. Software Configuration For Processor b
The following is a template for some general support packages and for the Main Unit for
processor b. Because there is much similarity between this Main Unit and the Main Unit for
processor a, only those points that differ are discussed here.

with process table;
package processorb corm area is

marlin ID : process table.process identifier;
vivianMD : process table.process.identifier;
davice ID : processtable.processidentif ier;

end processor b_comnarea;

I U
Kernel Users Menual, Version 1.0 45I

with processor b-cern area;
procedure vivianprocess code in
begin

loop
-_ do vivian'. algorithm

end lop
advviinprocesa_code;

with cnuiao management;
with hardware interf ace;
with process imagers;
with process inanager " lobals;
with processor managmnt;I
with application unique npamss;
with processor b_corn area;
with timeouts;
with vivianprocess code;I
with make NCT;
procedure -processorb Main Unit is

-- do any processor- and application-specific initialization

make NCT;I

processor~mnagenmnt. initialize subordinateprocessor

timeout after -> timeouts. subordinate timout

processor b-corn area .merlinZID :
process manages . dclareprocess

applicat ion unique nams merlin3

processor b corn area. device ID :-
processa managers .declareprocess

application -unique ~names .device

processo bcornarea.vivian XD:
procesa managejrs . declareprocess

application,_unique ~names vivian

process managers .createprcocoon

46 Kernel User's Manual, Version 1.0

I

I process-ID -> processor b.comma ea. vivianID,
address =>

hardware interface. hwaddress (vivianprocess code' address),
stack size -> 8096,
messagequeue size => ._000,
initialypriority > 1

comication_mn oa mt. allocate device_raceiver
(

receiverprocess -ID -> prociessor-b-corn, areavivian ID,
deviceID => 3

complete remaining processor- and application-specific initialization

i processor managemmnt. initialization complete

timeout after -> timeouts.init complete timsout

end processor.b Main Unit;

3 Package processor_b_comrnarea is used to maintain information about the processes of
interest on processor b: in this case, Merlin, Vivian, and the non-Kemel device Device.

3 The code for the Vivian process is defined in parameteriess procedure vivian processcode.
There is no code associated with the non-Kernel device.

3 The Ada procedure processorb_Main_Unit is the Main Unit that configures processor b. As
processor b is not designated the Master processor for initialization,
initialize_subordinateprocessor is called. The process that executes on processor b is

declared, as are Vivian's communication partners: Merlin and the non-Kernel device.

The Vivian process is created. The process code to be executed, vivian.process_code, is

associated with the process identifier by which Vivian is referenced,
processor b_commarea.vivian ID, in all ensuing Kernel operations. The stack_size and
messagequeue size parameters to createprocess are set to values deemed appropriate by the

application designers. As the application designers have determined that Vivian has a high
priority, the initial priority parameter is set to the 1, which is the highest possible. All other
parameters, preemptable and messagequeue overflow._handling, have been left to their default
values.

Vivian is designated as the sole receiver of messages from Device. Thus, the Main Unit creates

this "binding" by calling allocatedevicereceiver. The receiver processlID is the Vivian's
process identifier, the deviceID is the index into the NCT that corresponds to the entry for

3 Device.

Once all processes of interest to processor b have been declared and created,

K
Kernel Users Manual, Version 1.0 47I

I
_ _ I

initialization_complete is called. Upon completion of initializationcomplete, the Kemel process
Vivian begins execution. i

Further examples of using Kernel primitives are found in each of the sections describing a set of
Kernel primitives in Chapter 4 and in Appendix E.

3.2. Preparing the Kernel for Use
This section provides an outline of the steps required to prepare the Kernel for use by an I
application. Tailoring details are provided in Appendix C; a description of actually building the
Kernel is provided in the documentation that will be provided with the code. 3
It is quite conceivable that a single application may execute on more than one instantiation of the
Kernel. Some of the tailoring parameters require network-wide consistency; these are described
in Section C.1. Other parameters do not require that level of consistency; these are described in
Section C.2. Thus, a single application may require a family of Kernels; this is an application
design and configuration issue. 3

1. Set the parameters that require network-wide tailoring as specified in Section C.1.

2. Set the parameters that require processor-specific tailoring as specified in Section
C.2.

3. Recompile the Kernel using the information in the documentation that will be
provided with the code. 3

At this point, the Kernel or Kernels are now ready for application use. I
3.3. Building an Application Using the Kernel

Section 2.1 and previous sections of this chapter provide a description and some examples of 3
building an application using the Kernel. This section summarizes that in an outline format.

1. Prepare the NCT: 3
a. Import networkconfiguration via Ada WITH-clause.

b. Define a procedure that assigns appropriate values to NCT entries and
fields; suggest one global procedure invoked by the Main Unit on all I
processor3s."

c. Compile this application-specific NCT procedure.

The application-specific NCT is now ready for application use.

2. For each processor running the Kernel: I
a. Define specifications for Kernel processes.

3This is the style used by the DARK development team for testing and consistency purposes. There is no reason why
the NCT initialization may not be performed inline by Main Unit code. 3
48 Kernel User's Manual, Version 1.0

I

I b. Compile specifications for Kernel processes.

Process specifications now ready for application use.

c. Define the Ada Main Unit.

i. Import processor_management via Ada WITH-clause.

Iii. Do any preliminary hardware or device initializations.

iii. Call initialize_Master processor or initializesubordinatejprocessor.

Hardware (processors, devices, and network) is ready for application
use.

iv. Import processLmanagers via Ada WITH-clause.
v. Import specifications of processes that are to be created via Ada

WITH-clause.

vi. Call declare process and create process to declare and create allprcesses of interest. (Create..process takes the 'address of the
process code, so its name must be known.)

vii. Optionally import packages interuptLmanagement,communication_management, and process table via Ada
WITH-clauses.

viii. Perform application-specific initialization (e.g., bind interrupthandlers, associate a Kernel process with a non-Kernel device,
declare semaphores for critical, shared resources).

3 ix. Compile the Ada Main Unit.

Main Unit ready to be linked into complete application program.

3 d. Define the process code.

i. Import any Kernel specification via an Ada WITH-clause EXCEPT:
processormanagement or process_managers, they are to be used
ONLY by the Ada Main Unit.

ii. Write code bodies for Kernel processes (this may be done in parallel
with the construction of Ada Main Unit), which may access any of3 the Kernel primitives.

Process code ready to be linked into complete application program.

e. Link the Ada Main Unit, the code of the Kernel processes, and the Kernel
itself.

The executable image is now ready for downloading into hardware.

3 f. Download the executable image into the target hardware.

g. Start program execution on all subordinate processors.3 h. Start program execution on the Master processor.

The application is now running.

I
Kernel User's Manual, Version 1.0 49

I II1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

50 Krne Use's anua, Vrs~o 1.

I

I

4. Kernel Primitives
There are a number of data type packages that are required to support the application's use of
the Kernel. These packages provide one or more abstractions to the application program from
the Kernel. These abstractions are:

1. Hardware Interface (Section 4.1) - This package provides an interface to
compiler-specific primitive types.

2. Time Globals (Section 4.2) - The packages providing this capability abstract the
Kernel's concept of time.

3. Schedule Types (Section 4.3) - This package defines the abstractions of priority,3 preemption, state, and quanta of time.

4. Network Configuration Table (Section 4.4) - The packages providing this capabilityUprovide the abstraction of the network configuration.

Each of these sections describes the abstraction in detail:

1. Its purpose and the packages that implement the capability,

2. The mechanism by which the implementation of the abstraction is provided,

3. The exported constants, exported types, and exported data structures that3 define the abstraction,

4. The subprograms to manipulate values of the exported type or object, and

5. Related Information, including: referenced constants, referenced types, and
relevant generic parameters.

The Kernel functionality is provided through a number of primitives that may be invoked by an
application program. These primitives are grouped into functional areas so that related primitives
can be discussed together. The Kernel functional areas are:

1. Processor Management (Section 4.5) - These primitives support the creation and
maintenance of the physical network configuration (i.e., the NCT).

2. Process Managers (Section 4.6) - These primitives support the declaration and
creation of the logical processor configuration (i.e., communication partners and the
Process Table).

3. Communication Management (Section 4.7) - These primitives support
communication among Kernel processes and non-Kernel devices.

4. Process Attribute Modifiers (Section 4.8) - These primitives support the modification
of attributes of already existing Kernel processes.

5. Process Attribute Readers (Section 4.9) - These primitives support the read-only
access to certain Kernel process attributes.

6. Interrupt Management (Section 4.10) - These primitives provide the abstraction of
hardware interrupts and their control to the application.

7. Semaphore Management (Section 4.11) - These primitives provide the abstraction
of classical (Dykstra) semaphores to control process synchronization and mutual
exclusion.

8. Alarm Management (Section 4.12) - These primitives provide the capability to set3and cancel alarms (time-triggered events) and to detect the expiration of an alarm.

Kernel User's Manual, Version 1.0 51

I

9. Time Management (Section 4.13) - These primitives provide the manipulation of the
abstraction of Kernel time.

10. Timeslice Management (Section 4.14) - These primitives support the round-robin, 3
timeslice scheduling of processes.

For each Kernel functional area, the following information is provided: 3
1. Its purpose and the packages that implement the functionality,

2. The mechanism by which the implementation of the functionality is provided, 3
3. The subprograms that implement the functionality being provided, and for each

subprogram:
a. A description of its purpose and use, 3
b. One or more samples of its Invocation, and

c. Conditions for blocking that apply to the subprogram. 5
4. Related Information, including: the exported constants, exported types, and

exported data structures that support the functionality; and referenced
constants, referenced types, and relevant generic parameters. I
The information about exported constants, exported types, and exported data
structures is presented in a stylized manner, as follows:
Name of the constant, type, or data structureI

Description of the constant, type, or data structure
Value of the constant, type, or data structure

The information about referenced constants, referenced types, and referenced U
data structures is also presented in a stylized manner, as follows:
Name of the constant, type, or data structure- use; cross-reference 5

Information about resource consumption by each Kernel primitive is target specific and is
provided in Appendix H. 3
This chapter concludes with an index mapping all exported names into the packages that export
them. 3
The basis for most of the examples in the following sections is the example given in Chapter 3.

4.1. Hardware Interface

4.1.1. Introduction I
The hardware interface capability comprises the following packages:

1. Hardwareinterface 3
See also the documentation that will be provided with the code for more details.

I
I

52 Kernel User's Manual, Version 1.0

I

4.1.1.1. Purpose
The Kernel package hardwareinterface provides an interface to compiler-specific primitive types.
Within the Kernel itself, there are no references to the predefined types in Ada package Standard;
all references to primitive types use names declared in package hardwareinterface. By doing
this, certain implementation-dependent details are abstracted away from both the Kernel and the
application in a uniform manner. It is recommended that applications avoid using package
Standard entirely and use package hardware_interface for ready compatibility with Kernel3 primitives.

This strategy facilitates porting Kernel and application software across machines and across
compilers. For example, the Ada pre-defined type integer could be implemented as a 16-bit
integer or a 32-bit integer. When the Kernel requires a 32-bit integer, the exported type
hwjlongjinteger is used; when the Kernel requires a 16-bit integer, the exported type hw integer
is used. Were the standard type integer used, the application programmer would not know from
compiler to compiler which size of integer was used without searching through compiler
documentation. The Kernel makes this distinction explicit within the Kernel, and provides that3 same capability to the application as well.

4.1.1.2. Mechanism
Package hardware interface provides this "shield" from variations in the Ada pre-defined types.
Exported information includes:

1. Constants that define the Kernel's understanding of hardware layout,

2. Types that interface to compiler primitive types, and

3. Types and conversion functions to manipulate untyped storage within the Kernel.

1 4.1.2. Exported Constants
Bits perbyte

The number of bits in a byte
8

Byte
The number of bytes in a byte storage unit

1 (i.e., an 8-bit storage unit)

Longword
The number of bytes in a longword storage unit

4 (i.e., a 32-bit storage unit)

3 Null hw address
A system-wide null address value

0

* Word
The number of bytes in a word storage unit

2 (i.e., a 16-bit storage unit)

There are no representation specifications relevant to any of these constants.

I
Kernel User's Manual, Version 1.0 53I

,I
4.1.3. Exported Types
Hw_address

Interface to system.address3
Values implementation-dependent

Hwduration
Interface to standard.ouration

-86_400.. +86_400

Hw_integer
16-bit integer-32_768 .. +32767

Hw_iong integer I
32-bit integer

-2_147_483_648 .. +2_147_483_647

Hw_long natural
32-bit 0 .. maximum positive value that can be represented in 32 bits

0 .. +2_147_483_647 3
Hw_ongjsitive

32-bit 1 .. maximum positive value that can be represented in 32 bits
1 .. +2_147_483_647

Hw_natural
16-bit 0 .. maximum positive value that can be represented in 16 bits

0 .. +32_767 I
Hwpositive

16-bit 1 .. maximum positive value that can be represented in 16 bits
1 .. +32_767

Hwstring
Interface to standard.string I

Values identical to standard.string

There are representation specifications relevant to each of the following types to ensure exact
representation: I

* Hwduration

" Hwinteger I
* Hwlongjinteger

* Hwjlongnatural 3
" Hwjlong-positive

" Hw natural 3
" Hw_positive

The following types are also exported by package hardwareinterface but are only used internally 3
within the Kernel:

I
54 Kernel User's Manual, Version 1.0

U

* HwbitS8

1 *Hitsptr

* Hwbyte
i • Hw_byte_ptr

These types are used to support untyped data manipulation within the Kernel itself.

3 There is a representation specification relevant to type hw bits8; see Appendix H.

4.1.4. Exported Data Structures
3 None.

4.1.5. Subprograms
A number of functions are provided to manipulate hardware addresses and untyped storage.
These are:

" To hw address, which converts from a value of the Kernel type hwjlongjinteger to
a hwaddress.

" To_hwbits8, which converts from a value of the internal Kernel type hwbyte to a3 hw_bits8.

" To_hwbits8_ptr, which converts from a value of the predefined type system.address
to a hw bits8.otr.

e To_hw bits8_ptr, which converts from a value of the internal Kernel type
hwbyte ptr to a hwbits8_ptr.

* To_hwbyte ptr, which converts from a value of the predefined type system.address
to a hw byte ptr.

4.1.6. Related Information

4.1.6.1. Referenced Constants
None.

4.1.6.2. Referenced Types

1. Primitive types in compiler-supplied package Standard and package System.

4.1.6.3. Relevant Generic Parameters
Error checking: none.

Others: none.

I
I

I

I

4.2. Time Globals

4.2.1. Introduction I
The time globals capability comprises the following packages:

1. GenericKernel_time, Kernel time 3
2. Genetic time globals, Time globals

These packages export to the application the objects that embody the Kernel's concept of time, 3
as described in Section 2.5. These objects include the various data types and constants, the
appropriate operations, and conversions between Kernel types and the Ada data type duration.
All Kernel primitives reference time in terms of elapsed_time and epochtime, exported by I
package time globals, so the appropriate abstractions must be provided.

Packages generic_Kernel_time and Kerneltime are really internal Kernel packages. However, 3
because package generic_Kernel_time exports a tailoring parameter and package Kerneltime
exports the corresponding constant value, these packages are introduced in this section. Except
for these two values, the application should never directly access anything exported from these I
packages, as this may violate the integrity of the Kernel and the application program. For more
information about the representation of time within the Kernel, see Section 5.2.5. 3
4.2.1.1. Purpose
The purpose of package time globals is to provide the application with a concept of time that can
be used for the measurement of elapsed time, the representation of absolute (calendar) time, and I
the control of events that are required to occur at specific times or after specific intervals.

The model exported by this package is defined in terms of abstract data types and appropriate I
operations. This model, in turn, is built upon a concrete data type defined within the Kernel, in
package genenc_Kernel_time, which is used by the Kernel for its own time-based operations.
The application communicates time values to the Kernel using these abstract data types, and the
Kernel, in turn, performs efficient and accurate computations upon them.

4.2.1.2. Mechanism I
The representation of Kernel time chosen differs from the Ada types time and duration in three
main ways: 3

1. A single representation is used internally by the Kernel for both absolute time and
for intervals of time.

2. The Kernel's representation of time can accommodate much longer intervals of time 3
than can the Ada type duration.

3. The unit of representation of Kernel time is based on decimal fractions of a second,
not binary fractions.

This representation is captured by an internal type KerneLtime, which is exported to the Kernel

by package Kerneltime but is not exported to the application.

Two abstract data types are derived from Kernel_time and are available to the application via

56 Kernel User's Manual, Version 1.0

U

U package tme-globals. They are: elapsedqtime (relative time) and epochjtime (absolute time).
These two types have exactly the same concrete semantics, but their abstract semantics are3 different, in that elapsed_time captures the concept of relative time (e.g., time between iterations,
time since last message, time to perform computation) and epochtime captures the concept of
absolute time (e.g., clock time, calendar time, time-of-day).

Every Kernel primitive that expects a time value comes in two forms, one that takes a relative
time and one that takes an absolute time. For example, an application may delay for ten3seconds, or it may delay until 09:30:00; the former uses relative time and the latter absolute time.

The appropriate operations are defined on both abstract types to provide necessary functionality
with appropriate safety. For example, two values of type elapsed_time may be added, but two
values of type epochkime may not; two values of epochtime may be subtracted to give a value
of type elapsed jime.

Finally, appropriate constants and constructor functions are provided to allow the application to
generate specific time values, and conversions are available from the Ada type duration.

The application program should never access Kemel time; it should only reference time in terms
of elapsed_time or epoch time. The KemeLftime packages should only be used when building3the Kernel itself and tailoring to the real-time clock via the parameter ticks persecond. See
Section C.1.2 for more information.

4.2.2. Exported Constants
Ticksper_second

Set via a tailoring parameter
See Section C.1.2

Zero_elapsedtime
Zero time represented as an elapsed jime value

Zero days, zero seconds

Zero epoch_time
Zero time represented as an epochtime value

Zero days, zero seconds

There are no representation specifications relevant to any of these constants other than those of
their base types.

4.2.3. Exported Types
Elapsedime

Relative time
A high and a low component capable of representing a time of up
to 150_000 years in the future (i.e., 2 *" 63 microseconds)

Epachjtime
Absolute time

A high and a low component capable of representing a time of up
to 150_000 years in the future (i.e., 2 ** 63 microseconds)

K
Kernel Users Manuel, Version 1.0 57I

I

Integral_duration
An integral number of seconds

A 32-bit integer 3
There are no representation specifications relevant to any of these types other than those of their
base types. 3
4.2.4. Exported Data Structures

1. None 3
4.2.5. Subprograms

4.2.5.1. Basetime U
This function returns the epochtime that is the base of the representation of time on the
processor. This is the value that is set during processor initialization via the Kernel primitive
initializeMasterprocessor and the time included in the "Go" message that
initializeMasterprocessor sends to each of the subordinate processors.

4.2.5.2. Creation I
The creation functions provide the capability to create the abstraction of an elapsedjtime and an
epoch_time value from basic, visible types. The two forms of this function are:

1. Createelapsedtime, which takes a day and a second as parameters and returns
an elapsed_time value.

2. Createepochtime, which takes a day and a second as parameters and returns an
epochDtne value.

4.2.5.3. Arithmetic Operations Returning Elapsed Time
Arithmetic operations returning elapsed_time values are:

" Elapsed_ time + elapsedtime

" Elapsed time - elapsed_time

" Epoch time- epoch_time

* Elapsedtime * hwinteger 3
" Hw integer* elapsedtime

" Elapsed time I hw integer 3
An invocation of any of these functions will raise the predefined exception numeric_error if the
result of the operation causes an overflow. 3
4.2.5.4. Arithmetic Operations Returning Epoch Time
Arithmetic operations returning epochtime values are: 3

" Epoch time + elapsed_time

* Epoch time - elapsed_time 3
An invocation of any of these functions will raise the predefined exception numeric_error if the
result of the operation causes an overflow. 3
58 Kernel User's Manual, Version 1.0

I

U 4.2.5.5. Comparison Operations on Elapsed Time
Comparison operations taking elapsedtime parameters and returning a Boolean result are: "<"3"<-" ">* %-". The default NW and "/-" operators (i.e., bitwise comparison) are automatically
available and yield the correct result.

4.2.5.6. Comparison Operations on Epoch Time
Comparison operations taking epoch time parameters and returning a Boolean result are: "<"
".=" ">" ">=". The default "-" and */-* operators (i.e., bitwise comparison) are automatically

Savailable and yield the correct result.

4.2.5.7. Conversion Functions
A number of functions are provided to convert between the Ada type duration and Kernel types
that encapsulate time. These are:

e Seconds, which converts from a value of Ada type duration to an elapsed_time.
* Seconds, which converts from a value of the Kernel type integralduration to an

elapsed_time.
" Milliseconds, which converts from a value of the Kernel type integralduration to an

elapsed_time.
" Microseconds, which converts from a value of the Kernel type integral_duration to an

elapsed_time.
" To_elapsedtime, which converts from a value of Ada type duration to an

elapsed_time.
* To_Ada_duration, which converts from a value of the Kernel type elapsedtime to an

Ada duration. Since the Kernel type elapsedtime spans a much larger range than
does Ada type duration, an invocation of this function will raise the predefined
exception constraint_error if its argument exceeds the range of its result.

The following conversions are also exported by package time-globals but are only used internally
* within the Kernel:

" Toelapsed time, which converts from a value of the internal Kernel type
Kernel_time to an elapsed_time.

-Toepoch time, which converts from a value of the internal Kernel type Kerneltimeto an epocht_ime.

" To_Kerneltime, which converts from a value of the Kernel type elapsed time to a
Kernel_time.

" ToKerneLtime, which converts from a value of the Kernel type epochtime to a
Kerneltime.

4.2.6. Related Information

I 4.2.6.1. Referenced Constants
None.

K
I

Kernel Users Manual, Version 1.0 59I

I
I

4.2.6.2. Referenced Types
None. 3
4.2.6.3. Relevant Generic Parameters
Error checking: none.

Others:

1. licksper_second_value: see Section C.1.2. 1
4.3. Schedule Types

4.3.1. Introduction
The schedule types capability comprises the following packages: i

1. Genericscheduletypes, scheduleypes

4.3.1.1. Purpose
The Kernel package schedule-types define the abstractions of priority, preemption, and process
state.

4.3.1.2. Mechanism I
The Kernel provides the capability for an application to specify and modify the priority of a Kernel
process. The priority of a process is initially assigned when the process is created; it may then be
modified via calls to a Kernel primitive that just modifies a process's priority (see Section 4.8.2.4),
to a Kernel primitive that sets an alarm (see Section 4.12.2.1), or to a Kernel primitive that
potentially blocks (see Sections 4.11.2.1, 4.7.2.2, 4.7.2.3, 4.13.2.3, and 4.8.2.5). Type priority is
an integral type. The lower the value, the higher the priority of the process. The highest priority a
process may have is 1; the lowest priority a process may have is set when the Kernel is tailored
(see Section C.2.2). The priority value of 0 is a special value for the Kernel; it means that the 3
priority value should not change from its current value.

The Kernel provides the capability for an application to indicate which processes are candidates 3
for round-robin timeslice processing. Type preemption is used for this.

A process is always in one of four states (as described in Section 2.4): running, suspended,
blocked, or dead. The Kernel uses type processstate to represent this.

4.3.2. Exported Constants 3
Current process priority

Indication that a process's priority should not be modified 30

Default preemption
Default used by the Kernel when preemption is not specified

Enabled

Default priority 3
60 Kernel User's Manual, Version 1.0

I

I Default priority used by the Kernel when priority is not specified and
"current priority" doesn't make sense

Lowest priority

Default_process_ state
Default process state used by the Kernel

Suspended

Highest priority
Value the application may specify for the highest priority of a Kernel
process

1

Lowest priority
Bound on type priority for process at the lowest priority

Set via a tailoring parameter; see Section C.2.23 An application should not use the values priority'first or priority'last, as they both have special
meaning to the Kernel. The highest priority an application process may have is represented by
the constant highest priority; the lowest priority an application process may have is represented
by the constant lowest priority. Any values in the range highest priority .. lowest priority are
legal values for application process priorities.

3 There are no representation specifications relevant to any of these constants, other than those of
their base types.

4.3.3. Exported Types
Preemption

Indication of whether or not process participates in timeslice scheduling
Enumerated (enabled, disabled)

Priority
Measure of urgency with which a process executes

0 .. lowest-priority-value

Processstate
Indication of process execution state

Enumerated (running, suspended, blocked, dead)

There are no representation specifications relevant to any of these types, other than those of their
base types.

4.3.4. Exported Data Structures
None.

4.3.5. Subprograms
None.

I
Keme, User's Manual, Version 1.0 61

I

4.3.6. Related Information

4.3.6.1. Referenced Constants 3
None.

4.3.6.2. Referenced Types
None. l

4.3.6.3. Relevant Generic Parameters
Error checking: see Section C.4.

Others: 3
1. Lowestpriority value - see Section C.2.2.

4.4. Network Configuration Table 1

4.4.1. Introduction
The network configuration table (NCT) capability comprises the following packages:

1. Genericnetwork_configuration, networkconfiguration

2. Generic network globals, network globals

4.4.1.1. Purpose
The Kernel package networkconfiguration provides the abstraction of the network configuration
to both the Kernel and the*application. This is accomplished via the NCT data structure that is
exported by network_configuration.

The NCT provides the minimum information needed by the Kernel to perform system initialization
and its inter-process communication functions. The NCT creates a logical link (via each entry) to

a particular hardware device (via the physical_address and Kernel device components), thus
allowing the rest of the Kernel and the entire application to be hardware independent after
initialization.

The packages that describe the network configuration define:

1. The bus address type and related information, 3
2. The configuration of the NCT,

3. Types used to define the NCT, and 3
4. Process index table information, which is used by the Kernel as an internal

representation of the network configuration.

4.4.1.2. Mechanism I
The Kernel provides a mechanism to define legal bus addresses. The range of values allowed

are specific to the communication protocol used and must be set accordingly. I
The Kernel provides a mechanism to specify the number of nodes in the network. This

62 Kernel User's Manual, Version 1.0

I

I information is used to configure internal data structures (e.g., the Process Index Table) as well as
the NCT.

IThe Kernel provides the capability for a logical, string-valued name to be associated with each
processor in the network, and the capability to configure the size of that string.

IThe Process Index Table provides the Kernel with fast access to network and process information
via internal representations. In fact, the Process Index Table is an inverted index on the Process3 Table, using the physical_address component of the NCT as one of the keys.

Details of the NCT data structure are provided in Section 5.1.1.

4.4.2. Exported ConstantsFirst_ bus_ address

Lower bound on type busaddress, must take actual hardware
configuration into consideration, the physicaLaddress component of
the NCT must not have a lower value than this3Set via a tailoring parameter; see Section C.1.1

Last_bus_address
Upper bound on type busaddress, must take actual hardware
configuration into consideration, the physical address component of
the NCT must not have a higher value than this

Set via a tailoring parameter; see Section C.1.1

Maximum length of processor_name
The maximum length of the logicaLname component of the NCT

set via a tailoring parameter; see Section C.1.4

U Null_address
A null value for type bus address, must take actual hardware
configuration into consideration

Set via a tailoring parameter; see Section C.1.1

Number of nodes
The number of nodes in the network, the number of entries in the NCT

Set via a tailoring parameter; see Section C.1.1
There are no representation specifications relevant to any of these constants, other than those of

3their base types.

4.4.3. Exported Types
3Bus_address

Range of addresses legal within the network on which the Kernel executes
First_bus_addressvalue .. lastbusaddress value

IConfigurationtable
Type to construct NCT

*Array

NC T_entry
Type to construct NCT

Kernel Users Manual, Version 1.0 63I

I
I

Record; see Section 5.1.1

Processindex_type
Uniquely identifies a process across the network via its nodenumber
and process_number relative to that node

Nodenumber -> first_bus_address_value., lastbusaddress value,
Process number-> 16-bit integer

Processor_ identifier
Index into the NCT, uniquely identifies a processor

1 .. last_bus_addressvalue
There are no representation specifications relevant to any of these types other than those of their
base types. 3
4.4.4. Exported Data Structures
NCT I

Logical constant defining the network configuration
See Section 5.1.1

There are no representation specifications relevant to the NCT at this level. 3
4.4.5. Subprograms
None.I

4.4.6. Related Information 3
4.4.6.1. Referenced Constants
None.

4.4.6.2. Referenced Types
None.

4.4.6.3. Relevant Generic Parameters
Error checking: see Section C.4.

Others:

1. First_busaddress_value - see Section C.1.1.

2. Last_busaddressvalue - see Section C.1.1.

3. Maximumjlength_of processor_namevalue - see Section C.1.4.

4. Null_bus_address_value - see Section C.1.1. I
5. Number_of_nodesvalue - see Section C.1.1.

I
I

I

I

4.5. Processor Management

4.5.1. Introduction
The processor management capability comprises the following packages:

1. Generic processor_management, processor.management

4.5.1.1. Purpose
Before an application using the Kernel actually begins to execute, the application must inform the
Kernel of the actual network configuration on which it is to execute. While a number of network
parameters can be configured and verified at compile time, some runtime initialization is required.
The processor_management package provides one portion of this support.

Initialization requires the creation of an Ada procedure, called the Main Unit, that has the
responsibility for configuring the processor for application execution, as well as for configuring the
Kernel for that application. As described in Section 2.1.1, the Main Unit is responsible for
configuring the processor to meet the requirements of the application. This includes participating3 in the network initialization protocol-which is exported by package processormanagement.

The purpose of the subprograms in the processormanagement package is to verify the physical
topology of the system and to initialize Kernel data structures and Kernel-controlled devices (e.g.,
event timers and the real-time clock). The NCT must be initialized by the application program
before these initialization subprograms may execute. The initialization subprograms are then run,
and the network topology is defined to the Kernel and the connectivity verified. When initialization
is complete, that is, after all processes have been declared and created using the capabilities
described in Section 4.6, one final initialization check is made before the Ada Main Unit is
permanently descheduled and initialization is determined to be successful.

If failure should occur anywhere during the initialization process, the entire network fails to
initialize. This is a simplifying assumption, one that may not be appropriate for all systems.

4.5.1.2. Mechanism
The following data structures are initialized and referenced during processor initialization: the
NCT, the Process Table, and the Process Index Table. Once the NCT has been initialized on
each processor, the application may invoke either initialize-Master processor or
initializesubordinate processor. There must be one and only one Master processor for the
duration of network initialization, and it must invoke initializeMaster processor to coordinate
network-wide initialization. All other participating processors are subordinate processors, and
must invoke initialize_subordinate processor. Upon successful execution of these initialization
subprograms, the Main Unit performs other processor initializations and declares and creates
processes. When all initialization work is complete, the Main Unit calls initializationcomplete to
assert to the Kernel that this processor is completely configured and ready to begin application
processing.

The Main Unit on all subordinate processors must be running before the Main Unit on the Master
processor may run.

K
Kernel User's Manual, Version 1.0 65I

I

Initializing the NCT I
The application must have initialized four fields in the NCT prior to invocation of the initialization
subprograms. These are: logical_name, physical_address, KerneLdevice, and neededtorun.
See Section 4.4 and Section 5.1.1 for a description of the NCT.

Process Table and Process Index Table
The declaration and creation of processes cause entries to be created in the Process Table and
information to be filled out in the Process Index Table. During the execution of

_ I
initializationcomplete, extraneous information is eliminated from these data structures, and some
error checking is done. See Section 5.1.3 and Section 5.2.3.

4.5.2. Subprograms

4.5.2.1. Initialize_Masterprocessor
InitializeMasterjprocessor must be called once by only one of the Ada Main Units responsible 5
for configuring processors executing the Kernel. No other Kernel primitives may be called prior to
its execution.

Following its execution, any of the processmanagers subprograms and interruptLmanagement
subprograms may be invoked by the Main Unit (see Section 4.6 and Section 4.10).

This primitive identifies the invoker as the Kernel processor controlling network initialization. It
takes a timeout parameter that controls how long the Master processor waits for any one
subordinate to reply to any initialization protocol message. The expiration of this timeout informsU
the Master processor that network-wide initialization has failed. It is the responsibility of the
invoking Main Unit to relay this failure information to the appropriate parties.
InitializeMaster processor also takes an epochjtime parameter to initialize the clock on the
invoking processor and to be used as the initial basis of time across the entire network for all
processors running the Kernel.

If this primitive fails for any reason, the network failure message is broadcast to all nodes, and the
failure is reported back to the Main Unit. Consequently, a subordinate processor may invoke this
primitive, thus effectively declaring itself the new Master and attempting recovery and
reinitalization of the network, or the Master may try again.

Invocation I
processor management. initialize_.asterproceesor

baseepoch -> timeouts Master basetime,
timeout after timeouts.Haster timeout

I

66 Kernel User's Manual, Version 1.0

I

U Conditions for Blocking
This procedure always blocks until one of the following conditions occurs:

1. All required processors in the network have acknowledged receipt of the "Go"
message, or

2. The initialization timeout expires.

4.5.2.2. inItlalizesubordinate_processor
Initializesubordinate processor must be called once by all Ada Main Units that are not the
Master processor during initialization. No other Kernel primitives may be called prior to its
execution.

U Following its execution, any of the processmanagers subprograms and interrupt-management
subprograms may be invoked by the Main Unit (see Section 4.6 and Section 4.10).

3 This primitive identifies the invoker as a subordinate Kernel processor participating in network
initialization. It takes a timeout parameter that controls how long the subordinate processor waits
for any message from the Master processor and for receipt of all "initialization complete"
messages from all Kernel processors in the network. The expiration of this timeout informs the
subordinate processor that network-wide initialization has failed. It is the responsibility of the
invoking Main Unit to relay this failure information to the appropriate parties.
Initialize_subordinate processor also awaits the starting epoch_time from the Master processor
and sets its own time based on that value.

I If this primitive fails for any reason, the network failure message is broadcast to all nodes and the

failure is reported back to the Main Unit.

I Invocation

processormanagamzt. initializesubordinate-processor
(

timeout after => timeouts.subordinatetimeout

Conditions for Blocking
This procedure always blocks until one of the following conditions occurs:

1. The Master has requested the processor's NCT and the subordinate has
acknowledged the "Go" message, or

* 2. The initialization timeout expires.

4.5.2.3. Initlaization-complete
Initializationcomplete must be called once by all Ada Main Units, Master and subordinate. The
only Kernel primitives that may be called prior to its execution are: any of the process-managers
subprograms and interrupt management subprograms (see Section 4.6 and Section 4.10) and
initializeMaster processor or initialize subordinate processor. It must be called before the
Kernel begins execution of any Kernel process.

