BTC FILE COBY @

—mm—— Carnegie-Mellon University
—= Software Engineering Institute

\ Version 1.0
Judy Bamberger

\\ Tim Coddington
Robert Firth
Danlel Kiein

AN
N David Stinchcomb
\\ Roger Van Scoy
February 1989

ELECTE
N N s MAY 0 4 1389

q-
F
v
N
S
< Kernel User’s Manual
|
© <

:

AN
AN
\.

RN \
y . \
i
i .

N

A \ N N
\\ \

DIBTRIBUTION STATEMINT A

el 089 5 04 041
£ — N NS

February 1989

Kernel User’s Manual
Version 1.0

Judy Bamberger
Tim Coddington
Robert Firth
Daniel Klein
David Stinchcomb
Roger Van Scoy

Distributed Ada Real-Time Kernel Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

—

User's Manual

CMU/SE!-89-UG-1
ESD-89-TR-15

This manual was prepared for the
SE! Joint Program Office

ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this manual should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This manual has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler

SEl Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1989 Camegie Mellon University

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of scientific and
technical information for DoD persormel, DoD contractors and potential contractors, and other U.S. Government agency personnel
and their contractors. To obtain a copy, piease contact DTIC directly: Defense Technical Information Center, Aun: FDRA, Cameron
Station, Alexandria, VA 22304-6145.

Copies of this document ‘are also available through the National Technical Information Service. For information on ordering, please
contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademnarks in this report is not intended in any way to infringe on the rights of the trademark holder.

-

Table of Contents

1. Scope

1.1. Identification

1.2. Motivation
1.2.1. Ada Runtime Environment
1.2.2. Application and System Code
1.2.3. Abstractions and Their Breakdown
1.2.4. Distributed Applications
1.2.5. Real-Time Requirements
1.2.6. Purpose and Intended Audience

1.3. Document Overview

1.4. Applicable Documents
1.4.1. DARK Reports
1.4.2. Other Documents

2. Kernel Models, Concepts and Restrictions
2.1. Definitions and Models
2.1.1. Process Model
2.1.2. System Model
2.2. ISO-to-Kemel Mapping
2.2.1. Physical Layer
2.2.2. Data Link Layer-
2.2.3. Network Layer
2.2.4. Transport Layer

2.2.5. Session Layer Accession For
2.2.6. Presentation Layer TNTIS ovAsl 7
2.2.7. Application Layer pIIC TR O
2.3. Processor Management Unesseunced O
2.4. Schedule Management Just i —
2.5. Time Management By
2.6. Process Management Distribution/
2.7. Semaphore Management *A";,'a,‘l,mnwr Coces |
2.8. Communication Management T IA 1 =nlfor
2.9. Interrupt Management iDist Gpecial

2.10. Alarm Management

2.11. Tool Interface A \l L

- 2.12. Error Model

2.12.1. Assumptions m
2.12.2. Preconditions {SES g
2.12.3. Postconditions | N

2.12.4. Mechanism for Error Reporting \\»/

2.12.5. Enabling and Disabling Error Reportmg -
2.13. Restrictions

NOOO A PWWMNN - = = -

N NN DN =& =2 b cd ch d ok b b b —d bk ad
8393888ngmmmmommmuummmmm—t-&-n

Kernel User’'s Manual, Version 1.0

3. Concept of Operations 35
3.1. Kernel Processes 35
3.1.1. Form of a Kernel Process 35
3.1.2. Setting Up a Kernel Process 35
3.1.2.1. Writing the Code 36
3.1.2.2. Naming the Process 36
3.1.2.3. Computing the Resources 37
3.1.2.4. Creating the Process Environment 38
3.1.3. Process Life Cycle 39
3.1.4. Examples 40
3.1.4.1. Network Configuration and NCT Initialization 40
3.1.4.2. Software Configuration for Processor a 41
3.1.4.3. Software Configuration For Processor b 45

3.2. Preparing the Kernel for Use 48
3.3. Building an Application Using the Kemel 48
4. Kernel Primitives 51
4.1. Hardware Interface 52
4.1.1. Introduction 52
4.1.1.1. Purpose 53
4.1.1.2. Mechanism 53

~ 4.1.2. Exported Constants 53
4.1.3. Exported Types 54
4.1.4. Exported Data Structures 55
4.1.5. Subprograms 55
4.1.6. Related Information 55
4.1.6.1. Referenced Constants 55
4.1.6.2. Referenced Types 55
4.1.6.3. Relevant Generic Parameters 55

4.2. Time Globals 56
4.2.1. Introduction 56
4.2.1.1. Purpose 56
4.2.1.2. Mechanism 56
4.2.2. Exported Constants 57
4.2.3. Exported Types 57
4.2.4. Exported Data Structures 58
4.2.5. Subprograms 58
4.2.5.1. Base_time 58

- 4.2.5.2. Creation 58
4.2.5.3. Arithmetic Operations Returning Elapsed Time 58
4.2.5.4. Arithmetic Operations Returning Epoch Time 58
4.2.5.5. Comparison Operations on Elapsed Time 59
4.2.5.6. Comparison Operations on Epoch Time 59
4.2.5.7. Conversion Functions 59
4.2.6. Related Information 59
4.2.6.1. Referenced Constants 59

i Kernel User's Manual, Version 1.0

4.2.6.2. Referenced Types
4.2.6.3. Relevant Generic Parameters

4.3. Schedule Types
4.3.1. Introduction
4.3.1.1. Purpose
4.3.1.2. Mechanism
4.3.2. Exported Constants
4.3.3. Exported Types
4.3.4. Exported Data Structures
4.3.5. Subprograms
4.3.6. Related Information
4.3.6.1. Referenced Constants
4.3.6.2. Referenced Types
4.3.6.3. Relevant Generic Parameters
4.4. Network Configuration Table
4.4 .1. Introduction
4.4.1.1, Purpose
4.4.1.2. Mechanism
4.4.2. Exported Constants
4.4.3. Exported Types
4.4 4. Exported Data Structures
4.4.5. Subprograms
4.4.6. Related Information
4.4.6.1. Referenced Constants
4.4.6.2. Referenced Types
4.4.6.3. Relevant Generic Parameters
4.5. Processor Management
4.5.1. Introduction
4.5.1.1. Purpose
4.5.1.2. Mechanism
4.5.2. Subprograms
4.5.2.1. Initialize_Master_processor
4.5.2.2. Initialize_subordinate_processor
4.5.2.3. Initialization_complete
4.5.3. Related Information
4.5.3.1. Exported Constants
4.5.3.2. Exported Types
4.5.3.3. Exported Data Structures
4.5.3.4. Referenced Constants
4.5.3.5. Referenced Types
4.5.3.6. Relevant Generic Parameters
4.6. Process Managers
4.6.1. Introduction
4.6.1.1. Purpose
4.6.1.2. Mechanism
4.6.2. Subprograms

60
60

60

© 60

60
60
60
61
61
61
62
62
62
62
62
62
62
62
63
63

64
64
64
64
65
65
65
65
66
66
67
67
68
68
68
68
68
68
69
69
69
69
69
71

Kernel User's Manual, Version 1.0

4.6.2.1. Declare_process
4.6.2.2. Create_process
4.6.3. Related Information
4.6.3.1. Exported Constants
4.6.3.2. Exported Types
4.6.3.3. Exported Data Structures
4.6.3.4. Referenced Constants
4.6.3.5. Referenced Types
4.6.3.6. Relevant Generic Parameters
4.7. Communication Management
4.7.1. Introduction
4.7.1.1. Purpose
4.7.1.2. Mechanism
4.7.2. Subprograms
4.7.2.1. Send_message
4.7.2.2. Send_message_and_wait
4.7.2.3. Receive_message
4.7 .2.4. Allocate_device_receiver
4.7.3. Related Information
4.7 .3.1. Exported Constants
4.7.3.2. Exported Types
4.7 3.3. Exported Data Structures
4.7.3.4. Referenced Constants
4.7.3.5. Referenced Types
4.7.3.6. Relevant Generic Parameters
4.8. Process Attribute Modifiers
4.8.1. Introduction
4.8.1.1. Purpose
4.8.1.2. Mechanism
4.8.2. Subprograms
4.8.2.1. Die
4.8.2.2. Kill
4.8.2.3. Set_process_preemption
4.8.2.4. Set_process_priority
4.8.2.5. Wait
4.8.3. Related Information
4.8.3.1. Exported Constants
4.8.3.2. Exported Types
4.8.3.3. Exported Data Structures
"~ 4,8.3.4. Referenced Constants
4.8.3.5. Referenced Types
4.8.3.6. Relevant Generic Parameters
4.9. Process Attribute Readers
4.9.1. Introduction
4.9.1.1. Purpose
4.9.1.2. Mechanism

7
72
73
73
73
73
73
73
73
74
74
74
74
75
75
76
77
79
79
79
80
80
80
80
80
80
80
80
81
81
81
81
82
82
83
83
83
83
83
83
83
84
84
84
84
84

iv

Kernel User's Manual, Version 1.0

1

4.9.2. Subprograms
4.9.2.1. Get_process_preemption
4.9.2.2. Get_process_priority
4.9.2.3. Who_am_|
4.9.2.4. Name_of
4.9.3. Related Information
4.9.3.1. Exported Constants
4.9.3.2. Exported Types
4.9.3.3. Exported Data Structures
4.9.3.4. Referenced Constants
4.9.3.5. Referenced Types
4.9.3.6. Relevant Generic Parameters
4.10. Interrupt Management
4.10.1. Introduction
4.10.1.1. Purpose
4.10.1.2. Mechanism
4.10.2. Subprograms
4.10.2.1. Bind_interrupt_handler
4.10.2.2. Disable
4.10.2.3. Enable
4.10.2.4. Enabled
4.10.2.5. Simulate_interrupt
4.10.3. Related Information
4.10.3.1. Exported Constants
4.10.3.2. Exported Types
4.10.3.3. Exported Data Structures
4.10.3.4. Referenced Constants
4.10.3.5. Referenced Types
4.10.3.6. Relevant Generic Parameters
4.11. Semaphore Management
4.11.1. Introduction
4.11.1.1. Purpose
4.11.1.2. Mechanism
4.11.2. Subprograms
4.11.2.1. Claim
4.11.2.2. Release
4.11.3. Related Information
4.11.3.1. Exported Constants
4.11.3.2. Exported Types
4.11.3.3. Exported Data Structures
4.11.3.4. Referenced Constants
4.11.3.5. Referenced Types
4.11.3.6. Relevant Generic Parameters
4.12. Alarm Management
4.12.1. Introduction
4.12.1.1. Purpose

84
84
85
85
85
86
86
86
86
86
86
86
86
86
87
88
90
90
91
91
92
92
92
92
92
93
93
83
83
94
94
94
94
94
94
85
95
96
96
96
96
g6
96
96
96
96

Kernel User's Manual, Version 1.0

4.12.1.2. Mechanism
4.12.2. Subprograms
4.12.2.1. Set_alarm
4.12.2.2. Cancel_alarm
4.12.3. Related information
4.12.3.1. Exported Constants
4.12.3.2. Exported Types
4.12.3.3. Exported Data Structures
4.12.3.4. Referenced Constants
4.12.3.5. Referenced Types
4.12.3.6. Relevant Generic Parameters
4.13. Time Management
4.13.1. introduction
4.13.1.1. Purpose
4.13.1.2. Mechanism
4.13.2. Subprograms
4.13.2.1. Adjust_elapsed_time
4.13.2.2. Adjust_epoch_time
4.13.2.3. Synchronize
4.13.2.4. Read_clock
4.13.3. Related Information
4.13.3.1. Exported Constants
4.13.3.2. Exported Types
4.13.3.3. Exported Data Structures
4.13.3.4. Referenced Constants
4.13.3.5. Referenced Types
4.13.3.6. Relevant Generic Parameters
4.14. Timeslice Management
4.14.1. Introduction
4.14.1.1, Purpose
4.14.1.2. Mechanism
4.14.2. Subprograms
4.14.2.1. Disable_time_slicing
4.14.2.2. Enable_time_slicing
4.14.2.3. Set_timeslice
4.14.3. Related Information
4.14.3.1. Exported Constants
4.14.3.2. Exported Types
4.14.3.3. Exported Data Structures
4,14.3.4. Referenced Constants
4.14.3.5. Referenced Types
4.14.3.6. Relevant Generic Parameters
4.15. Index of Kernel Names

4.16. Summary of Example

97
97
97
98
98
98
98
98
98
98
98
99
99
99
99
99
99
100
100
101
101
101
101
101
101
102
102
102
102
102
102
102
102
103
103
103
104
104
104
104
104
104

104
112

vi

Kernel User’'s Manual, Version 1.0

!

5. Kernel Data Structures

5.1. External Data Structures

5.1.1. Network Configuration Table
5.1.1.1. Exporting Package
5.1.1.2. Structure
5.1.1.3. Initialization
5.1.1.4. Additional Allocation Requirements
5.1.1.5. Constraints on Usage

5.1.2. Semaphores
5.1.2.1. Exporting Package
5.1.2.2. Structure
5.1.2.3. Initialization
5.1.2.4. Additional Allocation Requirements
5.1.2.5. Constraints on Usage

5.1.3. Process Table
5.1.3.1. Exporting Package
5.1.3.2. Structure
5.1.3.3. Initialization

_ 5.1.3.4. Additional Allocation Requirements
5.1.3.5. Constraints on Usage
5.2. Internal Data Structures

5.2.1. Datagram Queues
5.2.1.1. Exporting Package
5.2.1.2. Structure
5.2.1.3. Initialization
5.2.1.4. Additional Allocation Requirements
5.2.1.5. Constraints on Usage

5.2.2. Time Event Queue
5.2.2.1. Exporting Package
5.2.2.2. Structure
5.2.2.3. Initialization
5.2.2.4. Additional Allocation Requirements
5.2.2.5. Constraints on Usage

5.2.3. Process Index Table
5.2.3.1. Exporting Package
5.2.3.2. Structure
5.2.3.3. Initialization
5.2.3.4. Additional Allocation Requirements
5.2.3.5. Constraints on Usage

5.2.4. Interrupt Table
5.2.4.1. Exporting Package
5.2.4.2. Structure
5.2.4.3. Initialization
5.2.4 4. Additional Allocation Requirements
5.2.4.5. Constraints on Usage

5.2.5. Kernel Time

123
123
123
123
124
127
127
128
128
128
128
138
138
138
138
139
139
162
162
165
165
165
165
165
175
176
176
176
176
176
183
183
184
184
184
184
186
186
186
187
187
187
193
193
193
194

Kernel User's Manual, Version 1.0

vil

194

5.2.5.1. Exporting Package
5.2.5.2. Structure 194
5.2.5.3. Initialization 195
5.2.5.4. Additional Allocation Requirements 195
5.2.5.5. Constraints on Usage 195
6. Application Evaluation 197
6.1. Tool Interface 197
6.1.1. Concept of Operations 197
6.2. Subprograms 198
6.2.1. Begin_collection 198
6.2.2. Cease_collection 198
6.2.3. Read_process_table 198
6.2.4. Read_interrupt_table 198
6.3. Related Information 199
6.3.1. Exported Constants 199
6.3.2. Exported Data Structures 199
6.3.3. Referenced Constants 199
6.3.4. Referenced Types 199
6.3.5. Relevant Generic Parameters 199
6.4. Monitoring Performance 199
7. Notes 201
7.1. Glossary of Terms 201
Appendix A. Kernel Packages 205
Appendix B. Kernel Exceptions 207
Appendix C. Talloring and Preparing the Kernel 223
C.1. Tailoring the Network 223
C.1.1. Tailoring the Hardware Network Configuration 223
C.1.2. Tailoring to the Real-Time Clock 223
C.1.3. Tailoring Communication Limitations 225
C.1.4. Tailoring Data Structure Storage 225
C.1.5. Summary of Network-Wide Tailoring Parameters 225
C.2. Tailoring Each Processor 225
C.2.1. Tailoring the Process Environment 226
C.2.2. Tailoring the Range of Process Priorities 226
C.2.3. Tailoring Time Constants 226
C.2.4. Tailoring Interrupt Name Usage 227
C.2.5. Tailoring Data Structure Storage 227
C.2.6. Summary of Processor-Specific Tailoring Parameters 227
C.3. Kernel Limitations 227
C.4. Tailoring Error Checking and Reporting 231
viil Kernel User’s Manual, Version 1.0

Appendix D. Schedulling Algorithms

Appendix E. Building Abstractions

E.1. Typed Message Passing

E.2. Safe Critical Regions

E.3. Cyclic Processes

E.4. Periodically Scheduled Processes

E.S. Time-Critical Transactions

E.6. Monitors
E.6.1. Example Requirements and Justification
E.6.2. PDL of Example

E.7. Mutually Self-Scheduling Processes
E.7.1. Example Requirements and Justification
E.7.2. PDL of Example

E.8. Message Router
E.8.1. Example Requirements and Justification
E.8.2. PDL of Example

E.9. Process Monitor (A Sample Tool)

E.10. Network Integrity

E.11. Prioritized Messages

Appendix F. Application Example

Appendix G. Relation to Standard Design Models
G.1. Introduction
G.2. Basic Models
G.2.1. Process Mode!
G.2.2. Data Flew Model
G.2.3. Time Model
G.2.4. Event Model
G.2.5. Device Model
G.3. Corresponding Design Models
G.3.1. System Decomposition Models
G.3.2. Data Flow Models
G.3.3. Transaction Models
G.3.4. Temporal Models
G.4. Suggested Standard Techniques

Appendix H. 68020 Specifics
Appendix |. Index

233

235
235
238
240
242
243
244
244
245
247
247
248

250
250
251

252
252
252

253

255
255
255
255
255
255
255
255
255
255
255
256
256
256

257
259

Kernel User's Manual, Version 1.0

Ix

Kernel User’s Manual, Version 1.0

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:

Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:

Figure 5-9:

Figure 5-10:
Figure 5-11:
Figure 5-12:
Figure 5-13:

Load Image Creation
System View
ISO Model to Kernel Mapping
Sample Network Configuration Table (NCT)
Process States
Datagram Network Model
Template for Enabling / Disabiing Kernel Error Checking
Network Configuration Table Structure
Semaphore Structure - Part 1 of 8
Process Table Structure
Process Table Process Attributes Component Structure - Part 1
of 2
Process Table Schedule Attributes Component Structure
Process Table Communication Attributes Component Structure
Process Table Pending Activity Attributes Component Structure
Process Table Acknowledged Message Information Component
Structure
Process Table Semaphore Attributes Component Structure
Datagram Structure - Part 1 of 2
Time Event Queue Structure - Part 1 of 4
Process Index Table Structure
Interrupt Table - Part 1 of 3

12
14
16
18
22
27
32
125
129
140
143

149
152
155
158

161
166
177
185
188

Kernel User's Manual, Version 1.0

xi

xil

Kernel User’'s Manual, Version 1.0

List of Tables

Table 5-1: Process Table Defined Defauit Values
Table 5-2: Initialization Via Call to Create_process
Table C-1: Processor-Specific Tailoring Parameters
Table C-2: Kemnel Limitations

Table C-3: Error Checking Tailoring Parameters
Table H-1: Tailoring Parameters

163
164
228
229
232
258

Kernel User's Manual, Version 1.0

xii

1. Scope

\‘ .1. Identification

This manuail describes the models underlying the Kernel and its concept of operations, presents
the primitives available to the application program, and provides a number of abstractions that
may readily be built on top of Kernel primitives.

The Kernel is a body of code that implements real-time facilities which can be invoked by
applications written in Ada for execution on a distributed target. The requirements for the Kernel,
both behavior and performance, are provided in the Kernel Facilities Definition, and its design will
be provided in the forthcoming Kemel Architecture Model. The Kernel was built at the Software
Engineering Institute by the Distributed Ada Real-Time Kemel (DARK) Project.

This Kernel User's Manual provides the information needed by a programger to understand and
use Version 1.0 of the Kemnel to support a distributed application. .- The host system is the
MicroVAX Il (under MicroVMS 4.2). The Kernel is implemented in_Ada/ {see Section 1.4.2), using
the TeleSoft Telegen2 Compiler, Release 3.22 (see Section 1.4.2), and MC68020 assembier (the
OASYS XA68000 V4.12 Cross-Assembler; documentation bundled with TeleSoft documentation;
see Section 1.4.2). The target system is a network of distributed MC68020 processors and
peripherals.

et

Target dependencies (on‘ the Ada compiler, on the 68020, and on the DARK hardware testbed
configuration) are described in detail in Appendix H and in documentation that will be provided
with the code.

1. \}, Motivation

Ada is now being mandated for a large number of DoD development projects as the sole
programming language to be used for developing software. Many of these projects are trying to
build distributed real-time systems. Many project managers and contractors are anxious to
support this effort, to reap the advantages of Ada, and to use the newer techniques of software
engineering that Ada can support. This transition, however, has not always been smooth; some

serious problems have been encountered. Qmav.\ éf""
: /

1.2.1. Ada Runtime Environment

One of the most persistent and worrying problems is the suitability of the Ada runtime system,
most notably the tasking features, and especially on distributed systems. There are issues
concerning functionality (amply documented in [ARTEWG 86b]), customization, tool suppon
(especially target debuggers and performance monitors); issues of inter-process communication
and code distribution; and, perhaps most intractable, issues of execution-time efficiency.

One way of approaching this problem is to press for better, "more mature” Ada implementations:
more optimization; user-tailorable runtime systems (as in [ARTEWG 86a]); special-purpose

Kernel User's Manual, Version 1.0 1

hardware. This is a valid route, but one that will take time, money, and experience, and many of
the solutions will be compiler dependent, machine dependent, or application dependent. Many
developers are still unsure even how to use the new language features of Ada, and at least one
cycie of application use, performance measurement, and methodology review will be needed
before users can be sure which parts of the Ada language and runtime are indeed critical.

The Kernel described by this document implements another route to a possibie solution (defined
at length in [KFD 88]) which is being pursued at the Software Engineering Institute (SE!). It
should be a quicker and cheaper route, and hence a feasible short-term alternative.

1.2.2. Application and System Code

In conventional programming, application code (which is what has to be written t0 meet the user
requirements) is distinguished from system code (which is obtained with the target machine, and
which is intended to support applications generally). With Ada and embedded systems, these
distinctions are not so clear cut. First, it has been traditional, when developing real-time systems
in other programming languages, for the application programmer to write specific code down to a
far lower level, including special device drivers, special message or signaling systems, and even
a custom executive. There is far less general-purpose system code. Secondly, the Ada language
complicates the distinction between application and system code. In older languages, aimost all
system functions were invoked through a simple and well-understood interface — the system cali
— expressed as a normal subroutine call. In Ada, however, many traditionally system-level
functions are explicit in the language itself, or implied by language constructs; for example,
tasking, task communication, interrupt acquisition, and error handling. In fact, the work is really
done by the old familiar system code, now disguised as the Ada runtime.

1.2.3. Abstractions and Their Breakdown

If the user is satisfied with the Ada level of abstraction — with its view of what tasks are, what
time is, and so on — then the Ada view is a simplification: the application code in fact performs
system calls, but the compiler inserts them automatically as part of the impiementation of
language constructs.

Unfortunately, many users are dissatisfied with the Ada abstraction, and seek either finer control
or access to lower-level concepts, such as semaphores, send/wait or suspend/resume primitives,
and bounded delays. Under the above circumstances, the extra language features, and the
hidden system calls they generate, are an active hindrance to the application programmer, and
an obstruction to the work of implementation.

For example, the programmer may need a strong delay primitve — one that guarantees
resumption as soon as possible after the expiration of the delay. But Ada already has a "delay"
statement, with different semantics. When implementing a different delay primitive, the user risks
damaging the Ada runtime behavior, since Ada assumes it has sole control of the Ada tasks and
does not expect an exira routine to perform suspensions and resumptions. To implement the
new delay robustly, the user has to interface with the internals of the Ada runtime, which may be
very hard to do and will surely be hard to maintain. Moreover, the Ada delay statement
composes naturally into timed entry calls and timed select statements. If the user wishes to do

2 Kernel User’s Manual, Version 1.0

these things with the new delay statement, a substantial part of the Ada semantics must be
rebuilt, and a substantial part of the runtime must be modified.

All this, of course, is a distraction from the real work — the work of implementing the application.
One of the main motivators of the Kernel is the observation that many contractors using Ada are
spending most of their time worrying about the Ada system leve! and far too little time solving the
application problems, some of which are not easy.

In sum, it can be harder to build applications using Ada language features than it would be to
implement the required functionality without them. But it is also undesirable for every application
to reinvent specific incarnations of real-time functional abstractions.

1.2.4, Distributed Applications

A further and equally difficult problem is the issue of executing applications on a distributed target
configuration. Good software development methods teach decomposition of large applications
into functional units communicating through well-defined interfaces. The physical allocation of
such units to individual processors in the target environment can be done in many ways, without
impairing their functionality. Good design therefore requires that the specification of these
functional units and interfaces be independent, as far as possible, of their physical distribution.

In a real-time system, this implies that the mechanisms by which units interact — to synchronize,
communicate with, schedule one another, or alert one another — should be uniform, regardless
of whether the units are sited on the same processor or at some distance across a distributed
network. If the implementation language is Ada, this leads to a requirement for distributed Ada.

Unfortunately, nearly all current commercially-available Ada implementations do not support this
requirement. They implement the real-time mechanisms of the language only on individual or
isolated processors, and provide no heip with communication between processors, and hence
between units on different machines. This situation leads to systems where Ada tasks
communicate by different mechanisms, with different style, semantics and implementations,
merely because the Ada tasks are local in one case, and remote in the other. Overall, there is a
substantial loss of application clarity, maintainability, reconfigurability, and conceptual economy.

1.2.5. Real-Time Requirements

This brings us to the crux of the Kernel's rationale. Users — people who have to write application
code — do not want language features: they want language functionality. In Ada, much of the
real-time functionality is captured in the form of special features. This may well be (the) correct
solution in the long term ([Firth 87]), since by making real-time operations explicit in the language,
the compiler is permitted to apply its intelligence to their optimization and verification. But in the
short term, it is palpably not working: the users either cannot use, or do not know how to use, the
given features to achieve the required functionality; the implementors of the language do not
know how to satisty the variety of needs of real-time applications; the vendors are unable to
customize extensively validated implementations; and commercial support for distributed targets
is rare, even as the need for such support is becoming endémic among application developers.

Kernel User's Manual, Version 1.0 3

Accordingly, it is opportune to revert to the former method of providing functionality: by specific
system software implemented as a set of library routines and invoked explicitly by the user. The
Kernel has taken this approach.

1.2.6. Purpose and Intended Audience

The main purpose of the Distributed Ada Real-Time Kernel (DARK) Project is to demonstrate that
it is possible to develop application code entirely in Ada that will have acceptable quality and
real-time performance. This purpose is achieved by providing a prototype artifact — a Kernel —
that implements the necessary functionality required by real-time applications, but in a manner
that avoids or mitigates the efficiency and maturity problems found in current Ada runtime
implementations.

This prototype embodies a tool-kit approach to real-time systems, one that allows the user to
build application-specific, real-time abstractions. This prototype is not intended to solve all the
problems of embedded, real-time systems, nor is it the only solution to these problems. However,
it is intended to be a solution where efficiency and speed are the primary motivation and, where
warranted, functionality has sometimes been limited accordingly.

The Kernel provides one solution to the problem of using Ada in distributed, real-time, embedded
applications — one that can readily be accomplished in the near term. The Kernel is truly "in the
spirit of Ada" — that is, it uses the Ada language features (e.g., packages, subprograms) to
provide needed adjunct capabilities. This alternative returns explicit control of scheduling to the

application implementor and provides a uniform communication mechanism for supporting
distributed systems.

Other difficult areas, such as fault tolerance and multi-level security, are not directly addressed in
the Kernel definition. The primitives have been studied in light of these and other equally
demanding issues, and are simpie and flexible enough to accommodate future development in
these areas.

The goal of the Kernel is to provide a viable paradigm of near-term support to a wide number of
real-time embedded applications currently being required to use Ada for implementation. This
Kernel is based on the belief that applications builders, not compiler vendors or language
designers, best know the system-level behavior required for their programs; and that
standardization of such behavior should be provided via a library package interface under the
control of the application implementor, not via modifications to the Ada language. The strategy
embodied in this Kernel provides that kind of support.

1.3. Document Overview

This document serves as both a traditional user’'s manual and as a reference manual. As such,
there is information in it that is appropriate to different audiences at different times of analysis and
development. The following section summarizes the organization and usage of each section of
the Kernel User's Manual. Appendix A is bound as a separate volume, and Appendices F and |
will be provided in the next version of this document.

4 Kernel User's Manual, Version 1.0

The Kernel User's Manual is organized as follows:

Chapter 1 - Scope
Defines the scope of this document, describes the motivation for designing and
implementing the Kemel, and introduces the overall manual organization.

Chapter 2 - Kerne! Models and Restrictions
Describes the modeis on which the Kemel is based and delimits the scope of Kemel
functionality. This information is first presented in the context of the International
Standards OrganizatiorvOpen System Interface (ISO/OSI) model, followed by an overview
of each of the capabilities exported by the Kernel. The error model used by the Kernel is
presented, as well as an enumeration of the limitations and restrictions on general Kemel
functionality. This chapter should be read by all users evaluating, tailoring, or writing
applications using the Kernel. The network example introduced in this chapter is used
throughout the remainder of this manual.

Chapter 3 - Concept of Operations

Explains the Kemel process model in more depth. This chapter continues the description
of a Kemnel process—what form it takes, how to name it, how the Kemel manipulates the
Kernel process environment (at a conceptual level), and the life cycle of a Kemel process.
This chapter also outlines the steps required to prepare the Kernel for use (full details are
given in documentation that will be provided with the code), and provides a simplified
step-by-step "how to" guide for those building an application using the Kernel (e.g., what
packages must be available, defining the network contiguration). This chapter shouid be
read by all users evaluating or writing applications using the Kernei.

Chapter 4 - Kernel Primitives

Provides an overview of each of the functional areas of the Kemel and describes each
Kernel primitive. Beginning with visible data type packages and continuing through each
area of Kernel functionality, this chapter introduces all packages comprising the functional
area, all names exported and referenced by the functional area, sample invocations of
Kernel primitives, and conditions that would cause the Kernel primitive to block. This
chapter should be read by all users evaluating or writing applications using the Kemel; it is,
effectively, a reference manual for the Kernel packages.

Chapter 5 - Kernel Data Structures
Provides an overview of each of the key data structures exported by the Kemel or used by
it internally. With the goal of providing insight into the working of and the resource usage
by the Kernel, this chapter describes each of the key external and internal data structures,
its structure, initialization and storage allocation requirements, and any constraints on
usage that apply. This chapter should be read by all users evaluating or writing
applications using the Kemei.

Chapter 6 - Application Evaluation
Describes the Kemel facilities to obtain real-time performance metrics to manage
degradation within the distributed network. This information will be provided in the next
version of this document.

Chapter 7 - Notes
Provides a list of acronyms and a glossary of terms.

Appendix A - Kernel Packages
Provides the Kernel specification and primitives. (This appendix is bound as a separate
volume.)

Appendix B - Kernel Exceptions
Lists all exceptions that may be raised by execution of the Kernel.

Appendix C - Talloring and Preparing the Kernel
Enumerates the steps required to tailor the Kemel for a specific target network or
appiication. This appendix discusses tailoring those parameters that must be consistent

Kernel User's Manual, Version 1.0 5

across the entire network on which the Kernel is to execute and those parameters that may
be unique from processor to processor. Parameters that may be tailored include those
interfacing to the real-time clock, granularity of time as perceived by the application, data
structure storage, and more. Each tailoring parameter is identified, and, where appropriate,
analysis to determine rational settings for each is provided. The default settings for all
generic parameters for the 68020 target are provided in Appendix H. Appendix C should
be read by all users responsible for tailoring the Kernel for a particuiar target network or
application.

Appendix D - Scheduling Algorithms
Provides the Kernel's scheduling algorithms. This appendix provides a description of the
algorithms used by the Kemnel Scheduler.

Appendix E - Building Abstractions
Provides example abstractions that can be built using the Kernel primitives. These
examples include: building typed message passing, safe critical regions, cyclic and
periodically scheduled processes, time-critical transactions, monitors, mutually
self-scheduling processes, and a message router. The examples provided in this appendix
can be used as tempiates for application buiders who need to construct
application-specific code that can be based on the paradigms herein.

Appendix F - Application Exampie

Provides an example Ada application that is implemented using the Kernel. This
information will be provided in the next version of this document.

Appendix G - Relation to Standard Design Models
Provides an outline of the relation of the Kemel to standard design models.

Appendix H - 68020 Specifics

Enumerates all 68020-dependent data structures and tailorings. This appendix outlines the
limitations placed on the Kernel by the Motorola 68020 hardware and network
communication protocol used by the DARK testbed. The communication protocol and the
DARK testbed are described in detail in documentation that will be provided with the code.
included in this appendix is detailed information about the structure of the Interrupt Table,
the resources consumed by each Kernel primitive, the size of Kernel data structures, the
default values for Kernel tailoring parameters.

Appendix | - index

An index to the Kernel User’s Manual. This will be provided in the next version of this
document.

1.4. Applicable Documents

The following DARK Project reports describe the DARK Project and the Kemel.

1.4.1. DARK Reports

[Bamberger 88a] Bamberger, J. and Van Scoy, R.
' Distributed Ada Real-Time Kernel.
In Proceedings NAECON '88. May, 1988.

[Bamberger 88b] Bamberger, J. and Van Scoy, R.
Returning Control to the User (where it belongs).
Position paper presented at the 2nd international Workshop on Real Time
Ada Issues, Devon, UK, June 1-3 1988.

[Bamberger 88c] Bamberger, J., Colket, C., Firth, R., Klein, D., Van Scoy, R.
Kernel Facilities Definition.

6 Kernel User’'s Manual, Version 1.0

Technical Report CMU/SEI-88-TR-16, ADA198933, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA 15213, July, 1988.

[Bamberger 88d] Bamberger, J., Colket, C., Firth, R., Klein, D., Van Scoy, R.
Distributed Ada Real-time Kernel.
Technical Report CMU/SE!-88-TR-17, ADA199482, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA 15213, August, 1988.

1.4.2. Other Documents
In addition, the following documents are applicable to the Kernei:

1. Reference Manual for the Ada Programming Language: ANSI/MIL-STD-1815A;
American National Standards Institute, Inc., New York, NY, 1983.

2. Motorola hardware manuais:

a. MVME225-1/MVME225-2 1Mb/2Mb Dynamic Memory Module User's
Manual, Motoroia Inc., 1988; Motorola publication: MVME225/D2.

b. The VMEbus Specdification; Motorola Inc., October 1985, Motorola
publication: HB212/D.

c. MVME133A Debug Monitor User's Manual, Motorola Inc., June 1987,
Motorola publication: MVME133ABUG.

d. MVME133A-20 VMEmodule 32-Bit Monoboard Microcomputer User's
Manual, Motorola Inc., April 1987, Motorola publication: MVME133A/D1.

e. MVME945 Chassis User's Manual, Motorola Inc., February 1988, Motorola
publication: MVME945/D1.

f. MC68020 32-Bit Microprocessor User's Manual, Motorola Inc., 1985,
Motorola publication: MC68020UM.

g. M68000 Family Resident Structured Assembler Reference Manual,
Motorola Inc., April 1988, Motorola publication: M6BKMASM/D11.

h. MC68230 Parallel Interface/Timer (PI/T); Motorola Inc., 1983, Motorola
publication: ADI-860.

i. MC68881 Floating-Point Coprocessor User's Manual, Motorola Inc., 1987,
Motorola publication: MC68881UM/AD REV 1.

j. MC68901 Muilti-Function Peripheral Data Sheet, Motorola Inc., 1984,
Motorola publication: ADI-984.

3. MM58274 Real-Time Clock, Logic Data Book, Volume 1; National Semiconductor
Corp, 1984, IM-RRDISOMIZY.

4. MZ8305 Quad Parallel Port Module User's Manual, Mizar Inc., 1985, Publication
number: 7101-00024-0001.

5. 28030 Z-BUS SCC/Z8530 SCC Serial Communications Controller; Zilog Inc.,
November 1987.

6. TeleGen2 - The TeleSoft Second Generation Ada Development System for
VAX/VMS to Embedded MC680X0 Targets User Guide; TeleSoft, 1988.

7. OASYS Users Manual;, Motorola 68000/10/20+68881 Cross-Assembler
Development System; OASYS, 1987.

8. Digital VAX/VMS manuals:

Kernel User’'s Manual, Version 1.0 7

g.

. VAX DEC/Test Manager User/Reference Manual, Digital Equipment Corp,

December 1985, Order number: Al-Z330B-TE.

. VAX Language-Sensitive Editor User's Guide; Digital Equipment Corp, July

1985, Order number: AA-FY24A-TE.

. Developing Ada Programs on VAX/VMS; Digital Equipment Corp, February

1985, Order number: AA-EF86A-TE.

. Guide to Using DCL and Command Procedures on VAX/VMS; Digital

Equipment Corp, September 1984, AA-YS501A-TE.

. MicroVYMS User's Manual, Digital Equipment Corp, Aprii 1986, Order

numbers: QLN55-GZ, Part 1 and Pant 2, AI-FW62B-TN, Part 1,
Al-FW63B-TN, Part 2.

. VAX DEC/MMS User;s Guide; Digital Equipment Corp, August 1984, Order

number: AA-P119B-TE.

User's Introduction to VAX DEC/CMS; Digital Equipment Corp, November
1984, Order number: AA-L371B-TE.

Other references:

[ALRM 83]

American Nati~~Z! C..r i ue 1dtie, 1.
Refterc:..o Manual for the Ada Programming Language.

Technical Report ANSI/MIL-STD 1815A-1983, ANSI, New York, NY,
1983.

[ARTEWG 86a] Ada Runtime Environment Working Group.

A Catalog of Interface Features and Options for the Ada Runtime
Environment.

Technical Report Release 1.1, SIGAda, November, 1986.

Version 2.1 (dated December 1987) is also available, but not

addressed by this document.

[ARTEWG 86b] Ada Runtime Environment Working Group.

[Dykstra 65]

[Firth 87]

[KFD 88}

{Rosenblum 87]

A White Paper on Ada Runtime Environment Research and
Development.

Technical Report, SIGAda, November, 1986.

Dykstra, E. W.

Cooperating Sequential Processes.

In Genuys, F. (editor), Programming Languages.
Academic Press, 1965.

Firth, R.

A Pragmatic Approach to Ada Insertion.

In Proceedings of the International Workshop on Real-Time
Ada Issues, pages 24-26. May, 1987.

Bamberger, J., Colket, C., Firth, R., Klein, D., Van Scoy, R.
Kernel Facilities Definition.

Technical Report CMU/SEI-88-TR-16, ADA198933, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA 15213, July, 1988.

" Rosenblum, D.S.
An Efficient Communications Kernel for Distributed Ada Runtime

Kernel User's Manual, Version 1.0

Tasking Supervisors.
Ada Letters, VI1(2):102-117, March/April, 1987.

[Tanenbaum 81] Tanenbaum, S.
Network Protocols.
Computing Surveys, 13:453-489, 1981.

[Zimmermann 80] Zimmermann, H.
OSI Reference Model - The 1SO Modet of Architecture for Open
Systems Interconnection.
IEEE Transactions on Communications, COM-28:425-432, 1980.

Kernel User's Manual, Version 1.0

10

Kernel User’s Manual, Version 1.0

2. Kernel Models, Concepts and Restrictions

This chapter presents a set of models, concepts and restrictions on which the Kernel is based.

2.1. Definitions and Models

Two definitions are key to understanding Kemei modeis:

e Ada task: An Ada language construct that represents an object of concurrent
execution managed by the Ada run-time environment (RTE) supplied as parnt of a
compiler (under the rules specified in the Ada Language Reference Manual (LRM},
see [ALRM 83].

* Kernel process: An object of concurrent execution managed by the Kernel outside
the knowledge and control of the Ada RTE.

The preceding terminology is deliberately different from that of Ada. This is for two reasons:

1. To remind the application developer to think not in Ada terms, but rather in the
terms used by the Kernel.

2. To avoid the implication that the Kernel implements any specific function in a way
that resembles an existing Ada feature with that function.

2.1.1. Process Model
The Kemel presents to the application the abstraction of a process; that is, a concurrent thread of
execution. Elaborating on this general concept yields the Kernel's general process model:

1. Each process executes a unit of code, developed as a functional unit.

2. For each processor, the software engineer performs the following steps (illustrated
in Figure 2-1):

a. Develop the process code.

b. Develop the Main Unit for the processor; the function of the Main Unit is
explained later.

¢. Compile the code of the processes and the Main Unit.

d. Link the Kernel, Main Unit, and processes together to form the load image
for that processor.

3. The load image begins execution at the initialization point of the Kernel, which in
turn invokes the Main Unit.

When developing a process, the software engineer need not know where the other processes will
be located — on a single processor or across multiple processors. The Kernel-supplied
communication primitives can be used for all inter-process communication, local or remote, with
the Kernel optimizing the local case. The load image begins execution in the Ada Main Unit (after
Kernel initialization). This Main Unit decfares, creates, and schedules the processes in turn, and
then declares that process creation is completed. After that, the Main Unit is descheduled while
the processes continue to run independently.

Kernel User's Manual, Version 1.0 1

b b
(a) P1 pz Vivian
Main
(v) Unit
© Compile Compile
v \ /
(@ Link Link
Processor a Processor b
Load Image Load Image
Key
p? : Process #i running on processor q.

Main Unit: The Ada Main Unit running on the processor.

Merlin and Vivian are named for use in exampies.

Figure 2-1: Load image Creation

12 Kernel User’s Manual, Version 1.0

The Main Unit is responsible for configuring the processor to meet the requirements of the
application. This must include:

1. Participating in the network initialization protocol.
2. Declaring all remote communication partners.
3. Declaring and creating all locally executing processes.
There are several optional activities that may be performed by the Main Unit, including:
1. Allocating non-Kemet devices to processes.

2. Reading time-of-day clock (which is required for the Main Unit of the Master
Processor).

3. Reporting system initialization failures to the external worid.
4. Binding interrupt handlers.
5. Performing any system-dependent initializations (devices, buses, etc.).

In general, the Main Unit is the application entity that is responsible for configuring a processor in
the manner needed by the application.

Given that there is one load image for each processor, which creates a set of processes as part
of its initialization, the issue of multiprogramming is moot. The application really comprises the
set of processes; the Main Unit exists only to ensure that all the processes get linked together
and started. .

2.1.2. System Model

In light of the process model discussed previously, consideration must be given to the
environment in which these collections of processes are executed. This requires stepping back
from the “process-in-the-small® issues and considering some system-level or
"process-in-the-large” issues. The system model on which the Kernel is based is shown in Figure
2-2. This view illustrates all the Kernel assumes about the target system:

« Three types of hardware objects in the network:
1. Kernel processors
2. Non-Kernel processors or devices (attached to the system bus)
3. Devices that may interrupt a processor

+ No shared memory assumed (or excluded).

* No mass storage devices assumed (or exciuded).

» Kernel alone interfaces directly to the system bus.

Given this model, the Kernel considers that:

The application comprises n Kemel processes formed into m Ada programs (load
images) running on m processors.

This requires that:

1. The user has a process or tool that allows for the static distribution of the m images
over the m processors in the configuration.

Kernel User's Manual, Version 1.0 13

|15
CE G L LE Q l
\ Device \ Device \ \ Device
TEXS! NSty AT '
Maijn Main
Vi Unit Han l
, b i c € C o€ of ’ l
P? Merlin %‘ Pf P Pg Vivian| PP 5 RS PY RS
KERNEL KERNEL KERNEL '
Processor a Processor b Processor ¢ l
Interface
E Device 3 System Bus l
Processor d De"i°°§ Processor m .
KERNEL) KERNEL
Mai Main l
Uﬁ%? Unit
SR p: P Lancelot P;“ .
Key
p? 1 Process #i running on processor q. l
Main Unit: The Ada Main Unit running on the processor. l
Merlin, Vivian, and Lancelot are named for use in
examples. l
Figure 2-2: System View l

14 Kernel User's Manual, Version 1.0

]

2. The application developer has a process or tool to download the images into
processor memory.

3. The appilication developer has a mechanism to commence execution of the loaded
programs.

4. The application developer has tools t0o manipulate ali needed disk/tape/bulk
memory accesses (if these are available in the embedded configuration).

2.2. ISO-to-Kernel Mapping

The Kernel communication model presents a set of primitives to the application, and implements
those primitives on an underlying set of distributed processors connected by data paths. The
model, the implementation, and the intended mode of use, can all be related to the International
Standards Organization (ISO) Reference Model (see {Zimmermann 80] and [Tanenbaum 81]),
which provide a conceptual framework for organizing the Kermel primitives, as shown in Figure
2-3. The ISO Reference Model identifies seven layers, named, from lowest to highest:

1. Physical

2. Data Link

3. Network

4. Transport

5. Session

6. Presentation
7. Application

The target hardware provides Layer 1. The Kernei implements Layers 2 to 4, and therefore
presents to the application the Transport layer. The Kernel thus encapsulates within itself the
Data Link and Network layers, rendering them invisible to the application. The application code
can implement Layers 5 to 7, in part by using other Kernel primitives.

2.2.1. Physical Layer

The Physical layer is represented by the hardware data paths, which support the transmission of
a serial bitstream between processors. These hardware data paths are used by the Kernel in a
packet switching mode; that is, a sequence of bits—a frame—is sent at the discretion of the
originator, with no implied reservation of resources or preservation of state between frames.

2.2.2. Data Link Layer

This is the layer at which basic error detection and recovery and flow control may be provided.
The Kernel uses a simple datagram model, in which a frame is transmitted with no
acknowledgment, no error correction, and no flow control. Minimal error detection is achieved by
using a datagram checksum,' but any recovery is performed by application code, i.e., above the
Transport layer. Similarly, datagram storage overflow is recognized and reported by the
Transport iayer.

'Null in the current implementation.

Kernel User's Manual, Version 1.0 15

Layer Kernel Equivalent

L]

7 Application Creaedby user

l |

6 Presentation Created by user

l]
Kemel primitives: declare process, create process,

S Session allocate device receiver, and initialization complete

L]
Kernel primitives: send message,

4 Transport send message and wait, and receive message

l]

3 Network Null (can be built by user)

|

2 Data Link Datagram model

l]

1 Physical Built by using Kemel primitives: network configuration
table, initialize master processor, and initialize
subordinate processor

I |

Figure 2-3: 1SO Model to Kernel Mapping
2.2.3. Network Layer

Currently, the Kermel has a null Network layer.
communication is available between any pair of nodes (processors). Routing is accomplished
trivially in the sender by dispatching a point-to-point datagram directly to the receiver; no

alternative routing is provided.

The Kemnel assumes that point-to-point

16

Kernel User’'s Manual, Version 1.0

However, since the abstraction presented to the application is above this layer, a real Network
layer could subsequently be added without requiring any application code te be changed.

2.2.4. Transport Layer

The Kemnel builds the Transport layer by performing physical network connections and
subsequent logical-to-physical mappings, actions that together impiement the abstraction of direct
process-to-process communication by means of messages.

The physical network is described by a Network Configuration Table (shown in Figure 2-4), a
copy of which is maintained in each processor. This table is created by the application developer
and is communicated to the Kernel during application initialization. Once that information is
provided, the Kernel verifies the network connectivity and opens the physical connections
between processors.

Subsequently, the logical processes and their physical sites are communicated to the Kernel.

* The modei on which the Kernel is based assumes that all processes are created at initialization

time, that a process never moves, and that a process once dead is never restarted. The Kemel
therefore computes the logical-to-physical mapping once only and never subsequently changes it.
Attempts to communicate with dead processes are treated as transport errors.

The Transport layer also performs the conversions between messages and the underlying
datagrams. Currently, this is done trivially by using one datagram per message or per
acknowledgment, and if necessary by restricting the maximum message size accordingly.

The Transport layer is the layer visible to the application. it supports unacknowledged send
operations and end-to-end acknowledged send operations. All errors detected in this or any
lower layer are reported at this layer, in the form of status codes returned by the Kernel primitives.

2.2.5. Session Layer

This layer is implemented by application code. Since it establishes logical connections between
processes, its presence is required, and the application developer must write specific code to
create it. This code is part of the application initialization code; it must be present on every
processor and, in Ada terms, must be part of the Main Unit on that processor.

The model is one of a set of logical processes, each with an application-defined name and each
with a single message port for the reception of messages from other processes.

The Kernel primitive declare_process indicates an intent to create or communicate with a given
named process. It establishes the mapping between application-level process names and Kemel
internal names.

The Kerel primitive create_process creates the process, establishes its message port, and
makes that port available to the network. Thereafter, one process may communicate with
another.

Kernel User’'s Manual, Version 1.0 17

—_

2.2.6. Presentation Layer

in the Kemel modei, the Presentation layer performs no transformation of data. Rather, it
performs the translation between Ada values — values of application-defined data types — and
message values. This is done by application code. The pumose of the Presentation layer is to
establish above the Transport layer the strong typing of the Ada language, by ensuring that
communicating processes pass only strongly typed data and do so by referencing a common set
of data conversion routines bound to a common Ada data type.

2.2.7. Application Layer

This layer uses the Presentation layer for whatever purpose the code requires. The model here
is of parallel independent threads of control executing Ada code, identifying each other by
application-level symbolic names, and communicating by passing values of Ada data types.

2.3. Processor Management

There are two steps to using the system model shown in Figure 2-2. Note that the initialization of
the system topology has been deliberately kept simple. This facilitates the development of the
Kernel, keeps the initialization interfaces simple and allows the users of the Kernel to develop
more readily their own system-specific inttialization software. First, the physical topoiogy of the
system must be defined; secondly, the system must be initialized. The approach taken to
achieve the first step requires that the application engineer first define the network configuration
in a manner that the Kernel understands. This is done using the Network Configuration Table
(NCT) shown in Figure 2-4.

Logical Physical Kernel Needed Allocated Initialization | Initialization
Name Address Device To Run Process ID | Order Complete

Figure 2-4: Sample Network Configuration Table (NCT)

This table provides the minimum information needed by the Kernel to perform system initialization
and its inter-process communication functions. It is supplied by the application to the Kernel; it is

18 Kemnel User’s Manual, Version 1.0

implementation and hardware dependent and is available to the application for implementation of
higher levels of network integrity. For each device accessible over the network, this table defines
the following information:

» Logical name: Logical (string-valued) name for the device.

¢ Physical address: Hardware-specific information needed to access the device over
the system bus.

» Kernel device: ldentifies those devices that are able to respond to messages. It is
possible to communicate with non-Kernel devices, but they are not expected to
participate in the network initialization protocol or to understand the Kernel's
datagram. Non-Kernel devices place the burden of initialization and message
formatting upon the application. That is, the Kernel routes messages to and receives
messages from non-Kernel devices, but it is the responsibility of the application to
format and unformat these messages.

¢ Needed to run: Identities those devices that must be available at initialization time in
order for the application to begin execution. This could be used to mark failed or
spare devices at startup.

 Allocated process ID: Identifies the recipient of all messages that originate from a
non-Kernel device. This approach requires that the non-Kernel device be abie to
route the message to the appropriate node.

o |nitialization order: ldentifies the order in which the Kernel nodes of the network are
to be initialized. The default, uniess specifically overridden, is for the nodes to
initialize in the order in which their entries occur in the NCT.

¢ Initialization complete: Identifies those Kernel nodes whose initialization sequence
has successfully terminated.

To achieve the second step, the Kernel has defined a simple initialization protocol. This protocol
requires that one processor, called the Master, be in charge of the initialization process. All other
processors in the network are subordinate to this processor during the Kernel's initialization
process. The Master is responsible for:

» Ensuring the consistency of the NCT among all the subordinate processors.
¢ Issuing the "Go" message to all the subordinate processors.

