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() AAbstract

The first algorithm for solving generalized linear programs was given by
JQ-George-Bx Dantzig. His algorithm assumes that a basic feasible solution of the

generalized linear program to be solved exists and is given. If the initial basic fea-
sible solution is non-degenerate, then his algorithm is guaranteed to converge. The
purpose of this paper is to show how to find an initial basic feasible (possibly de-
generate) solution of a generalized linear program by applying the same algorithm
to ahphase-one"jiioblem without requiring that the initial basic feasible solution
to the latter be non-degenerate. (kr) 4 -

Key Words: linear programming, generalized linear programming, duality.

Abbreviated Title: The feasibility of a GLP

Generalized linear programming is a natural extension of linear programming.
The cost coefficients and the columns of the constraint matrix of a generalized linear
program may be freely chosen from a compact convex set. Specifically, a generalized
linear program is defined as

(GLP) minimize cy
subject to

Py = q
(c,pT)T may be freely chosen from T' x T" '

where y > 0 is a real number, q is in R', T' is a closed interval in R1', and T' is
a compact convex set in R'. 1 -
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Dantzig's algorithm for solving generalized linear programs starts with a basic

feasible solution of the problem to be solved, i.e., assumes that one has at hand m

independent vectors p , p , p such that p E T' and values of scalars yi > 0

such that Fli= P yi = q is non-negative. At iteration k, a new vector (ck, pT) e
T' x T r ' is generated with the most negative reduced cost ck - 7rpk < c - wp for
all (c,pT)T E T 1 x T', where 7rp j c ' for basic pji. Then p' is added to the

constraint matrix of the k-th restricted master program with cost coefficient ck. If

the initial basic feasible solution is non-degenerate, then the optimal solutions of all

restricted master programs form a sequence of feasible solutions of (GLP) on which

the objective function tends to the value of the program (GLP) (see, e.g., Dantzig

(1963), chapters 22 and 24).
The purpose of this paper is to show how to find an initial basic feasible (pos-

sibly degenerate) solution of (GLP) by Dantzig's algorithm. Here the idea is same

as phase-one of the simplex method. We introduce artificial variables and minimize
the summation of all artificial variables. That is, we solve the phase-one problem:

(LP) minimize E'i=, xi
subject to

Py + -i=, e xi = q
p may be freely chosen from T'
y>0, xi>0fori=1,...,m,

where e' is the i-th unit vector in R'. We assume, without loss of generality, that

qi > 0 for i = 1, ... m, and q # 0. In addition, we assume that the origin is
not contained in Ti. Let v(LP) denote the optimal value of the objective function
of program (LP). Superscripts on vectors denote different vectors, while subscripts
on vectors denote different components. To avoid confusion, we state the steps for

finding an initial basic feasible solution of (GLP) explicitely.
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Initialize.
Let k := 0;
let the first restricted master linear program, LP(O), be

minimize X2l 1 i
subject to

i=1 e xi = q
Xi > Ofor i = 1, ... , m.

(Note that v(LP(O)) = E=l qi > 0 since q - 0 and q # 0.)
Step 1.

If v(LP(k)) = 0, then a basic feasible solution of (GLP) is found, stop.
Else, go to Step 2.

Step 2.
Let 7r' be an optimal dual solution of LP(k);
find a pk+1 such that 7rkpk+l = max{irkp : p E Tm};
if r kp k + 1 < 0, then (GLP) is infeasible, stop.
Else, go to Step 3.

Step 3.
Let LP(k+1) be the linear program

minimize 'i=1 X i
subject to

i=1 PY -i=1 e Xi =q
Y, ->0,i=--1, ... , k+ 1, x, >_0,i =1, ... , m;

solve LP(k+1);
k:= k + 1;
go to Step 1.