K
Kernel User's Manual, Version 1.0 67I

I
I

This primitive asserts that the definition of the physical network topology is complete and that the
declaration and creation of all processes on this processor, defining the logical topology, is also
complete. This primitive effectively tells the Kernel that it is ready to begin execution of the
application, and the Kernel on this processor relays that information to all other Kernels. This
primitive takes an optional timeout parameter to detect processor failure after network
initialization. It is the responsibility of the invoking Main Unit to relay this failure information to the
appropriate parties.

If this primitive fails for any reason, the network failure message is broadcast to all nodes and the I
failure is reported back to the Main Unit.

Invocation I
processor managvmnt.initialization complate

timeout after => timeouts. nit complete-timeout

Conditions for Blocking U
This procedure always blocks until one of the following conditions occurs:

1. All needed process creation acknowledgements are received, or I
2. The initialization timeout expires.

4.5.3. Related Information I
None of these subprograms may be invoked from an interrupt service routine.

4.5.3.1. Exported Constants I
None.

4.5.3.2. Exported Types I
None.

4.5.3.3. Exported Data Structures I
None.

4.5.3.4. Referenced Constants I
None.

4.5.3.5. Referenced Types

;. Elapsed_time - used for parameters; see Section 4.2.

2. Epoch_time. used for parameters; see Section 4.2.

I
I

68 Kernel User's Manual, Version 1.0

4.5.3.6. Relevant Generic Parameters
Error checking: see Section C.4.

Others: none.

4.6. Process Managers

4.6.1. Introduction
The process managers capability comprises the following packages:

1. Genericfirocess_managers, process managers

2. Generic process_managersglobals, processjmanagers-glabals

4.6.1.1. Purpose
Before initialization is complete, the application program must define a logical configuration of
Kernel processes to the Kernel on which it is running and to all Kernels across the network. This
logical configuration identifies all communication partners, those that are executing the Kernel
and all non-Kernel devices, and all processes that are executing on a single Kernel processor. In
addition to describing the logical topology of the processor, the execution environment for each
process to execute on the processor must also be created. The subprograms exported by the
process_managers package provide this capability.

4.6.1.2. Mechanism
A string-valued logical name is used by the application to initially identify processes and
communication partners to the Kernel. This name must be unique across the entire application.
An internally generated "handle" is returned by the Kernel to the application program, and this
handle is then used in all ensuing Kernel activities. The Kernel primitive declare process
accomplishes this.

All Kernel processes that execute on a processor do so within an execution environment that
must be created by the Kernel. The Kernel primitive create.process accomplishes this, as well
as providing the initial scheduling profile of the process.

Kernel Process-Ada Code
The code that may be a Kernel process is an outer-level Ada procedure that takes no
parameters. "Outer-level" restricts the subprogram to being a library unit itself or being directly
visible within a library unit. Chapter 3 provides additional information.

Naming Processes
As described in Chapter 3, a process is referenced in three different ways throughout its life:

1. The application programmer assigns an application-wide unique logical name to
every process. This logical name is a string-valued name.

2. The Kernel takes the logical name and associates with that a process identifier that
is returned to the application via the Kernel primitive declare process. It is via this
handle that the application references the Kernel process in all ensuing operations.

Kernel User's Manual, Version 1.0 69

I

3. The Kernel creates an internal process index table that it uses to translate process
identifiets to and from a form that is appropriate for use by the low-level
communication protocol.

All three representations denote a single process; each of the three is used by different
developers and software at different times during the process life cycle.

The Process Execution Environment
When a process is executing, it consists of two parts: the code of the process (i.e., the algorithm
being obeyed), and the environment of the process (i.e., the virtual machine the code perceives I
while running).

This environment consists of three main parts: I
1. External resources available to the process,

2. Internal resources available to the process, and

3. The process encapsulation.

The external resources available are all global data objects and all visible subprograms, including I
the Kernel primitives. These resources are shared by all processes that have visibility into them.
The Kernel objects and primitives protect themselves from improper concurrent usage; other
global objects must be protected by the application if necessary. For example semaphores (see
Section 4.11) may be used to protect shared data areas.

The internal resources available to a process are private to it and are set up when the process is I
created. These resources include:

1. The stack, which is used for the process's local variables and for the call frames
and local variables of any subprograms it calls.

2. The outgoing message buffer, which is managed by the Kernel.

3. The incoming message queue data structure, which is also managed by the Kernel I
but the size of which is under application control.

4. The Process Table, which holds all process state information and which is
managed entirely by the Kernel.

These resources are initialized during process initialization, managed during process execution,
and destroyed during process termination.

The process encapsulation contains everything necessary to establish the process as a parallel
thread of control, with proper initiation and termination conditions. It performs the followirg
actions:

1. Sets up the initial process state and binds all allocated internal resources to the
process.

2. Introduces the process to the Scheduler.

3. Causes process execution to begin at the start of the Ada subprogram identified as
a Kernel process.

70 Kernel User's Manual, Version 1.0

I

4. Ensures orderly process termination when the Kernel process subprogram exits ori propagates an unhandled exception.

4.6.2. Subprograms

4.6.2.1. Declareprocess
The Kernel primitive declare jrocess has three purposes:

1. To declare a Kernel process that will execute on this processor (i.e., be referenced
by an ensuing call to create process);

2. To declare a Kernel process with which communication is desired; and

3. To declare a non-Kernel device with which communication is desired.

Declaring a process to the Kernel associates an application-provided, string-valued name with a
Kernel-generated handle. It is via this handle, called the process identifier, that the application
references the process in all ensuing Kernel invocations.

The string-valued name is not used by the Kernel; it is maintained by the Kernel to aid in
application debugging. The length of this name is tailored by setting
maximumjengthalprocess name.

UIn the declaration of a Kernel process, the process name may be any Ada string, with the
substring of length maximum lengthof process_name maintained by the Kernel.

IIn the declaration of a non-Kernel device, the device name may be any Ada string that matches a
logical name field of a non-Kernel device in the NCT (i.e., the corresponding Kernel_device field

* is false).

Invocation
There are two forms of this primitive: one for declaring a Kernel process and one for declaring a
non-Kernel device.

processor.b_co=area.merlin ID :=
process_managers. declare_process

process.managers_gobals.process name type'
(application.unique_names. rlin)

processorb corn areavivianID :-
process_managers .declareyrpocessI(

process_managers_globals.device_name type'
(application unique_names. device)

Kernel User's Manual, Version 1.0 71

I
I

Conditions for Blocking
This procedure does not block.

4.6.2.2. Createprocess
The Kernel primitive createprocess creates a process that has previously been declared and
initializes the environment in which the designated code is to execute. For each Kernel process I
to be created, the application specifies:

1. The address of the procedure to be executed as a Kernel process;

2. The number of bytes to be allocated for process local information - local variables
of the process and all subprograms it calls directly or indirectly, including any call
frames generated by the compiler for those called subprograms (i.e., stack size);

3. The maximum number of messages that may be waiting for this process at any time
(i.e., messagequeuesize);

4. The method by which messages are to be handled when the maximum (specified in
message_ queue size) is reached (i.e., message queue_ overflow_ handling);

5. Initial scheduling attributes (i.e., initial priorily and preemption).

If the stack_size value is exceeded during data and subprogram access by the process, the
predefined exception storageerror is raised.

From this information, the Kernel constructs the process execution environment as described I
previously in this section and enters the process in the set of processes eligible to run. The initial
scheduling state of the process is now suspended.

Invocation

process managers. create.process I
(

processID -> processor.a.co_ areamarliID,
address =>

hardware interface. hwaddress (merlrlyrocesscode' address),
stack-size -> 4096,
messagequeue size -> 100,
initialpriority -> schedule types. highestpriority,
preeziptable -> schedule.types. disabled

process managers. createprocess I
(

processID -> processor.a.cornarea.arthurID,
address ->

hardware.interface. hwaddress (arthurprocess.code' address),
stack-size -> 2_048,
messagequeuesize => 10,
initialpriority => 4

72 Kernel User's Manual, Version 1.0

I

Conditions for Blocking
This procedure does not block.

4.6.3. Related Information
None of these subprograms may be invoked from an interrupt service routine.

4.6.3.1. Exported Constants
Maximum_ length._of processname

Maximum numbers of characters that are maintained in the Process Table
for the logicaLname of a process

Set via a tailoring parameter; see Section C.2.5

There are no representation specifications relevant to any of these constants other than those of

their base types.

4.6.3.2. Exported Types

Device_name type
Used to indicate a non-Kernel device name

Variant of hwstring

Howtohandle_messagequeue_overflow
Indication of how the Kernel should handle the case where more messages
arrive than the incoming message queue is capable of handling
Enumerated (dropnewestmessage)

Process_name type
Used to indicate a Kerel process name

Variant of hw_string

There are no representation specifications relevant to any of these types other than those of their

base types.

4.6.3.3. Exported Data Structures
None.

4.6.3.4. Referenced Constants
1. Default.preemption - used for parameters; see Section 4.3

2. Default priority - used for parameters; see Section 4.3

4.6.3.5. Referenced Types
1. Preemption - used for parameters; see Section 4.3

2. Priority- used for parameters; see Section 4.3

3. Process_identifier- used for parameters; see Section 5.1.3

4.6.3.6. Relevant Generic Parameters
Error checking: see section C.4.

Others:

1. Maximumjengthof process_namevalue - see Section C.2.5.

Kernel User's Manual, Version 1.0 73

I

2. Maximumnmessagequeuesizevalue - see Section C.2.1. I

3. Maximumvrocess_stack_size_ value -see Section C.2.1.

4.7. Communication Management

4.7.1. Introduction
The communication management capability comprises the following packages:

1. Generic_communication..globals, communication_.globals

2. Genericcommunicationmanagement, communicationmanagement

The communication model is presented in Section 2.8. The communication primitives provided
by the Kernel are untyped; an application may readily build typed message passing on top of
them. An example of such a package is provided in Section E.1.

4.7.1.1. Purpose
The communicationmanagement package provides the capability for independent threads of
control (i.e., Kernel processes) to communicate among themselves and with non-Kernel devices.
This communication is done point-to-point, either synchronously or asynchronously.

4.7.1.2. Mechanism
During process initialization, communication partners are identified via calls to the Kernel primitive
declare process (see Section 4.6.2.1). The handles, the process identifiers, for these declared
processes must be available to the application to be used in interprocess communication. This is
discussed in Chapter 3.

The communication management subprograms are:

1. Send_message - to send a message with no waiting for any kind of
acknowledgement of receipt. This is a "blind" asynchronous send.

2. Sendmessage.andwait - to send a message and wait for an acknowledgement
of receipt of the message by the receiving Kernel process. This is a synchronous
send. I

3. Receivemessage - to obtain a message sent by a process. This receives any
message from any process, and may be used synchronously or asynchronously.

4. Allocatedevice_receiver - to assign a Kernel process to be the sole receiver of
messages from a non-Kernel device.

All communication primitives appear the same to the application code whether the processes are I
Kernel or non-Kernel processes, whether they are sited on the same processor (local) or on
different processors (remote). The Kernel optimizes local communication by using its knowledge
of where the receiver's incoming message queue is located. The Kernel places sent messages
directly in that queue, as opposed to incurring network traffic for local messages.

74 Kernel User's Manual, Version 1.0

I

4.7.2. Subprograms

4.7.2.1. Sendmessage
This primitive sends a message from one process to another, without waiting for
acknowledgement of message receipt. Any Kernel process may invoke this primitive at any time.
It may be used to send a message to Kernel and non-Kernel processes. For each message to be
sent, the caller specifies:

1. The process identifierof the intended receiverof the message;
2. The application-defined messagejag that can be used by the receiver to decode

the text of the message;
3. The messagejlength of the message to be sent; and

4. The address of the buffer containing the messagejtext itself.

When sending to a Kernel device, as can be determined from the NCT, this information is
bundled into a datagram as described in Section 2.8 and sent to the intended receiver. When
sending to a non-Kernel device, the message text itself must contain all necessary
communication protocol information; the Kernel simply passes the message through to the
address of the receiver.

Invocation

-- from within the body of merli ..process_code

I -- vivian is a remote process

counication managinnt, send message

receiver -> processor a com_area. vivian ID,
massage tag -> processor a_cmareatype_1 message,
mssagelength => processor a_cor area.typ_1_mssagelength,
messagetext

hardwareinterface.hw address
(local- message.buffer' address)

-- arthur is a local process; no difference

coi mication management. send message
(

receiver => processor a cornarea.arthur.ID,
message tag => processoracorn_areatype__massage,

message length => processor a corn~area type_1 message-length,
message text ->

hardware interface. hw address
(local _mssage buffer' address)

Kernel Users Manual, Version 1.0 75I

I

Conditions for Blocking I
This procedure does not block.

4.7.2.2. Send message_andwait
This primitive sends a message from one Kernel process to another Kernel process and waits for
acknowledgement of message receipt by the receiving Kernel process. Any Kernel process may I
invoke this primitive at any time. It may be used to send a message only to Kernel processes.
For each message to be sent, the caller specifies:

1. The process identifier of the intended receiver of the message;

2. The application-defined messagetag that can be used by the receiver to decode
the text of the message;

3. The messagejlength of the message to be sent;

4. The address of the buffer containing the message_text itself;

5. An optional timeout of one of two kinds:

" A timeout_after - a relative time after which the Kernel on which the receiving
process is executing aborts the attempt to communicate with the receiver; or I

" A timeoutat - an absolute time at which the Kernel on which the receiving
process is executing aborts the attempt to communicate with the receiver.

A timeout of zero or some previous time implies that the receiver must be pending
on a call to the Kernel primitive receive.message; if it is not, then a negative
acknowledgement indicating the contrary must be returned immediately from the
receiver's Kernel. l

6. An optional resumption priofity to take effect when the sending process becomes
unblocked.

This information is bundled into a datagram as described in Section 2.8 and sent to the intended
receiver.3

If the message is not received by the specified timeout, a negative acknowledgement is returned
by the receiver's Kernel to the sender's Kernel, and that information is propagated to the sending
process.

Invocation
There are three forms of this primitive: one for an infinite timeout (i.e., there is no timeout I
parameter); one for an elapsedtime timeout; one for an epochtime timeout.

cornunicat A on management. send mssageand_wait
(.

receiver -> processor.a.co n area.arthurID,
mssage tag => processor_a_com_areatype_2_mssage,
message.length > processor_a_corI rea.type_2_messagelenqth,
message text =>

hardware interface. hwaddress
(local- outgoing messaqe_buffe' address),

resumption_priority -> 2

76 Kernel User's Manual, Version 1.0

I

'I comunication managenmnt. send message_and wait
(

receiver => processor_a_counarea.arthurID,
message_tag => processor_a comm areatype_2_message,
messagelength => processor_a_comm area.type_2_messagelength,mssage_ text =>

hardware interface hw address
(localoutgoingmessage_buffer' address),

timeout-after -> timeglobals.milliseconds (100)

Iomncto management. send mes sage_.and:_wait
(

receiver => processor_a_c omearea.arthurID,
messagetag => processor_a_coumarea.type_2_message,
messagelength => processor_a_come area.type_2_messagelength,
messagetext =>

hardware interface.hw address
(localoutgoing message_buffer' address),

timeout at -> time-globals.createepoch-time (0, 0.100)

Conditions for Blocking
This procedure always blocks until one of the following conditions occurs:

1. The receiving process has requested and received the message (i.e., the message
has been copied into the receiving process's buffer), or

2. The message timeout expires.

4.7.2.3. Receivemessage
This primitive receives a message from another process. Any Kernel process may invoke this
primitive at any time. It may be used to receive messages from Kernel devices and non-Kernel

devices. For each message to receive, the caller receives the following information:
1. The process identifier of the sender of the message;

2. The application-defined messagetag that can be used by the receiver to decode
the text of the message (not valid for a message from a non-Kernel device);

3. The messagelength of the message received;

1 4. The address of the messagebuffer into which the message text itself is placed;

5. The buffersize of the message buffer

In addition, the caller may specify:

1. An optional resumption priority to take effect when the sending process becomes
unblocked.

2. An optional timeout of one of two kinds:

" A timeoutafter - a relative time after which the Kernel on which the receiving
process is executing aborts the attempt to receive a message; or

* A timeoutat - an absolute time at which the Kernel on which the receiving
process is executing aborts the attempt to receive a message.

Kernel User's Manual, Version 1.0 77I

A timeout of zero or some previous time prevents the calling process from blocking;
if no message is available at the time of call, receive message returns immediately
to the caller.

3. A required flag messagesJost indicating whether or not the Kernel has had to lose
messages as the receiver's incoming message queue is full.

When receiving from a Kernel device, as can be determined from the NCT, this information is
collected from the datagram as described in Section 2.8 and passed onto the intended receiver.
When receiving from a non-Kernel device, the message text itself must contain all necessary
communication protocol information; the Kernel simply passes the message through to the
incoming message queue of the receiver. I
If the message is not available by the specified timeout, that information is propagated to the
receiving process.

Invocation
There are three forms of this primitive: one for an infinite timeout (i.e., there is no timeout
parameter); one for an elapsedime timeout; one for an epochtime timeout. 3

cornunicationmanagement. receive message

sender > local.sender,
nmssage_ tag =>local -tag,

message length => local-length,
message buffer => hardware interface.hwaddress 3

(local-receive buffer' address),
buffer size =>

processor a comnarea.arthur max_incoming _message_length,
resuoption priority -> 3,
messages lost > local messageslost

communication management.receivemessage I
sender => local._sender,
messagetag > ocaltag,
message-length => local-length,
message buffer => hardwareinterface.hw address

(local.receive buffer' address),
buffer size =>

processor acomn area.arthur max incoming_message length,
timeout._after -> timglobal Lilliseconds (1_000),
messages lost > localmessages_lost

comnuication management.receive message

sender -> local_sender,
messagetag -> localtag,
messag*_length -> local length, I
message buffer => hardware interface.hwaddress

(localreceive.buffer' address),

I
78 Kernel User's Manual, Version 1.0I

buffersize =>
processora_corn area.arthurmax_incomingmessagelength,

timeout at =>
timeglobals.createepoch_time (0, 1_000.0),

messages-lost => local_messages lost

Conditions for Blocking
This procedure blocks only if there is no message currently available for the process. If no
message is available, then it blocks until one of the following conditions occurs:

1. A message arrives for the process, or

2. The timeout expires.

4.7.2.4. Allocatedevicereceiver
This primitive assigns a specific Kernel process to be the receiver of all messages originating
from a specific non-Kernel device. The Kernel itself does nothing with messages from non-Kernel
devices other than passing them to their surrogates as identified via a call to
allocate_devicereceiver, thus, the receiving Kernel process must know the format of such
messages. The caller specifies:

1. The receiver process_ID, the process_identifier of the Kernel process to receive
the message.

2. A device ID, a processor_identifier index of the entry in the NCT of the non-Kernel
device.

Invocation

communication management. allocate device_-receiver
(

receiverprocessID -> processor_b cor. areavivianID,
deviceID -> 3

Conditions for Blocking
This procedure does not block.

4.7.3. Related Information
Only the non-blocking subprograms send message and allocate-devicereceiver may be
invoked from an interrupt service routine.

4.7.3.1. Exported Constants
Maximummessage_/ength

The maximum number of bytes that may be sent in a single message
Set via a tailoring parameter; see Section C.1.3

There are no representation specifications relevant to any of these constants other than those of
their base types.

Kernel User's Manual, Version 1.0 79

I

4.7.3.2. Exported Types !
Messagelengthtype

16-bit value defining the range of number of bytes that may be sent in a
single message0 .. maximum messagelengtvalue

Messagetag typem

16-bit value that may be used by the application to indicate the type of
the message

-32_768 .. +32_767
There are no representation specifications relevant to any of these types other than those of their
base types.

4.7.3.3. Exported Data Structures
None.

4.7.3.4. Referenced Constants

1. Current process priority - used for parameters; see Section 4.3

4.7.3.5. Referenced Types
1. Elapsed_time - used for parameters; see Section 4.2

2. Epoch_time - used for parameters; see Section 4.2
3. Priority - used for parameters; see Section 4.3
4. ProcessIidentifier- used for parameters; see Section 5.1.3U

5. Processoridentifier - used for parameters; see Section 4.4

4.7.3.6. Relevant Generic Parameters
Error checking: see Section C.4.

Others: 3
1. Maximum messagejengthvalue -see Section C.1.3.

4.8. Process Attribute Modifiers

4.8.1. Introduction
The process attribute modifiers capability comprises the following packages:

1. Generic process attributemodifiers, process_attributemodifiers

4.8.1.1. Purpose
By invoking any Kernel primitive that may block, a Kernel process has the ability to modify its
state (to become blocked) and its resumption priority (any legal priority value to be assigred to
the process when it becomes unblocked and eligible for scheduling). In addition, a process may
modify certain of its c wn scheuuling attributes specifically: its state, its ability to participate in I
timeslice scheduling, and its priority. A Kernel process may also cause another specified process
to die. n

so Kernel User's Manual, Version 1.0

4.8.1.2. Mechanism
The Kernel primitives that provide a Kernel process the capability to modify its state specifically
are: die - which causes the process to terminate itself irrevocably; and wait - which causes the
process to block itself unconditionally for a relative time or until an absolute time. The Kernel
primitive that provides a Kernel process the capability to specify whether or not it is to participate
in timeslice scheduling is: setprocess.preemption. The Kernel primitive that provides a Kernel
process the capability to specify its execution priority is: set processjriority. The Kernel
primitive that provides a Kernel process the capability to kill another Kernel process is: kill.

4.8.2. Subprograms

4.8.2.1. Ole
This primitive terminates the calling process. It may be invoked by any process at any time after
initialization is complete. When a process dies, all messages pending are discarded and no
further messages are queued for it; all negative acknowledgements to any pending messages
sent via the Kernel primitive send_message an._wait are returned as required; all space
allocated to the messages is reclaimed.

Only Kernel processes may be terminated by this primitive. Terminating a non-Kernel process is
the application's responsibility.

Invocation

process.attrbuto.moditiers. di.e;

Conditions for Blocking
This procedure does not block.

4.8.2.2. Kill
This primitive aborts the specified process. It may be invoked by any process at any time after
initialization is complete. When a process is killed, all messages pending are discarded and no
further messages are queued for it; negative acknowledgements to any pending messages sent
via the Kernel primitive send_message and_wait are returned as required; all space allocated to
the messages is reclaimed.

The calling process specifies the processlD of the process, local or remote, to be killed.

Invocation

process-attribute modifiers. kill
(

processID -> processora-comarea.arthu-_ID

Kernel User's Manual, Version 1.0 81

Conditions for Blocking I
This procedure does not block.

4.8.2.3. Set_processpreemption
This primitive changes the preemption status of the calling process. This primitive may be
invoked by any process any time after initialization.

The preemption status of a Kernel process indicates whether or not it is to participate in timeslice
scheduling. If the preemption is enabled, then the Kernel process is eligible for timeslice
scheduling; if the preemption is disabled, then the process is ineligible. See Section 4.14 and
Appendix D for more information about time slicing. I
Invocation

process-attribute.modifiers, set pocess.peezuption(_I

pre.mptable -> schedule types .1sabled

Conditions for Blocking
This procedure does not block.

4.8.2.4. Setprocess.prorlty
This primitive changes the priority of the calling process. This primitive may be invoked by any
process any time after initialization.

The priority of a Kernel process indicates the urgency with which its processing should be
executed. Lower numeric values for new priority represent greater urgency; higher numeric
values represent lesser urgency. The constant current process priority is used to indicate that
no change in the process priority should occur. 3
Invocation

process attributemoditiez.s set process priority 5
(

newpriority .> 1

process-attribute modifiers. set processpriority

newpriority -> schedule types. lowestpyrority

Conditions for Blocking I
This procedure does not block.

I

82 Kernel User's Manual, Version 1.0I

I

I 4.8.2.5. Walt
This primitive suspends the caller for a specified relative time (via the for_elapsed_time
parameter) or until a specified absolute time (via the untiLepochtime parameter). A timeout of
zero or some previous time prevents the calling process from blocking; the wait does not occur.
This primitive may be invoked by any process any time after initialization.

As wait is always potentially blocking, the resurmtion priority parameter, providing a new priority
at which the process is to execute when it unblocks, is provided.

Invocation
There are two forms of this primitive: one for an elapsed_time suspension; one for an3 epoch-time suspension.

process-attribute modifiers .wait

untilepoch time -> tie_globals .bas.time + five second.,
reumption priozity -> schedule types. highestpiority

process-attribute aodifiers .wait
(

for-elapsed time > five-second"

Conditlons for Blocking
This procedure always blocks until the delay (i.e., the specified elapsed or absolute time) expires.

3 4.8.3. Related Information
None of these subprograms may be invoked from an interrupt service routine.

4.8.3.1. Exported Constants
None.

4.8.3.2. Exported Types
None.

4.8.3.3. Exported Data Structures
None.

4.8.3.4. Referenced Constants

1. Current process priority -used for parameters; see Section 4.3

4.8.3.5. Referenced Types
1. ElapseIlime -used for parameters; see Sectn 4.2
2. Epoch_time - used for parameters; see Section 4.2
3. Preempion - used for parameters; see Section 4.3

4. Priority- used for parameters; see Section 4.3

Kernel User's Manual, Version 1.0 83I

I

5. Process_identifier- used for parameters; see Section 5.1.3

4.8.3.6. Relevant Generic Parameters I
Error checking: see Section C.4.

Others: none.

4.9. Process Attribute Readers I
4.9.1. Introduction
The process attribute readers capability comprises the following packages: 3

1. Generic process_ attribute_readers, process_attribute_ readers

4.9.1.1. Purpose 3
The functions exported by package process attributereaders provide the capability for a Kernel
process to query some of its scheduling attributes and to ascertain its own identity. In addition, a
query to determine the string-valued IogicaLname of any other process is also provided.

4.9.1.2. Mechanism
The functions provided for a process to obtain Information about itself are:

1. Get process preeirption - determines whether or not the process is participating in
timeslice scheduling. 3

2. Getprocessjpriority - ascertains the priority at which the process is currently
executing.

3. Who_am_l -obtains the process identifier of the process itself. .
The function provided to obtain the string-valued name of another process is: nameof.

4.9.2. Subprograms U
4.9.2.1. Getprocesspreemption
This function returns the current value of the preemption status of the calling process. This
primitive may be invoked by any process any time after initialization. If the return value is
enabled, then this process is a participant in timeslice scheduling; if the return value is disabled,
then this process is not a participant. I
Invocation

mclLn_pi.=tJton :, process.attribute =eadero. get processpreeuption;

Conditions for Blocking i
This procedure does not block.

84 Kernel User's Manual, Version 1.0

I

I 4.9.2. Get_process_priority
This function returns the current value of the priority of the calling process. This primitive may be3invoked by any process any time after initialization. The highest priority process executes at
priority value of 1; the lowest priority process executes at a priority value that is specified by a
tailoring parameter; see Section C22.

I Invocation

Sumrlin_pciority :- process att ribute readars.get_processpriority;

Conditions for Blocking
This procedure does not block.

4.92-3. WhoamI3 This function returns the process identifier of the calling process. This primitive may be invoked
by any process any time after initialization.

3 Invocation

duplicate marlin _D :- process attribute readers .who a. r;

Conditions for Blocking
This procedure does not block.

4.9.2.4. Nameof
This function returns the string-valued logicalname (the name provided when the Kernel3 primitive decdareprocesa was invoked) of the calling process. This primitive may be invoked by
any process any time after initialization.

3 Invocation

vivian nam
process attribute readers. namofI (

process ID -> processor a co= area. vivianID

Iynem -
process attribute readers. ,am-of(

proess ID -> process-attribute modifiers.wo_am I

I Conditions for Blocking

This procedure does not block.

I
I

Kernel Users Manual, Version 1.0 85U

I
I

4.9.3. Related Information
Only the subprogram name_ of may be invoked from an interrupt service routine. 3
4.9.3.1. Exported Constants
None.m

4.9.3.2. Exported Types
None.

4.9.3.3. Exported Data Structures m
None.

4.9.3.4. Referenced Constants m
None.

4.9.3.5. Referenced Types I
1. Preemption - used for parameters; see Section 4.3

2. Priority - used for parameters; see Section 4.3 m

3. ProcessjAdentifier- used for parameters; see Section 5.1.3

4.9.3.6. Relevant Generic Parameters 3
Error checking: see Section C.4.

Others: none. I

4.10. Interrupt Management 3
4.10.1. Introduction
The interrupt management capability comprises the following packages:

1. Genericjnterrupt globals, interrupt globals

2. Generic interruptmanagement, interrupLmanagement m

Real-time embedded system applications usually require very fast processing, some kind of
low-level interface, and a way to respond to asynchronous events. Asynchronous events are I
detected and processed In one of two basic ways: by polling or through interrupts. This section
covers only asynchronous events and, in particular, interrupts. An interrupt is defined as an event
that causes a temporary asynchronous change in control from normal processing.

Interrupt generation and interrupt handling are the two facets of interrupts. Interrupt generation is
hardware and application specific and is not covered here. Interrupt handling is the primary topic I
of this section.

Two terms are defined here and will be used throughout the ensuing discussion: interrupt 5
servicing and interrupt handling. The term interrupt servicing refers only to that processing done
to acknowledge the event which caused the Interrupt. The processing steps involved in servicing u
86 Kernel User's Manual, Version 1.0

I

I an interrupt are encapsulated in one routine called an Interrupt Service Routine (ISR). ISRs are
sometimes called interrupt handlers. Interrupt handling, on the other hand, is more
encompassing and refers to all the processing in hardware and software performed in response
to an interrupt. Interrupt servicing is therefore only part of interrupt handling.

Two further concepts are important to an understanding of the Kernel interrupt mechanism.

The first concept is that of interrupt priortif'es. It applies only in a priority-based interrupt
architecture, such as that found in the Motorola MC68OX0 processor family. During normal
processing, any interrupt may initiate interrupt handling. However, if the processor is already
handling one interrupt, a new interrupt request is recognized if and only if it has a higher priority
than that interrupt currently being handled. For the sake of discussion, it is assumed that no
interrupt handling is in progress when an interrupt occurs.

The second concept to be defined is interrupt vector or interrupt nurber. Every interrupt is
associated with a number called the interrupt number, or more commonly, the interrupt vector.
Each processor architecture provides a mechanism for accomplishing this.

1The Kernel supports both non-preempive and preemptive interrupts. A non-preemptive interrupt
causes the currently running Kernel process to be temporarily suspended to allow the ISR to
execute. After the ISR has completed, the processor resumes executing the suspended Kernel
process at the point where it was suspended. This type of interrupt is sometimes called a *fast
interrupt." During the processing of a preemptive interrupt, however, the Kernel Scheduler isIinvoked instead of returning to the suspended Kernel process. This latter case is used when
interrupt handling could possibly cause a change in process attributes such that a Kernel process
other than the currently executing process would become eligible for execution. This would then
facilitate changing the state of a process upon the expiration of a timeout. This type of interrupt
requires that the full context of a process be saved, as it may not be resumed when the ISR
completes, and, as such, is not as fast as a non-preemptive interrupt. The application may
specify whether an ISR is non-preemptive or preempive.

4.10.1.1. Purpose
The Kernel's interrupt management facility provides the primitives necessary for interrupt
handling. It allows the application to service interrupts in a consistent and flexible manner, and
protects the developer from needing to know too much about the target. This enables the
application code to be reasonably target independent. The interrupt management facility has
been implemented in a way that provides the most efficient interrupt handling for the target
implementation. All of the target dependencies have been encapsulated in one place, so porting
the application (and the Kernel) to other targets should be relatively simple.

KI
I

Kernel User Manual, Version 1.0 87I

I
I

4.10.1.2. Mechanism

Definitions and Terminology 3
The target hardware provides support for a set of interrupts, each of which is represented within
the Kernel by an integer value called the interruptLname. For completeness, the Kernel
represents all possible interruptnames and maintains information on each one. This information I
is maintained in an internal data structure called the Interrupt Table, which is described in detail in
Section 5.2.4. However, the Kernel provides the application with access to only some of the
interrupts defined by the target hardware.

The Kernel identifies each interrupt as being reserved for use exclusively by the hardware or Ada
runtime environment, reserved for exclusive use by the Kernel, used by the application, or absent I
(not used). Interrupts that are not reserved, used by the Kernel, or claimed by the application are
defined to be absent. The Kernel restricts the application from accessing those interrupts that are
classified as reserved or Kernel interrupts.

The Kernel identifies each interrupt as being either bound or unbound. A bound interrupt has an
interrupt service routine (ISR) associated with it. This association is established explicitly by the I
application via the Kernel primitive bind_interrupt_handler or transparently by the Kernel during
Kernel initialization. 3
When binding is performed, the interrupt is identified as either non-preemptive or preemptive.
Interrupt entry is the same for both kinds of interrupts; the behavior differs at interrupt exit, as
described in Section 4.10.1.

The Kernel supports dynamic binding of interrupt handlers; the application may bind a different
ISR to an interrupt at any time, by invoking the Kernel primitive bindjnterrupLhandler, and as I
often as necessary.

An interrupt is usually generated by an external device, but may also be simulated by software via I
the Kernel primitive simulate_interrupt. The Kernel tracks the interrupt source (hardware -

external or software - internal) while it is being handled.

An interrupt is either enabled or disabled. For an interrupt that is enabled, the Kernel executes
the ISR bound to it when the interrupt occurs or is simulated via the Kernel primitive
simulateinterrupt, the Kernel simply dismisses any interrupt that is disabled. An interrupt may I
always be enabled via the Kernel primitive enable. Sometimes, an interrupt must also be enabled
at the hardware device itself. This capability Is outside the control of the Kernel and is the 3
responsibility of the application. Before an interrupt may be enabled, an interrupt handler must be
bound to it. An interrupt may be disabled via the Kernel primitive disable.

Interrupt Handling
Interrupt handling is provided via both hardware and software. Virtually all processors are
designed with some kind of interrupt mechanism. The Kernel builds a layer of abstraction on top3
of the hardware so that a common interrupt handling mechanism is provided, no matter on what
processor family the application executes.

88 Kernel User's Manual, Version 1.0 3

I

IInterrupt handling involves several steps: initialization, interrupt recognition, table lookup, ISR
execution, and process resumption.

UInitialization. Both the Kernel and application perform operations to initialize interrupt handling.
The Kernel initializes the Interrupt Table with all information known about reserved and Kernel
interrupts. The binding of these interrupts is done automatically by the Kernel at Kernel
initialization time. The application may then bind any interrupts it requires via the Kernel primitive
bindinterrupLhandler. The Interrupt Table maintains all the information known to the Kernel3about all interrupts, such as the ISR address, the binding status, etc. See Section 5.2.4 for more
details about the Interrupt Table. Before an interrupt is expected, an ISR must be bound to the
interrupt, and the interrupt must be enabled, in that order. If an interrupt is not enabled (i.e., the5 interrupt is still disabled), it is totally ignored.