Some key points about this protocol are:

e The Master processor is a single point of failure in the system. If the Master fails to
initialize, however, a subordinate may attempt recovery by declaring itseif Master
and attempting to reinitialize the network.

e The Master assumes it has the correct and complete version of the Network
Configuration Table.

o The distinction between Master and subordinate used by the Kernel is in force only
during system initialization.

¢ All subordinates must be running before the Master may run.

e If any of the following problems occurs at initialization, then the network may fail to
become operational:

1. No Master processor declares itself.

Kernel User's Manual, Version 1.0 19

2. The Master processor fails to initialize successfully.
3. More than one Master processor declares its presence.
4. The Network Configuration Tables are found to be inconsistent.

These points can be addressed by application-specific fault tolerant techniques (redundant
hardware, voting schemes, etc.), which are in the domain of the application, not the Kernel.

The primitives provided by the Kernel to support this functionality are:

o Initialize_Master_processor. |dentifies the invoking processor as responsible for
network initialization.

o Initialize_subordinate_processor. ldentifies all other processors and instructs each
to wait for the go command from the Master.

2.4. Schedule Management

The scheduling paradigm used by the Kernel is a simple, prioritized, event-driven model that
permits the construction of preemptive, cyclic, and non-cyclic processes. To achieve this, there
are four types of events in this model:

1. Receipt of a message (synchronous event).

2. Receipt of a message acknowledgment (asynchronous event).
3. Expiration of a primitive timeout (asynchronous event).

4. Expiration of an alarm (asynchronous event).

The scheduling primitives are discussed below, and the alarm primitives are discussed later. This
paradigm allows an application process to be implemented as:

¢ A non-cyclic process that executes until preempted by a higher-priority process.
A set of non-cyclic processes that execute in a round-robin, time sliced manner.

* An event-driven process that blocks when trying to receive a message. It is
resumed, from the point of suspension, when it is able to proceed and when the
priority admits.

* An event-driven process that blocks itself for a specified period of time (or
equivalently, until a specific time) and is resumed at a specific priority (this allows a
"hard” delay to be implemented).

* A cyclic process that continuously executes a body of code (and that can detect
frame overrun).
To supbort these paradigms, the following set of scheduling attributes is defined:
o Priority:
« Every process has a priority.

* Priorities are relative within one processor; priorities are incommensurable
across processors.

* A process may change its priority dynamically.

20 Kernel User's Manual, Version 1.0

* Priorities are strict and preemptive; higher-prionity processes always shut out
lower-priority processes.

* Blocking primitives allow the caller to specify a resumption priority, which may
be different from the priority at the point of invocation. The resumption priority
becomes the priority of the process when it unblocks.

o Timeslice:

» The maximum length of time a process may run before another process of the
same priority is allowed to run.

« A property of a set of processes on the same processor and all of the same
priority.

+ Time slicing cannot override priority; it applies only among processes of equal
priority.

* Any process may enable or disable time slicing for the entire processor.

* Any process may set the timeslice quantum.

* A process may allow (or disallow) itself to be sliced by setting its preemption
status (if preemptable, the process may be time sliced; if not preemptable, the
process may not be preempted by another time sliced process of the same
priority).

Thus, the following Scheduler rules are universally applied:
1. Scheduler order does not change spontaneously.
2. Scheduler ordering is decided by:
a. Higher priority before lower priority
b. Prefer a process in an error state (to one in a normal state)
c. First-in first-out (FIFO) order otherwise

In other words, in all Scheduler situations, where priorities are equal, a process in
an error state will be resumed preferentiaily; otherwise, the process first to become
unblocked will be resumed.

3. When two processes become unblocked simultaneously, the process that has been
blocked longest is considered to become unblocked first.

These scheduling rules are simple, fast and easy to implement. This allows for a quick
implementation and a clean interface to be specified. Thus, when combined with the scheduling
primitives outlined below, the application developer has the capability to tailor the Scheduler to
meet the application’s needs (rather than tailoring the appilication to fit into the Scheduler's
regime).

Given this scheduling regime, a process is aiways in one of four states:

e Running: A running process is executing on its processor, and it continues to run
until something happens. If interrupts are enabled, they occur transparently unless
they cause a change of process state. A running process ceases to run when it:
dies, invokes a blocking Kernel primitive, is time sliced, is killed by another process,
or is preempted by a higher-priority process. The first three are voluntary actions on
the part of the process, while the last two are actions performed by the Kernel.

Kernel User's Manual, Version 1.0 21

e Suspended: A suspended process is able to run, but cannot run because a process
of higher or equal priority is running. A process may be resumed when the running
process blocks, lowers its own priority, or is time sliced.

o Blocked: A blocked process is unable to run. A process may only become biocked
as a result of its own actions. These blocking actions are waiting for: the arrival of a
message, the arrival of a message acknowledgment, a specific duration, a specific
time, or the availability of a semaphore. A process becomes unblocked when the
awaited event occurs (at which time the process transitions to the suspended state).
An unblocked process does not immediately resume execution; it resumes execution
only when the Scheduler so decides. But, the process can affect this decision by
specitying a resumption priority in the primitive invocation.

» Dead: A dead process is unable to run again. A process dies in one of five ways: by
completing execution, an unhandled exception, an unrecoverable error, by killing
itself, or by being killed by another process. Processes are not expected to die, and
any subsequent attempts to interact with a dead process result in errors.

These states and the transitions between them are shown in Figure 2-5.

Kill

Label: User - initated action
Label: Kernel-initiated action

Figure 2-5: Process States

For instance, a running process becomes blocked by trying to receive when no message is
pending. it becomes unblocked (but suspended) when the message arrives. It becomes running
when its priority permits. A running process can also call wait, to block itselt at any time. A
blocked process becomes suspended and thus ready to run when its delay expires. Further, a
running process may be preempted, that is, forcibly suspended by the Scheduler, to allow a
higher-priority process to resume or to be time sliced.

22 Kernel User’s Manual, Version 1.0

The primitives provided by the Kernel to support this functionality are:
o Set_process_priority. A process may set its own priority.
e Get_process_priority. A process may get its own priority.
e Set_process_preemption. A process may set its own preemption status.
o Get_process_preemption. A process may get its own preemption status.

e Wait. The invoking process suspends itself for a specified duration or until a
specified time occurs. The priority at which the process is to be resumed may also

be specified.

o Set_timeslice. Defines the time slice quantum (only processes of equal priority are
time sliced). :

s Enable_time_slicing. Enables the Scheduler to perform round-robin, timeslice
scheduling.

» Disable_time_slicing. Disables round-robin, timeslice scheduling.

2.5. Time Management

The concept of time permeates the entire Kernel. Many of the Kemel concepts and primitives
rely on time, specifically:
* Network management uses time for initial clock synchronization and for timeout

parameters in the primitives initialize_Master_processor and
initialize_subordinate_processor.

e Process management requires time for the timeout parameter, in the
initialization_complete primitive.

e Schedule management uses time for round-robin, timeslice scheduling and for
delays via the wait primitive.

o Communication management requires time for timeout operations in the
receive_message and send_message_and_wait primitives.

¢ Alarm management uses time for setting alarms via the set_alarm primitive.
e Semaphore management requires time for a timeout operation in the c/aim primitive.

To support these primitives, the Kernel contains facilities for time management, both for its own

use and to make available to the application code. In all cases, two forms of delay are available
to the application:

e Delay For: This computes the delay as elapsed time from the moment the primitive is
called. The delay is therefore a value similar to Ada type DURATION.

e Delay Until: This delays until a specified time of resumption. The delay is therefore a
value similar to Ada type TIME.

The rationale for the two types of delay is that they express fundamentally different concepts. For
example, if a certain action should be performed daily at midnight, it is not correct to perform the
action "every 24 hours,” since successive midnights are not always 24 hours apart. Similarly, if
an action shoulid be performed every 5 minutes, it is not correct to schedule three such actions for

Kernel User's Manual, Version 1.0 23

0155, 0200, and 0205, since 65 minutes might elapse between the second and third (i.e., the
clock might have been reset).

The application programmer must be able to choose the type of delay needed. Note also that
resetting the system time affects the two types of delay differently.

The current design assumes that all the target processors can use a common time base and
record the passage of time at the same uniform rate. There are some real-time applications for
which this assumption is unrealistic, however, since the processors will be distributed across
several different inertial frames of reference, but it will serve for the current implementation.

At any moment, on any processor, the current time is given by a combination of three values:

1. Elapsed. The elapsed time is the number of ticks since the end of the application
initialization process.

2. Epoch. The epoch time is a value representing the moment at which the
processors began to compute elapsed time.

3. Base. The base time is the calendar date corresponding to an epoch of zero, i.e.,
the base of the representation of time.

The representation chosen for both epoch and elapsed is fine enough to allow accurate
measurement and large enough to ailow code to run for a very long time. Thus the current time
of day = Base + Epoch + Elapsed.

Time is set initially on the Master processor by the application. This is done either by hand,
during operator dialogue, or by reading a continuously running hardware device. The processors
may then synchronize system time by having this processor use the Kemnel primitive synchronize.
This gives the application complete control over when to synchronize system time. Once the
clocks are synchronized, the Kernel does not attempt to maintain the synchronization. The
processors resynchronize only as a result of deliberate action by application code.

Three torms of resynchronization are supported:

1. The elapsed time for any processor can be changed by an explicit command. This
is to be used when one processor's time computation has gone awry. It has the
effect of changing pending delays of either kind, since increasing the number of
elapsed ticks makes the machine think both that it has been running longer and that
it is later in the day.

2. The epoch time of any processor may be changed. This is to be used if it is
discovered that the original time setting was wrong. It has the effect of changing
any pending delay-until actions, since increasing the epoch makes the machine
think it is later in the day, but does not change how long it thinks it has been
running.

3. The Kernel provides a primitive that explicitly synchronizes all the clocks in the
network.

The primitives provided by the Kernel to support this functionality are:

* Adjust_epoch_time. Resets the local processors epoch time to the specified
dateftime.

24 Kernel User’'s Manual, Version 1.0

o Adjust_elapsed_time. Increases or decreases the local processor's elapsed time by
the specified amount.

e Read_clock. Reads the current elapsed time from the local processor clock.

o Synchronize. Resets the clocks on all the processors in the system the time on the
invoking processor.

2.6. Process Management
To use the process model, the application must have a globally unique name for each process.
These names have two forms:

1. The logical name given to the process by the developer, encoded in Ada as a
character string, and

2. The internal name given to the process at runtime by the Kernel.

Hereafter, the intemal name of a process is called the process ID or process identifier, the term
process name refers to the logical name of the process. However, knowing the name of a
process does not guarantee the availability of the process at runtime. This is one class of faults
that the Kemel is able to detect and report.

The primitives provided by the Kemnel to support this functionality are:

e Declare_process. The Main Unit on a processor declares all locally executing
processes and all remote processes and non-Kernel devices with which
communication occurs.

e Create_process. The Main Unit on a processor creates all Kerhel processes that are
to execute on that processor (these may be cyclic or non-cyclic).

e Initialization_complete. The Main Unit indicates to the Kernel that all process
declarations and creations are now complete.

e Die. A Kernel process may indicate that it is complete and ready to terminate
normally. Once terminated, the process may not run again.

e Kill. A Kernel process may cause itself or another process to be abnormally
terminated. This is an emergency stop operation on a process.

2.7. Semaphore Management

The Kemnel provides the traditional Boolean ("Dykstra®) semaphore facility [Dykstra 65], slightly
modified to be consistent with the overall philosophy of the Kernel primitives.

A semaphore is an abstract data type. Objects of this type may be declared anywhere, but since
semaphores are used to build process synchronization systems, they are clearly best declared in
the Main Unit of a processor. A semaphore is visible only on the processor on which it is
declared, and therefore can be used only by processes local to that processor.

At any time, a semaphore is in one of two states:

* FREE: The semaphore is free, or

Kernel User’'s Manual, Version 1.0 25

P

o CLAIMED(N): The semaphore is claimed, and N processes are awaiting its release.
These processes are blocked on a FIFO queue associated viith the semaphore.

The primitives provided by the Kemel to support this functionality are:

e Claim. The invoking process attempts to claim the semaphore. The claiming
process blocks until the semaphore becomes available or the timeout expires.

¢ Release. The invoking process releases a previously claimed semaphore.

2.8. Communication Management

The communication model is based on the foilowing premises (and is similar to that presented in
[Rosenblum 87)):

* All communication is point-to-point.

» A sender must specify the recipient.

A recipient gets all messages and is told the sender of each.
e A recipient cannot ask to receive only from specific senders.
¢ Messages do not have priorities.

The purpose of a message is to convey information between processes. To the Kernel, a
message is just a sequence of uninterpreted bits. The Kernel provides the untyped primitives; the
application developers may build above them whatever application-specific functionality is
needed. Communication between processes on a single processor is optimized.

Figure 2-6 illustrates this communication model. in this figure, process Merlin on Processor a
sends a message to process Vivian on Processor b. This is accomplished by Merlin informing
the Kemel of the message content and the logical destination of the message (i.e., Vivian). The
Kernel on Processor a takes this message, formats the datagram to hold the message, and
transmits the datagram over the network to Processor b, where it knows Vivian resides. When
the message arrives at Processor b, the Kemel there rebuilds the message from the datagram
and queues it for Vivian until Vivian requests the next message. If Merlin had wanted
acknowledgment of message receipt by Vivian, the Kemel on Processor b would have formatted
an acknowiedgment datagram and sent it back to Processor a after Vivian had asked for (and
received) the message.

The primitives provided by the Kernel to support this functionality are:

o Send_message. Sends a message from one process to another, without waiting for
acknowledgment of message receipt.

e Send_message_and_wait. Sends a message from one process to another, and the
sender biocks while waiting for acknowledgment of message receipt or until an
optional timeout expires.

» Receive_message. Receives a message from another process, blocking until a
message is availabie or an optional timeout expires. The Kernel automaticaily
perfcrms any required acknowledgments.

26 Kernel User’'s Manual, Version 1.0

me a PI’OOessor b
Main Main
Unit Unit
b b .
a . a a P P Vivian
Merlin 2
P1 P3 t-"‘4 1
Send Message Receive
to Vivian Message
4
Send Receive
Primitive Kernel Datagram ®1 Primitive

LD Remote Timeout
_» Message Identifier
el Komel Operation

|
l—» Checksum

Message Text
Message Tag

——{» Meossage Length

—& Receiver's Process Identifier
—4 Sender's Process Identifier
~—@» Receiver's Processor |dentifier
—— Sender's Processor |dentifier

Figure 2-6: Datagram Network Model

e Allocate_device_receiver. ldentifies a Kemnel process to receive all messages from a

“non-Kemel device.

2.9. Interrupt Management

This section outlines the interrupt control primitives provided by the Kernel. There are two parts
to the Kemel's view of interrupts: interrupts themselves and interrupt handlers. The interrupt

model used by the Kernel is based on the following premises:

¢ There are devices that can interrupt the processor.
» There are three classes of interrupts:

1. Those reserved by the hardware and the Ada runtime environment

(divide-by-zero, floating-point overflow, etc.).

Kernel User's Manual, Version 1.0

;ﬂ

27

2. Those reserved by the Keme! (such as the clock interrupt).
3. Those available to the appiication (everything not in 1 and 2 above).
All the primitives described below apply only to the third class of interrupts.

* The device interrupt may be either enabled or disabled. If the interrupt is disabled,
the device cannot interrupt, regardiess of how badly it might want to.

o The Kernel does not queue interrupts nor does it hide hardware-level interrupt
properties, such as queueing of interrupts, interrupt priorities, or non-maskable
interrupts.

« Interrupts are events local to a processor and cannot be directly handled or bound by
processes running on a different processor.
The model used for interrupt handlers is:

* An interrupt handler is an Ada procedure with no parameters (or some other code
unit following the Ada procedure-call conventions of the target compiler).

« interrupt handler code can access procedure local or processor global memory.

« interrupt handler code has access to all the Kemel primitives; the only restriction is
that a handler is not allowed to block its own execution.

e If an interrupt is enabled and a handler is bound, then the occurrence of the interrupt
transters control to the bound handler, which is code the application developer has
supplied. '

The primitives provided by the Kernel to support this functionality are:

e Enable. Allows processing for a specific interrupt to occur.

¢ Disable. Disallows processing for a specific interrupt from occurring.

e Enabled. Queries whether a specific interrupt is enabled or disabled.

o Simulate_interrupt. Simulates the occurrence of a specific interrupt in software.

» Bind_interrupt_handler. Asserts that an Ada procedure has been identified as an
interrupt handler and is to be executed when the specified interrupt occurs.

2.10. Alarm Management

Alarms are:

« Enforced changes in process state.
» Caused by the expiration of a timeout.

e Asynchronous events that are allocated on a per-process basis (each process may
have no more than one alarm).

Processes view alarms as a possible change in priority with an enforced transfer of control to an
exception handler. Alarms are requested to expire at some specified time in the future. When an
alarm expires, the Kemel raises the alarm_expired exception, which the process is expected to
handle as appropriate. if a zero or negative duration or an absolute time in the past is specified,
the alarm expires immediately. Alarms are intended for use in the construction of cyclical
processes.

28 Kernel User's Manual, Version 1.0

The primitives provided by the Kernel to support this functionality are:

e Set_alarm. Sets a timer to expire after the specified duration or at the specitied time.
s Cancel_alarm. Cancels an unexpired alarm.

2.11. Tool Interface

The Kernel is a utility intended to support the building of distributed Ada applications. As such, it
is important that the Kernel work in harmony with user-developed support tools. To provide that
support, the Kernel must provide a window into its internal workings. It is envisioned that a tool is
simply another Kernel process executing on one or more of the processors in the network. As
such, the tool has access to all the Kernel primitives. Using the Kernel primitives along with the
tool interface primitives, tools to monitor system activities (such as process performance, network
performance, processor performance or message throughput) can be built.

Given the above motivation for the tool interface, the actual form of the interface is driven by the
following concepts:

» The tool needs easy access to all the information of the Kernel without expending
system resources to do so.

» The extraction of information based on what the Kernel knows is left to the tool (and
indeed, it is deemed to be the function of a tool).

* The internal Kernel information must be provided in a manner that does not
compromise the integrity of the Kernel; this implies a read-only access to the
Kernel's internal data structures.

» The performance impact of using the tool interface must be predictable and
bounded.

* An application should never have to be modified simply to use a too! (while this may
not always be possible, it is nevertheless a desirable goal).

in general there are two classes of Kernel information that may be of interest to a tool: process
information and interrupt information. The primitives defined below describe the information
available and the mechanisms provided to access this information.

* Begin_collection. Begins logging state change information for the specified process.
The data are logged via a message formatted by the Kemnel and delivered to the tool
process.

» End_collection. Terminates the logging of state change information for the specified
process.

* Read_process_table. Copies the Kernel's process table into application memory.
» Read_interrupt_table. Copies the Kernel's interrupt table into application memory.

Kernel User's Manual, Version 1.0 29

2.12. Error Model

All Kernel specifications document those assumptions, preconditions, and postconditions that
hold for all Kernel primitives. This section describes the context in which that documentation is to
be interpreted.

The Kernel provides the capability to selectively enable and disable error processing. This
provides an application with the capability t0 detect and handle only those errors that cannot be
asserted by the application never to occur once the application has become operational. This
capability is also described in this section.

2.12.1. Assumptions

There are certain conditions for which the Kernel does not explicitly check but assumes hoid true
prior to any invocation of a Kernel primitive. These assumptions must be guaranteed valid by the
application prior to any Kernel call. Examples include:

e The Kernel assumes that the Network Configuration Table is never modified by the
application.

o The Kernel assumes that a process identifier has been created via a correct and
legal invocation of the Kernel primitive declare_process.

o If error checking for illegal_context_for_call is disabled, the application is asserting,
and the Kernel assumes, that no Kernel primitive will be called in an illegal context.
if this assumption is violated, theé Kernel protects itself, but does not guarantee
correct or sensible execution from the point of view of the application.

2.12.2. Preconditions

There are certain conditions that the Kernel checks upon invocation. These preconditions, once
validated, are assumed to remain valid during the processing of the Kernel primitive. Shouid a
precondition not be satisfied (i.e., the validity test fails), then an error condition exists. If the
respective error checking is enabled, the application is notified via a Kernel exception. If error
checking is not enabled, the Kernel takes action to protect itself but then returns to the application
program; no exception is raised. The following examples constitute error conditions:

¢ Precondition is false on call; there is an error on Kernel invocation. For example:
the calling unit of the Kernel primitive declare_process is not the Ada Main Unit.

o Precondition is asynchronously invalidated before call terminates; an asynchronous
problem arises. For example: a timeout on a call to the Kernel primitive
send_message_and_wait has expired.

An errar of the first kind, where the precondition is false on call, always results in an immediate
return to the application, without blocking. An error of the second kind, where the precondition is
invalidated before completion, causes a return after some interval of time, during which the caller
is biocked.

30 Kernel User’'s Manual, Version 1.0

2.12.3. Postconditions

The Kernel also requires that all expected postconditions be achievable. Should a required
postcondition not be satisfied, then an error condition exists. The following exampie constitutes
an error condition:

+ The postcondition cannot be established; there is a failure of the virtual machine.
For example: a hardware/network failure has occurred.

A postcondition error might be capable of being detected on invocation or might be detected anly
after some time, and so the caller might or might not have been blocked.

2.12.4. Mechanism for Error Reporting

The Kernel reports all error conditions to the invoking process by raising an Ada exception. A list
of Kernel exceptions and the Kerne! primitives and actions that may cause them to be raised is
provided in Appendix B.

Wherever possible, the Kernel detects errors locally on the processor running the invoking
process. To do this, the Kernel relies on its local copy of information representing giobal or
remote state. A rule of this implementation is that a local copy might lag, but cannot lead, the true
remote state it represents. For example, if a local process table indicates that a remote process
is dead, that process has indeed died.

2.12.5. Enabling and Disabling Error Reporting

Many of the status codes reported by the Kernel are diagnostic in nature and appropriate only for
software testing and integration. Given that the Kernel is intended for use in operational real-time
systems, a means is provided to disable run-time error checking and reporting by the Kernel.
Figure 2-7 presents the template used throughout the Kernel to achieve the selective enabling
and disabling of the error checking it performs.

For each Kernel error check that could raise an exception (label (B) in Figure 2-7), the Kernel
provides a generic formal parameter (label (A)) that is used to enable or disable error checking
and reporting. The default status of all error checking parameters is enabled (i.e., true): error
checking and reporting is to be performed upon every invocation.2 In the body of the subprogram
where the check is performed, there are two if-statements (labels (C) and (F)); the first for the
case where arror checking is enabled; the second for the case where error checking is disabled.
Within each alternative, the error check is performed (labels (D) and (G)); in this case it is a
simple call to a subprogram that encapsulates the check. Should the check fail and checking be
enabled, the appropriate exception will be raised (label (E)). Should the check fail and checking
be disabled, the Kernel will do minimal processing and will return to the invoker of the Kernel
primitive (label (H)).

2This capability is predicated upon the compiler's ability to detect, and thus not generate code for, non-reachable Ada
source code. Error-checking code that is potentially to be eliminated would be wrapped within an if-statement having the
generic formal parameter as its test. Since this depends upon a compiler-dependent optimization, all lines dealing with
error checking and reporting have been tagged with the sentinal: —ERROR at the end of each line; this way, the code
could be "stripped” of all lines carrying this sentinel, achieving the same effect as though the compile-time optimization
had been performed.

Kernel User’'s Manual, Version 1.0 31

generic

- (A) --
calling_unit_not_Main_Unit_enabled : in Boolean := true;

péékage generic_process_managers is
calling_unit_not_Main_Unit : exception ... ; - (B) --

a}ocedure declare_process (...);
end generic_process_managers;

package body generic_process_managers is

procedure declare_process (...) is

begin
if calling_unit_not_Main_Unit_enabled - (C) -- check enabled alternative
then
if not calling_unit_is_Main_Unit - (D) -- check performed
then .
raise calling_unit_not_Main_Unit; -~ (E) -- exception raised

endif; -- check fails
endif; --check enabled

it not calling_unit_not_Main_Unit_enabled - (F) -- check NOT enabled aiternative
then
if not calling_unit_is_Main_Unit - (G) -- check performed
then
return process_table.null_process; - (H) -- self-protection processing

endif; -- checkfails
endif; -- check not enabled

enﬁ declare_process;
end generic_process_managers;

Figure 2-7: Templiate for Enabling / Disabling Kernel Error Checking

it should be noted that the Kemel always performs minimal eror checking to ensure its own
integrity; the Kemel never endangers itself.

Should the application developer choose, error checking may be disabled. This is an assertion to
the Kernel that either the specific error does not occur, or if the error does occur, the application
has other means of detecting that the requested action has not been performed as it would have
been under non-error conditions.

32 Kernel User's Manual, Version 1.0

|

2.13.

A number of restrictions are imposed on the form of the application code. They are presented

Restrictions

here with justification in italics:

1.

10.

The Kernel neither implements nor supports Ada tasking semantics. This is in
keeping with the design goal of making explicit control that is now implicit. This also
reflects the desire of the project team to be as compiler independent as possible.
Supporting Ada tasking semantics in addition to Kernel process semantics would
require a higher degree of compiler-specific integration than is desired.

. Inter-process communication is provided by explicit use of Kernel primitives. This is

a manifestation of the explicit operation versus the implicit operation.

. No Ada tasking primitives may be used by the application. This preserves the goal

to replace the implicit operations of Ada tasking with explicit operations of Kernel
processes and to avoid having two runtime systems in the processor competing for
control of the hardware clock.

. Each processor has its memory completely loaded at download time. This is a

simplifying assumption for the Kernel implementation. The Kernel operates under
the restriction that all processes and all data are memory resident at all times. This
does not prohibit the application from building processes that can be rolled in and
out of memory.

. The hardware configuration is static throughout the execution of the application.

This is a simplifying assumption imposed to make the development effort of the
Kernel a manageable activity. Hardware description tables are modularized so that
adding dynamic hardware configuration could readily be accomplished.

. All Kernel processes are created statically and scheduled dynamically. This is a

simplifying assumption imposed to make the development effort of the Kemel a
manageable activity. All internal data structures and subprogram calls are
sufficiently modularized so that adding dynamic reconfiguration could readily be
accomplished. The goal of dynamic reconfiguration was kept in the foreground
during design of the Kernel to achieve this.

. Initialization is not a time-critical function. This is considered to be a simplification,

as system and Kemel initialization is most often hardware- and application-specific.
Initialization-related information is isolated so that an application can readily replace
the Kernel-provided initialization modules. For this prototype, initialization is treated
as a one-time operation done at system startup and, thus, is treated as not time
critical.

. The Kernel does not implement fault tolerance, but it does detect the presence of

certain classes of faults (defined in Chapter 4). These include: failure of the
network and the processor on which the application executes. The Kernel detects
certain system fauits, but it leaves the recovery from these faults in the hands of the
application. The Kernel provides the capability for an application to build some
rudimentary degree of fault tolerance.

. The Kernel does not use shared memory between processors. The Kemel's

reliance on special hardware, such as shared memory, would restrict the portability
of the Kernel, which is a project goal. However, there is nothing to preclude a port
of the Kernel to a system that does have shared memory. This task would require
reworking of more than the expected pieces of the Kernel to take full advantage of
shared memory.

Any Kernel process may communicate with any other Kernel process. This

Kernel User’'s Manual, Version 1.0

11.

rastriction simplifies the Kernel by placing the burden of restricting communications
on the system or software engineer. Management of system process names thus
becomes a configuration management issue within the application.

The Kernel does not implement any paging or memory management facilities. The
Kernel assumes all processes on one processor execute in the same unchanging
address space.

Kernel User's Manual, Version 1.0

3. Concept of Operations

This chapter provides an overview of a Kemnel process—what it is, how it is named, how it is
created, what actions it may perform—and presents an outline of how to build an application
using Kernel processes. This section does not provide details about tailoring the Kernel for any

hardware or application (see Appendix C for that information) or descriptions on design
methodologies (see Appendix G).

3.1. Kernel Processes

A Kemel process is a unit of code that executes in parallel with other units of code. It can
communicate with other processes (see Section 4.7), can arrange to be executed at certain times
(see Section 4.8), and is otherwise under the control of the DARK Scheduler (see Appendix D).

3.1.1. Form of a Kernel Process
In Ada terms, a process is a procedure with no parameters. The process begins execution at the

start of its declarative region and ceases execution if it reaches the end of its statement
sequence. This means that a process that is intended to run forever must be coded with an
axplicit loop statement.
A Kemel process may:

» Declare local variables

» Call Ada subprograms

« Call Kernel primitives

» Reference objects declared in packages that are Ada compilation units

» Call the Ada allocator

A Kernel process must not.

» Reference objects declared within other Ada subprograms (the Kernel's process
encapsulation cannot set up the correct access paths to such objects)

» Be anything other than an outer-level procedure
¢ Use the Ada tasking features (Ada Reference Manual, Chapter 9)

3.1.2. Setting Up a Kernel Process
There are four steps in setting up a Kernel process:

1. Writing the code as an appropriate Ada procedure, in an appropriate context (see
Section 4.6.1.2).

2. Naming the process uniquely and declaring it to the Kemel
3. Computing the resources that are required to execute the process
4. Creating the process environment

Kernel User’'s Manual, Version 1.0 : 35

These steps are explained in detail below. Note that, even after it has been created, a process is
not yet executing. This is discussed in Section 3.1.3.

3.1.2.1. Writing the Code
In general, the code of a Kernel process follows a standard pattern:

1. Initialization, followed by a
2. Transaction loop.

Initialization declares local variables, performs any handshake with other processes, sends or
awaits startup messages, and so on. The transaction loop then executes repeatedly, as long as
the process exists, performing one transaction per iteration.

A transaction represents a single execution of the main algorithm of the process, for example:
» Receiving, decoding, and executing a command.
 Receiving, inspecting and forwarding a message.
+ Reading a sensor and updating a data store.

The transaction processing code often does the following:
1. Awaits preconditions,
2. Receives input data,
3. Performs computation,
4. Generates output data, and
5. Cleans up and prepares for the next iteration.

The preconditions must be true before the process may proceed with that iteration. Some typical
preconditions are: data must be available, a fixed time must have elapsed since the last iteration,
a device must have changed state. The process code therefore invokes the appropriate blocking
Kernel primitive to wait for the precondition.

3.1.2.2. Naming the Process

The process should be given a logical name consistent with its function, such as:
* “comm interface”
 "data reduction”
» "control table manager”

These 'names must be globally unique across the distributed network, and indeed they are the
only names that have a network-wide meaning.

In addition, a process must have an internal process identifier on the node where it is sited and
on every other node that has to be aware of it. These process identifiers are execution-time
values that are usually stored in named Ada variables. These variables should also be given
useful names, which might simply reflect the process logical name:

36 Kernel User’s Manual, Version 1.0

comm_interface_ID := declare_process ("comm interface");

or which might reflect the role the process plays, as viewed by the node in question:

data_source := declare process ("Position Sensor Reader"):

The name of the process identifier is used in all subsequent invocations of Kernel primitives.

3.1.2.3. Computing the Resources
For each process, the application programmer must specify the main resources that it requires:

¢ Incoming message queue, and
e Process stack.

The first, the incoming message queue, holds messages sent to the process that have arrived at
its local site but have not yet been requested by the receiver via a call to the Kernel primitive
receive_message. This buffer should be large enough to hold, in effect, the largest anticipated
queue of pending messages. lIts size therefore depends on the logic of the other processes that
are sending to this process, but a reasonable estimate is:

(number of messages expected in one iteration) *

(number of iterations the process is allowed to "fall behind"
the message producers)

If this resource is exceeded, arriving messages are handled in a manner specified during process
environment creation via the parameter message_queue_overflow_handling.

The other resource, the process stack, is for the allocation of Ada local variables. This depends
in part on the ailocation strategy of the compiler, and can be determined only by an analysis of
the generated code or by rurtime monitoring. The maximum stack space required is the sum of
all local variables and stack frames down the longest call path. It is probably better to obtain this
value by experiment rather than by analysis. If this. resource is exceeded, the Kemel
encapsulation ensures that no other process environment is compromised, and the predefined
exception storage_error is raised.

These two values are set by the application when invoking the Kernel primitive create_process.
The parameters that set these values are message_queue_size and stack_size. See Section
4.6.2.2 for more information.

A message output buffer is provided automatically by the Kernel to maintain messages originated
by the process but not yet forwarded to its recipient. These resources are allocated during Kernel
initialization, so no tailoring information is required. See the documentation that will be provided
with the code for more information about the structure and sizes of these buffers.

Kernel User's Manual, Version 1.0 37

3.1.2.4. Creating the Process Environment

When a process is created, the Kernel provides it with a data structure to hold its state and with
an encapsulation to controi it. The internal resources are allocated by the Kernel in response to
parameters supplied at process creation tima.

The remainder of the process environment is the set of external resources that it requires.
Typically, these include:

« Communication partners,
» Global data objects, and
« Library subprograms, including Kernel primitives.

Providing a process with communication partners is straightforward. The process expects to call
a communication primitive, fcr example send_message, and supplies as a parameter the name of
the process to which the message is to be sent. This name must therefore be visible to the
process, and one obvious way to achieve this is by enclosing it in a package that the process
code imports:

with process_table’
package ground comm area is

comm_interface_ID : process_table.process_identifier;

end ground comm area;

This variable is initialized by the Main Unit (see Section 2.1.1 for an overview and Section 4.6.2.1
for more details), and can subsequently be used by any process on that node.

Alternatively, since a process identifier is a value available at execution time, the process can be
sent a message that holds the process identifiers of its communication partners.

The global data objects required by a process can likewise be embedded in package
specifications.

package global data is
track_table : array (...) of track;

end global_data;

The process may access these objects in the normal way, by simply using the Ada name:

with global_data;
procedure comm interface process_code is

begin
update (global data.track_table (this_bogey)):

38 Kernel User's Manual, Version 1.0

end comm_interface_process_code;

with global_data;
procedure control_table manager_process_code is
begin

read (global data.track_table (this_bogey)):;

end control_ table manager process_code;

However, it must be remembered that such access is unprotected ; there is no guard against two
processes (such as comm_interface and control_table_managen simultaneously modifying the
global data. One way to control access to global data is to use a semaphore (see Section 4.11).

Finally, any library subprograms, and of course ail the Kernel primitives, may be accessed merely
by importing their defining packages and then calling them explicitly, in the normal Ada manner.

3.1.3. Process Life Cycle
Between its creation and final extinction, a process is always in one of these states:

¢ Running,
* Suspended, or
- o Blocked.

A running process is actually executing; exactly one process may be running on a processor at
any given time. A suspended process is able to run, but currently not running because the
Scheduler has chosen another process to execute. A blocked process is unable to run because
a precondition is not satisfied: it has called a Kernel primitive that is as yet unable to return.

When it is initially created, a Kernel process is in the suspended state, and the point of
suspension is the beginning of the subprogram that is the process code. All created processes
remain suspended until initialization is complete, at which point the Scheduler selects one
process to execute.

A process runs until either it blocks itself by calling a Kernel primitive, or until it is forcibly
suspended to allow another process to run instead. For example, a running process may biock
by calling the Kernel primitive wait, or it may be forcibly suspended because a prior call to wait
issued by another process expires, and that other process is at a sufficiently high priority to be
selected to execute.

Whenever two or more processes are able to run, the Scheduler chooses which one to run,
according to deterministic rules presented in Appendix D.

A process is not expected to die. However, a process may cease to exist as a result of certain
actions:

e Calling the Kernel primitive die.

Kernef User’'s Manual, Version 1.0 39

¢ Returning from the subprogram that is the code of the Kernel process (which is

equivalent to a call of die).

» Propagating an exception from the subprogram that is the code of the Kernel

process.
» Being killed by another Kernel process.

Once a Kernel process is dead, it may not be restarted, and all attempts to communicate with it

are rejected by the Kemnel.

3.1.4. Examples

The scenario demonstrated here is a subset of that illustrated in Figure 2-2 on page 14.

3.1.4.1. Network Configuration and NCT Initialization

There are two Kernel nodes in the network: processor a and processor b. There is one
non-Kernel device: device. Processor a is at bus address: 16#01#; processor b is at bus
address: 16#02#; device is at bus address: 16#03#. The NCT for this network configuration is:

procedure make NCT;

with network configuration;
with process_table;
procedure make NCT is

begin

network_configuration.NCT :=
(

(logical_name =>
physical address =>
Kernel_davice =>
needed_to_run =>

allocated process_ID =>
initialization oxder =>
initialization complete =>
),

(logical_name =>
physical address =>
Kernel_davice =>
needed to_run =>

allocated process_ID =>

initialization_order =>
initialization_complete =>
),

(logical_name =>
physical_ addrass =>
Kernel_davice =>
needed to_run =>

allocated process_ID =>
initialization order =>
initialization complete =>
)
):
end make NCT;

"processor a "y

164014,

true,

true,

process_table.null process,
1,

false

"processor b ",

164024,

true,

true,

process_table.null process,
2,

false

"device ",

16%#03%,

false,

false,

process_table.null process,
3,

false

Kernel User’s Manual, Version 1.0

Assumptions (i.e., values determined by tailoring the Kernel):
o Maximum_length_of _processor_name is defined as 16.
* Type bus_address is defined to handle values assigned to it.

For each of the three devices, processor &, processor b, and device, the logical_name and
physical_address tields of the NCT are initialized as described above. Both processor a and
processor b are Kemnel devices required to run—thus the settings for the Kernel_device and
needed_to_run fields. Device is a non-Kernel device, so Kernel_device is set false, as is the
needed_to_run field. Since a non-Kemnel device is, by definition, unable to participate in Kemel
protocols, and since the needed_to_run field is used to identify those network nodes participating
in the Kemel network initialization protocol, this field is false by convention. The
allocated_process_ID field is expilicitly initialized to the null_process in all three NCT entries;
initialization_order is set to indicate a prescribed initialization order (processor a first, processor
b second, device not at all); and initialization_complete is initialized to false, as initialization has
not yet begun.

Two Ada Main Units are required: one to configure processor a and one to configure processor
b. As device is a non-Kemel device, it is configured outside Kernel semantics.

3.1.4.2. Software Configuration for Processor a

On processor a, there are two Kemel processes of interest: Merlin (as shown on Figure 2-2)
and Arthur (introduced here for this example). On processor b, there is one Kernel process of
interest: Vivian (as shown on Figure 2-2). Merlin sends messages to and receives messages
from Arthur; Merlin sends messages to Vivian; Vivian receives messages from the non-Kemel
device.

Based on this information, processor a needs process identifiers for Merlin and Arthur, as those
two processes are to execute on processor a, and a process identifier for Vivian, as messages
are sent to Vivian. Processor a is defined to be the Master processor during initialization. The
following is a template for some general support packages and for the Main Unit for processor a.

with time globals;
package timeouts is

function "+" (left, right : time_globals.elapsed_time)
return time globals.elapsed time
renames time globals."+";

Master_base_time : constant time globals.epoch time :=
time globals.create_epoch time
(
day => 0,
second => 0.0
):

Master_timeout : constant time globals.elapsed time :=
time globals.create_elapsed time
(
day => 0,

Kernel User's Manual, Version 1.0 41

second => 5.0
):
subordinate_timeout : constant time globals.elapsed time :=
time globals.seconds
(

)

an_integral_duration => 5

init_complete_timeocut : constant time _globals.elapsed time :=
Master_timeout + subordinate_timeout;

end timsouts;

with process_managers_globals;
package application_unique names is

arthur : process_managers_globals.process_name type:=
"arthur ";

davice : process_managers_globals.device_name type :=
"device "3

merlin : process_managers_globals.process name type :=
"mrlin " ;

vivian : process_managers globals.process_name type :=
"wvivian ";

end application unique_names;

- A G G G G D M MD W D T - G - R G G S R S A T T I S S S G . D S - . - - . - -

with process_table:
package processor a_ comm area is

merlin ID : process_table.process_identifier:
arthur_ ID : process_table.process_identifier;
vivian ID : process_table.process_identifier;

end processor_a_comm area;

with processor_a comm area;
procedure arthur process_code is
begin
loop
== do arthur’'s algorithm
null;
end loop;
end arthur process_code;

with processor_a comm area;

Kernel User's Manual, Version 1.0

procedure merlin process_code is
begin
loop
== do merlin’s algorithm
null;
end loop;
end merlin process_code;

with hardware_interface;

with process_managers;

with process_managers_globals;
with processor management;
with schedule_types;

with application_unique names;
with arthur process_coda;
with merlin process_code;

with processor_a_comm area;
with timeouts;

with make NCT;

procedure processor_a Main Unit is
begin

-- do any processor- and applicatiod-spocitie initialization
make_ NCT;

pProcessor_management.initialize Master_processor
(
base_epoch => timsouts.Master_base_tima,
timeout_after => timesouts.Master t:l.mout
):

processor a _comm area.merlin ID :=
process mnago:s declare_process
(
application_unique names.merlin -
):

processor a comm area.arthur ID :=
process_managers.daclare _p:occas
(
application_unique names.arthur
):

processor_a _comm area.vivian ID :=
pProcess_managers.declare_process
(
application_unique_ names.vivian
):

process managers. c:cat-_ptoc.ss
(

process_ID => pProcessor_a_comm area.merlin ID,
address =>

Kernel User's Manual, Version 1.0

hardware_interface.hw_address (merlin process_code’ address),
stack_size => 4_096,
message_queue_size => 100,
initial priority => schedule_types.highest_priority
)i

process_managers. c:-at._j:oc.s!

(

process_ID => processor_a_comm area.arthur ID,
address =>

hardware_ interface.hw_address (arthur_process_code’address),
stack_size => 2 048,

message_queue_size => 10,

initial priority => 4,

preexptable => schedule_types.enabled
);

-- complete remaining processor- and application-specific initialization

processor management.initialization_complete

(
timeout_after => timgouts.init complete_timecut

):

end processor_a_Main Unit:

Assumptions (i.e., values determined by tailoring the Kernel):
e Maximum_length_of_process_name is defined as 32 (see Section 4.6.3.1).
 Type priority is defined to handle values assigned to it (see Section 4.3).

Package timeouts sets up some timeout values that are used across the example network. This
package demonstrates a variety of ways to obtain e/apsed_time and epoch_time values from Ada
types and constants; it does not always provide the most direct way to obtain a Kernel time value.
The Kernel uses a different abstraction of time than that provided in Ada, so some strategy of
transiating from the Ada time model to the Kernel time model must be used by any application. In
this example, Master_base_time is set to zero. Thus, if any epoch_time values are to be
referenced by day/monttvyear components within the application, the application would need to
track the day/monthvyear at the time inftialize_Master_processor is invoked (this is when the base
time on the Master processor is initialized) and offset it by the epoch_time of interest. Package
time_globals provides arithmetic functions to accomplish this. Two elapsed_time timeout values
are defined and initialized by invoking creation or conversion primitives from time_globals. A third
elapsed_time timeout value is created by adding two others, simply to demonstrate the existence
and use of arithmetic functions provided to support the Kemel abstraction of time in package
time_globals.

Package application_unique_names encapsulates the string-valued names for Kernel processes.
These are required to be unique across the application. This package is referenced by both
Kemel nodes, processor a and processor b.

44 Kernel User’s Manual, Version 1.0

Package processor_a_comm_area is used to maintain information about the processes of
interest on processor a: in this case, Meriin, Arthur, and Vivian. A process identifier variable is
defined for each, as per Section 3.1.2.2 and Section 3.1.2.4.

The code for the Merlin process and the Arthur process is defined in parameterless procedures
meriin_process_code and arthur_process_code respectively.

The Ada procedure processor_a_Main_Unit is the Main Unit that configures processor a. (For
an overview of the Main Unit, see Section 2.1.1.) As processor a is designated the Master
processor for initialization, initialize_Master_processor is cailled. The two processes that execute
on processor a are declared, as is Merlin's communication partner.

The Meriin process is created. The process code to be executed, merlin_process_code, is
associated with the process identifier by which Merlin is referenced,
processor_a_comm_area.meriin_ID, in all ensuing Kernel operations. The stack_size and
message_queue_size parameters to create_process are set to values deemed appropriate by the
application designers. As the application designers have determined that Merlin has a high
priority, the initial_priority parameter is set to the highest possible. All other parameters,
preemptable and message_queue_overfiow_handling, have been left to their default values.

The Arthur process is created. The process code to be executed, arthur_process_code, is
associated with the process identifier by which Arthur is referenced,
processor_a_comm_area.arthur_ID, in all ensuing Kernel operations. The stack_size and
message_queue_size parameters to create_process are set to values deemed appropriate by the
application designers. As the application designers have determined that Arthur does not have
the highest priority, the initial_priority parameter is set to some appropriate value (4). As the
application designers have determined that Arthur shouid be preemptable if there is another
process of equal priority available to run, the preemptable parameter is set to enabled. The other
parameter, message_queue_overflow_handling, has been left to its default value.

Once all processes of interest to processor a have been declared and created,
initialization_complete is called. Upon completion of initialization_complete, the Kemel processes
Merlin and Arthur begin execution (see Section 3.1.3). The process code for Merlin and Arthur
may reference global data, access library subprograms, and make calls to Kernel primitives.

3.1.4.3. Software Configuration For Processor b

The following is a template for some general support packages and for the Main Unit for
processor b. Because there is much similarity between this Main Unit and the Main Unit for
processor a, onty those points that differ are discussed here.

with process_table;
package processor_b_comm area is

merlin ID : process_table.process_identifier:
vivian ID : process_table.process_identifier;
device_ID : process_table.process_identifier;

end processor_b comm area;

Kernel User's Manual, Version 1.0 45

with processor_b_comm area:;
procedure vivian process_code is
begin
loop
-- do vivian’s algozrithm
null;
end loop;
end vivian process_code;

with communication management;
with hardware_interface;

with process_managers;

with process_managers_globals:
with processor_management;
with application_unique_names;
with processor_b_comm area;
with timeouts:

with vivian process_code;
with make NCT;

procedure processor_b_Main Unit is

begin
== do any processor- and application-specific initialization
make NCT;

processor_management.initialize subordinate_processor
(

timesout_after => timeouts.subordinate_timeout
):

processor_b_comm area.merlin ID :=
Process_managers.declaxre_process
(
application_unique names.merlin
):

processor_b_comm area.davice ID :=
process_managers.declare_process
(
application_unique_namas.device
)i

processor_b_comm area.vivian ID :=
pProcess_managers.daclare_process
(
application_unique_names.vivian
)

process_ managers. cr.at.__pzocoas

(

Kernel User's Manual, Version 1.0

process_ID => processor_b_comm area.vivian ID,
address =>

hardware_interface.hw_address (vivian process_code’ address),
stack_size => 8 096,

message queue_ size => 1_000,
initial priority =>1
):

communication_management.allocate_device_receiver

(
receiver_process_ID => processor b comm area.vivian ID,
davice_ID => 3

):

-- complete remaining processor- and application-specific initialization

processor_management.initialization_complete
(

timeout_after => timeouts.init_complete_timeout
):

end processor_ b _Main Unit;

Package processor_b_comm_area is used to maintain information about the processes of
interest on processor b: in this case, Merlin, Vivian, and the non-Kernel device Device.

The code for the Vivian process is defined in parameteriess procedure vivian_process _code.
There is no code associated with the non-Kernel device.

The Ada procedure processor_b_Main_Unit is the Main Unit that configures processor b. As
processor b is not designated the Master processor for initialization,
initialize_subordinate_processor is called. The process that executes on processor b is
declared, as are Vivian's communication partners: Merlin and the non-Kernel device.

The Vivian process is created. The process code to be executed, vivian_process_code, is
associated with the process identifier by which Vivian is referenced,
processor_b_comm_area.vivian_ID, in all ensuing Kernel operations. The stack_size and
message_queue_size parameters to create_process are set to values deemed appropriate by the
application designers. As the application designers have determined that Vivian has a high
priority, the initial_priority parameter is set to the 1, which is the highest possible. All other
parameters, preemptable and message_queue_overflow_handling, have been left to their default
values.

Vivian is designated as the sole receiver of messages from Device. Thus, the Main Unit creates
this "binding” by calling allocate_device_receiver. The receiver_process_ID is the Vivian's
process identifier, the device_ID is the index into the NCT that corresponds to the entry for
Device.

Once all processes of interest to processor b have been declared and created,

Kernel User’'s Manual, Version 1.0 47

initialization_complete is called. Upon completion ot initialization_complete, the Kernel process
Vivian begins execution.

Further examples of using Kernel primitives are found in each of the sections describing a set of
Kernel primitives in Chapter 4 and in Appendix E.

3.2. Preparing the Kernel for Use

This section provides an outline of the steps required to prepare the Kemel for use by an
application. Tailoring details are provided in Appendix C; a description of actually building the
Kernel is provided in the documentation that will be provided with the code.

It is quite conceivable that a single application may execute on more than one instantiation of the
Kernel. Some of the tailoring parameters require network-wide consistency; these are described
in Section C.1. Other parameters do not require that level of consistency; these are described in
Section C.2. Thus, a single application may require a family of Kemels; this is an application
design and configuration issue.

1. Set the parameters that require network-wide tailoring as specified in Section C.1.

2. Set the parameters that require processor-specific tailoring as specified in Section
c.2

3. Recompile the Kemel using the information in the documentation that will be
provided with the code.

At this point, the Kernel or Kernels are now ready for application use.

3.3. Building an Application Using the Kernel
Section 2.1 and previous sections of this chapter provide a description and some examples of
building an application using the Kernel. This section summarizes that in an outline format.
1. Prepare the NCT:
a. Import network_configuration via Ada WITH-clause.

b. Define a procedure that assigns appropriate values to NCT entries and
fields; sugq;st one global procedure invoked by the Main Unit on all
processors.

c. Compile this application-specific NCT procedure.
The application-specific NCT is now ready for application use.
2. For each processor running the Kernel:
a. Define specifications for Kernel processes.

Hhis is the style used by the DARK development team for testing and consistency purposes. There is no reason why
the NCT initialization may not be performed inline by Main Unit code.

48 Kernel User’'s Manual, Version 1.0

b. Compile specifications for Kernel processes.

Process specifications now ready for application use.

c. Define the Ada Main Unit.

f.

i. Import processor_management via Ada WITH-clause.

ii. Do any preliminary hardware or device initializations.
iii. Call initialize_Master_processor or initialize_subordinate_processor.

Hardware (processors, devices, and network) is ready for application
use.

iv. Import process_managers via Ada WITH-clause.
v. Import specitications of processes that are to be created via Ada

WITH-clause.

vi. Call declare_process and create_process to declare and create all

processes of interest. (Create_process takes the 'address of the
process code, so its name must be known.)

vii. Optionally import packages interrupt_management,

communication_management, and process_table via Ada
WITH-clauses.

viii. Perform application-specific initialization (e.g., bind interrupt

handlers, associate a Kernel process with a non-Kernel device,
declare semaphores for critical, shared resources).

ix. Compile the Ada Main Unit.
Main Unit ready to be linked into complete application program.
. Define the process code.

i. Import any Kernel specification via an Ada WITH-clause EXCEPT:
processor_management or process_managers, they are to be used
ONLY by the Ada Main Unit.

ii. Write code bodies for Kernel processes (this may be done in parallel

with the construction of Ada Main Unit), which may access any of
the Kernel primitives.

Process code ready 1o be linked into complete application program.
. Link the Ada Main Unit, the code of the Kernel processes, and the Kernel

The executable image is now ready for downloading into hardware.
Download the executabie image into the target hardware.

g. Start program execution on all subordinate processors.

h.
The application is now running.