Theorem. Suppose that the origin is not contained in T'. Then (GLP) is
feasible if and only if v(LP(k)) = 0 for some k or v(LP(k)) > 0 for all k and
lim k-oo v(LP(k)) = 0.
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Proof. Suppose first that v(LP(k)) > 0 for all k and lim&-. v(LP(k)) = 0. Let
(Y,-. , I,,. . ,xM) be an optimal solution of LP(k). Let Ak be the index set

ordered from low indicies i to high indecies such that y > 0 if and only if i E Ak. If
we solve LP(k) by the simplex method, then Ak contains no more than m elements.
Let Ak = {ik,,...,'kfAhl} where IAkI denotes the cardinal number of Ak, and
let yk = (Y ... ,I ,I ,... , 0) E R m , that is, the first Ak I components of

9k s~'Ik 1A ;III
yk are y kand the rest are zeros in the case IAkjI < m. We claim

that {yk E R m : k = 1,2,... } has a cluster point. Indeed let Ak = WIm yk

for all k = 1, 2, .... Since Ak = 0 implies v(LP(k)) = qj > 0, we know that
Ak = 0 can only happen for a finite number of k because an infinite number of times
would imply limj..oo v(LP(kj)) = 1 qj > 0 for a subsequence, contrary to the

hypothesis limk-.. v(LP(k)) = 0. Therefore, Ak > 0 for all k > k0 . Now let sk =k T m*p uk

-i:=i PYs/A E T- and = -L= e' for all k > k0 . As limk.. v(LP(k)) =
0, we have limk--.oo uk = 0 and limk-, AkSk = q. Since T is compact, there
exists a subsequence sk3 such that limj-,. 0 s ki = s*. We know that s* # 0 since,
by hypothesis, the compact set T m does not contain the origin. It follows that
limi-o Ai = j[qIj [[s*1 -' and thus Aki is bounded. Therefore, the sequence yk

has a cluster point. Let Ak = (pi'i ,...,pikI',0,. ,0) E Rmm for all k > 0. As
T' is compact, for a subsequence ki we have

lim Ak = A*, lim yk = Y, and lim (Aki yk, + ukJ) = A*Y*=q.
j-.oo J-oo j--.00

Now let pl, ... , p* be the nonzero columns of A*, y, ... , ym. be the components
of Y*, and choose p(r+1)*, ... , pt E T" such that rank(p1*,... ,pt*) = m. Then
y, =yjfori = 1, ... , r, andYi =0fori =r+1, ... , t is afeasible solution of the
system:

p*y +... + Pt*yt=q (1)

yi > 0,i = 1,...,t,

and thus we can find a basic feasible solution of (1) by the simplex method. Of
course, this basic feasible solution is also a basic feasible solution for (GLP).

It remains to show that limk.,, v(LP(k)) > 0 implies (GLP) infeasible. Since
rk is an optimal dual solution of LP(k),

ir < 1 for i = 1,..., 1,1 (2)

and
k 7 >0for all k =1,2 (3)Ir q ---Exi (3) ..

z=1



Since q :> 0, (2) and (3) tell us that the sequence 7rk is bounded. The boundedness
of irk implies limk--.oo v(LP(k)) = v(LP) (see, e.g., Dantzig (1963), chapter 24). It
follows that v(LP) > 0 and (GLP) is infeasible. I

Remarks. Given any (GLP) with 0 0 q _ 0, one can always generate a sequence
of linear programs LP(k). Since {irk : k = 1,2... } is bounded, limk-.oo v(LP(k)) =
v(LP). Therefore, limk.oo v(LP(k)) > 0 always implies that (GLP) is infeasible.
While in the case limk-.o. v(LP(k)) = 0, if limsup_..., 11s~k11 > 0, then v(LP) = 0
can be attained, which implies that (GLP) is feasible.
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SOL 89-1:
On the Feasbility of a Generalized Linear Program, by Hui Hu

The first algorithm for solving generalized linear programs was given by George B. Dantzig. His

algorithm assumes that a basic feasible solution of the generalized linear program to be solved exists
and is given. If the initial basic feasible solution is non-degenerate, then his algorithm is guaranteed
to converge. The purpose of this paper is to show how to find an initial basic feasible (possibly

degenerate) solution of a generealized linear program by applying the same algorithm to a "phase-one"

problem without requiring that the initial basic feasible solution to the latter be non-degenerate.
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