Interrupt recognition. In order for an interrupt to be recognized, it must compete with other3interrupts that occur at the same time or that are currently being processed. That is, it must have
a higher priority than the current processor priority and then any simultaneous interrupts. Many
targets use interrupt priority to choose which interrupt to recognize. This arbitration is handled
solely by the hardware. Interrupt handling that is started via the Kernel primitive
simulate~interrupt does not have to contend for recognition.

3Table lookup. Once the interrupt is recognized, the current running process is suspended, and
the entry in the Interrupt Table associated with the interrupt is checked to see if the interrupt is
currently enabled. If the interrupt is not enabled, the interrupt is dismissed, and the process is
resumed with minimal delay.

However, if the interrupt is enabled, the current context is saved, the interrupt source is set to
indicate from where the interrupt originated (i.e., externally via a hardware device or internally viathe Kernel primitive simulateinterrup), and the associated ISR, as determined from the Interrupt

3Table, is called.

ISR execution. The ISR then executes. Unless it is interrupted by another interrupt, it executes
to completion. It is not unusual to have the first operation within the ISR disable the interrupt and
the last operation re-enable the interrupt. One reason to disable interrupts may be that once the
application begins processing a specific interrupt, it is not ready to service another interrupt. After3the processing has completed, the interrupts are enabled so they may be serviced again.

Process resumption. After the interrupt is serviced, one of two things happens, depending on
whether the interrupt was identified as non-preemptive or preemptive. As described previously, a
non-preemptive interrupt would simply cause the suspended process or ISR to be resumed after
restoring its context; a preemptive interrupt would cause the Kernel Scheduler to be invoked.

UInterrupt Names and Reserved Interrupts
The application references interrupts by an interrupLname (i.e., an integer value) with a
hardware-specific range. For the Motorola 68020 implementation, this "ange is defined in
Appendix H. The names are mapped directly to interrupt vectors. Some names are reserved by
the hardware or the Kernel and may not be used by the application.

I
Kernel User's Manual, Version 1.0 89I

InterruptLnames that are reserved by the Kernel or hardware (and, thus, are unavailable to the
application) are identified in Appendix H for the Motorola 68020 implementation.

Interrupt Handler-Ada Code
An interrupt handler may be declared as an outer-level Ada procedure with no parameters or as
an assembly language routine that follows Ada's linkage conventions. One or more handlers may
be declared for each interrupt, but only one may be bound to an interrupt at any one time. An
interrupt handler must be bound before the corresponding interrupt is enabled. The interrupt
handler encapsulates all of the steps necessary to service the interrupt. Good program design

dictates that an interrupt handler be written to be short and efficient to minimize the length of time
normal processing is suspended. In support of this, the Kernel does not allow any blocking
Kernel primitives to execute within an ISR.

The following is an example of a typical interrupt handler definition:

procedure receiverinterrupt._handler is
begin

disable device interrupt capability

check receiver status

-- if status iS good then
-- get data received and store in buffer
-- end.if

-- re-enable device interrupt capability

and receiver-interrupt handler;

An interrupt handler is not allowed to invoke any Kernel primitive that may block, as this could
result in deadlock.

4.10.2. Subprograms

4.10.2.1. BIndInterrupLhandler
This Kernel primitive identifies an interrupt service routine that is to be called when the namedm
interrupt occurs. It also identifies whether the interrupt is preemptive or non-preemptive.

When the application invokes bind_interruptLhandler, the Kernel locates and checks the 3
appropriate entry in the Interrupt Table. Improper values for the interrupt name or handler
address raise illegal interrupt or illegaLinterrupt handler_address respectively. If the interrupt
name corresponds with a reserved interrupt, reserved_interrupt exception is raised. Otherwise,
the address of the ISR is stored in the Interrupt Table, and, when the named interrupt occurs and
is enabled, the associated code is executed as the ISR.

Bind intermupLhandler may be invoked anytime it is necessary to change the ISR for an interrupt.
Replacing previous_interruptLhandler is raised each time after the initial call.

90 Kernel User's Manual, Version 1.0 I,

I

I Invocation
10_device : constant inte ptglobals.interrupt name :- 200;

-- on one processor, the 10 device has already been set up with
-- an interrupt vector of 200; this declaration asserts that3 -- infozmation to the Kernel

interrupt management bind interrupt handler
(

interrupt -> 10 device,
handler code ->

harCareinterface. hwaddress (receiverinterrupthandler' address),
can preempt -> false

N Conditions for Blocking
This procedure does not block.

1 4.10.2.2. Disable
Disable causes the Kernel to ignore all subsequent interrupts from the specified device by not3 calling its associated interrupt handler.

Invocation

interrupt managqment, disableU (
interrupt -> 10_device

Conditions for Blocking3 This procedure does not block.

4.10.2.3. Enable
Enable is used both initially to enable an interrupt and to re-enable an interrupt after it has been
disabled. When a specified interrupt is enabled and the interrupt occurs, the bound interrupt
handler is called.

I Invocation

interrupt remnagement. enable

interrupt -> 10 device

I Conditions for Blocking
This procedure does not block.

K
Kernel User's Manual, Version 1.0 91U

4.10.2.4. Enabled
Enabled is used to query the status of an interrupt.

Invocation

device-status :- interrupt management.onabled (interrupt -> IO device);

Conditions for Blocking
This procedure does not block. 3
4.10.2.5. Simulate_Interrupt
Simulateinterrupt calls the handler for an interrupt as if the associated hardware interrupt had
occurred. An interrupt must be bound to a handler and enabled to simulate the interrupt. Calling
simulateinterrupt may or may not return to the invoking process, depending on the type of the
interrupt being simulated. If the interrupt being simulated is a non-preemptive interrupt, then 3
control is resumed in the invoking Kernel process immediately after the call to simulateinterrupt.
However, if the interrupt being simulated is preemptive, control returns to the Kernel Scheduler,
which might elect to suspend the invoking process and resume another. I
Invocation

interrupt management.s imulate interrupt
(

interrupt -> 10_device

Conditions for Blocking
This procedure does not block. I
4.10.3. Related Information
Any of these subprograms may be invoked from an interrupt service routine.

4.10.3.1. Exported Constants

Nullhandler
The address of a null interrupt service routine

Set via a tailoring parameter; see Section C.1 .1
There are no representation specification specifications relevant to any of these constants other
than those of their base types.

4.10.3.2. Exported Types I
More details are provided in Section 5.2.4.
Interruptconditlon

Indication of whether a handler is bound to an interrupt or not
Enumerated (bound, unbound)

Interruptname 3
Range corresponding to hardware vector assignments of the target

See Appendix H for actual range of values for the 68020

92 Kernel User's Manual, Version 1.0

I

1 InterrupLowner
Indication of how the interrupt is used3 Enumerated (absent, reserved, Kernel, application)

Interruptstate

Indication of whether enabled or disabled
Enumerated (enabled, disabled)

lnterrupLsource
Origin of the interrupt

Enumerated (internal, external)

Interrupttable_entry
Type to construct Interrupt Table

Record; see Section 5.2.4

There are no representation specifications relevant to any of these types other than those of their
base types.

4.10.3.3. Exported Data Structures

InterrupLtable
Logical constant used to maintain all the information known to the
Kernel about all interrupts

See Section 5.2.4
There are no representation specifications relevant to the Interrupt Table at this level.

3 The following data structure is exported by package interrupt globals but is only used internally
within the Kernel:

InterruptLvector
The transfer vector actually used by the Kernel, a logical subset of the
interrupLtable

See Section 5.2.4

There are no representation specifications relevant to the interruptvector at this level.

4.10.3.4. Referenced Constants
None.

4.10.3.5. Referenced Types
None.

4.10.3.6. Relevant Generic Parameters
Error checking: see Section C.4.

Others:

1. Number_ofinterrupt-names_ usedcby application - see Section C.2.4.

2. Number_ofinterruptnamesused byKernel- see Section C.2.4.

I
Kernel User's Manual, Version 1.0 93I

I

4.11. Semaphore Management I
4.11.1. Introduction I
The semaphore management capability comprises the following packages:

1. Genericsemaphoremanagement, semaphorecmanagement 3
4.11.1.1. Purpose
The semaphore management package provides the abstraction of ("Dykstra") Boolean
semaphores to an application. As described in Section 5.1.2, a semaphore consists of three
components: a count of the number of processes waiting to access the semaphore, a FIFO
queue of the waiting processes, and a last-in, first-out (LIFO) list of semaphores claimed by the 3
process that owns this one. A Kernel process may register a request to reserve a semaphore,
thus asserting sole ownership of the resource it guards, and may give up that shared resource.

4.11.1.2. Mechanism I
This mutual exclusion of Kernel processes from concurrently accessing the same resource is
accomplished via the data type semaphore, described in Section 5.1.2, and two subprograms to 3
reserve and give up the semaphore: claim and release respectively.

If a process claims a semaphore, that process owns the semaphore, and any subsequent 3
process is blocked on the claim request until the owning process releases the semaphore.

4.11.2. Subprograms 3
4.11.2.1. Claim
This primitive attempts to claim the specified semaphore. If the semaphore is free, the primitive 5
succeeds and the invoking process continues execution. If the semaphore is not free, the
invoking process may be inserted into the semaphore's waiting queue and block until the
semaphore becomes free. Claim takes the following parameters:

1. The semaphorename to be claimed.

2. An optional timeout of one of two kinds: 3
" Withinelapsed_time - a relative time after which the claim request is

rescinded; or

" By epoch time - an absolute time at which the claim request is rescinded. i
A timeout of zero or some previous time prevents the calling process from blocking;
if the semaphore is not available, the claiming process does not wait for it to
become available. m

3. An optional resumption priority to take effect when the claiming process becomes
unblocked. m

Invocation
There are three forms of this primitive: one for an infinite timeout (i.e., there is not timeout
parameter); one for an elapsed time timeout; one for an epoch_time timeout.

smapho..managqment. claim 3
94 Kernel User's Manual, Version 1.0

I

semaphore-name -> global.resources.position data

semahor maagOentclaim
(

semaphore-name -> global resources.position data,
within elapsed time > veseconds,
resu=ption prority => 2

I semaphore ianaginnt claim
(

semaphorename -> global resources.position data,
by epoch time => tim@ globals.base_time + five-seconds,
resunptionypriority -> I

Conditions for Blocking
This procedure blocks only when the state of the requested semaphore is CLAIMED (N) and the

timeout parameter is for some future time. It will unblock when one of the following conditions
occurs:

1. The semaphore is released and the invoking process is at the head. of the wait
queue, or

i 2. The claim timeout expires.

4.11.2.2. Release
This primitive releases a semaphore previously claimed. If there are no further waiting
processes, then the semaphore becomes free; if there are waiting processes, then the number of
waiting processes is decremented by one and the semaphore is given to the process at the head

3 of the semaphore queue.

Invocation

Ssemaphore management. release
(

semaphore name -> global resources.positiondata

Conditions for Blocking
This procedure does not block.

4.11.3. Related Information3None of these subprograms may be invoked from an interrupt service routine.

I
I

Kernel Users Manual, Version 1.0 95I

4.11.3.1. Exported Constants
None. 3
4.11.3.2. Exported Types
None.

4.11.3.3. Exported Data Structures I
None.

4.11.3.4. Referenced Constants I
1. Current process_.priority - used for parameters; see Section 4.3

4.11.3.5. Referenced Types I
1. Elapsed_time - used for parameters; see Section 4.2

. EI
2. Epoch_time - used for parameters; see Section 4.2
3. Priority- used for parameters; see Section 4.3
4. Semaphore - used for parameters; see Section 5.1.2 3

4.11.3.6. Relevant Generic Parameters
Error checking: see Section C.4.

Others: none.

4.12. Alarm Management

4.12.1. Introduction
The alarm management capability comprises the following packages:

1. Generic_alarm_management, alarmmanagement

4.12.1.1. Purpose
Alarms are:

" Enforced changes in process state.

" Caused by the expiration of a timeout. 3
* Asynchronous events that are allocated on a per-process basis.

A process views an alarm as a possible change in priority with an enforced transfer of control to I
an exception handler. An alarm is requested to expire at some specified time in the future. When
an alarm expires, the Kernel raises the alannexpired exception, which the process is expected
to handle as appropriate. There is only a single alarm per process.

I
96 Kernel User's Manual, Version 1.0I

I

1 4.12.1.2. Mechanism
The alarmmanagement package exports an exception alarm expired that is raised in the3 process by the Kernel when the specified timeout expires.

The setalarm Kernel primitive defines the timeout at which point the Kernel raises alatmexpired
if the alarm is not cancelled via the canceLalarm primitive.

Alarmnexpired Exception
When the Kernel raises the alarmexpired exception, this indicates that the timeout specified via
the set_alarm Kernel primitive has, in fact, expired. It is intended that the Kernel process setting
the alarm also provides a mechanism to handle the possible occurrence of the exception. This
could be used as a paradigm to create cyclic processes and handle frame overruns. See
Appendix E.3 for an example.

As alarm_expired is like any Ada exception, it may be handled in an exception handler, either
explicitly or by a when others clause. If not handled, it is propagated like any other Ada
exception.

I 4.12.2. Subprograms

4.12.2.1. Set-alarm
This primitive defines an alarm that interrupts the invoking Kernel process if it expires. This
primitive may be invoked by any Kernel process any time after initialization. The interruption
causes the process to become suspended in an error state; when the process is resumed, the
alarmexpired exception is raised in it.

3 The expiration of the alarm is expressed as a timeout of one of two kinds:

e After elapsed time - a relative time after which the Kernel readies the alarm_expired
exception to be raised; or

e For epochtime- an absolute time at which the Kernel readies the alarm~expred
exception to be raised.

If the expiration time of the alarm is the current time or in the past, the timeout expires
immediately, and alamexpired is immediately raised.

An optional expiration priority to take effect when the invoking process begins processing the
exception handler for alarmexpired may also be specified.

Invocation
There are two forms of this primitive: one to set an alarm after an elapsedime; one to set an
alarm for an epochjlme.

alazu uanag t. setalam
(

afte.elapsed tim -> five.soconda

auaananaggmon . set-alam

Kernel Usr Manual, VersIon 1.0 97I

I
fo= epoch t ,> time_globals.base_time + five seconds,
;ezip.ation-pioLty => 7 I

Conditions for Blocking 3
This procedure does not block.

4.12.2.2. Cancelalarm I
This prirnitive disables an alarm that was set but has not yet expired. This primitive may be
invoked by any Kernel process any time after initialization.

Invocation I
alazmmanagenant .cancel-alaza; 3

Conditions for Blocking
This procedure does not block. 3
4.12.3. Related Information
None of these subprograms may be invoked from an interrupt service routine. 3
4.12.3.1. Exported Constants
None. 3
4.12.3.2. Exported Types
None. 3
4.12.3.3. Exported Data Structures

None. 3
4.12.3.4. Referenced Constants

1. Current processpiority- used for parameters; see Section 4.3 1
4.12.3.5. Referenced Types

1. Elapsed_time - used for parameters; see Section 4.2 3
2. Epochjtime- used for parameters; see Section 4.2

3. Priority- used for parameters; see Section 4.3 3
4.12.3.6. Relevant Generic Parameters
Error checking: see Section C.4. 3
Others: none.

9
I

96 Kernel User's Manual, Version 1.0 I

U

1 4.13. Time Management
The abstraction of time permeates the entire Kernel. Time comes in two kinds: relative time (the

Kernel-exported type elampsedtime) and absolute time (the Kernel-exported type epochjtime).
All Kernel primitives that may block take a timeout parameter of either kind (for wait, see Section

4.8.2.5, for claim, see Section 4.11.2.1, for send_message and wait, see Section 4.7.2.2, for
receivemessage, see Section 4.7.2.3, for synchronize, see Section 4.13.2.3). Alarms may be

set to expire in terms of both kinds of time (see Section 4.12.2.1). The Kernel's overall view of3 time is described in Section 4.2.

4.13.1. Introduction3 The time management capability comprises the following packages:

1. Generic_ timejmanagement, time management

3 4.13.1.1. Purpose
The timemanagement package exports subprograms to: adjust the elapsed time counter, adjust
the epoch time counter, synchronize both elapsed and epoch times across the entire Kernel

network, and obtain the time that has elapsed since the Kernel on this processor initialized.

4.13.1.2. Mechanism
The Kernel primitive adjust.elapsedtme is provided to adjust the elapsed time counter. This is
to be used when one processor's local clock has drifted. This has the effect of changing pending
delays of either kind, since increasing the number of elapsed ticks makes the machine think both
that it has been running longer and that it is later in the day.

The Kernel primitive adustepochtime is provided to adjust the epoch time. This is to be used if
it is discovered that the original time setting was incorrect or needs to be adjusted (e.g., if the
application needs to take daylight savings time into account). This has the effect of changing any
pending delay-until actions, since increasing the epoch makes the machine think it is later in the

day but does not change how long it has been running.

The Kernel primitive synchronize is provided to synchronize time across the entire network (both

elapsed and epoch time).

3 The Kernel primitive read_dock is provided to obtain the elapsed time on the invoking processor.

4.13.2. Subprograms

3 4.13.2.1. Adustelapsed time
This primitive allows the application to increment or decrement the current local elapsed time by a
specified amount. This primitive may be invoked by any Kernel process any time after

initialization. This affects pending delays expressed in terms of both elapsed_time and
epochtime.

K
I

Kernel User's Manual, VersIon 1.0 99I

I

Invocation

time management. adjustelapsed time 3
(

adjustment => five-seconds

Conditions for Blocking
This procedure does not block. 3
4.13.2.2. Adjust-epochime
This primitive allows the application to increment or decrement the current local epoch time by a
specified amount This primitive may be invoked by any Kernel process any time after
initialization. This affects pending delays expressed only in terms of epoch time.

Invocation I
time managmnt, adjust _epoch timne I

neq.poch time -> time globas.base tim + one hour

I
Conditions for Blocking
This procedure does not block.

4.13.2.3. Synchronize
This primitive forces all local processor clocks on Kernel devices to synchronize time with the
local clock on the invoking processor. This primitive may be invoked by any Kernel process any I
time after initialization.

A timeout of one of two kinds is specified: I
" Timeout_after - a relative time before which the Kernel guarantees that the clocks

will be synchronized; or

" Timeout_at - an absolute time at which the Kernel guarantees that the clocks will be
synchronized.

A timeout of zero or some previous time prevents the calling process from blocking; the I
synchronization does not occur.

An optional resumption priority that takes effect when the invoking process becomes unblocked 3
may also be specified.

The postconditions of this primitive are: 3
* If it completes successfully, all clocks are synchronized.

* If it terminates with an error, the exact state of network time is not known. 3

I
100 Kernel User's Manual, Version 1.0 -

3

U Invocation
There are two forms of this primitive: one for an elapsedtime timeout; one for an epochtime3 timeout.

time managenent synchronize

timeout after -> fivesecondsI(

time managamnt. synchronize

timsout at > time~globals.base time + fiveseconds
resumption priority -> I

Conditions for Blocking
This procedure does not block.

4.13.2.4. Read-clock
This primitive reads the local processor clock and returns the elapsed time. This primitive may be
invoked by any Kernel process any time after initialization.

3 Invocation

runing time- time, anagement. read clock;

Conditions for Blocking3 This procedure does not block.

4.13.3. Related Information3 Any of these subprograms may be invoked from an interrupt service routine.

4.13.3.1. Exported Constants
3 None.

4.13.3.2. Exported Types
I None.

4.13.3.3. Exported Data Structures
None.

4.13.3.4. Referenced Constants
3 1. Current process proity - used for parameters; see Section 4.3

K
U

Kernel Usersl Manual, Version 1.0 101I

I
4.13.3.5. Referenced Types

1. Elapsetime - used for parameters; see Section 4.2 3
2. Epochime- used for parameters; see Section 4.2

3. Priority - used for parameters; see Section 4.3

4.13.3.6. Relevant Generic Parameters
Error checking: see Section C.4.

I
Others: none.

4.14. Timeslice Management U
4.14.1. Introduction 3
The timeslice management capability comprises the following packages:

1. Generic_timeslicemanagement, timeslice management 3
4.14.1.1. Purpose
The timeslice-management package supports round-robin execution of processes of the same
priority. Processes voluntarily indicate whether or not they participate in timeslicing by enabling I
or disabling their preemption (see Sections 4.6.2.2 and 4.8.2.3); by default, processes do
participate. I
4.14.1.2. Mechanism
Package timeslice_management provides the capability to set the processor-wide timeslice
quantum via the Kernel primitive set_tireslice, and the capability to enable and disable
round-robin execution of processes at the same priority level via Kernel primitives
enable_time_slicing and disable jmeslicing respectively. I
Timeslice Model
The model used by the Kernel is that processes of equal priority that are participating in timeslice
processing are allocated a quantum of time in which to execute. The length of this timeslice
quantum is set via settimeslice. If a timesliced process blocks, it relinquishes the rest of its
timeslice, allowing another process at the same priority level and also participating in timeslice
processing to execute. If an interrupt occurs, however, that time is included as part of the
process's allocated timeslice quantum.

4.14.2. Subprograms I
4.14.2.1. Disable_tlme..sllclng
This primitive disables round-robin, timeslice scheduling. This primitive may be called by any
Kernel process at any time after initialization. After execution of this primitive, scheduling is
purely priority-based preemption. Appendix D provides the details of this algorithm. 3

I
102 Kernel User's Manual, Version 1.0

I

I Invocation

StiMeslice._managment disable_timeslicing;

Conditions for Blocking
This procedure does not block.

4.14.2.2. Enable_tlmesllcing
This primitive enables round-robin, timeslice scheduling among processes of equal priority. This
primitive may be called by any Kernel process at any time after initialization. After execution of
this primitive, scheduling mingles the pure priority preemption scheduling with timeslice3 scheduling. Appendix D provides the details of this algorithm.

Invocation

I timeslice_managannt. enable.timl slicing;

3 Conditions for Blocking
This procedure does not block.

4.14.2.3. Set_timesllce
This primitive sets the timeslice quantum for the processor. This primitive may be called by any
Kernel process at any time after initialization.

There is no Kernel-imposed limitation on the maximum length of a timeslice quantum; however,
there is a Kernel-imposed minimum. This is set via the tailoring parameter
minimum_slice_time_value. The actual, reasonable value to use as the parameter to
set_times/ice requires analysis of the application requirements, as well as the Kernel's
performance. See Section C.2.3 for an illustration of the analysis required.

I Invocation

timeslice managemnt. set.timealiceI (
quantum -> tma_globals.milliseconds (100)

Conditions for Blocking3 This procedure does not block.

4.14.3. Related Information3 Any of these subprograms may be invoked from an interrupt service routine.

Kernel Users Manual, Version 1.0 103U

I

4.14.3.1. Exported Constants I
Minimum_slice_time

The minimum amount of time that may be specified as a timeslice interval 3
Set via a tailoring parameter; see Section C.2.3

There are no representation specifications relevant to any of these constants other than those of
their base types. I
4.14.3.2. Exported Types
None. 3
4.14.3.3. Exported Data Structures
None.

4.14.3.4. Referenced Constants
None. 3
4.14.3.5. Referenced Types

1. Elapsed_time - used for parameters; see Section 4.2 3
4.14.3.6. Relevant Generic Parameters
Error checking: see Section C.4. 3
Others: none.

4.15. Index of Kernel Names
This section contains two tables providing a quick index to Kernel names. The first table is sorted 3
alphabetically by name (of subprogram, exception, type, constant, data structure), and for each
name, the exporting package is given, along with the section in this document where more
information may be found. The second table contains the same information sorted by exporting
package first, then the names exported by that package, and the Kernel User's Manual sectionreference.I

Index of Kernel Names

Name Exporting Package Section

adjust-elapsedjime timemanagement 4.13
adjusLepoch_time timemanagement 4.13
alarm_expired alarm-management 4.12 3
allocatedevice_receiver communicationmanagement 4.7
arithmetic operators: 0+," "-," "'a "r time-globals 4.2 3
basejime time..globals 4.2
bindjinterrupLhandler interrupLmanagement 4.10

bits_perbyte hardwareinterlace 4.1

104 Kernel User's Manual, Version 1.0 I

I Index of Kernel Names
Name Exportng Package Section

bus~address network...globals 4.4
byte hardware~interface 4.13cancel_alarm alarm-.management 4.12
claim semaphore..management 4.11
comparison operators: "s -"~ i" time...globals 4.2

conf igurationjable network-configuration 4.4
create...elapsed time time..globals; 4.2

create...epochjime time-globals 4.2
create..process process managers; 4.63current..process__prionity schedule..types 4.3
declare-.process process managers 4.63 defaultWpeemption schedule..types 4.3
defaultj.prority schedulejypes 4.3
delault..pocess..state schedulejtypes 4.3

device name type process managers.globals; 4.6
die process attribute mfodifilers 4.83disable interrupLmanagement 4.10
disable~timew_slicing timneslice management 4.14
elapsedjime time...globals 4.2

enable interrupLmanagement 4.10
enable_Wtim_slicing timeslice_management 4.14

enabled interrupt..management 4.10
epoch~tbme time..globals 4.23first~bus_address network...globals 4.4
get..process..peemption process~attribute~readers 4.93get...process-.priority process attribute readers 4.9
highest..priority schedule..types 4.3

how _to handle.mssage..queue.overflow process managers..globals 4.6
hw-addr___ ___ ___ _____jnerae .

hw-addss hardware_interface 4.1
hw_bits8~t hardware-interface 4.13 hw..bits8..t hardwareinterface 4.1
hw bytept hardware-interface 4.1

hw_duration hardware-interface 4.1

Kernel Users Manual, Version 1.0 105

Index of Kernel Names
Name Exporting Package Section3

hw-integer hardware-interface 4.1
hw-long..jnteger hardware-interface 4.1
hwjlong..natural hardware-interface 4.1
hw long..positive hardware-interface 4.1
hw-natural hardware~interface 4.13
hw..psifive hardware-interface 4.1
hw..string hardware-interface 4.1I
initization...complete processor-..management 4.5
initializeMaster.~processor processor-..management 4.5

initialize_subordinate-.processor processor-management 4.5
integral-duration time...globals 4.2
interrupt~condition interruptglobals 4.103
interrwptname interrupt..globals 4.10
interrupt..owner interrupt..globals 4.103
interruptsource interrupt..globals 4.10
interrupt..state interrupt..globals 4.10
_ __al 4.10 _

interrupt..tableenr interrupt..globals; 4.10
interruptabl ey interrupt..globals 4.10

interrupt vector interrupt..globals 4.10
kill process_attribute-modifiers 4.83
last-bus~address network...globals 4.4
longword hardware-interface 4.1
lowest..priority scheduleM.tyes; 4.3
maximum-length ofjrocess name process..managers.globais 4.6
maximumjLength..of..processor namei network..configuration 4.43
maximum..messagejength communication..globals 4.7
messagejlengthjype communication..globals 4.73
messagejaajtype communication..globals 4.7
microseconds time-..globals 4.2

milliseconds time...globals 4.2
minimum-slice-time timeslice-management 4.14

NCT network...configuration 4.4
NOT entry network...configuration 4.4

106 Kernell User's Manual, Version 1.0

Index of Kernel Names

nm ofName Exportig Package Section
name~ofprocess attribute readers 4.9 _

null-address network...globals 4.43null-handler interrupt..globals 4.10
nullhw_address hardwarejnterf ace 4.13number _ofnodes network configuration 4.4
preemption schedulejpes 4.3
priority schedulejpes 4.3

process~inde..tpe network..globals 4.4
process-name..tpe process managers..globals 4.63process_state schedulejpes 4.3
processor-identifier network...globals 4.43read_dlock time-..management 4.13
receive-message communication...management 4.7

release semaphore-..management 4.11
_ie..globaIs 4.2

send-..message communicationmanagement 4.73send-message-and-wait communicationjnanagement 4.7
set-alarm alarm-..management 4.123set-.process..preemption process_attribute_modif iers 4.8
set.process.priority process_attribute-modifilers 4.8

set-timeslice timeslice_..management 4.14

simulate-interrupt interruptjnanagement 4.10
synchronize timemanagement 4.13U ticks...per...second Kernel-time 4.2
toAda-duration time..globals 4.23tok_Kerneltime time...globals 4.2
to elapsedjime time...globals 4.23to..epochjl~me time-.globals 4.2
to_hw ._.address hardware-interface 4.1
to~hw_bits8 hardware-interf ace 4.1

to~hw...bits8..ptr hardware-interface 4.1 _ _

to_hw...byte..ptr hardware-interface 4.1
*wait process attribute modifiers 4.8

who-amI process attribute readers 4.9UL
Kernel User's Manual, Version 1.0 107

U
I

Index of Kernel Names

Name Exporting Package Section 3
word hardwareinterface 4.1

zeroelapsed_time timeglobals 4.2

zeroepochjime timeglobals 4.2

I
I
I
I
I
I
I
I
I
I
I
I
I
I

108 Kernel User's Manual, Version 1.0I

I This index of Kernel names is sorted by the exporting package, then the names exported by the
package, and the Kernel User's Manual section reference.

3 Index of Kernel Exporting Packages
Exporting Package Name Section3alarrnjLmanagement alarm-.expired 4.12

alarm-..management cancel-alarm 4.12
alarm-.management set_alarm 4.12

___uiao__________ _airi_________ _______ 4.7

communication..globals mai messagejength 4.7
communication..globals messagejegthype 4.7

communication..management allocate_device-receiver 4.73 communication...management receive~..message 4.7
communication-management send-message 4.7

'communication-management
send message.and wait 4.7

hadaeinefc _ __p__ __ _ __ __ _ 4.1 _

hardware-interface bts.p.byte 4.1
hardware-interface bytodes 4.13hardware-interface hw_addss 4.1
hardware-interface hw _bits8_t 4.13 hardware-interface hw bit8..t 4.1
hardware-interface hw _bytept 4.1
hardware-interface hw....bytionpt 4.1

hardware-interface hw-duration 4.1
hardware interface hwo integer 4.1

hardware-interface hwlongnatural 4.13hardware_interface hw long..positive 4.1
hardware-interface hw-natural 4.1
hardware-interface hw...psitive 4.1Ihardware-interface hw string 4.1
hardware-interface longword 4.1Ihardwarejinterf ace nulljiw adldress 4.1
hardware-interface to_hW_address 4.13hardware-interface to_hw_bits8 4.1
hardware-interface to hw...bits&..ptr 4.1
hardware-interface to hw..byte..ptr 4.1Nhardware-interface word 4.1

Kernel Users Manual, Version 1.0 109

Index of Kernel Exporting Packages
Exporting Package Name Section3

interrupt..giobals interruptWrndition 4.10
interrupt...globals interruptjiafle 4.10
interrupt-giobais interrupowner 4.10
interrupt..globais intemrupt_;source 4.10
interrupt..globals interruptate 4.103
interrupt..globals; interruptjable 4.10
interrupt..giobais interruptjabl...entry 4.103
interrupt-globals interruptjablejype 4.10
intemjupt~globais intemjipt~ector 4.10
intemjupt..globais nullhandler 4.101
interruptmanagement bind interrupthanidler 4.10
interrupmnagement disable 4.103
interrupt managemfent enable 4.10
interrupt...managernent enabled 4.101
interrupt-.managernent simulate~jnterrupt 4.10
Kernel~time tlcks..persecond 4.2
network-configuration configuration table 4.4
network-configuration miaximum jmlenigthof~processorname 4.4

network-configuration NCT 4.4
network-configuration NCL _entry 4.4
network conftiguration numnber oLnodes 4.43

newokglobais bus-address 4.4
network..giobals firstjs_address 4.43
network~giobals last~bus~address 4.4

newrkgibals nulladdress 4.4

network..giobals process.Jndexjype 4.4
network..globals; processor Identifier 4.4
Process~~attribute-modifiers die 4.83
p'~cess.atiribute modifiers kill 4.8
PrOceSS..affrbute modifiers set-.process..preemption 4.83
prDcess..attrbute-nodiliers set-pocess.priorty 4.8
procoss..attrutemodiliers waft 4.8
process..attribuejeaders get..process.preemption 4.9
process~attributer readers get..process..prority 4.9

110 K*mol User's Manual, Version 1.03

PcaeIndex of Kernel Exporting Packages ____

Exporting PcaeName SectionI ____________ut _redr _____ 4.

process attribute readers nham.o 4.9

3procesa...managers create..process 4.6
process..managers declare-..process 4.63processjnanagers.globals device_name-typ 4.6
process...managers..globals how_to_handle -message..queue.overflow 4.6
process..managers..globals maxlmumr _engt...f..process...name 4.6

I process..managers.glob~afs process name~type 4.6
processor..management initialization complete 4.53processor _management initializeMaster...pocessor 4.5
processor _management initlize_...ubordinate..processor 4.53 schedule...yps current.process..prority 4.3
schedule..tpes default..preemption 4.3
schedule..typs defaultpriority 4.3
schedule~jpes default wpocess..state 4.3
schedule..tps highest..prlrty 4.33schedule types lowest-priority 4.3
schedulejypes preemption 4.33schedulejypes priority 4.3
schedulejypes process state 4.3
semaphore...management claim 4.11

semaphore..management release 4.11
time..globals arithmetic operators: T+"", ", I 4.2

* _____ _____ bs_te 4.2

time..globals comparison operators: """c,",">" 4.23 time...globals create..elapsed...imre 4.2
time...globals create..epochjime 4.2

timegloals laped~trne4.2

tim~obas epct~ime4.2
time~globals integra~duration 4.2I ~ ~ ie-lbl ______________ 4.2__ _ _ __ _ _ _ _

timeglobals micrseconds 4.2

3time...globals seconds 4.2
time...globals to...Ada duration 14.2

Kernel User's Manuel, Version 1.011

I
Index of Kernel Exporting Packages

Exporting Package Name Section 3
time_globals to_KemeLtime 4.2

time_globals to.elapsedtme 4.2

time_globals toepochtime 4.2

time-globals zeroelapsedtime 4.2

time-globals zeroepochtime 4.2 I
timemanagement adjust.elapsedime 4.13

time management adjust.epoch-fime 4.13 3
timemanagement read_clock 4.13

time management synchronize 4.13

timesfrnanagement disableime_slicIng 4.14
timeslice management enable timeslicing 4.14

timesicejmanagement ninimumslice time 4.14 3
timeslice~management set_timeslice 4.14 I