Start program execution on the Master processor.

Kernel User's Manual, Version 1.0

Kernel User's Manual, Version 1.0

4. Kernel Primitives

There are a number of data type packages that are required to support the application's use of
the Kernel. These packages provide one or more abstractions to the application program from
the Kernel. These abstractions are:

1. Hardware |Interface (Section 4.1) - This package provides an interface to
compiler-specific primitive types.

2. Time Globals (Section 4.2) - The packages providing this capability abstract the
Kernel's concept of time.

3. Schedule Types (Section 4.3) - This package defines the abstractions of priority,
preemption, state, and quanta of time.

4. Network Configuration Table (Section 4.4) - The packages providing this capability
provide the abstraction of the network configuration.
Each of these sections describes the abstraction in detail:
1. Its purpose and the packages that implement the capability,
2. The mechanism by which the implementation of the abstraction is provided,

3. The exported constants, exported types, and exported data structures that
define the abstraction,

4. The subprograms to manipulate values of the exported type or object, and

5. Related Informatlon, including: referenced constants, referenced types, and
relevant generic parameters.

The Kemel functionality is provided through a number of primitives that may be invoked by an
application program. These primitives are grouped into functional areas so that related primitives
can be discussed together. The Kernel functional areas are:

1. Processor Management (Section 4.5) - These primitives support the creation and
maintenance of the physical network configuration (i.e., the NCT).

2. Process Managers (Section 4.6) - These primitives support the declaration and
creation of the logical processor configuration (i.e., communication partners and the
Process Table).

3. Communication Management (Section 4.7) - These primitives support
communication among Kernel processes and non-Kernel devices.

4. Process Attribute Modifiers (Section 4.8) - These primitives support the modification
of attributes of already existing Kernel processes.

5. Process Aftribute Readers (Section 4.9) - These primitives support the read-only
access to certain Kernel process attributes.

6. Interrupt Management (Section 4.10) - These primitives provide the abstraction of
hardware interrupts and their control to the application.

7. Semaphore Management (Section 4.11) - These primitives provide the abstraction
of classical (Dykstra) semaphores to control process synchronization and mutual
exclusion.

8. Alarm Management (Section 4.12) - These primitives provide the capability to set
and cancel alarms (time-triggered events) and to detect the expiration of an alarm.

Kernel User's Manual, Version 1.0 1

9. Time Management (Section 4.13) - These primitives provide the manipulation of the
abstraction of Kernel time.

10. Timeslice Management (Section 4.14) - These primitives support the round-robin,
timeslice scheduling of processes.
For each Kernel functional area, the following information is provided:
1. Its purpose and the packages that implement the functionality,
2. The mechanism by which the implementation of the functionality is provided,

3. The subprograms that implement the functionality being provided, and for each
subprogram:

a. A description of its purpose and use,
b. One or more samples of its invocation, and
c. Conditions for biocking that apply to the subprogram.

4. Related Information, inciuding: the exported constants, exported types, and
exported data structures that support the functionality; and referenced
constants, referenced types, and relevant generic parameters.

The information about exported constants, exported types, and exported data
structures is presented in a stylized manner, as follows:

Name of the constant, type, or data structure
Description of the constant, type, or data structure
Value of the constant, type, or data structure

The information about referenced constants, referenced types, and referenced
data structures is also presented in a stylized manner, as follows:

Name of the constant, type, or data structure - use; cross-reference

Information about resource consumption by each Kernel primitive is target specific and is
provided in Appendix H.

This chapter concludes with an index mapping all exported names into the packages that export
them.

The basis for most of the examples in the following sections is the example given in Chapter 3.

4.1. Hardware Interface

4.1.1. Introduction
The hardware interface capability comprises the following packages:

1. Hardware_interface

See also the documentation that will be provided with the code for more details.

52 Kernel User's Manual, Version 1.0

4.1.1.1. Purpose

The Kemel package hardware_interface provides an interface to compiler-specific primitive types.
Within the Kernel itself, there are no references to the predefined types in Ada package Standard;
all references to primitive types use names declared in package hardware_interface. By doing
this, certain implementation-dependent details are abstracted away from both the Kernel and the
appiication in a uniform manner. It is recommended that applications avoid using package
Standard entirely and use package hardware_interface for ready compatibilty with Kemel
primitives.

This strategy facilitates porting Kermel and application software across machines and across
compilers. For example, the Ada pre-defined type integer could be implemented as a 16-bit
integer or a 32-bit integer. When the Kernel requires a 32-bit integer, the exported type
hw_long_integer is used; when the Kernel requires a 16-bit integer, the exported type hw_integer
is used. Were the standard type integer used, the application programmer would not know from
compiler to compiler which size of integer was used without searching through compiler
documentation. The Kernel makes this distinction explicit within the Kernel, and provides that
same capability to the application as well.

4.1.1.2. Mechanism
Package hardware_interface provides this "shield” from variations in the Ada pre-defined types.
Exported information includes:

1. Constants that define the Kernel's understandihg of hardware layout,

2. Types that interface to compiler primitive types, and

3. Types and conversion functions to manipulate untyped storage within the Kernel.

4.1.2. Exported Constants
Bits_per_byte
The number of bits in a byte
8

Byte
The number of bytes in a byte storage unit
1 (i.e., an 8-bit storage unit)

Longword
The number of bytes in a longword storage unit
4 (i.e., a 32-bit storage unit)

Null_hw_address
" A system-wide null address value
0

Word
The number of bytes in a word storage unit
2 (i.e., a 16-bit storage unit)

There are no representation specifications relevant to any of these constants.

Kernel User's Manual, Version 1.0 83

4.1.3. Exported Types

Hw_address
Interface to system.address
Values implementation-dependent

Hw_duration
Iinterface to standard.curation
-86_400 .. +86_400

Hw_integer
16-bit integer
-32_768 .. +32_767

Hw_long_integer
32-bit integer
-2_147_483_648 .. +2_147_483_647

Hw_long_natural
32-bit 0 .. maximum positive value that can be represented in 32 bits
0..+2_147_483_647

Hw_long_positive
32-bit 1 .. maximum positive value that can be represented in 32 bits
1..+2_147_483_647

Hw_natural
16-bit 0 .. maximum positive value that can be represented in 16 bits
0..4+32_767

Hw_positive
16-bit 1 .. maximum positive value that can be represented in 16 bits
1..432_767

Hw_string
Intertace to standard.string
Values identical to standard.string

There are representation specifications relevant to each of the following types to ensure exact
representation:

e Hw_duration

* Hw_integer

e Hw_long_integer
e Hw_long_natural
« Hw_long_positive

o Hw_natural
* Hw_positive

The following types are also exported by package hardware_interface but are only used internally
within the Kernel:

54 Kernei User’s Manual, Version 1.0

o Hw_bils8
o Hw_bils8_ptr
e Hw_byte
o Hw_byte_ptr

These types are used to support untyped data manipulation within the Kernel itself.

There is a representation specification relevant to type hw_bits8; see Appendix H.

4.1.4. Exported Data Structures
None.

4.1.5. Subprograms

A number of functions are provided to manipulate hardware addresses and untyped storage.
These are:

» To_hw_address, which converts from a value of the Kernel type hw_long_integer to
a hw_address.

o To_hw_bits8, which converts from a value of the internal Kemel type hw_byte to a
hw_bits8.

* To_hw_bits8_ptr, which converts from a value of the predefined type system.address
to a hw_bits8_ptr.

e To_hw_bits8_ptr, which converts from a value of the internal Kernel type
hw_byte_ptrto a hw_bits8_ptr.

o To_hw_byte_ptr, which converts from a vaiue of the predefined type system.address
to a hw_byte_ptr.

4.1.6. Related Information

4.1.6.1. Referenced Constants
None.

4.1.6.2. Referenced Types
1. Primitive types in compiler-supplied package Standard and package System.

4.1.6.3. Relevant Generic Parameters
Error checking: none.

Others: none.

Kernel User’'s Manual, Version 1.0 55

4.2. Time Globals

4.2.1. Introduction
The time globais capability comprises the following packages:

1. Generic_Kernel_time, Kernel_time
2. Generic_time_globals, Time_globals

These packages export to the application the objects that embody the Kernel's concept of time,
as described in Section 2.5. These objects include the various data types and constants, the
appropriate operations, and conversions between Kernel types and the Ada data type duration.
Ali Kernel primitives reference time in terms of elapsed_time and epoch_time, exported by
package time_globals, so the appropriate abstractions must be provided.

Packages generic_Kernel_time and Kemel_time are really internal Kernel packages. However,
because package generic_Kernel_time exports a tailoring parameter and package Kernel_time
exports the corresponding constant value, these packages are introduced in this section. Except
for these two values, the application should never directly access anything exported from these
packages, as this may violate the integrity of the Kernel and the application program. For more
information about the representation of time within the Kernel, see Section 5.2.5.

4.2.1.1. Purpose .

The purpose of package time_globals is to provide the application with a concept of time that can
be used for the measurement of elapsed time, the representation of absolute (calendar) time, and
the control of events that are required to occur at specific times or after specific intervals.

The model exported by this package is defined in terms of abstract data types and appropriate
operations. This model, in turn, is built upon a concrete data type defined within the Kernel, in
package generic_Kemnel_time, which is used by the Kernel for its own time-based operations.
The application communicates time values to the Kemel using these abstract data types, and the
Kernel, in turn, performs efficient and accurate computations upon them.

4.2.1.2. Mechanism
The representation of Kernel time chosen differs from the Ada types time and duration in three
main ways:

1. A single representation is used internally by the Kernel for both absoiute time and
for intervals of time.

2. The Kernel's representation of time can accommodate much longer intervals of time
than can the Ada type duration.

3. The unit of representation of Kernel time is based on decimal fractions of a second,
not binary fractions.

This representation is captured by an internal type Kernel_time, which is exported to the Kernel
by package Kemel_time but is not exported to the application.

Two abstract data types are derived from Kernel_time and are available to the application via

56 Kernel User’s Manual, Version 1.0

package time_globals. They are. elapsed_time (relative time) and epoch_time (absolute time).
These two types have exactly the same concrete semantics, but their abstract semantics are
different, in that elapsed_time captures the concept of relative time (e.g., time between iterations,
time since last message, time to perform computation) and epoch_time captures the concept of
absolute time (e.g., clock time, calendar time, time-of-day).

Every Kernel primitive that expects a time value comes in two forms, one that takes a relative
time and one that takes an absolute time. For example, an application may delay for ten
seconds, or it may delay until 09:30:00; the former uses relative time and the latter absolute time.

The appropriate operations are defined on both abstract types to provide necessary functionality
with appropriate safety. For example, two values of type elapsed_time may be added, but two
values of type epoch_time may not; two values of epoch_time may be subtracted to give a value
of type elapsed_time.

Finally, appropriate constants and constructor functions are provided to allow the application to
generate specific time values, and conversions are available from the Ada type duration.

The application program should never access Kernel_time; it should only reference time in terms
of elapsed_time or epoch_time. The Kemel_time packages should oniy be used when building
the Kernel itselt and tailoring to the real-time clock via the parameter ticks_per_second. See
Section C.1.2 for more information.

4.2.2. Exported Constants

Ticks_per_second
Set via a tailoring parameter
See Section C.1.2

Zero_elapsed_time
Zero time represented as an elapsed_time value
Zero days, zero seconds

Zero_epoch_time
Zero time represented as an epoch_time value
Zero days, zero seconds

There are no representation specifications relevant to any of these constants other than those of
their base types.

4.2.3. Exported Types

Elapsed_time
Relative time
A high and a low component capable of representing a time of up
to 150_000 years in the future (i.e., 2 ** 63 microseconds)

Epoch_time
Absolute time
A high and a low component capable of representing a time of up
to 150_000 years in the future (i.e., 2 ** 63 microseconds)

Kernel User's Manual, Version 1.0 57

Integral_duration
An integral number of seconds
A 32-bit integer

There are no representation specifications relevant to any of these types other than those of their
base types.

4.2.4. Exported Data Structures
1. None

4.2.5. Subprograms

4.2.5.1. Base_time

This function returns the epoch_time that is the base of the representation of time on the
processor. This is the value that is set during processor initialization via the Kernel primitive
initialize_Master_processor and the time included in the "Go" message that
initialize_Master_processor sends to each of the subordinate processors.

4.2.5.2. Creation
The creation functions provide the capability to create the abstraction of an elapsed_time and an
epoch_time value from basic, visible types. The two forms of this function are:

1. Create_elapsed_time, which takes a day and a second as parameters and returns
an elapsed_tlime value.

2. Create_epoch_time, which takes a day and a second as parameters and }etums an
epoch_time value.

4.2.5.3. Arithmetic Operations Returning Elapsed Time
Arithmetic operations returning elapsed_time values are:

s Elapsed_time + elapsed_time

* Elapsed_time - elapsed_time

e Epoch_time - epoch_time

o Elapsed_time * hw_integer

¢ Hw_integer* elapsed_time

s Elapsed_time / hw_integer

An invocation of any of these functions wili raise the predefined exception numeric_error if the
result of the operation causes an overflow.

4.2.5.4. Arithmetic Operations Returning Epoch Time
Arithmetic operations returning epoch_time values are:

e Epoch_time + elapsed_time

e Epoch_time - elapsed_time

An invocation of any of these functions will raise the predefined exception numeric_error if the
result of the operation causes an overflow.

58 Kernel User's Manual, Version 1.0

4.2.5.5. Comparison Operations on Elapsed Time
Comparison operations taking e/apsed_time parameters and returning a Boolean resuit are: "<"

<=" ">" ">=". The default "=" and "/=" operators (i.e., bitwise comparison) are automatically
available and yield the correct result.

4.2.5.6. Comparison Operations on Epoch Time
Comparison operations taking epoch_time parameters and returning a Boolean result are: “"<"

<=" ">" ">a", The default "=" and “/=" operators (i.e., bitwise comparison) are automaticaily
available and yield the correct result.

4.2.5.7. Conversion Functions
A number of functions are provided to convert between the Ada type duration and Kernel types
that encapsulate time. These are:

¢ Saeconds, which converts from a value of Ada type duration to an e/apsed_time.

e Seconds, which converts from a vaiue of the Kernel type integral_duration to an
elapsed_time.

e Milliseconds, which converts from a value of the Kernel type integral_duration to an
elapsed_time.

» Microseconds, which converts from a value of the Kernel type integral_duration to an
elapsed_time.

o To_elapsed_time, which converts from a value of Ada type duration to an
elapsed_time.

» To_Ada_duration, which converts from a value of the Kernel type elapsed_time to an
Ada duration. Since the Kernel type elapsed_time spans a much larger range than
does Ada type duration, an invocation of this function will raise the predefined
exception constraint_error it its argument exceeds the range of its resuit.

The following conversions are also exported by package time_globals but are only used internally
within the Kemel:

e To_elapsed_time, which converts from a value of the internal Kernel type
Kernel_time to an elapsed_time.

o To_epoch_time, which converts from a value of the internal Kernel type Kernel_time
to an epoch_time.

e To_Kemel_time, which converts from a value of the Kernel type elapsed_time to a
Kernel_time.

o To_Kemel_time, which converts from a value of the Kernel type epoch_time to a
Kernel_time.

4.2.6. Related Information

4.2.6.1. Referenced Constants
None.

Kernel User's Manual, Version 1.0 59

4.2.6.2. Referenced Types
None.

4.2.6.3. Relevant Generic Parameters
Error checking: none.

Others:
1. Ticks_per_second_value. see Section C.1.2.

4.3. Schedule Types

4.3.1. Introduction
The schedule types capability comprises the following packages:

1. Generic_schedule_types, schedule_types

4.3.1.1. Purpose
The Kernel package schedule_types define the abstractions of priority, preemption, and process
state.

4.3.1.2. Mechanism _

The Kernel provides the capability for an application to specify and modify the priority of a Kernel
process. The priority of a process is initially assigned when the process is created; it may then be
modified via calls to a Kernel primitive that just modifies a process's priority (see Section 4.8.2.4),
to a Kernel primitive that sets an alarm (see Section 4.12.2.1), or to a Kernel primitive that
potentially blocks (see Sections 4.11.2.1, 4.7.2.2, 4.7.2.3, 4.13.2.3, and 4.8.2.5). Type priority is
an integral type. The lower the value, the higher the priority of the process. The highest priority a
process may have is 1; the lowest priority a process may have is set when the Kernel is tailored
(see Section C.2.2). The priority value of 0 is a special value for the Kernel; it means that the
priority value should not change from its current value.

The Kernel provides the capability for an application to indicate which processes are candidates
for round-robin timeslice processing. Type preemption is used for this.

A process is always in one of four states (as described in Section 2.4): running, suspended,
blocked, or dead. The Kernel uses type process_state to represent this.

4.3.2. Exported Constants

Current_process_priority
indication that a process’s priority should not be modified
0

Default_preemption
Defauit used by the Kernel when preemption is not specified
Enabled

Default_prionity

60 Kernel User's Manual, Version 1.0

Default priority used by the Kerne! when priority is not specified and
"current priority” doesn't make sense

Lowest_prionty
Default_process_state

Default process state used by the Kernel
Suspended

Highest_priority
Value the application may specify for the highest priority of a Kerne!
process
1

Lowest_priority
Bound on type priority for process at the lowest priority
Set via a tailoring parameter; see Section C.2.2

An appiication should not use the values priority‘first or prioritv'last, as they both have special
meaning to the Kernel. The highest priority an appiication process may have is represented by
the constant highest_priority; the lowest priority an application process may have is represented
by the constant lowest priority. Any values in the range highest priority .. lowest_priority are
legal values for application process priorities.

There are no representation specifications relevant to any of these constants, other than those of
their base types.

4.3.3. Exported Types

Preemption
Indication of whether or not process participates in timeslice scheduling
Enumerated (enabled, disabled)

Priority
Measure of urgency with which a process executes
0 .. lowest_priority_value

Process_state
Indication of process execution state
Enumerated (running, suspended, blocked, deac)

There are no representation specifications relevant to any of these types, other than those of their
base types.

4.3.4. Exported Data Structures
None.

4.3.5. Subprograms
None.

Kerne! User's Manual, Version 1.0 61

4.3.6. Related Information

4.3.6.1. Referenced Constants
None.

4.3.6.2. Referenced Types
None.

4.3.6.3. Relevant Generic Parameters
Error checking: see Section C.4.

Others:
1. Lowest_priority_value - see Section C.2.2.

4.4. Network Configuration Table

4.4.1. Introduction

The network configuration table (NCT) capability comprises the following packages:
1. Generic_network_configuration, network_configuration
2. Generic_network_globals, network_globals

4.4.1.1. Purpose

The Kernel package network _configuration provides the abstraction of the network configuration
to both the Kernel and the application. This is accomplished via the NCT data structure that is
exported by network_configuration.

The NCT provides the minimum information needed by the Kernel to perform system initialization
and its inter-process communication functions. The NCT creates a logical link (via each entry) to
a particular hardware device (via the physical address and Kernel_device components), thus
allowing the rest of the Kemel and the entire application to be hardware independent after
initialization.
The packages that describe the network configuration define:

1. The bus address type and related information,

2. The configuration of the NCT,

3. Types used to define the NCT, and

4. Process index table information, which is used by the Kernel as an internal

representation of the network configuration.

4.4.1.2. Mechanism
The Kernel provides a mechanism to define legal bus addresses. The range of values allowed
are specific to the communication protocol used and must be set accordingly.

The Kernel provides a mechanism to specify the number of nodes in the network. This

62 Kernel User’'s Manual, Version 1.0

|

information is used to configure internal data structures (e.g., the Process Index Table) as well as
the NCT.

The Kernel provides the capability for a logical, string-valued name to be associated with each
processor in the network, and the capability to configure the size of that string.

The Process Index Table provides the Kermnel with fast access to network and process information
via internal representations. In fact, the Process Index Table is an inverted index on the Process
Table, using the physical_address component of the NCT as one of the keys.

Details of the NCT data structure are provided in Section 5.1.1.

4.4.2. Exported Constants

First_bus_address
Lower bound on type bus_address, must take actual hardware
configuration into consideration, the physical_address component of
the NCT must not have a lower value than this
Set via a tailoring parameter; see Section C.1.1

Last_bus_address
Upper bound on type bus_address, must take actual hardware
configuration into consideration, the physical_address component of
the NCT must not have a higher value than this
Set via a tailoring parameter; see Section C.1.1

Maximum_length_of_processor_name
The maximum length of the /ogical_name component of the NCT
set via a tailoring parameter; see Section C.1.4

Null_address
A nuil value for type bus_address, must take actual hardware
configuration into consideration
Set via a tailoring parameter; see Section C.1.1

Number_of_nodes
The number of nodes in the network, the number of entries in the NCT
Set via a tailoring parameter; see Section C.1.1

There are no representation specifications relevant to any of these constants, other than those of
their base types.

4.4.3. Exported Types

Bus_address
Range of addresses legal within the network on which the Kernel executes
First_bus_address_value .. last_bus_address_value

Configuration_table
Type to construct NCT
Array

NCT_entry
Type to construct NCT

Kernei User’'s Manual, Version 1.0 63

Record; see Section 5.1.1

Process_index_type
Uniquely identifies a process across the network via its node_number
and process_number relative to that node
Node_number => first_bus_address_value .. last_bus_address_value,
Process_number => 16-bit integer

Processor_identifier
Index into the NCT, uniquely identifies a processor
1 .. last_bus_address_value

There are no representation specifications relevant to any of these types other than those of their
base types.

4.4.4. Exported Data Structures

NCT
Logical constant defining the network configuration
See Section 5.1.1

There are no representation specifications relevant to the NCT at this ievel.

4.4.5. Subprograms
None.

4.4.6. Related Information

4.4.6.1. Referenced Constants
None.

4.4.6.2. Referenced Types
None.

4.4.6.3. Relevant Generic Parameters
Error checking: see Section C.4.

Others:
1. First_bus_address_value - see Section C.1.1.
2. Last_bus_address_value - see Section C.1.1.
3. Maximum_length_of_processor_name_value - see Section C.1.4.
4.‘Null_ bus_address_value - see Section C.1.1.
5. Number_of_nodes_value - see Section C.1.1.

64 Kernel User’'s Manual, Version 1.0

4.5. Processor Management

4.5.1. introduction
The processor management capability comprises the following packages:

1. Generic_processor_management, processor_management

4.5.1.1. Purpose

Before an application using the Kernel actually begins to execute, the application must inform the
Kernel of the actual network configuration on which it is to execute. While a number of network
parameters can be configured and verified at compile time, some runtime initialization is required.
The processor_management package provides one portion of this support.

Initialization requires the creation of an Ada procedure, called the Main Unit, that has the
responsibility for configuring the processor for application execution, as well as for configuring the
Kernel for that application. As described in Section 2.1.1, the Main Unit is responsible for
configuring the processor to meet the requirements of the application. This includes participating
in the network initialization protocol—which is exported by package processor_management.

The purpose of the subprograms in the processor_management package is to verify the physical
topology of the system and to initialize Kernel data structures and Kernel-controlled devices (e.g.,
event timers and the real-time clock). The NCT must be initialized by the application program
before these initialization subprograms may execute. The initialization subprograms are then run,
and the network topology is defined to the Kernel and the connectivity verified. When initialization
is complete, that is, after all processes have been declared and created using the capabilities
described in Section 4.6, one final initialization check is made before the Ada Main Unit is
permanently descheduled and initialization is determined to be successful.

If failure should occur anywhere during the initialization process, the entire network fails to
initialize. This is a simplifying assumption, one that may not be appropriate for all systems.

4.5.1.2. Mechanism

The following data structures are initialized and referenced during processor initialization: the.
NCT, the Process Table, and the Process Index Table. Once the NCT has been initialized on
each processor, the applicaton may invoke either initialize_Master_processor or
initialize_subordinate_processor. There must be one and only one Master processor for the
duration of network initialization, and it must invoke initialize_Master_processor to coordinate
network-wide initialization. All other participating processors are subordinate processors, and
must invoke initialize_subordinate_processor. Upon successful execution of these initialization
subprograms, the Main Unit performs other processor initializations and declares and creates
processes. When all initialization work is complete, the Main Unit calls initialization_complete to
assert to the Kernel that this processor is completely configured and ready to begin application
processing.

The Main Unit on all subordinate processors must be running before the Main Unit on the Master
processor may run.

Kernel User's Manual, Version 1.0 65

Initializing the NCT

The application must have initialized four fields in the NCT prior to invocation of the initialization
subprograms. These are: logical_name, physical_address, Kernel_device, and needed_to_run.
See Section 4.4 and Section 5.1.1 for a description of the NCT.

Process Table and Process Index Table

The declaration and creation of processes cause entries to be created in the Process Table and
information to be filled out in the Process Index Table. During the execution of
initialization_complete, extraneous information is eliminated from these data structures, and some
error checking is done. See Section 5.1.3 and Section 5.2.3.

4.5.2. Subprograms

4.5.2.1. Initialize_Master_processor

Initialize_Master_processor must be called once by only one of the Ada Main Units responsible
for configuring processors executing the Kernel. No other Kernel primitives may be called prior to
its execution.

Following its execution, any of the process_managers subprograms and interrupt_management
subprograms may be invoked by the Main Unit (see Section 4.6 and Section 4.10).

This primitive identifies the invoker as the Kernel processor controlling network initialization. It
takes a timeout parameter that controls how long the Master processor waits for any one
subordinate to reply to any initialization protocol message. The expiration of this timeout informs
the Master processor that network-wide initialization has failed. It is the responsibility of the
invoking Main Unit to relay this failure information to the appropriate parties.
Initialize_Master_processor aiso takes an epoch_time parameter to initialize the clock on the
invoking processor and to be used as the initial basis of time across the entire network for all
processors running the Kernel.

If this primitive fails for any reason, the network failure message is broadcast to all nodes, and the
failure is reported back to the Main Unit. Consequently, a subordinate processor may invoke this
primitive, thus effectively declaring itself the new Master and attempting recovery and
reinitialization of the network, or the Master may try again.

invocation

processor_management.initialize Master_ processor
(
. base_epoch => timeouts.Master base_tima,
timeout_after => timeouts.Master_timeout
):

66 Kernel User's Manual, Version 1.0

Conditions for Blocking
This procedure always blocks until one of the following conditions occurs:

1. All required processors in the network have acknowledged receipt of the "Go"
message, or

2. The initialization timeout expires.

4.5.2.2. Initlalize_subordinate_processor

Initialize_subordinate_processor must be called once by all Ada Main Units that are not the
Master processor during initialization. No other Kernel primitives may be called prior to its
execution.

Following its execution, any of the process_managers subprograms and interrupt_management
subprograms may be invoked by the Main Unit (see Section 4.6 and Section 4.10).

This primitive identifies the invoker as a subordinate Kernel processor participating in network
initialization. It takes a timeout parameter that controls how long the subordinate processor waits
for any message from the Master processor and for receipt of all “initialization complete”
messages from all Kernel processors in the network. The expiration of this timeout informs the
subordinate processor that network-wide initialization has failed. It is the responsibility of the
invoking Main Unit to relay this failure information to the appropriate parties.
Initialize_subordinate_processor also awaits the starting epoch_time from the Master processor
and sets |ts own time based on that value.

if this primitive fails for any reason, the network fallure message is broadcast to all nodes and the
failure is reported back to the Main Unit.

Invocation

processor_management.initialize_subordinate_processox
(

timeout after => timeouts.subordinate_timeout
):

Conditions for Blocking
This procedure always blocks until one of the following conditions occurs:

1. The Master has requested the processor's NCT and the subordinate has
acknowledged the "Go™ message, or

2. The initialization timeout expires.

4.5.2.3. Initlalizatlon_complete

Initialization_complete must be called once by all Ada Main Units, Master and subordinate. The
only Kernel primitives that may be called prior to its execution are: any of the process_managers
subprograms and interrupt_management subprograms (see Section 4.6 and Section 4.10) and
initialize _Master_processor or initialize_subordinate_processor. It must be called before the
Kernel begins execution of any Kernel process.

Kernel User's Manual, Version 1.0 67

This primitive asserts that the definition of the physical network topology is complete and that the
declaration and creation of all processes on this processor, defining the logical topology, is also
complete. This primitive effectively tells the Kerel that it is ready to begin execution of the
application, and the Kernel on this processor relays that information to all other Kernels. This
primitive takes an optional timeout parameter to detect processor failure after network
initialization. It is the responsibility of the invoking Main Unit to relay this failure information to the
appropriate parties.

If this primitive fails for any reason, the network failure message is broadcast to all nodes and the
failure is reported back to the Main Unit.

Invocation

processor_management.initialization complete
(

timeout_after => timeouts.init_complete_timeout
):

Conditions for Blocking
This procedure always blocks until one of the following conditions occurs:

1. All needed process creation acknowledgements are received, or
2. The initialization timeout expires.

4.5.3. Related Information
None of these subprograms may be invoked from an interrupt service routine.

4.5.3.1. Exported Constants
None.

4.5.3.2. Exported Types
None.

4.5.3.3. Exported Data Structures
None.

4.5.3.4. Referenced Constants

None.

4.5.3.5. Referenced Types
i Elapsed_time - used for parameters; see Section 4.2.
2. Epoch_time - used for parameters; see Section 4.2.

68 Kernel User's Manual, Version 1.0

i

4.5.3.6. Relevant Generic Parameters
Error checking: see Section C.4.

Others: none.

4.6. Process Managers

4.6.1. Introduction
The process managers capability comprises the following packages:

1. Generic_process_managers, process_managers
2. Generic_process_managers_globals, process_managers_globals

4.6.1.1. Purpose

Before initialization is complete, the application program must define a logical configuration of
Kernel processes to the Kernel on which it is running and to all Kernels across the network. This
logical configuration identifies all communication partners, those that are executing the Kernel
and all non-Kernel devices, and all processes that are executing on a single Kernel processor. In
addition to describing the logical topology of the processor, the execution environment for each
process to execute on the processor must also be created. The subprograms exported by the
process_managers package provide this capability.

4.6.1.2. Mechanism

A string-valued logical name is used by the application to initially identify processes and
communication partners to the Kernel. This name must be unique across the ‘entire application.
An internaily generated "handle” is returned by the Kernel to the application program, and this
handle is then used in all ensuing Kernel activities. The Kernel primitive declare_process
accomplishes this.

All Kernel processes that execute on a processor do so within an execution environment that
must be created by the Kernel. The Kernel primitive create_process accomplishes this, as well
as providing the initial scheduling protile of the process.

Kernel Process—Ada Code

The code that may be a Kernel process is an outer-level Ada procedure that takes no
parameters. "Outer-level” restricts the subprogram to being a library unit itself or being directly
visibie within a library unit. Chapter 3 provides additionat information.

Naming Processes
As described in Chapter 3, a process is referenced in three different ways throughout its life:

1. The application programmer assigns an application-wide unique /ogical name to
every process. This logical name is a string-valued name.

2. The Kemel takes the logical name and associates with that a process identifier that
is returned to the application via the Kernel primitive declare_process. |t is via this
handle that the application references the Kernel process in all ensuing operations.

Kernel User's Manual, Version 1.0 69

3. The Kernel creates an internal process index table that it uses to translate process
identifiers to and from a form that is appropriate for use by the low-level
communication protocol.

All three representations denote a single process; each of the three is used by different
developers and software at ditferent times during the process life cycle.

The Process Execution Environment
When a process is executing, it consists of two parts: the code of the process (i.e., the aigorithm

being obeyed), and the environment of the process (i.e., the virtual machine the code perceives
while running).

This environment consists of three main parts:
1. External resources available to the process,
2. Internal resources available to the process, and
3. The process encapsulation.

The external resources available are all global data objects and all visible subprograms, including
the Kernel primitives. These resources are shared by all processes that have visibility into them.
The Kernel objects and primitives protect themselves from improper concurrent usage; other
global objects must be protected by the application if necessary. For example semaphores (see
Section 4.11) may be used to protect shared data areas.

The internal resources available to a process are private to it and are set up when the process is
created. These resources include:

1. The stack, which is used for the process’s local variables and for the call frames
and local variables of any subprograms it calls.

2. The outgoing message buffer, which is managed by the Kernel.

3. The incoming message queue data structure, which is also managed by the Kernel
but the size of which is under appiication control.

4. The Process Table, which holds all process state information and which is
managed entirely by the Kernel.

These resources are initialized during process initialization, managed during process execution,
and destroyed during process termination.

The process encapsulation contains everything necessary to establish the process as a parallel
thread of control, with proper initiation and termination conditions. It performs the following
actions:’

1. Sets up the initial process state and binds all allocated internal resources to the
process.

2. Introduces the process to the Scheduler.

3. Causes process execution to begin at the start of the Ada subprogram identified as
a Kernel process.

70 Kernel User's Manual, Version 1.0

4. Ensures orderly process termination when the Kernel process subprogram exits or
propagates an unhandled exception.

4.6.2. Subprograms

4.6.2.1. Declare_process
The Kernel primitive declare_process has three purposes:

1. To declare a Kernel process that will execute on this processor (i.e., be referenced
by an ensuing call to create_process);

2. To declare a Kernel process with which communication is desired; and
3. To declare a non-Kernel device with which communication is desired.

Declaring a process to the Kernel associates an application-provided, string-valued name with a
Kernel-generated handle. It is via this handle, called the process identifier, that the appiication
references the process in all ensuing Kernel invocations.

The string-valued name is not used by the Kernel; it is maintained by the Kernel to aid in
application debugging. The length of this name is tailored by setting
maximum_length_of_process_name.

In the declaration of a Kernel process, the process name may be any Ada string, with the
substring of length maximum_length_of process_name maintained by the Kemel.

In the declaration of a non-Kernel device, the device name may be any Ada string that matches a
logical_name field of a non-Kernel device in the NCT (i.e., the corresponding Kernel_device field
is false).

Invocation
There are two forms of this primitive: one for declaring a Kernel process and one for declaring a
non-Kernel device. :

processor_b_comm area.merlin ID :=
process_managers.declare_process
(
process managers_globals.process name type’
(application_unique names.marlin)
):

processor_b_comm area.vivian ID :=
process managers.declare_process
(
process_managers_globals.device name type’
(application_unique_names.device)
);:

Kernel User’'s Manual, Version 1.0 k|

Conditions for Blocking
This procedure does not block.

4.6.2.2. Create_process
The Kernel primitive create_process creates a process that has previously been declared and
initializes the environment in which the designated code is to execute. For each Kemel process
to be created, the application specifies:

1. The address of the procedure to be executed as a Kernel process;

2. The number of bytes to be allocated for process local information — local variables
of the process and all subprograms it calls directly or indirectly, inciuding any call
frames generated by the compiler for those called subprograms (i.e., stack_size);

3. The maximum number of messages that may be waiting for this process at any time

(i.e., message_queue_size);

4. The method by which messages are to be handled when the maximum (specified in
message_queue_size) is reached (i.e., message_queue_overflow_handling);

5. Initial scheduling attributes (i.e., initial_priority and preemption).

It the stack_size value is exceeded during data and subprogram access by the process, the
predefined exception storage_erroris raised.

From this information, the Kernel constructs the process execution environment as described
previously in this section and enters the process in the set of processes eligible to run. The initial
scheduling state of the process is now suspended.

invocation

process_managers.create_process

(

):

process_1D =>
address =>

hardware_interface
stack_size =>

massage_dqueua_size =>
initial priority =>
preemptable =>

Processor_a_comm area.merlin ID,

.hw_address (merlin process_code’address),
4_096,
100,
schedule_types.highest_priority,
schedule_ types.disabled

process managers. croatc_p:oc.ss

(

)

process_1D =>
address =>

hardware_interface
stack_size =>

message_queue_size =>
initial priority =>

processor_a_comm area.arthur_ID,

.hw_address (arthur_process_code’address),
2_048,

10,

4

Kermnel User’'s Manual, Version 1.0

Conditions for Blocking
This procedure does not biock.

4.6.3. Related Information
None of these subprograms may be invoked from an interrupt service routine.

4.6.3.1. Exported Constants

Maximum_length_of_process_name
Maximum numbers of characters that are maintained in the Process Table
for the logical_name ot a process
Set via a tailoring parameter; see Section C.2.5

There are no representation specifications relevant to any of these constants other than those of
their base types.

4.6.3.2. Exported Types

Device_name_type
Used to indicate a non-Kernel device name
Variant of hw_string

How_to_handle_message_queue_overflow
Indication of how the Kernel should handle the case where more messages
arrive than the incoming message queue is capable of handling
Enumerated (drop_newest_message)

Process _name_type
Used to indicate a Kemel process name
Variant of hw_string

There are no representation specifications relevant to any of these types other than those of their
base types.

4.6.3.3. Exported Data Structures

None.

4.6.3.4. Referenced Constants
1. Default_preemption - used for parameters; see Section 4.3
2. Default_priority - used for parameters; see Section 4.3

4.6.3.5. Referenced Types
1. Preemption - used for parameters; see Section 4.3
2. Priority - used for parameters; see Section 4.3
3. Process_identifier - used for parameters; see Section 5.1.3

4.6.3.6. Relevant Generic Parameters
Error checking: see section C.4.

Others:
1. Maximum_length_of_process_name_value - see Section C.2.5.

Kernel User's Manual, Version 1.0 73

2. Maximum_message_queue_size_value - see Section C.2.1.
3. Maximum_process_stack_size_value - see Section C.2.1.

4.7. Communication Management

4.7.1. Introduction
The communication management capability comprises the following packages:

1. Generic_communication_globals, communication_globals
2. Generic_communication_management, communication_management

The communication model is presented in Section 2.8. The communication primitives provided
by the Kernel are untyped; an application may readily build typed message passing on top of
them. An example of such a package is provided in Section E.1.

4.7.1.1. Purpose

The communication_management package provides the capability for independent threads of
control (i.e., Kernel processes) to communicate among themselves and with non-Kernel devices.
This communication is done point-to-point, either synchronously or asynchronously.

4.7.1.2. Mechanism

During process initialization, communication partners are identified via calls to the Kernel primitive
declare_process (see Section 4.6.2.1). The handles, the process identitiers, for these declared
processes must be available to the application to be used in interprocess communication. This is
discussed in Chapter 3.

The communication management subprograms are:

1. Send_message - to send a message with no waiting for any kind of
acknowledgement of receipt. This is a "blind" asynchronous send.

2. Send_message_and_wait - to send a message and wait for an acknowledgement
of receipt of the message by the receiving Kernel process. This is a synchronous
send.

3. Recaive_message - to obtain a message sent by a process. This receives any
message from any process, and may be used synchronously or asynchronously.

4. Allocate_device_receiver - to assigh a Kernel process to be the sole receiver of
messages from a non-Kernel device.

All communication primitives appear the same to the application code whether the processes are
Kernel or non-Kernel processes, whether they are sited on the same processor (local) or on
different processors (remote). The Kernel optimizes local communication by using its knowledge
of where the receiver's incoming message queue is located. The Kernel places sent messages
directly in that queue, as opposed to incurring network traffic for local messages.

74 Kernel User’'s Manual, Version 1.0

4.7.2. Subprograms

4.7.2.1. Send_message

This primitive sends a message from one process to another, without waiting for
acknowiedgement of message receipt. Any Kernel process may invoke this primitive at any time.
It may be used to send a message to Kernel and non-Kernel processes. For each message to be
sent, the cailer specifies:

1. The process identifier of the intended receiver of the message;

2. The application-defined message_tag that can be used by the receiver to decode
the text of the message;

3. The message_length of the message to be sent; and
4. The address of the bufter containing the message_text itself.

When sending to a Kemel device, as can be determined from the NCT, this information is
bundled into a datagram as described in Section 2.8 and sent to the intended receiver. When
sending to a non-Kernel device, the message text itselff must contain all necessary
communication protocol information; the Kernel simply passes the message through to the
address of the recsiver.

Invocation
== from within the body of merlin process_code
-= vivian is a remote process

communication management.send message
(
receiver => proCessor_a comm area.vivian ID,
message_tag => Processor_a comm area.type_l_ message,
massage_length => processor_a comm area.type_l message_length,
message_text =>
hardware interface.hw_address
(local message buffer’address)
)

-- arthur is a local process; no difference

communication_management.send message
(
receiver => processor_a_comm area.arthur ID,
message_tag => processor_a_comm area.type 1 message,
message_length => processor_a_comm area.type 1 message_length,
message_text =>
hardware_ interface.hw_address
(local _massage_buffer’address)

Kemel User’'s Manual, Version 1.0 75

Conditions for Blocking
This procedure does not block.

4.7.2.2. Send_message_and_wait

This primitive sends a message from one Kernel process to another Kernel process and waits for
acknowledgement of message receipt by the receiving Kernel process. Any Kernel process may
invoke this primitive at any time. It may be used to send a message only to Kernel processes.
For each message to be sent, the caller specifies:

1. The process identifier of the intended receiver of the message;

2. The application-defined message_tag that can be used by the receiver to decode
the text of the message;

3. The message_length of the message to be sent;
4. The address of the buffer containing the message_ text itself;
5. An optional timeout of one of two kinds:

e A timeout_after - a relative time after which the Kernel on which the receiving
process is executing aborts the attempt to communicate with the receiver; or

e A timeout_at - an absolute time at which the Kernel on which the receiving
process is executing aborts the atternpt to communicate with the receiver.

A timeout of zero or some previous time implies that the receiver must be pending
on a call to the Kernel primitive receive_message; if it is not, then a negative
acknowledgement indicating the contrary must be returned immediately from the
receiver's Kernel.

6. An optional resumption_prionity to take effect when the sending process becomes
unblocked.

This information is bundled into a datagram as described in Section 2.8 and sent to the intended
receiver.

If the message is not received by the specified timeout, a negative acknowledgement is returned
by the receiver's Kernel to the sender’s Kernel, and that information is propagated to the sending
process.

Invocation
There are three forms of this primitive: one for an infinite timeout (i.e., there is no timeout
parameter); one for an elapsed_time timeout; one for an epoch_time timeout.

communication_management.send_message_and wait

(-

receiver => processor_a_comm area.arthur ID,
massage_tag => pProcessor_a_comm area.type 2 message,
massage_length => processor_a comm area.type 2 message_length,
message_text =>

hardware_ interface.hw_address
(local_outgoing message buffer’address),
resumpt ton_priority => 2

76 Kernel User’'s Manual, Version 1.0

communication_management.send message_and wait
(

receiver => processor_a_comm area.arthur ID,
message_tag => processor_a comm area.type 2 message,
message_length => processor_a_comm area.type_2_ message length,
message_text =>

hardware_interface.hw_address
(local_outgoing_message buffer’address),
timeaocut_after => time globals.milliseconds (100)
):

communication management.send message_and wait

(

receiver => processor_a_comm area.arthur_ ID,
message_tag => processor_a_ comm area.type_ 2 massage,
message_length => processor_a_comm_area.type 2 message length,
message_text =>

hardware_ interface.hw_address
(local_ outgoing _message_buffer’address),

timecut_at => time globals.create_epoch_time (0, 0.100)

)

Conditions for Blocking
This procedure always blocks until one of the following conditions occurs:

1. The receiving process has requested and received the message (i.e., the message
has been copied into the receiving process's buffer), or

2. The message timeout expires.

4.7.2.3. Recelve_message

This primitive receives a message from another process. Any Kernel process may invoke this
primitive at any time. It may be used to receive messages from Kernel devices and non-Kernel

devices. For each message to receive, the caller receives the following information:
1. The process identifier of the sender of the message;

2. The application-defined message_tag that can be used by the receiver to decode
the text of the message (not valid for a message from a non-Kernel device);

3. The message_length of the message received;
4. The address of the message_buffer into which the message text itself is placed;
5. The buffer_size of the message_buffer,

in addition, the caller may specity:

1. An optional resumption_priority to take effect when the sending process becomes
unblocked.

2. An optional timeout of one of two kinds:

e A timeout_after - a relative time after which the Kernel on which the receiving
process is executing aborts the attempt to receive a message; or

¢ A timeout_at - an absolute time at which the Kernel on which the receiving
process is executing aborts the attempt to receive a message.

Kernei User's Manual, Version 1.0

A timeout of zero or some previous time prevents the calling process from blocking;
if no message is available at the time of call, receive_message returns immediately
to the caller.

3. A required flag messages_lost indicating whether or not the Kernel has had to lose
messages as the receiver’'s incoming message queue is full.

When receiving from a Kernel device, as can be determined from the NCT, this information is
collected from the datagram as described in Section 2.8 and passed onto the intended receiver.
When receiving from a non-Kernel device, the message text itself must contain all necessary
communication protocol information; the Kernel simply passes the message through to the
incoming message queue of the receiver.

If the message is not available by the specified timeout, that information is propagated to the
receiving process.

Invocation
There are three forms of this primitive: one for an infinite timeout (i.e., there is no timeout
parameter); one for an e/apsed_time timeout; one for an epoch_time timeout.

communication management.receive message
(

sender => local_sender,

meassage_tag => local_tag,

message_length => local_length,

message_buffer => hardware_interface.hw_address
(local_receive buffer’address),

buffer_ size =>

processor_a_comm area.arthur max incoming message_length,
resumption_prioxity => 3,
messages_lost => local_messages_lost
):

communication_management.receive message
(

sender => local_sender,
message_tag => local_tag,
massage_length => local_length,
massage_buffer => hardware_interface.hw_address
(local_receive_buffer’address),
buffer size =>
processor_a_comm area.arthur max incoming message_length,
timeout_after => time globals.milliseconds (1_000),
messages_lost => local_messages_lost

)

communication_management.receive_message
(

sender => local_sender,

massage_tag => local_tag,

message_length => local_length,

message_buffer => hardware_interface.hw_address

(local_receive_buffer’address),

78 : Kernel User's Manual, Version 1.0

buffer size =>
processor_a comm area.arthur max incoming message_length,

timaocut_at =>
time globals.create_epoch_time (0, 1_000.0),
massages_lost => local_massages_ lost
)
Conditions for Blocking

This procedure blocks only if there is no message currently available for the process. If no
message is available, then it blocks until one of the following conditions occurs:

1. A message arrives for the process, or
2. The timeout expires.

4.7.2.4. Allocate_device_recelver

This primitive assigns a specific Kernel process to be the receiver of all messages originating
from a specific non-Kernel device. The Kernel itself does nothing with messages from non-Kernel
devices other than passing them to their surrogates as identified via a call to
allocate_device_receiver, thus, the receiving Kernel process must know the format of such
messages. The caller specifies:

1. The receiver_process_ID, the process_identifier of the Kernel process to receive
the message.

2. A device_ID, a processor_identifier index of the entry in the NCT of the non-Kernel
device.

Invocation

comminication management.allocate_device receiver

(
receiver_process_ID => processor_b comm area.vivian_ ID,
device_ID a> 3

)i

Conditions for Blocking
This procedure does not block.

4.7.3. Related Information
Only the non-blocking subprograms send_message and allocate_device_receiver may be
invoked from an interrupt service routine.

4.7.3.1. Exported Constants

Maximum_message_length
The maximum number of bytes that may be sent in a single message
Set via a tailoring parameter; see Section C.1.3
There are no representation specifications relevant to any of these constants other than those of
their base types.

Kernel User's Manual, Version 1.0 79

4.7.3.2. Exported Types

Message_length_type
16-bit value defining the range of number of bytes that may be sentin a
single message
0 .. maximum_message_length_value

Message_tag_type
16-bit value that may be used by the application to indicate the type of
the message
-32_768 .. +32_767

There are no representation specifications relevant to any of these types other than those of their
base types.

4.7.3.3. Exported Data Structures
None.
4.7 3.4. Referenced Constants
1. Current_process._prionty - used for parameters; see Section 4.3

4.7.3.5. Referenced Types
1. Elapsed_time - used for parameters; see Section 4.2
2. Epoch_time - used for parameters; see Section 4.2
3. Priority - used for parameters; see Section 4.3
4. Process_identifier - used for parameters; see Section 5.1.3
5. Processor_identifier - used for parameters; see Section 4.4

4.7.3.6. Relevant Generic Parameters
Error checking: see Section C.4.

Others:

1. Maximum_message_length_value - see Section C.1.3.

4.8. Process Attribute Modifiers

4.8.1. Introduction
The process attribute modifiers capability comprises the following packages:

1. Generic_process_attribute_modifiers, process._attribute_modifiers

4.8.1.1. Purpose

By invoking any Kernel primitive that may block, a Kernel process has the ability to modify its
state (to become blocked) and its resumption priority (any legal priority value to be assigr.ad to
the process when it becomes unblocked and eligible for scheduling). In addition, a process may
modify certain of its own scheuuling attributes specifically: its state, its ability to participate in
timeslice scheduling, and its priority. A Kernel process may also cause another specified process
to die.

80 Kernel User’'s Manual, Version 1.0

4.8.1.2. Mechanism

The Kernel primitives that provide a Kernel process the capability to modify its state specifically
are: die - which causes the process to terminate itself irrevocably; and wait - which causes the
process to block itself unconditionally for a relative time or until an absolute time. The Kernel
primitive that provides a Kernel process the capability to specify whether or not it is to participate
in timeslice scheduling is: set process_preemption. The Kernel primitive that provides a Kernel
process the capability to specify its execution priority is: set_process_priority. The Kernel
primitive that provides a Kernel process the capability to kill another Kernel process is: kill.

4.8.2. Subprograms

4.8.2.1. Die

This primitive terminates the calling process. It may be invoked by any process at any time after
initialization is complete. When a process dies, all messages pending are discarded and no
further messages are queued for it; all negative acknowledgements to any pending messages
sent via the Kernel primitive send_message_and_wait are returned as required; all space
allocated to the messages is reclaimed.

Only Kernel processes may be terminated by this primitive. Terminating a non-Kernel process is
the application’s responsibility.

invocation

process_attribute modifiers.die;

Conditions for Blocking
This procedure does not block.

4.8.2.2, Kl

This primitive aborts the specified process. It may be invoked by any process at any time after
initialization is compiete. When a process is killed, all messages pending are discarded and no
further messages are queued for it; negative acknowledgements to any pending messages sent
via the Kernel primitive send_message_and_wait are returned as required; all space allocated to
the messages is reclaimed.

The calling process specifies the process_ID of the process, local or remote, to be killed.
invocation

" proceas_attribute modifiers.kill

(
process_ID => processor_a_comm area.arthur_ ID

):

Kernel User's Manual, Version 1.0 81

Caonditions for Blocking
This procedure does not block.

4.8.2.3. Set_process_preemption
This primitive changes the preemption status of the calling process. This primitive may be
invoked by any process any time after initialization.

The preemption status of a Kernel process indicates whether or not it is to participate in timeslice
scheduling. If the preemption is enabled, then the Kernel process is eligible for timeslice
scheduling; if the preemption is disabled, then the process is ineligible. See Section 4.14 and
Appendix D for more information about time slicing.

invocation

process_attribute modifiers.set_process preemption
(

preemptable => schedule_types.disabled
):

Conditions for Blocking
This procedure does not block.

4.8.2.4. Set_process_priority ,
This primitive changes the priority of the calling process. This primitive may be invoked by any
process any time after initialization.

The priority of a Kernel process indicates the urgency with which its processing should be
executed. Lower numeric vaiues for new_priority represent greater urgency; higher numeric
values represent lesser urgency. The constant current_process_priority is used to indicate that
no change in the process priority should occur.

invocation

process_attribute _modifiers.set_process priority
(

new_priority => 1
):

process_attribute_modifiers.set_process_priority
(

new_priority => schedule_types.lowest_priority
)

Conditions for Blocking
This procedure does not block.

82 Kernel User’s Manual, Version 1.0

4.8.2.5. Wait

This primitive suspends the caller for a specified relative time (via the for_elapsed_time
parameter) or until a specified absolute time (via the until_epoch_time parameter). A timeout of
zero or some previous time prevents the calling process from blocking; the wait does not occur.
This primitive may be invoked by any process any time after initialization.

