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Abstract

The first algorithm for solving generalized linear programs was given by
Y _George B\ Dantzig. His algorithm assumes that a basic feasible solution of the
generalized linear program to be solved exists and is given. If the initial basic fea-
sible solution is non-degencrate, then his algorithm is guaranteed to converge. The
purpose of this paper is to show how to find an initial basic feasible (possibly de-
generate) solution of a generalized linear program by applying the same algorithm
to a’ “phase-one” problem without requiring that the initial basic feasible solution

to the latter be non-degenerate.

¢ (ke) —

Key Words: linear programming, generalized linear programming, duality.

Abbreviated Title: The feasibility of a GLP

Generalized linear programming is a natural extension of linear programming.
The cost coefficients and the columns of the constraint matrix of a generalized linear
program may be freely chosen from a compact convex set. Specifically, a generalized
linear program is defined as

(GLP) minimize cy
subject to
py=4q
(c,pT)T
y=20

may be freely chosen from T! x T™

where y > 0 is a real number, ¢ is in R™, T! is a closed interval in R!, and T™ is
a compact convex set in R™. P oy '
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Dantzig’s algorithm for solving generalized linear programs starts with a basic
feasible solution of the problem to be solved, i.e., assumes that one has at hand m
independent vectors p', p?, ..., p™ such that p' € T™ and values of scalars y, >0
such that }_ I, p’ 'y = q is non-negatwe At iteration k, a new vector (c¥, p* )T
T! x T™ is generated with the most negative reduced cost ck — 7rp" < ¢— wp for
all (¢,pT)T € T' x T™, where mp¥* = cJi for basic p’i. Then p* is added to the
constraint matrix of the k-th restricted master program with cost coefficient c*. If
the initial basic feasible solution is non-degenerate, then the optimal solutions of all
restricted master programs form a sequence of feasible solutions of (GLP) on which
the objective function tends to the value of the program (GLP) (see, e.g., Dantzig
(1963), chapters 22 and 24).

The purpose of this paper is to show how to find an initial basic feasible (pos-
sibly degenerate) solution of (GLP) by Dantzig’s algorithm. Here the idea is same
as phase-one of the simplex method. We introduce artificial variables and minimize
the summation of all artificial variables. That is, we solve the phase-one problem:

(LP)  minimize Y .-, z;
subject to '
Py + il e'Ti=gq
p may be freely chosen from T™
y>20,z;20fori=1,..., m

k]

where e’ is the i-th unit vector in R™. We assume, without loss of generality, that
gi>0fori=1,... m, and ¢ # 0. In addition, we assume that the origin is
not contained in T™. Let v(LP) denote the optlmal value of the objective function
of program (LP). Superscripts on vectors denote different vectors, while subscripts
on vectors denote different components. To avoid confusion, we state the steps for
finding an initial basic feasible solution of (GLP) explicitely.
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Initialize.
Let k := 0;
let the first restricted master linear program, LP(0), be
minimize Y iv, z;
subject to
Y e'Ti=g
z; 20fori=1,...,m.
(Note that v(LP(0)) = S°12, ¢; > 0 s1nce g=>0and ¢#0.)
Step 1.
If v(LP(k)) = 0, then a basic feasible solution of (GLP) is found, stop.
Else, go to Step 2.
Step 2.
Let 7* be an optimal dual solution of LP(k);
find a p**+! such that n*p*+! = max{r*p:p € T™};
if 7¥p*+1 < 0, then (GLP) is infeasible, stop.
Else, go to Step 3.
Step 3.
Let LP(k+1) be the linear program
minimize Y .., ;

subject to
Z.‘ffp yi+ Z:-—l e'z; =q
yi20,t=1,...,k+1, ;20,2 =1, m;
solve LP(k+1);
k:=k+1;
go to Step 1.

Theorem. Suppose that the origin is not contained in T™. Then (GLP) is
feasible if and only if v(LP(k)) = 0 for some k or »(LP(k)) > O for all ¥ and
limg_. oo v(LP(k)) = 0.




Proof. Suppose first that v(LP(k)) > 0 for all k and limg—co v(LP(k)) = 0. Let
(y¥,...,yF,z¥, ..., z¥) be an optimal solution of LP(k). Let Aj be the index set
ordered from low indicies ¢ to high indecies such that y¥ > 0 if and only if i € A;. If
we solve LP(k) by the simplex method, then A contains no more than m elements.
Let Ax = {ik,,---,1k4,,} Where |Ay| denotes the cardinal number of Ag, and

let Y* = (yfh,... ,yﬁm |,0,... ,0) € R™, that is, the first |Az| components of
k
Yk are yfhl,. .. ,y,’-‘,‘IA | and the rest are zeros in the case |Aix] < m. We claim
k

that {Y* € R™ : k = 1,2,...} has a cluster point. Indeed let \* = 377", Y}’
forall k =1, 2, .... Since A¥ = 0 implies v(LP(k)) = Y1~ ¢i > 0, we know that
A¥ = 0 can only happen for a finite number of k because an infinite number of times
would imply lim;_o v(LP(k;)) = 32, ¢i > 0 for a subsequence, contrary to the
hypothesis limg—oo v(LP(k)) = 0. Therefore, A* > 0 for all k > ko. Now let s* =
ZLI pyf/AF € T™ and u* = Yo, e'zf for all k > ko. As limg_.oo v(LP(k)) =
0, we have limg_,oo u*¥ = 0 and limg_.o A¥s*¥ = ¢. Since T™ is compact, there
exists a subsequence s* such that lim;_ . sk = s*. We know that s* # 0 since,
by hypothesis, the compact set T™ does not contain the origin. It follows that
lim;—oo A% = [|q|| - ||s*]|~* and thus A% is bounded. Therefore, the sequence Y*

has a cluster point. Let AF = (p't1,...,p™18:1,0,...,0) € R™*™ for all k > 0. As
T™ is compact, for a subsequence k; we have

lim A% = A*, Iim Y% =Y*, and lim (ANYH 4 ubi) = A*Y* = 4.
J—oo

j—oo j—oo
Now let p!*, ..., p™ be the nonzero columns of A*, y1., ..., Yms be the components
of Y*, and choose p("+V* .. p** € T™ such that rank(p'*,...,p"") = m. Then
yi=yiefori=1,...,r,andy; =0fori=r+1, ..., tis a feasible solution of the
system:

Py 4+ PPy =¢q
inO,i=1,---st,

(1)

and thus we can find a basic feasible solution of (1) by the simplex method. Of
course, this basic feasible solution is also a basic feasible solution for (GLP).

It remains to show that limg—.o v(LP(k)) > 0 implies (GLP) infeasible. Since
7* is an optimal dual solution of LP(k),

¥ <lfori=1,...,m, (2)
and
m
ﬂkq=z:cf2_0forallk=l,2,.... (3)
=1
4




Since ¢ > 0, (2) and (3) tell us that the sequence 7 is bounded. The boundedness
of ¥ implies limg—.o v(LP(k)) = v(LP) (see, e.g., Dantzig (1963), chapter 24). It
follows that v(LP) > 0 and (GLP) is infeasible.

Remarks. Given any (GLP) with 0 # ¢ > 0, one can always generate a sequence
of linear programs LP(k). Since {n* : k = 1,2,...} is bounded, limx—.c v(LP(k)) =
v(LP). Therefore, limg_.o v(LP(k)) > 0 always implies that (GLP) is infeasible.
While in the case limg_oo v(LP(k)) = 0, if limsup,_ o [|s*|| > 0, then »(LP) = 0
can be attained, which implies that (GLP) is feasible.
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