4.16. Summary of Example
This section expands the example that was begun in Chapter 3. Each of the Kernel primitives in I
Chapter 4 presented an example invocation of the appropriate Kernel primitive. These calls have
been collected into the bodies of processes Merlin, Arthur, and Vivian. When this example is
completed in the next version of this document, these bodies will be documented to indicate the
behavior of the three processes when executing on the Kernel and, thus, may be used as one
sample test case for ensuring correct behavior of the Kernel after installation. 3

I
I
I
I
I
I

112 Kernel User's Manual, Version 1.0I

K procedure make N=T;

with hardware-interface;
with network-configuration;
with process-table;
procedure makeWCT is

begin

network cant iguration.NCT-

(logical name ->"Processor a
physical-address >16#01C,3 Kernel device ->true,
needed to run =>true,
allocated process ID ->process-table. null-process,
initialization ozrr- 1,
initialization-complete ->false

(logical name ->"Processor b
physical address >16#02#,I Kernel device ->true,
needed to-run ->true,
allocated rocess ID ->process table. nullross
initialization order ->2,

initialization complete ->false

(logical name ->"device
physical-address ->16#03C,
Kernel device ->false,

needed to-run ->false,
allocated process XD ->procoestable.nullprocess,I initialization ozrr - 3,
initialization -complete ->false

end make NCT;

with tJimeglobals;3 package timeouts is

function "+" (left, right :time globals.elapaed time)
return time-globals .elapsed time3 renames tiaeglobals. "4";

Kaster base time :constant timeglobals epoch-time
timeglioals . create ~epoch-time

I day -> 0,
second -> 0.0

Master timeout :constant time-globals.elapsed tine:
timejglobals create-elapsed time

Kernel Users Manual, Version 1.0 113

day ->0,
second -> 5.0I

subordinate timeout :constant timaeglobals.elapsed time :

timeglobals. secondsI

an -integral-duration -> 5

init comlete timeout :constant timeglobalselapsed time:
Mster_timeout + subordinate timeout;

end timeouts;

--- -- --- -- -- --- -- -- --- -- --- -- -- --- -- -- --- -- -I
with hardware-interface;
with process managrsgl1obals;
package application uniquenpames is

arthur: process managersglobals.process-nain-typ.
'arthur ;

device :process managersglobals .device name-type
"device

merlin :process managers lobais process-name type:I
"mrlin ;

vivian :process managersg lobals.process-name type:3
"'vivian If;

end application-unique names;3

with coamunicatIon globals;
with hardware interface;
with process table;
package processor-a-coma rea is3

mrlin ID :process table. processjidantifier;
arthur ID :process-table .process identifier;

vivianlID :process-table. process-identifier;

type. lmessagetag: constant
coonincationglobals message_ tag type :- 1;

type_ imossagejength :constantI
comnunicationglobals message_ length _type m10;

type 1 message_ tazt :constant
hardware interface. hw stringI

(1. .. positive (type 1, message...lengjth))

114 Kernel User's Manual, Version 1.0

Itype.; message_t ag constant
comimicationgqlobals message tagL type := 2;

type._; messageLength :constantIcoinunication,,globals message_ length _type -20;
type_2 message__text: constant

hardware interface. hw string
(I .. positive (type_2_message length))I"type 2 message I.

type_2amemssage text :constant
hardware -interf ace. hw string

(I1. positive (tyjOe;message .length))
"ttype 2a message o

type_2b message_ text :constant
hardware interface. hw string

(1 .. positive (tyjeepessage_ length))
..type 2b message t

arthur max incoming message ..length :constant positive -100;Imerlin max outgoing message_ length :constant positive =100;

3 end processor a corn area;

with comicationglobals;
with camimcation management;
with hardware-interface;
with process table;
with timejglobals;
with processor a-corn area;
procedure arthurprocess -code is

I local-receive buffer :hardware-interface.hw string

1. .. processor a-corn area. arthur max incoming message_ length
):- (others -> 1')

local length :comicationglobals .message_ length type;
local messages lost : oolean :- false;
local~sender :process tableprocess identifier;
local tag: cominicationglobals message__tag type;

beginU -- do arthur's algorithm

receive loop:
foriiGn1 ..4 loop

case i is
when 1 1 43comication managemnt receive message

sender ->local sender,
message_ tag ->local tag,Imessage ..length ->local length,
mssage buffer ->hardware interface.hw address

(local-receive buffer' address),

Kernel User's Manual, Version 1.0 115

buffer size -
COmIZ-cation globals .me.sage leongth-type
(processor a-corn area.
arthur maz incoming jmainsag*. length),

resuiptionjpriority ->3,
messages lost m>local messages_lost

local-receive buffer :- (others -

when 2 ->I
cormnmication manageet. receive-ma sage

sender => local,-sender,3
messaget. ag => local -tag,
messagelength => local length,
messagebuffer a> hardware interface. hw address

(local receive buffer' address),
buffer sizxe =>

ccna*nicationglobals .message_ length _type
(processor-a-corn area.I
arthur maz incomingmeossage length),

timeout after ->time-globals milliseconds (1_000),
mssageslost ->local messages _lost

local-receive buffer :a (others ->);

when 3=-> I
co~micaionmanagemnt. receive message

sender ->local-sender,I
messaget.ag ->local tog,
messagelength ->local length,
messagebpuffer ->hardware-interface.hv address

(local receive buffer' address),
buffer siae =>

comini- 4cat ionglobals . mas sage_,length type
(processor a-corn area.I

arhrmaz incoming mes sage_,length),
timeout-at =>

timeglobals.create epochk_time (0, 1000.0),

mossages-lost ->local messages_lost

local-receive buffer :- (others -)

end case;

local-receive buffer :- (others -)

end loop receive-loop;

null;I
end arthur process-code;

116 Kernel User's Manual, Version 1.0

I with comication management;

with time _globals;
with prociessor a corn, area;I ~procedure~ merlinj.rocess code* is

dummy :hardware-interface~h ognaeI hardware-interface.hw long_integer' first;

function 11+1 (left, right :hardware-interface.hv-long.integer)
return hardware interface. hw long iLnteger
renames hardware-interface. "+";

local-outgoing passage bPuffer :hardware interface. hw strinxg

... processor a corn area merlinFmax outgoing meassage _length
):(others -> '7

begin
__ do mrlin' s algorithm

busy wait to let-vivianpendopn receive:
for i in 1 .. 10000 loop

for jin 1 .30 000 loop
dummy :- durny + 1;

end loop;
end loop busy wait-to-let-.vivianpend on ~receive;

local-outgoing messagebuffer
(1 .. positive (processor a con area type_1_message length))

processor-a-corn area. type_1_message_ text;
communication managmnt. send message

receiver -> processor-a-corn area.vivianID,
message tag ->processor a-cornLareatypelmepssage_t ag,
message_ length >processor-a-corn areatypel message-length,
message .text =>U ~ ~~hardware-interface.hw address 'ades

communication,_management. send message

receiver ->processor acomin area. arthur ID,
message_ tag ->processoracornarea.typelme.pssage_.tag,

me aglength ->processoracon area. type 1 message length,

I hardware interface. hw address
(local-outgoing message buffer' address)

local-outgoing message. buffer : - (others -

Kernel User's Manual, Version 1.0 117

local -outgoing massage bPuffer
(1 .. Positive (processor a corn areatype_ mssage).length))

processor a-corn area. tp mssg et

comntcationanamant. send mssage_and _wait

reciver ->processor a-corn area. arthurID,
massage _tag - processor a-corn areatype_2_massage_t ag,
messagelength => processor-aconareatype__mssage_ength,I

hardware interf ace. hw address

(local outgoing mssage buffer' address),I
resuartionjriority -> 2

local ,outgoingpmssage buffer :- (others 1);

local -outgoing masagebufferI
(1 .. positive (processor acorn area. type 2;messagae).ength))=

processor a cosimarea.Ztype 2 message text;
commnmication managmnt. send, message_and_wait

receiver ->processor a-conmarea. arthurID,
massage_tag - processor a-corn area.typ__massage_ tag,
message. .length M> processor a-corn areatype_2_massage_length,
mssage text ->

hardware interface.h haddress

(local-outgoing massage jbuffer' address),I
timeout after ->timeglobals.milliseconds (100)

local-outgoing massage buffer :- (others ->');I

local-outgoing massage buffer
(1 .. positive (processor a corn area. type. 2message length))

processor a corn _area. type_2b~massagetext;

conmuication managemant. send massage_andwait

receiver => processoracornarea. afthurID,
massage_ tag => processor a corn areatype_2 _mssagetag,I
massage_,length -> processor acorn areatype__massage_ length,
massage text =>

hardware interf ace. hw addressI
(local-outgoing message Puffer' address),

timout at -> timeglobals .create _epoch time (0, 0.100),
resumptionpriority -> 63

local-outgoing massagebuffer :* (others ->);

118 Kernel User's.Manual, Version 1.0

3 null;
end merlinprocess cod.;

I ith hardware-interf ace;
with process managers;
with process managersglobals;N with processor management;
with schedule-types;
with applicat ion unique names;
with arthur .procssscode;
w ith merlin-process code;
with processor-a-corn. area;

with timeouts;

with make NCT;

I -- do any processor- and application-specific initialization

make NC!;

processor management. initialize Master processor

base,_epoch ->timeouts.Master bass time,U timeout-after m>timeauts.Master timeout

processor-a corn. area merlin. ID:
process managers declare"process

application unique _names merlin

processor-a-corn. area.arthur ID:
process managers declareprocess

application unique _names .arthur

processor-a cornareavivian ID :
process managers .declareprocess

applicat ion unique names .vivian

prcs mnagers .createprocess

processID ->processor-a-comm area merlinID,
address- =>

hardware interface. hw address (merlin process code' address),
stack -size - -> 4096,
message queue size -> 100,

Kernel Users Manual, Version 1.0 119

initialpriority =>schedule-types highestypriority,
preemptable schedule-types disabled

Process managers createprocess

process ID ->processor-a-corn area.arthur ID,

harware-interface hw address (arthur~process code' address),

stack-size >26048,

message qpueeSize ->10,I

initialypriority ->4

-complete remaining processor- and application-spcific initialization

proesormanagmnt.initialization-complete

timeout-after -> timouts. mit comlete-timmout

aprocessor aMainUnit;I

with process-table;I
package processor b-corn area is

merlinID :process table. process identifier;I
vivianID :process-table. process identif ier;
device ID :process-table process-identifier;

end processor b corn area;

--- --- ----- ----- ----- -- --- --- -- --- ---------- -I
with processor b-corn area;
procedure vivianprocess code is

__ do vivian' s algorithm
null;

end vivianprocess code;

with coinication managment;
with hardware interf ace;
with processfmanagers;
with process managera"globals;
with processor managment;
with application unique names;
with processor b-corn area;
with timeouts;
with vivianprocess code;I
with make ECT;
procedure processor b main-Unit is

120 Kernel User's Manual, Version 1.0

- begin

-do any processor- and application-specific initialization

makeNCT;

processor management. initialize-subordinateyrocessor

timeout after -> timeoutsasubordiLnate-timeout

processor b corn area merlinID:
process managers declareprocess

application,_unique _names merlin

processor b corn area device_ID:U process managers .declareprocess

application-unique ~names. device

processor b corn areavivian ID
process managers declareprocess

application. uniqueR names .vivian* process managers .createprocess

process ID ->processor b corn area .vivian3ID,

address7W
hardware interface. hwaddress (vivianyrca oe drs)

stack size -> 8096,
message queue ~size =>17000,
initial_riority =I

camonicaionmanagement. allocate device-receiver

receiver process - D -> processor b corn area.vivianID,
device-ID -> 3

-complete remaining processor- and application-specific initialization

processor management-.initialization-complete

timeout after -> timouts. init complete timeout

end processor bMi nt

Kernel Usrs Manual, Version 1.0 121

I

II
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I

5. Kernel Data Structures
This section describes those Kernel data structures that are accessed directly by the application
program, built as part of the initialization process, or consume storage space in response to calls
of Kernel primitives. This includes:

I Network Configuration Table (NCT)

* Semaphores

Process Table

* Datagram Queues

ITime Event Queue

* Process Index Table

I Interrupt Table

For each of these data structures, the following information is presented:

1. The exporting package or packages,

2. The details of the structure and organization of the data structure (garnered from
commentary in the Kernel code and the actual Kernel code definitions themselves,
along with schematic figures illustrating the data structures and the scenarios
determining that structure),

3. The Inltiallization requirements for that data structure, (e.g., whether the application
is required to perform it, the Kernel does it automatically),

4. Any additional allocation requirements, notably for dynamic data structures, and

5. All constraints on usage by the application or the Kernel.

The internal type KemeLtime is also presented in this section, as it permeates internal Kernel
data structures and functionality, and it provides the basis for the derivation of the abstractions of
Kernel time available to the application: elpedj'me and epoch time. The importance of
determining the suitability of the granularity of this representation in the application domain is
introduced in this section and continued in Section C.2.3.

5.1. External Data Structures

5.1.1. Network Configuration Table
The Network Configuration Table (NCT) describes the physical connectivity of each node in the
network. The application initializes the NCT, and the Kernel uses that information for network
and processor initialization and for inter-processor communication.

5.1.1.1. Exporting Package
Generic_network_ configuration, network_configuration

K
Kernel User's Manual, Version 1.0 123

I

5.1.1.2. Structure I
The NCT is a static data structure; it is fully defined at compile time. The NCT is an array of
NCT_entry records, indexed by a logical processor_identifier. Each NCTentry record fully I
describes the network connectivity information for one node used by the application. All nodes
have entries in the NCT: those nodes executing the Kernel and those nodes that are non-Kernel
devices.

Figure 5-1 illustrates the structure of the NCT along with the scenario it represents.

logicaLname
-- the string-valued name given by the application engineer (this is
-- mapped to the device.lD - which is just an index into the NCT - I
-- during initialization; once that is done, the Kernel refers to
-- the processor by deviceJlD)

"- default value: I
-- none

- this value should never change after initialization in Main Unit

-- physical.address
- the actual bus address at which the device is located; this value

is used in the datagram packet wrapper to identify the network
- node that is to receive the packet containing the datagram

-- default value:

- null address

-- this value should never change after initialization in Main Unit 3
-- Kerneldevice
- indication of whether or not the device is also running the Kernel
-- (e.g., whether or not the device responds to the Kernel
- communication protocols)

-- possible values:
- true (the processor Is running the Kernel)
-- false (the processor is not running the Kernel)

-- default value:
-- true (the processor is running the Kernel)

-- this value should never change after initialization in Main Unit

.- neededjojun
-- indication of whether or not the device must successfully complete
-- the Kernel initialization protocol (i.e., always should be false
-- when Kernel_device is false)

-- possible values:
- true (the device does participate in the initialization I

protocol)
-- false (the device does not participate In the initialization

124 Kernel User's Manual, Version 1.0

1 Scenario: Network and NCT as described in Section 3.1.4, page 40.

main miIunit Unit

* Merlin FP . Vivian
1 34 ,2*

KERNEL, KERNEL

Processor a Processor b

16#01# 16#02#

De vic 16#03#

ILogical Physcl Kernel Needed Allocated Initialization Initialization
Name Address Device To Run Process ID Order Complete

-processor a- 1 6#01# true true nullprocess 1 false

"processor b" 16#02# true true nuHlprocess 2 false

"device' 1 6#03# false false nul...pocess 3 false

Figure S-1 - Network Configuration Table Structure

Kernel User's Manual, Version 1.0 125

I

protocol)

default value:
-- true (the device does participate in the initialization

-- protocol)

-- this value should never change after initialization in Main Unit

-- allocatedprocesslD
-- identifier of "surrogate process" allocated to receive messages
-- from the specified non-Kernel device

-- default value:
-- nulLprocess I
-- this value may change via a call to the Kernel primitive:
-- allocatedevice_receiver

-- initialization.order
-- order in which the processors identified in the NCT are to be
-- initialized i
-- default value:
-- 0 (all NCT entries have the same initial value; initialization

proceeds following each entry in the NCT)

-- this value should never change after initialization in Main Unit

-- initialization.complete
-- indication of whether or not the initialization protocol for this

processor has been completed

- possible values:
.o true (initialization has completed)
-- false (initialization has not completed)

-- default value:
-- false (initialization has not completed)

this value is set by the Kernel during initialization and should
-- never change after initialization is complete

type ECT entry
is record

logical nazi :
hv. trinq (1 .. positive (-m-4-m lengthof_processor-nami value));

physical address network globals.bus address :=
network.globals .null address;

Kernel device : boolean -: true;
needed to run : boolean :- true;
allocatedprocess 'D : process.table. process identifier =

processtable. null-process;
initialization order : hw natural :-0;
initialization.complete : boolean : false;

126 Kernel User's Manual, Version 1.0

I
end record;

type configuration-table is aray
network lobals.procesaor identifier range <>) of NCTentry;

NCT : configuration table (network .lobals.processor identifier

range . .. network globals.processoridentifier (numberofjnodes));

There are no representation specifications relevant to the NCT.

5.1.1.3. Initialization
The NCT is completely allocated at application initialization time.

The application initializes the NCT as appropriate for the hardware configuration on which it is to
run. Only the following fields are initialized:

1. Logical name

2. Physcal_address

3. KemeLdevice

4. Needed_ to_run

5. Iniftalizatiton.order (optional)

Non-Kernel devices do not participate in the Kernel initialization protocol. For each NCT entry
I where the Kernel_device field is false, the needed_to_run field must also be false.

If initialization order is specified, that value is used by the Kernel to define an order in which
processor nodes are initialized. Initialization_order is followed in increasing order, with nodes at
the same order value processed in an order determined by the Kernel. The initializationorder
field for the NCT entry representing the Master processor must have a lower value than the

initialization_order field for all other NCT entries where needed.to_run is true. If the
needed_to_run field is false, the initiaization_order field is not used.

3 The Ada Main Unit that configures each processor node requires an NCT. To ensure
network-wide consistency, an application could define a single NCT package that is imported into

each Main Unit across the entire network.

5.1.1.4. Additional Allocation Requirements
No additional allocation is required. The maximum size of the NCT is constrained by the tailoring
parameters: number_of_nodes_value (the number of entries in the NCT) and
maximumjlengthof_processor_namevalue (the length of the processor name stored in the

I NCT).

I

Kernel Users Manual, Version 1.0 127

I

5.1.1.5. Constraints on Usage
The NCT is a read-only data structure to the application. Once initialized by the application, the
application should treat the NCT as a constant. If the application modifies any fields within the i
NCT during execution, correct execution cannot be ensured, as modification would violate the
integrity of the Kernel.

5.1.2. Semaphores
The Kernel provides the traditional Boolean ("Dykstra") semaphore facility, slightly revised to be
consistent with the overall philosophy of the Kernel primitives.

5.1.2.1. Exporting Package
Generic processtable, process table

5.1.2.2. Structure
A semaphore is a data object, and as such it can be a component of a larger data structure.

In abstract terms, a semaphore consists of two components: a count

(number_of_waiting-processes) and a queue (queuejhead). The count records the number of
processes waiting to access the semaphore; the waiting processes themselves are enqueued in
FIFO order on the queue maintained at queue_head. The semaphore type does not have any

components whose size or characteristics need to be determined at execution time.

The initial state of a semaphore is free, which is represented by an empty queue and a count

value of -1. When a semaphore has been claimed, the queue remains empty, but the count is I
zero. If another process tries to claim the semaphore, the count is incremented, and the process
is enqueued.

If a process claims a semaphore, that process owns the semaphore, and any subsequent
process is blocked on the claim request until the owning process releases the semaphore.

Figure 5-2 illustrates the actual concrete structure of a semaphore along with the scenario it
represents.

-- the information maintained for each semaphore is:
-- number_of waiting_.processes
-- the number of processes in the waiting queue for the semaphore

-- default value:
-- -1 (there are no processes waiting and the semaphore is free;

the value 0 indicates that the semaphore is claimed and
there are no processes waiting for it; any positive value

-- indicates that the semaphore is currently claimed and there
-- are positive value number of processes waiting for theI
-- semaphore

-- this value is incremented via a call to the Kernel primitive:
-- claim and decremented via a call to the Kernel primitive: release;
-- otherwise, this value should never change

128 Kernel User's Manual, Version 1.0

I
U
'I

I
I
i
IScenario:

The Main Unit on procesor a declares three semaphores: Si, S2, and S3

3 number~owaitingprocsses-

queuehead
null.process nullIprocess nulprocess

sema previously claimed
null null null

' he "' ' Jha

S1 S2 S3I
I
I
I
I

Figure 5-2: Semaphore Structure - Part 1 of 8

Kernel User's Manual, Version 1.0 129I

Scenario:I
Process Merlin dlaims Si

record for: Vivian

sernaphore..attributes semaphore _attributes

_;mjs~lie semaq_last~darnedI

_jmpoRnresemaphore~name5

prexoutprocess previosprocessm-
pendingS.am -pendingcli

processjnfornation_- proes jnform aton_.
record for: Merlin recoidfor: Arthur

nufter .ofwa itingprocess

queuejiead-113
nul..process null..proess nullprocess

semna.previouslyclaimed

null null null

Si S2 S3

Figure 5-2: Semaphore Structure - Part 2 of 8

130 Kernel User's Manual, Version 1 .0

IScenario:
Proess Merlin claims S2 after Si

prey processIDC next

process...attributes F__ __ _ process informationL

I edle_atiue
recorfor:Vivia

communication
attributes ___________

pending .activity_.3 ~ ~~~~attributes_____ _____

semnaphore-attributes, semaphore _attributes

3 emnalasticlaimed sema-last~claimed

_emaphore namfe semaphore-..name

Inext..process nxtpocs
pending ~lim pendingcai

previous..processL_ previous...process-
__ pendingclaim r _ pendingcam

I tool~nterface_ attributes !! ___________

processAinformation - pro cessin formation_-
record for: Merlin record for: Arthur

number .of.waiing processes
0 0 -

queue..head
nullprocess nullprocess nullprocess

I serna..previously..claimed

L= SIS2 S3

I Figure 5-2: Semaphore Structure - Part 3 of 8

Kernel Users Manual, Version 1.0 131

Scenario:
Process Mertin claims S3 alter S2 after Si

process~table

K prey processID nextI

procs4_atribtesprocess information_-
procss, ttriutesrecord fir: Vivian

scheduie~attributes

communication-
attributes___________

pending ctvity_
attributes3

semaphore_attributes semnaphoreattributes

maeff lasticlaimed semajasLcaimned

_19mahore-arnesemaphorename

netxcsnext..process_-
-pending..claim pendingcilaim

previousprocess previous-jprocess.
__ pending_.daim -pending..ciaimn

toolinterface., attributes - - I__________

processjn fomton - - process information_
record for: Mertin record for: Arthur

numnber~ofwaiing..processes01

queue~head
nullprocess nuillprocess nullprocess

sema.previously...caimed

headheadhead

Si S2 S3

Figure 5-2: Semaphore Structure - Part 40of8I

132 Kernel User's Manual, Version 1.0

Scenario: Process Arthur requests to claim S3 after
Process Merlin claims S3 after S2 after SI

process-table

3 proess~ttriutesprocess nformat ion_

schedule..attributes

communication-
attributes___________

pending activity_.
attributes___________

semaphoratl'ibutes semaphoreattributes

jemaolast_claimed sema-last~claimes

3 mraphorejiarne semaphore-name

next__process_ fextprcess_Ependlngcaimnpnin~l
previous..procesas previous..process.

pndingclaim -pendingclaim

I tool-interface_ attributes

processkinformation_ process~informaton_
record for: Medlin recorditfor: Arthur

I number of waiing processes
0 0

queuejiead
nullprocess nuill.process_____________

sema reviously~cfaimed

Si S2 S3

U Figure 5-2: Semaphore Stnructure - Part 5 of 8

Kernel User's Manual, Version 1.0 133

Scenario:
Procesaora has three local processes: Mrlin and Arthur (as in all the examples) and Lancelot (added to illustrate
semaphore waiting queues). Lancelot claims SI.

process-table

process-attributesI

schedule-attributes

communication_
attributes_______ ____

semaphore..attributes semaphore-attributes semaphoreatributes

sema-last~claimned sema-last_claimed sema-last_claimed

emapore~amesemaphore nm semaphore name

-next..process_ o next..pocess.. nextprocess-
- pending..aimn pending...laim pending_..ctaim

previousprocess_ previousjprocess_ previous-.process-
pending..claim -_ pendingc.laim -pendingS.laim

tool-interface_ attributes

process_ -"ormation - - processjn formation_ process information_-
record for. Merlin record for: Arthur record for: Lancelot

number~of waitingjprocesses
0

queue -head
null-process

sema~pre viausly .claimed
null

hea

Figure 5-2: Semaphore Structure -Part 6 of 8

134 Kernel User's Manual, Version 1.0

Scenario:UProcess Arthur requests to claim SI after process Lancelot claims S1.

Iprocess-table
prv processID nextj

3 process_attributes

3 schedule_attdbutes

communication_
attributes

pendingacvity_.
attributes__ _ _ _ _ _ _ _ _ ___ _ _ _ _ _ _ _ _ _

3semaphoreattributes semaphore-attributes semaphoreattributes

sema~last~claimed semajlast-claimed sema-last_claimed

I emaphore-name semaphore-.name semaphore-name

-next~process_ next..process.. next-process I
pending..clim pending~laim pending_.claim

previousJprocessL previous.process- previous..process_
__ pending..claim -_ pending claim - pending...laim

tool_interface_ attributes-

processjnormaion_ processjnformaion procegss information._Irecord for: Merlin record for: Arthur record for: Lancelot

II
* queue .head

semajreviousy .claimed
null

SII Figure 5-2: Semaphore Structure - Part 7 of 8

Kernel User's Manual, Version 1.0 135

Scenario:I

Process Merin requests to claim Si after process Arthur requests to claim Si after process Lancelot clims Si.

process_table3

prey process_I next

process-attributesI

schedule_attributes

communication_
attributes___________

pending_.activity..
attributes ___________ _ _ _ _ _ _ _ _ _ _

semaphore..attributes semaphore-attributes semaphore.attributes 3
semalast~claimed semalast_claimed sema-last_claimed

semnaphorejiame semaphore-name semaphore-name

-nextprocess_ next..process_ ... next..process_
pending-..claim pendingclaim pendingqclaim

rvos.process-. previousprocess _rviuprocess
pending...claim -_0-_ pending...laim -pending .claim

tool-interface_ attributes 1 -) I

process~information - processin formation_ process~information_
record for: Merlin record for: Arthur record for: Lancelot

number~of waitingjprocesses
2

queue-head

sema.pre via usly claimed

51

Figure 5-2: Semaphore Structure - Part 8 of 8

136 Kernel User's Manual, Version 1.0

I

-- queuehead
-- the first process waiting in the queue for this semaphore

I -- default value:
-- null_process (there are no processes waiting in the queue for

this semaphore)

-- this value may be set via a call to the Kernel primitive: claim
-- (if the call is the first process waiting for the semaphore)
-- and reset via a call to the Kernel primitive: release (if the call
-- is for the last process waiting for the semaphore); otherwise,
-- this value should never change

I -: sema-previouslypclaimed
-- the last semaphore claimed by the process that owns this semaphore
-- (i.e., if process P claims semas si and s2 in that order, then this

1 -- component of s2 head will designate sl

-- default value : null_semaphore

-- The purpose of this component is to chain together in LIFO orderS-- all semas currently owned by a process.

type semaphore
is record

head : semaphore head ptr :- new semaphore head;U end record;

type semaphore head
is record

number_of waitin.processes : hwinteger :- -1;
queue head : process identifier : null_process;
semajpreviously claimed : semaphore head ptr :- null;3 end record;

type semaphore head ptr is access smaphore head;

SThere are no representation specifications relevant to a semaphore.

The concrete data structure that implements the semaphore enforces mutually exclusive access3 to a semaphore object. The Kernel primitives that manipulate semaphores claim and release
must therefore be passed their semaphore parameter by reference, which in Ada is accomplished
by passing them an access value designating the semaphore.

The semaphore concrete data structure maintains two logical pieces of information:

1. The processes waiting for this semaphore. This information is provided via the
number._ofwaitngjprocesses and queue.head fields. When non-negative, the
value of number_ofwaiting processes indicates the number of entries in the list of
processes pointed to by queuehead. The queuehead points to the
process_information_record for the first process waiting for this semaphore. The
processJnformationrecord.semaphore_attributes.nextprocess_.pendingclaim
field of this first waiting process points to the next process waiting for this

I IKernel Users Manual, Version 1.0 137

I
semaphore, and so forth. The process informatonreord.semaphore_attributes.
previous process pendingcaim fields are linked in the reverse order. Thus, the
list of processes waiting for this semaphore is threaded through the Process Table
data structure (via the process infonnationrecords). Figure 5-2 Part 8 illustrates
this.

2. Other semaphores currently claimed by the process claiming this semaphore. The
head of this list (i.e., the most recently claimed semaphore) is the
process_information_record.semaphore_at triuts.semalasLdaimed field, which
points to the most recently claimed semaphore, and semajpreviusly_claimed field
of that semaphore points to the next most recently claimed semaphore, which, in
turn, points to the next most recently claimed semaphore, and so forth. Thus, the
list of semaphores claimed by this p;rocess is threaded through the semaphore
data structure. Figure 5-2 Part 4 illustrates this. I

In addition, all semaphores must be correctly initialized. This can be done automatically in Ada
by declaring the semaphore object to be a record type with initialized components. These two
requirements give rise to the semaphore and semaphore_head data types.

Immediately after its declaration has been elaborated, a semaphore is in a correct initial state and
ready for use.

5.1.2.3. Initialization
The initial value of an application-declared semaphore is free (i.e., the default value is: -1
indicating that not only are there no processes waiting for the semaphore, there are also no
claims registered for it; nulL process, indicating that there are also no caims registered for it), and
null, indicating that this semaphore is not yet claimed). Initialization occurs automatically when
the semaphore is declared.

5.1.2.4. Additional Allocation Requirements I
After declaration of a semaphore, no additional allocation is required. To manipulate the list of
processes waiting for any semaphore, pointers (i.e., processjidentifiets) are assigned and

unassigned; no dynamic storage allocation is required.

The maximum size of any semaphore is simply the size of its three components. i
There is no way to destroy a semaphore or to reclaim its storage.

5.1.2.5. Constraints on Usage I
Even though the semaphore is potentially a visible data structure, it should be treated as an
"abstract data type" by the application program. Knowledge of its internal structure should not be
exploited in the application program, as this may violate the integrity of the Kernel and the
application program.

5.1.3. Process Table I
The Process Table is the central repository for information relating fo all processes executing on
the Kernel. Each node has a Process Table. The structure of the Process Table is identical
across the network; much of the information is identical as well. One difference between
instances of Process Tables at different nodes is that more information is maintained about local

1
138 Kernel User's Manual, Version 1.0I

I

processes than about remote processes. All common information held in Process Tables across
nodes is identical.

The application indirectly creates new entries in the Process Table by invoking the Kernel

primitive declare process. Additional information is added to the corresponding Process Table3 entry by invoking the Kernel primitive create_process. The Process Table is "pruned" of
unnecessary entries during the execution of initializationpcomplete. After this point, the structure
of the Process Table is static. Information within the Process Table is read and modified by the3 Kernel during the execution of the application.

The Process Table is a collection of processjnformationrjecords, built dynamically; the
processjdentiffer points to a processjnformation_record, which was allocated and initialized
during process initialization time (e.g., via calls to the Kernel primitives declareprocess andcreate process).

Each process_tabeentry contains a processidentifier, and the list of entries is maintained by an
instantiation of the generc_queuemanager.

Each logical entry in the Process Table comprises two pieces: a process_tableentry, which
maintains the list of Process Table entries and points to the "real" process information, and
process_informaton_record structures, which contain the "real" process information. The details
of these structures are presented in the following paragraphs.

3 The Process Table should not be set or read directly by the user, but may be accessed by the
application via the tool_interface package (see Section 6.1).

5 5.1.3.1. Exporting Package
Generic.process_tabe, process~jable

3 5.1.3.2. Structure
Entries in the Process Table have two parts:

1. Procesq_tableentry - which points to a process_information_record for a specific
process and chains together Process Table entries; and

2. Processinformatonrecord - which contains the actual information that comprises
the Process Table. This information includes: process_attributes,
schedule_ attributes, communication_attributes, pending activity attributes,
send_w_ACK_ attributes, semaphore_attributes, and tool_ interfaceattributes.

SFigure 5-3 illustrates the structure of the Process Table along with the scenario it represents.

entries in the process table comprise:
- process_lD
-- this Is the real reference to the information specific to this
-- process; this s the value, cast as a
I process.types.processdentifler, that the application uses

when referencing a process anywhere in the application program

i default value:

Kernel Users Manual, Version 1.0 139I

pill I

i- l' , I

8 C

0

00

0.

Va M

CC

6S i'f' I

Fiur 5-3 Prcs Tabltutr

140 KenlUe'Iaul eso .

a I
- C

S,,, i____ __ __

Ifl v.
a

I.I

a- I I

I
I

-- none

-- this value is set via a call to the Kernel primitive:S-- declareprocess; this value should never change after the call

- next and previous pointers, which are maintained by the instantiation
- of the genericqueue_manager

type process-table entry
is record

process-ID : processidentifier :- nullProcess;
end record;

There are no representation specifications relevant to a process_tableentry.

I .o each process information record comprises the following:
-- process_attributes3 -- the collection of process attribute information defined below

-- schedule_attributes
-- the collection of schedule attribute information defined below

I -" communication_attributes
-- the collection of communication attribute information defined below

I pending-activityattributes
-- the collection of pending activity attribute information defined
-- below

send_w_ACKattributes
-- the collection of attributes relating to the sending process of
-- a message sent via the Kernel primitive: sendmessage_and_wait
-- defined below

-- semaphore attributesS-- the collection of semaphore attribute information defined below

-- tool interfaceattributes
-- the collection of tool interface attribute information defined below

type process infozmation record
is record

processattributes : process attributes information;
schedule attributes : schedule attributes information;
commnication attributes : coinnicaton attributes infoation;
pending activ:ity attributes : pending ac-vity attributes information;
send v ack attributes acknowledged passage infozmation;
semaphore -attributes semaphore attributes_infomation;
tool interface attributes : toolinterface attributesinformation;I end record;

IUKernel UselrS Manual, Version 1.0 141

I
_ _ I

There are no representation specifications relevant to a processinformationrecord at this level.

Each component of a processJnformation_record has a detailed structure as well and is
presented in turn.

Process Attributes
The process attributesinformation structure maintains general information about the process
itself and the execution environment built for it by the Kernel. Process information includes:
logical_name, kind_of process, processinitialization_status, and process index. Process
Attributes are used by the Kernel for both Kernel processes, local and remote, and non-Kernel
devices.