As wait is always potentially blocking, the resumption_priority parameter, providing a new priority

at which the process is to execute when it unblocks, is provided.

invocation
There are two forms of this primitive: one for an elapsed_time suspension; one for an
époch_time suspension.

process_attribute_modifiers.wait

(
until_epoch_time => time globals.base_time + five second:,
resusption_priority => schedule_types.highest priority

);

process_attribute_modifiers.wait
(

for_elapsed time => five_seconds:
):

Conditions for Blocking
This procedure always blocks until the delay (i.e., the specitied elapsed or absolute time) expires.

4.8.3. Related Information
None of these subprograms may be invoked from an interrupt service routine.

4.8.3.1. Exported Constants
None.

4.8.3.2. Exported Types
None.

4.8.3.3. Exported Data Structures
None.
4.8.3.4. Referenced Constants
1. Current_process._priority - used for parameters; see Section 4.3

4.8.3.5. Referenced Types
1. Elapsed_time - used for parameters; see Section 4.2
2. Epoch_time - used for parameters; see Section 4.2
3. Preemption - used for parameters; see Section 4.3
4, Priority - used for parameters; see Section 4.3

Kernel User's Manual, Version 1.0 83

5. Process_identifier - used for parameters; see Section 5.1.3

4.8.3.6. Relevant Generic Parameters
Error checking: see Section C.4.

Others: none.

4.9. Process Attribute Readers

4.9.1. Introduction
The process attribute readers capability comprises the following packages:

1. Generic_process_atiribute_readers, process_attribute_readers
4.9.1.1. Purpose
The functions exported by package process_attribute_readers provide the capability for a Kernel

process to query some of its scheduling attributes and to ascertain its own identity. In addition, a
query to determine the string-valued logical_name of any other process is also provided.

4.9.1.2. Mechanism
The functions provided for a process to obtain information about itself are:

1. Get_process_preemption - determines whether or not the process is participating in
timeslice scheduling.

2. Get_process_priority - ascertains the priority at which the process is currently
executing. ‘

3. Who_am_| - obtains the process identifier ot the process itself.
The function provided to obtain the string-valued name of another process is: name_of.

4.9.2. Subprograms

4.9.2.1. Get_process_preemption

This function returns the current value of the preemption status of the calling process. This
primitive may be invoked by any process any time after initialization. If the return value is
enabled, then this process is a participant in timeslice scheduling; if the return value is disabled,
then this process is not a participant.

Invocation

merlin preemption := process_attribute_readers.get_process_preemption;

Conditions for Blocking
This procedure does not block.

84 Kemel User's Manual, Version 1.0

|4

4.9.2.2. Get_process_priority

This function returns the current value of the priority of the calling process. This primitive may be
invoked by any process any time after initialization. The highest priority process executes at
priority value of 1; the lowest priority process executes at a priority value that is specified by a
tailoring parameter; see Section C.2.2.

invocation

merlin priority := process_attribute_readers.get_process_priority;

Conditions for Blocking
This procedure does not block.

4.9.2.3. Who_am_|
This function returns the process identifier of the calling process. This primitive may be invoked
by any process any time after initialization.

Invocation

duplicate merlin ID := process_attribute_readers.who_am I;

Conditions for Biocking
This procedure does not block.

4.9.2.4. Name_of

This function returns the string-valued logical_name (the name provided when the Kemel
primitive declare_process was invoked) of the calling process. This primitive may be invoked by
any process any time after initialization.

invocation
vivian name :=
process_attribute_readers.name of
(

)

process_ID => processor_a comm area.vivian ID

my name =
process_attribute_readers.names of
(
process_ID => process attribute modifiers.who_am I
):

Conditions for Blocking
This procedure does not block.

Kernel User's Manual, Version 1.0 85

4.9.3. Related Information
Only the subprogram name_of may be invoked from an interrupt service routine.

4.9.3.1. Exported Constants
None.

4.9.3.2. Exported Types
None.

4.9.3.3. Exported Data Structures
None.

4.9.3.4. Referenced Constants
None.
4.9.3.5. Referenced Types
1. Preemption - used for parameters; see Section 4.3
2. Priority - used for parameters; see Section 4.3
3. Process_identifier - used for parameters; see Section 5.1.3

4.9.3.6. Relevant Generic Parameters
~ Error checking: see Section C.4.

Others: none.

4.10. Interrupt Management

4.10.1. Introduction
The interrupt management capability comprises the following packages:

1. Generic_interrupt_globals, interrupt_globals _
2. Generic_interrupt_management, interrupt_management

Real-time embedded system applications usually require very fast processing, some kind of
low-level interface, and a way to respond to asynchronous events. Asynchronous events are
detected and processed in one of two basic ways: by polling or through interrupts. This section
covers only asynchronous events and, in particular, interrupts. An interrupt is defined as an event
that causes a temporary asynchronous change in control from normal processing.

Interrupt generation and interrupt handling are the two facets of interrupts. Interrupt generation is
hardware and application specific and is not covered here. Interrupt handling is the primary topic
of this section.

Two terms are defined here and will be used throughout the ensuing discussion: interrupt
servicing and interrupt handling. The term interrupt servicing refers only to that processing done
to acknowledge the event which caused the interrupt. The processing steps involved in servicing

86 Kemel User's Manual, Version 1.0

an interrupt are encapsulated in one routine called an Interrupt Service Routine (ISR). ISRs are
sometimes called interrupt handlers. Interrupt handling, on the other hand, is more
ancompassing and refers to all the processing in hardware and software performed in response
to an interrupt. Interrupt servicing is therefore only part of interrupt handling.

Two further concepts are important to an understanding of the Kernel interrupt mechanism.

The first concept is that of interrupt priorities. It applies only in a priority-based interrupt
architecture, such as that found in the Motorola MC680X0 processor family. During normal
processing, any interrupt may initiate interrupt handling. However, it the processor is aiready
handling one interrupt, a new interrupt request is recognized if and only if it has a higher priority
than that interrupt currently being handled. For the sake of discussion, it is assumed that no
interrupt handling is in progress when an interrupt occurs.

The second concept to be defined is interrupt vector or interrupt number. Every interrupt is
associated with a number called the interrupt number, or more commonly, the interrupt vector.
Each processor architecture provides a mechanism for accomplishing this.

The Kernel supports both non-preemptive and preemptive interrupts. A non-preemptive interrupt
causes the currently running Kemel process to be temporarily suspended to aliow the ISR to
execute. After the ISR has completed, the processor resumes executing the suspended Kernel
process at the point where it was suspended. This type of interrupt is sometimes called a “fast
interrupt." During the processing of a preemptive interrupt, however, the Kernel Scheduler is
invoked instead of returning to the suspended Kernel process. This latter case is used when
interrupt handling could possibly cause a change in process attributes such that a Kernel process
other than the currently executing pracess would become eligible for execution. This would then
facilitate changing the state of a process upon the expiration of a timeout. This type of interrupt
requires that the full context of a process be saved, as it may not be resumed when the ISR
completes, and, as such, is not as fast as a non-preemptive interrupt. The application may
specify whether an ISR is non-preemptive or preemptive.

4.10.1.1. Purpose

The Kernel's interrupt management facility provides the primitives necessary for interrupt
handling. It allows the application to service interrupts in a consistent and flexible manner, and
protects the developer from needing to know too much about the target. This enables the
application code to be reasonably target independent. The interrupt management facility has
been implemented in a way that provides the most efficient interrupt handling for the target
implementation. All of the target dependencies have been encapsulated in one place, so porting
the application (and the Kernel) to other targets should be relatively simple.

Kernel User's Manual, Version 1.0 87

4.10.1.2. Mechanism

Definitions and Terminology

The target hardware provides support for a set of interrupts, each of which is represented within
the Kemel by an integer vaiue called the interrupt name. For completeness, the Kemel
represents all possible interrupt_names and maintains information on each one. This information
is maintained in an internal data structure called the Interrupt Table, which is described in detail in
Section 5.2.4. However, the Kemel provides the application with access to only some of the
interrupts defined by the target hardware.

The Kernel identifies each interrupt as being reserved for use exclusively by the hardware or Ada
runtime environment, reserved for exclusive use by the Kernel, used by the application, or absent
(not used). Interrupts that are not reserved, used by the Kernel, or claimed by the application are
defined to be absent. The Kernel restricts the application from accessing those interrupts that are
classified as reserved or Kernel interrupts.

The Kernel identifies each interrupt as being either bound or unbound. A bound interrupt has an
interrupt service routine (ISR) associated with it. This association is established explicitly by the
application via the Kemel primitive bind_interrupt_handler or transparently by the Kernel during
Kernel initialization.

When binding is performed, the interrupt is identified as either non-preemptive or preemptive.
Interrupt entry is the same for both kinds of interrupts; the behavior differs at interrupt exit, as
described in Section 4.10.1.

The Kernel supports dynamic binding of interrupt handlers; the application may bind a different
ISR to an interrupt at any time, by invoking the Kemel primitive bind_interrupt_handler, and as
often as necessary.

An interrupt is usually generated by an extemal device, but may also be simulated by software via

the Kemnel primitive simulate_interrupt. The Kernel tracks the interrupt source (hardware -
external or sottware - internal) while it is being handled.

An interrupt is either enabled or disabled. For an interrupt that is enabled, the Kemel executes
the ISR bound to it when the interrupt occurs or is simulated via the Kernel primitive
simulate_interrupt, the Kemel simply dismisses any interrupt that is disabled. An interrupt may
always be enabled via the Kernel primitive enable. Sometimes, an interrupt must also be enabled
at the hardware device itseif. This capability is outside the control of the Kernel and is the
responsibility of the application. Before an interrupt may be enabled, an interrupt handler must be
bound to it. An interrupt may be disabled via the Kemel primitive disable.

interrupt Handling

Interrupt handling is provided via both hardware and software. Virtually all processors are
designed with some kind of interrupt mechanism. The Kernel builds a layer of abstraction on top
of the hardware so that a common interrupt handling mechanism is provided, no matter on what
processor family the application executes.

88 Kernel User's Manual, Version 1.0

Interrupt handling involves several steps: initialization, interrupt recognition, table lookup, ISR
execution, and process resumption.

Initialization. Both the Kernel and application perform operations to initialize interrupt handling.
The Kernel initializes the Interrupt Table with all information known about reserved and Kernel
interrupts. The binding of these interrupts is done automatically by the Kernel at Kernel
initialization time. The application may then bind any interrupts it requires via the Kernel primitive
bind_interrupt_handler. The Interrupt Table maintains all the information known to the Kernel
about all interrupts, such as the ISR address, the binding status, etc. See Section 5.2.4 for more
details about the Interrupt Table. Before an interrupt is expected, an ISR must be bound to the
interrupt, and the interrupt must be énabled, in that order. If an interrupt is not enabled (i.e., the
interrupt is still disabled), it is totally ignored.

Interrupt recognition. In order for an interrupt to be recognized, it must compete with other
interrupts that occur at the same time or that are currently being processed. That is, it must have
a higher priority than the current processor priority and then any simultaneous interrupts. Many
targets use interrupt priority to choose which interrupt to recognize. This arbitration is handled
solely by the hardware. Interrupt handling that is started via the Kermel primitive
simulate_interrupt does not have to contend for recognition.

Table lookup. Once the interrupt is recognized, the current running process is suspended, and
the entry in the Interrupt Table associated with the interrupt is checked to see if the interrupt is
currently enabled. I the interrupt is not enabled, the interrupt is dismissed, and the process is
resumed with minimai delay.

Howevaer, if the interrupt is enabled, the current context is saved, the interrupt source is set to
indicate from where the interrupt originated (i.e., externally via a hardware device or internally via
the Kernel primitive simulate_interrupf), and the associated ISR, as determined from the Interrupt
Table, is called.

ISR execution. The ISR then executes. Unless it is interrupted by another interrupt, it executes
to completion. It is not unusual to have the first operation within the ISR disable the interrupt and
the last operation re-enable the interrupt. One reason to disable interrupts may be that once the
application begins processing a specific interrupt, it is not ready to service another interrupt. After
the processing has completed, the interrupts are enabled so they may bhe serviced again.

Process resumption. After the interrupt is serviced, one of two things happens, depending on
whether the interrupt was identified as non-preemptive or preemptive. As described previously, a
non-preemptive interrupt would simply cause the suspended process or ISR to be resumed after
restoring its context; a preemptive interrupt would cause the Kernel Scheduler to be invoked.

Iinterrupt Names and Reserved Interrupts

The application references interrupts by an interrupt_name (i.e., an integer vaiue) with a
hardware-specific range. For the Motorola 68020 implementation, this -ange is defined in
Appendix H. The names are mapped directly to interrupt vectors. Some names are reserved by
the hardware or the Kernel and may not be used by the application.

Kernel User's Manual, Version 1.0 89

Interrupt_names that are reserved by the Kemel or hardware (and, thus, are unavailable to the
application) are identified in Appendix H for the Motorola 68020 implementation.

Interrupt Handler—Ada Code

An interrupt handler may be declared as an outer-level Ada procedure with no parameters or as
an assembly language routine that follows Ada’s linkage conventions. One or more handlers may
be declared for each interrupt, but only one may be bound to an interrupt at any one time. An
interrupt handler must be bound before the corresponding interrupt is enabled. The interrupt
handler encapsulates all of the steps necessary to service the interrupt. Good program design
dictates that an interrupt handier be written to be short and efficient to minimize the length of time
normal processing is suspended. In support of this, the Kemel does not allow any blocking
Kerne! primitives to execute within an ISR.

The following is an example of a typical interrupt handler definition:

procedure receiver_interrupt_handler is
begin

-- disable device interrupt capability
-=- check receiver status

-- if status is good then
- get data received and store in buffer
-- end if

-- re-enable davice interrupt capability

end receiver_interrupt_handler:

An interrupt handler is not allowed to invoke any Kernel primitive that may block, as this couid
result in deadlock.

4.10.2. Subprograms

4.10.2.1. Bind_interrupt_handler
This Kernel primitive identifies an interrupt service routine that is to be called when the named
interrupt occurs. It also identifies whether the interrupt is preemptive or non-preemptive.

When the application invokes bind_interrupt_handler, the Kemel locates and checks the
appropriate entry in the Interrupt Table. Improper values for the interrupt name or handler
address raise illegal_interrupt or illegal_interrupt_handler_address respectively. If the interrupt
name corresponds with a reserved interrupt, reserved_interrupt exception is raised. Otherwise,
the address of the ISR is stored in the Interrupt Table, and, when the named interrupt occurs and
is enabled, the associated code is executed as the ISR.

Bind_interrupt_handler may be invoked anytime it is necessary to change the ISR for an interrupt.
Replacing_previous_interrupt_handler is raised each time after the initial call.

90 Kernel User’'s Manual, Version 1.0

i
[}
Gl N OF UG O TN A U GE BE E S = SE s Em

l

Invocation
IO_device : constant interrupt_globals.interrupt_name := 200;

-=- on one processor, the 1I0_device has already been set up with
== an interrupt vector of 200; this declaration asserts that
-- information to the Kernel

interrupt_management.bind interrupt_handler
(
interrupt => I0 device,
handler_ code =>
hardware_interface.hw_address (receiver_interrupt_handler’address),
can_preempt => false

Conditions for Blocking
This procedure does not block.

4.10.2.2. Disable

Disable causes the Kernel to ignore all subsequent mterrupts from the specified device by not
calling its associated interrupt handiler.

invocation

interrupt_management .disable
(

interrupt => IO_davice
):

Conditions for Blocking
This procedure does not block.

4.10.2.3. Enable

Enable is used both initially to enable an interrupt and to re-enable an interrupt after it has been
disabled. When a specified interrupt is enabled and the interrupt occurs, the bound interrupt
handiler is called.

invocation

interrupt_management.enable
(

interrupt => IO _davice
):

Conditions for Blocking
This procedure does not block.

Kernel User's Manual, Version 1.0 91

. ——

4.10.2.4. Enabled
Enabled is used to query the status of an interrupt.

Invocation

device_status := interrupt_management .enabled (interrupt => I0_davice);

Conditions for Blocking
This procedure does not block.

4.10.2.5. Simulate_Interrupt

Simulate_interrupt calls the handler for an interrupt as if the associated hardware interrupt had
occurred. An interrupt must be bound to a handler and enabled to simulate the interrupt. Calling
simulate_interrupt may or may not return to the invoking process, depending on the type of the
interrupt being simulated. If the interrupt being simulated is a non-preemptive interrupt, then
control is resumed in the invoking Kerne! process immediately after the call to simulate_interrupt.
Howaever, if the interrupt being simulated is preemptive, control returns to the Kernel Scheduler,
which might elect to suspend the invoking process and resume another.

Invocation

interrupt_management.simulate_interrupt

(
interzupt => IO_device

):

Conditions for Blocking
This procedure does not block.

4.10.3. Related Information
Any of these subprograms may be invoked from an interrupt service routine.

4.10.3.1. Exported Constants

Nuli_handler
The address of a null interrupt service routine
Set via a tailoring parameter; see Section C.1.1
There are no representation specification specifications relevant to any of these constants other
than those of their base types.

4.10.3.2. Exported Types
More details are provided in Section 5.2.4.
Interrupt_condition

Indication of whether a handler is bound to an interrupt or not
Enumerated (bound, unbound)

Interrupt_name
Range corresponding to hardware vector assignments of the target
See Appendix H for actual range of vaiues for the 68020

92 Kernel User’'s Manual, Version 1.0

Interrupt_owner
Indication of how the interrupt is used
Enumerated (absent, reserved, Kernel, application)

Interrupt_state
Indication of whether enabled or disabled
Enumerated (enabled, disabled)

Interrupt_source
Origin of the interrupt
Enumerated (interal, external)

Interrupt_table_entry
Type to construct Interrupt Table
Record; see Section 5.2.4

There are no representation specifications relevant to any of these types other than those of their
base types.

4.10.3.3. Exported Data Structures

Interrupt_table
Logical constant used to maintain all the information known to the
Kernel about all interrupts
See Section 5.2.4

There are no representation specifications relevant to the Interrupt Table at this level.

The following data structure is exported by package interrupt_globals but is only used internally
within the Kemel:

Interrupt_vector
The transfer vector actually used by the Kemel, a logical subset of the
interrupt_table
See Section 5.2.4

There are no representation spacifications relevant to the interrupt_vector at this level.

4.10.3.4. Referenced Constants
None.

4.10.3.5. Referenced Types
None.

4.10.3.6. Relevant Generic Parameters

Error checking: see Section C.4.

Others:
1. Number_of_interrupt_names_used_by_application - see Section C.2.4.
2. Number_of_interrupt_names_used_by_Kernel - see Section C.2.4.

Kernel User's Manual, Version 1.0 93

4.11. Semaphore Management

4.11.1. Introduction
The semaphore management capability comprises the following packages:

1. Generic_semaphore_management, semaphore_management

4.11.1.1, Purpose

The semaphore_management package provides the abstraction of ("Dykstra”) Boolean
semaphores to an application. As described in Section 5.1.2, a semaphore consists of three
components: a count of the number of processes waiting to access the semaphore, a FIFO
queue of the waiting processes, and a last-in, first-out (LIFO) list of semaphores claimed by the
process that owns this one. A Kernel process may register a request to reserve a semaphore,
thus asserting sole ownership of the resource it guards, and may give up that shared resource.

4.11.1.2. Mechanism

This mutual exclusion of Kernel processes from concurrently accessing the same resource is
accomplished via the data type semaphore, described in Section 5.1.2, and two subprograms to
reserve and give up the semaphore: c/aim and release respectively.

It a process claims a semaphore, that process owns the sqmaphore. and any subsequent
process is blocked on the claim request until the owning process releases the semaphore.

4.11.2. Subprograms

4.11.2.1. Claim
This primitive attempts to claim the specified semaphore. If the semaphore is free, the primitive
succeeds and the invoking process continues execution. if the semaphore is not free, the
invoking process may be inserted into the semaphore’s waiting queue and block until the
semaphore becomes free. Claim takes the following parameters:

1. The semaphore_name to be claimed.

2. An optional timeout of one of two kinds:

o Within_elapsed_time - a relative time after which the claim request is
rescinded; or

e By _epoch_time - an absolute time at which the c/aim request is rescinded.

A timeout of zero or some previous time prevents the calling process from biocking;
it the semaphore is not available, the claiming process does not wait for it to
. become available.

3. An optional resumption_priority to take effect when the claiming process becomes
unblocked.

invocation
There are three forms of this primitive: one for an infinite timeout (i.e., there is not timeout
parameter); one for an e/apsed_time timeout; one for an epoch_time timeout.

semaphore_management.claim

94 Kernel User’s Manual, Version 1.0

(
semaphore_name => global_ resources.position_data
):

semaphore_management.claim

(
semaphore_name => global_ resources.position_data,
within elapsed time => five_ seconds,
resumption_priority => 2

)i

semaphore_management.claim

(
semaphore_name => global_ resources.position_data,
by _epoch time => time globals.base time + five_seconds,
resumption priority => 1

);

Conditions for Blocking

This procedure blocks only when the state of the requested semaphore is CLAIMED (N) and the
timeout parameter is for some future time. It will unblock when one of the following conditions
occurs:

1. The semaphore is released and the invoking process is at the head. of the wait
queue, or ,

2. The claim timeout expires.

4.11.2.2. Release

This primitive releases a semaphore previously claimed. |If there are no further waiting
processes, then the semaphore becomes free; if there are waiting processes, then the number of
waiting processes is decremented by one and the semaphore is given to the process at the head
of the semaphore queue.

invocation

semaphore_management.release
(

semaphore_name => global_resocurces.position_data
):

Conditions for Blocking
This procedure does not block.

4.11.3. Related Information
None of these subprograms may be invoked from an interrupt service routine.

Kernel User’'s Manual, Version 1.0 95

4.11.3.1. Exported Constants
None.

4.11.3.2. Exported Types
None.

4.11.3.3. Exported Data Structures
None.
4.11.3.4. Referenced Constants
1. Current_process_priority - used for parameters; see Section 4.3

4.11.3.5. Referenced Types
1. Elapsed_time - used for parameters; see Section 4.2
2. Epoch_time - used for parameters; see Section 4.2
3. Priority - used for parameters; see Section 4.3
4. Semaphore - used for parameters; see Section 5.1.2

4.11.3.6. Relevant Generic Parameters
Error checking: see Section C.4.

Others: none.

4.12. Alarm Management

4.12.1. Introduction
The alarm management capability comprises the following packages:

1. Generic_alarm_management, alarm_management
4.12.1.1. Purpose
Alarms are:
» Enforced changes in process state.
o Caused by the expiration of a timeout.
e Asynchronous events that are allocated on a per-process basis.

A process views an alarm as a possible change in priority with an enforced transfer of control to
an exception handler. An alarm is requested to expire at some specified time in the future. When
an alarm expires, the Kemel raises the alarm_expired exception, which the process is expected
to handlie as appropriate. There is only a single alarm per process.

96 Kemel User’'s Manual, Version 1.0

4.12.1.2. Mechanism
The alarm_management package exports an exception alarm_expired that is raised in the
process by the Kernel when the specified timeout expires.

The set_alarm Kernel primitive defines the timeout at which point the Kerne!l raises alarm_expired
it the alarm is not cancelled via the cancel_al/arm primitive.

Alarm_expired Exception

When the Kernel raises the alarm_expired exception, this indicates that the timeout specified via
the set_alarm Kernel primitive has, in fact, expired. It is intended that the Kernel process setting
the alarm aiso provides a mechanism to handle the possible occurrence of the exception. This
could be used as a paradigm to create cyclic processes and handle frame overruns. See
Appendix E.3 for an example.

As alarm_expired is like any Ada exception, it may be handled in an exception handler, either
explicitly or by a when others clause. If not handled, it is propagated like any other Ada
exception.

4.12.2. Subprograms

4.12.2.1. Set_alarm

This primitive defines an alarm that interrupts the invoking Kernel process if it expires. This
primitive may be invoked by any Kernel process any time after initialization. The interruption
causes the process to become suspended in an error state; when the process is resumed, the
alarm_expired exception is raised in it. '

The expiration of the alarm is expressed as a timeout of one of two kinds:

o After_elapsed_time - a relative time after which the Kernel readies the alarm_expired
exception to be raised; or

o For_epoch_time - an absolute time at which the Kernel readies the alarm_expired
exception to be raised.
If the expiration time of the alarm is the current time or in the past, the timeout expires
immediately, and alarm_expired is immediately raised.

An optional expiration_priority to take effect when the invoking process begins processing the
exception handler for afarm_expired may also be specified.

Invocation
There are two forms of this primitive: one to set an alarm after an e/apsed_time; one to set an
alarm for an epoch_time.

alarm management.set_alarm
(

after_elapsed time => five seconds
):

alarm management.set_alarm

Kernel User's Manual, Version 1.0 97

(
for_epoch_time => time globals.base_time + five_seconds,
expiration_priority => 7

):

Conditions for Blocking
This procedure does not block.

4.12.2.2. Cancel_alarm
This primitive disables an alarm that was set but has not yet expired. This primitive may be
invoked by any Kernel process any time after initialization.

Invocation

alarm management.cancel alarm;

Conditions for Blocking
This procedure does not block.

4.12.3. Related Information
None of these subprograms may be invoked from an interrupt service routine.

4.12.3.1. Exported Constants
None.

4.12.3.2. Exported Types
None.

4.12.3.3. Exported Data Structures
None.

4.12.3.4. Referenced Constants
1. Current_process_prionity - used for parameters; see Section 4.3

4.12.3.5. Referenced Types
1. Elapsed_time - used for parameters; see Section 4.2
2. Epoch_time - used for parameters; see Section 4.2
3. Priority - used for parameters; see Section 4.3

4.12.3.6. Relevant Generic Parameters
Error checking: see Section C.4.

Others: none.

98 Kernel User’'s Manual, Version 1.0

4.13. Time Management

The abstraction of time permeates the entire Kernel. Time comes in two kinds: relative time (the
Kernel-exported type elapsed_time) and absolute time (the Kernel-exported type epoch_time).
All Kermel primitives that may block take a timeout parameter of either kind (for wait, see Section
4.8.2.5, for claim, see Section 4.11.2.1, for send_message_and_wait, see Section 4.7.2.2, for
receive_message, see Section 4.7.2.3, for synchronize, see Section 4.13.2.3). Alarms may be
set to expire in terms of both kinds of time (see Section 4.12.2.1). The Kernel's overall view of
time is described in Section 4.2.

4.13.1. Introduction
The time management capability comprises the following packages:

1. Generic_time_management, time_management

4.13.1.1. Purpose

The time_management package exports subprograms to: adjust the elapsed time counter, adjust
the epoch time counter, synchronize both elapsed and epoch times across the entire Kernel
network, and obtain the time that has elapsed since the Kemnel on this processor initialized.

4.13.1.2. Mechanism -

The Kernel primitive adjust_elapsed_time is provided to adjust the elapsed time counter. This is
to be used when one processor’s local clock has drifted. This has the effect of changing pending
delays of either kind, since increasing the number of elapsed ticks makes the machine think both
that it has been running longer and that it is later in the day.

The Kernel primitive adjust_epoch_time is provided to adjust the epoch time. This is to be used if
it is discovered that the original time setting was incorrect or needs to be adjusted (e.g., if the
application needs to take daylight savings time into account). This has the effect of changing any
pending delay-until actions, since increasing the epoch makes the machine think it is later in the
day but does not change how long it has been running.

The Kernel primitive synchronize is provided to synchronize time across the entire network (both
elapsed and epoch time).

The Kernel primitive read_clock is provided to obtain the elapsed time on the invoking processor.

4.13.2. Subprograms

4.13.2.1. Adjust_elapsed_time

This primitive allows the application to increment or decrement the current local eiapsed time by a
specified amount. This primitve may be invoked by any Kernel process any time after
initialization. This affects pending delays expressed in terms of both elapsed_time and
epoch_time.

Kernel User’'s Manual, Version 1.0 99

Invocation

time management.adjust_elapsed_time
(
adjustment => five seconds

);

Conditions for Blocking
This procedure does not block.

4.13.2.2. Adjust_epoch_time

This primitive allows the application to increment or decrement the current local epoch time by a
specified amount. This primitive may be invoked by any Kernel process any time after
initialization. This affects pending delays expressed only in terms of epoch_time.

invocation

time management.adjust_epoch_time
(

):

new_epoch_time => time globals.base_time + one_hour

Conditions for Blocking
This procedure does not biock.

4.13.2.3. Synchronize

This primitive forces all local processor clocks on Kernel devices to synchronize time with the
local clock on the invoking processor. This primitive may be invoked by any Kernel process any
time after initialization.

A timeout of one of two kinds is specified:

o Timeout_after - a relative time before which the Kernel guarantees that the ciocks
will be synchronized; or

o Timeout_at - an absolute time at which the Kernel guarantees that the clocks will be
synchronized.

A timeout of zero or some previous time prevents the calling process from blocking; the
synchronization does not occur.

An optional resumption_priority that takes effect when the invoking process becomes unblocked
may also be specified.
The postconditions of this primitive are:

o If it completes successfully, ail ciocks are synchronized.

o I it terminates with an error, the exact state of network time is not known.

100 Kernel User's Manual, Version 1.0

invocation
There are two forms of this primitive: one for an elapsed_time timeout; one for an epoch_time
timeout.

time management.synchronize

(
timecut_after => five_ seconds

):

time management.synchronize

(
timsout_at => time globals.base time + five_ seconds
resumption_priority => 1

):

Conditions for Blocking
This procedure does not block.

4.13.2.4. Read_clock
This primitive reads the local processor clock and returns the elapsed time. This primitive may be
invoked by any Kernel process any time after initialization.

invocation

running time := time management.read clock;

Conditions for Blocking
This procedure does not block.

4.13.3. Related Information

Any of these subprograms may be invoked from an interrupt service routine.

4.13.3.1. Exported Constants
None.

4.13.3.2. Exported Types
None.

4.13.3.3. Exported Data Structures
None.

4.13.3.4. Referenced Constants
1. Current_process_priority - used for parameters; see Section 4.3

Kernel User's Manual, Version 1.0 101

4.13.3.5. Referenced Types
1. Elapsed_time - used for parameters; see Section 4.2
2. Epoch_time - used for parameters; see Section 4.2
3. Priority - used for parameters; see Section 4.3

4.13.3.6. Relevant Generic Parameters
Error checking: see Section C.4.

Others: none.

4.14. Timeslice Management

4.14.1. Introduction
The timeslice management capability comprises the following packages:

1. Generic_timeslica_management, timeslice_management

4.14.1.1, Purpose

The timeslice_management package supports round-robin execution of processes of the same
priority. Processes voluntarily indicate whether or not they participate in timeslicing by enabling
or disabling their preemption (see Sections 4.6.2.2 and 4.8.2.3); by default, processes do
participate.

4.14.1.2. Mechanism

Package timeslice_management provides the capability to set the processor-wide timeslice
quantum via the Kernel primitive set_timeslice, and the capability to enable and disable
round-robin execution of processes at the same priority level via Kernei primitives
enable_time_slicing and disable_time_slicing respectively.

Timeslice Model

The modei used by the Kernel is that processes of equal priority that are participating in timeslice
processing are allocated a quantum of time in which to execute. The length of this timeslice
quantum is set via set_timesfice. [f a timesliced process biocks, it relinquishes the rest of its
timeslice, allowing another process at the same priority level and also participating in timeslice
processing to execute. If an interrupt occurs, however, that time is included as part of the
process’s allocated timeslice quantum.

4.14.2. Subprograms

4.14.2.1. Disable_time_slicing

This primitive disables round-robin, timeslice scheduling. This primitive may be called by any
Kernel process at any time after initialization. After execution of this primitive, scheduling is
purely priority-based preemption. Appendix D provides the details of this algorithm.

102 Kernel User's Manual, Version 1.0

invocation

timeslice _management.disable_time slicing:;

Conditions for Blocking
This procedure does not biock.

4.14.2.2. Enable_time_slicing

This primitive enables round-robin, timeslice scheduling among processes of equal priority. This
primitive may be called by any Kernel process at any time after initialization. After execution of
this primitive, scheduiing mingles the pure priority preemption scheduling with timeslice
scheduling. Appendix D provides the details of this algorithm.

invocation

timeslice management.enable_time slicing;

Conditions for Blocking
This procedure does not block.

4.14.2.3. Set_timeslice
This primitive sets the timeslice quantum for the processor. This primitive may be called by any
Kernel process at any time after initialization.

There is no Kernel-imposed limitation on the maximum length of a timeslice quantum; however,
there is a Kernel-imposed minimum. This is set via the tailoring parameter
minimum_slice_time_value. The actual, reasonable value to use as the parameter to
set_timeslice requires analysis of the application requirements, as well as the Kernel's
performance. See Section C.2.3 for an illustration of the analysis required.

invocation

timaslice management.set_timeslice
(

quantum => time globals.milliseconds (100)
):

Conditions for Blocking
This procedure does not biock.

4.14.3. Related Information
Any of these subprograms may be invoked from an interrupt service routine.

Kernel User’'s Manual, Version 1.0 103

4.14.3.1. Exported Constants

Minimum_slice_time
The minimum amount ot time that may be specified as a timeslice interval
Set via a tailoring parameter; see Section C.2.3

There are no representation specifications relevant to any of these constants other than those of
their base types.

4.14.3.2. Exported Types
None.

4.14.3.3. Exported Data Structures
None.

4.14.3.4. Referenced Constants
None.

4.14.3.5. Referenced Types
1. Elapsed_time - used for parameters; see Section 4.2

4.14.3.6. Relevant Generic Parameters
Error checking: see Section C.4.

Others: none.

4.15. Index of Kernel Names

This section contains two tables providing a quick index to Kernel names. The first table is sorted
alphabetically by name (of subprogram, exception, type, constant, data structure), and for each
name, the exporting package is given, along with the section in this document where more
information may be found. The second table contains the same information sorted by exporting
package first, then the names exported by that package, and the <emel User’'s Manual section
reference.

Index of Kernel Names
Name Exporting Package Section
adjust_elapsed_time time_management 413
adjust_epoch_time time_management 4.13
alarm_expired alarm_management 4.12
allocate_device_receiver communication_management | 4.7
arithmetic operators: "+," *-,* **," */" time_globals 4.2
base_time time_globals 42
bind_interrupt_handier interrupt_management 410
bits_per_byte hardware_interface 4.1
104 Kernel User’s Manual, Version 1.0

Index of Kernel Names

Name Exporting Package Section
bus_address network_globals 44
byte hardware_interface 4.1
cancel_alarm alarm_management 412
claim semaphore_management 4.11
comparison operators: "<,” "<=," "> " ">=" | time_globals 42
configuration_table network_configuration 4.4
create_elapsed_time time_globals 4.2
create_epoch_time time_globals 4.2
create_process process_managers 4.6
current_process_priority schedule_types 43
declare_process process_managers 46
default_preemption schedule_types 4.3
default_priority schedule_types 4.3
defauit_process_state schedule_types 43
device_name_type process_managers_globais |4.6
die process_attribute_modifiers |[4.8
disable interrupt_management 4.10
disable_time_slicing timeslice_management 4.14
elapsed_time time_globals 42
enable interrupt_management 410
enable_time_slicing timeslice_management 414
enabled interrupt_management 410
epoch_time time_globals 42
first_bus_address network_globals 44
get_process_preemption process_attribute_readers 49
get_process_priority process_attribute_readers 49
highest_priority schedule_types 43
how_to_handie_message_queue_overtiow | process_managers_globais | 4.6
hw_address hardware_interface 4.1
hw_bits8 hardware_interface 41
hw_bits8_ptr hardware_interface 4.1
hw_byte hardware_interface 41
hw_byte_ptr hardware_interface 4.1
hw_duration hardware_interface 41

Kernel User's Manual, Version 1.0

105

Index of Kernel Names

Name Exporting Package Section
hw_integer hardware_interface 4.1
hw_long_integer hardware_interface 4.1
hw_long_natural hardware_interface 4.1
hw_long_positive hardware_interface 4.1
hw_natural hardware_interface 4.
hw_positive hardware_interface 4.1
hw_string hardware_interface 4.1
initialization_complete processor_management 4.5
initialize_Master_processor processor_management 45
initialize_subordinate_processor processor_management 4.5
integral_duration time_globais 42
interrupt_condition interrupt_globals 4.10
interrupt_name interrupt_globals 4.10
interrupt_owner interrupt_globals 410
interrupt_source interrupt_globals 4.10
interrupt_state interrupt_globals 4.10
interrupt_table interrupt_giobals 410
interrupt_table_entry interrupt_globals 410
interrupt_table_type interrupt_globals 4.10
interrupt_vector interrupt_globals 4.10
kil process_attribute_modifiers | 4.8
last_bus_address network_globals 4.4
longword hardware_interface 4.1
lowest_priority _ schedule_types 43
maximum_length_of process_name process_managers_globais |4.6
maximum_length_of_processor_name network_configuration 44
maximum_message_length communication_globals 47
message_length_type communication_giobais 4.7
message_tag_type communication_globais 4.7
microseconds time_globais 42
milliseconds time_globais 42
minimum_slice_time timeslice_management 4.14
NCT network_configuration 4.4
NCT_entry network_configuration 44

106

Kernel User’'s Manual, Version 1.0

Index of Kernel Names

Name Exporting Package Section
name_of process_attribute_readers 49
null_address network_globals 44
nuli_handler interrupt_globals 410
null_hw_address hardware_interface 4.1
number_of_nodes network_configuration 4.4
preemption schedule_types 4.3
priority schedule_types 43
process_index_type network_globais 4.4
process_name_type process_managers_giobals | 4.6
process_state schedule_types 4.3
processor_identifier network_globais 4.4
read_clock time_management 4.13
receive_message communication_management | 4.7
release semaphore_management 411
seconds time_globals 4.2
send_message communication_management | 4.7
send_message_and_wait communication_management | 4.7
set_alarm alarm_management 4.12
set_process_preemption process_attribute_modifiers | 4.8
set_process_priority process_attribute_modifiers | 4.8
set_timeslice timeslice_management 414
simulate_interrupt interrupt_management 410
synchronize time_management 413
ticks_per_second Kernei_time 42
to_Ada_duration time_globals 42
to_Kernel_time time_globals 4.2
to_elapsed_time time_globals 4.2
to_epoch_time time_globals 42
to_hw_address hardware_interface 4.1
to_hw_bits8 hardware_interface 41
to_hw_bits8_ptr hardware_interface 4.1
to_hw_byte_ptr hardware_interface 4.1
wait process_attribute_modifiers |4.8
who_am_| process_attribute_readers 49

Kernel User's Manual, Version 1.0

107

index of Kernel Names

Name Exporting Package Section
word hardware_interface 4.1
zero_elapsed_time time_globals 4.2
zero_epoch_time time_globals 42

108

Kernel User’'s Manual, Version 1.0

This index of Kernel names is sorted by the exporting package, then the names exported by the
package, and the Kernel User's Manual section reference.

index of Kemel Exporting Packages

Exporting Package Name Section
alarm_management alarm_expired 412
alarm_management cancel_alarm 4.12
alarm_management set_alarm 412
communication_globals maximum_message_length 4.7
communication_globails message_length_type 4.7
communication_globals message_tag_type 4.7
communication_management | allocate_device_receiver 4.7
communication_management | receive_message 4.7
communication_management | send_message 4.7
communication_management | send_message_and_wait 4.7
hardware_interface bits_per_byte 4.1
hardware_interface byte 4.1
hardware_interface hw_address 4.1
hardware_interface hw_bits8 4.1
hardware_interface hw_bits8_ptr 4.1
hardware_interface hw_byte 41
hardware_interface hw_byte_ptr 4.1
hardware_interface hw_duration 4.1
hardware_interface hw_integer 4.1
hardware_interface hw_long_integer 4.1
hardware_interface hw_long_natural 4.1
hardware_interface hw_long_positive 4.1
hardware_interface hw_natural 4.1
hardware_interface hw_positive 4.1
hardware_interface hw_string 4.1
hardware_intertace longword 4.1
hardware_interface null_hw_address 4.1
hardware_intertace to_hw_address 4.1
hardware_interface to_hw_bits8 4.1
hardware_interface to_hw_bits8_ptr 4.1
hardware_interface to_hw_byte_ptr 4.1
hardware_interface word 4.1

Kernel User's Manual, Version 1.0

109

Index of Kemel Exporting Packages
Exporting Package Name Section
interrupt_globais interrupt_condition 4.10
interrupt_globals interrupt_name 4.10
interrupt_globals interrupt_owner 410
interrupt_globals interrupt_source 410
interrupt_globals interrupt_state 4.10
interrupt_globals interrupt_table 4.10
interrupt_globais interrupt_table_entry 410
interrupt_globais interrupt_table_type 4.10
interrupt_globais interrupt_vector 410
interrupt_globals nuil_handier 4.10
interrupt_management bind_interrupt_handler 410
interrupt_management disable 4.10
interrupt_management enable 4.10
interrupt_management enabled 4.10
interrupt_management simulate_interrupt 4.10
Kernel_time ticks_per_second 42
network_configuration configuration_table 44
network_configuration maximum_length_of_processor_name 44
network_configuration NCT 4.4
network_configuration NCT_entry 44
network_contiguration number_of_nodes 4.4
network_globals bus_address 44
network_globals first_bus_address 44
network_gilobals last_bus_address 4.4
network_giobals null_address 44
network_globals process_index_type 4.4
network_giobals processor_identifier 44
process_attribute_modifiers | die 48
process_attribute_modifiers | kiil 48
process_attribute_modifiers | set_process_preemption 4.8
process_attribute_modifiers | set_process_priority 48
process_attribute_modifiers | wait 48
process_attribute_readers get_process_preemption 49
process_attribute_readers get_process_priority 49

110

Kemei User's Manual, Version 1.0

Index of Kernel Exporting Packages

Exporting Package Name Section
process_attribute_readers name_of 49
process_attribute_readers who_am_| 49
process_managers create_process 46
process_managers declare_process 4.6
process_managers_globals | device_name_type ‘|46
process_managers_globals | how_to_handle_message_queue_overflow | 4.6
process_managers_globals | maximum_length_of_process_name 4.6
process_managers_globals | process_name_type 4.6
processor_management initialization_complete 45
processor_management initialize_Master_processor 45
processor_management initialize_subordinate_processor 4.5
schedule_types current_process_priority 4.3
schedule_types defauit_preemption 43
schedule_types detault_priority 4.3
schedule_types default_process_state 4.3
schedule_types highest_priority 43
schedule_types lowest_priority 4.3
schedule_types preemption 43
schedule_types priority 4.3
schedule_types process_state 4.3
semaphore_management claim 4.11
semaphore_management release 4.11
time_globals arithmetic operators: “+," "-," ™" "/ 42
time_globais base_time 42
time_giobals comparison operators: "<,” "<=." ">," ">=" | 4.2
time_globals create_elapsed_time 42
time_globals create_epoch_time 4.2
time_globals elapsed_time 42
time_globais epoch_time 4.2
time_globals integral_duration 4.2
time_gilobals microseconds 42
time_globals milliseconds 42
time_globais seconds 42
time_globals to_Ada_duration 4.2

Kernel User’'s Manual, Version 1.0

m

Index of Kernel Exporting Packages
Exporting Package Name Section
time_globals to_Kernel_time 42
time_globals to_elapsed_time 42
time_globals to_epoch_time 4.2
time_globals zero_elapsed_time 4.2
time_globals zero_epoch_time 4.2
time_management adjust_elapsed_time 413
time_management adjust_epoch_time 4.13
time_management read_clock 4.13
time_management synchronize 413
timesiice_management disable_time_slicing 4.14
timeslice_management enable_time_slicing 4.14
timeslice_management minimum_gslice_time 414
timeslice_management set_timeslice 4.14
. 4,16. Summary of Example

This section expands the example that was begun in Chapter 3. Each of the Kernel primitives in
Chapter 4 presented an example invocation of the appropriate Kernel primitive. These calls have

been collected into the bodies of processes Merlin, Arthur, and Vivian. When this example is

completed in the next version of this document, these bodies will be documented to indicate the
behavior of the three processes when executing on the Kernel and, thus, may be used as one
sample test case for ensuring correct behavior of the Kernel after installation.

112

Kernei User's Manual, Version 1.0

procedure make NCT;

with hardware_interface;
with network configuration;
with process_table;
procedure make NCT is

begin

network configuration . NCT :=

(

(logical_name

physical address
Kernel_device
needed_to_run
allocated process_ID
initialization_ order
initialization_complate
),

(logical_name

physical address
Kernel davice

needed _to_run
allocated process_ID
initialization oxder
initialization_complete
),

(logical_name

physical address

Kernel device

needed to_run
allocated_process_ID
initialization_oxder
initialization_complate

=)
=>
=>
=>
=)
=>
=

=>
=
=>
=>
>
=>
=>

=>
=>
=>
=>
=>
=>
=>

"processor a ",

16#014,
true,
t:u.,

process_table.null_process,

i,
false

"processor b ",

164024,
true,
true,

process_table.null process,

2,
false

"device
16#03#%,
false,
false,

process_table.null procass,

3,
false

with time globals;
package timeouts is

function "+" (left, right :

renames time globals."+";

time globals.elapsed_time)
return time globals.elapsed time

Master_base_time : constant time globals.epoch time :=
time globals.create_epoch_time

(
day => 0,
second => 0.0
):

Master_timeout : constant time globals.elapsed time :=
time_globals.create_elapsed time

Kernel User's Manual, Version 1.0

113

day => 0,
second => 5.0
)

subordinate_timecut : constant time _globals.elapsed time :=
time globals.seconds

(
an_integral_duration => S5
):

init_complete_timeout : constant time globals.elapsed_time :=
Master_timsout + subordinate_timeout;

end timeouts;

- v - - - - - - - - Y . - - - e - -

with harxdware interface:;
with process managers_globals;
package application_unique_names is

arthur : process_managers_globals.process name type :@:=
".nhur ” ’.

device : process _managers_globals.device_name type :=
"device . : ";

merlin : process_managers_globals.process_name type :=
"marlin "

vivian : process_managers globals.process_name type :=
"wvivian ";

end application_unique_ names;

with communication globals;

with hardware_interface;

with process table;

package processor_a_comm area is

merlin_ID : process_table.process_identifier;
arthur_ID : process_table.process_identifier:;
vivian ID : process_table.process_identifier;

type_l_massage_tag : constant
communication_globals.message_tag type := 1;
type_l1_message_length : constant
communication_globals.message length_type := 10;
type_l1 _message_text : constant
hardware_interface.hw_string
(1 .. positive (type_l_message_length)) :=
utyp. 1 ugn ;

114 Kernel User’s Manual, Version 1.0

type_2_message_tag : constant
communication _globals.message tag_type := 2;
tyre_2_message_length : constant

communication_globals.message_length type := 20;

type_2_message_text : constant
hardware_interface.hw_string
Q.. poaitiv. (type_2 masag. length)) :=
"type 2 message ;
type_2a_message_text : constant
hardware_interface.hw_string
(r .. poaitin (type_2 masagn length)) :=
"type 2a message H
type_2b message_text : constant
hardware_interface.hw_string
Q.. poai.tiv. (type_2 mssag. _length)) :=
"type 2b message "

arthur_max incoming message length : constant positive
merlin max outgoing message_length : constant positive

end processor_a_comm area;

with coomunication_globals;

with communication management;
with hardware_interface;

with process_table;

with time globals;

with processor_a comm area;
procedure arthur_ process_code is

local_receive_ buffer : hardware_interface.hw_string

(

:= 100;
:= 100;

1 .. processor_a_comm area.arthur max incoming message_length

) := (others => ’ ’);

local_length : communication _globals.message_length_type:

local_messages_lost : Boolean := false;
local_sender : process_table.process_identifier;

local_tag : communication_globals.message_tag_type;

begin
-=- do arthur’s algorithm
receive_loop:
for 1 in 1 .. 4 loop
case i is

when 1 | 4 =>
communication_management.receive_message
(

sender => local_sender,

message_tag => local_tag,

massage_ length => local_length,

message_buffer => hardware_interface.hw_address

(local_receive_buffer’address),

Kernel User’'s Manual, Version 1.0

115

buffer_size =>
communication globals.message_length_type
(processoxr_a_comm area.
arthur max incoming message_ length),
resumption_priority => 3,

massages_lost => local_messages_lost

):

local_receive buffer := (others => ' ');

when 2 =>

communication management.receive_message

(
sendar => local_sender,
message_tag => local_tag,
message_length => local_length,
message_buffer => hardware_interface.hw_address

(local_receive buffer’address),

buffer_size =>

communication globals.message_length_type
(processor_a_comm area.
arthur_max incoming message_length),

timeocut_after => time globals.milliseconds (1_000),
messages_lost => local_messages_lost
):
local_receive buffer := (others => ' ')
when 3 =>

communication_management.receive_message
(

sendar => local_sender,

massage_tag => local_tag,

massage_length => local_length,

massage_buffer => hardware_interface.hw_address
(local_receive buffer’address),

buffer_size =>

coomunication_globals.message length_type
(processor_a_comm area.
arthur max incoming message_length),

timecut_at =>
time_globals.create_epoch time (0, 1_000.0),
massages_lost => local_messages lost
):
local_receive buffer := (othexs => ' ');
end case;
local receive_buffer := (others => ' ’');

end loop receive_loop;

null;
end arthur_ procass_code;

116 - Kernel User's Manual, Version 1.0

with communication management;
with hardware_intezface:

with time globals;

with processor_a_comm area;
procedure merlin process_code is

dumny : hardware_interface.hw_long_integer :=
hardware intnztac. hw_long_ integer’first;

function "+" (left, right : hardware_interface.hw_long_integer)
return hardware_interface.hw_long_integer
renamas hardware_interface."+";

local outgoing message buffer : hardware_interface.hw_string

(

1l .. processor_a_comm area.merlin max outgoing message_length
) := (othexs => ' ’);

begin
~- do marlin’s algorithm

busy_ wait_to_let_vivian pend on_receive:
for i in 1 .. 10_000 loop
for j in 1 .. 30_000 loop
dumny := dummy + 1:
end loop:;
end loop busy wait_to_let_vivian pend on_raceive;

local_outgoing massage buffer
(1 .. positive (processor_a _comm area.type_l_message_length)) :=
Processor_a comm area.type 1 message text;

communication_management.send message
(
receiver => processor_a_ comm area.vivian ID,
message_tag => processor_a_comm area.type 1 message tag,
message_length => processor_a_comm area.type_l_massage_length,
message_text =>

hardware_interface.hw_address

(local_outgoing message_buffer’address)

):

communication management.send message
(
receiver => processor_a_comm area.arthur ID,
message_tag => proCessor_a_comm_area.type_l_message_tag,
message_length => processor_a comm area.type_l_ message_length,
massage_text =>

hardware_interface.hw_address

(J.OCI]. . _outgoing 1 mssaqc buffer’ address)

):

local_outgoing message_buffer := (others => ' ');

Kernel User’'s Manual, Version 1.0 17

- - - . - -

local_outgoing message buffer
(1 .. positive (processor_a_comm area.type 2 message_length)) :=
processor_a_comm area.type_2_message_text’

communication management.send message_and wait
(

receiver => processor_a_comm area.arthur ID,
message_tag => processor_a_comm area.type_2 message tag,
message_length => processoxr_a comm area.type_2 message_length,
massage text =>

hardware_ interface.hw_address
(local outgoing message_buffaer’address),
resumption_priority => 2
)i

local_outgoing massage buffer := (others => ' ');

local_outgoing message buffer

(1 .. positive (processor_a comm area.type 2 message_length)) :=
processor_a_comm area.type_2a_massage_text;

communication management.send message and wait

(

receiver => processor_a_comm area.arthur_ ID,
message_tag => processor_a_comm area.type_2 message_tag,
message_length => processor_a_comm area.type_2 massage_length,
message_text =>

hardware interface.hw_addraess
(local_outgoing message_buffer’adrdress),
timeout_after => time globals.milliseconds (100)
):

local_outgoing message buffer := (others => ' ’');

local_outgoing message_buffer
(1 .. positive (processor_a comm area.type 2 message_length)) :=
processor_a comm_area.type_2b message_text;

communication_management.send message and wait
(

receiver => processor_a_comm area.arthur_ ID,
message_tag => Processor_a_comm area.type_2 message_tag,
massage_length => proceasor_a_comm area.type_ 2 message_ length,
message_text =>

hardware_interface.hw_address
(local_outgoing message buffer’address),
timeout_at => time globals.create_epoch_time (0, 0.100),
resumption_priority => 6
):

local_outgoing message buffer := (others => ' ');

118

Kernel User’'s Manual, Version 1.0

null;
end marlin process_code;

- - - - S - D YD D D D - - T Y D D - - - S S WD P S > . . -

with hardware_interface:

with process_managers;

with process _managers_globals;
with processor management;
with schedule_types:

with application_unique_names:
with arthur process_code;
with merlin process_code;

with processor_a_comm area;
with timeouts;

with make NCT;

procedure processor_a_Main Unit is

begin
== do any processor- and application-specific initialization

make NCT;
processor_managemant.initialize Master_processor
(
base_epoch => timeocuts.Master_base_ time,
timecut_after => timeouts.Master_timeout
);

processor_a_comm ares.merlin ID :=
Process_managers.declare_process
(
application unique_names.merlin
):

processor_a_comm area.arthur ID :=
process _managers.daclare_process
(
application unique names.arthur
):

processor_a_comm area.vivian ID :=
process_managers.declare_process

(
application_unique names.vivian

):

process managers.create_process

(
process_ID => proCcessor_a_ comm area.merlin ID,
address =>

hardware_ interface.hw_address (merlin process_code’ address),

stack_size => 4_096,
message_queue_size => 100,

Kernel User's Manual, Version 1.0

initial priority => schedule types.highest_priority,
preemptable => schedule_types.disabled
):

process_managers. craat._proceas
(

process_ID => processor_a_comm irea.arthur ID,
address =>

hardware_interface.hw_address (arthur_process_code’address),
stack_size => 2 048,

message_queue_size => 10,
initial priority => 4
):

-- complete remaining processor- and application-specific initialization

processor management.initialization_complete
(

timaocut_after => timeouts.init complete_timaout
)

end processor_a Main Unit:

with process_table;
package processor_b comm area is

merlin ID : process_table.process_identifier:;
vivian_ID : process_table.process_identifier;
device ID : process_table.process_identifier;

end processor b_comm area;

with processor b comm area;
procedure vivian process_code is
begin
-~ do vivian’s algorithm
null;
end vivian process_code;

with communication management:
with hardware_intezrface;

with process managers;

with process managers_globals;
with processor managemeant;
with application_unique_names;
with processor b comm area;
with timeouts;

with vivian process_code’

with make NCT;

procedure processor_b Main Unit is

120

Kernel User's Manual, Version 1.0

begin
-= do any processor- and application-specific initialization

make NCT;

processor_management.initialize_ subordinate_processor

(
timeout_after => timeouts.subordinate_timeout
):

processor b comm area.merlin ID :=
process_managers.declare_process
(
application_unique names.merlin
):

processor_b_comm area.device ID :=
process_managers.declare process
(
application_unique names.davice
):

processor_b comm area.vivian ID :=
process_managers.declare process
(
application_unique names.vivian

):

Process_managers.create_process

(

process_ID => processor_b comm area.vivian ID,
address =>

hardware_interface.hw_address (vivian process_code’address),
stack_size => 8_096,

message_gqueue_size => 1:000,
initial priority =>1
):

communication management.allocate_device_receiver
(E

receiver_process_ID => processor b comm area.vivian ID,
davice_ID => 3

)i

-=- complete remaining processor- and application-specific initialization
processor_management.initialization complete

: timeout_ after => timeouts.init complete_timeocut

end processor b Main Unit;

Kernel User’'s Manual, Version 1.0 121

122

Kernel User’'s Manual, Version 1.0

5. Kernel Data Structures

This section describes those Kernel data structures that are accessed directly by the application
program, built as part of the initialization process, or consume storage space in response to calls
of Kernel primitives. This includes:

¢ Network Configuration Table (NCT)
+ Semaphores

* Process Table

» Datagram Queues

« Time Event Queue

¢ Process Index Table

¢ Interrupt Table

For each of these data structures, the following information is presented:

1. The exporting package or packages,

2. The details of the structure and organization of the data structure (garnered from
commentary in the Kernel code and the actual Kernel code definitions themselves,
along with schematic figures illustrating the data structures and the scenarios
determining that structure),

3. The initlalization requirements for that data structure, (e.g., whether the application
is required to perform it, the Kernel does it automatically),

4. Any additional allocation requirements, notably for dynamic data structures, and
S. All constraints on usage by the application or the Kernel.