The process index is an internal structure used for communication purposes. It is described in
Section 5.2.3.

Execution environment information includes: codeaddress, stack low address, I
stack high address, contextisaved, and processcontext_save_area.

The processcontextsavearea is hardware-specific, and is described in the documentation that m
will be provided with the code.

Figure 5-4 illustrates the structure of the Process Attributes component of the Process Table I
along with the scenario it represents.

-- process attributes include:
-- logicalname
-- the string valued name provided by the application for a process;
.- the length of the string is limited by the user-provided value I
-- for the maximum length of a process name

-- default value: I
-- none

-- this value is set via a call to the Kernel primitive:
-- declareprocess; it should never change after that call

-- kindof_.process
.. indication of whether a process is running on a Kernel processor
-- (and thus follows all Kernel protocols) or a process is really
-- just a non-Kernel device (and thus follows none of the Kernel
-- protocols) 3
-- values include:
-- Kernelprocess (follows Kernel protocols)
-- non_Kerneldevice (does not follow Kernel protocols)

-- default value:
-- Kernel-process

this value is set via a call to the Kernel primitive:
-- declare..process; it should never change after that call

142 Kernel User's Manual, Version 1.0

I
I A

A A

S-I ,-

0 _

A CD

-- t-

(_DU
U) A 01

I -- I COO :

110 ,

I ." ___ _

o to

i0C -- -

I(O "D :I -3 : ; %- 1 vU

0 A A (Ec

-1,. ', SI.1.-
"

W
"

A a,

N I

r.04

'
A1

CU I

(A CA(

W 0 O C4 06

00 0.
0 01U-4

OA Q ,

0 .0

A A

A -''4
I

- - I IB

FiueCL rcs al rcs triue opnn tutr-Pr 1

Ere Usr MaulMeso . 4

I0

V A

ro(D1ID

oc -0 -

Q CD0cc I02
0

o
fA 5

L to 0

CC

0 A

.9 A

.0 A'. U

A A0I

0 I
e0.

- 0

0
-

(U0 C vI

IC a

-0-

0 0 0

Figure 5-4: Process Table Process Attributes Component Structure.- Part 2 of 2I

144 Kernel User's Manual, Version 1.0

I .

processinitializationstatus
indication of currentstatus of process initialization protocol

(i.e., process declaration and creation)

- default value:

-- declared _> false (set by declareprocess)
- created _> false (set by create_process)

-- this value is set via a call to the Kernel primitives:
-- declareprocess (the declared component) and createprocess (the

created component); it should never change after the calls

processindex
-- another way of referencing a process (in addition to a process
-- identifier) via its owning processor and an identifier unique with

I Z respect to that processor

-- default value:
-- none

-- for a non-Kernel device, this value is set via a call to the Kernel
-- primitive: declareprocess; it should never change after that call;
-- for a Kernel device, this value is set via a call to the Kernel
-- primitive: create-process; it should never change after that call

-- code_address3 -- the address of the code that comprises this process

-- default value:
I-- none

-- this value is set via a parameter to the Kernel primitive:
-- createprocess; it should never change after that call

I - stack_ow_address
-- the system low address (e.g., 16#000#) of the Kernel-created
-- process stack; this is the FIRST longword address (i.e., aligned
-- on a 32-bit boundary) at which the Kernel may safely store a
-- longword (i.e., 32 bits) of data in the Kernel-maintained
-- process stack

-- ""the Kernel-maintained process stack is always longword-aligned

-- default value:
.-- none

-- this value is set via a call to the Kernel primitive:
-- create.process; it should never change after that call

-- stack_high address
-- the system high address (e.g., 16#FFC#) of the Kernel-created
-- process stack; this is the LAST longword address (i.e., aligned
-- on a 32-bit boundary) at which the Kernel may safely store a
-- longword (i.e., 32 bits) of data in the Kernel-maintained

I
Kernel User's Manual, Version 1.0 145I

I

-- process stack I

-- *the Kernel-maintained process stack is always longword-aligned

-- default value:
.-- none 1
-- this value is set via a call to the Kernel primitive:
-- createprocess; it should never change after that call

context_saved I
-- indication of whether or not the current context of this process
-- may be assumed to be saved (i.e., that the contextsave_area has
-- contents that are currently valid) 3
-- values include:
-- viacall (context is saved and was saved via the
-- procedure/function calling protocol)
-- viainterrupt (context is saved as was saved via the
-- interrupt handling protocol)
-- not_saved (context must not be assumed to be saved) 3
-- default value:
--" via call 3
-- this value is set initially via a call to the Kernel primitive:
-- create-process; it is modified by the Kernel as process context is
-- saved and restored (when a process context switch occurs as
-- directed by the Scheduler or when an interrupt occurs)

-- processcontext_savearea
-- place where the context of a process is saved (e.g., registers,-- program counter)

-- default value:
"- none

-- this value is modified by the Kernel as process context is
-- saved and restored (when a process context switch occurs as I
-- directed by the Scheduler or when an interrupt occurs)

type process-attributesinfomation 3
is record

logical nan : hw string (1.
positive

(process nmanageoslobals.-mailength_of_processnam)) =
(others -> 1 ,);

kind of_process p rocess-type :- Kernelprocess;
process initialization status : process initializationStatus type; I
process index network globals.process index type;
code address hw address;
stack low address hw address;
stack high.addreas hwaddress; I
context saved : contextswitcher globals. context saved type =

contextswitche _globals. via call;

146 Kernel User's Manual, Version 1.0 I

I

U process context_save area
context_save _area. context- savearea_contents;

end record;

There are no representation specifications relevant to a process_attributes _information record at
this level. There are representation specifications that define the layout of the
processcontext_savearea; these are defined in the documentation that will be provided with the
code.

The following information is used in the definition of the process attributes.

-- indication of current status of process initialization protocol

-- (i.e., process declaration and creation)
-- components include:
-- declared
-- indication of whether or not declare-process successfully completed

-- values include:
-- true (successful completion of declareprocess)
-- false (unsuccessful completion of declareprocess)

Io- default value:
- false (unsuccessful completion of declare_process)

-- this value is set via a call to the Kernel primitive:3-- declareprocess; it should never change after this call

-- createdS-- indication of whether or not createprocess successfully completed

values include:
-- true (successful completion of createprocess)3-- false (unsuccessful completion of create-process)

-- default value:3-- false (unsuccessful completion of createprocess)

-- this value is set via a call to the Kernel primitive:
--- createprocess; it should never change after this call

-- remotely_reated
indication of whether or not the process was created on anotherSnode

-- values included:
-- true (process was created on a remote node)3-- false (process was not created remotely)

default value:
-- false (no knowledge yet about where the process was created)

-- This value is set by the receive datagraminterrupLhandler whenever

I
Kernel Users Manual, Verslon 1.0 147

I

I

-- a processcreated message arrives. I
type process initialization status type
is record

declared boolean = false;
created boolean :- false;
remotely.created : boolean :- false;

end record;

-- indication of whether or not a process is running on a Kernel processor
-- (and thus follows all Kernel protocols) or a process is really just a
-- non-Kernel device (and thus follows none of the Kernel protocols)

-- values include:
-- Kernelprocess (follows Kernel protocols)
-- nonKerneldevice (does not follow Kernel protocols) I
type process type is

Kernelprocess, nonKernel device); 3
There are no representation specifications relevant to any of these types.

Schedule AttributesThe schedule_attributes information structure maintains general information used by the Kernel

Scheduler. This information provides a snapshot of the status in which the Scheduler considers
this process. This information includes: process state, priority, preemption, blocktime, and
unblocktime. Schedule Attributes are used by the Kernel only for local Kernel processes.

Figure 5-5 illustrates the structure of the Schedule Attributes component of the Process Table
along with the scenario it represents.

-- schedule attributes include:
-- state
-- the current state of this process; this is used by the Kernel's U
-- Scheduler

-- values include:
-- running (this process controls the processor and is the
-- currently running process)
-- suspended (this process is able to run but another process is
-- currently running) I
-- blocked (this process is unable to run)

dead (this process is no longer able to run)

-- default value: 3
-- suspended (this process is able to run but another process is
-- currently running)

-- this value is set by the Scheduler as the process state changes
-- (due to: a call to a Kernel primitive, the passage of time, the

I
148 Kernel User's Manual, Version 1.0 I

I

x - C

2 0 0
ICI U -E

M CL
00

- -0 0 , L

0~

00

~d

Q

CU;

zS
1

I M- Q

00

Q I

o- o &I _ - - -

Figure 5-5: Process Table Schedule Attributes Component Structure

Kernel User's Manual, Version 1.0 149

o I

I

-- occurrence of an event) U
-- priority
-- the current priority of this process; this is used by the Kernel's
-- Scheduler, and the primitive:
-- processattribute readers.getprocesspriority, and all primitives
-- take a (resumption) priority as a parameter

-- default value:
-- none

-- this value is set initially via a parameter to the Kernel primitive:
-- createprocess; it may be modified by the Scheduler as the process
-- priority changes
-- (due to: a call to a Kernel primitive, the passage of time, the I
-- occurrence of an event)

-- preemption 3
-- an indication of whether or not this process may be preempted; this
-- is used by the Kernel's Scheduler (for time slicing), and the
-- primitives:

-_proes__atribute _ readers.get_process_preempIon
-- processattributemodifiers.set process.preemption

-- values include:
-- true (this process may be preempted)
-- false (this process may not be preempted)

-- default value: I
-- none; provided by initial call to createprocess

-- this value is set initially via a parameter to the Kernel primitive:
-- createprocess; it may be modified via a call to the Kernel
-- primitive: set-process_preeption

- blocktime I
-- the Kernel time at which the state of this process became blocked;
-- this is used by the Kernel's Scheduler

-- default value:
-- zeroKerneltime

-- this value is set by the Scheduler when a process calls a blocking
-- Kernel primitive; it may be modified by the Scheduler when the
-- process becomes blocked again (note that
-- this value is not strictly needed by the Kernel, as the Scheduler
-- maintains a time-ordered queue for its processing; it is included
-- for debugging purposes)

- unblock_time I
-- the Kerneltime at which the state of this process became
-- unblocked; this is used by the Kernel's Scheduler

-- default value:
-- none

I
150 Kernel User's Manual, Version 1.0 I

II

-- this value is initially set via a call to the Kernel primitive:
createprocess; it may be modified by the Scheduler once the

-- process becomes unblocked (note that this value is not strictly
-- needed by the Kernel, as the Scheduler doesn't require knowledge of
-- a process's time once it is unblocked; it is included for3 - debugging purposes)

type scheduleattributes-information
is record

state : schedule types.processstate :- scheduletypes.suspended;
priority : schedule types .priority;
preezption : schedule types.preemption;
block time : Kernel_time.Kernel time := Kerneltime.zeroKernel-time;
unblock time : Kernel tim. Kernel_tim;

end record;

There are no representation specifications relevant to a schedule_attributesinformation record.

3 Communication Atributes
The communicationattributes_informaion structure maintains information about this process's
communication requirements. This information includes: nextavailable_messageJD,
maximummessage queue size, messagequeue, currentsendbuffer, queue-overwriterule,
and messagequeue_overflow. Communication Attributes are used by the Kernel only for local
Kernel processes.

Figure 5-6 illustrates the structure of the Communication Attributes component of the Process
Table along with the scenario it represents.

-- communication attributes include:
-- next_availablemessagejlD
-- the message ID that may be used for the next message sent by this
-- process via sendmessage~andwait; this value is constantly

increasing

I - default value:
first (lowest) message identifier available

3-- this value is modified only via a call to the Kernel primitive:
-- sendmessageandwait

maximummessagequeuesize
-- the maximum number of messges that may be queued awaiting receipt
-- for this process

3default value:
-- none

this value is set by a parameter to the Kernel primitive:S-- createprocess; it should never be modified after that call

Kernel User's Manual, Version 1.0 151I

I
I

0 '. 0
000

cc 400)

" ° I0~

0 0

CO 0 L.

a.

Cn S

U) Cu 00
C 0 (U

(3D
Q) C 0

0.) 0 1L

.2I '

* 4 - - -

- 0-I

00

00
SW

E, I
CI0

0

JQIII
0 iue56 rcs al Cm uiainAtiue ComoetStutr

15 Cene UsrsMna, eso .

I -

I -- message.-queue

-- pointer to the first message in the message queue for this process;3 -- this is used by the Kernel primitives to send and receive messages

-- default value:
-- null

t--this value is set via a call to the Kernel primitive:
-- create..process; it should never be modified after that call

3 -- current_send_buffer
-- pointer to the current buffer being used to send a message, via
-- an application call to sendmessage"

I -- default value:
-- null

-- this value is set via a call to the Kernel primitives:

-- send message and send message_andwait; it is used by the Kernel
-- primitives: die and kill; it should never be modified outside

* -.- these calls

queueoverwriterule
-- indication of how this process is to handle incoming message queue3 -- overflow

-- values include:3 -- dropnewestmessage (the most recently received message is lost)

default value:
-- none

-- this value is set by a parameter to the Kernel primitive:
-- createprocess; it should never change after that call

3- messagequeueoverflow
-- indication of whether or not the incoming message queue for this
-- process is currently full and messages are being lost or in danger

of being lost; this is used by the Kernel primitive:
receive_message

-- values include:
-- true (at least one message has been lost already)

-- false (no messages have been lost since last call to
-- receivemessage)

I- default value:
-- false (no messages have been lost since last call to3 receivemessage)

-- this value may be set by the Kernel as messages are received; its
-- value may be reset via a call to the Kernel primitive:3- receive-message

I
Kernel User's Manual, Version 1.0 153I

I

type cceounication attributes inf ozuation I
is record

next_available message_ D datagram globals.uessageidentifier :- 0;
nm1A4Zm_nmssage queue size :hw long natural;
messagequeue : datagran.globals datagrampointer := null;
current send buffer datagran globals.datagram pointer :- null;
queue overw.ite rule

process managers.globals. how to-handle messagequeue.overflow;
messagequeueoverflow : boolean :- false;

end record; 5
There are no representation specifications relevant to a communication_attributesinformation
record.

Pending Activity Attributes
The pending activity attributesinformation structure maintains information about activities that 5
are currently pending for this process. The value of the pendingactivity component determines

which of the remaining fields contains relevant information about those activities that are mutually
exclusive (i.e., via a call to one of the Kernel primitives: receive_message, claim, I
send message~and_wa wai). In addition to one of those events, a process may also have an
alarm enabled and/or may be ready to raise a Kernel exception.
Pendingactivity attributes_information includes: the pending activity itself, endingevent ID,
current.pending message, alarmevenLlD, alarm_resumption priority, exception_name.
Pending Activity Attributes are used by the Kernel only for local Kernel processes. 3
Figure 5-7 illustrates the structure of the Pending Activity Attributes component of the Process
Table along with the scenario it represents. 3

-- pending activity attributes includes:
-- pending.activity
-- indication of what kind of event has caused the process to block

-- values include:
see pendingactivitytype just above 3

-- default value:
-- nothing.pending

-- this value is set via a call to any blocking Kernel primitive:
-- receive~message, claim, sendmessage_and_wait, wait; it is
-- reset by the Kernel upon expiry of of the timeout, occurrence of
-- •the event awaited (e.g., receipt of message or ACK/NAK, availability
-- of the semaphore)

- pendingeventID 3
-- an index into the time keeper's time event queue indicating the
-- event entry corresponding to the value of pendingactivity for this
-- process;
-- used by Kernel internals as a link into the Kernel's time.keeper

I
154 Kernel User's Manual, Version 1.0 I

10
E 'EC

Ix
C C C

0 .0

x c L I'

E C
C

_II

0
05

0 C C C C

I ,- • - - , - -

C

a . >

C2

-C
C

. 3_ -,

-
ro 0 -

00

0 0._I " 30

i ,

I Figure 5-7: Proces Table Pending Activity Attributes Component Structure

Keml Users Manul, Version 1.0
155

I ~

I

-- default value: I
-- null event

-- this value is set via a call to any blocking Kernel primitive (as
-- enumerated above); it is reset by the Kernel as described above

-- currentpendingmessage
-- if pendingactivity indicates sendwithACKpending, this is the
-- message identifier for which an ACK or a NAK is expected

default value: 3
-- none

this value is set via a call to the Kernel primitive:
-- sendmessage and wait; it is reset by the Kernel upon receipt of
-- the ACK/NAK for the identified message; it is valid if and only

if pendingactivity indicates sendwithACKpending I
alarm_eventID

-- an index into the time keeper's time event queue indicating the
-- alarm expiration event for this process

-- default value:
-- null event 3
-- this value is set via a call to the Kernel primitive: setalarm;
-- it may be reset either via a call to the Kernel primitive:
-- cancel_alarm or by the Kernel upon the expiry of the alarm 3
-- alarmresumptionpriority

if alarm_event_lID is not the null event, the priority at which
-- this process is to be resumed upon the expiration of the alarm

-- default value:
-- none 3
-- this value is set via a call to the Kernel primitive: seLalarm;
-- it should never change otherwise; it is valid if and only if
-- alarmeventID is not the nullevent

-- exceptionname
-- indication of whether or not the Kernel is raising an exception
-- for this process; if not noexception, then also an indication of
-- which exception is to be raised

-- values include: 3
-- there is an enumeration literal corresponding to each exception
-- the Kernel may raise; see package Kernel-exceptions

default value: I
-- noexception

-- this value is set whenever the Kernel internals detect a Kernel 5
-- exception that is to be raised and reset to noexception upon
-- completion of internal exception processing

I
156 Kernel User's Manual, Version 1.0 I,

I
I

type pending activity attributes-infomation
is record

pending activity : pending activity type := nothing pending;
pending vent D : event identifier := null event;
currentpending massage : datagramglobals.mssage_identifier;
alarm event I= : event identifier :- null-event;•alazmEresungtion_prioJty : schedule types .priority;

excption name : Kexnel ezceptions.Kernel exceptions
Kernel exceptions. no-exception;

end record;

I There are no representation specifications relevant to a pendingactivityattributesinformation
record.

I -- the kinds of mutually exclusive activities that can be pending for a
-- single process are:
-- receive-pending (the application called the Kernel primitive:
-- receivemessage and is blocked until a message is received or until
-- the timeout expires)

semaphorepending (the application called the Kernel prim;tive:
-- claim and is blocked until the requested semaphore is free or until
-- the timeout expires)
-- send_withACK-pending (the application called the Kernel primitive:
-- sendmessageand wait and is blocked until an ACK or a NAK isI-- returned or until the timeout expires)
-- waitpending (the application called the Kernel primitive: wait and is
-- blocked until the timeout expires)
-- nothingpending (there is no activity on which this process is
-- currently pending)

type pending activity type is (
receivepending,
seuaphorepending,
send with,_ cpending,
waitypending,
nothing ending);

1 There are no representation specifications relevant to any of these types.

Acknowledged Message Information

The acknowledged message information structure maintains information about the outstanding
acknowledged send request (i.e., call to the Kernel primitive send messageand wait) that may
have been issued by this process. This information includes: eventID, the message sent by this

process, and the receiver's incoming message queue. Acknowledged Message Information is
used by the Kernel only for local Kernel processes.

I Figure 5-8 illustrates the structure of the Acknowledged Message Information component of the
Process Table along with the scenario it represents.

1
K(=,moI User's Manual, Version 1.0 157

CC IC

-o a
I4
04

C C

* C

.22
0 00

C C C

S ~CI

E 0c

mi C C

.
5- 3

3- Ca

C C O

oA A

igr -8: Proes Tal cnwegdMsaeIfomto opnn tutr

15 Kene UsrsMna, eso .

I

o- acknowledged message information is maintained in the process table
entry corresponding to the SENDING process; this information refers to
data about the RECEIVING process's incoming message queue; this is done
to facilitate ready access to message queue information to process
timeout expiration efficiently

acknowledged message information includes:
-- eventID
-- indication that this process is the SENDING process and
-- sent a message via the Kernel-- primitive: send_message-and wait; thus an ACK is required to be
-- returned to THIS process upon receipt of the corresponding message

I -- default value:
-- nullevent

I-- this value is set by the Kernel when it receives a message that
-- was sent via a call to the Kernel primitive: send_message_andwait;
-- it is reset via a call to the Kernel primitive: receive_message3 -- or by the Kernel when the corresponding timeout expires

-- message
an index into the RECEIVING process's incoming message queue

-- indicating the message that this process sent via the Kernel
-- primitive: send message andwait

-- default value:
-- null

-- this value is set by the Kernel when it receives a message that
-- was sent via a call to the Kernel primitive: sendmessage-andwait;
-- it is reset via a call to the Kernel primitive: receivemessage-- or by the Kernel when the corresponding timeout expires

I -- queue
-- a pointer to the head of the RECEIVING process's message queue -
-- i.e., the message queue that contains the message field just above

-- default value:
-- null

-- this value is set by the Kernel when it receives a message that
-- was sent via a call to the Kernel primitive: sendmessage-and-wait;
-- it is reset via a call to the Kernel primitive: receivemessage
-- or by the Kernel when the corresponding timeout expires

type acknowledged_ pssage .infozmation
is record

event ID : event identifier := null event;
massage : datagramglobals .datagraa pointer : null;
queue : datagramglobals.datagram pointer :- null;

end record;

Kernel User's Manual, Version 1.0 159I

I

There are no representation specifications relevant to an acknowledgedmessage information I
record.

Semaphore Attributes I
The semaphore attributesinformation structure maintains information about any semaphore that
is requested or actually claimed by this process. This information includes: semaphore_name,
next process _pending_claim, and previous process pendingclaim. Semaphore Attributes are
used by the Kernel only for local Kernel processes.

Figure 5-9 illustrates the structure of the Semaphore Attributes component of the Process Table 1
along with the scenario it represents.

-- semaphore attributes include:
-- semalasLclaimed
-- the identity of the semaphore most recently claimed by
-- the process, and still owned by it.

-- default value:
-- null-semaphore

-- semaphore_name
-- the identity of the semaphore on which this process is currently
-- waiting

-- default value:
-- none 3
-- this value is set via a call to the Kernel primitive: claim;

reset by release

-- nextprocesspendingclaim
-- the process identifier for the process that called the Kernel
-- primitive claim after this process did

-- default value:
-- null.processID 3
-- this value is set by the next call of the Kernel primitive: claim;
-- it may be reset by the Kernel if the timeout of that claim expires

-- previousprocesspendingclaim
-- the process identifier for the process that called the Kernel
-- primitive claim before this process did 3
-- default value:
-- null_processID

-- this value is set via the current call to the Kernel primitive:
-- claim; it is reset by the Kernel if the timeout of the claim
-- expires or once the previous process releases the semaphore 3

type asophore.attributesinfo zmation

I

CD S

0 0

IC. a

E E8
cc :c

I I EO

CC

'I)C
.2 06

Jv cu O E

2 £9

0 @-to' CtoS

Ix~

-,c

x U -I _

Figure~~~~~ 5-:PoesTbeSmpoeAtiue opnn titr

Kernel Usr Maul eso . 6

U

is record I
sma last claimed : semaphore := null-semaphore;
semaphore-name : semaphore :- null_semaphore;
nez.processpending.claim : processidentifier := nullJprocess;
previous_processupendLng.claim : processidentifier :- null_process;

end record; 3
There are no representation specifications relevant to an semaphoreattributesinformation
record. 3
Additional information about the function of these fields is provided in Section 5.1.2.

Tool Interface Attributes I
This information will be provided in the next version of this document.

5.1.3.3. Initialization i
The Kernel initializes the Process Table with a single process table_entry and
process_informationrecordstructure. Table 5-1 shows the fields of the Process Table that have
defined default values.

The number of entries in the Process Table may vary from node to node. The maximum size of

the Process Table after initialization is complete may be limited by the tailoring parameter
maximum number ofjprocesses_value. See Section C.2.5 for more details.

5.1.3.4. Additional Allocation Requirements 3
The Process Table is a dynamic data structure during the initialization process (i.e., until the
Kernel primitive initialization complete finishes executing). 3
When the Kernel primitive declareprocess is invoked the first time, it uses the initial Process
Table entry. Each invocation of declare process causes a new entry to be made into the

Process Table consisting of a process_table_entry and processinformationrecord pair. This
storage is allocated dynamically.

The call to the Kernel primitive declare process for Kernel processes initializes the following U
fields:

Initialization Via Call to Declare.process for Kernel Process 3
Field Name Value

process attributes.logical-.process < input parameter>

processattributes.kindofprocess Kemelprocess

process attributes.process initialization.status.declared true

1
I

162 Kernel User's Manual, Version 1.0 I

Table 5-1: Process Table Dofined Default Values

Process Table Defined Default Values
Field Name Value

communication attributes-current send buffer null
communication_attributes.messagequeue null

communication-attributes.message.queue.overflow false
communicationattributes.next available_messagej D 0
pending...activity_attrbutes.alarm-evenID null-event
pending~activity_attributes.exception-name no-exception

pendingqactivity_attributes.pending__activity nothing-pending
pendingactivity__attributes.pending_eventID null-event
process-attributes.context-saved via-call
process attributes.kind_of...process Kernelprocess
process attributes.process-index.node-number bus-address'first
process-attributes.process index.process-number hwjinteger'first
process-attributes.process-initalization-status.created false
process-attributes.processinitalization-status.declared false
process-attri butes.process iniialization-status.remotelycreated false
schedule-attributes.block-time zeroKernel-time
schedule-attributes.state suspended
semaphore attributes.next..process..pnding~claim nullprocess
semaphore-attributes.previousjprocessjendingclOaim nullprocess
semaphore..attributes.sema -last -claimed null-semaphore
semaphore..attributes.semaphore name nullsemaphore
send-wACK_attributes.eventID null-event
send w ACK attributes. message null
send w ACK attributes.queue null

provided in the
next version of

tool-attributes* this document

Kernel User's Manual, Version 1.0 163

I

The call to the Kernel primitive declareprocess for non-Kernel devices initializes the following I
fields:

Initialization Via Call to Declare_.process for Non-Kernel Device I
Field Name Value

process attributes.logical_process < input parameter>

process attributes.kind of process nonKerneldevice

process attributes.process initializationstatus.declared true 3
process attributes.process index.node number < from NCT >
processattributes.processjindex.processnumber 0 3

The call to the Kernel primitive create_process initializes the fields in Table 5-2.

Table 5-2: Initialization Via Call to Createjprocess

1. Additional Allocation Requirements

Initialization via Call to Create.process

Field Name Value
process-attributes.process,_'mdex.node-number < hardware-specific value >

process-attrhbutes.process,_'mdex.process number < next available number >
process _attfibutes.code~address < input parameter >

process_attributes.stack low address < next available longword> I
process attributes.stack highaddress < computed using input parameter>

process _attributes.context saved via-call
process attributes.process context save area < appropriate setup >
process.attributes.process_iakizationstatus.created true 3
scheduleattributes.priority < input parameter >
scheduleattributes.preemption < input parameter >

schedule_attributes.unblocktime < current clock reading >
communicationatltes.maxlmummessagequeuesize < input parameter >
communication.attributes.queue_overwriterule < input parameter 3
communication-attributes.messagequeue < next available space >

I

The Process Table is pruned during the execution of the Kernel primitive initializationcomplete.

During its execution, the following Process Table entries are eliminated from the Process Table I
(and the storage is optionally reclaimed):

I
164 Kernel User's Manual, Version 1.0 I

I

3 1. Kernel processes that are created on remote processors but are not declared
locally.

The exception networkfailure is raised and the node is killed (i.e., it does not initialize) if any of
the following inconsistencies are detected in the Process Table during pruning and consistency

* checking:

1. Kernel processes that are declared locally but are not created anywere in the
network, or

2. Kernel processes that are created both locally and remotely.

When the Kernel primitive initializationcomplete terminates, there may be at most
maximum numberof processesvalue entries in the Process Table. The size of each entry is
the size of the process tableentry record and the processinformationrecord. The size of the
processjinformationrecord is constrained by the tailoring parameter:
maximum length of process_ name_value.

5.1.3.5. Constraints on Usage
The Process Table should never be accessed directly by the application. It should only be read
via the toolinterface subprograms. See Section 6.1 for more information.

3 Even though the Process Table is potentially a visible data structure, it should be treated as an
"abstract data type" by the application program. Knowledge of its internal structure should not be
exploited in the application program, as this may violate the integrity of the Kernel and the
application program.

I 5.2. Internal Data Structures

5.2.1. Datagram Queues
Datagrams are used by the Kernel to manage messages. A datagram is never referenced
directly, but is instead always accessed through a datagram pointer. For consistancy, the
datagram that is sent from one process is identical to the datagram that is received by another.
This section describes the datagram contents; more details about datagrams and the lower layers
of the Kernel communication protocol are described in the documentation that will be provided3 with the code.

5.2.1.1. Exporting Package3 Datagram globals, datagrarnmanagement

5.2.1.2. Structure
A datagram is a static data structure; it is fully defined at compile time. A datagram comprises
two pieces: a datagramheader, which contains protocol information, and a buffer, which
contains the actual text of the message being sent.

I Figure 5-10 illustrates the structure of the datagram along with the scenario it represents.

KIKernel User's Manual, Version 1.0 165

A0 A

*0 C) C')
>0 A0 A0

II E 0"
0 CL0E

CL C

00

cc I0 A A

0 3n
Cm0

CD 00

000

' 0 0
C p

000
0 0

0)0

M0 01 '
4) .2

cc V >U
CC0

00

1WC

00I4
CD

0E

VU

Figure 5-10: Datagram Structure - Part 1 of 2

166 Kernel User's Manual, Version 1.0

UC

. ;

E 0 5a 1 2
Li0 8.

tD WD -1

0 I -

01 0

C 0 L0

CO w

SC 14 C4

CO (0CO

I Le', _j

(CUC1

.10 (U

FF C0 2

C0 5 (0 0
.0 2 a I Q' _ L 0U

.0 IT : C S a, mC cc mm.6

9 I m t E.2 '(JD0
o 0 0 (U
CD L: .a

0 m to ~ 10 *

0L -
CL C 0

m. 0 0

CO E&EE&ES

Figure 5-10: Datagrarn Structure - Part 2 of 2

Kernel Users Manual, Version 1.0 167

I

There are no representation specifications relevant to a datagram at this level.

-- The actual datagram comprises the header field and a data buffer. The
-- size of the data buffer depends on the class.

type datagram is
record

header : datagram header;
buffer : databuffer(i .. CG.message_length_type'last);

end record;

-- Each datagram header comprises the following: I
-- next
-- A pointer to the next datagram in a linked list. Both next and

prey define a doubly linked circular list. This field and a number
-- of fields following are not transmitted across the network. They are
-- used only on the node which actually "owns" the datagram, and are not
-- considered part of the message that is shipped between processors.

Default value:
-- none 3
-o Modified by:
-- The routines in datagrammanagement. Thisvalue should not be
-- touched by any other routines.

-- prev
-- A pointer to the previous datagram in a linked list. Both next and
-- prey define a doubly linked circular list. This field is not
-- transmitted across the network, and is maintained locally by each
- processor node. 3
-- Default value:
-- none

Modified by: i
-- The routines in datagrammanagement. This value should not be
-- touched by any other routines. I
-- class
-- The type of datagram. There are four different types of datagram
-- buffers that are used (we simulate a variant record). The class field
-- denotes the type of datagram buffer that is attached to the header.

This field is not transmitted across the network, and is maintained
- locally by each processor node.

Possible values:
-- small (a small sized user datagram buffer)

large (a large sized user datagram buffer)
-- kernel (a datagram buffer guaranteed to hold the largest
-- kernel message)

I
168 Kernel User's Manual, Version 1.0 I

I

-- queue-head (datagram contains no buffer - used only as the
-- head of a queue)

* -Default value:
-- none

-- Modified by:
-- No one. This value is set at ,nitialization time and should not be
-- touched by any other routines.

* buffersize
- The size of the data buffer of this datagram. The message in the

datagram (see "messageJength") may be less than or equal to this
-- size field. This field is not transmitted across the network, and
-- is maintained locally by each processor node.

-- Default value:
-- none

Modified by:
-- No one. This value is set at initialization time and should not be
-- touched by any other routines.

-- msg_.count
-- The number of messages present in a queue. This field is used

only for queue headers. In order to make type checking work, a queue
-- header is simply another type of datagram (which is never transmitted).
-- The msgcount keeps track of how many datagrams are in a queue. This
-- field is not transmitted across the network, and is maintained
-- locally by each processor node.

-- Default value:
-- none

-- Modified by:
-- The routines in datagram -management. This value should not be
-- touched by any other routines.

I -- semaphore
-- A flag (or pair of flags, depending on the actions of LLH.P)

which locks a queue header against interprocessor access. This field is3 -- used only in queue headers, and is not transmitted across the network.

-- Default value:
-- none

-- Modified by:
-- The routines in datagram-management. This value should not be3 -- touched by any other routines.

-- message_length
-- The actual size (number of bytes) of the message that is in the

databuffer. This value will always be less than or equal to the
-- buffersize field. This field, and all following fields are transmitted
-- across the network, and are considered part of the message that is sent

I
Kernel User's Manual, Version 1.0 169U

I
-- and received.

Default value: 3
-- none

- Modified by:
-- The routines in busio and communication.management. May be freely I
-- set (with care) by other routines implementing communications.

-- operation
-- The Kernel operation defined in the KAM 10.2.1

-- Possible values:
-- See the enumerated type kernel-operation defined above

-- Default value:
-- none

-- Modified by:
-- The routines in busio and communicationmanagement. May be freely
-- set (with care) by other routines implementing communications.

-- remotetimeout
-- The timeout time specified for a send_messageand_wait. This
-- field is passed to the receiving processor, which enqueues the timeout

-- event remotely.

-- Default value:
-- none

-- Modified by:
-- The routines in busio and communicationmanagement. May be freely
-- set (with care) by other routines implementing communications.

-- sender
-- The process_index of the process which is sending the datagram.
-- Because the sender field contains both a process number and a processor
-- number, the sender field uniquely identifies a process within the DARK
-- network.

-- Default value:
-- none

-- Modified by:
-- The routines in busio and communicationmanagement. May be freely
-- set (with care) by other routines implementing communications.

-- receiver
-- The processindex of the process to which the datagram is being sent.
-- Because the sender field contains both a process number and a processor

number, the sender field uniquely identifies a process within the DARK
network.

-- Default value:
-- none

170 Kernel User's Manual, Version 1.0

• = iI

-- Modified by:
-- The routines in bus_io and communication_management. May be freely

set (with care) by other routines implementing communications.

-- messagetag
-- Overloaded to contain either the message tag supplied by the

user, or for a Kernel tag defined in KAM 10.3.1

-- Possible values:
When a datagram has an operation field of kernel-message,

-- initprotocolmessage, or sync_protocol message, the possible
-- values of this field are from the enumerated type kerneltag, listed

above. When the datagram has an operation field of blindsend or
-- acknowledged send, the possible values of this field are any value
-- from the type CG.messagetagtype.

-- Default value:
-- none

-- Modified by:
-- The routines in busio and communicationmanagement. May be freely
-- set (with care) by other routines implementing communications.

-- message_id
-- A Kernel sequencing number used in send message-and-wait to
-- insure that ACK and NAK messages are associated with the correct send.

-- Default value:
-- none

-- Modified by:
-- The routines in bus_io and communication_management. May be freely
-- set (with care) by other routines implementing communications.

-- checksum
-- A check value calculated by the sending Nproc and verified by
-- the receiving Nproc.

-- Default value:
-- none

Modified by:
-- The Nproc code. This value should not be touched by any other
-- routines.

type datagramheader is
record

next datagram.pointer; -- Not transmitted
prey : datagram pointer; ..
class datagramclass; --

buffer size bufferrange; ..
msgcount : hw longnatu,.; ...
semaphore : hvlongqinteger; -- Not transmitted

Kernel User's Manual, Version 1.0 171

I

message-length buffer range; I
operation : kernel operation;
remote timeout KT.kernel time;
sender-: NG.process index type;
receiver NG. process_index_type;
message tag CG.messagetagtype;
message_id message_identifier;
checksum hwinteger;

end record; I
The following representation specifications define the layout of the datagramheader. These are
defined in a hardware-independent manner but used internally in a hardware-dependent manner.
The representation specifications are used to ensure that the layout of a datagram is always the l
same, no matter what hardware or compilation system is used. See also the documentation that
will be provided with the code for a discussion of the translation of sender and receiver addresses
into a format that is used by the underlying hardware.

for datagram heater use
record

nezt at O*longword range 0 31;
prey at 1*longword range 0 31;
class at 2*longword range 0 15; --16..31 unused
buffer size at 3*longword range 0 31; I
msg_count at 4*longword range 0 31;
semaphore at 5*longword range 0 31;
messagelength at 6*longword range 0 15;
operation at 6*longword range 16 31;
remote timeout at 7*longword range 0 63;

sender at 9*longword range 0 31;
receiver at 10*longword range 0 31;
messagetag at ll*longword range 0 31; II
messageid at 12*longword range 0 31;
checksum at 13*longword range 0 31;

end record;

for datagramheader' size use 14*longword*bits yer byte;

The following data types are used for components of the datagramheader.

-- Enumerated type describing the different type of messages that can be

-- sent, either originating as a application message or as a Kernel message.

-- The values of this enumerated type are:

-- blindsend
-- The kernel operation which corresponds to the send-message routine.

-- acknowledged_send
The kernel operation which corresponds to the send.messageandwait

-- routine.

-- kernel-message

172 Kernel User's Manual, Version 1.0 I

II

-- Any message sent by the kernel to respond to send_messageandwait
-- actions, or to kill (or announce the death of) processes.

I -- init_.protocol_message
-- Any message sent during the initialization procedure before the
-- application code is running.

-- syncprotocol rmessage
-- Any message sent during the global clock resynchronization protocol.

type kenel op@eation is (
blind_send,
acknowledged_send,
kee l_issage,
init_potocol_mass age,
sync protocol message

Enumerated type describing the various Kernel-to-Kernel messages. This
-- value is written into the "message_tag" field of a datagram

-- The values of this enumerated type are:

-- ack
-- A kernel message acknowledging the timely receipt of an3-- acknowledgedsend message (i.e., the message was received).

-- nak
-- A kernel message specifying that an acknowledged send message
-- was not received in a timely manner (i.e. the message timed out

-- before it was received).

-- nakprocessdead
-- A kernel message specifying that an acknowledged-send message
-- was not received because the process to which it was addressed
I-- died before receipt.

-- info_processdead
-- A kernel message specifying that a process has died. This message3 -- is sent independently of an acknowledged-send.

kill..process
-- A message specifying that a remote process is to be terminated.

-- initcomplete
-- A Kernel message indicating that the network initialization
-- procedure has completed, and that the Kernel may begin running
-- the application code.

-- network failureI-- A initialization message indicating that a network failure has been
detected.

I
Kernel Users Manual, Version 1 .0 173I

I

-- processcreated I
-- An initialization message announcing the creation of a process. This
-- message is sent via the create_process kernel call. 3
-- masterready
-- An initialization message indicating that the temporary network
-- master is ready to resume the initialization protocol.

-- nctcount
-- An initialization message announcing the size of the NCT table that
-- is to follow.

-- nctentry
-- An initialization message containing an NCT entry.
-- goenclosed

-- An initialization message containing the epoch time. I
-- goacknowledgement
-- An initialization message acknowledging the previous go_enclosed.

- prepare to sync I
-- A synchronization protocol message announcing the start of the
-- clock resynchronization sequence.

-- ready jor.sync
-- A synchronization protocol message replying to the preparejtosync
-- message, announcing that resynchronization is in progress. 3

timeisnow
-- A synchronization protocol message announcing the epoch time to
-- resynchronize to.

-- now_in_sync
-- A synchronization protocol message acknowledging the receipt of the
-- timeisnow message.

-- abort.sync
-- A synchronization protocol message which prematurely terminates
-- the resynchronization procedure.

type kernel tag is (
ack,i

nak,
nak_processdead,
infoprocess dead, I
kill_Jprocess,
init cowplete,

network_failure,
process_created,
aster.-ready,

nct count,
nctCentry,
go enclosed,
goacknowledgement,

174 Kernel User's Manual, Version 1.0 I

prepare to sync,
ready for .sync,
timeis_now,
now insync,
abort sync

-- definitions of data used internal to a datagram

subtype bufferrange is CG.messagelength_type;

-- data buffer that can be indexed in byte sized quantities

type databuffer is array (bufferrange range <>) of hwbyte;

-- insure that the bytes of the array are contiguous

pragma pack (databuffer)

-- this type allows the Kernel to generate unique message identifiers
-- for those massages sent via send_message_andwait

type massageidentifier is new hwlong_integer;

-- Datagrams are referenced by pointers for effiecient access and
-- parameter passing

-- Datagrams are divided into classes. While variant records were an
-- Ada language option, the implementation of these records was so
-- inefficient that a design decision was made to use unchecked conversion
-- on different datagram classes (identified by the datagram_class type)
-- to simulate a single datagram type.

type datagram class is (small, large, kernel, queuehead);

5.2.1.3. InItialization
The pool of datagram is completely allocated during Kernel initialization. It is from this pool that
individual datagrams are assigned to hold incoming messages destined to local processes and
outgoing messages sent from a local process. The size of this pool is determined by the
hardware and is described in the documentation that will be provided with the code.

Kernel User's Manual, Version 1.0 175

I

5.2.1.4. Additional Allocation Requirements I
The application creates the header for an incoming message queue for each Kernel process
during the execution of the Kernel primitive create process. Datagrams are removed from the
datagram pool and assigned to a Kernel process as messages are sent by or received for that
process. No additional allocation is performed.

The Kernel returns datagrams it no longer needs to the datagram pool. No deallocation is
performed.

5.2.1.5. Constraints on Usage
Datagrams should never be accessed directly by the application. All use of datagrams should be
through the Kernel primitives send message, sendmessage_andwait, receivemessage, kill,
synchronize, and the initialization primitives.

Even though the datagrams are potentially visible data structures, they should be treated as an
"abstract data type" by the application program. Knowledge of the internal structure, other than
the fact that all messages are stored in FIFO order, should not be exploited in the application
program, as this may violate the integrity of the Kernel and the application program.

5.2.2. Time Event Queue
The Time Event Queue maintains the Kernel's internal view of time. To the Kernel, time is I
represented as an ordered sequence of events that will happen some time in the future. The
event with the least amount of time until expiration (i.e., the nearest in the future) appears at the
head of the Time Event Queue; events with longer amounts of time until expiration appear toward
the tail.

Three events, at most, can be outstanding for a process as a direct result of its own actions: I
1. Alarm

2. Timeslice
3. One of: wait, semaphore, or receive timeouts (via calls to one of the Kernel

primitives: wait, claim, or receivemessage).

Additionally, a process may have any number of messages queued for its receipt (limited by the
size of the incoming message queue) that require an acknowledgement to be returned to the
sender.

5.2.2.1. Exporting Package
Generic process table, process_ table

5.2.2.2. Structure
The Time Event Queue is a semi-dynamic data structure. Each entry in the Time Event Queue I
fully describes the event and its timing aspects.

Figure 5-11 illustrates the structure of the Time Event Queue along with the scenario it
represents.

I
176 Kernel User's Manual, '.'rslon 1.0

I
I

00

I '"

.2 .

Z E

3

* 0

/ I !
/I' iC

0 a
z V

U. M -0 . oL 0

i Figure 5-11: Time Event Oueue Structure - Part 1 of 4

Kernel User's Manual, Version 1.0 177

O X C'

I

in, I
00

0

, TI. I

0 I
C ID

•-- - - -

0~

'-0

II

I

0I

17 o ccne !Er M aulVeso 1.

=II

U00

W9A
CL igu e 5 11: Tim Ev nt ueu St uct re Pat 2 ofI

17 Kernel User' MaulIeso.

0c

0
0

a

a. 'C

Lk C= Ew

.. -' ,,

KenlUe' aul Veeo 1. 1790

00

Cc1

C

.2.

Fiue51:Tmovn uu tutr at3o

KenlUe'sMnaVrso . 7

Proceaabev processID nextI

process.,attues IProces inornaO~wrI f_ process-atributesI
__________________ record for: Arthur _________

schedule-attributes schedule-attributes

onuiain communication
attributes -attributes

messaige..queue pendingactivity_.
attributes

Pondiir4.activty_. send-w_ACK_attributes

serdWACK attrlibutes eventID

semqaphone_attributes messageI

_o~nedc _~s qur

remotenttimeout 30tsecons

sender ~ ~ ~ ~ ~ ~ ~ ~ ecr Viif2or:.76 ibr1;-26 Vivian2:-26

receier Vivian 2; -32_766 MArhur 1; -32_765 Mivian 12 -32_366I

buffer "type 1 IMg "pemsg* "type 1 msg"

Figure 5-11: Time Event Queue Structure - Parn 48 of 4I

1.80 Kernel User's Manual, Version 1.0

---I- --------------------------
Iin~ve~uu

nex
Ire
Iidq~vn

3ei "Arthur rcsj
I _______________________________________ ______________________________________

I Figure 5-11: Tlime Event Queue Structure - Part 4b of 4

Kernel User's Manual, Version 1.0 181

I
I

eventinformation is the template used to represent each of the sequence
of events that are understood by the Kernel to happen some time in the

-- future (i.e., the template for each entry in the time event queue)

-- the information maintained for each time event is:
-- kindofevent

the eventtype causing the creation of this time event

-- possible values:
alarm (via a call to setalarm)

-- receive_meout (via a call to receive._message)
-- semaphore_timeout (via a call to claim)
-- waittimeout (via a call to wait)
-- sendwithACKtimeout (by receiving a message indicating a
-- remote timeout is required)
-- slice-expiration (time slicing was previously enabled)

-- default value:
none

-- this value is assigned when an eventinformation record is added
-- to the time event queue and should never change as long as it is
-- still in the time event queue 5
-- time_class
-- the type of time specified by the application (via a call to any
-- Kernel primitive that provides a time parameter)

possible values:
-- elapsed (the application specified an elapsed_time)
-- epoch (the application specified an epochjime) 1
-- default value:
-- none

-- this value is assigned when an eventinformation record is added
-- to the time event queue and should never change as long as it is

still in the time event queue 1
-- expiry

the Kerneltime at which the time event expires; the time in each
entry is that which was specified via the Kernel primitive called

-- default value: 1-- none

-- this value is assigned when an event-information record is added
to the time event queue; it may change only via a call to one of

-- the Kernel primitives: adjustelapsedtime (for all entries in
-- the time event queue) or reset -epochjtime (only for those time
-- event queue entries with timecass - epoch) 3
-- processjlD
-- the concrete process identifier for which the time event is

182 Kernel User's Manual, Version 1.0

I

I-- maintained (i.e., a pointer into the process table for the
-- process "owning" this event)

* - default value:
-- none

-- this value is assigned when an eventinformation record is added
-- to the time event queue and should never change as long as it is
-- still in the time event queue

type event infozation
is record

kind of event : time keeperglobals .event type;
time class : timekeeper_globals.timeclass-type;
empiy : Kernel_time.Kerneltime;
process ID : processidentifier;3 end record;

5.2.2.3. Initialization
The initial allocation for the Time Event Queue is computed as the product of
maximum_number_ofprocessesvalue times two (to accommodate the alarm timeout and one
of the other, mutually exclusive, timeouts) plus one (for the slice event). If no messages requiring
acknowledgements (i.e., sent via the Kernel primitive send-message_andwait) are ever
received by this processor, the Time Event Queue will never grow.

5.2.2.4. Additional Allocation Requirements
With the exception of processing messages that require acknowledgements, no additional
allocation is required. To manipulate the entries in the Time Event Queue, pointers are assigned
and unassigned; no dynamic storage allocation is required.

Each time a message that requires an acknowledgement is received, there is the potential for
allocating a new entry in the Time Event Queue. Once allocated, this entry is maintained in the
Time Event Queue so that, once the timeout it represents expires, it may be reused by the3 Kernel. This avoids repeated calls for dynamic allocation.

The maximum size to which the Time Event Queue could ever grow is:£ ((number of locally created processes "2) + 1) +
number-.of..Kaeincde

number of locally created processes on node i

The first term is the maximum number of events that could be pending for each process as
described in Section 5.2.2.3. The second term is the maximum number of processes that could
conceivably send a message via the Kernel primitive sendmessage_andwait. The third term3 excludes the process itself.

I
Kernel Users Manual, Version 1.0 183I

I

5.2.2.5. Constraints on Usage I
The Time Event Queue should never be accessed directly by the application. It should only be
manipulated via calls to the Kernel primitives (see Chapter 4 and Appendix A). I
Even though the Time Event Queue is potentially a visible data structure, it should be treated as
an "abstract data type" by the application program. Knowledge of its internal structure should not I
be exploited in the application program, as this may violate the integrity of the Kernel and the
application program.

5.2.3. Process Index Table
The Process Index Table maintains the Kernel's mapping from the application-visible process I
identifier assigned to a process (and maintained in the Process Table) to an internal notation
used for network communication. This internal notation is called the process index, and it
comprises two fields that, together, uniquely identify each process declared to the Kernel: 3

1. Nodenumber This corresponds to the physical_address field in the NCT entry
corresponding to the processor on which the process is sited.

2. Processnumber This value, unique within each Kernel node, identifies each 3
Kernel process declared on the processor designated by the nodenumber field.

The processindex for a non-Kernel device is:

1. Nodenumber The physical_address field in the NCT entry corresponding to the
non-Kernel device.

2. Process_number A well-known null value (this is never used by the Kernel).

The Kernel initializes the Process Index Table during Kernel and network initialization time, and
the Kernel uses that information for inter-processor communication.I

5.2.3.1. Exporting Package
Process_ index_ table

5.2.3.2. Structure
The Process Index Table is a static data structure; it is fully defined at compile time. The Process I
Index Table is a two-dimensional array: the first dimension represents the physical address of
the nodes in the network; the second dimension represents the number of the process on a
particular node. This index into the Process Index Table identifies a unique process identifier
component. The process_informationrecord pointed to by the process identifier identified by the
Process Index Table indices contains a component--processattributes.process_index--that
corresponds to the two-dimensional index into the Process Index Table. If there is no process at
the component identified by an index into the Process Index Table, that value is null (i.e., no such
process exists).

Figure 5-12 illustrates the structure of the Process Index Table along with the scenario it
represents. 1

type mappin.,axaytype is array

4 UI
184 Kernel User's Manual, Version 1.0 ,

10 c

0
- 0.

I -0

'AA
0.0

o A (U. U *q

.0.0 . *
ce'A. --

*1 8 1

IL i ~8

I 0.
.'

Figure &-12: Process Index Table Struture

Kernel Users Manual, Version 1.0 185

!

NG.bus address range <>, hwinteger range <> I
of PTB.processidentifier;

-- Compute the upper bounds on the mapping table so that it can be properly--sized.

largest nodenumber: this is be the number of nodes in the network.
-- lagestprocess_index: this the -ax-- number of processes that the

application can create (as defined by the
application)

largest node number : constant NG.busaddress :=
NG. bus address (NC. number of nodes - 1);

largestprocess.index : constant hwinteger :
hwinteger'first + hw integer (PTB.maximum_numberof-processes) + 5; I

mapping : mapping array type
(

0 .. largest nodenumber, hwinteger'first .. largest_processindex
) :- (others -> (others -> null));

There are no representation specifications relevant to the Process Index Table.

5.2.3.3. Initialization

All components of the Process Index Table are initialized to null when the Process Index Table is I
declared. Components are set to the appropriate process identifier value when a process is
created locally or remotely (for Kernel processes) or when a process is associated with a
non-Kernel device via the Kernel primitive allocate~devicereceiver. I
5.2.3.4. Additional Allocation Requirements
No additional allocation is required. The maximum size of the Process Index Table-is constrained
by the tailoring parameters: maximumnumber_o,_processesvalue (the maximum number of
processes that are known to the Kernel on this node) and numberofnodesvalue (the number

of entries in the NCT).

The size of the Process Index Table may vary from node to node. The maximum size of the

Process Index Table after intitialization is complete may be limited by the tailoring parameter
maximumnumber ofprocessesvalue. See Section C.1.4 for more details.

5.2.3.5. Constraints on Usage
The Process Index Table should never be accessed directly by the application. All use of the
Process Index Table should be through Kernel primitives. I
Even though the Process Index Table is a potentially visible data structure, it should be treated as
an "abstract data type" by the application program. Knowledge of the internal structure should

not be exploited in the application program, as this may violate the integrity of the Kernel and the I
application program.

I
186 Kernel User's Manual, Version 1.0

I

I5.2.4. Interrupt Table
Interrupt management relies primarily on one data structure called the Interrupt Table. It is a
fixed size, statically allocated structure with entries for each interrupt that could possibly occur.
Otherwise, no other data structure is referenced.

5.2.4.1. Exporting Package
Generic_interrupt globals, interrupt globals

5.2.4.2. Structure
The Interrupt Table contains all information needed for interrupt management. The table consists
of a number of entries, one for each legal interrupt name. See Appendix H for the 68020-specific
definition of type interrupLname, which is used to determine the size of the Interrupt Table on the
68020. Each entry contains information about the interrupt itself (its state, type, and source),
whether or not it is reserved for use by the hardware or Ada runtime system, Kernel, or used by

*.1 the application, and information about the handler associated with the interrupt (handler code,
stack, indication of whether bound or not).

Figure 5-13 illustrates the structure of the Interrupt Table along with the scenario it represents.

-- the information maintained about interrupts includes:

-- ownerI-- the owner of the interrupt

-- values include:S-- absent (not assigned to any interrupting device)
-- reserved (reserved to Ada runtime or other non-Kernel system code

-- Kernel (owned by Kernel)
-- application (owned by application)

-- default value:
I-- application (owned by application)

-- condition
-- the condition of the interrupt

values include:
-- bound (a handler has been associated with the named interrupt
-- via a Kernel call)S-- unbound (a handler has not been associated with the named
-- interrupt via a Kernel call)

-- default value:
-- unbound (a handler has not been associated with the named
-- interrupt via a Kernel call)

i -- state
-- the state of the interrupt

-- values include:S-- enabled (the interrupt is enabled)
-- disabled (the interrupt is disabled)

I
Kernel User's Manual, Version 1.0 187I

I
I

• I

c t-, 0 .- 0

to_ __ 0 -

CV)

R ,
"0 0-

c

CxC
V *0

C~ cc 00-

~'Uj

CLI

.5++ U,'- ' (I

0. . -. -(U
cc

(U -- _

.2J (U.2 i

Figure 513: Interrupt Table- Part 1 of 3

188 Kernel User's Manual, Version 1.0

(U 0

IE

tt) c; 6:9 mc'.. E 2 M~ tUc .0

(US
~ C (.7cc

on E

0
- 04cc

0.
- -V0

N0 c.. -cc

m 0 0 U.~

C In

(U

0 -

0\ M0 - -~
a ~

1~ ~ - .

C CD

Fiur 5-3 nerptTb-Pr 2 of

...

EI

E .2 > U
SE cm s w

cv

Cn E
E cc 2

0

Cf

0 00 E. U

N 0

CD -

S - -E

E cz 0~

E C.0
c -a

0 _ _ _ _

~ 0 0

-cc- - - .(ui
cc'J U N

.c E

ES 2 -Cr- cc mI
.0.

m0 W v Ma-1

C6 f) E '- -
0 0 Iy m 0, r

.0 0 E o

CC I
c~~- v I 0~C~Q fa m

FigureU 5C3 Inerp Tal A Pat o

19 KreUse'MaulVrso1.

I

--j default value:
-- disabled (the interrupt is disabled)

-- interrupt source
-- indication of from where the interrupt sequence originated

I -- values include:
-- internal (the interrupt was generated by a call of the Kernel
-- primitive simulate-interrupt)
- external (the interrupt was generated external to the processor

-- as some hardware interrupt)

I -- default value:

external (the interrupt was generated external to the processor
-- as some hardware interrupt)I -- canpreempt

-- indication of whether or not the interrupt can cause the currently
-- running process to be preempted, letting another process execute
-I after interrupt processing

-- values include:
-- true (the interrupt is preemptive; the Kernel Scheduler may
-- select a different process to continue)

false (the interrupt is non-preemptive; the Kernel Scheduler may
-- not select a different process to continue)

I -- default value:
-- true (the interrupt is preemptive; the Kernel Scheduler may
-- select a different process to continue)

-- interruptjhandler
-- interrupt service routine for the interrupt

I - default value:
-- null-handler (a well-known null address)

-- toolinterface
-- indication of whether or not the tool interface has been enabled

-- values include:
-- true (tool interface enabled)
-- false (tool interface not enabled)

-- default value:I - false (tool interface not enabled)

-- monitoring.proceSs_IDI-- the process identifier of the Kernel process monitoring interrupt
-- activity via the tool interface

-- default value:
- null_process (a null process)

I
Kernel User's Manual, Version 1.0 191I

I

type interrupt,_tableentry I
is record

owner interrupt_owne: application;
condition :intIruptcondition :- unbound;
state interrupt state := disabled;
source interrupt source :- external;
can_premt : Boolean :- true;
handler hw address :- null-handler; I
tool interface enabled : Boolean := false;
monitoring processID : process tableprocessidentifier :-

process table. null_process;
end record;

-- the teplate for declaring the interrupt table is indexed
-- by the range of interrupt nams

type interrupt table type I
is array (interrupt name) of interrupttable entry;

interrupttable : interrupt table type;

The following types are used in the definition of the Interrupt Table. 3
-- interruptname is an integer value in a hardware-dependent range;
-- see Appendix N for its definition for the 68020

-- these values correspond to the hardware vector assignments
-- of the target, and are generally sparse 3
type interruptname is {...);

-- an interrupt vector can be one of four kinds:
-- absent (not assigned to any interrupting device)
-- reserved (reserved to Ada runtime or other non-Kernel system I

code)
-- Kernel (owned by Kernel)

application (owned by application) 5
type interrupt.owner is (absent, reserved, Kernel, application); 3
-- any interrupt may be in one of the following conditions:
-- bound (a handler has been associated with the named interrupt
-- via a Kernel call)
-- unbound (a handler has not been associated with the named
-- interrupt via a Kernel call)

type interruptcondition is (bound, unbound);

192 Kernel User's Manual, Version 1.0 I

I

this type indicates the state of an interrupt

1 -values include:
-- senabled (the interrupt is enabled)| ---- disabled (the interrupt in disabled)

-- RZQ: 11.1.4; 11.1.5
-- PRIM: 20.1.1; 20.1.2; 20.1.3

type interrupt_state is (enabled, disabled);

-- this type indicates the source of an interrupt

-- values include:
-- internal - interrupt was generated by a call to the Kernel

primitive simulate interrupt
-- external - interrupt was generated by hardware and was
-- processed by the hardware interrupt handling

- chanism

3 type interrupt source is (internal, external);

3 -- this constant designates a null interrupt handler

null-handler : constant hwaddress :- nullhwaddress;

There are no representation specifications relevant to the interrupttable~jype.

5.2.4.3. Initialization
The Kernel automatically initializes those entries in the Interrupt Table that are reserved for use3 by the hardware, the Kernel, or the Ada runtime environment.

No explicit initialization is required by the application, other than binding, enabling, or disabling3 interrupts as required by the application.

5.2.4.4. Additional Allocation Requirements
None; all data structures are static.

5.2.4.5. Constraints on Usage
The target interrupt mechanism should not be accessed directly through assembly routines or any
Ada language feature without understanding the implications. Otherwise, certain assumptions
made by the Kernel might be invalidated.

3 Because the Kernel primitive simulatejnterrupt does not rely on the target interrupt mechanism
but rather goes directly to the Interrupt Table to locate the appropriate ISR, the hardware is not

K
Kernel User's Manual, Version 1.0 193I

I

aware that interrupt handling is in progress. Therefore, the ISR may exhibit a slightly different I
behavior when simulated if it depends on the internal mode of the target hardware.

5.2.5. Kernel Time
The model of time exported by the Kernel to the application was introduced in Section 2.5. This
model of time is derived from the Kernel's internal representation of time, which is not visible to
the application program except via elapsedjime and epochtfime abstractions. This Section
presents the Kernel's internal representation of time.

It is possible that the Kernel's representation of time is insufficient to support a specific
application. Appendix C.1.2 and Appendix C.2.3 each describe the analysis that must occur prior
to using the Kernel for an application. This analysis assists the application engineers in I
determining a suitable value for the length of a slice--that is, the smallest interval of time required
by an application-and the capability for the Kernel's representation of time to support it.

5.2.5.1. Exporting Package
Generic_KerneLtime, Kernel_time

5.2.5.2. Structure
Values of type Kernel_time and the application visible abstractions based on Kernel time,
elapsed_time and epoch time, are fully defined at compile time. They comprise two 32-bit parts:
a low part and a high part that, combined, support representations of time beginning at zero and
continuing for some 150_000 years (i.e., 2 "" 63 microseconds). The Kernel does perform error
checking to ensure that values ot type Kernel tme, elapsedjime, and epoch time do not I
overflow. If an overflow is detected (during an arithmetic operation), the predefined exception
numeric_error is raised. 3

-- type Kernel.time; the time on which elapsed tim and epoch tim
-- abstractions are built

-- this tim representation allows applications beginning at time
-- zero to ezecute for som 150_000 years (i.e., 2 ** 63 microseconds)
"- **** -- I
-- the user should ensure that adjusting any times does not approach
-- the limit of this tim representation; proper Kernel functioning
-- is NOT guaranteed if time overflows

-- KernelTime is represented as a signed 64-bit binary integer,
-- representing a count of microseconds. Hence, a kernel time
-- of 1000000 corresponds to one second.

-- For the purposes of Ada definition, kernel time is a record of I
-- two components, being respectively the low-order and high-order
-- 32 bits. The high-order component can be correctly declared to
-- be a signed 32-bit integer, of type hwlonginteger. The low-order
-- component, however, is properly an UNSIGHED 32-BIT INTEGER, which I
-- this Ada compiler will not accept. Accordingly, it must be declared
-- to be SIGND, which is wrong.

194 Kernel User's Manual, Version 1.0 I

I

U -- The consequences are these

i-(a) if a kernel time value is printed in the "obvious" manner, i.e., by
printing each component. The low-order part may be printed as a
negative number when in fact it is a large positive number.

I-(b) if a kernel time value is constructed "by hand," i.e., as an
aggregate of two integers, the person writing the aggregate
must perform the necessary conversion from signed to unsigned
form Vor ezale, a kernel time of "-1" is represented as
16#ffffffffffffffff#, i.e., as (-1,-i) in Ada terms.

type Kernel.time is record
low : hw long integer :- 0;
high: hw long integer : 0;

end record;

-- the value of zero for the Kernel time abstraction

zero_Kernel.time : constant Kernel-time :- (0, 0);

-- the range of durations represented as integral values

3 type integralduration is new hwlong_integer;

There are representation specifications relevant to type KerneLtime. The representation
specification is used to ensure that each portion of Kernel_time is aligned on a longword
boundary and that it occupies a complete Iongword (i.e., 32 bits).

for Kernel time use record
low at 0 range 0..31;
high at 4 range 0..31;3 end record;

5.2.5.3. Initialization
Objects of type Kernel_time or of those types derived from it, elapsed time and epochtime are
initialized to zero. The size of those objects is completely determined at compilation time.

3 5.2.5.4. Additional Allocation Requirements
No additional allocation is required.

3 5.2.5.5. Constraints on Usage
The components of Kernel_time or of those types derived from it, elapsed_time and epochtime,
should never be accessed directly by the application. Kerneltime should never be referenced by
the application; only the abstractions based on Kernel_time, elapsed_time and epochtime
should be used. See Section C.1.2 for more information about tailoring the representation of

3 Kernel_time to the hardware and to the application.

Kernel User's Manual, Version 1.0 195I

U

Even though the representation of Kernel_time, elapsed_time and epochtime are potentially I
visible, they should be treated as "abstract data types" by the application program. Knowledge of
the internal structure of any of these types should not be exploited in the application program, as 5
this may violate the integrity of the Kernel and the application program.

I
I
I
I
I
!

I
U
I
I
I
I
I

196 Kernel User's Manual, Version 1.0

I

U

1 6. Application Evaluation
3The detailed information in this chapter will be provided in the next version of this document.

36.1. Tool Interface

6.1.1. Concept of Operations
The Kernel is a utility intended to support the building of distributed Ada applications. As such, it

is important that the Kernel be able to work in harmony with user-developed support tools. To
provide that support, the Kernel must provide a window into its internal workings. It is envisioned3that such a tool is simply another Kernel process executing on one or more of the processors in
the network. As such, the tool has access to all the Kernel primitives. Using these primitives
along with the Kernel-provided Tool Interface described below, a number of potential tools could
be built, such as:

* Process Performance Monitor: To compile statistics about the runtime performance
of a Kernel process(es).

* Processor performance monitor: To compile processor-level statistics.
* Network performance monitor: To compile network-level statistics.

* Interrupt activity monitor: To compile statistics on the frequency of interrupts and the
amount of time spent in various interrupt handlers.

a Message performance monitor: To compile statistics about the frequency of
messages, average message length, peak bus usage, etc.

Given the above motivation for the Tool Interface, the actual form of the Tool Interface is driven
by the following principles:

e A user-developed tool must have easy access to all the information of the Kernel.
Whether or not that tool makes use of the information is not the Kernel's concern.The key is that the Kernel must provide visibility into everything it knows intrinsically,
without expending resources to combine that intrinsic knowledge in any way.

e The extraction of information based on what the Kernel knows is left to the
user-developed tool (and indeed, it is deemed to be the function of that tool). It is in
the domain of the tool where the intrinsic Kernel information is combined and
presented in some context-specific manner.

* The internal Kernel information must be provided in a manner that does not
compromise the integrity of the Kernel; this implies read-only access to the Kemel's
internal data structures.

* The performance impact of using the Tool Interface must be predictable. Obviously,
the performance impact will not be entirely predictable given the non-determinism
inherent in the activities being monitored. But the Tool Interface bounds the impact
in a way that provides insight into the potential performance impact of auser-developed tool (of course, the tool itself is a Kernel process that may be

monitored like any other Kernel process in the system, so its performance may be
determined empirically). The tool should consume predictable resources generally
(not just clock cycles), e.g., storage, message bandwidth.

Kernel Users Manual, Version 1.0 197I

I

Application code should never have to be modified simply to use a user-developed
tool (while this may not always be possible, it is nevertheless a desirable goal).
Therefore, while some of the information made available via the Tool Interface could
be acquired by having the tool communicate directly with an application process, this l
approach is rejected as bad tool design and a distinct detriment to the application
software of an embedded system. (The Ada Main Unit is used solely to configure a
Kernel processor and to establish the initial process topology and, as such, is not
considered "application code." To achieve the requisite separation of concerns, i.e.,
separation of the application from its monitoring, enabling or disabling Tool Interface
functionality should be defined in the body of the Ada Main Unit.)

In general there are two classes of Kernel information that may be of interest to a user-developed
tool: process information and interrupt information. The sections below describe the information
available via the Tool Interface and the Kernel primitives provided to access this information.

6.2. Subprograms I
Complete information will be provided in the next version of this document. 3
6.2.1. BegIn_collection

Invocation 3
Resource Consumption

Conditions for Blocking I
6.2.2. Ceasecollection !

Invocation

Resource Consumption 3
Conditions for Blocking

6.2.3. Read processtable I
Invocation 3
Resource Consumption

Conditions for Blocking 3
6.2.4. Read_lnterrupttable

Invocation

1
I

198 Kernel User's Manual, Version 1.0 I

I

I Resource Consumption

3 Conditions for Blocking

6.3. Related Information
Complete information will be provided in the next version of this document.

3 6.3.1. Exported Constants

36.3.2. Exported Data Structures

6.3.3. Referenced Constants

3 6.3.4. Referenced Types

6.3.5. Relevant Generic Parameters

6.4. Monitoring Performance
Complete information will be provided in the next version of this document.

I
I
I
I
I
I
I
I
I

Kernel Users Manual, Version 1.0 199I

I
I
I
I
I
I
I
I
I
I
U
I
I
I
U
I
I
I

200 Kernel User's Manual, Version 1.0

U

I 7. Notes
Section 7.1 is a general project glossary and, as such, may contain certain acronyms and terms
that do not appear in this document specifically.

1 7.1. Glossary of Terms
Absolute (time):

A synonym for epoch time.
Ada: ANSI/MIL-STD-1815A.
ADT: Actual Delta Time. The actual delta time achieved when measuring a performance

requirement.
AEGIS:

A class of Navy ships with a C3 function.
AIT: Application Integrity Testing.
AITS: Application Integrity Test Suite.
Alarm:

A single timer associated with a process that may expire during process execution. If it
does expire, a change of process state occurs, and the exception alarm__explred is raised.

ARTEWG:
Ada Runtime Environment Working Group.

Asynchronous (event):
An event that occurs while the affected process is performing other work or is waiting for
the event.

Blocked (process state):
A process that is (temporarily) unable to run. All process states are described in the KFD.

Blocking (primitive):
A Kernel primitive that causes the process state to become blocked. The "blocked"
process state is described in the KFD.