The internal type Kemel_time is aiso presented in this section, as it permeates internal Kernel
data structures and functionality, and it provides the basis for the derivation of the abstractions of
Kernel time available to the application: el/apsed_time and epoch_time. The importance of
determining the suitability of the granularity of this representation in the application domain is
introduced in this section and continued in Section C.2.3.

5.1. External Data Structures

5.1.1. Network Configuration Table

The Network Configuration Table (NCT) describes the physical connectivity of each node in the
network. The application initializes the NCT, and the Kernel uses that information for network
and processor initialization and for inter-processor communication.

5.1.1.1. Exporting Package
Generic_network_configuration, network_configuration

Kernel User's Manual, Version 1.0 123

5.1.1.2. Structure

The NCT is a static data structure; it is fully defined at compile time. The NCT is an array of
NCT _entry records, indexed by a logical processor_identifier. Each NCT_entry record fully
describes the network connectivity information for one node used by the application. All nodes
have entries in the NCT: those nodes executing the Kernel and those nodes that are non-Kernel
devices.

Figure 5-1 illustrates the structure of the NCT along with the scenario it represents.
-- logical_name
- the string-valued name given by the application engineer (this is
- mapped to the device_ID - which is just an index into the NCT -
-- during initialization; once that is done, the Kernel refers to
- the processor by device_ID)
- default value:
- none

-~ this value should never change after initialization in Main Unit

-- physical_address

- the actual bus address at which the device is located; this value
- is used in the datagram packet wrapper to identify the network
-~ node that is to receive the packet containing the datagram

-- default value:
- null_address

- this value should never change after initialization in Main Unit

-- Kernel_device

-~ indication of whether or not the device is also running the Kemel
-~ (e.g., whether or not the device responds to the Kernel

- communication protocols)

- possible values:
- true (the processor is running the Kernel)
- false (the processor is not running the Kernel)

-- default value:
- true (the processor is running the Kernel)

- this value shouid never change after initialization in Main Unit

-- needed_to_run

- indication of whether or not the device must successfully complete
- the Kernel initialization protocol (i.e., always should be faise

-- when Kernel_device is false)

-- possible values:

- true (the device does participate in the initialization

- protocol)

faise (the device does not participate in the initialization

124 Kernel User’'s Manual, Version 1.0

Scenario: Network and NCT as described in Section 3.1.4, page 40.

\ Device

|=1b r-’b A Viviarl

2

Processor a Processor b

Kernel User's Manual, Version 1.0

16#01# 16#02#
System Bus
SSSNSSN
N DeviceN
Devuce§ 16#03#
N
Logical Physical Kemel Needed Allocated Initialization | Initialization
Name Address Device To Run Process 1D Order Complete
"processor a" 16#014% true true nult_process 1 false
“processor b" 16#02¢ true true null_process 2 false
"device” 16#03#% faise faise null_process 3 false
Figure 5-1: Network Configuration Table Structure
125

protocol)

default value:
true (the device does participate in the initialization
protocol)

this value should never change after initialization in Main Unit

aliocated_process_ID
identitier of "surrogate process” allocated to receive messages
from the specified non-Kernel device

default value:
null_process

this value may change via a call to the Kernel primitive:
allocate_device_receiver

initialization_order
order in which the processors identified in the NCT are to be
initialized

default value:
0 (all NCT entries have the same initial value; initialization
proceeds following each entry in the NCT)

this value should never change after initialization in Main Unit

initialization_complete
indication of whether or not the initialization protocol for this
processor has been completed

possible values:
true (initialization has completed)
false (initialization has not completed)

default value:
false (initialization has not completed)

this value is set by the Kernel during initialization and shouid
never change after initialization is complete

tyre NCT_entry
is record
- logical name :
hw_string (1 .. positive (maximum length of processor_name_value));
physical_address : network_globals.bus_address :=
network_globals.null address:
Kernel_davice : boolean := true;
needed_to_run : boolean := true;
allocated process_ID : process_table.process identifier :=
process_table.null process’
initialization_order : hw_natural := 0;
initialization_complete : boolean := false;

126

Kernel User’'s Manual, Version 1.0

end record;

type configuration_table is array (
network_globals.processor_identifier range <>) of NCT entry:

NCT : configuration_table (network globals.processor_identifier
range 1 .. network globals.processor_identifier (number_of nodes));

There are no representation specifications relevant to the NCT.

5.1.1.3. Initialization
The NCT is completely allocated at application initialization time.

The application initializes the NCT as appropriate for the hardware configuration on which it is to
run. Only the following fields are initialized:

1. Logical_name

2. Physical_address

3. Kernel_device

4. Needed_to_run

5. Initialization_order (optional)

Non-Kernel devices do not participate in the Kernel initialization protocol. For each NCT entry
where the Kernel_device field is false, the needed_to_run field must also be false.

It initialization_order is specified, that value is used by the Kernel to define an order in which
processor nodes are initialized. Initialization_order is foliowed in increasing order, with nodes at
the same order value processed in an order determined by the Kernel. The initialization_order
field for the NCT entry representing the Master processor must have a lower value than the
initialization_order field for all other NCT entries where needed_to_run is true. If the
needed_to_run field is false, the initialization_order field is not used.

The Ada Main Unit that configures each processor node requires an NCT. To ensure
network-wide consistency, an application could define a single NCT package that is imported into
each Main Unit across the entire network.

5.1.1.4. Additionai Allocation Requirements

No additional allocation is required. The maximum size of the NCT is constrained by the tailoring
parameters: number_of_nodes_value (the number of entries in the NCT) and
maximum_length_of_processor_name_value (the length of the processor name stored in the
NCT).

Kernel User's Manual, Version 1.0 127

5.1.1.5. Constraints on Usage

The NCT is a read-only data structure to the application. Once initialized by the application, the
application should treat the NCT as a constant. If the application modifies any fields within the
NCT during execution, correct execution cannot be ensured, as modification would violate the
integrity of the Kernel.

5.1.2. Semaphores
The Kernel provides the traditional Boolean ("Dykstra“) semaphore facility, slightly revised to be
consistent with the overall philosophy of the Kernel primitives.

5.1.2.1. Exporting Package
Generic_process_table, process_table

5.1.2.2. Structure
A semaphore is a data object, and as such it can be a component of a larger data structure.

In abstract terms, a semaphore consists of two components: a count
(number_of_waiting_processes) and a queue (queue_head). The count records the number of
processes waiting to access the semaphore; the waiting processes themselves are enqueued in
FIFO order on the queue maintained at queue_head. The semaphore type does not have any
components whose size or characteristics need to be determined at execution time.

The initial state of a semaphore is free, which is represented by an empty queue and a count
value of -1. When a semaphore has been claimed, the queue remains empty, but the count is
zero. If another process tries to claim the semaphore, the count is incremented, and the process
is enqueued.

if a process claims a semaphore, that process owns the semaphore, and any subsequent
process is blocked on the claim request until the owning process releases the semaphore.

Figure 5-2 illustrates the actual concrete structure of a semaphore along with the scenario it
represents.

-- the information maintained for each semaphore is:

-- number_of_waiting_processes

) the number of processes in the waiting queue for the semaphore
- default value:

- -1 (there are no processes waiting and the semaphore is free;
- the value 0 indicates that the semaphore is claimed and

- there are no processes waiting for it; any positive value

- indicates that the semaphore is currently claimed and there
-- are positive value number of processes waiting for the

- semaphore

-- this value is incremented via a call to the Kernel primitive:
-- claim and decremented via a call to the Kernel primitive: release;
- otherwise, this value should never change

128 Kernel User's Manual, Vaersion 1.0

Scenario:

The Main Unit on processor a deciares three semaphores: S1, S2, and S3

number_of_waiting_processes

-1

-1

-1

queue_head
nuill_process null_process null_process
sema_previously_claimed
null null null
head head head
S1 82 S3

Figure 5-2: Semaphore Structure - Part 1 of 8

Kernel User’'s Manual, Version 1.0

129

-

Scenario:

Process Merlin claims S1

process_table

\\- prev

process_{D| next

=

NS

@

process_attributes

schedule_attributes

e

communication_
attributes
pending_activity_
attributes
semaphore_attributes semaphore_attributes
sema_last_claimed sema_last_daime_i
/ semaphore_name semaphore_name
next_process_ _| | _next_process_
— pending_claim d pending_claim
- previous_process_ previous_process_
pending_claim — | pending_claim

tool_interface__ attributes

process_information_
record for: Merlin

" ..|a-J'
el

process._information_
record for: Arthur

I process_information_
record for: Vivian

l

number_of_waiting_processes
0

-1

-1

_/

Figure 5-2: Semaphore Structure - Part 2 of 8

queve_head
null_process null_process nuil_process
sema_previously_claimed
null null null
head head head
S1 S2 83

130

Kernel User’'s Manual, Version 1.0

Scenario:
Process Meriln claims S2 after S1
process_table

\‘I prev | process_ID| next

s |

process_attributes

schedule_attributes

communication_
attributes

pending_activity _
attributes

semaphore_attributes

ema_last_claimed

semaphore_name

next_process_
pending_claim

previous_process_
pending_claim —

tool_interface_ attributes

procass_information_
record for: Meriin

s

N]

semaphore_attributes

sema_last_claimed

semaphore_name

|_next_process_
pending_claim

e

previous_process _

—1 pending_claim

telhe,

process_information_
record for: Arthur

l

| process_information_
record for: Vivian

o||</

N

number_of_waiting_processes
0 0 -1
queue_head
null_process null_process null_process
sema_previously_claimed
n vL null
head head head
S1 S2 S3
Figure 5-2: Semaphore Structure - Part 3 of 8
Kernel User's Manual, Version 1.0 131

Scenario:
Process Merlln claims S3 after S2 after S1

process_table

N

s |

next

process_[D

process_attributes

schedule_attributes

communication__
attributes

pending_activity_
attributes

semaphore_attributes

ma_last_claimed

emaphore_name

next_process_
pending_claim

previous_process_
pending_claim —

tool_interface_ attributes

|
s
e,

process_information_
record for: Merlin

=

rprocess_information_ j

semaphore_attributes

sema_last_claim_ei

semaphore_name

|_next_process_
pending_claim

previous_process_
pending_claim

.

process_information_
record for: Arthur

record for: Vivian

number_of_waiting_processes
0] 0
queue_head
nuil_process null_process null_process
sema_previously_claimed
head head head
\ S1 S2 S3

Figure 5-2: Semaphore Structure - Part 4 of 8

132

Kernet User’'s Manual, Version 1.0

Scenario: Process Arthur requests to claim S3 after
Process Meriin claims S3 after S2 after S1

process_table

\-.[prev | process_ID} next

£ | S N

- | process_information_ |
process_attributes record for: Vivian

schedule_attributes

communication_
attributes

pending_activity_
attributes

semaphore_attributes semaphore_attributes

_sema_last_claimed sema_last_claimed]

/ semaphore_name semaphore_name l

next_process_ _ | |_next_process_ \
pending_ctaim ~ pending_claim
previous_process_ _{ previous_process_
pending_claim — — A pending_claim
tool_interface_ attributes _{ [
process_information_ = process_information_
record for: Merlin record for: Arthur
number_of_waiting_processes
0 0 1
queue_head
nuli_process ~— null_process
sema_previously_claimed

@uN

n?L T_// \/
head head head

\ S1 S2 S3

Figure 5-2: Semaphore Structure - Part 5 0f 8

Kernel User's Manual, Version 1.0 133

L
e

Scenario:

Processor a has three local processes: Merlin and Arthur (as in all the examples) and Lancelot (added to illustrate

semaphore waiting queues). Lancelot claims S1.

process_table

-

prev | process_ID} next

|

process_attributes

scheduie_attributes

communication_
attributes

pending_activity_
attributes

semaphore_attributes

sema_last_claimed

semaphore_name

next_process_
pending_claim

previous_process_
pending_claim —

tool_interface_ attributes

process_ : ~‘ormation_
record {or. Meriin

st

semaphore_attributes

sema_last_claimed

semaphore_name

|_next_process_

pending_claim 1

previous_process_
pending_claim

et

process_information_
record for: Arthur

number_of_waiting_processes
0

queue_head
null_process

sema_previously_claimed

nuil

head

S1

N

]

dof = =m =m

semaphore_attributes

sema_last_claimed |

semaphore_name

|| next_process_

pending_claim

previous_process_

- pending_claim

e,

process_information_
record tor: Lanceiot

Figure 5-2: Semaphore Structure - Part 6 of 8

134

Kernel User's Manual, Version 1.0

e G N e

L--

Scenario:

l Process Arthur requests to claim S1 after process Lancelot claims S1.

process_table

process_|ID

|

next

\-c[prav

4

process_attributes

schedule_attributes

communication_
attributes

pending_activity_
attributes

semaphore_attributes

sema_last_claimed

semaphore_name

next_process_ _|
pending_ctaim

previous_process__
pending_claim —

tool_interface_ attributes

N

process_information_
record for: Merlin

N

semaphore_attributes

sema_last_claimed

semaphore_name
—

|_next_process_

pending_claim

| g

pending_claim

previous_process_ |

et

'\

process_information_
record for: Arthur

number_of_waiting_processes
1

queue_head

-

sema_previously_claimed

null

head

semaphore_attributes

sema__last_claimed_4

semaphore_name

| next_process_
pending_claim

P

previous_process_
pending_claim

TPl

process_information_
record for: Lancelot

S1

Figure 5-2: Semaphore Structure - Part 7 of 8

Kernel User's Manual, Version 1.0

135

Scenario:

Process Meriin requests to claim S1 after process Arthur requests to claim S1 after process Lancelot claims S1.

process_table

-

prev|{ process_|D| next

s |

N]

process_attributes

schedule_attributes

ala

communication_
attributes

pending_activity_
attributes

semaphore_attributes

sema_last_claimed

semaphore_name
-

next_process_
pending_claim

semaphore_attributes

sema_last_claimed

semaphore_name

——

next_process_

previous_process_
pending_claim —

pending_claim

previous_process_

—— | pending_claim

tooi_interface_ attributes

{

process_information_
record for: Merlin

process._information_
record for: Arthur

number_of_waiting_processes
2

queue_head

/
—

sema_previously._claimed

P\

/

semaphore_attributes

sema_last_claimed |

semaphore_name

| next_process_
pending_claim

—

il e ae mm

previous_process_

~— | pending_claim

T

process_information_
record for: Lancelot

head

S1

Figure 5-2: Semaphore Structure - Part 8 of 8

136

Kernel User’'s Manual, Version 1.0

e ee————

-- queue_head
- the first process waiting in the queue for this semaphore

- default value:
-- nuli_process (there are no processes waiting in the queue for
- this semaphore)

-- this value may be set via a call to the Kernel primitive: claim

-- (if the call is the first process waiting for the semaphore)

- and reset via a call to the Kernel primitive: release (if the call

- is for the last process waiting for the semaphore); otherwise,

-- this value should never change

-- sema_previously_claimed

- the last semaphore claimed by the process that owns this semaphore
- (i.e., if process P claims semas s1 and s2 in that order, then this

-~ component of s2 head will designate s1

-- default value : null_semaphore
-- The purpose of this component is to chain together in LIFO order
-- all semas currently owned by a process.

type semaphore
is recoxd

head : semaphore_head ptr := new semaphore_head;
end record;

tyre semaphore head

is record
aumber_ of waiting processes : hw_integer := -1;
queue_head : process_identifier := null process:;
sema previously claimed : semaphore_head ptr := null;

end record;

type semaphore_head ptr is access semaphore head:
There are no representation specifications relevant to a semaphore.

The concrete data structure that implements the semaphore enforces mutually exclusive access
to a semaphore object. The Kernel primitives that manipulate semaphores claim and release
must therefore be passed their semaphore parameter by reference, which in Ada is accomplished
by passing them an access value designating the semaphore.

The semaphore concrete data structure maintains two logical pieces of information:

1. The processes waiting for this semaphore. This information is provided via the
number_of_waiting_processes and queue_head fieilds. When non-negative, the
value of number_of_waiting_processes indicates the number of entries in the list of
processes pointed to by queue_head. The queue_head points to the
process_information_record for the first process waiting for this semaphore. The
process._information_record.semaphore_attributes.next_process_pending_claim
field of this first waiting process points to the next process waiting for this

Kernel User's Manual, Version 1.0 137

semaphore, and so forth. The process_information_record.semaphore_attributes.
previous_process_pending_claim fields are linked in the reverse order. Thus, the
list of processes waiting for this semaphore is threaded through the Process Table
data structure (via the process_information_records). Figure 5-2 Part 8 illustrates
this.

2. Other semaphores currently claimed by the process claiming this semaphore. The
head of this list (i.e., the most recently claimed semaphore) is the
process _information_record.semaphore_altributes.sema_last_claimed field, which
points to the most recently claimed semaphore, and sema_previously_claimed field
of that semaphore points to the next most recently claimed semaphore, which, in
turn, points to the next most recently claimed semaphore, and so forth. Thus, the
list of semaphores claimed by this p;rocess is threaded through the semaphore
data structure. Figure 5-2 Part 4 illustrates this.

In addition, all semaphores must be correctly initialized. This can be done automatically in Ada
by declaring the semaphore object to be a record type with initialized components. These two
requirements give rise to the semaphore and semaphore_head data types.

Immediately after its declaration has been elaborated, a semaphore is in a correct initial state and
ready for use.

5.1.2.3. Initialization .

The initial value of an application-declared semaphore is free (i.e., the default value is: -1
indicating that not only are there no processes waiting for the semaphore, there are also no
claims registered for it; null_process, indicating that there are also no claims registered for it), and
null, indicating that this semaphore is not yet claimed). Initialization occurs automatically when
the semaphore is declared.

5.1.2.4. Additional Allocation Requirements

After declaration of a semaphore, no additional allocation is required. To manipulate the list of
processes waiting for any semaphore, pointers (i.e., process_identifiers) are assigned and
unassigned; no dynamic storage allocation is required.

The maximum size of any semaphore is simply the size of its threé components.

There is no way to destroy a semaphore or 1o reclaim its storage.

5.1.2.5. Constraints on Usage

Even though the semaphore is potentially a visible data structure, it should be treated as an
"abstract data type” by the application program. Knowledge of its internal structure should not be
exploited in the application program, as this may violate the integrity of the Kernel and the
application program.

5.1.3. Process Table

The Process Table is the central repository for information relating to all processes executing on
the Kemel. Each node has a Process Table. The structure of the Process Table is identical
across the network; much of the information is identical as well. One difference between
instances of Process Tables at different nodes is that more information is maintained about local

138 Kernel User's Manual, Version 1.0

processes than about remote processes. All common information heid in Process Tables across
nodes is identical.

The application indirectly creates new entries in the Process Table by invoking the Kernel
primitive declare_process. Additional information is added to the corresponding Process Table
entry by invoking the Kernel primitive create_process. The Process Table is "pruned" of
unnecessary entries during the execution of initialization_complete. After this point, the structure
of the Process Table is static. Information within the Process Table is read and modified by the
Kernel during the execution of the application.

The Process Table is a collection of process_information_records, built dynamically; the
process_identifier points to a process_information_record, which was allocated and initialized
during process initialization time (e.g., via calls to the Kernel primitives declare_process and
create_process).

Each process_table_entry contains a process_identifier, and the list of entries is maintained by an
instantiation of the generic_queue_manager.

Each logical entry in the Process Table comprises two pieces: a process_table_entry, which
maintains the list of Process Table entries and points to the “real” process information, and
process_information_record structures, which contain the "real” process information. The details
of these structures are presented in the following paragraphs.

The Process Table should not be set or read directly by the user, but may be accessed by the
application via the fool_interface package (see Section 6.1).

5.1.3.1. Exporting Package
Generic_process_table, process_table

5.1.3.2. Structure _
Entries in the Process Table have two parts:

1. Process_table_entry - which points to a process_information_record for a specific
process and chains together Process Table entries; and

2. Process_information_record - which contains the actual information that comprises
the Process Table. This information includes: process_attributes,
schedule_attributes, communication_attributes, pending_activity_attributes,
send_w_ACK_attributes, semaphore_attributes, and tool_interface_attributes.

Figure 5-3 illustrates the structure of the Process Table along with the scenario it represents.
-- antries in the process table comprise:
-- process_|D
- thisis the real reference to the information specific to this
- process; this is the value, cast as a
- process_types.process_identifier, that the application uses
- when referencing a process anywhere in the application program

-- default value:

Kernel User's Manual, Version 1.0 139

URJAIA,

i
G BN I =N GE &) - OGN N B R GE A BN BN aE BN e

sejnqulie eoeuelUl (00}

seinqiije esoydewes

seInquIe HOY M pues

seinquue”Aynioe Bujpued

$OINQUINE ™ UOjIeIUNUALIOD

seinque 8npeyos

nyye,

. Upew, seingue” ssedoxd

A\

L4

a1 sseooud | Aesd

xeu
r\~

Awe ejgel ssedosd

~ A\

weu

L

aissesoud | aeud

Kwe ejqe) sseosoid

posmaca

§ i | 11

eu | Ot sseoaud

y |

> 7

1)
Anue eiqe) " sseocoxd

piode)
“uonewsop
~sseo0id

ejqe; sseooxd

' 1088090.d UO JUN UBW BY) - i) LB B 105580010 JO UOHINOBXE JOR BjqE] S§8D01d BY] JO SIUBIUOD) (0LeUedS

Figure 5-3: Process Table Structure

Kernel User's Manual, Version 1.0

140

none

this value is set via a call to the Kerne! primitive:
declare_process; this value should never change after the call

next and previous pointers, which are maintained by the instantiation
of the generic_queue_manager

tyre process_table entry
is recoxd

process_ID : process_identifier := null_process;

end recozrd;

There are no representation specifications relevant to a process_table_entry.

-

each process information record comprises the following:

process_attributes
the collection of process attribute information defined below

schedule_attributes
the collection of schedule attribute information defined below

communication_attributes
the collection of communication attribute information defined below

pending_activity_attributes
the collection of pending activity attribute information defined
below

send_w_ACK_attributes
the collection of attributes relating to the sending process of
a message sent via the Kernei primitive: send_message_and_wait
defined below

semaphore_attributes
the collection of semaphore attribute information defined beiow

tool_interface_attributes
the collection of tool interface attribute information defined below

type process_information_record
is record

process_attributes : process_attributes_information;
schedule_attributes : schedule_attributes_information;
commnication_attributes : communication_ attributes_information:
pending activity attributes : pending activity attributes_information:
send_w_ack_attributes : acknowledged message_information;
semaphore_attributes : semaphore_attributes_information;
tool_interface_attributes : tool_interface_attributes_information;

end record;

Kernel User’s Manual, Version 1.0 141

There are no representation specifications relevant to a prdcess_information_record at this level.

Each component of a process_information_record has a detailed structure as well and is
presented in tum.

Process Attributes

The process_attributes_information structure maintains general information about the process
itself and the execution environment built for it by the Kernel. Process information includes:
logical_name, kind_of_process, process_initialization_status, and process_index. Process
Attributes are used by the Kernel for both Kernel processes, local and remote, and non-Kernel
devices.

The process_index is an internal structure used for communication purposes. It is described in
Section 5.2.3.

Execution environment information includes: . code_address, stack_low_address,
stack_high_address, context_saved, and process_context_save_area.

The process_context_save_area is hardware-specific, and is described in the documentation that
will be provided with the code.

Figure 5-4 illustrates the structure of the Process Attributes component of the Process Table
along with the scenario it represents.

-- process attributes include:

-- logical_name

-- the string valued name provided by the application for a process;
-- the length of the string is limited by the user-provided vaiue

- for the maximum length of a process name

- default value:
-- none

- this value is set via a call to the Kernel primitive:
-- declare_process; it should never change after that call

-- kind_of_process

- indication of whether a process is running on a Kernel processor
-- (and thus foilows all Kernel protocois) or a process is reaily

-- just a non-Kernel device (and thus follows none of the Kernel

-- protocols)

-- values include:
- Kernel_process (follows Kernel protocols)
-- non_Kernel_device (does not follow Kernel protocols)

- default value:

- Kernel_process

- this value is set via a call to the Kernel primitive:

- declare_process; it should never change after that call

142 Kernel User’s Manual, Version 1.0

'SaINqUIlY SS82014 8yl Jo Aue o} sabueyd ou sexew apeydwod vonezZieY) |,
"sesadind siduexs 10§ A(8j0s pasn anjea Asemqie ue st sjyj,

u||4eyy Jo} pejeesd
BOJR BABS)X0}JU0D pue
swe)y |(e2 feipur Awwnp

U oW 10} pajeesd
©8Je BAES]X8JU0D pue
aweJ} f|ed jeryui Awwnp

BoJB 8AES IXOIU0I SSe0sd

leo ejA leo e led e les " ejA POABS 1X0Ju02
020 | 020 | ssesppe yby yoejs
.0 0 SSQIppE” MO YoE)S

$se.ippe,epos sses0sd
“uipew jo uoyien|eAe

sseJppe,epod” ssesosd
“uel jo uoyienjeAs

sseippe epod

99/ 2¢-
<= Jjequinu_ssedosd

| <=Jequinu~ epou

99/ 2¢-
<= jequinu_ssesoid

1 <= Jequiny epou

1sip 0800 my
<= JOquINU~§500010
183, 8501ppE~ SNQ
<= JeqWnu” epou

1sp1e601ul My
<= tequinu_ssesoid
I1s))ss81ppESNQ
<= Jgquinu_ epou

xepuyssesosd

4 <= pejeeid Ajsjowel

4 <= pejeeso Ajejowes

4 <= pejeesdAjejowe

4 <= peyessoAjejowe)

Process Table Process Attributes Component Structure - Part 1 of 2

143

] <= pejesaso 1 <=psjess 4 <= peojeesd 4 <= pejesso Q

1 <= peseep 1 <= pesejoep 1 <= pesejoep 4 <= pesejoep snjejs " uojezielyu) ssevosd e

]

$50201d " |ou8) $5000.)d |8ul0) $$900)d [0ul0) ss820id |ouie)y sseo0sd Jo~ pury m

>

. upew, | . upew, |, Upew, yuelq e eureu” jeayboy 3
| =4

e Jossad0.d B J08892%0.d B 10889%0.d px m

uo aJedwod uo uj ol uo U IS 10} H »
“uonezyeniuy | 10} ssesosd ejeesd sseoosd osejo8p Sjusuod m -4

. 0} ||ed seye 0} {je2 18ye 0} |[ed Jaye fenius Ha. w
nun Uy e 108582050 umn.

10 uotindaxa jo siuiod snowrea Je ujlieyy ss8201d |euie) eyl Joj Aljue ejqe SS8001d 8Y) o lUeuodwod SeINQUITY SS8201d Bu} 10 SIUBIUGD:OURUBOS

Gl N N BN S D N B B AR B B G N G e R E e
[

|

*seinquily $se201d 8yl jo Aue o} sebueyn ou sexew e)jejdwos uonezreny|,

o

-

S

o I

5 s

~ >

vosR 0ARS JX8JU0D SS8001d t 1}

o 2

jes e _ fHes A ey ejA peaes xejuod ° <

3]

o 3] e

sseppe Yy yoe)s 2 8

b po

SSeippe” Moy youlS €]

o =

13 @

sse.ppe ~epoo 2 x
1equinu ssesoid jinu Jequinu ssesouxd pnu 18313 0801u" My m
<= Jequinu”sses0id <= Jjoquinu_ssesoid <= joqunu_sseooid ”
(ssesppe”TeaisAyd) € (ssesppe eayshyd) € 1JiLs80.DpR SNQ 3
<= JeqWNnU_8pou <= JOqQuWnu” epou <= JequINu~epou xepyy ssesoxd .m
<
4 <= pejeaso A|sjowe, 4 <= pejeass Alejowe) | 4 <= pejeais Ajejowe:]
4 <= peojeasd 4 <= pejesid 4 <= pejeesd m
1 <= paJejosp 1 <= pesejoep 4 <= pesejosp snjejs—uonezyenu—ssesoxd &
o
80lABp [BUIe) - T TN $5000.id jouie)y sses0id jo” pury l&
-
[
. 8oiAep, . eojAep, Nuelq e ewev reyboy m
€ J0SS3J0) 801A8p @ 1088990.d <]
uo aJe/dwoo |ouI9y}-uou B UO 39)A3Q JO} a
“uonezyeniul | 10} sseaosd o1eesd sseo0id esejo6p Sju8auod M
. 0} j|eo Jaye 0] |jed ou S| 819y} 0} |[e2 Ja)e reniul o
=)
i

"@ Josse04d UO JUN Ul BY) ‘yu) urew B 10s5e20:d |0 uoiNoeXe
10 sjutod snoleA e 89]A8Q 80IABD [9UL8)]-UoU 8Y] 10} ANUS 8IQE] $S8201d Byl JO Weuodwod SeINqUIlY SS8201d 8y} jO SIUBJUOY (OPRUBIS

144

-~ process_initialization_status
- indication of current status of process initialization protoco!
-- (i.e., process declaration and creation)

- defauit value:
-- declared => false (set by declare_process)
-- . created => false (set by create_process)

-~ this value is set via a call to the Kernel primitives:
- declare_process (the declared component) and create_process (the
-- created component); it should never change after the calls

-- process_index

-- another way of referencing a process (in addition to a process
- identitier) via its owning processor and an identifier unique with
-- respect to that processor

-- default value:
- none

- for a non-Kernel device, this value is set via a call to the Kerne!l
-- primitive: declare_process; it should never change after that cali;
- for a Kernel device, this value is set via a call to the Kernel

-- primitive: create_process; it should never change after that call

-- code_address
-- the address of the code that comprises this process

- default value:
-- none

-- this value is set via a parameter to the Kernel primitive:
-- create_process; it should never change after that call

-- stack_low_address

-- the system low address (e.g., 16#000#) of the Kernel-created
-~ process stack; this is the FIRST longword address (i.e., aligned
-- on a 32-bit boundary) at which the Kernel may safely store a

-- longword (i.e., 32 bits) of data in the Kernel-maintained

-- process stack

- *** the Kernel-maintained process stack is always longword-aligned

-- default value:
-- none

this value is set via a call to the Kernel primitive:
create_process; it should never change after that call

stack_high_address

-~ the system high address (e.g., 16#FFC#) of the Kernei-created
- process stack; this is the LAST longword address (i.e., aligned
-~ on a 32-bit boundary) at which the Kernel may safely store a

-- longword (i.e., 32 bits) of data in the Kernel-maintained

Kernel User's Manual, Version 1.0

145

-

-

-

-n

-

process stack
*** the Kernel-maintained process stack is always longword-aligned

default value:

this value is set via a call to the Kernel primitive:
create_process; it should never change after that call

context_saved
indication of whether or not the current context of this process
may be assumed to be saved (i.e., that the context_save_area has
contents that are currently valid)

values include:
via_call (context is saved and was saved via the
procedure/function calling protocol)
via_interrupt (context is saved as was saved via the
interrupt handling protocol)
not_saved (context must not be assumed to be saved)

defauit value:

this value is set initially via a call to the Kernel primitive:
create_process; it is modified by the Kernel as process context is
saved and restored (when a process context switch occurs as
directed by the Scheduler or when an interrupt occurs)

process_context_save_area
place where the context of a process is saved (e.g., registers,
program counter)

default value:

this value is modified by the Kernel as process context is
saved and restored (when a process context switch occurs as
directed by the Scheduler or when an interrupt occurs)

type process_attributes_information
is record
logical name : hw_string (1 ..
positive
(process_managers globals.maximum length of process_name)) :=
(othars => ' ’);
kind of_process : process_type := Kernel process;
process_initialization_ status : process_initialization status_type;
process_index : network_globals.process_index type:
code_address : hw_address;
stack_low_address : hw_address’
stack_high_address : hw_address:
context_saved : context_ switcher_globals.context saved type :=
context_switcher_globals.via_call;

Kernel User's Manual, Version 1.0

procaess_context_ save_area :
context_save_area.context_save_area_contents;
end record;

There are no representation specifications relevant to a process_attributes_information record at
this level. There are representation specifications that define the layout of the
process_context_save_area, these are defined in the documentation that will be provided with the
code.

The following information is used in the definition of the process attributes.

-- indication of current status of process initialization protocol

-- (i.e., process declaration and creation)

-- components include:

-- declared

indication of whether or not declare_process successfully completed

-- values include:
- true (successful completion of declare_process)
-- false (unsuccessful completion of declare_process)

- default value:
- false (unsuccessful compietion of declare_process)

-- this value is set via a call to the Kernel primitive:
-- declare_process; it should never change after this call

- created
- indication of whether or not create_process successfully completed

- values include:
- true (successful completion of create_process)
- taise (unsuccessful completion of create_process)

- default value:
- false (unsuccessful completion of create_process)

- this value is set via a call to the Kernel primitive:
-- create_process, it should never change after this call

-- remotely_created
-- indication of whether or not the process was created on another
-- node

-- values included:
-- true (process was created on a remote node)
= false (process was not created remotely)

- default value:
- false (no knowledge yet about where the process was created)

This value is set by the receive_datagram_interrupt_handler whenever

Kernel User’'s Manual, Version 1.0 147

-- a process_created message arrives.

type process_initialization_status_type
is record
declared : boolean := false;
created : boolean := false’
remotely created : boolean := false;
end record;

-- indication of whether or not a process is running on a Kernel processor
-- (and thus foliows all Kernel protocols) or a process is really just a
-- non-Kernel device (and thus follows none of the Kernel protocols)

-- values include:
-- Kernel_process (follows Kernel protocols)
-- non_Kernel_device (does not follow Kernel protocols)

type process_type is (
Kernel_process, non_Kernel device):

There are no representation specifications relevant to any of these types.

Schedule Attributes

The schedule_attributes_information structure maintains general information used by the Kernel
Scheduler. This information provides a snapshot of the status in which the Scheduler considers
this process. This information includes: process state, priority, preemption, block_time, and
unblock_time. Schedule Attributes are used by the Kernel only for local Kernel processes.

Figure 5-5 illustrates the structure of the Schedule Attributes component of the Process Table
along with the scenario it represents.

-- schedule attributes inciude:

-- state

-- the current state of this process; this is used by the Kernei's
- Scheduler

-- values include:

-- running (this process controls the processor and is the

-- currently running process)

-- suspended (this process is able to run but another process is
- currently running)

-- blocked (this process is unable to run)

- dead (this process is no longer abie to run)

- default value:
= suspended (this process is abie to run but another process is
- currently running)

- this value is set by the Scheduler as the process state changes
- (due to: acall to a Kerne! primitive, the passage of time, the

148 Kernel User’s Manual, Version 1.0

S

‘seINqUIY 8npeyos eyl jo Aue o} sebueyo ou sexew epejdwos vopezyenyyy ..
"seInquly einpeyos ey) jo Aue o} seueyd ou sexew ssedsosd eseoeq,

ew) Juesnd job ewy) yueuna 186 ewy yoojqun
0°0 0’0 0’0 0°0 ewn ¥o0iq
(pejgesip) (peiqesip)
uondwesesd ynejep uojidweerd ynejep vondweesd
(1) Awoud i1seybiy (1) Awopd iseybiy Aysoud
pepuedsns pepuedsns pepuedsns pepuedsns oels
. uljtew, ujpew, . ujpew, uipew, eweu™ jeayboj seinquyye ssesosd
e J0ss9%01d e J0ss0301d 8 Joss0o0d
uo 8jaydwo? uo Ul IO} uo U JO}
“uorezienul $s900.d 0)B312 ss8001d 818/00p Sjusjuod
. 0} |[ed Jaye 0} |jed J8ye |, 0} ||eo Jaye e

nun " urew e 10sses0xd jo

UoIINJ3Xa JO sjulod SNOLEA Je ujpe SS8001d [eule) eyl Joj Alus 8jqe] $S8201d eyl Jo 1ueuodwod SaINQUIY eINPeYdS 8yl JO SIUBJUOD:0LRUSIS

Process Table Schedule Attributes Component Structure

Figure 5-5

149

Kernel User's Manual, Version 1.0

occurrence of an event)

priority

the current priority of this process; this is used by the Kernel's
Scheduler, and the primitive:
process_attribute_readers.get_process_priority, and all primitives
take a (resumption) priority as a parameter

defauit value:
none

this value is set initially via a parameter to the Kernetl primitive:
create_process; it may be modified by the Scheduler as the process
priority changes

(due to: a call to a Kernel primitive, the passage of time, the
occurrence of an event)

preemption

an indication of whether or not this process may be preempted; this
is used by the Kernel's Scheduler (for time slicing), and the
primitives:

process_attribute_readers.get_process_preemption
process_attribute_modifiers.set_process_preemption

values include:
true (this process may be preempted)
faise (this process may not be preempted)

defauit value:
none; provided by initial call to create_process

this value is set initially via a parameter to the Kernel primitive:
create_process; it may be modified via a call to the Kernel
primitive: set_process_preemption

bilock_time

the Kernel_time at which the state of this process became blocked,;
this is used by the Kernei's Scheduler

default value:
zero_Kernel_time

this value is set by the Scheduler when a process calis a blocking
Kemel primitive; it may be modified by the Scheduler when the
process becomes blocked again (note that

this value is not strictly needed by the Kernel, as the Scheduler

"~ maintains a time-ordered queue for its processing; it is included

for debugging purposes)

unblock_time

the Kernel_time at which the state of this process became
unblocked; this is used by the Kernel's Scheduler

default value:
none

150

Kernel User’'s Manual, Version 1.0

- this vaiue is initially set via a call to the Kernel primitive:

- create_process; it may be modified by the Scheduler once the

- process becomes unblocked (note that this value is not strictly

- needed by the Kernel, as the Scheduter doesn’t require knowledge of
- a process’s time once it is unblocked; it is included for

-- debugging purposes)

type schedule attributes_information

is record
state : schedule types.process_state := schedule_types.suspended;
priority : schedule_types.priority:
preemption : schedule_types.preemption;

block_time : Kernel time.Kernel time := Kernel time.zero_Kernel time;

unblock_time : Kernel_ time.Kernel time:
end record;

There are no representation specifications relevant to a schedule_attributes_information record.

Communication Attributes

The communication_attributes_information structure maintains information about this process's
communication requirements. This information includes: next_available_message_ID,
maximum_message_queue_size, message_queue, current_send_buffer, queue_overwrite_rule,
and message_queue_overflow. Communication Attributes are used by the Kernel only for iocal
Kernel processes.

Figure 5-6 illustrates the structure of the Communication Aftributes component of the Process
Table along with the scenario it represents.

-- communication attributes include:

-- next_available_message_ID

- the message ID that may be used for the next message sent by this
- process via send_message_and_wait; this value is constantly

- increasing

- defauit value:
-- first (lowest) message identifier available

- this value is modified only via a call to the Kernel primitive:
-- send_message_and_wait

-- maximum_message_queue_size
-- the maximum number of messges that may be queued awaiting receipt
- for this process

- default value:
-- none

- this value is set by a parameter to the Kernel primitive:
- create_process; it should never be modified after that call

Kernel User's Manual, Version 1.0 151

"selnquily uopegunwwoD eyl jo Aue o) sebueyod ou sexew 8jeyduwoo " voprezyeyy
"seINquuY uojleaunioy ey} Jo Aue o) sebueyd ou sexew ssecosd ergpeq,

Kernel User's Manual, Version 1.0

Process Table Communication Attributes Component Structure

4 4 4 4 Mojuero enenb ebessew
ebessewjIsemeu"doip ebessew 1someu doup eIn1" eyIMIeno " enenb
Jinu Jnu Jinu finu 164nq pues uesnd
pesy enenb ebessetu peey enenb ebessew
6uruoou oy Jeyuiod Bunwoou 0y Jeyujod jinu finv enenb~ebessew
001 001 0 6215 enenb~eBessew “wnwpew
] 0 0 0 Qi” eBessew “eiqejesr Ixeu
- ujew, . vjew, Ulpew, uljjew, Sweu eoyboy'senqguire "ssesosd
€ 108s3%0.d e Jo0ssadoud © Jossaooud
uo eyejdwoo uo uiIap 10} uo ujjsopy 10)
“uonezyenmu $s820.d 8)e8Io sseoosd esejoep Sjuauod
. 0} |[eo saye 0} ||eo Jeye 0} {|e2 Jaye emuy

Figure 5-6

10 swiod snouea je ujiiew ssesod jeuley ey Joj Aiue ejqe 1 $s8201d 8y} jo euodwod senquiy uoy

"WuN”urepy e 10s56204d 10 UOjINSBXE
BAUNWWOD 8y} JO SIUBIUOY:0LBUEIS

152

-- Mmessage_queue
- pointer to the first message in the message queue for this process;
.- this is used by the Kernel primitives to send and receive messages

-- default value:
- null

-- this value is set via a call to the Kernel primitive:
-- create_process; it should never be modified after that call

-- current_send_buffer
- pointer to the current buffer being used to send a message, via
-- an application call to send_message®

- default value:
- null

- this value is set via a call to the Kerne! primitives:

-- send_message and send_message_and_wait; it is used by the Kernel
- primitives: die and kill; it should never be modified outside

- these calls

-~ queue_overwrite_rule
- indication of how this process is to handle incoming message queue
- overflow

- values include:
drop_newest_message (the most recently received message is lost)

-- default value:
-- none

-- this value is set by a parameter to the Kernel primitive:
-- create_process,; it should never change after that call

-- message_queue_overflow

-- indication of whether or not the incoming message queue for this
- process is currently full and messages are being lost or in danger
-- of being lost; this is used by the Kernel primitive:

- receive_message

-- values include:

- true (at least one message has been lost already)
-- false (no messages have been lost since last call to
- receive_message)

- default value:
-~ false (no messages have been lost since last call to
- receive_message)

- this value may be set by the Kemel as messages are received, its
-- value may be reset via a call to the Kemel primitive:
-- receive_message

Kernel User's Manual, Version 1.0 153

1 [
] 4

type communication_attributes_information
is record

next_available_message_ ID : datagram globals.message identifier := 0;

maximum message_queue_size : hw_long_natural;
message _queue : datagram globala.datagram pointer := null;
current_send buffer : datagram globals.datagram pointer := null;
queue_overwrite_ rule :
process _managers_globals.how_to_handle message_queue_overflow;
message_queue_overflow : boolean := false;
end record;

There are no representation specifications relevant to a communication_attributes_information
record.

Pending Activity Attributes

The pending_activity_attributes_information structure maintains information about activities that
are currently pending for this process. The value of the pending_activity component determines
which of the remaining fields contains relevant information about those activities that are mutually
exclusive (i.e., via a call to one of the Kernel primitives: receive_message, claim,
send_message_and_wait, waif). In addition to one of those events, a process may also have an
alarm enabled andlor may be ready to raise a Kernel exception.
Pending_activity_attributes_information includes: the pending_activity itself, pending_event_ID,
current_pending_message, alarm_event_ID, alarm_resumption_priority, exception_name.
Pending Activity Attributes are used by the Kernel only for local Kernel processes.

Figure 5-7 illustrates the structure of the Pending Activity Attributes component of the Process
Table along with the scenario it represents.

-- pending activity attributes includes:
-- pending_activity
- indication of what kind of event has caused the process to block

-- values include:
-- see pending_activity_type just above

-~ defauit value:
-- nothing_pending

-- this value is set via a call to any blocking Kernel primitive:

- receive_message, claim, send_message_and_wait, wait; it is

-- reset by the Kernel upon expiry of of the timeout, occurrence of

-- - the event awaited (e.g., receipt of message or ACK/NAK, availability
- of the semaphore)

-- pending_event_[D

- anindex into the time keeper's time event queue indicating the

- event entry corresponding to the value of pending_activity for this
- process;

-- used by Kernel internals as a link into the Kernel's time_keeper

154 Kernel User’'s Manual, Version 1.0

155

"seinquuy AuAnov Buipue ey jo Aue o} seBueyd ou sexew ejeyduwos uoneziERY]. .,
"seinquiy Aoy Guipued ey jo Aue o} seBueys ou sexew ssesosd ejees.,
'seinauny Auaov Guipued eys jo Aue o} seBueyd ou sexew ssesosd eseseq,

Process Table Pending Activity Attributes Component Structure

uojidesxe ou co_~a8xw|c: uopdedsxe ou vojideoxe ou eweu uoydeoxe
Awoud uondwnses wirepe
JueAe ||nu ueae jjinu WeAe |inu eAe jjnu a1 vere uuem
ebessew "Bupued juesns
o
weAs |inu Weae jnu WweAe jinu Wweae jinu Q)" vere Bupued c
o
Bupued Bujyiou Bupved Bupyiou Ouipued Bujiou 6uipued Buyyiou AynioeBupued M
. ujew, . uluety, . ugew, . ulpew, eweu” fexyboy seinquie ssesosd S
.o c
e 10889201d B J08$2204d ® J0s$3%0.d W -
uo 8}ejdwoo uo U IIW 10} Uo ujjIaW o} e o
uonezienu ss800.1d 9)e810 $s800.d esBj00p Sjusuoo .m. 3
eve o} |fed saye | ., 0} {jeo Joye], 0} ||eo Jeye jenu F W
Hun”ure e 10sse20id Jo uoyindexe m.w

10 siutod snolen je ujien ssedod 1eusey ey) 10) Kjjus ejqe] $S801d eyl Jo jusuodwod seinquiy AAioy Buipued ey; jo siuejuo:oueuess

default value:
null event

this value is set via a call to any blocking Kernel primitive (as
enumerated above); it is reset by the Kernel as described above

current_pending_message
if pending_activity indicates send_with_ACK_pending, this is the
message identifier for which an ACK or a NAK is expected

defauit value:
none

this value is set via a call to the Kernel primitive:
send_message_and_wait; it is reset by the Kemel upon receipt of
the ACK/NAK for the identified message; it is valid if and only

if pending_activity indicates send_with_ACK_pending

alarm_event_ID
an index into the time keeper's time event queue indicating the
alarm expiration event for this process

default value:
nulil event

this valde is set via a call to the Kernel primitive: set_alarm;
it may be reset either via a call to the Kernel primitive:
cancel_alarm or by the Kernel upon the expiry of the alarm

alarm_resumption_priority
if alarm_event_ID is not the nuli event, the priority at which
this process is to be resumed upon the expiration of the alarm

default value:
none

this value is set via a call to the Kernel primitive: set_alarm;
it should never change otherwise; it is valid if and only if
alarm_event_ID is not the null_event

exception_name

indication of whether or not the Kernel is raising an exception
for this process; if not no_exception, then also an indication of
which exception is to be raised

values include:
there is an enumeration literal corresponding to each exception
the Kernel may raise; see package Kernel_exceptions

default value:
no_exception

this value is set whenever the Kernel internais detect a Kerel
exception that is to be raised and reset to no_exception upon
completion of internal exception processing

156

Kernel User’'s Manual, Version 1.0

type pending activity attributes information

is record
pending_activity : pending activity type := nothing_pending;
pending event_ID : event_identifier := null event:
current_pending message : datagram globals.message_identifier;
alarm event ID : event_identifier := null event;
‘alarm resumption_priority : schedule_types.priority;
exception_name : Kernel_exceptions.Kernel_exceptions :=

Karnel_ exceptions.no_exception;
end record;

There are no representation specifications relevant to a pending_activity_attributes_information
record.