C3 : Command, control, and communications.
CPU: Central processing unit.S DARK:

Acronym for the SEI Distributed Ada Real-Time Kernel Project.
Dead (process state):

A process that is unable to run again. All process states are described in the KFD.
Device:

A hardware entity that can interrupt a processor or that can communicate over the system
bus.

Distributed:
Executing on more than one processor in support of a single application.

I OoD: U.S. Department of Defense.
Duration:

The Ada type duration; used to measure elapsed time. Related information can be found in
the Ada Reference Manual [9.61.

EC: External Computer.

I Kernel Users Manual, Version 1.0 201

I

I

EDT: Expected Delta Time - The delta time specified in the performance requirements of the 1
KFD.

Elaboration:
The elaboration of a declaraion is the process by which the declaration achieves its effect
(such as creating an objecl); this process occurs during program execution.

Elapsed (time):
The number of TICKs since the end of the application initialization process.

Epoch (time):
The value representing the moment at which the processors began to compute elapsed
time.

Event:
Something that happens to a process (e.g., the expiry of a timer, the arrival of a message,
the arrival of an acknowledgment, being killed by another process). I

Exception:
An error situation which may arise during program execution. 3

FAR: Final Acceptance Review.
FIFO:

First in, first out. I
GCD:I

Greatest common divisor.
Hedgehog: 3

Echinus Europaeus L.
HM: Hardware Monitor.
Interrupt: I

Suspension of a process caused by an event external to that process, and performed in
such a way that the process can be resumed. (This external event is also called an
interrupt.) 1

IDS: Interface Design Specification.

INS: Inertial Navigation System.

Interrupt handler: I
Code automatically invoked by the Kernel in response to the occurrence of an interrupt.

ISO: International Standards Organization. 3
ISR: Interrupt service routine; interrupt handler.
Kernel:

Basic system software to provide facilities for a specific class of applications. £
KAM: Kernel Architecture Model.
KFD: Kernel Facilities Definition.
KIT: Kernel Integrity Testing.I
KITS: Kernel Integrity Test Suite.

KS: Kernel Specification. 3
KTC: Kernel Test Checklist

LIFO: Last in, first out.

MCCR:
Mission Critical Computer Resource.

I202 Kernel User's Manual, Version 1.0

I

I

U MS: Motion Simulator (Part of the INS Simulation).

NAVSAT:
Navigation Satellite.I NTDS:
Navy Tactical Data System (A communications protocol).

Network:
Series of points (nodes, devices, processors) interconnected by communication channels.

NCT: Network Configuration Table.

NIT: Network Integrity Test.
Package:

A package specifies a group of logically related entities, such as types, objects of those
types, and subprograms with parameters of those types. It is written as a package
declaration and a package body. A package declaration is just a package specification
followed by a semi-colon. A package is one of the kinds of program unit.

Package body:
Contains implementations of subprograms (and possibly tasks as other packages that have
been specified in the package declaration.

Package Calendar:
The Ada Package Calendar [Ada Reference Manual 9.6, Appendix C).

Package speflcatlon:
Has a visible part, containing the declarations of all entities that can be explicitly used
outside the package. It may also have a private part containing structural details that
complete the specification of the visible entities, but which are irrelevant to the user of the
package.

PITS: Processor Integrity Test Suite.
PM: Performance Monitor.

Postcondltlon:
An assertion that must be true after the execution of a statement or program component.
Otherwise an exception is raised.

Pragma:
Conveys information to the Ada compiler. This definition is from the Ada ReferenceManual.

Precondition:
An assertion that must be true before the execution of a statement or program component.
Otherwise an exception is raised.

Primitive:
Basic Kernel action or datum.

Process (Kernel):
An object of concurrent execution managed by the Kernel outside the knowledge and
control of the Ada runtime environment; a schedulable unit of parallel execution.

Process stack:
Built by the Kernel when creating a Kernel process. The process stack contains a stack
plug (to prevent the propagation of unhandled exceptions), a dummy call frame (pointing to
process termination code), and a place for process-local variables.

Processor:
Central processing unit (CPU); on the DARK prototype, a 68020.

RDAS:
Remote Data Acquisition System.

Kernel User's Manual, Version 1.0 203I

I

Real-time: i
When it is done is as important as what is done.

RN: Requirement Number (as enumerated in the KFD). 3
RTE: Runtime Environment.

Runtlme:
That fraction of elapsed time during which the processor is executing application code.

Running (process state):
A process that is executing on its processor.

SEI: Software Engineering Institute.

Semaphore:
A mechanism for controlling process synchronization, often used to implement a solution to
the mutual exclusion problem.

Slice:
A schedulable interval of time.

SPM: Software Programmer's Manual.

Status code:
Generic term used to indicate the status of the execution of a Kernel primitive. A status
code may correspond to an output parameter of some discrete type or to an exception.

STS: System Test Software.

Suspended (process state): 3
A process that is able to run, but cannot run because a process of higher or equal priority is
running.

Synchronous (event): 3
An event that happens while a process is looking for that event.

System bus:
Communication medium connecting processors and devices.

Task:
An Ada language construct that represents an object of concurrent execution managed by
the Ada Runtime Environment supplied as part of a compiler [Ada Reference Manual
Chapter 9].

TC: Test Controller.
Tick: I

The smallest resolvable interval of time used internally by the Kernel.

Time:
The Ada type time; see also epoch and elapsed. I

UI: User Interface (part of the INS).

2I
i

204 Kernel User's Manual, Version 1.0

I
II Appendix A: Kernel Packages

5 This appendix, which is bound separately, is a copy of the Kernel specification.

I
I
I
I
N

I
I
I
I
I
I
U
I
I

Kernel Users Manual, Version 1.0 205I

I
I
I
I
I
I
I
I
I

I
I
I

I
I
I
I
I

I

I Appendix B: Kernel Exceptions
This appendix provides a set of indices to the exceptions that may be raised by executing Kernel
primitives. The first index is sorted by exception name, the second index is sorted by package
name, and the third index is sorted by raising subprogram. For all three indices, the following3 information is provided:

" The name of the exception,

3 * The name of the exporting package, and

" The Kernel subprogram that raised the exception under the conditions described in
the Kernel specification, provided in Appendix A. For each subprogram in the Kernel
specification, there is a section entitled "ERROR PROCESSING" in which the cause
of the exception and the Kernel's ensuing actions are fully described.

II
I
I.
I
I
I
I
I
U
I
I

Kernel User's Manual, Version 1.0 207I

I

E(nI
-ooo -E _o_ sooo

20 8L E

S o o (Ub (," 1
_ = .- -0

"0" 0. ... c c3
e0 0 1N6j1 ((~

E I.

_ _ I
ID CI 00 -2 E - U

plie 00

Z 0) E0 1 U)

((U 08 .8 1 2 S

E E (U' U E -... , Ccc E Mae f eE E0 0 C 0 a o

c 0 0 - cc ." -

0 i I I

.208 0 000 Q3
0 0 0 0 aN c

> > 0 & A CC -1 .1 - A-

16 'M ' E, E .2- :-.
0) M) 0) Q 3

cc 2 ., ,

.2 EE

C 3

CO Ei

t M) _ 0 0

0El .0 = , c

cc0 cu 0 EIoU012 (

- a_ o ..- o2E E a , V

E 9 ~c U 0 "I

S _ 00 W__c go E cnUcis E 0 Q I I MI
208 Kene Usr' Maul VErs .

I>
0).

1r

E 2
S o .)

0 0I - 00

aE E._
0 0000 0 r

c o . I ~ 0 D M' - =0

c 0 cc Uool 000
c 0) 0 (D a 0 4 01 0 0

Co O _ . 00 E Ow

(DI I 'S 8 -c- is -DC

00 E E m D 0 0 0 00 c0

10 EE

m N ECC

I

0D (D 8(
E 0 0 r 0E0

K.._,.-_2... -

E0 .C CM
CL W C w w C c C C

0 0z 0 00B 0S

S- - -.

0 E

0

IzI

0~ (nI U) %*
E 0E 0 0D

0 0

I

Kernel1 %sr' waul Veson10 0IlC a

I
I

I Om --

cc ° ca 0 CD to cc C C' W

_I I I c0 m I I % r-
EE E 0 0 EEE N 00 0 (D cc

III 1a i "-:c E ° -0in000 000 00 0~

CC 1S 0 .1 0 0 0~ (D I~ I0 I N0 (
E EE E ')'veoo2C

_I I I I I
1 0 O 1 '!-

A i C i C ,I (
0 0 0 2230o (0 W 0 00% c

04 0)D

E E E EEI10 cc cc0 E
E3 E E0m00(0EE

IDo 2 E (
& 2 E E 2o f0 oEc

C! ___ _ ~1 lii.,. ij.,I

00 I
0

001 C . I
3 E = .2 L

to 0 E E%.

- C E ~E E DEEE

0 0 00 - S e 00E

CD 0 0 0 0 00 00 000 0 0)4 0)I

+10I

210 Kernel User's Manual, Version 1.0

z I

I
I

I--I-- -~ -~ =

cL 0 0 ___0
C 0 0 W==- --- - - 0

0 0 0 0 0 00 j '--0

cc- f I 0 0) a(22 _D 2
S NN,. N EEEE EEE EEEE CL _ NCL 2

mCa Q 0 ccn cc -o ccc >

0 0 003

El E E %

E E E E E E E E E
C,00 .D 0 0) E C 04.

E 1 E 1 (D 0)

-~ C Cm CC 0 EC~
Z aE E - -o to c o E

(A-E E E C C E
C0 0 0 cc mccc E C 0

0 0 E E E E m 'Ca
0000 E E EE CuE

0 z cm CO
O l I II. ..M El I Ei E€ r-Q) e"

%- &- %. Cc % C~..

u) cc00 0

E, (a U A W (I -a E

E E E> ' %o -
e e 11

I5)

0) (D0 0 0 D (D(

CC

(D 0-

0 CL E5

0. 0 0. 0
.2 '= %-

Kerne =sr Maul escn .

I
I
I

.2

0 I

CI E
0 I
C

Q
I

x1

I

0 P

W&E e

I

0 0C
CC0
00

E
WC IsI0i 0

21 enlUe'0aul eso .E E

to I~ I I u

0 4) (D 000 U R D 0 90 0) COO COO'0 W 009

a 8(0 4)) II))0) CO1CO0) 0 (0)0

D 4E A 0 E E E E E2 E 22(E
-o M .cuc cu(E E r= C 4) 1 E EE wo o E E D w E E 4) a)

F) (D M -a I I 1.> .I.I.I .1 2 V0I0 >II
-0 1 IDI4 * dI C r C a0 a 0 0

(DI0)))4

0-

C r

0 0)

0 >
W. 0J-I%

0- 4I 2 > C

(D) x U)
ox 0 E 0 0) 02(0

(D %- _ 01
-a 4 (U)

S 010 0 0 0) 0

E E E 2 E E
0D 0(D 0 0)

0 0 2E E E 2
Cu 0 0 0 C 0

R R COOC

Eu E F F2 E
cc. E E E E E E

cc cc cc 0 0
a0 00 I 0a 1 81 1 01 01 Cal

0 0 0 0D (D (0 (D 0 0

Kernel User's Manual, Version 1.0 213

6- A

.0 Cu.u) '0'010 "a CA fA0 0 1 D

C/0 00 _ac cWc cc c c LM a c 0

Cu I I I I I I I lIi I II-- =
oM C C CC) CCCC00 0 CD 0 0 3
>u won 00) cc0 mu m0' t0 o .0 w0 0 0 cac >

0) r
00

4)~~~~0 (D0)(0 (D00

0 0 Cu C

-(0 0 0 0C 0 - 0D00=. 9Sr 9SS
CC 1.O U)C A (O0 C 0C C M (A 1 O10I D

UC cc.-

cc c
.2 o Cu

> 0 cO c

(D 0 ~ C- .
_ Cc

0 0 0) 00 (D(I

0 0 S 000)4) 4)) CD -. -
0u u CuCu C CL (D 0 C (A

0) Cu C uuE EE00 0 I
OE E E E E0000

0 ~ (0 C C u (U C
C C C C 0) 4)4

0 EE EEE D0 D4

E I2 2 CD"c

E E EE 00 0 1

a. E E 0E 00E 0
81 81 C9 81 S I

0 0D 0) 00 00 0 0 0
m cm CP Cl Cl aC CM cm IC CM C0

214 Kernel User's Manual, Version 1.0

(a* n4)(4 0 0

c0 C) - n.
E 26 0(D0 0 0

to E- 0-- 0 0
0 00 00 ! D e c 0 %-.. 0.

CL CL 0L0M 0 0
C) 0 (D ~ 0 (O400 0 0 ~~o

(D %- 0- r- '-C C Ow C 0
CA ~- O0 0 0 Cn COE 0C D 0 0

S~ (D10 II4)s 0
Cu (nil C 2 2 00000 W cn c)4) 00 w00 =(0 8 P 4 00 0 .A2 ~ ~ ~ ~ ~ ~ ~ 0 00a 0a0 0000 0
cc w 4 (- %-% 0 0 0 -' N =N N

*(D ~ a) 0 C0 CL 0.0 0 - - - -
a ~0 0c.00 0 0 C C oo. C C N00(DCO (D

E (I e C C i 0

%5 0D00 C 0e 2 0% D0 (

000 0 0 0io1

C" 0

a. C1

.200 0
.CK 0 0 4.

0 xIV 0 C- I IE

cc cc ci 0 c

x0 X X Cccl00 cc 0 00

x 00
0D 0 E* D0 Cu I

0 01 01 CI00 cc I
0 0 0O00 0

C0) Q) US

0 CL CC:3 0 a

C 0(A 0) 00
q 1 1Cm CD CCuw CuC 0u 0

Z C .c CC CC C C
(D0 0 Cu m 00 ccc m5 E E

Eu E E SE E EE J %-J
I I II I I I 1 0 0 0

w to 0 n (n0
0 0 0 U) (n0 00U 0 00

0. 0 8 8 .0U 00 0 4) 00(
0 0 0000 0 00 00 0 0 0

0 000 0 0 0 0 0

0)) 4)0)) 0)0(D) (D 0) W0D) 0)

Kernel User's Manual, Version 1.0 215

I

o I

cc 0 0 -
Cu u2-c I

% aca

: 8 *1 Q :'0 C: :

CL Z _ 0 'a

C V C C c c w E (D u C U u C u C

0 8 o m m 72

.I -E 2 2 . C0C' N

0 0 1
a 0= 3 :0 3 : 2 0

.L4 J2 L4u 0 0 'EDC

"-- . E Q Q "C C

Cu.- E . ,, 3 , ,. -,,

cc m E "E

z>% E, z 0) " 'O1

00. 0C C1 0 C O 0 Cu W

(a - el - a C
o 0 o u ou o o E E E C =

.2E EE 0u 00 Cu e (n
Qu .0 cU c" (mCC C Cu C u C

o 0

LI0 C C

E I

00 E F=OuO~

"6 1I 0i 0 r 0) :I I 3-

)0 a> = 0 0 0

216 Kene Usr' Manal Vesinm.

Cu Cu Cu S 0 0 Cu cc Cu C mu C C u
C C C C0 CCC CC

0 0 C u C u C u C u to u C u C C u C u C

0 0 0))) 0 0) 0)))0 0 E)0 E0E

CO II
216 Kene UEf' Maul Eeso 1. E1

I
I
I

E E
= = =E E E E E

(D € E E 5 m 5 5 . . .
E 0 E m ca E E c 0 c 02 01 0 02 0c 0 020)~~~c cm E E) Em 0) a) 00 C U C U C) -~ -

cm Ra, R ;g - I I Iw m m w wlw a mal~ a w)al)/)

cE a a c o o oo E EE)~~a)0

Ec (aC C cc EU C E g E, !E EE El El El E I E

a. c. ,,- o. E- E .
r - :/

cc I IE E 2222 0 0 0002
CLC 0 0 0EEm88 0 0 0%

- -.l 'I.' Ijl i- .I IE "E E. o 0 cc to E E E"E0 00 0 2

(D D ((D 0) 0a) C) C) 4) a) 4)) 0) (D)) 4) (0)

C a) a) a) c c a) a) a) a a) a) a a) a) a a)

0 0)
E.c I I cm am 1 .m m o I D) .1 0 D cm I m

E (D

I. ~ : -- *0 _ I - l- - t

1- I a)Z

I~c ccl I,, I 4I)

Cfl 2 - _ :~ . ~.2 CL a

CC cc a a E 0 ac a a

n 1 0
fca . (D 0 0 0

(D 21 C cm
020 ~ a 0 cc 0~ CUCD U C

I

KO eel 0r Mnual,0 V0 (D 21

_ > 0 I = 01 O
01 0 ~ I~ 0 CX 0

C (D0 0 .a)

0m2r 0 0 0 2 cc

IC C _
w U 0 -

C) 000 Cc = ! m cc cc cc E @ 'a0 = 0.

E

n > > @ E. I j00 -020202 00
L %I cc - - 0 20202eI ~ ~ (CD 5 0..00 1)))000 (DCC

a)~~C C C 2 C C 0 0
CU CU D 0 000

N ~ I I ~ OE E E E m m m ma)) a

Kernel User's Manual, Version 1.0 217

a) 0 0 0C 0 0 3mmcm
cc Ru Ra R R))4

00 0 E E E~ EE E E EE
I I 0I 0I 0I 0I I 0I 0 0) 0) 0) 0) 0) . u C u C
CA 0 0 W (C) Cu Cu au CU Cu CU Cu w

d 00600000000-.

C33
qi a) aI ~ri~r

ccC

m~C CuL
0O x

jE (D

h..
m 2(

I c I C)I
U) .2 Z; 'D 4)0 m CuS c

(D 0~ ~ ~ '' Io~~2 2

x~ C5 (D I5 *
cc Q IDE

0 0 0 4)0ig c EL E 0

.E 0a 0 1 - c
(D 4 m4 0 0 E cc I - E m O

L . I c M E 8 c0 0 1-

000

00 0 1 i ~* ~

CL CL CL E cc ccE

!4 Y. I
218 erne Usr's anua, Vrsio 1.

I
I

I
E E E E E E E E E E o E E E

E m 8a8)&&&&E E E E E E E E E E a c
EC m UC (C I I I I I I I I II C r

,..U C ,.. ,- C.. o o 0 0 0 0 0 2 o2 .2 . E) o o 0

i ~ ~ a aa a 5 5 a a ca a a c a a a ac M M

0 E E I E E E E I E E _ (DI

0 0

CU0 0 0 0 0 0 0 0 CL 0 c :32*2~~* 2*

a. 0 I I -E -- I I ,,E

S 0 e0 0 0 00 0 0 0 0 0 0 0 0

C• 01 1 01 01 01 01 01 01 0- 01= 01 01 e I

(D (I (0 CD 0 (D) W) CD -(0 0 0l 0 w (D (D

E I
cc)

*,EL

-- aa (D

Ax 0 I 0)

2.J hE E cc2
cc 0 n .~ <cl E CU

01E .2 E -E IE E
2 O 1 IU

1 I cc

= 'anl r n 0

Ea- C I c - Cc 2 I ::IED V-

0 CC0 CUVA)
co 0 A0 DU 0

0 0000 0 0 0 00 E 2 E

4-~ .= *. = = ~ . 8 0 0

KenlUa Manal VersCona1.0 219

0I

I
I
I

E E E E E E E E E E E E E E E E E E

-E E EE EEE E EEE E E E E E E0
I~~ I i i i i Ii E E E E

Z 02 02 0000 .2 02. 2. . 29 .2000002.2 .2 .2 m cc

0C C CCCCCC_ C E E E E
n E E E E E E E eEE E E EIEIEIEIE E E E'e E E

C E EE E EEE E E EEE EE EE E E -
I I I I I r I, o / I I' I Ilo I I I I I o I o I o r"- "- "- " "" "" '€ I'" = I€ ' " I I'" '-I'" I' I' " I " "- .I

0000 0 00000 1 100 0 18 10000 10100000m m m

c CC C C C C 0). C Cl, cm, CmC I C Ch. cm cm c,. C C

C

zI
C , E = I_ = V E E
.0 0 0 D00

"Z ._ e r -" 1 1 e , ,. - , . 1 0 .2 a % -I : : I : : G-o . . . ,,, C.

(D = > ._ E v ,., ® ® = Z E 2,,, j x L _ , ,

I I0 , I* I I ,0 !n

0) 1 A (I I IcI I I c r- (D r 0 1; "