-- the kinds of mutually exclusive activities that can be pending for a

-- single process are:

-- receive_pending (the application called the Kernel primitive:

.- receive_message and is blocked until a message is received or until
- the timeout expires)

-- semaphore_pending (the application called the Kernel primitive:

- claim and is blocked until the requested semaphore is free or until
-- the timeout expires)

-- send_with_ACK_pending (the application called the Kernel primitive:
- send_message_and_wait and is blocked until an ACK or a NAK is
- returned or until the timeout expires)

-- wait_pending (the application called the Kernel primitive: wait and is
-- blocked until the timeout expires)

-- nothing_pending (there is no activity on which this process is

- currently pending)

type pending activity type is (
receive_pending,
semaphore_pending,
send with ACK pending,
wait pending,
nothing pending):;

There are no representation specifications relevant to any of these types.

Acknowledged Message Information

The acknowledged_message_information structure maintains information about the outstanding
acknowledged send request (i.e., call to the Kernel primitive send_message_and_waif) that may
have been issued by this process. This information includes: event_I/D, the message sent by this
process, and the receiver's incoming message queue. Acknowledged Message Information is
used by the Kernel only for local Kernel processes.

Figure 5-8 illustrates the structure of the Acknowledged Message Information component of the
Process Table along with the scenario it represents.

Kernel User’'s Manual, Version 1.0 157

o e e A e G e A e e e

‘SeINgUIY Uopeusoju; eBessepy pebpeimouoy 8y) jo Aue o} seBueyd ou sexew ejerdiiod” vosezeNy ...
"sejnquIV uojreuuoju) eBesseyy peBpeimouxoy eyl jo Aue o} sebueyd ou seyew sseoosd ejpes)..
"$8INqUUY uojieuLioju) eBesseyy peBpeimounay eyl jo Aue o} seBueyd ou sexyew sse0id es806(.

jinu jInu finu finu enenb
jinu inu inu] elessow
eae |jnu WBAS ||nu JueAe jjinu Jueae |jnu g ess
. udew, . ulpew, . ujpew, “ ujjieu, sweu fexboy seinquye ssesoxd
e J0ssad0.d 8 Jossaooud B J0ss8020.d
uo ajejdwoo uo U3y 10} uo U9 10§
“uonezieniul sseo0sd ojeesd sseo0sd esejoep Sjusjuo9
ave 0} ||eo Jaye | ,, 0} ||e0 Jaye 0} ||eo Jeye renut

‘WU urew B 108s8201d J0 UO|INOBXE JO SUjod SNOURA
1e ujpeyy ssadoid [euley eyl Joj Aiue ejqe] $5620id eyl Jo jueuodwod seingully uolieulojul eBessepy pebpeimounoy eyl o SU8JUOD 0peUedS

Process Table Acknowledged Message Information Component Structure

.
.

Figure 5-8

Kernel User's Manual, Version 1.0

158

-

-- acknowledged message information is maintained in the process table
-- entry corresponding to the SENDING process; this information refers to

-- data about the RECEIVING process’s incoming message queue; this is done

-- to facilitate ready access to message queue information to process
-- timeout expiration efficiently

-- acknowledged message information includes:

-

event_ID
indication that this process is the SENDING process and
sent a message via the Kernel
primitive: send_message_and_wait; thus an ACK is required to be
returned to THIS process upon receipt of the corresponding message

defauit value:
null_event

this value is set by the Kernel when it receives a message that

was sent via a call to the Kernel primitive: send_message_and_wait;
it is reset via a call to the Kernef{ primitive: receive_message

or by the Kernel when the corresponding timeout expires

message
an index into the RECEIVING process’s incoming message queue
indicating the message that this process sent via the Kernel
primitive: send_message_and_wait

default value:
nutl

this value is set by the Kernel when it receives a message that

was sent via a call to the Kernel primitive: send_message_and_wait;
it is reset via a call to the Kernef primitive: receive_message

or by the Kernel when the corresponding timeout expires

queue
a pointer to the head of the RECEIVING process's message queue -
i.e., the message queue that contains the message field just above

default value:
null

this value is set by the Kernel when it receives a message that

was sent via a call to the Kernel primitive: send_message_and_wait;
it is reset via a call to the Kernel primitive: receive_message

or by the Kernel when the corresponding timeout expires

type acknowledged message information
is recorxd

event_ID : event_identifier := null event;

message : datagram globals.datagram pointer := null;

queue : datagram globals.datagram pointer := null;

end record;

Kernel User's Manual, Version 1.0

159

There are no representation specifications relevant to an acknowledged_message_information
record.

Semaphore Attributes

The semaphore_attributes_information structure maintains information about any semaphore that
is requested or actually claimed by this process. This information includes: semaphore_name,
next_process_pending_claim, and previous_process_pending_claim. Semaphore Attributes are
used by the Kernel only for local Kernel processes.

Figure 5-9 illustrates the structure of the Semaphore Attributes component of the Process Table
along with the scenario it represents.

-- semaphore attributes include:

-- sema_last_claimed

-- the identity of the semaphore most recently claimed by
-- the process, and still owned by it.

- default value:
-- null_semaphore

-- semaphore_name
-- the identity of the semaphore on which this process is currently
-- waiting :

- default value:
-- none

.- this value is set via a call to the Kernel primitive: claim;
- reset by release

-- next_process_pending_claim
- the process identifier for the process that called the Kernel
-- primitive claim after this process did

-- defauit value:
- null_process_|D

-- this value is set by the next call of the Kerne! primitive: claim;
- it may be reset by the Kernel if the timeout of that claim expires

-~ previous_process_pending_claim
- the process identifier for the process that cailed the Kernel
- primitive claim before this process did

-- default value:
- null_process_|D

-~ this value is set via the current call to the Kernel primitive:

- claim; it is reset by the Kernel if the timeout of the claim
-- expires or once the previous process releases the semaphore

type semaphore_attributes_information

160 Kernel User’'s Manual, Version 1.0

‘seInqUity esoydewes ey} jo Aue 0} sebueyd ou sexew ejeydoo voEZIEINY], ..
-senquily eloydewwes ey jo Aue o) seBueyd ou seyew sseoosd ejee.)..
-seinquIly eroydewseg ey} jo Aue o} sebueyd ou sexew ssecosd esejzeq,

sse201d (jnu sseo0)d |Inu sseooid |inv sseo0id {|nu wyeyro Bujpued ssesord snojaexd
$s08201d " |Inu sseoosd Jnu sse00)d |Inu 8s000)d |Inu wyero " Bupued ssesoid eu
eioydewes jnu eroydewes jnu esoydewes |nv esoydewes jinu eweu-esoydewes
sioydewes jnu sJoydewes jnu asoydewes jnu esoydewes [inu peuwyelTisey eies
. ujpew, ujew, Upew, ujew, eureu"feaboy'senquare ssesoid
e J0883%0:d 8 J0883%04d ¢ J0880002d
uo 8jeydusoo uo uj|IoN 10} uo U J0)
“uonezyeMU sse20.d 0)e6.0 sseo0sd ese)08p Sjusjuod
vou Ol edleye |, 0} |fed joye 0} {[e0 Je)je remu

“yun~ uey e 105s601d 10 UOYINOEX8
10 siutod snorea e ujpeyy $s690.d [8UIe) 8y) 10} A1jue ejqeL $5800.d B} JO Jusuodwod senauNy eloydewwes eyl JO SJUBIUOD:opeUedS

Figure 5-9: Process Table Semaphore Attributes Component Structure

161

Kernel User’s Manual, Version 1.0

is record
sema last_claimed : semaphore := null_semaphora;
semaphore_name : semaphore := null semaphore;
next_process pending claim : process_identifier := null process;

previous_process_pending claim : process_identifier := null process;

end rxecord;

There are no representation specifications relevant to an semaphore_attributes_information
record.

Additional information about the function of these fields is provided in Section 5.1.2.

Tool Interface Attributes
This information will be provided in the next version of this document.

5.1.3.3. Initialization

The Kernel initializes the Process Table with a single process_table_entry and
process_information_record structure. Table 5-1 shows the fields of the Process Table that have
defined default va'ues.

The number of entries in the Process Table may vary from node to node. The maximum size of
the Process Table after initialization is complete may be limited by the tailoring parameter
maximum_number._of_processes_value. See Section C.2.5 for more details.

5.1.3.4. Additional Allocation Requirements
The Process Table is a dynamic data structure during the initialization process (i.e., until the
Kernel primitive initialization_complete finishes executing).

When the Kemel primitive declare_process is invoked the first time, it uses the initial Process
Table entry. Each invocation of declare_process causes a new entry to be made into the
Process Table consisting of a process_table_entry and process_information_record pair. This
storage is aliocated dynamically.

The call to the Kernel primitive declare_process for Kernel processes initializes the following
fields:

Initialization Via Call to Declare_process for Kernel Process

Field Name Value
process_attributes.logical_process < input parameter >
process_attributes.kind_of_process Kernel_process
process_attributes.process_initialization_status.declared | true

162 Kernel User’'s Manual, Version 1.0

Table 5-1: Process Table Detined Defauit Values

Process Table Defined Detfauit Values
Field Name Value

communication_attributes.current_send_buffer null
communication_attributes.message_queue null
communication_attributes.message_queue_overflow false
communication_attributes.next_available_message_|D 0
pending_activity_attributes.alarm_event_ID null_event
pending_activity _attributes.exception_name no_exception
pending_activity _attributes.pending_activity nothing_pending
pending_activity_attributes.pending_event_ID null_event
process_attributes.context_saved via_call
process_attributes.kind_of_process Kernel_process
process_attributes.process_index.node_number bus_address'first
process_attributes.process_index.process_number hw_integer'first
process_attributes.process_initialization_status.created false
process_attributes.process_initialization_status.declared false
process_attributes.process_initialization_status.remotely_created | false
schedule_attributes.block_time zero_Kernel_time
schedule_attributes.state suspended
semaphore_attributes.next_process_pending_claim null_process
semaphore_attributes.previous_process_pending_claim nuli_process
semaphore_attributes.sema_last_claimed null_semaphore
semaphore_attributes.semaphore_name null_semaphore
send_w_ACK_attributes.event_ID ‘ null_event
send_w_ACK_attributes.message null
send_w_ACK_attributes.queue null

provided in the

next version of
tool_attributes*® this document

Kernel User’'s Manual, Version 1.0 163

The call to the Kemel primitive declare_process for non-Kernel devices initializes the following

fields:

Initialization Via Call to Declare_process tor Non-Kernel Device

Field Name

Value

process_attributes.logical_process

< input parameter >

process_attributes.kind_of_process

non_Kernel_device

process_attributes.process_initialization_status.declared | true

process_attributes.process_index.node_number

< from NCT >

process_attributes.process_index.process_number

0

The call to the Kernei primitive create_process initializes the fields in Table 5-2.
Table 5-2: Initlalization Via Call to Create_process

1. Additional Allocation Requirements

tnitialization via Call to Create_proceass

Fieid Name

Value

process_attributes.process_index.node_number

< hardware-specific value >

process_attributes.process_index.process_number

< next available number >

process_attributes.code_address

< input parameter >

process_attributes.stack_low_address

< next available longword >

process_attributes.stack_high_address

< computed using input parameter >

process_attributes.context_saved

via_call

process_attributes.process_context_save_area

< appropriate setup >

process_attributes.process_initialization_status.created

true

schedule_attributes.priority

< input parameter >

scheduie_attributes.preemption

< input parameter >

schedule_attributes.unblock_time

< current clock reading >

communication_attributes.maximum_message_queue_size

< input parameter >

communication_attributes.queue_overwrite_rule

< input parameter >

communication_attributes.message_queue

< next available space >

The Process Table is pruned during the execution of the Kernel primitive initialization_complete.
During its execution, the following Process Table entries are eliminated from the Process Table

(and the storage is optionally reclaimed):

164

Kernel User's Manual, Version 1.0

1. Kernel processes that are created on remote processors but are not declared
locally.

The exception network_failure is raised and the node is killed (i.e., it does not initialize) if any of
the foilowing inconsistencies are detected in the Process Table during pruning and consistency
checking:

1. Kernel processes that are declared locally but are not created anywere in the
network, or

2. Kernel processes that are created both locally and remotely.

When the Kernel primitive initialization_complete terminates, there may be at most
maximum_number_of_processes_value entries in the Process Table. The size of each entry is
the size of the process_table_entry record and the process_information_record. The size of the
process_information_record is constrained by the tailoring parameter:
maximum_length_of_process_name_value.

5.1.3.5. Constraints on Usage
The Process Table should never be accessed directly by the application. It should only be read
via the tool_interface subprograms. See Section 6.1 for more information.

Even though the Process Table is potentially a visible data structure, it should be treated as an
"abstract data type"” by the application program. Knowledge of its internal structure shouid not be
exploited in the application program, as this may violate the integrity of the Kernel and the
application program.

5.2. Internal Data Structures

5.2.1. Datagram Queues

Datagrams are used by the Kernel to manage messages. A datagram is never referenced
directly, but is instead always accessed through a datagram pointer. For consistancy, the
datagram that is sent from one process is identical to the datagram that is received by another.
This section describes the datagram contents; more details about datagrams and the (ower fayers
of the Kernel communication protocol are described in the documentation that will be provided
with the code.

5.2.1.1. Exporting Package
Datagram_globals, datagram_management

5.2.1.2. Structure

A datagram is a static data structure; it is fully defined at compile time. A datagram comprises
two pieces: a datagram_header, which contains protocol information, and a buffer, which
contains the actual text of the message being sent.

Figure 5-10 illustrates the structure of the datagram along with the scenario it represents.

Kernel User's Manual, Version 1.0 165

" oBessew Z odA,

—_ WINSyoeyd
—_— (puas pabpajmounde = uoneisado siaym AUo pijEA) o_..oununoE
2 (6ey ebessew 2 adAl) Be) ebessow
99/72€- <= Jaquinussaooid 'z <= JaQuINU~apou (UeIAIA) JoNa03)
99/ 726~ <= JaquNuU~§5920)d !} <= JoquiNu~epou (uiuayy) Jepuss

—_— (puas~pabpatmounde = uojieredo 18ym AJUO PIEA) INCBWIY B10WS)

(puas~punq) uoriesado _ {02) yi16us;—ebessaw

(Aluo sapeay anenb) asoydewes

(Aluo Japeay ananb) wnod Bsw

sejinq

(1susay Aq papirosd jsajews) ezisieynq

lepeey

weibejep

(rews) sse

Aexd

—
e

xsu

gL | St 0

_

Jejutod weiberep

'q 1055220140 uo uejAjA 0} 86essaw 2 adA) e pues o) ebessaw~puas emnwnd 1918 8y} S|jed Uisay ‘e 105$920d UQ):.oURUeIS

Datagram Structure - Part 1 of 2

Figure 5-10

Kernel User's Manual, Version 1.0

166

~
©
f L ad
uilenw
01 8bessow | 0dA) 50, ujjreW 01 ebessew ujpsepy o) abessew
rem pueebessow puas t 8dAy 10} ebessow pues 1 8dA} J0) ebessew "pues
‘P3IIED URIAIA :pa|led Jnyuy ‘pBjied URJAIA
Bsw 10dA), Bsw w@Q%— Bsw —OQ)—: 18)jnq SPUOTBS G JO |noBWIL BI0We) B Ylim
* - ° Iem”pueebessew puas eawnd 1auiey
_ _ - wnsyoeya ey} 0} ||ed € 1A Q J058020.d U0 URJAIA WO!)
eBessew { odAy (g)
0 - - Qi ebessew obessow pues eawd |euien
8y} 01 |e3 © e|A © 10$88304d U0 INYLY WoJ| ~
| (Bei" 1 "edA"eBessew) |) (Bei")~edAi"eBessew) | (6ej~ | ~edk) eBessew) Beiebessew _ eBessew | odh) (2)
8bvssow puss eawpd euoy o
- — N
99/72¢- 't (ulnew) e 1 (U . 'y (Ul 16828} oyl 0 |[e0 € B|A q J0§§990.1d UO URJAIA WO}
o 99.72¢- 1 (uew) 99272¢- 1 (Uiken) obessow | sdki (1) T
99/72¢- 2 (ueup) 69272¢ 't (inyuy) 99/7zc- 'z (uep) |- lepues :sefessew n
o : 98.y) Buimoljo} eyl supelwos enenb efessew «
SPU00BS Og — || InoBWT_ B10Wwe) Bupwoou) s,ujisep ‘v sosse01d UD:OUBLEIS N
=
pues”pebpejmouxoe pues puyq puUes pulq uopesedo m
- == — = = - - = = d L e e = = = 4 F — — = — - ujjaep 110} pi1028s -
ot ot ol yiBuey eBessew ~uojiBwojur sses0sd 124
— _ — {(—) esoydewes m
— © 1wnostoww sejnquie 8oeuelu| 100} ”
— sejnquie” esoydewses M
(s1qissod 1s0|iRWwS) {ejqissod)sejjews) (ejqissod 1sejjews) ez|s"ejnq .
= seINQUIE OV M pUsS =
(rews) (rews) (ews) ssep \ INQUIET MOV M D M. w
] rord seinquue Aljaj1oe Bujpued o m
- — 3 r
= L en
= wou |a— enb~ebessow —..nru.u m
/(\ II.\~ (seinqgule " UojeqUMUWOD -
seinqiie” einpeyds m
URIALA 110} pIOOOS INYUy :J0}p10202 —
_ncozmgesduouoa _|§=qE§s|omaoSQ seinquesseoosd m
* i ;
\‘I” \ll\l"
| v | 4 U N_. >
= eu | QI ssedcd | aesd e
'y Il 1 / m
C >~ >~— . - v
e|qe)”ssad0.d X

There are no representation specifications relevant to a datagram at this level.

The actual datagram comprises the header field and a data buffer. The
size of the data buffer depends on the class.

]
H

type datagram 1is

record
header : datagram headar;
buffer : data buffer(l .. CG.message_length type’last):;

end record;

-- Each datagram header comprises the following:

-- next

-- A pointer to the next datagram in a linked list. Both next and

-- prev define a doubly linked circular list. This field and a number

-- of fields following are not transmitted across the network. They are

-- used only on the node which actually "owns" the datagram, and are not
-- considered part of the message that is shipped between processors.

-~ Default value:
- none

- Modified by: .
- The routines in datagram_management. This,value should not be
- touched by any other routines.

-- prev

-~ A pointer to the previous datagram in a linked list. Both next and
- prev define a doubly linked circular list. This field is not

- transmitted across the network, and is maintained locally by each
-~ processor node.

-- Default value:
- none

-- Modified by:
- The routines in datagram_management. This value shouid not be
- touched by any other routines.

-- class

-- The type of datagram. There are four different types of datagram
-- buffers that are used (we simulate a variant record). The class field
-- denotes the type of datagram buffer that is attached to the header.
-- This fieid is not transmitted across the network, and is maintained
-- locally by each processor node.

-- Possible values:

small (a smali sized user datagram buffer)

- large (a large sized user datagram buffer)

kernei (a datagram buffer guaranteed to hoid the largest
- kernel message)

168 Kernel User’'s Manual, Version 1.0

queue_head (datagram contains no buffer - used only as the
head of a queue)

Detauit value:
none

Modified by:
No one. This value is set at «nitialization time and should not be
touched by any other routines.

buffer_size
The size of the data buffer of this datagram. The message in the
datagram (see "message_length") may be less than or equal to this
size field. This field is not transmitted across the network, and
is maintained locally by each processor node.

Default value:
none

Modified by:
No one. This value is set at initialization time and should not be
touched by any other routines.

msg_count
The number of messages present in a queue. This field is used
only for queue headers. In order to make type checking work, a queue
header is simply another type of datagram (which is never transmitted).
The msg_count keeps track of how many datagrams are in a queue. This
field is not transmitted across the network, and is maintained
locally by each processor node.

Deftault value:
none

Moditied by:
The routines in datagram_management. This value should not be
touched by any other routines.

semaphore
A flag (or pair of flags, depending on the actions of LLH.P)
which locks a queue header against interprocessor access. This field is
used only in queue headers, and is not transmitted across the network.

Default value:
none

* Moditied by:

The routines in datagram_management. This value should not be
touched by any other routines.

-- message_length

The actual size (number of bytes) of the message that is in the
data_buffer. This value will always be less than or equal to the
buffer_size field. This field, and all following fields are transmitted
across the network, and are considered part of the message that is sent

Kernel User's Manual, Version 1.0

169

and received.

Defauilt value:
none

Modified by:
The routines in bus_io and communication_management. May be freely
set (with care) by other routines implementing communications.

-- operation

The Kernel operation defined in the KAM 10.2.1

Possible values:
See the enumerated type kernel_operation defined above

Default value:
none

Modified by:
The routines in bus_io and communication_management. May be freely
set (with care) by other routines implementing communications.

-- remote_timeout

The timeout time specified for a send_message_and_wait. This
field is passed to the receiving processor, which enqueues the timeout
event remotely.

Default vaiue:
none

Modified by:
The routines in bus_io and communication_management. May be freely
set (with care) by other routines implementing communications.

-- sender

The process_index of the process which is sending the datagram.
Because the sender field contains both a process number and a processor
number, the sender field uniquely identifies a process within the DARK
network.

Default vaiue:
none

Modified by:
The routines in bus_io and communication_management. May be freely
set (with care) by other routines implementing communications.

-- receiver

The process_index of the process to which the datagram is being sent.
Because the sender field contains both a process number and a processor
number, the sender field uniquely identifies a process within the DARK
network.

Default value:
none

170

Kernel User's Manual, Version 1.0

-- Modified by:
- The routines in bus_io and communication_management. May be freely
- set (with care) by other routines implementing communications.

-- message_tag
-- Overloaded to contain either the message tag supplied by the
-- user, or for a Kernel tag defined in KAM 10.3.1

-- Possible values:

- When a datagram has an operation field of kernel_message,

-- init_protocol_maessage, or sync_protocol_message, the possible

-- values of this field are from the enumerated type kemnei_tag, listed
-- above. When the datagram has an operation field of blind_send or
- acknowledged_send, the possible values of this field are any value
- from the type CG.message_tag_type.

-- Default value:
- none

-- Modified by:

-- The routines in bus_io and communication_management. May be freely
-~ set (with care) by other routines implementing communications.

-- message_id :

-- A Kernel sequencing number used in send_message_and_wait to

-- insure that ACK and NAK messages are associated with the correct send.

-- Default value:
- none

-- Modified by:
- The routines in bus_io and communication_management. May be freely
-- set (with care) by other routines implementing communications.

-- checksum
-- A check value calculated by the sending Nproc and verified by
-- the receiving Nproc.

-- Deftault value:
-- none

-- Modified by:
- The Nproc code. This value should not be touched by any other
- routines.

type datagram header is

record
next : datagram pointer;
prev : datagram pointer;
class : datagram class;
buffer size : buffer_range:
msg_count hw_long_natur:.;
semaphore : hw_long_integer;

Not transmitted

"
" "
" "

Not transmitted

Kernel User’s Manual, Version 1.0

17

message_length :

operation : kernel_operation;
remote_timeout : KT.kernel_time;
sender : NG.process_index_type:
receiver : NG.process_index type:

message_tag :
massage_id :

buffer range;

checksum : hw_integer;

end record;

CG.message tag_ type:
message_identifier:;

The following representation specifications define the layout of the datagram_header. These are
defined in a hardware-independent manner but used internally in a hardware-dependent manner.
The representation specifications are used to ensure that the layout of a datagram is always the
same, no matter what hardware or compilation system is used. See also the documentation that
will be provided with the code for a discussion of the translation of sender and receiver addresses
into a format that is used by the underlying hardware.

for datagram_header use

record
next at
prev at
class at
buffer size at
msg_count at
samaphore at
message_length at
operation at
remote_timeout at
sender at
receiver at
message_tag at
message_id at
checksum at

end record;

0*longwozrd
1*longword
2*longword
3*longwoxd
4*longword
S5*longwoxrd
6*longword
6*longword
7*longword
9*longword
10*longwozd
ll*longword
12*]longwozxd
13*longword

range
range
range
range
range
range
range
range
range
range
range
range
range
range

for datagram header’size use l4*longword*bits_per byte;

The following data types are used for components of the datagram_header.

-- The values of this enumerated type are:

-- blind_send

-- The kernel operation which corresponds to the send_message routine.

-- acknowledged_send

- The kernel operation which corresponds to the send_message_and_wait

-~ routine.

-~ kernel_message

Enumerated type describing the different type of messages that can be
sent, either originating as a application message or as a Kernel message.

.. 15;
.. 31;
. 31;

00000 O0ONMNOCOOOOOO

31;
31;

31;
15;

.. 31;

63;
31;
31;
31;

. 31;
. 31;

-=16..31 unused

172

Kernel User’s Manual, Version 1.0

-- Any message sent by the kernel to respond to send_message_and_wait
-- actions, or to kill (or announce the death of) processes.

-- init_protocol_message
- Any message sent during the initialization procedure before the
- application code is running.

-- sync_protocol_message
- Any message sent during the global clock resynchronization protocol.

type kernel operation is (
blind send,
acknowledged_send,
kernel message,
init protocol maessage,
sync_protocol massage

.
’

-- Enumerated type describing the various Kernel-to-Kernel messages. This
-- value is written into the "message_tag" field of a datagram

-- The values of this enumerated type are:

-- ack

-- A kernel message acknowledging the timely receipt of an

-- acknowledged_send message (i.e., the message was received).

- nak

- A kernel message specifying that an acknowledged_send message
- was not received in a timely manner (i.e. the message timed out

- before it was received).

- nak_process_dead

-- A kernel message specifying that an acknowledged_send message
- was not received because the process to which it was addressed

- died before receipt.

-- info_process_dead
-- A kernel message specifying that a process has died. This message
-- is sent independently of an acknowledged_send.

-- kill_process
- A message specifying that a remote process is to be terminated.

- init_complete

- A Kernel message indicating that the network initialization

- procedure has completed, and that the Kernel may begin running
- the application code.

-~ network_{failure
- A initialization message indicating that a network failure has been
- detected.

Kernel User’'s Manual, Version 1.0 173

-- process_created
-- An initialization message announcing the creation of a process. This
- message is sent via the create_process kernel call.

-- master_ready
- An initialization message indicating that the temporary network
-- master is ready to resume the initialization protocol.

-- nct_count
-~ An initialization message announcing the size of the NCT table that
- is to follow.

- nct_entry
- An initialization message containing an NCT entry.

-- go_enclosed
- An initialization message containing the epoch time.

-- go_acknowledgement
-- An initialization message acknowledging the previous go_enclosed.

-- prepare_to_sync
-- A synchronization protocol message announcing the start of the
-- clock resynchronization sequence.

-- ready_for_sync
-- A synchronization protocol message replying to the prepare_to_sync
= message, announcing that resynchronization is in progress.

-- time_is_now
-- A synchronization protocol message announcing the epoch time to
-- resynchronize to.

- now_in_sync
-- A synchronization protocol message acknowledging the receipt of the
- time_is_now message.

-- abort_sync
- A synchronization protocol message which prematurely terminates
- the resynchronization procedure.

type kernel tag is (
ack,
nak,
nak_process_dead,
info_process_dead,
kill process,
init_completae,
network_failure,
process_created,
master_ready,
nct_count,
nct_entry,
go_enclosed,
go_acknowledgemant,

174 v Kernel User’s Manuai, Version 1.0

_

prepare_to_sync,
ready_for_sync,
time is now,
now_in sync,
abort_sync

):

-- definitions of data used internal to a datagram

subtype buffer_range is CG.message_length_type;

== data buffer that can be indexed in byte sized quantities

type data_buffer is array (buffer_range range <>) of hw_byte:

-~ insure that the bytes of the array are contiguous

pragma pack (data_buffer) ;

-- this type allows the Kernel to generate unique message identifiers
-- for those messages sent via send message_and wait

type message_identifier is new hw_long_ integer;

-- Datagrams are referenced by pointers for effiecient access and
-- parameter passing

-- Datagrams are divided into classes. While variant records were an

-- Ada language option, the implementation of these records was so

-- inefficient that a design decision was made to use unchecked_conversion
-- on different datagram classes (identified by the datagram class type)
-- to simulate a single datagram type.

type datagram class is (small, large, kernel, queue_head);

5.2.1.3. Initialization

The pool of datagrams is completely ailocated during Kernel initialization. It is from this pooi that
individual datagrams are assigned to hold incoming messages destined to local processes and
outgoing messages sent from a local process. The size of this pool is determined by the
hardware and is described in the documentation that will be provided with the code.

Kernel User's Manual, Version 1.0 175

5.2.1.4. Additional Allocation Requirements

The application creates the header for an incoming message queue for each Kernel process
during the execution of the Kernel primitive create_process. Datagrams are removed from the
datagram pool and assigned to a Kernel process as messages are sent by or received for thai
process. No additional allocation is performed.

The Kernel returns datagrams it no longer needs to the datagram pool. No deallocation is
performed.

5.2.1.5. Constraints on Usage

Datagrams should never be accessed directly by the application. All use of datagrams should be
through the Kernel primitives send_message, send_message_and_wait, receive_message, kill,
synchronize, and the initialization primitives.

Even though the datagrams are potentially visible data structures, they should be treated as an
"abstract data type” by the application program. Knowledge of the interna.l structure, other than
the fact that all messages are stored in FIFO order, should not be exploited in the application
program, as this may violate the integrity of the Kernel and the application program.

5.2.2. Time Event Queue

The Time Event Queue maintains the Kernel's internal view of time. To the Kernel, time is
represented as an ordered sequence of events that will happen some time in the future. The
event with the least amount of time until expiration (i.e., the nearest in the future) appears at the
head of the Time Event Queue; events with longer amounts of time until expiration appear toward
the tail.

Three events, at most, can be outstanding for a process as a direct result of its own actions:
1. Alarm
2. Timeslice
3. One of: wait, semaphore, or receive timeouts (via calls to one of the Kernel
primitives: wart, claim, or receive_message).

Additionally, a process may have any number of messages queued for its receipt (limited by the
size of the incoming message queue) that require an acknowledgement to be returned to the
sender.

5.2.2.1. Exporting Package
Generic_process_table, process_table

5.2.2.2. Structure
The Time Event Queue is a semi-dynamic data structure. Each entry in the Time Event Queue
fully describes the event and its timing aspects.

Figure 5-11 illustrates the structure of the Time Event Queue along with the scenario it
represents.

176 _ Kernel User's Manual, \'~rsion 1.0

]

177

<

L

o

-

5

. UBIAA, . Inyuy, . UINeW. Qi sseo0id o

L]

SpU02es ot we 0€'6 SPU0Jes G Kydxe m

=]

pesdeje yoode pesdeje sSej0 W) - m

“ 4

IN0BWI)T Y QUM pues wiepe noswn " yem WeAe o pupy :\» w

P

P e, A i, A Aesd “

- o
C . 4 / = m
./ w

@

E

=

enenb juene ewy)

Figure 5-11

"SaIMOnIIS elep feule)] Jeylo pue BNBND JUBAJ Wi | 8L U] SlueAe ueemieq diysuonete)
84l Moys p Lied pue ‘g Ued ‘g Wed |1-G seinBly ‘eneny) Juea3 ewy) ey jo sjuejuod o) Isnf smoys | bey | §-G emnbi

"Aem swes ey) peiep1o skemie s| snenp JUBAZ ew|| ey} ‘INJJ0 SJUAS 888y} yolym vy 1epio ey} jo sseipsebey
"SpU0D8S (E JO INOBLIY elowes B Yim yem pue ebessew pues eja ujiepy o) Jues sem ebessew Ve
‘WE OE:6 10} INOBWI) B YUM LWIEJR JBS S|Ied ANYUY «
'SpU0eS G Jetje IN0BW] O] Jlem Sjjed ujjsepy »
: 1)
ealwid 18uls)y Guimoi|o) ey} jo 82uenNd00 BY) Lo peseq ‘selue eeyl Sey e Jossesoid uo enenc |ueAal ewl] ey oueueds

Kernel User's Manual, Version 1.0

'lllllllllllllllll,l
T IIIIw=,

B EE N BN BN BN B B BE B BN B R B B B B B e

U480\ (10} pI0IBL o

“uonew.opu”ssasosd M

o

— 2

— selnquie” esepelul |00} 3

(obed Bumo o} eeS) (ebed i1xeu eeg) \\\\\n\‘! >
v sejnquue esoydeiwves ©

. UelAA, . inyue, Qi1 sseo0id m
seinquile MOV M pues S

(spuooes g) »

Adxe =) -

eweu uopideoxe 3

(pesdere) 2

sseio euil)]

Awoud uopdwnses wieje m

b4

Inoew OV (inoewp "yem) =
yum pues wiee Eo>o|_c|usi)
I UeAe uueje

e e aeud

=
\ xeu Bessew Bujpued jueund

enenb Juene™
/ nend jueae eun L Qi weae Bupued
e

(Buipued yem)
Ayanoe " Buipued

sejnquireAyaoe Buipued

-

seINqUIe” UOIIEJUNUILIOD

Figure 5-11: Time Event Queue Structure - Part 2 of 4

se|nquie eNpeyos

UB|AJA 110} D106 nyuy 10} p10o6i _
“uvofew0u)ssesoid _lcoamgss..mmmu&& sejnque” sseooxd
* *
- T e e |

>
(-
a

eu | qisseo0id

.w/\. ~_ | ~___ A/

178

eiqe} ssecoud

{abed Bumojjoy 98S5)

(ebed snoineid eeg)

. UBAIA,

Q17 sseds0id

. Vljew,

(we 0¢:6)
Andxe

(4yoode)
sse|d ew(y

noswi MOV
“yumpues

(wiepe)
WeAe 10T pUpY

incew(i yem

e

neid-

—0

-

]

xeu

i

) —

>

] /

enenbTiueAe ewi}

URIAIA 110} pI029s

_lcoag&s.wmouo&

f —

~ ¥

\

YUY 10} PI0O8I
“uoniewsojui"sseaoid

seinqie 8depelu| |00}

seinquile”ejoydewes

seInquye HOV M pues

)

ewev vopidesxe

V3]
Aniopd vondwnses wieje

]

Qi veas uuee

o)
pBessow Bujpued tueund

(nnv)
Qi wene Bupued

(Supued Bujyiou)
Kyapoe Bupued

seinguie "Ayaoe Bupued

SOINQUIR ™ UOIIEIUNUIIOD

SOINQUIE™ B|NPeYs

se|nquie”sses0sd

— L4

_ “uonewo)ur$se0sd!

uliieW :10}p1026s

T

!

xeu
1

|
Q1 sse20:d

.w

N

-

‘ejqel sseooid

Time Event Queue Structure - Part 3 of 4

Figure 5-11

179

Kernel User's Manual, Version 1.0

process_table
\ 7 7
prev | process_ID next/? /T—I —
yi yi \J.
I ~— ;
: I process_information_ 1 ;
process_attributes p /for: Arthur process_attributes
schedule_attributes schedule_attributes
communication_ communication_
attributes - attributes | ________.
pending_activity_ ‘
message_queue N attributes :
pending_activity_ end_w_ACK_attr :
attribules | send_w_ACK_attributes ;
send_w_ACI_attributes event_IiD -«/
semaphore_attributes message -
ooi_interface__ attributes query \
m&W‘ semaphore_attributes
) tool_interface__ attributes & 1-~-------*
process_information_
[record for: Vivian
/3_*
g . . }
next
prev
Vi yi Vi
\ “ 14
msg_count 3 — - —
operation blind_send blind_send acknowledged_send
remote_timeout — — 30 seconds
sender Vivian 2; -32_766 Arthur 1; -32_765 Vivian 2; -32_766
receiver Merlin 1; -32_766 Merlin 1; -32_76€ Merlin 1; -32_766
butfer “type 1 msg " “type 1 msg " “type 1 msg ”
Figure 5-11: Time Event Queue Structure - Part 4a of 4

180 Kernel User’'s Manual, Version 1.0

time_event_queue

N

wait_timeout

prev

o’

kind_of_event
(send_w_ACK_timeout)

time_class
(elapsed)

. expiry

(30 seconds)

Figure 5-11: Time Event Queue Structure - Part 4b of 4

Kernel User’'s Manual, Version 1.0

181

-- event_information is the template used to represent each of the sequence
-- of events that are understood by the Kernel to happen some time in the
-- future (i.e., the template for each entry in the time event queue)

-- the information maintained for each time event is:

kind_of_event

- the event_type causing the creation of this time event

-- possible values:

- alarm (via a call to set_alarm)

- receive_timeout (via a call to receive_message)

-- semaphore_timeout (via a call to claim)

- wait_timeout (via a call to wait) -
-- send_with_ACK_timeout (by receiving a message indicating a

-- remote timeout is required)

-- slice_expiration (time slicing was previously enabled)

- default value:

- none

-- this value is assigned when an event_information record is added
- to the time event queue and should never change as long as it is
- stillin the time event queue

N N N S B N B aE e

-- time_class
- the type of time specified by the application (via a call to any
-- Kernel primitive that provides a time parameter)

-- possible values:
-- elapsed (the application specified an elapsed_time)
- epoch (the application specified an epoch_time)

-- default value:
-- none

-- this value is assigned when an event_information record is added
-- to the time event queue and should never change as long as it is
- still in the time event queue

-~ expiry
-~ the Kernel_time at which the time event expires; the time in each
-- entry is that which was specified via the Kemnel primitive called

.- default value:
- none

- this value is assigned when an event_information record is added
- to the time event queue; it may change only via a call to one of

-- the Kernel primitives: adjust_elapsed_time (for all entries in

-- the time event queue) or reset_epoch_time (only for those time

-- event queue entries with time_class = epoch)

process_ID
- the concrete process identifier for which the time event is

182 Kernel User's Manual, Version 1.0

- maintained (i.e., a pointer into the process table for the
- process "owning" this event)

-- default value:
-- none

- this value is assigned when an event_information record is added
- to the time event queue and should never change as long as it is
- still in the time event queue

type event_information

is record
kind of event : time keeper_globals.event_type;
time class : time keeper_globals.time class_type;
expiry : Kernel_ tima.Kernel time;
process_1ID : process_identifier;

end recorxd;

[
5.2.2.3. Initialization
The initial allocation for the Time Event Queue is computed as the product of
maximum_number_of_processes_value times two (to accommodate the alarm timeout and one
of the other, mutually exclusive, timeouts) plus one (for the slice event). If no messages requiring
acknowledgements (i.e., sent via the Kernel primitive send_message_and_waif) are ever
received by this processor, the Time Event Queue will never grow.

5.2.2.4. Additional Allocation Requirements

With the exception of processing messages that require acknowledgements, no additional
allocation is required. To manipulate the entries in the Time Event Queue, pointers are assigned
and unassigned; no dynamic storage allocation is required.

Each time a message that requires an acknowledgement is received, there is the potential for
allocating a new entry in the Time Event Queue. Once allocated, this entry is maintained in the
Time Event Queue so that, once the timeout it represents expires, it may be reused by the
Kernel. This avoids repeated calls for dynamic allocation.

The maximum size to which the Time Event Queue could ever grow is:
{ (number of locally created processes * 2) + 1) +
number_of Kernel_nodes
number of locally created processes on node i

| =

The first term is the maximum number of events that could be pending for each process as
described in Section 5.2.2.3. The second term is the maximum number of processes that could
conceivably send a message via the Kernel primitive send_message_and_wait. The third term
excludes the process itself.

Kernel User's Manual, Version 1.0 183

5.2.2.5. Constraints on Usage
The Time Event Queue should never be accessed directly by the application. It should only be
manipulated via calls to the Kernel primitives (see Chapter 4 and Appendix A).

Even though the Time Event Queue is potentially a visible data structure, it should be treated as
an "abstract data type” by the application program. Knowledge of its internal structure should not
be exploited in the application program, as this may violate the integrity of the Kernel and the
application program.

5.2.3. Process Index Table

The Process Index Table maintains the Kernel's mapping from the application-visible process
identifier assigned to a process (and maintained in the Process Tabie) to an internal notation
used for network communication. This internal notation is called the process index, and it
comprises two fields that, together, uniquely identify each process declared to the Kernel:

1. Node_number. This corresponds to the physical_address field in the NCT entry
corresponding to the processor on which the process is sited. '

2. Process_number. This value, unique within each Kernel node, identifies each
Kernel process declared on the processor designated by the node_number field.

The process_index for a non-Kernel device is:

1. Node_number. The physical_address field in the NCT entry corresponding to the
non-Kernel device. '

2. Process_number. A well-known null value (this is never used by the Kernel).

The Kernel initializes the Process Index Table during Kernel and network initialization time, and
the Kernel uses that information for inter-processor communication.

5.2.3.1. Exporting Package
Process_index_table

5.2.3.2, Structure

The Process Index Table is a static data structure; it is fully defined at compile time. The Process
Index Table is a two-dimensional array: the first dimension represents the physical address of
the nodes in the network; the second dimension represents the number of the process on a
particular node. This index into the Process Index Table identifies a unique process identifier
component. The process_information_record pointed to by the process identifier identified by the
Process Index Table indices contains a component—process_attributes.process_index—that
corresponds to the two-dimensional index into the Process Index Table. If there is no process at
the component identified by an index into the Process Index Table, that value is null (i.e., no such
process exists).

Figure 5-12 illustrates the structure of the Process Index Table along with the scenario it
represents.

type mapping array type is array
(

184 Kernel User’s Manual, Version 1.0

0
@
L
b | M €
b | A 4
_ b] b1 {
u »ix]o
Y PECPY Y. Y SN \éﬁ ~1% GBuddew
¢ W @ e e o o
2
2
USJAIA 110} p1026) ANYUy :10jpsodes ujeyy 10} pioses an
“vonewio)ssesoid “uvonewsou| " sses0id “vopewiouf " sses0sd m
se)nqupe edeyelul |00} ..u
| x
seinquie esoydewses .m
seInquie OV~ M pues m
seinquueAyAjioe Bujpued m
j =3
seInallle UojIedUNWIWOD o
senquite” einNpoyos ﬂ_ o
- nq einpey @ 2
(99, 72¢-) (s8¢"ze)) e s
Jequnu~ssed0d Jsquinu~ssedqd 1OQWNU~$5890:d W ..n.
ic 3
(2) (1) (1) w >
equInuU” epou lequinu—epou lequinu—epou M'
xepuis582010 xepuj_sseooxd xepu)sseo0sd M
_ seinquye ssesoxd seinque " sses0.d sejnquessesosd P
= ‘® Jossed01d UO Jun UK eyl .w
\ e . .ﬂ. - U " Wew 8 sossesosd L4
| ' | 7 T T 10 uojincexe Jeye =
= e{qe | xepu} s5890id o
3 y)) . pue ejqe $5620id m
N— _ , oY) j0 sjueluoD >
) e|qe) sses0id ‘opeuess -

NG.bus address range <>, hw_integer range <>
) of PTB.process_identifier:

-- Compute the upper bounds on the mapping table so that it can be properly
-- sized.

== largest_node_number: this is be the number of nodes in the network.
-- largest_process_index: this the maximum number of processes that the
- application can create (as defined by the

-- application)

largest_node_number : constant NG.bus_address :=
NG.bus_address (NC.number_ of nodes - 1);

largest_process_index : constant hw_integer :=
hw_integer’first + hw_integer (PTB.maximum number_ of_ processes) + 5:

mapping : mapping_array_ type
(

0 .. largest_node number, hw_integer’first .. largest_process_index
) := (others => (others => null));

There are no representation specifications relevant to the Process Index Table.

5.2.3.3. Initialization

All components of the Process Index Table are initialized to null when the Process Index Table is
declared. Components are set to the appropriate process identifier value when a process is
created locally or remotely (for Kernel processes) or when a process is associated with a
non-Kernel device via the Kernel primitive allocate_device_receiver.

5.2.3.4. Additional Allocation Requirements

No additional allocation is required. The maximum size of the Process Index Table.is constrained
by the tailoring parameters: maximum_number_o._processes_value (the maximum number of
processes that are known to the Kernel on this node) and number_of_nodes_value (the number
of entries in the NCT).

The size of the Process Index Table may vary from node to node. The maximum size of the
Process Index Table after intitialization is complete may be limited by the tailoring parameter
maximum_number_of_processes_value. See Section C.1.4 for more details.

5.2.3.5. Constraints on Usage
The Process Index Table should never be accessed directly by the application. All use of the
Process index Table should be through Kernel primitives.

Even though the Process Index Table is a potentially visible data structure, it should be treated as
an “abstract data type" by the application program. Knowledge of the internal structure should
not be exploited in the application program, as this may violate the integrity of the Kernel and the
application program.

186 Kernel User's Manual, Version 1.0

5.2.4. Interrupt Table

Interrupt management relies primarily on one data structure called the interrupt Table. Itis a
fixed size, statically allocated structure with entries for each interrupt that could possibly occur.
Otherwise, no other data structure is referenced.

5.2.4.1. Exporting Package
Generic_interrupt_globals, interrupt_globals

5.2.4.2. Structure

The Interrupt Table contains all information needed for interrupt management. The table consists
of a number of entries, one for each legal interrupt name. See Appendix H for the 68020-specific
definition of type interrupt_name, which is used to determine the size of the Interrupt Table on the
68020. Each entry contains information about the interrupt itself (its state, type, and source),
whether or not it is reserved for use by the hardware or Ada runtime system, Kernel, or used by
the application, and information about the handler associated with the interrupt (handler code,
stack, indication of whether bound or not). .

Figure §-13 illustrates the structure of the Interrupt Table along with the scenario it represents.
-- the information maintained about interrupts includes:

-- owner
-- the owner of the interrupt

- values include:

-~ absent (not assigned to any interrupting device)

- reserved (reserved to Ada runtime or other non-Kemel system code
- Kernel (owned by Kernel)

- application (owned by application)

-- default value:
- application (owned by application)

-- condition
- the condition of the interrupt

-- values include:

- bound (a handler has been associated with the named interrupt
- via a Kernel call)

- untound (a handler has not been associated with the named

-- interrupt via a Kernei call)

-- defauit value:
unbound (a handler has not been associated with the named
- interrupt via a Kernel call)

-- state
- the state of the interrupt

-- values include:
- enabled (the interrupt is enabled)
- disabled (the interrupt is disabled)

Kernel User’'s Manual, Version 1.0 187

O

Kernel User’'s Manual, Version 1.0

™
‘uojteayidde ey} o} ejqejiene 5
ele yGg pue €62 seweu jdnueiuy) Auo ‘uojiesiidde eyl o} ejgejiee 10U |[e 818 GGZ pUB '€/ 2/ ‘2l ‘0 Seweu jdnuseiy ‘ejdwexs syl u| M
‘| xipueddy u) peqIosep se peqisel YHvQ eyl Joj ooeds ese uojezjeniu pue ebues edwexy, P.”_
g
.
o
| seipueyjinu | sepueyiinu | Jejpuey inu Jeipueyjinu | Jepuey iU Jejpueyjinu seipuey Ny Jo1puey m
W | 1 1 1 L 1L 1 | weesd ves M
W [ewejxe [euseixe [euse}xe [eusexe [ewsixe (eurelxe |euseixe eaInos m
paiqesip peigesip peiqesip pejqesp | peiqesip peiqesip pejqesip eels m
punoqun punoqun punogun punogun punoqun punoqun punoqun uoppuod =

uoneoidde uopnesiidde uojteoydde uojjesidde uojjeoydde uojiedde uoljesydde 10UMO

GGe 1414 %474 €L el cl 0

"sfeqoi6jdnuejur ebexoed Aq palenueisu; se ejge | 1dnus|u) eyl jo SJUSIUOD (0LBUBIS

188

‘vonjeidde ey) o} siqejeae
aJe G2 pue £5¢ seweu jdnuelul Ajuo ‘uopeoidde eyl 0} ejgejieae Jou jie 818 GGZ pue ‘gL ‘2 ‘21 ‘0 Seweu jdnisepy) ‘ejdwexe siyi uf

| xjpueddy uj pequIsep se peqise} YHVQ oyl 1o} Apoeds ese uopezyeiu] pue efue) ejdusexd,

sseippey/
“weibejep sseippe sseippe
~enedel M1 uene MA0P ewnun elempley
‘o) snq | sejpuey jinu | Jepuey jinu “Jedeey ew)} #0019 epy Aq pesn Jopuey
L 1 1 1 4 4 1 | idweesdve2
jewelxe feuseluy lewieixe leuse)xe lewelxe feuiely) leweixe 8anos
pejqeue peiqesip psjqesip peiqeue pejqeue pejqeue pejqeue oJejs
punoq punoqun punoqun punoq punoq punoq punog vonipuod
fousey uoiledydde uojteydde CITEY] jpuiey penese) peAlese) J8UMO
1%1°14 14°14 €62 €L L cl 0

‘Jjosi sezije|ljul jeusey| oY) 1eye ejqe| a_.:ho—c_ ey} JO Siusluo?) .oueuedg

interrupt Table - Part 2 of 3

Figure 5-13

189

Kernel User's Manual, Version 1.0

. ‘voyeoidde ay) o} sjqejieae
ale ps2 pue g2 saweu idnuaju Ao ‘vonesydde eyl 0} ejgeileAr 10U jje 8ie GGZ pUe ‘E/ ‘2L ‘2| ‘0 seweu jdniajul ‘ajdwexa sy} uj

‘1 xpueddy U1 pequosep se paqisal ¥YyQ eyl Joj dpoeds ese voneziieniul pue abues ejdwex3,

sseJppe,y o
“weibelep ssaippe sseippe -
“anedss) ssaippe sseippe U1 ueae A 000 ewun) alempiey c
"0y sng FG2HI £ESZHI “1edeey e W00 epy Aq pesn Jejpuey .Im
o
1 1 E| 1 4 4 1 | 1dweesd ues >
]
jeuseixe jeuie)xe feuseixe jeuseixe (euieixe feuiejuy fewseixe eanos m
-]
pejqeve pejqeue pejqes|p pejqeue peiqeue peigeue pejqeve ejejs w
'
punoq punoq punoq punoq punoq punoq punoq uonpuUod 8
™ o
(eusex uojiesiidde uojjesidde {susey Jeusey) penese) poAlesel JOUMO ° M
]
- 2
GS¢e 12T €52 174 el cl 0 -4
. K 9
¥52 <= 1dnueiu| 8
) -
1dnuejui elejnwis ueweBeuew dnuely .m...
|
62 <= idnueiy s
) £
8|qeue’uewebevew " idnuielyl &
| -
‘(ssesppe,rSeHI) b
$SeIppR” MY 80BleIU| B1empIey m
<= 9p0Od Jejpuey o
‘tge<= idnuelu| L
)
lejpuey ydnueju) puiq luewebeuew jdnuejy)
o
osje) <= Jdweeid ued
‘(ssesppe.eSZHI)
$SeIppe” My,eoeuelul eiempiey
<= 9poo Jojpuey
‘e6e <= idnuau
]
Jejpuey 1dnuejul puiquswebeuew idnusjul
:sijiea eAlwud euse) jo ecuenbes Buimo)io) eyl pendexe sey uojieadde eyl Jeye ejqe] idnueju) oyl J0 SlUBIUOYD OPRUEDS m

default value:
disabled (the interrupt is disabled)

interrupt source
indication of from where the interrupt sequence originated

values include:
internal (the interrupt was generated by a call of the Kernel
primitive simuiate_interrupt)
external (the interrupt was generated external to the processor
as some hardware interrupt)

default value: -
external (the interrupt was generated external to the processor
as some hardware interrupt)

can_preempt
indication of whether or not the interrupt can cause the currently
running process to be preempted, letting another process execute
after interrupt processing

values include:
true (the interrupt is preemptive; the Kernel Scheduler may
select a different process to continue)
false (the interrupt is non-preemptive; the Kernel Scheduler may
not select a different process to continue)

default value:
true (the interrupt is preemptive; the Kernel Scheduler may
select a different process to continue)

interrupt_handler
interrupt service routine for the interrupt

default value:
nuli_handler (a weil-known null address)

tool_interface
indication of whether or not the tool interface has been enabled

values include:
true (tool interface enabled)
faise (tool interface not enabled)

default value:
faise (tool interface not enabled)

monitoring_process_|D
the process identifier of the Kernel process monitoring interrupt
activity via the tool interface

default value:
null_process (a null process)

Kernel User's Manual, Version 1.0

191

type interrupt_table_entry

is record
owner : interrupt_owner := application;
condition : interrupt_condition := unbound;
state : interrupt_state := disabled;
source : interzrupt_source := external;
can_preempt : Boolean := true;
handler : hw_address := null handler:
tool_ interface_enabled : Boolean := false;
monitoring process_ID : process_table.process_identifier :=
process_table.null_ process;
end record;

-- the template for declaring the interrupt table is indexed
-- by the range of interrupt names

type interrupt_table_type
is array (interrupt_name) of interrupt_table_entry;

interrupt_table : interrupt_table_ type:

The following types are used in the definition of the Interrupt Table.

== interrupt_name is an integer value in a hardware-dapendan£ range;
-- see Appendix H for its definition for the 68020

-- these values correspond to the hardware vector assignments
-~ of the tarzget, and are generally sparse

type interrupt_name is (...}’

-- an interrupt vector can be one of four kinds:

-- absent (not assigned to any interrupting device)

- reserved (reserved to Ada runtime or other non-Kernel system
code)

- Kernel (owned by Kernel)

- application (owned by application)

type interrupt_owner is (absent, raserved, Kernel, application);

-- any interrupt may be in one of the following conditions:

-- bound (a Landler has been associated with the named interrupt
- via a Kernel call)

- unbound {a handlex has not been assoclated with the named

-- interrupt via a Kernel call)

type interrupt_condition is (bound, unbound):

192

Kernel User's Manual, Version 1.0

-=- this type indicates the state of an interrupt

-~ values include:
-- enabled (the interrupt is enabled)
- disabled (the intexrrupt is disabled)

--REQ: 11.1.4:; 11.1.5
--PRIM: 20.1.1; 20.1.2; 20.1.3

type interrupt_state is (enabled, disabled);

-=- this type indicates the sourxce of an interrupt

-=- values include:

- internal - interrupt was generated by a call to the Kernel
-- primitive simulate_interrupt

- external - interrupt was generated by hardware and was

- processed by the hardware interrupt handling

- mechanism

type interrupt_source is (internal, external):

- thia.conttant designates a null interrupt handler

null _handler : constant hw_address := null hw address;

There are no representation specifications relevant to the interrupt_table_type.

5.2.4.3. Initialization
The Kernel automatically initializes those entries in the Interrupt Table that are reserved for use
by the hardware, the Kernel, or the Ada runtime environment.

No explicit initialization is required by the application, other than binding, enabling, or disabling
interrupts as required by the application.

5.2.4.4. Additional Allocation Requirements
None; all data structures are static.

5.2.4.5. Constraints on Usage

The target interrupt mechanism should not be accessed directly through assembly routines or any
Ada language feature without understanding the implications. Otherwise, certain assumptions
made by the Kernel might be invalidated.

Because the Kernel primitive simulate_interrupt does not rely on the target interrupt mechanism
but rather goes directly to the Interrupt Table to locate the appropriate ISR, the hardware is not

Kernel User's Manual, Version 1.0 193

aware that interrupt handling is in progress. Therefore, the ISR may exhibit a slightly different
behavior when simulated if it depends on the internal mode of the target hardware.

5.2.5. Kernel Time

The model of time exported by the Kernel to the application was introduced in Section 2.5. This
model of time is derived from the Kernel's internal representation of time, which is not visible to
the application program except via elapsed_time and epoch_time abstractions. This Section
presents the Kernel's internal representation of time.

it is possible that the Kernel's representation of time is insufficient to support a specific
application. Appendix C.1.2 and Appendix C.2.3 each describe the analysis that must occur prior
to using the Kernei for an application. This analysis assists the application engineers in
determining a suitable vaiue for the length of a slice—that is, the smallest interval of time required
by an application—and the capability for the Kernel's representation of time to support it.

5.2.5.1. Exporting Package
‘Generic_Kernel_time, Kernel_time

5.2.5.2. Structure

Values of type Kemel_time and the application visible abstractions based on Kernel time,
elapsed_time and epoch_time, are fully defined at compile time. They comprise two 32-bit parts:
a low part and a high part that, combined, support representations of time beginning at zero and
continuing for some 150_000 years (i.e., 2 ** 63 microseconds). The Kernel does perform error
checking to ensure that values of type Kemel_time, elapsed_time, and epoch_time do not
overflow. If an overflow is detected (during an arithmetic operation), the predefined exception
numeric_error is raised.

==~ type Kernel time; the time on which elapsed time and epoch time
-~ abstractions are built

-- this time representation allows applications beginning at time
-~ zaro to execute for somae 150_000 years (i.e., 2 ** 63 microseconds)

—— RRARRRARR

-- the user should ensure that adjusting any times does not approach
== the limit of this tima representation; proper Kernel functioning

-- is NOT guaranteed if time overflows
- REAXRRRAR

~-- Kernel_Time is represented as a signed 64-bit binary integer,
-- representing a count of microseconds. Hence, a kernel time
== of 1_000_000 corresponds to one second.

~= For the purposes of Ada definition, kernel time is a record of

-= two components, being respectively the low-order and high-order

-- 32 bits. The high-order component can be correctly declared to

-- be a signed 32-bit integer, of type hw_long_integer. The low-order
-=- component, however, is properly an UNSIGNED 32-B1T INTEGER, which

-= this Ada compiler will not accept. Accordingly, it must be declared

-- to be SIGNED, which is wrong.

194 Kernel User's Manual, Version 1.0

-- The consequences are these

-- (a) if a kernel time value is printed in the "obvious" manner, i.e.,
-- printing each component. The low-order part may be printed as a

- negative number when in fact it is a large positive number.

-- (b) if a kernel time value is constructed "by hand,” i.e., as an
e aggregate of two integers, the person writing the aggregate
- must perform the necessary conversion from signed to unsigned
- form For example, a kernel time of "-1" is represented as

- 16¥LLLLLLLL LLLLLLLLH, 1. e., as (-1,-1) in Ada temms.

type Kernel time is record -
low : hw_long integer := 0;
high: hw_long_integer := 0;

end record;

-- the value of zero for the Kernel_time abstraction

zero_Kernel_time : constant Kernel_time := (0, 0);

-- the range of durations represented as integral values

type integral_ duration is new hw_long_ integer;

There are representation specifications relevant to type Kernel time. The representation
specification is used to ensure that each portion of Kemnel_time is aligned on a longword
boundary and that it occupies a complete longword (i.e., 32 bits).
for Kernel_time use record
low at 0 range 0..31:

high at 4 range 0..31;
end record;

5.2.5.3. Initialization
Objects of type Kernel_time or of those types derived from it, elapsed_time and epoch_time are
initialized to zero. The size of those objects is completely determined at compilation time.

5.2.5.4. Additional Allocation Requirements
No additional allocation is required.

5.2.5.5. Constraints on Usage

The components of Kernel_time or of those types derived from it, elapsed_time and epoch_time,
should never be accessed directly by the application. Kernel_time should never be referenced by
the application; only the abstractions based on Kernel_time, elapsed_time and epoch_time
should be used. See Section C.1.2 for more information about tailoring the representation of
Kernel_time to the hardware and to the application.

Kernel User's Manual, Version 1.0 195

by

Even though the representation of Kemel_time, elapsed_time and epoch_time are potentially
visible, they should be treated as "abstract data types" by the application program. Knowledge of
the internal structure of any of these types should not be exploited in the application program, as
this may violate the integrity of the Kernel and the application program.

196 Kernel User's Manual, Version 1.0

6. Application Evaluation

The detailed information in this chapter will be provided in the next version of this document.

6.1. Tool Interface

6.1.1. Concept of Operations

The Kernel is a utility intended to support the building of distributed Ada applications. As such, it
is important that the Kernel be able to work in harmony with user-developed support tools. To
provide that support, the Kernel must provide a window into its internal workings. It is envisioned
that such a tool is simply another Kernel process executing on one or more of the processors in
the network. As such, the tool has access to all the Kernel primitives. Using these primitives
along with the Kernel-provided Tool Interface described below, a number of potential tools could
be built, such as:

* Process Performance Monitor: To compile statistics about the runtime performance
of a Kernel process(es).

» Processor performance monitor: To compile processor-level statistics.
* Network performance monitor: To compile network-level statistics.

« Interrupt activity monitor: To compile statistics on the frequency of interrupts and the
amount of time spent in various interrupt handlers.

e Message performance monitor: To compile statistics about the frequency of
messages, average message length, peak bus usage, etc.

Given the above motivation for the Tool Interface, the actual form of the Too! Interface is driven
by the following principles:

¢ A user-developed tool must have easy access to all the information of the Kernel.
Whether or not that tool makes use of the information is not the Kernel's concern.
The key is that the Kernel must provide visibility into everything it knows intrinsically,
without expending resources to combine that intrinsic knowledge in any way.

o The extraction of information based on what the Kernel knows is left to the
user-developed tool (and indeed, it is deemed to be the function of that tool). Itis in
the domain of the tool where the intrinsic Kernel information is combined and
presented in some context-specific manner.

¢ The internal Kernel information must be provided in a manner that does not
compromise the integrity of the Kernel; this implies read-only access to the Kernel's
internal data structures.

¢ The performance impact of using the Tool Interface must be predictable. Obviously,
the performance impact will not be entirely predictable given the non-determinism
inherent in the activities being monitored. But the Tool Interface bounds the impact
in a way that provides insight into the potential performance impact of a
user-developed tool (of course, the tool itself is a Kérnel process that may be
monitored like any other Kernel process in the system, so its performance may be
determined empirically). The tool should consume predictable resources generaily
(not just clock cycles), e.g., storage, message bandwidth.

Kernei User's Manual, Version 1.0 197

e Application code should never have to be modified simply to use a user-developed
tool (while this may not always be possible, it is nevertheless a desirable goal).
Therefore, while some of the information made available via the Tool Intertace could
be acquired by having the tool communicate directly with an application process, this
approach is rejected as bad tool design and a distinct detriment to the application
software of an embedded system. (The Ada Main Unit is used solely to configure a
Kernel processor and to establish the initial process topology and, as such, is not
considered "application code.” To achieve the requisite separation of concerns, i.e.,
separation of the application from its monitoring, enabling or disabling Tool Interface
functionality shouid be defined in the body of the Ada Main Unit.)

In general there are two classes of Kenel information that may be of interest to a user-developed
tool: process information and interrupt information. The sections below describe the information
available via the Tool Interface and the Kerne! primitives provided to access this information.

6.2. Subprograms

Complete information will be provided in the next version of this document.

6.2.1. Begin_collection
invocation
Resource Consumption

Conditions for Blocking

6.2.2. Cease_collection
invocation
Resource Consumption

Conditions for Blocking

6.2.3. Read_process_table
Invocation
Resource Consumption

COndIt_Ions for Blocking

6.2.4. Read_interrupt_table

Invocation

198 Kernel User’s Manual, Version 1.0

Resource Consumption

Conditions for Blocking

6.3. Related Information

Complete information will be provided in the next version of this document.
6.3.1. Exported Constants

6.3.2. Exported Data Structures

6.3.3. Referenced Constants

6.3.4. Referenced Types

6.3.5. Relevant Generic Parameters

6.4. Monitoring Performance

Complete information will be provided in the next version of this document.

Kernel User's Manual, Version 1.0 199

Kernel User’'s Manual, Version 1.0

7. Notes

Section 7.1 is a general project glossary and, as such, may contain certain acronyms and terms
that do not appear in this document specifically.

7.1. Glossary of Terms

Absolute (time):
A synonym for epoch time.

Ada: ANSI/MIL-STD-1815A.

ADT: Actual Delta Time. The actual delta time achieved when measuring a performance
requirement.

AEGIS:
A class of Navy ships with a C3 function.
AIT: Appiication Integrity Testing.
AITS: Application Integrity Test Suite.
Alarm:

A single timer associated with a process that may expire during process execution. |If it
does expire, a change of process state occurs, and the exception alarm_expired is raised.

ARTEWG:
Ada Runtime Environment Working Group.
Asynchronous (event): ’
An event that occurs while the affected process is performing other work or is waiting for
the event.
Blocked (process state):
A process that is (temporarily) unable to run. All process states are described in the KFD.
Blocking (primitive):
A Kernel primitive that causes the process state to become blocked. The “blocked"
process state is described in the KFD.
C3: Command, control, and communications.
CPU: Central processing unit.

DARK:

Acronym for the SEI Distributed Ada Real-Time Kernel Project.
Dead (process state):

A process that is unable to run again. All process states are described in the KFD.
Device:

A hardware entity that can interrupt a processor or that can communicate over the system
bus.

Distributed:
Executing on more than one processor in support of a single application.
DoD: U.S. Department of Defense.

Duration:

The Ada type duration; used to measure e/apsedtime. Related information can be found in
the Ada Reference Manual [9.6].

EC: External Computer.

Kernel User's Manual, Version 1.0 201

EDT: Expected Delta Time - The delta time specified in the performance requirements of the
KFD.

Elaboration:
The elaboration of a declaration is the process by which the declaration achieves its effect
{such as creating an objecy); this process occurs during program execution.

Elapsed (time):
The number of TICKs since the end of the application initialization process.

Epoch (time):
The value representing the moment at which the processors began to compute elapsed
time.

Event:

Something that happens to a process (e.g., the expiry of a timer, the arrival of a message,
the arrival of an acknowledgment, being killed by another process).

Exception:
An error situation which may arise during program execution.

FAR: Final Acceptance Review.

FIFO:
First in, first out.

GCD:
Greatest common divisor.

Hedgehog:
Echinus Europaeus L.

HM: Hardware Monitor.

Interrupt: :

Suspension of a process caused by an event extemal to that process, and performed in
such a way that the process can be resumed. (This extemnal event is also called an
interrupt.)

IDS: Interface Design Specification.
INS: Inertial Navigation System.
Interrupt handler:
Code automatically invoked by the Kemel in response to the occurrence of an interrupt.
ISO: International Standards Organization.
ISR: Interrupt service routine; interrupt handler.
Kernel:
Basic system software to provide facilities for a specific class of applications.
KAM: Kemel Architecture Model.
KFD: Kernel Facilities Definition.
KIT: Kemel Integrity Testing.
KITS: Kernel Integrity Test Suite.
KS: Kernel Specification.
KTC: Kernel Test Checklist
LIFO: Last in, first out.

MCCR:
Mission Critical Computer Resource.

202 Kernel User's Manual, Version 1.0

MS: Motion Simulator (Part of the INS Simulation).

NAVSAT:
Navigation Satellite.

NTDS:
Navy Tactical Data System (A communications protocol).
Network:
Series of points (nodes, devices, processors) interconnected by communication channels.

NCT: Network Configuration Table.
NIT: Network Integrity Test.

Package:
A package specifies a group of logically related entities, such as types, objects of those
types, and subprograms with parameters of those types. It is written as a package
declaration and a package body. A package declaration is just a package specification
followed by a semi-colon. A package is one of the kinds of program unit.

Package body:
Contains implementations of subprograms (and possibly tasks as other packages that have
been specified in the package declaration.

Package Calendar:
The Ada Package Calendar [Ada Reference Manual 9.6, Appendix C].

Package specification:
Has a visible part, containing the declarations of all entities that can be explicitly used
outside the package. It may also have a private part containing structural details that

complete the specification of the visible entities, but which are irrelevant to the user of the
package.

PITS: Processor Integrity Test Suite.
PM: Performance Monitor.

Postcondition:
An assertion that must be true after the execution of a statement or program component.
Otherwise an exception is raised.

Pragma: .
Conveys information to the Ada compiler. This definition is from the Ada Reference
Manual.

Precondition:
An assertion that must be true before the execution of a statement or program component.
Otherwise an exception is raised.

Primitive:
Basic Kernel action or datum.

Process (Kernel):
An object of concurrent execution managed by the Kemel outside the knowledge and
control of the Ada runtime environment; a schedulable unit of parallel execution.

Process stack:
Built by the Kemnel when creating a Kernel process. The process stack contains a stack
plug (to prevent the propagation of unhandled exceptions), a dummy call frame (pointing to
process termination code), and a place for process-local variables.

Processor:
Central processing unit (CPU); on the DARK prototype, a 68020.

RDAS:
Remote Data Acquisition System.

Kernel User's Manual, Version 1.0 203

Real-time:
When it is done is as important as what is done.
RN: Requirement Number (as enumerated in the KFD).
RTE: Runtime Environment.
Runtime:
That fraction of elapsed time during which the processor is executing application code.

Running (process state):
A process that is executing on its processor.

SEl: Software Engineering Institute.
Semaphore:

A mechanism for controlling process synchronization, often used to implement a solution to
the mutual exclusion problem.

Slice:
A schedulable interval of time.

SPM: Software Programmer’'s Manual.

Status code:
Generic term used to indicate the status of the execution of a Kernel primitive. A status
code may correspond to an output parameter of some discrete type or to an exception.
STS: System Test Software.

Suspended (process state):
A process that is able to run, but cannot run because a process of higher or equal priority is
running. .
Synchronous (event):
An event that happens while a process is looking for that event.
System bus:
Communication medium connecting processors and devices.
Task:
An Ada language construct that represents an object of concurrent execution managed by

the Ada Runtime Environment supplied as part of a compiler [Ada Reference Manual
Chapter 9].

TC: Test Controller.
Tick:
The smallest resolvable interval of time used intenally by the Kernel.

Time:
The Ada type time; see aiso epoch and elapsed.

Ul: User interface (part of the INS).

204 Kernel User’'s Manual, Version 1.0

Appendix A: Kernel Packages

This appendix, which is bound separately, is a copy of the Kernel specification.

Kernel User’s Manual, Version 1.0

205

Kernel User’'s Manual, Version 1.0

206

Appendix B: Kernel Exceptions

This appendix provides a set of indices to the exceptions that may be raised by executing Kernel
primitives. The first index is sorted by exception name, the second index is sorted by package
name, and the third index is sorted by raising subprogram. For all three indices, the following
information is provided:

¢ The name of the exception,
+ The name of the exporting package, and

e The Kernel subprogram that raised the exception under the conditions described in
the Kernel specification, provided in Appendix A. For each subprogram in the Kernel
specification, there is a section entitied "ERROR PROCESSING" in which the cause
of the exception and the Kernel's ensuing actions are fuily described.

Kernei User's Manual, Version 1.0 207

(Joye) wiee 1es
(Joj) wuee o8
wJefe [soued

Juewsbeuew wieje ouauab

1ea 104 I1xa1u09 jebajj

ajajdwoduonezyemur

Juswabeuew 10sse20)d o1BUBD

pasndxa noswn UoneZifeIiul QUAS jeuly

10ss820.1d 18)SEWBZIIBMUI

Juswabeuew J0sse20sd o18uUsb

juelsisuooul se|qey uopesnbyuod

(mun Guniem) wie
(10§ Bunrem) wrejp

luswabeuew aloydewas ouausb

N0 pawn” wee

ewi yoode isn(pe

jusweBeuew owy dusueb

swy yoode eanebauui s)nses ebueyo

awy pesdeje isnipe

ewebeuew swij ousueb

euy” pasde|e eanebeuui synsas ebueys

ejeidwoo ™ uonezyenu
J0ss800.d” BleUIpIOQNS BZIfEMUI
10ss800id 18)SEN " 9ZIIRMIUI

Juswabeuew J0sses01d dueusbd

Nun"urew 1ou jun Buyes

ssaooixd ejeasd
(e01n0p jousey-uou) sseo0sd asejoep
(sseo0.d jausey) sseo0sd eseoep

sJabeurw ssasoid oueuab

Hun~ureyy Jou yun Buyeo

abues ujyum 1ou s| ssesppesnq
odA) j1 uogesogeje Buunp pesies

sfeqoif yiomieu dususb

N08YD SSesppe snq

(1nun Buprem) ebessaw"eA1900)
(104 Bunrem) ebesseweA800)
obesssw oA190061

Juewebeuvew uogeduNwWwos dusueb

ebessew 10§ |lews 00} Jaynq

Aisnouoayouise sandxe wiee
ey} uaym |awiey ey Aq pesies

Juswebeuew wieje ousuab

pandxe uuee

weibosdang Buisiey

eweN abexoey

eweN uondsox

suojidaox3 jousey) J0 Xapu)

suojidaox3 jsuse) :1°g xjpuaddy

Kernel User’'s Manual, Version 1.0

208

ssaooid ejessd siabeuew $S8001d duauab eoeds™ juaaiynsu
(901A09p |8UIBY-UOU) SSBD04d BJBjOBP
(ssa001d jausay) sseooid sasejoap

209

ooysewy 18s juswebeuew 9dljsawl oususb wnjuenb jebaj
ss800id 8)easd siebeuew " sse00id ousuab Jaynuepy ssedoid ebay
ssao0)d 9)easd sigbeuew ssadosd oususb sseippe ssasoid |eboji
Jojpuey jdnusiul puiq juewabeuew dnuvu) dusuab ssaippe Jgjpuey ydnusui ebaj
1dnusiul aje|nwis ewebeuew jdnusejui ousuab ydnusiui (ebaiy
peiqeus :

o|qeus

e|gesIp

J9jpuey dnuejul puiq
esesja! swoebeuew aioydeweas ousueb 1189 10} I1x8)u0o0 eba|

(Inun Bugiem) wiero
(soj Bunrem) wiejo
unejp

| we oym siepeas enquye ssaooid ousuab 11eo 10) Ix8juod jebajp
Auoud sseocosd 106
uondweaid ssaoc0sd 106

, :._ME.W wem| sigypow eingune” ssedoid opaueb 1eo 10} 1xauo0o |ebey
10}) JIem

Auoud sseooid jes
uondwesud ssasoid 18s
elp

(inun Gunrem) ebessow 9A1998) | Juswebeurw uogEOUNUILIOd DUBUBD |reo o) 1xejuod jebay
(10) Bunrem) ebessew™ oA1908) .
obessaw aA18091 .

(mun) yrem pueabessaw puas
(10)) yem pue ebessew pues
wem pue_ebesssw puss

weiboidgng buisrey swep ebexoed sweN uondeoxy
suondaox3 jausey JO Xxepu|

Kernel User's Manual, Version 1.0

S SN 5 UGN SN B S0 AN BU OGN OGN BN OGN B AN B8 S e
T T

$5820.Jd 8)Ee81d

siabeuew ssad01d ououab

pajeosd Apeasje ssao0.d

swn yooda isnipe

uswsbeuew sun) ouausb

passed Apease swn InNG MO

ebueis ynu e sey Auoud edhy
) uonesoge}d Buunp pasiel

sadA) 9|npayos ouauab

abue)”Auoud ynu

asea|a)

juswebeuew aioydewss suauab

esoydewes Aw jou

JBAI908) 821ABp B)BO0|IB

juswabeuew uonedLNIWOY oueueb

SISIX® 891A8p YONS ou

(mun Buiem) abessaw 8A18086s
(10} Buniem) ebBessoew oAI800)

juswebeuew uogeIIUNWWOD ouausb

ejqejeAe ebessew ou

siebeuew ss8001d dueusb

ss820.4d 8)e8I0 82IABD |8UJBY UOU U0 S$S8201d |BUSB) OU

1dnueiul ejejnwIs juewebBeuew 1dnueu) oususb punoq Je|puey ydnusjul ou
e|qeus

wJseje” |aoued juswebeuew uuee ouousb jos_wJeje ou

8Z|uoIyoufs juewebeuew swy oueusb ainye) Yomeu

ajeidwod uoezie
Jossao0sd Bleupiogns” azjeu
J0ss000)d J8ISEN OZIjRliul

yewoebeuew 1055800:d opeusb

eIn|ie) Homau

(Inun) yem pue ebesssw ™ pues
(10j) rem pueebessew puses
em pue abessaw puss

juswabeuew uoReUNWWOD dusueb

einjej Yyomjau

(inun Buiyem) ebessew eAj908)
(10} Buniem) ebessow ™ eA1800)
(1pun) yem pue eBessew pues
(10)) yem pueeBessew pues

ewabeuew uogedunuiwod spyeusb

o pawny ebessaw

(Inun) yyem pue abessaw pues
(10}) vem pue—ebessow puss
yem pue ebessew pues

juswebeurew uoneIUNWIWOD dueusb

peAj@oes jou” ebessew

J0sSe201d JBiSe ezieniul

Jswebeuew J0sse201d oueuab

pendxa jnoewn uonezyeniul Jaisepw

weiboxdgng Buisrey

ewep ebexoey

swepN uondedxy

suopdeox3 (ouiey JO xepu|

Kernel User's Manual, Version 1.0

210

9ZIU0IYoUAs

yusweabeueus awn opouab

ssa160sd Ul UOBZIUOIYOUAS

10S5900.d 8jeUIPIOqNS” BZIfeNIu

wewabeuew 10ss8001d ouauab

pasdxe Inoaws) uoneziemul ejeulpiogns

(1eye) wiee)8s
(10j) wee 188

wewebeuew uueje oususb

wepe Bunsixe Bumese:

ydnusiul syejnwis
pajqeus

8|qeus

8|qesip

Jajpuey jdnuBiul puiq

juswabeuew jdnusiul ousuasb

idnusjul paalssal

Jajpueyydnuaiul puiq

juswebeuew ydnusiul ouauab

Jajpuey idnuajui_ snoinesd buoeida

JONIBD8I 92IAep B)edo)e

Juswebeuew ™ uoneouNWIWOd ouausb

uonedojje” snonasd Buoeidal

(nun) yem pueabessaw puss
(10)) vem pue ebessaw puas
yem pue abessew puas
abessaw puas

Juawebeuew uopeoUNWIWOd ouaueb

PBISIX® JOABU 19A18031

(Inun) yem pue ebesssw puss
(10j) yem pue abessaw puss
wem pue abessow puas

Juewebeurw uoneIIUNWWOD Jusueb

19pUBs” S| JBAIBI8)

(mun) yem pueebessew pues
(10§) yem pue ebessews pues
nem pue ebessaw pues
obessaw puss

juewebeuew uoneauNWWOs dususb

pesp JoAI800)

J0ss8001d JB)SE BZI[BNIU}

Juswebeuew 10ss8001d opeuob

1DN hwsues o) psjie) Jossasoxd

J0sseo0.d JeiSeN ezieniu)

JuswebBeuew J0sse20sd opsuseb

obessew 06 YOy 01 paje) 108s800:d

eoidwos uoneziemul

JueweBeuew 105$600.d oususb

pPapasIxe” wnwixew sseso.d

eeidwoouoneZiemul

JuowebBeuew s0ss8201d ousuab

ainjrej uonezieqiul ssadoxd

(821A8p [9UJO)-UOU) SS8201d BsR|O8p

(ss9004d |8U18)) SS8201d BIRIDOP

siobeuew sse201d ououob

sisixe ApeaJe ssadoid

weiboidang Buisrey

oewepN ebeyoed

sweN uondesxy

suondsoax3 |euss) JO xepuj|

211

Kernel User’'s Manual, Version 1.0

—

Kernel User’'s Manual, Version 1.0

(991n8p |0UISY-UOU) SS820id BIR08p siebeuew ssas0:d ousuab BOIABP (BWBY UOU UMOUNUN
8ZIuoIYouAs uewsbeuew swy ousuab pandxa IN0BUNY UOREZIVOIYOUAS
wesboidqgng buisiey swepN abexoey swep uondeoxy
suondeox3 |ouIey Jo xapuj| m

(inun Bumem) sbessaw o199
(103 Buniem) abessaw aAi90a.

a|qepeae abessaw ou

yuswabeuew uoneEIIUNWILWLOD JuBU3b

(Inun) yem pue ebessaw puas
(103) wem pue ebessaw puas
yem pue ebessaw puas

a.njie) YJOMIdu

Juswabeuew uonedIUNWIWOD duBuUsb

(Inun Buiiem) ebessewi 9A19931
(10) Buem) ebessaw oA1909)
(inun) yem pue obessaw puas
(103) vem pue ebessouwi puas

Ino pawn abessaw

Juswabeuew uoyedUNWWOd o1audb

(mun Buiem) ebessawi—9A19090
(10) Bunem) ebessew aa1900.
ebessatu aA19901

ebessew 10§ flews 00} 1aynq

awasbeuew uonedUNWWOS du3useb

(1nun) yem pue abessaw puas
(103) vem pue ebessaw puas
yem pue ebessow puss

paaieoss jou abessaw

swebeuew uonedUNWWOd oudusb

(inun Burem) ebessawi aA1999.
(10) Buirem) ebessow oAI8981
obessow on18001

(1nun) yem pue obessew pues
(103) wem pue ebessaw puas
yem pue ebessaw puss

1es 105 1xajuod jebayp

yuswebeuew uonediunwwod susuab

(Joye) wiee jos
(103) usee oS

uueje Bunsixe bueses

juswebeuew uuere sususb

wJefe |aoued

}0S wuee ou

Jswebeuew uuee susuab

(1oye) uuepe jos
(103) uueEe YOS
uueje |soued

Ites 10§)xejuod [ebaj)

Juswebeuew uuer susueb

AisnouosyouAse sandxs uueje
8yl uaym [pwey sy Aq pesiel

paadxe wueje

uswabeuew uuer susuab

weib60xdqng buisiey

uofdeosx3y

owepN ebexyoed

abexoed Aq suondeox3 jsusay| Jo xapu)

213

Kernei User's Manual, Version 1.0

abues uyum Jou s1 sseJppeSNQ
adA} j uonesoqeja Buunp pasies

¥o9Yyd ssaippe snq

sieqolb ypomjeu ousuab

dnusjui ejeinwis
pajqeus
8|qeus

ejgesip
Jg|puey dnuaiui puiq

1dnuB)uUI PaAIaSal

uswabeuew 1dnueuy ousueb

Jojpuey idnusiui puiq

Jojpuey dnueiul” snowesd buoeidas

awebeuew dnusju) oueusb

idnusjul elejnuis
o|qeus

punoq Jejpuey idnueju ou

juswebeuew ydnusiui ouousb

Jojpuey jdnusiui puiq

ssaippe Jejpuey idnusjuy febay

wswabeuew idnueyu susueb

ydnusiu ejejnus
ps|qeus

e|qeus

8|qesip

Jejpuey idnusiul pulq

ydnuejui jeboyl

ewebeuew ydnusiui oueueb

JONIBDOJ 821ABD Bjed0|Ie

uoiedsojjesnoesd Bujoe)das

wewsbeuew uoneoIUNWIWOI dueusb

(mun) yem sue ebessaw pues
(10j) vem—sue"ebessow puss
yem sue ebessow pues
obessaw puos

PoISIXe JOABU J1OA18081

ewsbeuew uopesuNWWo? sueueb

(mun) yem pue ebessew puss
(105) yem pueebessaw puss
yem pue ebesssw pues

Jepues SI JBA1928)

ewsbeuew uoneouNWWos ousueb

(inun) yem pue—ebessaw puss
(20)) vem " pueabessswpuas
yem pue ebessaw puas
ebessow pues

pesp JoAI908)

ewebeuew ™ uonesuNWWOI dpeusb

JBNI928) ©21A0D B1eJ0|e

SISIX@ 821A8p Yons ou

Juswabeuew UONEDIUNWWOD duBUBb

weiboidgng Buisiey

uondaox3

sweN oabexoey

ebexoed Aq suondaox3 jpusey JO xopuj

Kernel User's Manual, Version 1.0

214

10ss3201d J8)SEN 9ZI[RIIUl

pandxe INoawN uoleZIeRIUI JBISEN

Juswabeuew 10ss8201d ouBUBD

9)9|dwoo ™ uonezyemu
10s5820.d_ 8jeuUIpIOqNS BZIBIIUl
J0ssa00d J9)SeezZ)ENUI

8Jnjiej Hiomjau

Jswabeuew 10ss9201d dusuab

819|dwoo uoiez)eniu
J0ssao0sd ajeuIpioqns ™~ azieNIu|
108$8201d J9ISBN BZIeul

hun " urew jou Jun Buyieo

Juswabeuew J0ssad0id ousuab

(a01n8p |8L8)-UOL) SSB00Id BIE|DEP

B2IABD |9UIBY UOU Umouyun

siabeuew ssa00id ouauab

(a21n8p |8UIBN-UOU) SSB800.d BJRID8P
(ssa201d jpusa)y) ssad0id asepap

sisixe ApeaJje ssaosoid

siabeuew ssa001d ouauab

$59204d @)esId

peleasd” Apease ssad0id

siabeuew ssagoid ouauab

55900Jd 6jeas

82IABP |8UIB) UOU U0~ $$8201d |auIB) Ou

siabeuew ssasosd ousueb

ssao0id 8jess
(801n0p j8UIe)-UOU) SSB004d BIBIOBP
(sseo0id jausayy) ssed0id esejoep

soedsTueNNSLI

siobeuew sses0sd ousuab

$$000)d 8}e8ID Jsynuepy ssedsoxd jebay s1obeuew ssao0:xd 2usuab
ss800.d @)eald ssaippe” ssedo.d |ebaj s19beuew sseo0:d oueusb
ssec0id 8jeasd nun_ulew Jou pun Bules siabeuew $s8901d 2u0uab

(a01n8p |oule)-UOU) SSed0sd osej08p
(sse00.1d |8use)) SS8201d BI1R108P

| we oym
Auoud ssecoid 106
uondweeid ssecosd 100

1es 104 }xe1u0o jebay

siepeas eynquie” $s820xd ousueb

(Inun) yem

(10}) yem
Auopd~ssadoid 1es
vondweesd ssadoid s
elp

j1eo 105 1x8ju0d [ebay)

sJalipow” eynqupe” ssesosd oueuab

weiboidgng buisiey

uondeox3y

abexyord Aq suondaox3 |pusey Jo xapuj

swep ebexoed

215

Kernel User's Manual, Version 1.0

aolsawy 1es wmuenb jebay) Juawabeuew soysawy oueuab
82)u0JYouAs pandxad Jnoauny uoezIuoIydUuAS wawsbeuew awn oueuseb
921u0JYouAs ssa160.d”ui"uoneziuoiyouAs wawebeuew ewy ousuab

swn yoode jsnipe

awn yooda eAnebauui synsas abueyo

Juswebeuew awn ousuab

swy pasdeja isnipe

swi) pasdejs eanebau ui synsas abueyo

wawebeuew swn oususb

swy yooda snipe

pessed Apeasje”ewn Ing MO

wewebeuew awg dououab

821uoIYoUAS

o._a__m.lx_oia:

Juewebeuew swy oususb

9se9)9)

esoydewes Aw jou

wewabeuew esoydewss opsueb

(mun Bunrem) wiejo
(10) Bunrem) wyepo

N0 pawy wiep

juswabeuew ™ sioydewes ouousb

osea|al

(nun Buprem) wieso
(10} Buprem) wyepd
wie

es Joy 1xewoo rebejp

wewabeuvew sioydewos ouousb

ebues (inu e sey Auoud
edA)) uonesoqeje Buunp pesies

ebues Quopd ynu

sadA} sinpeyos susueb

10ss850.d 8jeUIpIOqQNS ™ BZIIeNIUIl

pendxe Jnoswn uUoeZIeNUl Bleulpsogns

ewabeuew Jossaoosd susueb

1055800.)d JB)SRW BZIeNIU|

LON Nwsuen oy pejey josseooxd

yuewebeuew 10ss600sd ousueb6

10S$6201d 19)SEY BZIeNIU|

ebessew 06 MOV 01 peje} 10ss890.d

uewebeusw 10ss800:1d oueUBL

81a|dwoo ™ uonezieu

pepesdxe” wnwixew ss8o00.d

uewebeuew 10ss8004d 2UBUBD

918|dWwoouoneZI_IIUI

einjiej” uopezifeyu sseo0sd

Juewebeuew 10sse20)d oueueb

8jo;duod” uonezjemul

pasdxe jnostwu) uonezieMuUl JuAs” [euy

uewebeuew J0ss8901d ouBUBH

10ss820.d 1e)Sey ozieul

Ju8lSIsuooul” sejqel” uoneinbyuod

Juswabeuew J0sse20)d oueueb

weiboisdgng Buisiey

uondeox3y

aweN ebexoeyd

ebexoed Aq suondaax3 |suse) Jo xapu

Kernel User’'s Manual, vVersion 1.0

216

~
siabeuew ss900)d oueuab pojealo Apeasje” ssao0id s$s820.d 618310 b
siabeuewss8004d o18uab | 801ABp |0ULY UOU U0~ SS800id |auUIs) OUu $5820.d 9jeasn
siebeuew ssa20.d “oueusb . eoeds Jualoynsuy $5800)d 8}R8I0
siabeuew sseo0id ouauab Jsynuspl ssaooid [ebaj ssa%0id 91eaJ0
sjabeuew ssao0id ouaueb ssaippe ssaoc0sd |ebai ssas0id 018910
siabeuewssaooid ousuab nun~ wew lou yun Buljes $S5820Jd 918810
Juswabeuvew aioydewss oususb N0 pawiy wiep (mun Bunrem) wiep
Juawabeuewaioydewas ouauab |leo Jo§ Ixaj)uod jebaj (mun Bunrem) wiep
weswsebeuew sioydewss doususb N0 pawn_ wiep (10j Buniem) wiep
Juswabeuew sioydewss dusueb |1ea 105 xejuoo [ebojp (J05 Bunrem) wnep
wewabeuew sioydewss ououeb I1eo 10§ Ixejuoo febaj wrep
Juswebeuew were ousueb 189S uwueje ou uueje” jaoued
swabeuew wuee dusuab 1189 40§ 1x83u0o ebay uuee” |eoued
wswebeuew 1dnusiu oueuab ydnusjui pensssal Jejpuey dnuayui puiq
wawabeuew dnuajui oueusb Ja|puey (dnusiui snoiaesd Buoeidas Je|puey dnueju puiq °
ewebeuew 1dnusjul dueueb ssesppeJojpuey jdnueiur [ebajy Jejpuey dnueyu puiq M
wewebeuew ydnuejui oueusb ydnwejuy~febey Jejpuey idnusjui puiq m
Juswebeuew ™ uonedIUNWWOD d8ush uoljeoojie”snoiaasd buoeidas JOAIB008) 82IABP B)ed0)je g
Juswabeuew uoyeduNWwos ousueb SISIX@ 82jA8p YONs ou 18A1898) 80IABP B1eJ0je .M
“juswebeuew ewn oueusb| ewn yosoda eanebouui synses ebueys ewy ysode isnipe .M.....
juowsbeuew swi oueuab passed Apeasje awil NG HO awn yooda snipe (g
Juswabeuew ewy oususb| awy pesdejs eanebeuui sinsas sbueyo awy pesdejs isnipe m
aweN abexoed eweN uondaoxy weiboidgng buisiey m
weiboidgng Buisiey Aq sawen [auiay Jo xapu| u..rn.

wawebeuew 10ss8001d ouauab

nun ey 1ouun Buyed

J0ssan0id JeiSeyy eziemul

wswabeuewJossedo.sd dususb

papesoxa wnuwyxew ssaoo.d

e18i1dwod uonezyeniul

Juswabeuew J0sse00sd ouauab

ainjrey uonezijenul ssasoid

e18|dwod uonezyenu

uswabeuew Josss800)d ouauab

pasdxs~ Jnoswiy uonezieniul ouAs jeuly

8jeidwod” uoneziienul

- wawabeuew Jossao0id ouaueb

aJnjie) yJomjau

eje|dwod uonezieniw

juswsbeuew J10ss990)d OuBUBH

hun~urey Jou hiun” Buyed

81e1dwoo " uonezienui

sJjapeas” sjnquue” sseo0id ousueb I1eo 105 xeyuoo [ebaj Awoud sses0sd eb
siepeas_einquie” ssed0sd oueusb (reo JoJ Ixejuod [eboyy uondweeid ss8o0sd 100
yswabeuew Jdnusjui oueueb ydnueyui peasasel peiqeue
wewebeuew ydnusiui oususb ydnueyui jeboyt peiqeus
swebeuew ydnusiul oususb idnusjui poasesal e|qeus
ewebeuew dnuejul ousueb punoq iejpuey ydnuejui ou ejqeus
ewebeuew (dnuejui dousuab ydnuejul febejy ejqeue
wewaebeuew dnuejul oususb dnuelu) paAsasel e|qesip
woewsabeuew (dnuejui ousueb ydnueyui jebei eiqesip
sJajipow” einquue” sseocoid oueusb i1ed " Joy Ixeod [ebay ep

siabeuew sso00sd oueusb

B8JIABD |9WI8Y UOU UMOURUN

(801n0p j8WBY-UOU) SSB20:1d BsROED

siabeuew sseooid op8ueb

_sisixe” Apesse” ssao0sd

(901n0p |8UIB)-UOU) SSBO0:1d B1B[0BP

siebeuew ss800sd ousuab

aoeds jusioynsul

(e01nep jause)-UOU) SSB20)d BB

siabeuewssao0id oueuab

Nun_uew Jou Jun Buyes

(s01n0p joUIB)-UOU) SSB00)d BsRIOEP

sJabeuewss9001d o1uBUB0

sisixe” Apeasje ssanoid

(ss8201d jouse)) sseooid eiejoep

siobeuew ss8001d dusuab

eoeds Jusoynsul

(ss8001d jousey) sseo0sd eseoep

siobeuew ss800id ousueb

Hun_ulew Jou Jiun~ Bules

(sse00.d jouie)) sseooxd aseppep

swepN oebexoed

sweN uondaox3y

weiboxdgng buisiey

weiboidgng Buisiey AQ sawen [auiay Jo xapu|

Kernel User’'s Manual, Version 1.0

218

Juswabeuew uonesUNWWOY o1dusb

es 10y xsjuod jeban

yem pue abessew puss

yawabeuew uonesuNWWod oususb

POISIX® JOABU JOAIBD3)

ebessew puas

Juswabeuew uoneoIUNWWOD ousueb

pesp 19A19091

obessow puss

Juawabeuew eioydewss ouauab

asoydewss Aw jou

aseajal

juawabeuew asoydewas ousuab

{rev 1o} 1xajuod [ebajl

eses|o)

wawabeuewuoneoUNWWOd 2uausb

ejqe|ieae ebessaw ou

(mun Guirem) ebessew’ 8A18081

Juswabeuew UONEIIUNWWOS duausb

o pawn ebessawl

(nun Buniem) abessaw BA1908)

Juswabeuew uonedUNWWOod ousueb

ebessawi 10§ WS 00} Jaynq

(mun 6uiem) ebesseus BA1908)

juswabeuew uonREIIUNWLWOS oU8usb

{reo10) 1x8)uoo febaj|

(mun 6uniem) ebessaws 8A1808)

Juswabeuew uoEOIUNWWOY ouduab

e|qejeae” abessaw ou

(105 Buniem) ebessew 8AI19081

Juswabeuew uoneoUNWIWOY duausb

N0 pewy ebessaw

(105 Buiem) ebessew oA1908)

juswabeuew uoeIUNWLIOd dueuab

ebessowi 10§ |lBWS 00} JayNq

(104 6unrem) ebessawi BA1908)

Juswebeuew "uoReOIUNWWOS dueusb

Ire9 0§ Ixeuoofebey)s

(10§ Buniem) abessew oaleo01

Juswebeuew "uonesUNWWOd opeueb

ebessow 10§ |lBWS 00} JBYNq

obessow 8A1893)

juswabeuew uonesUNWWOD dusueb

|reo o} 1x8juod jeba)

obessaw 818091

Juewebeuew 10ss820:d oususb

pexndxe)nosw_ uoneZIENIU) BlRUIPIOGNS

J0SS800)d eeupioqns” szileiul

juawebeuew J0ssed0id ousueb

ainjiey YJomisu

Jossaoosd sjeulpiogns” azijeniul

Juswebeuew10ss990:1d oususb

yun_urew 1ou Jlun_ Buyes

10ss8001dejeuIpIOqNS 8zifeliu)

Juewebeuew 10ss8001d oueueb

LON hwsuesy o) pejej 10ssasoid

40558200 J8ISEN OZIjENIUl

yeswabeuew Josseo0id oueuab

ebessew 06 MOy 0) peye;j Jossasoid

10550204d 18)SEN” OZIlElIW

juswabeuew J0sse20sd dusueD

we)sisuoou)” sejqe) uoneinbiyuod

105s800.d JoISEN BZIeIW

Juewsabeuew Jossad0:d ouaueb

pandxa_jnoswn uogezieniul Jeisenw

105$820id JeiSEy 9ZIfeiul

yuswabeuew J0ss820sd ouBUBH

aJnjie) HJomjou

105592014 191SBN QZIeIIUI

awepN obexoed

ewepN uondeox3y

wesbosdgng Buisiey Aq saweN |auiay Jo xapuj

weiboidgng buisrey

219

Kernel User’'s Manual, Version 1.0

Juawabeuew wiseje ousuab

wueje” buysixe buijesas

(104) wseje 10s

Juawsbeuew wsee ousuab

11eo 104 1xaju09 |ebay

(10§) wseje)9S

Juswebeuew wiee ousuab

wueje” Bunsixa Bumasas

(Jeye) wieje18s

yswabeuew wiee ousuab

I1eo 10§ Ixa)uoo jebajj

(Joye) useje 1S

uawabeurw uonesUNWWOS ousuab

P3)SIX8™ JOABU JAAIB03I

(mun) yem pue ebessaw puss

Juswabeurw uonedUNWWOd ~ouBuab

JOPUBS™ S| JOAIBDAY

(mun) yem pue ebessew pues

Jawabeuew uonesuNWWOos ouausb

pesp JoAI9091

(mun) yem pue ebessaw puss

swebBeuew uonesunwwoo sueush

ainjiej yJomou

(mun) yem pue ebessew puss

juswebeuew " uonesuNWWod dueusb

Ino pawn ebessaw

(mun) yem pue sbessew pues

ewoebeurw uoedUNWWOY opeusl |

paaeoes jou” ebessew

(mun) yem "pue ebessew puss

Juswebeuew uopesUNWWOo opeusb

l1es™ 1oy xajuoo ™ febay)

(imun) yem pueebesseuws puss

juswebeuew uoleoUNWWOS oueusd

PBISIXa JBABU JOAIBD8)

(10) vem pue abessew pues

juaweBeuew uoneIUNWIWOD oueusb

Jopuas S 18A18961

(103) vem pue ebessew pues

JuswebeurwuoneIUNWWOY oususb

pesp 10A18001

(10}) yem pue ebessew puss

jusweBeurW UONREDIUNWILIOS OUeueB

eJnjie) yiomiau

(1o}) yem pue ebessew puss

awebeurw uoneIIUNWWOY ousueb

o pewn ebessew

(Jo}) yem pue ebessow puss

wewebeurw uoneIILNWWOD ousueb

poAIaoal Jou ebessaw

(10}) yem pue ebessaw puss

juewabeurw uonesUNWWOI oueusb

Ifed 10) Ixejuod” reboy

(10) wvem pue ebesssw puas

uswebeuew uoneoNWWOI dueusd

POISIX JOABU JOAI180)

yem pue ebessews pues

Juswebeurw ™ uoneIIUNWWOD oueusb

Jopues si JoA18901

wem pue ebesssw pues

Juewabeuew uonesuNwWwos sususb

peep JaAI928)

yem pue” ebessaw pues

jueweBeuew " uoneIIUNWWOI Oueusb

einjiej YJomieu

em pue ebessew pues

Wwewabeuew uoiedUNWWOI oususb

paaeoss Jou ebessaw

yiem pue” ebessaw pues

swep ebexyoey

oweN uondsaoxgy

weiboidgng buisiey

weiBoxdqng Guisiey Aq sewen (8usey] Jo xapu)

Kernei User's Manual, Version 1.0

220

sadAy 9|npayos ouauasb

ebues fuoud nu

ebuei ynu e sey Auoud
8dA 1 uonesoqejd Buunp pesies

s)eqo|6 yiomau ousuab

¥o8Yyo SSelppe” sng

abues uiyim Jou S| ssesppe”snq
adA)) uonesoqele Guunp pesies

awabeuew uwuee oususb

pandxa_uuee

AisnouosyouAse sendxe uuepe
oy} usym joui9) ey Aq pesres

si19pes) ainquue” sseaosd dusuaeb {19 10 X800 jebey | we oym
sJjayIpoweynquie” sseo0sd ousueb {rea Joj 1xeod febeyy (Inun) yem
si9lipowaynquyessas01d oueuasb I1e9 105 Ixejuoo jebayn (104) yem
Juswabeuew ewy duauab pandxe jnoswyy uoneziuoiyouAs 8ZIUCIYDUAS
yawabeurw ewn ousueb sse160:d U uogeziuoIyouAs 8ZIUOIYOULS
juewebeurw awy ousuab eJnjiej Niomieu 8ZIUOIYOUAS

swebeuew jdnueiu dueusb

ydnueui pealase)

dnueju erejnwis

uswebeuew jdnuaiu oususb

punoq Jejpuey ydnuejui ou

dnuejui ejenwis

ewebeuew jdnusu| dususb

\dnuejur rebajp

dnugiui sjejnuis

wewebeuew aoysewn dususb wnjuenb jebay) eolsoun) 19s

sJayipoweynquitesseo0.d oueuab (189 10§ 1x8juoo” jebojj Auoud ssescosd jes

sJelipowanquiie” ssa00sd ousuab 11e9 10} Ix8yu0o~ [ebay uondweesd ssedoid es
swepN obexyoed aweN uondadxy

wesboidang Buisiey Aq SeWweN jeula) Jo xapuj

weiboxdqng Buisrey

221

Kernel User's Manuai, Version 1.0

Kernel User’s Manual, Version 1.0

Appendix C: Tailoring and Preparing the Kernel

This appendix presents a detailed discussion of the generic formal parameters used for tailoring
the Kernel, what their settings mean, and how they interact with each other, with the hardware,
and with the application. This appendix also enumerates all hard capacity and size limitations
based on the declaration of types and values within the Kernei software.

C.1. Tailoring the Network

The following tailoring parameters require network-wide consistency and must be tailored to
reflect the hardware network configuration, the real-time clock, communication limitations, and
storage space considerations.

C.1.1. Tailoring the Hardware Network Configuration

Tailoring the hardware network configuration includes identifying the number of nodes, both
Kernel processes and non-Kernel devices, on the network via the parameter
number_of_nodes_value. This value then limits the number of entries in the NCT.

Tailoring the hardware network configuration aiso includes defining the following bus information
to the Kernei. There are three values constituting this description:

1. The address with the lowest value recognized by the Kernel is givenm by
first_bus_address_value.

2. The address with the highest value recognized by the Kernel is given by
last_bus_address_value.

3. A null bus address is provided via the null_address_vaiue.

These three values define the bounds of the bus_address type exported by
generic_network_globals. Values of type bus_address are represented in the NCT in the
physical_address field. Only values within the range first_bus_address_value
last_bus_address_value are recognized as legal addresses by the communication management
function of the Kernel.

C.1.2. Tailoring to the Real-Time Clock

The Kernel representation of time is described in Section §.2.5. This representation is in terms of -

an integral number of microseconds, that is, a bit value of 16#00000001# represents one
microsecond.

This assumes that the underlying real-time clock also measures time in units commensurable
with one microsecond (i.e., that the clock counts time in units such as 1usec, 2usec, 10usec,
0.25usec, etc). If the clock counts in units that are not a multiple or fraction of a microsecond,
such as 1/65536 second, then the Kernel representation will be inaccurate; there will be jitter in
the representation of time.

In the case where a clock ticks at intervals of 1/65536 second, one tick is fractionally more than

Kernel User's Manual, Version 1.0 223

15usec, and 1024 ticks are exactly 15625 usec. In terms of Kernel time, successive ticks will
appear to be sometimes 15usec apart and sometimes 16usec apart, which is a jitter of 1 part in
15, or about 7%. If this is unacceptable, the Kernel representation of time must be changed.

It is assumed that the hardware timer can count a finite number of ticks before it overflows, and
that the overflow causes an interrupt that resets the timer and continues accumulating ticks in
software. For example, if the timer is 16 bits wide, then atter every 65536 ticks, the timer causes
an interrupt, and the handler must record that a further 65536 ticks have elapsed, probably by
adding 16#00010000# to a data object somewhere.

Given that the underlying clock is suitable, the size of the tick then depends on two factors:
1. How fine a resolution is required, and
2. How much overhead is involved in resetting the timer.

In the above example, a tick of 1usec would imply an interrupt every 65msec, which is probably
satisfactory. If the handler takes 200usec to execute (not an unreasonable figure), then about
0.4% of the CPU time is devoted to servicing the timer interrupt.

A tick larger than 1usec is probably reasonable for many applications. Consider, for instance,
that it may take 5 or 10 usec simply to read the current value of the timer, and a further 20 usec
or more to convert that value into the Kernel representation and adjoin the high-order bits that the
software is maintaining. If it takes 25usec to read the current time, a tick of 8usec or even more
is not unreasonable.

The mechanics of tailoring to the real-time clock require three things:

1. The hardware clock driver and handier and the internal function get_clock should
be adapted for the actual timer in use.

2. The customization parameter ticks per_second_value in the internal package
generic_Kernel_time should be set to the correct value, and the generic
instantiations performed.

3. The application should use the value ticks_per_second, exported by the internal
package Kernel_time, t0 determine the current granularity of representation of time.
Time, as seen by the application, advances in ticks.

This does not change the representation of time values in the Kernel, which remains as described
in Section 5.2.5. Rather, it determines the accuracy of any time value read from the clock. Thus,
if the granularity is 8usec, for a time value represented as integral microseconds, the bottom
three bits will aiways be zero. The time perceived by the application advances instantaneously
from 164#00000000# to 16#00000008# to 16#00000010# and so forth. In effect, the clock is
making tiny jumps as it ticks.

224 Kernel User's Manuat, Version 1.0

C.1.3. Tailoring Communication Limitations

The application has the capability to limit the size of a single message that may be placed on the
network. This is accomplished via maximum_message_length_value. By tailoring this with the
application requirements in mind, the Kernel can do a more optimal job of message handling.

C.1.4. Tailoring Data Structure Storage

The application may limit the amount of string space consumed by the NCT by limiting the length
of the processor name that is maintained in that data structure. This is done via
maximum_length_of_processor_name_vaiue.

C.1.5. Summary of Network-Wide Tailoring Parameters

Each of the tailoring parameters below identifies the exporting package in parentheses, describes
the legal set of values for the parameter, indicates the DARK-provided default value (if any), and
notes the value assigned to that parameter for execution on the DARK testbed at the SEI.

Network-Wide Tailoring Parameters
Parameter Name Package Name Range Detauit

first_bus_address_value generic_network_globals 0..+32_76710
last_bus_address_value generic_network_globals 0..+32_767] 255
maximum_length_of_processor_name_value | generic_network_configuration |0 .. +32_767 | none
maximum_message_length_value generic_communication_globals | 0 .. +32_767 | none
null_address_value generic_network_globals 0.. +32_767 } none
number_of_nodes_value generic_network_configuration |1 .. +32_767 | none
ticks_per_second_value generic_Kernel_time 1..432_767 | none

Currently, the only one of these values that is checked for network-wide consistency by the
Kernel software is number_of_nodes_value, which is automatically checked as part of the
network initialization protocol. It is up to the application engineer to ensure that all other tailoring
parameters that require network-wide consistency are, in fact, consistent across the entire
network.

All of these tailoring parameters are used to initialize visible constants of the same name less the
" _value” suffix.

C.2. Tailoring Each Processor

The foliowing tailoring parameters do not require network-wide consistency. They determine the
characterists of the specific processor on which this version of the Kemel is to execute. These
parameters are used to describe the process environment, limit the range of process priorities,
define time constants available to the application, limit the number of interrupt names available to
the application and the Kernel, and define storage space considerations.

Kernel User's Manual, Version 1.0 225

C.2.1. Tailoring the Process Environment
The process environment is created by the Kernel for every process for which the Kernel primitive
create_process is invoked. The application may provide the following maxima:

1. Maximum_message_queue_size_value, used as the default size for all process
incoming message queues; and

2. Maximum_process_stack_size_value, used as the defauit size for all process stack
storage.

Once these values are set, the Kernel uses these values as processor defaults, and performs
error checking against these values with actual values provided by calling the Kernel primitive
create_process.

C.2.2. Tailoring the Range of Process Priorities

The application may limit the range of priorities available within a single processor by specifying
the lowest priority value (such a process would be among the very last to be selected for
execution). This is accomplished via lowest_priority_value. This value determines the upper
bound on type priority, which is available to the application program.

The highest priority recognized by the Kemel is hardwired as one (priorityfirst + 1). A priority of
value zero indicates no change in priority (priorityfirst = 0).

C.2.3. Tailoring Time Constants

A slice is the smallest schedulable interval of time. The application uses this value when
describing the duration of a timeslice quantum (in number of siices). All time values that imply
scheduling action, such as delay times, are truncated to the nearest slice.

The minimum_slice_time_value sets the minimum amount of time that may be specified as a
timeslice quantum. This value must take into account the minimum context switch time required
by the Kernel, as well as the needs of the application and the requirements it places on the
processing power of the hardware.

The ticks_per_slice_value establishes the smailest amount of elapsed time that may constitute a
slice - a schedulable interval of time. To determine a reasonable setting for this value, the
following must be taken into consideration:

To obtain a suitable value for the length of a slice, the following should be considered:

1. The smallest interval of time that the application needs to consider. For example, if
.a critical computation has to be performed in less than 200 usec, the application will
need to set an alarm for a time less than 200usec in the future. The slice must
therefore be no larger than this.

2. The greatest common divisor (GCD) of all application cycles. For example, if an
application contains three cyclic processes of periods 1ms, 2.4ms and 4.6ms, the
GCD is 200usec. A slice of this value allows all three processes to run without
having to round off any resumption time value.

3. The time necessary to set a timer, enable its interrupt, field the interrupt, and

226 Kernel User’'s Manual, Version 1.0

suspend and resume a process. This is the cost of performing a time-based
preemptive scheduling action. The slice must necessarily be larger than this.

items (a) and (b) above will be derived from the intended application or set of applications. Item
(c) will be derived from the performance statistics distributed with each version of the Kernel. If
the times in (c) are substantially smaller than those derived from (a) and (b), then it is probably
feasible to use the Kemel to support the applications, and a suitable slice value can probably be
found. /f, however, the times in (c) are larger than those required by the application, then the
Kernel performance is insufficient to support the application.

C.2.4. Tailoring Interrupt Name Usage
To maintain Kemel data structures, two parameters are provided to limit the number of interrupt
names used by the Kernel and by the application.

Number_of_interrupt_names_used_by_application defines the stated maximum. This value is
used to compute the size of the interrupt data structures used by the Kernel. See Section 5.2.4
for more information about these data structures.

Number._of_interrupt_names_used_by_Kernel should not be adjusted once the Kernel is
delivered. This value is provided as a tailoring parameter for Kernel developers.

C.2.5. Tailoring Data Structure Storage

The application may limit the amount of string space consumed by the Process Table by limiting
the length of the process name that is maintained in that data structure. This is done via
maximum_length_of_process_name_value.

In addition, the application may limit the final size of the Process Table and the Process !ndex
Table. This is done via maximum_number_of_processes_value.

C.2.6. Summary of Processor-Specific Tailoring Parameters

Each of the tailoring parameters in Table C-1 identifies the exporting package in parentheses,
describes the legal set of vaiues for the parameter, indicates the DARK-provided default vaiue (if
any), and notes the value assigned to that parameter for execution on the DARK testbed at the
SEl

~Ffhe tailoring parameters /lowest_priority_value and maximum_length_of_process_name_value

are used to initialize visible constants of the same name less the "_value" suffix.

C.3. Kernel Limitations

This section enumerates all hard limits imposed by the use of primitive data types in Kernel
software. The absolute limit is as indicated in the list; the practical limit may be substantially less.
These limits are presented in Table C-2.

See also limitations defined by package hardware_interface in Section 4.1.

Kernel User's Manual, Version 1.0 227

Kernel User's Manual, Version 1.0

Processor-Specific Talloring Parameters

suou 19,726+ 4 s/eqo)0 jdnuejus oueuel JOWway)~Aq~pesn~sewreu idnueiu 30 requinu
. suou 19/72e+ " L 51eqoy0”idnuseu|"oueuel | LogeoyddeAq pesn seuseu IdnueIN 0 AqUINY
mw suou oest 2/ luewebeuew ~eonseusn ueuel SNBA™OWI] OIS WNUNUAL
m suou 19,726+ | o/qeI~sseooxd euel ONjBA~$9S5000x0 0 JoqUINU " WINWIXEW
- 8uoU | £v9 €8Y L e+ | s190eurwW~ss900:1d ONIoUED en/eA”o2ys “yorls ~sseooxd winuwxew
suou | /y9 €8V /bl 2+ 0 sie0eurw ~sse00:d Jueuel oenjeA” ez1s~enenb " elessows wnwixew
auou 19272¢+ 0 | sreqoybssebeurussseooxd oeueld onfeA” sweusse20xd jo"yIbue wWnuixeWw
euou 190728+ L sedA)"einpeyos oueuel onrea~ Aoud 1semoy
inejeq ebuey -ewepN albexoey ewep Jejeweled

siejewe.ed Buyoyre | oy10edg-105589014

228

Kernel Limitations

Table C-2

ssaippe~snq adA} jo sanjea

Jaquinu~epou-xapul” ssasosd

sjeqojb yiomau o1ousb

(aiqesopey) L9228+ 0

enjeA” ssaJppe” snq Ise|

sfeqofb Eoégd.:m:mm

(siqesoirey) £9272E+ " 0

onjeA ssaJppe sSnq 1Sy

sjeqoib yiomjeu dususb

(enjea"ssasppe~snqise|

pue anjeA~sseJppe snq Jsily
sisjsweled Buuone) AQ paunwig}ep
adA} sy} Jo spunoq [enjoe) /9. 2e+ " 0

S$saippe snq

sjeqoib yiomjou ouousb

(aiqesopey) £92 2E+ " 1

enjeA” Sepou Jo 1equinu

uoneinbyuos yiomjou o1ouab

(enjea”sepoujo0 Jequwinu se punoq
Jeddn awes eAey pinoys) /97 2e+ " 0

JepJo~uonezifenuy Anue” {ON

uogeinbiyuoo yiomjeu dueueb

S8UJUS JO JequINU 8NfBA” SepoU JO™ Jequinu
A|uo ‘anjeAsapoy” JOT16QUINU WOJ) 18S S)
UoIuMm ‘sspoujo " sequinu ** | S| 8Bues xepu)

1ON

uoneinbiyuod NIomieu 21seuab

(eiqesonel) L9 2e+ " 0

enjea esweuJossea0sd jo yibus| wnuwyxew

uonenbyuod ysomeu dlieueb

(eiqesopey) L9228+ " |

enjeA” puooes 1ed 3N

owy} " 1eusey) oueueb

sieek 000 0GL+ 0192 swy je BuiuuiBeq

ow) jeusey

ewy) j1eusey ousueb

LY E8Y Lbl 2+ 8¥9 £8Y bl ¢

uonemnpjesbejuy

ewy} " jeusey dueueb

(eiqesojrey) L9226+)

|eusey AqQ pesn—seweu }dniuelu) jo 1equnu

speqoj6jdnuseju oueueb

(eiqesoyel) 2192726+

uopeoydde ™ Aq pesn—seweujdnuejul jo sequinu

sfeqoj6jdnusejuy oueueb

seuue 96z Auo ‘eweujdnuejur AQ pexepu)

6d/y"e/qe} Jdn.usejuy

sjeqoiBydnseyuy dueueb

GSZ 0 eweujdnuejuy sreqol6 ydnuejul oueueb

19,726+ " 89.°2¢ 6dA} be) ebessew sreqoj6 uogeaunwwod oueueb
19,726+ 0 edA) yibue) ebessew sjeqojb6 - uogeswunwwod “seueb
(siqesopey) 192726+ 0 enjea"yibue) ebesseow wnwixew sfeqojb uonesunww oo dieusb

abuey

BWEN Jojoweled

aweN oebexoed

suoneuIT 18Ul

229

Kernel User’'s Manual, Version 1.0

(uoneoiidde ayy

Aq pasn aq 19Aau pjnoys pue Ajuo |auIs)y
ay) Aq asn 10) pansasal aie Jsej Aloud pue
sy, Aioud) | + enjea” Auoud jsemoy - o

Awond

sadA} einpayos o1eusb

(e1qesopey) 197726+ 1

onea~AQuond jsemo)

sedA) einpeyos ousuob

enjea” Ajuoud jsemol

Aond isemof

sedA) " einpeyos “oueueb

L +1s4,A01d

Anonud isaybiy

sodA} einpeyos oueuob

19,28+ 0

sassoao0.d buniem jo Jequinu-asoydewass

e/qe) $se20sd dueusb

L9.°2¢+7 0

821s enenb~ebessew wnwixew
"$8INQUNE UOKBIIUNWILLOD
‘p1028s UONRWIONUI~SSec01d

o)qe) sse20sd oueusb

(eiqesopey) 192726+ " 1

enjeA”sasses0sd Jo sequinu wnwixew

o)qe) sse20.d oueusb

anjeA sweu ssesoisd jo yibue) wnwixew
- | pexapui bums

odA} eweu ssaocosd

syeqoibssebeuew " ss820sd oueusb

(siqesorey) 29,7 2€+ " 0

enjea " eweu”ssas0id Jo yibuel wnuwixew

syeqolb~—ssebeuew sses0sd oueusb

anjeA” aweu $se20sd o yibue| unwixew
* | paxepul bus

6dA) eweu eonep

syeqojb~ssebeuew sse20.d oueusb

(s1qesoned) 1497 €8Y LbL 2+ "

enieA™e2Is yoe)s $se00.d wnwixew

siebeuru —sses0.d oueueb

(eiqesonel) Ly9 €8 L¥L 2+ 0

enjea"ezis enenb-ebessew wnwixew

siebeuew ss620)d d110U80

(enjea”sepoujo0 sequinu yim e|qnedwod
aqisnw ' DN o xaput jo 8dAl) 19, 2€+ " 0

Jeynuept 10sse00sd

sjeqoj6 yiomeu oueueb

19/72¢+ " 89 2¢-

Joqunu~sseoo0sd xepuy sse0.d

sjeqoy6 yiomeu oueusb

sbuey

SUWieN Jajsweled

swepN ebexoed

suoiBNWIN jBUIdY

Kernel User's Manual, Version 1.0

230

-y

M T TN B I B D T D D D D BB BT EE D D T e

C.4. Tailoring Error Checking and Reporting

As described in Section 2.12, the Kernel provides the capability of selectively enabling and
disabling error checking, processing, and reporting on a per-processor basis. Table C-3
enumerates each tailoring parameter that corresponds to an exception that falls into this
category. In all cases, the exception name is identical to the tailoring parameter name less the
"_enabled’ suftix.

Each of the tailoring parameters below identifies the exporting package in parentheses. The
DARK-provided default value of each error checking enabling parameter is true; the value
assigned to that parameter for execution on the DARK testbed at the SEl is also true.

More information can be found in Appendix B and the "Error Conditions” and "Notes" portions of
the Kernel Specification in Appendix A.

Kernel User’s Manual, Version 1.0 231

Table C-3: Error Checking Talloring Parameters

Tailoring Error Checking and Reporting

Package Name

Exception Name

generic_alarm_management

illegal_context_for_call_enabled
no_alarm_set_enabled
resetting_existing_alarm_enabled

generic_communication_management

buffer_too_small_for_message_enabled
illegal_context_for_cail_enabled
message_not_received_enabled
message_timed_out_enabied
network_failure_enabled
no_message_available_enabled
no_such_device_exists_enabled
receiver_dead_enabled
receiver_is_sender_enabled
receiver_never_existed_enabled
replacing_previous:_allocation_enabled

generic_interrupt_management

illegal_interrupt_enabled
illegal_interrupt_handler_address_enabled
no_interrupt_handler_bound
replacing_previous_interrupt_handler_enabled
reserved_interrupt_enabled

generic_network_globals

bus_address_check_enabled

generic_process_attribute_modifiers

illegal_context_for_call_enabled

generic_process_attribute_readers

illegal_context_for_call_enabled

generic_process_managers

calling_unit_not_main_unit_enabled
illegal_process_address_enabled
illegal_process_identifier_enabled
insufficient_space_enabled
no_kemel_process_on_non_kernel_device_enabled
process_already_created_enabled
process_already_exists_enabled
unknown_non_kemel_device_enabled

generic_processor_management

calling_unit_not_main_unit_enabled

generic_schedule_types

null_priority_range_enabled

generic_semaphore_management

claim_timed_out_enabled
illegal_context_for_call_enabled
not_my_semaphore_enabled

generic_time_management

change_results_in_negative_elapsed_time_enabled
change_results_in_negative_epoch_time_enabled
network_failure_enabled’
OK_but_time_already_passed_enabled
synchronization_in_progress_enabled
synchronization_timeout_enabled

generic_timeslice_management

illegal_quantum_enabled

232

Kernel User's Manual, Version 1.0

Appendix D: Scheduling Algorithms
This appendix presents the Kernel's scheduling algorithms.

The foliowing Scheduler rules are universally applied:
1. Scheduler order does not change spontaneously.
2. Scheduler ordering is decided by:
a. Higher priority before lower priority
b. Prefer a process in an error state (to one in a normal state)
c. First-in, first-out (FIFO) order otherwise

In other words, in all Scheduler situations, where priorities are equal, a process in
an error state is resumed preferentially; otherwise, the process first to become
unblocked is resumed.

3. When two processes become unblocked simultaneously, the process that has been
blocked longest is considered to become unblocked first.4

Scheduler Algorithm

Begin critical section
If the set of suspended processea is not empty
Choose the process to resume according to the Scheduler rules above
If timeslicing enabled =>
Schedule slice event
End if
If chosen process = CURRENT RUNNING PROCESS =>
Resume Process via the Context Switcher
Else
Switch Processes via the Context Switcher
End if
Else
Raesume Process ("idle process”)
End if
End critical section

“Two processes executing on the same processor cannot become blocked simultaneously.

Kernel User's Manual, Version 1.0 233

Schedule Slice Event

If slice event ID /= no event =>
If chosen process = CURRENT RUNNING PROCESS =>
Null
Else
Remove Event (slice expiration)
If chosen process is preemptable =>
Set sLICR XVENT ID to /nsert Event (slice expiration)
End if
BEnd if
Else
If chosen process is preemptable =>
Set suLIcz zvENT ID to Insert Event (slice expiration)
End if
End if

234 Kernel User’'s Manual, Version 1.0

I
|
N

Appendix E: Building Abstractions

This appendix provides example abstractions that can be built using the Kernel primitives. These
examples include: building typed message passing, safe critical regions, cyclic and periodically
scheduled processes, time-critical transactions, monitors, mutually self-scheduling processes,
and a message router. The examples provided in this appendix can be used as a template for
application builders who need to construct application-specific code that can be based on the
paradigms herein. The examples include program design language (PDL) for one example
solution.

E.1. Typed Message Passing

. The Kernel communication primitives (see Section 4.7) transmit and receive messages that are

untyped. Each of these primitives considers a message to consist of a length (in storage units)
and an address designating the first storage unit occupied by the message.

An application written in Ada may require more security than this, exploiting Ada's compile-time
type checking and using typed messages. This can be achieved by using a package such as the
following:

generic
type message type is private;
package typed communication management is

procedure send massage
(

receiver : in process_identifier;
message_tag : in message_tag_type;
massage : in Message_Type

)

procedure receive message
(

sender : out process_identifier;
message_tag : out message_tag_type;
massage_buffer : out Message_ Type
resumption priority : in priority {(:=...};
massages_lost : out Boolean;

)

end typed communication management:

This package exports send_message and receive_message primitives that expect typed values
and objects. To use it, the application code instantiates the package for each actual message
type. If two processes communicate via typed messages, the code of each imports the
instantiated specification.

Kernel User’s Manual, Version 1.0 235

However, this is still not completely safe. Aithough good configuration management tools should
prevent it from occurring, it is still possible for the sender to import one instantiation, and send a
value of one type, and the receiver to import another instantiation, and so get a message that it
thinks is of a different type. A further check, performed at execution time, could use the message
tag as a validity check:

generic

type message_type is private;
tag_check_value : in massage_tag_type;

package typed communication management is
invalid _message_type : exception;

procedure send message

(
receiver : in process_identifier;
message : in Message Type

)

procedure receive message
(

sender : out process_identifier;
message_buffer : out massage_type
resumption priority : in priozity (:=...};
massages_lost : out Boolean;

)

end typed communication management;

The body of this package would look like this:

with communication management;
with system;
package body typed_communication_management is

procedure send message
(

receiver : in process_identifier:;
massage : in message_type

) is

begin

== call the Kernel send message primitive, passing the agreed
-- massage tag, the meassage length, the message address

communication_management.send message
(
receiver => receiver,
message_tag => tag_check value,
message_length => message_type’size / system.storage_unit’'size,
message_text => hw_address (message’address)

236 Kernel User’'s Manual, Version 1.0

);

end send message;

procedure receive_massage

(

sendex

maessage buffer
resumption_priority :
massages_lost

) is

rcvd tag_value
rcvd message_length :
buffer_size

begin

: out process_identifier:
: out message_type

in priority (:=...};

: out Boolean;

: message_tag_type:
massage_length type;
: constant message_length type :=

message_type’size / system.storage unit'size;

call the Kernel receive _message primitive, telling it the
buffer length and address, and receiving from it the actual
received message tag and length

communication_management.receive_message

(

if

sender =>
message_tag =>
massage_length =>
message_buffer >
buffer size =>
resumption_priority =>
massages_lost =>

if the message is of the correct type, the length and tag must

be correct; if this is

sendar,

revd tag value,

rcvd meassage_length,

hw_address (message buffer’address),
buffer_ size,

resumption_priority,

messages_lost

not 8o, a massage of the wrong type

was received and the exception must be raised

rcvd _message_length /=
or else rcvd tag_value

buffer_size
/= tag_chack_value then

raise invalid message_type;
end if;

end receive_message:

end typed communication management:

Each instantiation must use a different tag_check_value.

Once set up, these packages can be used by application code with a high degree of reliability.
However, a corresponding price must be paid in terms of code and execution overhead.

Kernel User’'s Manual, Version 1.0

237

E.2. Safe Critical Regions

To build a safe critical region or protected data structure, mutually exclusive access to the region
must be guaranteed. There are two possible sources of concurrent access against which to
protect:

1. Processes, and
2. Interrupt handlers.

In addition, there are levels of exclusiveness in critical regions:
1. Providing mutually exclusive access to some object.

2. Providing mutually exclusive and uninterrupted access (by other processes) to
some object.

3. Providing mutually exclusive and totally uninterrupted access (by other processes
or interrupts) to some object.

Level 1 is easily achieved by convention within the application program, where all critical regions
are guarded by a semaphore, and a process must have possession of that semaphore before
accessing the critical region. Since the Kernel does not allow interrupt handlers to maintain state,
an interrupt handier may not perform a biocking operation or claim a semaphore. If an interrupt
handler needs to affect a protected object, it must do so via a process acting as its agent (i.e., by
sending the process a message). The code to accomplish Level 1 exclusion might look like:

with semaphore_management;
package shared data is

lock : smpho:._mmgmnt.smphox;c:
object : socma_type’

end shared_data;

with semaphore_ rsnagsment:

with shared data’

procedure sample_ level_1l_critical region is
begin

semaphore_managemant.claim (semaphore name => shared data.lock);
update (shared data.object);
semaphore managemant.release (semaphore name => shared_data.lock);

end sample_level_ 1 critical_region;

Level 2 exclusiveness is aiso relatively easy to obtain by convention. It requires the semaphore
convention of Level 1, to biock out other processes that require the resource. It also requires that
the process with the critical region must have the highest priority (a special priority level reserved
by the application designer exclusively for this use) of any process in the system, to prevent other
processes that don't require the resource from executing. The code to implement Level 2
exclusion might look like:

238 Kernel User’'s Manual, Version 1.0

with schedule_types;
with semaphore management;
package shared data is

lockout_priority : schedule_types.priority := 1;
lock : semaphore management.semaphore;
object : some_type;

end shared data;

with process_attribute_modifiers;

with process_attribute_readers’

with semaphore_management;

with shared data;

procedure sanple level 2 cx:it:l.cal ._region is
begin

old priority := process_ attribute_readers.get_process_priority:
semaphore management.claim (

semaphore_nams => shared_data.lock,

resumption priority => sha:-d data.lockout_priority);
update (shared data.cbject):
ampbo:o_magmnt release (semaphore_ nama => shared_data.lock):;
process_attribute modifiers.set_process_priority

(new_priority => old_priority):

end samplae_level 2 critical_region;

Level 3 is more difficult to obtain. At the process level, it requires the same conventions as Level
2 exclusion. The difficuity is locking out interrupts. Clearly, non-maskabie interrupts may never
be locked out (but since they represent truly disastrous system failures, this is not a problem).
The only way to achieve Level 3 exclusion (minus non-maskable interrupts) is to effectively
disable every interrupt, which may be done in two ways: by individually disabling every active
device or by using an available hardware feature to mask interrupts. The example shown here
uses an internal Kernel package that illustrates how to mask out interrupts on a 68020 using the
Telesoft V3.22a cross-compiter:

with low_level_hardware;

with process_attribute_modifiers:

with process_attribute_readers;

with schedule_types;

~ with semaphore_management;
package shared data is

lockout_priority : schedule_types.priority := 1;
lock : semaphore_management.semaphore:
object : some_type:

end shared data’

with semaphore management;

Kernel User’'s Manual, Version 1.0 239

with shared data;
procedure sample level 3 critical_ region is

begin

old _priority := process_attribute_readers.get_process_priority;
semaphore_management.claim (
semaphore_name => shared_data.lock,
resumption_priority => shared_data.lockout_priority):
low_level hardware.begin atomic;
update (shared data.object):;
low_level_ hardware.end atomic;
semaphore_management .release (semaphore name => shared data.lock):
process_attribute_modifiers.set_process_priority
(new_priority => old priority):

end sample_ level_ 3_critical_region;

There are a number of risks associated with Level 3 exclusion. First, one runs the risk of missing
important interrupts, which means the amount of time spent in a Level 3 critical section must
always be minimized. Second, if the Kernel clock interrupt is disabled, the clock will drift and
inaccuracies will creep into the Scheduler.

In critical regions, care must be taken to back out properly in the event of an exception. All critical
regions should contain an exception handier of the form:

exception
whan others =>

low_level_hardware.end atomic; =-- to back out of lavel 3
semaphore management.release
(semaphore name => shared data.lock);

E.3. Cyclic Processes

A cyclic process is one that is scheduled to execute every n units of time and must complete it's
execution within that time period. The solution presented here is a general one that allows the
process to be implemented without knowing the cycle time and for that time to be varied as
needed when the process begins execution. The code template to achieve this is:

with alarm management;

with communication management;
with process_attribute modifiers;
with time management;

procedure cyclic_process is

== (1) read the cycle time from the message sent by the process
- controlling the system. if this generality is not needed, then
- the cycle_time can be coded directly into the process or placed

240 Kernel User’'s Manual, Version 1.0

-- in a global datum.
== (2) compute the next absolute time the process is to run

-= (3) setup a frame overrun timeout, just a little shorter than the

- actual cycle tima, to allow time for cleanup and to get
- back to the start of the loop for the next cycle (this
- cleanup and recycle time is the value of delta)
-~ (4) 4if the processing is completed on time, then the timeout is
- cancelled. there is a potential race condition here in
- that the timeout could expire just as the process
- finishes its work. if this is a significant risk, then
- the timsocut handler must account for this possibility.
== (5) voluntarily deschedule the process until its next
-- scheduled wakeup time. '
-- (6) aexecution reaches this point if and only if the alarm has
- expired, i.e., a frame overrun has occurrad
begin
-— (1) ==
communication_management.receive _message (..., cycle_time, ...);
loop
execution_ frame:
begin
- (2) -

next_schedule_time := time management.read clock + cycle time;

- (3) -
alarm management.set_alarm (cycle_time - delta):

do_the_work;

-— (4) ==
alarm management.cancel alarm;

-= (5) --
process_attribute modifiers.wait (next_schedule time):

exception
-~ (6) --
when alarm management.alarm expired =>
-- back out whatever the process was doing but didn’t finish

end execution_frame;

end loop;

Kernel User's Manual, Version 1.0 241

end cyclic_process:;

This entire discussion is predicated on the assumption that the cyclic process gets enough cycles
to execute the various steps. This is an application-level issue determined by the relative
priorities of all the processes in the system.

E.4. Periodically Scheduled Processes

A periodically scheduled process is one that is scheduled to run every n slices after the last
complete execution of itseif. There are no constraints on how long the process should run — only
on how much time should elapse between executions.

One example of such an application is a process that periodically updates a screen dispiay. This
process updates the screen every X seconds—it doesn’t matter how long it takes to update the
screen, or whether the process doing the screen update is preempted by a higher priority
process. All that matters is that the information on the screen is periodically updated, and that
(barring more important system functions) the screen information is no more than X seconds old.

The solution presented here is a general one that aliows the process to be implemented without
knowing the cycle time and for that time to be varied as needed. The code to achieve this is:

with hardware_interface; use hardware_interface;
with communication_management;

with process_attribute_modifiers;

with time globals;

procedure periodic_process is

-- read the interval time from the message sent by the process
-~ controlling the system; if this generality is not needed,
== the cycle_time can be coded directly into the process or
-- placed in a variable

~= do the work required

-- voluntarily block the process until its next scheduled wakeup
-- tima

procedure do_the_work;

. function to_interval_time (text : hw_string)
return time globals.elapsed time;

begin

communication_management.receive_message

(...,
interval tima buffer,
):

242 Kernel User’'s Manual, Version 1.0

loop
do_the_work;
process_attribute modifiers.wait
(
for_elapsed_time => to_interval time (interval time buffer)
);
end loop;

end cyclic_process;

The actual execution interval of the periodic process may vary, and can be longer (although never
shorter) than the desired amount. This is a system-level issue determined by the relative
priorities of all the processes in the system. If it is determined that the periodic process needs to
be run with highly precise timing, a high priority should be assigned to the process.

E.5. Time-Critical Transactions

The Kernel alarm management facility (see Section 4.12) provides a means for a process to set a
limit to the duration of any fragment of code. '

For example, for a process to perform a computation do_calculation, but to abort it if it is not
completed within 1 ms, the process can provide this guard:

guarded fragment:
begin
alarm management.set_alarm (after_elapsed time => milliseconds(l)):
do_calculation;
alarm management.cancel_alarm;
exception
when alarm management.alarm expired =>
null;
end guarded_ fragment;

This ensures that the process may not consume more time than is allowed. However, it also
causes the calculation to be abandoned when the alarm expires. This might be proper behavior
in some cases, for instance in a real-time application where the result of the caiculation is useless
if not timely. But it is probably not adequate in other circumstances.

One example is a time-critical transaction that must either run to completion within a finite time or
not be performed at all. If this transaction involves changing global state, such as a track table,
then it is necessary for the process to be able to back out of the transaction when the alarm
expires. In terms of a standard two-phase commit protocol, the skeleton looks like this:

guarded fragment with backout:
begin
POSIT; -=- prepare to perform transaction
alarm management.set_alarm (time_allowed to_complete)
perform transaction;
alarm managemant.cancel_alarm;

Kernel User's Manual, Version 1.0 243

COMMIT; -=- transaction is now irreversible
exception
when alarm management.alarm expired =>
BACKOUT; -- abort transaction and revert

end guarded_fragment_with_backout;

The protocol and the alarm management code must strictly nest in the manner shown. The
postcondition of perform_transaction is that the transaction has succeeded; the postcondition of
cancel_alarm is that the alarm has not expired (i.e., that the time taken is less than the time
allowed). The joint postcondition is therefore that the transaction has succeeded within the time
allowed, and so the transaction may be committed.

The above skeleton can be embedded in a generic procedure with a parameter
perform_transaction:

with time globals;
generic

with procedure perform transaction;

procedure time critical_transaction
(

time_allowed_to_complete : in time globals.elapsed time
):

This provides a safe encapsulation, allowing the global data administrator to build standard
POSIT, COMMIT and BACKOUT protocols that all instantiations of the encapsulation may use in
the correct manner.

E.6. Monitors

In many real-time applications, a resource needs to be shared by multiple processes. Usually,
this resource sharing can be managed by using semaphores to lock and unlock access to the
resource. The Kernel semaphore_management capability is described in Section 4.11.
Sometimes, however, the mechanisms used to manipulate the resource must be uniformly and
automatically enforced across an application or may need to be hidden, so that the processes
using the resource do not know exactly how the resource is being used, or even that a shared
resource is involved. In this case, a package to "monitor” the resource can be detined by the
application.

E.6.1. Example Requirements and Justification
An application may need to update a group of related data when a single datum is changed. For
example, the following physical quantities have the indicated relationships among them:

distance = speed * time

velocity = acceleration * time

bearing = angular velocity * time
height = rate of ascent * time

244 Kernel User's Manual, Version 1.0

N N N EE B U I S SR R GE T B N .

rate of ascent = speed * sin (glide angle)

In order for an application to obtain a consistent reading on these data, all must be modified as
time progresses, as each is a function of time. On a uniprocessor system, this is relatively easy
to accomplish; the semaphore_management capability may be used. However, on a system
where processes may preempt each other, and where an access to global data may potentially
be interrupted, a mechanism is needed to ensure that accesses are atomic (i.e., the data are
modified in their entirety or not at all). For the purposes of the following simple example, the
following assumptions are made:

1. Access to the data is a potentially blocking operation. A process needing access to

any of the data (either for update or retrieval) requires fast access, but not
immediate.

2. Access to the data is from a single processor. This simplifies the example by
allowing the monitor abstraction to be built on the Kernel semaphore_management
capability. Semaphores will be used to lock the database (semaphores are local to
a processor).

3. The only operations on the data are: update and retrieve.

E.6.2. PDL of Example

The code for the procedures to monitor the data follows. External to the data_monitor package,
the caller needs no knowledge as to how the monitor is implemented. All callers need to know is
that the monitor ensures that modifications of the data are atomic and consistent access to the
data is provided. '

with time globals;
Package data_monitor is

type position_data_ recoxd

is record
time : time globals.elapsed time;
speed : (...}

distance : {...}

velocity : (...}

height : (...}

rate_of_ascent : (...}
end record;

procedure update

(
time : in time globals.elapsed time

):
procedure retrieve
(
data : in out position_data_record
):
end data_monitor;

with hardware interface;

Kernel User's Manual, Version 1.0 ' 245

with semaphore_ managemant;
with time globals:
package body data monitor is

type global_ resources_information

is record
position da:a : semaphore management.semaphore;
count : hw_integer;

end record;

global_resources : global_resources_information;
position_information : position data_record

procedure update

(
time : in time globals.elapsed_time
) is

begin

semaphore_management .claim
(

semaphore_name => global_ resources.position_data
)

speed := read speed sensor;
accaleration := read accelerometer;
glide_angle := read attitude_sensor:;
rate_ of_ascent :=
compute_rate_of ascent (speed, acceleration, glide_angle);
new_height := compute_height (old_height, rate_of_ascent, timae):

old copy_position_data := position_data;

update_block:
begin

position information.time := time;
position_information.speed := speed;
position_information.distance := speed * time;
position_information.velocity increment :=
acceleration * time;
position_information.height_ increment :=
rate of_ascent * time;

exception

when others =>
position_data := old copy_position_data;

end update_block:
semaphore_management .release

(
semaphore_name => global resources.position_data

246

Kernel User’'s Manual, Version 1.0

);
end update;

procedure retrieve

(
data : in out position_ data_record
) is

begin

semaphore_management.claim
(

semaphore_name => global_resources.position_data
):

data := position_ information:

semaphore_management .release
(

semaphore_name => global_resources.position_ data
):

end retrieve;

end data monitor:;

E.7. Mutually Self-Scheduling Processes

Kernel primitives may be used to specify points in the application program where processes
voluntarily give up control of the processor in favor of other processes of the same or lower
priority.

E.7.1. Example Requirements and Justification

One use of mutual self-scheduling is where calculations and control operations need to be
performed in parallel on a single processor (that is that they need to be performed logicaily
concurrently, but due to the distribution of the aigorithm, true concurrency cannot be obtained).
Thus, a time sharing system may be built, where the points at which the different parts of the
algorithm are stopped and resumed are selected by the application designer, and not by the
Kernel at the expiration of a timeslice. Another scenario in which a mutually self-scheduling
paradigm is appropriate is one where algorithm processing is handled in a pipeline manner: a
first process performs initial processing and suspends itself in favor of a second process, which
continues processing and suspends itself in favor of a third process, and so forth. In this
scenario, data wouid be transformed from an input state to an output state, where the output state
of one process would correspond to an input state of the next process in the pipe-line.

One use of this type of scheduling is the sharing of data among processes, where partial update
of data items is unacceptable to processing. Rather than use semaphores to contro! access to

Kernel User's Manual, Version 1.0 ' 247

the data, scheduling is used to control access to the processor. When a process is able to give
up control of the processor (i.e., it has finished writing data, reading data, or has executed a
sequence of instructions that it deems a "fair” use of the processor), it explicitly calls the Kernel
Scheduler via the Kernel primitive wait.

An example of mutually self-scheduling processes supporting a timeshare scenario is presented
below.

E.7.2. PDL of Example

In this scenario, process_1 does roughly one third of the time shared processing, as do
process_2 and process_3.

with process_attribute_modifiers;
procedure process_1l is

== (1) a wait of an elapsed time of 0 causes the Scheduler to

-- choose the next process to run. in the case of multiple
- pxocesses with the same priority, the Scheduler chooses
- the process with the longest time of not running (i.e.,
- one of process_2 or process_3).

begin
loop

. code that cannot be interrupted by process 2 or process_3

- (1) ~--
process_attribute modifiers.wait (
for_elapsed time => TG.elapsed time(0)):

. more code that cannot be interrupted by process 2 or process_3

-- (1) --
process_attribute modifiers.wait (
for_elapsed time => TG.elapsed time(0)):

. more code that cannot be interrupted by process_2 or process_3

-= (1) --
process_attribute modifiers.wait (
for_elapsed time => TG.elapsed time(0)):

end loop;

end process_1;

-- process_2 and process_3 each do another third of the "time shared"
processing

with process_attribute modifiers;

248 Kernel User’'s Manual, Version 1.0

procedure process 2 is

== (2) allow either process_1l or process_3 to run by voluntarily
- descheduling by calling wait (0)

loop

...coda that cannot be interrupted by process_1 or process_3

-— (2) --
process attribute modifiers.wait(
for_elapsed_time => TG.elapsed time(0));

end loop;
end process_2;

with process attribute_modifiers;
procedure process_3 is

begin
. similar use of code and wait (0)
end process_3;

with process_managers;
with process_table;
with process_1:

with process_2;

with process_3;
procedure Mi'n Unit is

proc_l : process_table.process_identifier:
proc_2 : process_table.process_ identifier;
proc_3 : process_table.process_identifier:

-- the Main Unit creates all three processes

' begin
-- network initialization and other initialization

proc_l := process_managers.declare_process ("Pl");
Proc_2 := process_managers.declare process ("P2");
proc_3 := process_managers.declare_process ("P3");

Kernel User's Manual, Version 1.0 249

process managers.create_process (
process_ID => proc_1,
initial priority => 4,
address => process_l’'address);

Process_managers.create_process (
process_ID => proc_2,
initial priority => 4,
address => process_2’'address);

process_managers.create_process |
process_ID => proc_3,
initial priority => 4,
address => process_3’'address);

-- rest of initialization

end Main Unit;

E.8. Message Router

While in many instances, it is convenient for every process to know the exact destination of each
message that it sends, at times it is more convenient for a process to know only the concept of a
"service" (and not a specific "server’). In these cases, the notion of a service process (or
message router) is useful, in which the message router partially decodes messages and sends
them to the specific process responsible for acting on the service request.

E.8.1. Example Requirements and Justification
A specific, although simple, example of the need for this type of message passing can be shown
in the following set of requirements:

¢ An application accesses data from numerous sensors and processes this data in a
like manner irrespective of origin.

e The sensors are distributed, as are the processes which read the sensors.

¢ The frequency of acquisition ot data from any given sensor is stochastic, aithough
the computational overhead is uniform for any given data sample.

o To spread the system load, the processes that analyze the incoming data are also
distributed. The number of data-gathering processes exceeds the number of
analyzing processes.

e Sensor data is passed to the analyzing processes via messages. The analysis
processes read the incoming data, compute some form of resuit, and communicate
this resuilt to the collector. One possible application of this form would be a multiple
target tracking algorithm; another would be a print server spooling requests to
multiple printers.

Given this set of constraints, two possible implementations are envisioned:

250 Kernef User’s Manual, Version 1.0

1. Each data collection process (associated with a single sensor) has associated with
it a single analysis process (a many-to-one mapping). Because collection
processes outnumber analysis processes, it is possible that a set of collection
processes could be active that would heavily load a small set of analysis processes,
leaving a different set of analysis processes relatively idle.

If load sharing were to be implemented with this scheme, every collection process
would need to know the location of every analysis process, and every cotlection
process would aiso have to maintain a copy of the loading tables for the analysis
processes, and would thus route messages to what it presumed to be the least
loaded analysis process.

This method would result in a great deal of data sharing, a large number of global
variables, increased message traffic (since the collection and analysis processes
are both distributed), and increased compliexity of every collection process.

2. Each data collection process (associated with a single sensor) knows about a
single, global service process (or message router). This service process would
receive incoming requests from the collection processes, and based on the relative
loading of the analysis processes, would choose a lightly loaded one and route the
message to it for analysis. The analysis process would then be able to respond
directly to the collection process (assuming the message router provided the
address of the collect process to it).

This scheme requires some increased message traffic, but substantially reduces
the computational overhead of the collection processes. Each collection process
need only be aware of a single, global message router, whose sole job it is to find
unloaded analysis processes and ship sensor information messages off to them.
Information about process load is localized, so no data sharing need be done.

E.8.2. PDL of Example
The code for the message router would look something like this:

with process_table:;
package load information is

function find least_loaded analysis_process
return process_table.process_identifier:

end load information;

with communication_globals;
with process_table;

with load information;
procedure massage_router is

unloaded : process_table.process_identifier:

function to_tag (sender : in process_table.process_identifier)
return communication_globals.message tag_type:

-~ encode a process_ID as a message_tag type value so the ultimate

-- receiver of the message may determine from which process it

-= originated

Kernel User's Manual, Version 1.0

251

-- read an incoming message and assuma that it comes from a collection
-- process. in more complicated cases, the message tag or the
-- message_buffer could indicate the type of service requested.

begin
loop
communication_management .receive_message
(
sender, ... , length, buffer,
)i
unloaded := load information.find least_loaded_ analysis_process;
communication_management.send message
(
receiver => unloaded,
massage_tag => to_tag (sendar),
massage_length => length,
message_text => message_ buffer
):
end loop;

end message router;

E.9. Process Monitor (A Sample Tool)

This example will be provided in a future version of this document.

E.10. Network Integrity

This example will be provided in a future version of this document.

E.11. Prioritized Messages

This example will be provided in a future version of this document.

252 Kernel User’'s Manual, Version 1.0

Appendix F: Application Example

This information will be provided in the next version of this document.

Kernel " ser's Manual, Version 1.0

253

254

Kernel User’'s Manual, Version 1.0

Appendix G: Relation to Standard Design Models

This appendix is currently in outline format.

G.1. Introduction

The Kernel presupposes certain models of real-time system development.

G.2. Basic Modeils

G.2.1. Process Model
Serial algorithms executing independently of each other, synchronizing by explicit signals or data
flows.

G.2.2. Data Flow Model
Loosely-coupied producers, consumers and transducers, linked by persistent data-flow arcs
along which typed messages are passed.

G.2.3. Time Model
Uniform linear flow of time common to all nodes, represented internally with a finite granularity.

G.2.4. Event Model

An event is the arrival of a signal or message; conceptually asynchronous. Processes await
events that represent preconditions for continued execution; processes create postconditions that
represent events being awaited by other processes.

G.2.5. Device Model

Device as an external source or sink of data; controlled by a driver/handier pair; the driver being
synchronous with respect to the application and the handler asynchronous. Driver maps
application requests into device commands; handler maps device responses into application
events.

G.3. Corresponding Design Models

G.3.1. System Decomposition Models
From requirements to: processes, communication paths, sources and sinks.

G.3.2. Data Flow Modeils
From architecture to: data channels, data stores, message types, process roles
(producer/consumer/transducer).

Kernel User's Manual, Version 1.0 255

G.3.3. Transaction Models

From behavioral specification to: end-to-end transactions; pre and post conditions; invariants;
internal states; state machines.

G.3.4. Temporal Models

From performance specifications to: event recognition and handling times; maximum latencies;
resource requirements; throughput.

G.4. Suggested Standard Techniques

Decomposition: Ward-Mellor: SA/SD

DFD: MASCOT
Transaction: Statecharts
Temporal: Schedulability Analysis; Timelines
256 Kernel User’'s Manual, Version 1.0

J

Appendix H: 68020 Specifics

The following information is specific to the Motorola 68020 target, as defined by the documents
listed in Section 1.4:

1. There are 256 legal interrupts.

2. The range of legal interrupts is: 0 .. 255. This is the range for type interrupt_name
in package generic_interrupt_globals. The declaration of type interrupt_name is:

type interrupt name is new hardware_interface.hw byte:

3. Interrupt names reserved by the Kernel and the hardware are:

Kernel Reserved Interrupts
Interrupt Name Meaning
0-63 Hardware-defined exceptions
66 PIT PIO "In" port #1
68 PIT Timer #1 (Timer A)
74 PIT PIO "In" port #2
76 PIT Timer #2 (Timer B)
82 PIT PIO "Out" port #1
84 PIT Timer #1 (Timer C)
90 PIT PIO "Out" port #2
92 PIT Timer #2 (Timer D)
100 MFP Timer D
101 MFP Timer C
104 MFP Timer B
109 MFP Timer A
120 SIOA TX Port A
122 SIOA RX Port A
124 SIOA SC Port A
126 SIOA SRC Port A
255 Interprocessor Interrupt

4. Information about the resources consumed by each Kernel primitive will be
provided in the next version of this document.

5. The values used by the DARK development team for all tailoring parameters are
presented in Table H-1.

6. The context_save_area embedded within the Process Table is target-specific. See
Appendix A, package context_save_area, for a detailed description.

7. The foliowing representation specification is relevant to type hw_bits8 declared in
package hardware_interface:

Kernel User's Manual, Version 1.0 257

for hw_bits8, use racord

bit7 at 0..range 0..0;
bité at 0..range 1..1;
bit5 at 0..range 2..2;
bit4 at 0..range 3..3;
bit3 at 0..range 4..4;
bit2 at 0..range S5..5;
bitl at 0..range 6..6;
bit0 at 0..range 7..7;

end record;

This representation specification allows individual bit fieids to be referenced by

name in a manner compatible with the target hardware.

Default Values for Tailoring Parameters

Package Name Parameter Name Value
communication_globals maximum_message_length_value 1_024
interrupt_globals number_of_interrupt_names_used_by_application | 10

number_of_interrupt_names_used_by_Kernel 4
Kernel_time ticks_per_second_value 500_000
network_configuration maximum_length_of _processor_name_value 16
number_of_nodes_value 4
network_globals first_bus_address_value 0*
last_bus_address_value 255
null_bus_address_value 16#00#
process_managers maximum_message_queue_size_value 1_024
maximum_process_stack_size_value 4 _096
process_managers_globals | maximum_length_of_process_name_value 32
process_table maximum_number_of_processes_value 25
schedule_types lowest_priority_value 10
timeslice_management minimum_slice_time_value 77 usec
all packages with error
checking parameters *_enabled true

Table H-1: Tailoring Parameters
*These are constants in the code that should be treated like generic formal

parameters.

258

Kernel User’s Manual, Version 1.0

Appendix |: Index

This will be provided in the next version of this document.

Kernel User’s Manual, Version 1.0

259

260

Kernel User’'s Manual, Version 1.0

r

-

UNLIMITED, [NCIASSIFIED

SECUAITY CLASSIFICATION OF TH!S PAGE

REPORT DOCUMENTATION PAGE

1

1o REPOAT SECURITY CLASSIFICATION

1b. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
Je. SECURITY CLASSIFICATION AUTHOAITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A APPROVED FOR PUBLIC RELEASE

2b. OECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

DISTRIBUTION UNLIMITED

s PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-89-UG-1

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-89-TR-15

6s. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL
{If applicadle)

SOFTWARE ENGINEERING INSTITUTE[SEI

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6c. ADDRESS (City, State and ZIP Code)

CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

7. ADORESS (City, State and ZIP Codc)

ESD/XRS!

HANSCOM AIR FORCE BASE, MA 01731

8b. OFFICE SYMBOL
(1f applicable)

8s. NAME OF FUNDING/SPONSORING
ORGANIZATION

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

SEL JOINT PROGRAM OFFICE SEI JPO F1962885C0003
8c. ADDRESS (City, State and ZIP Code} 10. SOURCE OF FUNDING NOS.
o T
CARNEGIE MELLON UNIVERSITY (FRogRam PROJECT ras« o A< o
SOFTWARE ENGINEERING INSTITUTE JPO '
PITTSBURGH, PA 15213 N/A N/A X/A

11. TITLE (Include Security Classification)
Kernel User's Manual Version 1.0

12. PERSONAL AUTHOR(S)

Judy Bamberger, Tim Coddington, Robert Firth, Daniel Klein, David Stinchcomb,R. Van Sco

13b. TIME COYERED
FRAOM TO

13a. TYPE OF REPORT

FINAL

14. OATE OF REPORTY (Yr., Mo., Day) 15. PAGE COUNT

1989

February,

16. SUPPLEMENTARY NOTATION

17. COSAT! CODES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS 1Contlinue on reverse if nccessary and identify by block number)

19. ABSTRACT 1Continue on reverse i necessary and 1dentify by block number)

This manual describes the models underlying the Kernel and its concept of operations,
presents the primitives available to the application program, and provides a number of
abstractions that may readily be built on top of Kernel primitives.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

uncLassiFieo/unLimiTED XX same as RPT L DTiC USERS &3

2V ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED

22a. NAME OF RESPONSIBLE INDIVIDUAL
KARL SHINGLER

22c OFFICE SYMBOL
SEL JPO

22b TELEPHONE NUMBER
tlnctude Arca Code

(412) 268-7630

DD FORM 1473, 83 APR

EQITION OF Y JAN 7315 OBSQOLETE

UNLIMITED, UNCLASSIFIED

SECURITY CLASSIFICATION OF TriS PA