0 L~V C C C 1 0~ 0E- (D 10 x)

CCU D 0) 0
~~~ 00 0

C E E E E E E EEC E E = =E

cc m cc a a m- cc- -

c I a I I I I I I I cI dI I c I I I cc I cc I

CUC UC C U*m 0 0 0 0D 0 0 0

E EIE EIEI E) I/ E/ I) E I/ E/ I/ I E/ I) E/ I} E3 I E / I IE ( Za m

~~IIV 'a 'a100101 10 I 0 0I 'aIOIOw caCUI

o0 0 0 0000i 00 00 00 0 00 0--- 4

220 Kernel User's Manual, Version 1.0 ,

I



I
I
I

(fl (0(0Q

I 0 0)0* 0 EIwE9EE E 4 ~EE
z g c 0 0 0 0 I 0 I L

E ,o

m d E I E c m , .
(A - c - 1 w (o - f

0 w = e ,EEC I ,IUm~ 00 "0

E E E E 2 2 2 (

a a0

E ~----,2

cc c a
0)' )( 0'0 0 0 ( 0' ( 01010 0 0 0 0U~ mi0 0) 0D 0)-

0 C

-a 0 u0 0 0 0 e

IE a) J
0 0 00

01 001

D - x W ,- 0- . *

5. - .1o 000

CM

02 C. 2

1 ~o m0( e0~~ Ow0(

K Er Usr' Maul ron . 2

IIE



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

222 Kernel User's Manual, Version 1.0



I

Appendix C: Tailoring and Preparing the Kernel
This appendix presents a detailed discussion of the generic formal parameters used for tailoring
the Kernel, what their settings mean, and how they interact with each other, with the hardware,
and with the application. This appendix also enumerates all hard capacity and size limitations3 based on the declaration of types and values within the Kernel software.

3 C.1. Tailoring the Network
The following tailoring parameters require network-wide consistency and must be tailored to
reflect the hardware network configuration, the real-time clock, communication limitations, and
storage space considerations.

C.1.1. Tailoring the Hardware Network Configuration
Tailoring the hardware network configuration includes identifying the number of nodes, both
Kernel processes and non-Kernel devices, on the network via the parameter
number_of_nodes_value. This value then limits the number of entries in the NCT.

Tailoring the hardware network configuration also includes defining the following bus information
to the Kernel. There are three values constituting this description:

1. The address with the lowest value recognized by the Kernel is given by
firstbusaddress_value.

2. The address with the highest value recognized by the Kernel is given by
last_bus_address_value.1 3. A null bus address is provided via the null_address_value.

These three values define the bounds of the bus_address type exported by3 genericnetworkglobals. Values of type bus address are represented in the NCT in the
physicaL address field. Only values within the range firsLbusaddressvalue ..
last-busaddressvalue are recognized as legal addresses by the communication management3 function of the Kernel.

C.1.2. Tailoring to the Real-Time Clock3 The Kernel representation of time is described in Section 5.2.5. This representation is in terms of
an integral number of microseconds, that is, a bit value of 16#00000001# represents one
microsecond.

This assumes that the underlying real-time clock also measures time in units commensurable
with one microsecond (i.e., that the clock counts time in units such as 1l sec, 21Lsec, 10sec,
0.25psec, etc). If the dock counts in units that are not a multiple or fraction of a microsecond,
such as 1/65536 second, then the Kernel representation will be inaccurate; there will be jitter in3 the representation of time.

In the case where a clock ticks at intervals of 1/65536 second, one tick is fractionally more than

I
Kernel Users Manual, Version 1.0 223I



I

15lJsec, and 1024 ticks are exactly 15625 1psec. In terms of Kernel time, successive ticks will
appear to be sometimes 15iLsec apart and sometimes 161sec apart, which is a jitter of 1 part in
15, or about 7%. If this is unacceptable, the Kernel representation of time must be changed.

It is assumed that the hardware timer can count a finite number of ticks before it overflows, and
that the overflow causes an interrupt that resets the timer and continues accumulating ticks in
software. For example, if the timer is 16 bits wide, then after every 65536 ticks, the timer causes
an interrupt, and the handler must record that a further 65536 ticks have elapsed, probably by
adding 16#00010000# to a data object somewhere.

Given that the underlying clock is suitable, the size of the tick then depends on two factors:

1. How fine a resolution is required, and I
2. How much overhead is involved in resetting the timer.

In the above example, a tick of lpsec would imply an interrupt every 65msec, which is probably I
satisfactory. If the handler takes 200gsec to execute (not an unreasonable figure), then about
0.4% of the CPU time is devoted to servicing the timer interrupt.

A tick larger than 1gisec is probably reasonable for many applications. Consider, for instance,
that it may take 5 or 10 tzsec simply to read the current value of the timer, and a further 20 I.sec

or more to convert that value into the Kernel representation and adjoin the high-order bits that the
software is maintaining. If it takes 25.Lsec to read the current time, a tick of 8lisec or even more
is not unreasonable. i
The mechanics of tailoring to the real-time clock require three things:

1. The hardware clock driver and handler and the internal function geLclock should 1
be adapted for the actual timer in use.

2. The customization parameter ticks per_second_value in the internal package
generic_Kerneltime should be set to the correct value, and the generic
instantiations performed.

3. The application should use the value tickspersecond, exported by the internal
package Kernel_time, to determine the current granularity of representation of time.
Time, as seen by the application, advances in ticks.

This does not change the representation of time values in the Kernel, which remains as described
in Section 5.2.5. Rather, it determines the accuracy of any time value read from the clock. Thus,
if the granularity is 8jsec, for a time value represented as integral microseconds, the bottom

three bits will always be zero. The time perceived by the application advances instantaneously
from 16#00000000# to 16#00000008# to 16#00000010# and so forth. In effect, the clock is
making tiny jumps as it ticks. 3

II
224 Kernel Ueer's Manual, Version 1.0 U



I

I C.1 .3. Tailoring Communication Limitations
The application has the capability to limit the size of a single message that may be placed on the
network. This is accomplished via maximum_messageJength_value. By tailoring this with the
application requirements in mind, the Kernel can do a more optimal job of message handling.

C.1.4. Tailoring Data Structure Storage
The application may limit the amount of string space consumed by the NCT by limiting the length
of the processor name that is maintained in that data structure. This is done via
maximumjlength_ of.processor_name_value.

C.1.5. Summary of Network-Wide Tailoring Parameters
Each of the tailoring parameters below identifies the exporting package in parentheses, describes
the legal set of values for the parameter, indicates the DARK-provided default value (if any), and
notes the value assigned to that parameter for execution on the DARK testbed at the SEI.

Network-Wide Tailoring Parameters

Parameter Name Package Name Range Default
firstbusaddressvalue genericnetowk g/obals 0.. +32_767 0
last bus address_ value generic networkglobas 0.. +32_767 255
maximum length of processorname value generwicnetwo&k configuration 0.. +32767 none
maximum message length value generkcommuncation_globas 0.. +32_767 none
nulladdressvalue generknetwok.g/obal 0.. +32_767 none
numberof nodes value generic_ network configuration 1 .. +32_767 none3 ticks persecond value genercrKemel time 1 +32_767 none

Currently, the only one of these values that is checked for network-wide consistency by the
Kernel software is number_of_nodes_value, which is automatically checked as part of the
network initialization protocol. It is up to the application engineer to ensure that all other tailoring
parameters that require network-wide consistency are, in fact, consistent across the entire
network.

All of these tailoring parameters are used to initialize visible constants of the same name less the
"-value" suffix.

I C.2. Tailoring Each Processor
The following tailoring parameters do not require network-wide consistency. They determine the
characterists of the specific processor on which this version of the Kernel is to execute. These
parameters are used to describe the process environment, limit the range of process priorities,3 define time constants available to the application, limit the number of interrupt names available to
the application and the Kernel, and define storage space considerations.

Kernel User's Manual, Version 1.0 225I



I

C.2.1. Tailoring the Process Environment
The process environment is created by the Kernel for every process for which the Kernel primitive
create process is invoked. The application may provide the following maxima:

1. Maximummessage-queuesizevalue, used as the default size for all process
incoming message queues: and

2. Maximum jprocess_stack_sizevalue, used as the default size for all process stack
storage.

Once these values are set, the Kernel uses these values as processor defaults, and performs I
error checking against these values with actual values provided by calling the Kernel primitive
create.process.

C.2.2. Tailoring the Range of Process Priorities
The application may limit the range of priorities available within a single processor by specifying
the lowest priority value (such a process would be among the very last to be selected for
execution). This is accomplished via lowestpriority value. This value determines the upper
bound on type priority, which is available to the application program. 3
The highest priority recognized by the Kernel is hardwired as one (porfity'first + 1). A priority of
value zero indicates no change in priority (priority'first- 0). 3
C.2.3. Tailoring Time Constants
A slice is the smallest schedulable interval of time. The application uses this value when
describing the duration of a timeslice quantum (in number of slices). All time values that imply
scheduling action, such as delay times, are truncated to the nearest slice.

The minimum_slice_timevalue sets the minimum amount of time that may be specified as a
timeslice quantum. This value must take into account the minimum context switch time required
by the Kernel, as well as the needs of the application and the requirements it places on the
processing power of the hardware.

The ticks per.slice_value establishes the smallest amount of elapsed time that may constitute a
slice - a schedulable interval of time. To determine a reasonable setting for this value, the
following must be taken into consideration:

To obtain a suitable value for the length of a slice, the following should be considered:

1. The smallest interval of time that the application needs to consider. For example, if
a critical computation has to be performed in less than 200 psec, the application will
need to set an alarm for a time less than 200psec in the future. The slice must
therefore be no larger than this.

2. The greatest common divisor (GCD) of all application cycles. For example, if an
application contains three cyclic processes of periods 1 ims,.2.4ms and 4.6ms, the
GCD is 200psec. A slice of this value allows all three processes to run without
having to round off any resumption time value.

3. The time necessary to set a timer, enable its interrupt, field the interrupt, and

226 Kernel User's Manual, Version 1.0



I

I suspend and resume a process. This is the cost of performing a time-based
preemptive scheduling action. The slice must necessarily be larger than this.

I Items (a) and (b) above will be derived from the intended application or set of applications. Item
(c) will be derived from the performance statistics distributed with each version of the Kernel. If
the times in (c) are substantially smaller than those derived from (a) and (b), then it is probably
feasible to use the Kernel to support the applications, and a suitable slice value can probably be
found. If, however, the times in (c) are larger than those required by the application, then the3 Kernel performance is insufficient to support the application.

C.2.4. Tailoring Interrupt Name Usage
To maintain Kernel data structures, two parameters are provided to limit the number of interrupt
names used by the Kernel and by the application.

Numberof.interrupt namesused by application defines the stated maximum. This value is
used to compute the size of the interrupt data structures used by the Kernel. See Section 5.2.4
for more information about these data structures.

Number_ofinterrupt_namesused byKemel should not be adjusted once the Kernel is
delivered. This value is provided as a tailoring parameter for Kernel developers.

C.2.5. Tailoring Data Structure Storage
The application may limit the amount of string space consumed by the Process Table by limiting
the length of the process name that is maintained in that data structure. This is done via
maximum length of process name_ value.

In addition, the application may limit the final size of the Process Table and the Process Index
Table. This is done via maximumnumber of_processes_ value.

I C.2.6. Summary of Processor-Specific Tailoring Parameters
Each of the tailoring parameters in Table C-1 identifies the exporting package in parentheses,
describes the legal set of values for the parameter, indicates the DARK-provided default value (if
any), and notes the value assigned to that parameter for execution on the DARK testbed at the
SEI.

I "The tailoring parameters lowest priority value and maximumlengthof processname_value
are used to initialize visible constants of the same name less the "_value, suffix.I
C.3. Kernel Limitations
This section enumerates all hard limits imposed by the use of primitive data types in Kernel
software. The absolute limit is as indicated in the list; the practical limit may be substantially less.
These limits are presented in Table C-2.

See also limitations defined by package hardwareinterface in Section 4.1.

I
Kernel Users Manual, Version 1.0 227I



I

Table C-1: Processor-Specific Tailoring Parameters I

I
z a C CI° I I

II(0o I r t- rI
+ C M ( ( ( mI

:, . ': :' I,

W I

l - o l-- ,- ! I, . M .

."- ii,.-'.,"-- I

228 KeneUers analVrson1.I -I Ei '

22 K'-ernel User's Manual, Version 1.0



Table C-2: Kernel Limitations

CD 0

E0 0
mn (n

cm

1010 0'2 2 (n (n .2 .

l~ ~~. CO =J~.~~ ~

w D.r cc 0D 00 Q (0'' to 10 c 0 .0 w >1

FeJILO% Cu3 ( 1 1

+) + 0 4x + ++ + ) + +

0 -O

EI EC

toI m S. l

0.0

Ca) C7l c

Co0 to. C: ~ 0

au S
I I . I . I0

Kene Usr' MnulVesin .022



ZI
- 0 0 m)

(n -.

.C 3u % .. % .. +
(D (iv a '

a 0 0 0>01 00 2. (30 0

Ec -'-, 2 - (a w

Cj c

CV) It 0
+ ~ 0D 0_3 P,

X) 0l (XD S n -FI 60 1 - - -I % ,
0 cm CY r C3C) V I)C

0--

cm~ 0'~) 0 a)00
cv U) 0 =~I )

.0 Q~ coI C -C

0 ca~

Cc 000 00 I0 E

0~ 03
U)03 0)

a . t

3 00 z 0 0 

~0

0 00 00 00 00 0

0 0D0 0 0 0 0

-II



C.4. Tailoring Error Checking and Reporting

As described in Section 2.12, the Kernel provides the capability of selectively enabling and
disabling error checking, processing, and reporting on a per-processor basis. Table C-3
enumerates each tailoring parameter that corresponds to an exception that falls into this
category. In all cases, the exception name is identical to the tailoring parameter name less the
"_enabled' suff ix.

Each of the tailoring parameters below identifies the exporting package in parentheses. The
DARK-provided default value of each error checking enabling parameter is true; the value

assigned to that parameter for execution on the DARK testbed at the SEI is also true.

More information can be found in Appendix B and the "Error Conditions" and "Notes" portions of

the Kernel Specification in Appendix A.

K

I
I

I



I

Table C-3: Error Checking Tailoring Parameters I

I
Tailoring Error Checking and Reporting

Package Name Exception Name
illegalcontext for call enabled
noalarm set enabled

genericalarm management resettingexistingalarmenabled

buffertoosmallformessage enabled
illegal_context for call enabled
messagejnotreceivedenabled
message timedoutenabled
network failure enabled
no messageavailableenabled
nosuchdeviceexistsenabledreceiver dead_ enabled

receiver_is_senderenabled
receiverneverexistedenabled

generic_communicationmanagement replacingprevious allocationenabled

illegalinterrupt_enabled
illegajinterrupthandleraddressenabled
nointerrupthandlerbound
replacingprevious_interrupt handlerenabled

generic interruptLmanagement reserved_interrupt enabled

generic networkglobals busaddresscheckenabled
genericjprocess attribute modifiers illegal context for call enabled

generic process attribute readers illegal context for call enabled

callingu nitnotmain_unitenabled
illegal_process address enabled
illegalprocessjdentifier_enabled
insufficient spaceenabled
nokemel.process on nonkerneldevice-enabled
process alreadycreatedenabled
process alreadyexists enabled

genericjprocess managers unknownnonkemeldeviceenabled

generic processor management callingunit-not main unit-enabled 3
generic schedulejtypes nullpdority_rangeenabled

claimtimed out enabled
illegal_context for call enabled

generic semaphore management not_mysemaphore enabled

change_results in negative elapsedtimeenabled
changeresultsinjnegative-epoch_timeenabled
network_failure_enabled
OK but time_areadypassedenabled
synchronizationjin_progressenabled

generic timemanagement synchronization timeoutenabled

generic timeslice management illegal_quantum enabled

232 Kernel User's Manual, Version 1.0 I



I

1 Appendix D: Scheduling Algorithms
This appendix presents the Kernel's scheduling algorithms.

The following Scheduler rules are universally applied:

1. Scheduler order does not change spontaneously.

2. Scheduler ordering is decided by:

a. Higher priority before lower priority

b. Prefer a process in an error state (to one in a normal state)

c. First-in, first-out (FIFO) order otherwise

In other words, in all Scheduler situations, where priorities are equal, a process in
an error state is resumed preferentially; otherwise, the process first to become

I unblocked is resumed.

3. When two processes become unblocked simultaneously, the process that has been
blocked longest is considered to become unblocked first.4

I Scheduler Algorithm

Begin critical section
If the set of suspended processes is not empty
Choose the process to resum according to the Scheduler rules above
If timeslicing enabled >

Schedule slice event
End if
If chosen process - cmum Rmian PRoczss >

Resume Process via the Context Switcher
Else

Switch Processes via the Context Switcher
End if

Else
Resume Process (idle process")

End if

End critical sectionI
I
I
I

4Two processes executing on the same processor cannot become blocked simultaneously.

Kernel Users Manual, Version 1.0 233I



I

Schedule Slice Event I
If slice event ID /- no event ->

If chosen process - CURRENT RuNIw PROCESS =>
Null

Else
Remove Event (slice expiration)
If chosen process is premptable =>

Set SLICZ iVM ID to Insert Event (slice expiration)
End if

End if
Else

If chosen process is preemptable >
Set SLICZ ZVEN! ID to Insert Event (slice expiration)

End if
End if

II
I
I
I
I
I
I
I
I
I

234 Kernel User's Manual, Version 1.0

I



Appendix E: Building Abstractions
This appendix provides example abstractions that can be built using the Kernel primitives. These
examples include: building typed message passing, safe critical regions, cyclic and periodically
scheduled processes, time-critical transactions, monitors, mutually self-scheduling processes,
and a message router. The examples provided in this appendix can be used as a template for
application builders who need to construct application-specific code that can be based on the
paradigms herein. The examples include program design language (PDL) for one example
solution.

E.1. Typed Message Passing
The Kernel communication primitives (see Section 4.7) transmit and receive messages that are
untyped. Each of these primitives considers a message to consist of a length (in storage units)
and an address designating the first storage unit occupied by the message.

An application written in Ada may require more security than this, exploiting Ada's compile-time
type checking and using typed messages. This can be achieved by using a package such as the
following:

3 generic

type messagetype is private;

I package typed commication management is

procedure send message
(

receiver : in process-identifier;
message tag : in messagetag type;
mnssage : in Nessage Type

procedure receive_message

sender : out process-identifier;
messagetag : out message_tagtype;
messagebuffer : out Message Type
resumptionypriority : in priority :
messages lost : out Boolean;

end typed.ommication management;

This package exports send_message and receive_message primitives that expect typed values
and objects. To use it, the application code instantiates the package for each actual message
type. If two processes communicate via typed messages, the code of each imports the
instantiated specification.

Kernel User's Manual, Version 1.0 235I



I

However, this is still not completely safe. Although good configuration management tools should
prevent it from occurring, it is still possible for the sender to import one instantiation, and send a
value of one type, and the receiver to import another instantiation, and so get a message that it
thinks is of a different type. A further check, performed at execution time, could use the message
tag as a validity check:

generic

type messagetype is private;
tag checkvalue : in mssage_ tag type;

package typed coomnication management is

invalid mssage type : ezception; I
procedure send message

receiver : in process identifier;
message : In NessageType

procedure receive message
C

sender : out process-identifier;
mensage buffer : out mssage.type
resupton priority : in priority (:..};
messages-lost : Ioolean;

I
end typedcommication managemnt; I

The body of this package would look like this:

with conicat on management;
with system;
package body typed coummication management is

procedure send message

receiver : in processidentifier;
message : in messagetype

is

call the Kernel send message primitive, passing the agreed

-- mssage tag, the message length, the message address

comunicatson management, lnd message I
(

receiver > receiver,
_ I

message_t ag ->tag check value,
message length => msssagetype'size / system.storage unit' size,
message teit > hw.address (message'address)

I



end send message;

procedure receive, message

sender :out process-identifier;
mes sage buf far out message type
resumption priority :in priority {..)

messagen lost :out Boolean;
is

rcvd tag value : msssage t ag type;
rcvd message_ length :message .length ~type;
buffer-size: constant message_length type :

message_:type' size / system.storage_unit' size;

begin

-call the Kernel receive message primitive, telling it the
-buffer length and address, and receiving from it the actual
-received message tag and length

commication mane nt receive message

sender ->sender,
massagejtag =>rcvd tag value,
messagelength -> cvd message_ length,
message buffer ->hi address (message_buffer' address),
buffer-size ->buffer size,
rosuzuptionyriority -> reumptionypriority,
messages lost >messages-lost

-if the message is of the correct type, the length and tag must
-be correct; if this is not so, a message of the wrong type
-- was received and the exception must be raised,

if rcvd message-length /- buffer size
or else rcvd tag value /- tag-check-value then
raise invalid message type;

end if;

end receive message;

end typed comunicat ion managment;

Each instantiation must use a different tag..check_value.

Once set up, these packages can be used by application code with a high degree of reliability.
However, a corresponding price must be paid in terms of code and execution overhead.

Kernel Users Manual, Version 1.0 237



I

E.2. Safe Critical Regions 1
To build a safe critical region or protected data structure, mutually exclusive access to the region
must be guaranteed. There are two possible sources of concurrent access against which to

protect:

1. Processes, and

2. Interrupt handlers.

In addition, there are levels of exclusiveness in critical regions: I
1. Providing mutually exclusive access to some object.

2. Providing mutually exclusive and uninterrupted access (by other processes) to
some object.

3. Providing mutually exclusive and totally uninterrupted access (by other processes
or interrupts) to some object.

Level 1 is easily achieved by convention within the application program, where all critical regions
are guarded by a semaphore, and a process must have possession of that semaphore before I
accessing the critical region. Since the Kernel does not allow interrupt handlers to maintain state,

an interrupt handler may not perform a blocking operation or claim a semaphore. If an interrupt

handler needs to affect a protected object, it must do so via a process acting as its agent (i.e., by I
sending the process a message). The code to accomplish Level 1 exclusion might look like:

with semaphore manaement;
package shared data is

lock : semaphore managemant. semaphore;
object : somentype; I

end shared data;

with semaphore -.snagemnt; I
with shared data;
procedure sample leveli criticalregion is
begin I

semaphore managemt, claim (semaphore-name > shared data. lock);
update (shared data.object);
semaphore managemant. release (semaphore-name => shareddata. lock);

end saipleevel_2lcriticalregion; I

Level 2 exclusiveness is also relatively easy to obtain by convention. It requires the semaphore I
convention of Level 1, to block out other processes that require the resource. It also requires that
the process with the critical region must have the highest priority (a special priority level reserved

by the application designer exclusively for this use) of any process in the system, to prevent other
processes that don't require the resource from executing. The code to implement Level 2

exclusion might look like:

238 Kernel User's Manual, Version 1.0



I

I with schedule types;
with semaphoz z management;

package shared_data in

lockoutjpriority : schedule types.priority := 1;
lock : semaphore managenmnt. semaphore;
object : some type;

end shared data;

with process attribute modifiers;
with process attribute readers;
with semaphore management;
with shared_data;
procedure sample-level_2_criticalyregion isbegin

old'priority := processattribute readers .getjprocesspriority;
semaphore management .claim (

semaphore name -> shared data.lock,
resumptionpriority -> shareddata.lockout-priority);

update (shared data.object);
semaphore management. release (semaphorename -> shareddata. lock);
process attribute modifiers. setprocessypriority

(newpriority Z> old priority);

3 end sanlpe level_2_critica l_region;

Level 3 is more difficult to obtain. At the process level, it requires the same conventions as Level
2 exclusion. The difficulty is locking out interrupts. Clearly, non-maskable interrupts may never
be locked out (but since they represent truly disastrous system failures, this is not a problem).
The only way to achieve Level 3 exclusion (minus non-maskable interrupts) is to effectively
disable every interrupt, which may be done in two ways: by individually disabling every active
device or by using an available hardware feature to mask interrupts. The example shown here
uses an internal Kernel package that illustrates how to mask out interrupts on a 68020 using the
Telesoft V3.22a cross-compiler:

with low level_hardware;
with process-attributemodifiers;
with process-attribute-readers;
with schedule-types;
with semaphore management;
package shared data is

lockout priority : schedule types priority := 1;
lock : semaphore management. semaphore;
object : some-type;

i end shared data;

with semaphore management;

K
Kernel Users Manual, Version 1.0 239I



I

with shared data;
procedure sample level 3.critical region is
begin3

old priority :- process-attributsreaders get_processyriority;
semaphore manaqgment. claim ( Isemaphore name -> shared data.lock,

resamptionVriority -> shared data. lockout_priority);
low level hardware.begin atomic;
update (shared data. object);
lowlevel hardware. end atomic;
semaphore management. release (semaphore_name -> shared data. lock);
process attribute modifiers. set processyriority

(new-priority Z> old priority);

end samplelevel_3_criticalregion; I

There are a number of risks associated with Level 3 exclusion. First, one runs the risk of missing 3
important interrupts, which means the amount of time spent in a Level 3 critical section must
always be minimized. Second, if the Kernel clock interrupt is disabled, the clock will drift and

inaccuracies will creep into the Scheduler.

In critical regions, care must be taken to back out properly in the event of an exception. All critical
regions should contain an exception handler of the form: I

ezception
when others -

low level hardware.end atomic; -- to back out of level 3
semaphore management . release

(semaphore_name -> shared data.lock);

E.3. Cyclic Processes I
A cyclic process is one that is scheduled to execute every n units of time and must complete it's

execution within that time period. The solution presented here is a general one that allows the I
process to be implemented without knowing the cycle time and for that time to be varied as
needed when the process begins execution. The code template to achieve this is:

with alarm managemant;
with coomzication management;
with process attribute modifiers;

with time managinent; -I
procedure cyclicprocess is

-- .1) read the cycle time from the message sent by the process
-- controlling the system. if this generality is not needed, then
-- the cycle-time can be coded directly into the process or placed

240 Kernel User's Manual, Version 1.0



I

I -in a global datum.

3 -- (2) compute the next absolute time the process is to run

(3) setup a frame overrun timeout, just a little shorter than the
actual cycle time, to allow time for cleanup and to get

-- back to the start of the loop for the next cycle (this
cleanup and recycle time is the value of delta)

-- (4) if the processing is completed on time, then the timeout is
cancelled. there is a potential race condition here in
that the timeout could ezpire just as the process

-- finishes its work. if this is a significant risk, thenU -- the timeout handler must account for this possibility.

-- (5) voluntarily desachedule the process until its next
-- scheduled wakeup time.

(6) emecution reaches this point if and only if the alarm has
-- expired, i.e., a frame overrun has occurredI --

begin
~-- (1 --

commnication management. r ceivemaessage ( .. , cycle-time, ... )

3 loop

execution frame:

begin
-- (2)
next-schedule tim :- time management read clock + cycle time;S-- (3)--

alarmmanagemant.set-alarm (cycle-time - delta);

dothe-work;

-- (4) --
alazm manageinnt. cancelalarm;

-- (5) --
process attribute modifiers .wait (nextscheduletime);

exception

-- (6) --
when alarm management. alarmexpired ,>

-- back out whatever the process was doing but didn't finish

3end execution frame;

end loop;

I
Kernel User's Manual, Version 1.0 241I



I

end cyclic_process; I

This entire discussion is predicated on the assumption that the cyclic process gets enough cycles i
to execute the various steps. This is an application-level issue determined by the relative
priorities of all the processes in the system.

E.4. Periodically Scheduled Processes 3
A periodically scheduled process is one that is scheduled to run every n slices after the last
complete execution of itself. There are no constraints on how long the process should run - only
on how much time should elapse between executions.

One example of such an application is a process that periodically updates a screen display. This
process updates the screen every X seconds-it doesn't matter how long it takes to update the I
screen, or whether the process doing the screen update is preempted by a higher priority
process. All that matters is that the information on the screen is periodically updated, and that
(barring more important system functions) the screen information is no more than X seconds old. i
The solution presented here is a general one that allows the process to be implemented without
knowing the cycle time and for that time to be varied as needed. The code to achieve this is: I

with hardware interface; use hardware interface;
with comunication management;
with process_attribute_modifiers;
with tim_globals;
procedure periodic process is

-- read the interval time from the message sent by the process
-- controlling the system; if this generality is not needed,
-- the cycle time can be coded directly into the process or I
-- placed in a variable

-- do the work required

-- voluntarily block the process until its next scheduled wakeup

-timI

procedure do thework;

.function to interval time (text : hw_string) I
return tImgloba7s. elapsed time;

begin

comnicat ion management .receive message

intervaltime buffer,

242 Kernel User's Manual, Version 1.0 I



I

I loop
do the work;
proces s_attribute modfiers.wait

for-elapsed time -> to.intervaltim (interval-timebuffer)

end loop;

end cyclic_process;

I The actual execution interval of the periodic process may vary, and can be longer (although never
shorter) than the desired amount. This is a system-level issue determined by the relative
priorities of all the processes in the system. If it is determined that the periodic process needs to
be run with highly precise timing, a high priority should be assigned to the process.

I E.5. Time-Critical Transactions
The Kernel alarm management facility (see Section 4.12) provides a means for a process to set a
limit to the duration of any fragment of code.

For example, for a process to perform a computation do_calculation, but to abort it if it is not
completed within 1 ms, the process can provide this guard:

guarded fragment:
begin

managemnt, setala= (after-elapsed tim => milliseconds (1));
do calculation;
alam management .cancel alarm;I exception
when alarm management alarn_expired >

null;3 end guarded fragment;

This ensures that the process may not consume more time than is allowed. However, it also

causes the calculation to be abandoned when the alarm expires. This might be proper behavior
in some cases, for instance in a real-time application where the result of the calculation is useless3 if not timely. But it is probably not adequate in other circumstances.

One example is a time-critical transaction that must either run to completion within a finite time or
not be performed at all. If this transaction involves changing global state, such as a track table,
then it is necessary for the process to be able to back out of the transaction when the alarm
expires. In terms of a standard two-phase commit protocol, the skeleton looks like this:

guared _fragmentwith_backout:
begin

POSIT; -- prepare to perform transaction
alacm management.set alarm (time allowed_tocomplete);

perform transaction;
alarm management .cancelalarm;

Kernel User's Manual, Version 1.0 243I



I

COOIZT; -- transaction is now irreversible
exception

when alarm management .alazm expired >
BACKOUT; -- abort transaction and revert

end guarded_fragmentwith_backout;

The protocol and the alarm management code must strictly nest in the manner shown. The

postcondition of perform_transaction is that the transaction has succeeded; the postcondition of

cancel_alarm is that the alarm has not expired (i.e., that the time taken is less than the time

allowed). The joint postcondition is therefore that the transaction has succeeded within the time

allowed, and so the transaction may be committed.

The above skeleton can be embedded in a generic procedure with a parameter
performtransaction:

with timeglobals;
generic

with procedure perform transaction; 3
procedure time critical transaction

time allowed to-complete : in timeglobals.elapsed time

I
This provides a safe encapsulation, allowing the global data administrator to build standard
POSIT, COMMIT and BACKOUT protocols that all instantiations of the encapsulation may use in
the correct manner.

E.6. Monitors

In many real-time applications, a resource needs to be shared by multiple processes. Usually,

this resource sharing can be managed by using semaphores to lock and unlock access to the ,

resource. The Kernel semaphoremanagement capability is described in Section 4.11.
Sometimes, however, the mechanisms used to manipulate the resource must be uniformly and
automatically enforced across an application or may need to be hidden, so that the processes I
using the resource do not know exactly how the resource is being used, or even that a shared
resource is involved. In this case, a package to "monitor" the resource can be defined by the
application.

E.6.1. Example Requirements and Justification
An application may need to update a group of related data when a single datum is changed. For

example, the following physical quantities have the indicated relationships among them:

distance - speed * time
velocity - acceleration * time
bearing - angular velocity * time
height - rate of ascent * time 3

244 Kernel User's Manual, Version 1.0



I

I rate of ascent = speed o sin (glide angle)

I In order for an application to obtain a consistent reading on these data, all must be modified as
time progresses, as each is a function of time. On a uniprocessor system, this is relatively easy
to accomplish; the semaphoremanagement capability may be used. However, on a system
where processes may preempt each other, and where an access to global data may potentially
be interrupted, a mechanism is needed to ensure that accesses are atomic (i.e., the data are
modified in their entirety or not at all). For the purposes of the following simple example, the
following assumptions are made:

1. Access to the data is a potentially blocking operation. A process needing access to
any of the data (either for update or retrieval) requires fast access, but notimmediate.

2. Access to the data is from a single processor. This simplifies the example by
allowing the monitor abstraction to be built on the Kernel semaphore-management
capability. Semaphores will be used to lock the database (semaphores are local toa processor).

1 3. The only operations on the data are: update and retrieve.

E.6.2. PDL of Example
The code for the procedures to monitor the data follows. External to the datamonitor package,
the caller needs no knowledge as to how the monitor is implemented. All callers need to know is
that the monitor ensures that modifications of the data are atomic and consistent access to the
data is provided.

with time globals;
package data monitor is

type position data-record
is record

time : time globals. elapsed time;
speed : ( ... })
distance :
velocity •
height :..
rate of ascent {...)

end record;

procedure update
(

time : in timeglobals.elapsedtime

procedure retrieve

data : in out positiondatarecord

end data monitor;

with hardwareinterface;

I
Kernel User's Manual, Version 1.0 245I



I

with semaphore management; I
with time_globals;
package body datamonitor is 3

type global resourcesinformation
is record

position da:a : semaphoremanagiennt.semaphore;
count : hw integer; I

and record;:

globalresources : globalresourcesinformation; 3
positioninformation : positiondatarecord

procedure update I
(

time : in tim _globals.elapsed time
is I

begin

semaphoremanagement claim I
(

semaphorename => globalresources.positiondata

speed :-= read speed. sensor;
acceleration = readaccelerometer;
glideangle : read attitude sensor; Irate of ascent : -

coute.rate of ascent (speed, acceleration, glideangle);
new height :- computeheight (oldheight, rateofascent, time);

old copypositiondata :- positiondata;

updateblock: I
begin

position information.time : - time;
positioninfozmation, speed := speed;
positioninformation.distance := speed * time;
position infozmation. velocityincrement . -

acceleration * time;
positioninfozmation. height increment

rate of-ascent * time;

exception I
when others ->

position-data :- old copyposition data; I
end updateblock;

semaphore management. release I
(

semaphore-name => globalresources.position data

246 Kernel User's Manual, Version 1.0 I



I

3 end update;

procedure retrieve

( data : in out positiondatarecord
is

3 begin

seaphore management .claim

3 semaphorename => globalresources.positiondata

data :- positioninformation;

semaphore management. release
(

semaphore-name => globalresources.position data

end retrieve;

end data monitor;

I
E.7. Mutually Self-Scheduling Processes
Kernel primitives may be used to specify points in the application program where processes
voluntarily give up control of the processor in favor of other processes of the same or lower
priority.

E.7.1. Example Requirements and Justification
One use of mutual self-scheduling is where calculations and control operations need to be
performed in parallel on a single processor (that is that they need to be performed logically
concurrently, but due to the distribution of the algorithm, true concurrency cannot be obtained).
Thus, a time sharing system may be built, where the points at which the different parts of the
algorithm are stopped and resumed are selected by the application designer, and not by the
Kernel at the expiration of a timeslice. Another scenario in which a mutually self-scheduling3paradigm is appropriate is one where algorithm processing is handled in a pipeline manner: a
first process performs initial processing and suspends itself in favor of a second process, which
continues processing and suspends itself in favor of a third process, and so forth. In this3scenario, data would be transformed from an input state to an output state, where the output state
of one process would correspond to an input state of the next pocess in the pipe-line.

3One use of this type of scheduling is the sharing of data among processes, where partial update
of data items is unacceptable to processing. Rather than use semaphores to control access to

I
Kernel Users Manual, Version 1.0 247I



I

the data, scheduling is used to control access to the processor. When a process is able to give I
up control of the processor (i.e., it has finished writing data, reading data, or has executed a
sequence of instructions that it deems a "fair" use of the processor), it explicitly calls the Kernel 3
Scheduler via the Kernel primitive wait.

An example of mutually self-scheduling processes supporting a timeshare scenario is presented
below.

E.7.2. PDL of Example 3
In this scenario, process_l does roughly one third of the time shared processing, as do
process_2 and process_3. I

with process-attribute modifiers;
procedure process.1 is

(1) a wait of an elapsed tim of 0 causes the Scheduler to
choose the next process to run. in the case of multiple
processes with the same priority, the Scheduler chooses
the process with the longest tim of not rurning (i.e.,
one of process_2 or process_3).

begin I

loop 3
... code that cannot be interrupted by process_2 or process_3

-- (1) -- •

process3attribute modifiers.wait (
for elapsedtim => TG.elapsed time(0));

... more code that cannot be interrupted by process_2 or process_3 3
-- (1) --process attributemodifiers.wait ( I

for elapsed tim -> TG.elapsed time(0));

... more code that cannot be interrupted by process_2 or process_3 I

-- (1) --
process attributemodifiers.wait

for-elapsedtime -> TG. elapsed time (0)); I
end loop;

end process1;3

-- process_2 and process_3 each do another third of the "tim shared"
-- processing

with processattributemodifiers; 3
248 Kernel User's Manual, Version 1.0



procedure process_2 is

-- (2) allow either process $ or process_3 to run by voluntarily
deacheduling by calling wait (0)

begin

loop

... code that cannot be interrupted by process_1 or process_3

-- (2) --
process _attribute modifiers.wait(

for elapsed time -> TG.elapsed time(0));

and loop;

end process 2;

with process attribute modifiers;
procedure process_3 is

begin

... similar use of code and wait(O)

end process_3;

with process managers;
with process table;
with process 1;
with process"2;
with process"3;
procedure Ma4.n Unit is

procl : processtable.process identifier;
proc_2 : process table.process identifier;
proc_3 : process-table.process identifier;

-- the Main Unit creates all three processes

begin

-- network initialization and other initialization

pro - processmanagers.declareprocess ("Pl");
proc_2 - process managers.declareyrocess ("P2");
proc_3 - processmanagers. declareprocess ("P3");

Kernel Users Manual, Version 1.0 249



U

process managers. create_process ( I
process ID W> procd1,
initial priority 3> 4,
address -> process 1'addzess);

process managers. create_process
process ID -> proc 2,
initial-:iority> 4, I
address -> process_2'address);

process managers. create process ( 3
process ID -> proc 3,
initialypriority => 4,
address -> process_3' address); 3

-- rest of initialization

end Main Unit; U
E.8. Message Router 3
While in many instances, it is convenient for every. process to know the exact destination of each
message that it sends, at times it is more convenient for a process to know only the concept of a
"service" (and not a specific "server"). In these cases, the notion of a service process (or I
message router) is useful, in which the message router partially decodes messages and sends
them to the specific process responsible for acting on the service request.

E.8.1. Example Requirements and Justification
A specific, although simple, example of the need for this type of message passing can be shown

in the following set of requirements:

An application accesses data from numerous sensors and processes this data in a
like manner irrespective of origin.

* The sensors are distributed, as are the processes which read the sensors.

* The frequency of acquisition of data from any given sensor is stochastic, although
the computational overhead is uniform for any given data sample.

To spread the system load, the processes that analyze the incoming data are also
distributed. The number of data-gathering processes exceeds the number of
analyzing processes.

Sensor data is passed to the analyzing processes via messages. The analysis
processes read the Incoming data, compute some form of result, and communicate
this result to the collector. One possible application of this form would be a multiple
target tracking algorithm; another would be a print server spooling requests to
multiple printers. 3

Given this set of constraints, two possible implementations are envisioned:

i
250 Kernel User's Manual, Version 1.0

i



U

I 1. Each data collection process (associated with a single sensor) has associated with
it a single analysis process (a many-to-one mapping). Because collection
processes outnumber analysis processes, it is possible that a set of collection
processes could be active that would heavily load a small set of analysis processes,
leaving a different set of analysis processes relatively idle.

If load sharing were to be implemented with this scheme, every collection process
would need to know the location of every analysis process, and every collection
process would also have to maintain a copy of the loading tables for the analysis
processes, and would thus route messages to what it presumed to be the least

* loaded analysis process.

This method would result in a great deal of data sharing, a large number of global
variables, increased message traffic (since the collection and analysis processes
are both distributed), and increased complexity of every collection process.

2. Each data collection process (associated with a single sensor) knows about a
single, global service process (or message router). This service process would
receive incoming requests from the collection processes, and based on the relative
loading of the analysis processes, would choose a lightly loaded one and route the
message to it for analysis. The analysis process would then be able to respond
directly to the collection process (assuming the message router provided the
address of the collect process to it).

This scheme requires some increased message traffic, but substantially reduces
the computational overhead of the collection processes. Each collection process
need only be aware of a single, global message router, whose sole job it is to find
unloaded analysis processes and ship sensor information messages off to them.
Information about process load is localized, so no data sharing need be done.

E.8.2. PDL of Example
The code for the message router would look something like this:

with processtable;
package load information is

function find least loaded analysis_process

return process table. process identifier;

3 end load information;

with co mnication.globa is;
with process table;
with load information;
procedure message router is

3 unloaded : processtable.process identifier;

function to-tag (snder : in process-table.processidentifier)
return coommication..globals. messge_tag type;

-- encode a processID as a message_.tag.type value so the ultimate
-- receiver of the message may determine from which process it3 -- originated

Kernel User's Manual, Version 1.0 251I



I

-- read an incoming message and assume that it comes from a collection
-- process. in more complicated cases, the messagetag or the
-- message buffer could indicate the type of service requested. 3

begin

loop I
comianication managenmnt. receive message' I

sender, ... length, buffer, ...

unloaded :- load infozmation. find least-loaded analysis process;

cominmication managemnt. send message

receiver -> unloaded,
mssage.tag -> to tag (sender),
message.length -> length,
mssage..text -> message..buffer

end loop;

end message_router;

I
E.9. Process Monitor (A Sample Tool)

This example will be provided in a future version of this document.

E.10. Network Integrity

This example will be provided in a future version of this document. I
E.1 1. Prioritized Messages

This example will be provided in a future version of this document. 3

I
I
I
I

252 Kernel User's Manual, Version 1.0 I



U
I Appendix F: Application Example
3 This information will be provided in the next version of this document.

I
I
I

I
I
I
I
1
I
I
I
I
I
I ____

Kernel '.~ser's Manual, VersIon 1.0 253

I



U
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I



Appendix G: Relation to Standard Design Models
This appendix is currently in outline format.

G.1. Introduction
The Kernel presupposes certain models of real-time system development.

G.2. Basic Models

G.2.1. Process Model
Serial algorithms executing independently of each other, synchronizing by explicit signals or data
flows.

G.2.2. Data Flow Model
Loosely-coupled producers, consumers and transducers, linked by persistent data-flow arcs
along which typed messages are passed.

G.2.3. Time Model
Uniform linear flow of time common to all nodes, represented internally with a finite granularity.

G.2.4. Event Model
An event is the arrival of a signal or message; conceptually asynchronous. Processes await
events that represent preconditions for continued execution; processes create postconditions that
represent events being awaited by other processes.

G.2.5. Device Model
Device as an external source or sink of data; controlled by a driver/handler pair; the driver being
synchronous with respect to the application and the handler asynchronous. Driver maps
application requests into device commands; handler maps device responses into application
events.

G.3. Corresponding Design Models

G.3.1. System Decomposition Models
From requirements to: processes, communication paths, sources and sinks.

G.3.2. Data Flow Models
From architecture to: data channels, data stores, message types, process roles
(producer/consumer/transducer).

Kernel User's Manual, Version 1.0 255



U

G.3.3. Transaction Models i
From behavioral specification to: end-to-end transactions; pre and post conditions; invariants;
internal states; state machines.

G.3.4. Temporal Models
From performance specifications to: event recognition and handling times: maximum latencies;
resource requirements; throughput.

G.4. Suggested Standard Techniques 1
DeComposition: Ward-Mellor; SI/SD
DID: MASCOT
Transaction: Statecharts
Temporal: Schedulability Analysis; Timelines 3

I
I
I
I
I
I
I
I
I
I
I

256 Kernel User's Manual, Verslon 1.0I



I

U Appendix H: 68020 Specifics
3 The following information is specific to the Motorola 68020 target, as defined by the documents

listed in Section 1.4:

1. There are 256 legal interrupts.
2. The range of legal interrupts is: 0 .. 255. This is the range for type interrupt name

in package generic interrupt globals. The declaration of type interruptLname is:

type interruptname is now hardwareinterface.hwbyte;

3. Interrupt names reserved by the Kernel and the hardware are:

Kernel Reserved Interrupts

Interrupt Name Meaning

0-63 Hardware-defined exceptions

66 PIT PIO "In" port #1

I 68 PIT Timer #1 (Timer A)

74 PIT PIO "In" port #2

76 PIT Timer #2 (Timer B)

82 PIT PIO "Out" port #1

84 PIT Timer #1 (Timer C)

90 PIT PIO "Out" port #2

92 PIT Timer #2 (Timer D)

100 MFP Timer D

101 MFP Timer C

104 MFP Timer B

109 MFP Timer A

120 SIUA TX PortA

122 SIOA RX Port A

124 SIOA SC Port A

3 126 SIOA SRC Port A

255 Interprocessor Interrupt

3 4. Information about the resources consumed by each Kernel primitive will be

provided in the next version of this document.

5. The values used by the DARK development team for all tailoring parameters are
presented in Table H-1.

6. The context_savearea embedded within the Process Table is target-specific. See
Appendix A, package contextsave area, for a detailed description.

7. The following representation specification is relevant to type hw bits8 declared in
package hardware_interface:

3
Kernel User's Manual, Verslon 1.0 257I



I

for hwbits8, use record I
bit7 at. O.range 0. .0;
bit6 at 0. range 1. .1;
bit5 at O. range 2. 2;
bit4 at 0. .range 3. 3;
bit3 at 0. range 4. .4;
bit2 at 0. range 5. 5;
bitl at 0. .range 6. 6;
bitO at 0. .range 7..7;

end record;
This representation specification allows individual bit fields to be referenced by
name in a manner compatible with the target hardware.

Default Values for Tailoring Parameters U
Package Name Parameter Name Value

communication globals maximum messagejlength_value 1_024

interrupt globals number of interruptnames used by application 10

number of interrupLnames used by Kernel 4 3
Kerneltime ticks per second value 500_000

network configuration maximum lengthof processor name-value 16 3
numberofnodesvalue 4

network globals firstbusaddress_ value 03

lastbusaddressvalue 255*

nullbusaddressvalue 16#00#

process managers maximum messagequeue size value 1_024

maximum process stack size value 4_096

process_managers globals maximumlength.of processnamevalue 32

processtable maximumnumberof processesvalue 25

schedule-types lowest priority value 10

timesice management minimumslice timevalue 77 gisec

all packages with error
checking parameters enabled true

I
Table H-I: Tailoring Parameters

*These are constants in the code that should be treated like generic format 3
parameters.

I
I

258 Kernel User's Manual, Version 1.0 I



U

I Appendix I: Index
I This will be provided in the next version of this document.

U
I
I
I
I
I
I
U
I
I
I
I
I
I
I

IKernel User's Manual, Version 1.0 259



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I



UNLIMITED.. INC1AqgTFTc
ISECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE

2. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE

2b. OECLASS)FICATION/OOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED

N/A
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-89-UG- 1 ESD-89-TR- 15

6f. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION
(ifo pplicable)

SOFTWARE ENGINEERING INSTITUTE SEI SEI JOINT PROGRAM OFFICE
6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Codcj

CARNEGIE MELLON UNIVERSITY ESD/XRS1

PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

8a. NAME OF FUNOING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicable)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

SOFTWARE ENGINEERING 
INSTITUTE JPO

PITTSBURGH. PA 15213 N/A N/A N/A
1 1. TITLE (Include Security Claslificationl

Kernel User's Manual Version 1.0 _

12. PERSONAL AUTHOR(S)
Judy Bamberger, Tim Coddington, Robert Firth, Daniel Klein, David StinchcombR. Van Sco

13a. TYPE OF REPORT j 13b. TIME COyERED 14. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

FINAL FROM TO February, 1989
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reuerse if nccessary and identlf) by block number)

FIELD GROUP SUB. GR.

19. ABSTRACT IContInue on eVierse if necessary and identify by bloc* nunberl

This manual describes the models underlying the Kernel and its concept of operations,

presents the primitives available to the application program, and provides a number of

abstractions that may readily be built on top of Kernel primitives.

20 OISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFiCATION

UNCLASSIFIED/UNLIMITED ]a SAME AS RPT E OTIC USERS UNCLASSIFIED, UNLIMITED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

* KRL HINLERinclude Av 'eQd --KARL SHINGLER (412) 268-7630 SEI JPO

DD FORM 1473,83 APR EDITION OF 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECUR4T CLASSIFICATION OF T.-S PA,.:


