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ABSTRACT

Monte Carlo simulations were performed to determine how the
accuracy of lower bound values estimated from experimental data is
influenced by sample size, required confidence level, and assumed
statistical model. Population distributions having different
degrees of skewness, selected to bracket those expected in actual
experimental data, were studied. For nearly every case considered,
lower bound estimates calculated using Log-Normal statistics were
more accurate than estimates calculated using either Normal or
Weibull statistics. It was demonstrated that testing more than
three samples per condition can greatly reduce the error associated
with the lower bound estimate. However, after the twelfth sample,
no additional sample will reduce the lower bound estimation error
by more than 2.5% for all statistical distribution / confidence
level combinations considered. When applied to material properties
for which the population distribution has been established by
previous testing, it was demonstrated that a Monte Carlo simulation
can be used to assess the maximum expected lower bound estimation
error as a function of sample size and confidence level. This
information can be used to determine the minimum number of
specimens needed to obtain a lower bound estimate of acceptable
accuracy when sampling a known population.

ADMINISTRATIVE INFORMATION

This report was prepared as part of the Surface Ship and Craft Materials Block

under the sponsorship of Mr. I. Caplan (DTRC 011.5). This effort was

performed at this Center under Program Element 62234N, Task Area RS345S50,

Work Unit 1-2814-198-20. The work was performed under the supervision of

Mr. T.W. Montemarano. This report satisfies milestone MAl.6/2

INTRODUCTION

For either engineering or research and development purposes, it is often

necessary to determine the properties of a material (e.g. strength, toughness)

using small experimental data sets. Lower bound properties, estimated from

these data, can then be used to conservatively assess the fitness of a
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component for continued service. The accuracy of this estimated lower bound

depends on the variability of the property, the confidence required of the

estimate, and the amount of experimental data available.

Although material specifications and surveillance programs frequently base

component acceptance or rejection on the lowest of three experimental datum

[1], there is no established relationship between this value and the actual

lower bound. Jutla and Garwood [2] demonstrated that, if nothing is known

a priori regarding the sampled population, the lowest of three data falls,

with 90% confidence, below only 46% the entire population, indicating that

this value is not a very accurate lower bound measure. As shown in Figure 1

[2J, these results also indicate that the lowest measured value approximates a

90% confidence level lower bound value only for rather large samples (greater

than 24 values). Any alternative to estimating the lower bound with the

lowest measured value involves a statistical evaluation of the data. By

making assumptions regarding the population distribution sampled by

experimental data, statistical models allow the available data to be

extrapolated, or interpolated, to establish a lower bound value.

Three statistical models commonly used to analyze material data are the Normal

statistical model, the Log-Normal statistical model, and the Weibull

statistical model. While a lower bound can be estimated using any of these

models, the different characteristics of each, illustrated in Figure 2, cause

these estimates to depend on the model used to make the estimate.

Unfortunately, there is no straightforward way to assess the accuracy of these

various lower bound estimates. In recent work, Doig [3] used a Monte Carlo

simulation to determine the accuracy with which lower bound estimates can be
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made based on limited data using Normal and Weibull statistical models. This

work indicated that a Weibull model gives more accurate 95% confidence lower

bound estimates than does a Normal model for a variety of population

distributions.

OBJECTIVES

The objectives of this study are as follows:

1. To determine what statistical model, of N rmal, Log-Normal, and

Weibull, provides the most accurate lower bound estimate for

different sample sizes and confidence levels.

2. To determine at what point additional sampling fails to substantially

reduce the error of the estimated lower bound value.

3. To demonstrate how a Monte Carlo analysis can be used to assess the

maximum lower bound estimation error when samples are drawn from a

known population.

To achieve these objectives, the procedure suggested by Doig was employed.

Data was drawn from populations having different degrees of skewness, these

having been selected to bracket those commonly observed in actual experimental

data. The first two objectives were addressed by performing Monte Carlo

simulations of a random sampling process using data from these populations.

An experimentally determined population was analyzed in a similar manner to

meet the third objective.
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MONTE CARLO SIMULATION

Kleijnen [4] discussed how Monte Carlo simulations are used to determine

parameters that describe a stochastic variable's distribution (e.g. mean,

variance, lower bound, upper bound). During a simulation, samples are

randomly drawn from the population being studied. The simulation thus

imitates the process of characterizing a lot of material using data from

mechanical test specimens (e.g. Charpy V-Notch, Compact Tension, Tensile)

removed from the lot. The population distribution used in a Monte Carlo

simulation can either be derived from experimental data, or based on a

population distribution equation.

In this study, four populations, having shapes ranging from skewed left to

skewed right, were studied. These populations are shown in Figure 3. The

Monte Carlo simulations, shown schematically in Figure 4, were conducted as

follows:

1. A sample of n values were randomly drawn from the population being
studied.

2. A b% confidence lower bound value was estimated from this sample,

using Normal, Log-Normal, and Weibull statistical models.

3. Steps 1 and 2 were repeated 1,000 times to determine:

a. The range of predicted b% lower bound estimates expected for each
statistical model.

b. The maximum lower bound estimation error, JEmax1, as defined in
Figure 4.

This process was repeated for each distribution for values of n (sample size)

ranging from 3 to 31 at b - 90%, 95%, and 99% confidence levels. Descriptions

of how lower bound estimates are made using Normal, Log-Normal, and Weibull
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statistics can be found in references (3,5-6].

RESULTS AND DISCUSSION

ACCURACY OF STATISTICALLY ESTIMATED LOWER BOUND VALUES

Figure 5 shows typical results from these analyses. When the sampled

distribution was approximately symmetric or skewed right (Figure 5a), the

ranges of all three lower bound estimates converged to the true lower bound as

the sample size increased. However, when a skewed left distribution was

sampled (Figure 5b), only Weibull and Log-Normal lower bound estimates

converged to the true lower bound value. In this case, the Normal lower bound

estimates remained negatively biased even for large sample sizes. This bias

occurred due to the symmetry assumed by a Normal statistical model. Figure 5

also shows that lower bounds estimated from small samples depend significantly

on the statistical model used to make the estimate. In particular, the Normal

statistical model estimated negative lower bounds, even when all of the values

in the sample were positive. This occurred because the existence of a finite

lower bound is not assumed by the Normal statistical model.

To rank these statistical models by lower bound estimation accuracy, the

normalized maximum estimation error; IEmax!/Standard Deviation jEmaxi having

been defined in Figure 4; was computed for each distribution / confidence

level combination. Normalizing the errors in this manner facilitates

comparison of estimation errors for different distributions on a common scale.

These data, presented in Figure 6, show that Normal statistics estimated the

least accurate lower bounds in every instance, especially when the sampled
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distribution was heavily skewed left. Of the other two statistical models,

Log-Normal lower bound estimates were typically either more accurate or nearly

as accurate as Weibull estimates. The one major exception to this trend

occurred for samples of 6 or fewer values drawn from a distribution that was

heavily skewed left. In this case, Weibull estimated lower bounds were more

accurate than Log-Normal estimated lower bounds for all confidence levels

considered. However, this exception is sufficiently restricted that lower

bounds calculated using Log-Normal statistics would be expected to be the most

accurate when sampling from an unknown population.

Figure 6 only shows the results of the Monte Carlo simulation for the 95%

confidence level; the trends for 90% and 99% confidence levels being

essentially the same. Figure 7 compares the maximum lower bound estimation

error for these confidence levels to the maximum estimation error at the 95%

confidence level. In this figure, y-axis ratios near unity indicate that

the accuracy of the lower bound estimate is not sensitive to confidence level.

Thus, these data indicate that the accuracy of Log-Normal lower bound

estimates are the least sensitive to confidence level, while Normal lower

bound estimates are the most sensitive. There is, however, a general trend in

Figure 7 of increasing lower bound estimation error with increasing confidence

level for all three statistical models, implying that high confidence lower

bound estimates are more difficult to make accurately than low confidence

lower bound estimates. This occurs because, generally speaking, lower bound

estimates are made using a formula of the following type:

Estimated Lower Bound - Estimated Average - #.(Estimated Standard Deviation)
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From this formula, it follows that the error in the estimated lower bound is

the error in the estimated average plus 0 times the error in the estimated

standard deviation. The 0 value depends on the statistical model used to

evaluate the data. It increases with both decreasing sample size and with

increasing confidence level, making quite large for high confidence lower

bound estimates based on small samples. Thus, errors observed in high

confidence lower bound estimates based on small samples are large not only due

to the errors in the estimated average and standard deviation from which they

are calculated, but also due to the large 0 values inherent to this type of

estimate.

LOG-NORMAL LOWER BOUND ESTIMATES

It was demonstrated above that, in most cases, Log-Normal lower bound

estimates are both more accurate and less sensitive to confidence level than

either Normal or Weibull lower bound estimates. In this section, the effect

of sample size and confidence level on Log-Norma). lower bound estimates are

examined in further detail.

In experimental studies, three replicate tests are often performed to

establish trends with varying test conditions. While this degree of

replication is typically sufficient for these purposes, the data presented in

Figure 6 indicate that lower bounds calculated from such a small sample could

be in error by between 29% and 163% of the standard deviation, depending upon

the distribution sampled. In other situations, where such inaccuracy is

unacceptable due to the dire consequences of structural failure, additional

data would be required to improve the lower bound estimation accuracy. Figure
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8 shows that these additional data considerably reduce the lower bound

estimation error, the degree of error reduction not being strongly effected by

either the confidence level or by the sampled distribution. In all cases, the

first few additional values produce the greatest error reduction. The data

presented in Figure 8 can be used to assess when the achieved error reduction

fails to justify the cost of conducting additional experiments. While this

'break even' point depends on the ultimate application of the data, it would

be logical to terminate data collection when the amount of error reduction

expected by obtaining the next sample becomes small.

For general guidance in designing experimental test programs, it is useful to

note from Figure 8 that after the twelfth sample is obtained, no additional

sample will reduce the lower bound estimation error by more than 2.5% for all

statistical distribution / confidence level combinations considered. However,

this observation should be considered with the fact that the 95% confidence

Log-Normal lower bound estimate calculated from a sample having twelve values

may be in error by 10% to 47% of the distribution standard deviation, as

indicated in Figure 6. Thus, samples of twelve values do not guarantee the

accuracy of the estimated lower bound; rather, large increases in sample size

beyond twelve appear to be needed to substantially improve the lower bound

estimation accuracy.

APPLICATION OF MONTE CARLO SIMULATION TO ACTUAL DATA

When considerable experience exists with a particular material, the results of

a Monte Carlo simulation can be used to full advantage. One instance where

such detailed data exists is for Charpy V-Notch (CVN) tests at +30°F of a high
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strength steel where fracture is by microvoid coalescence. Figure 9 shows a

histogram constructed from the results of 1559 CVN tests performed on this

material. The probability distribution used in the Monte Carlo simulation was

based on these data.

The results of this analysis are presented in Figure 10. In this figure, the

maximum lower bound estimation error was expressed as a percent of the true

lower bound, rather than as a certain number of standard deviations, because

the numerical values of the true lower bounds were known from the data shown

in Figure 9. These results indicate that accurate lower bound estimates

having high confidence levels cannot be obtained with only three data values

in this particular situation. Further, these data demonstrate that collecting

more than twelve samples does not significantly reduce the maximum lower bound

estimation error, as was predicted in the previous section. Information of

this type can be used to determine the minimum number of specimens needed to

obtain a lower bound estimate of acceptable accuracy when sampling from a

known population.

SUMMARY AND CONCLUSIONS

This study examined the influence of sample size, confidence level, and

statistical model on the accuracy with which lower bound values can be

estimated from experimental data. Based on Monte Carlo simulations using

mathematically and experimentally derived probability distributions, the

following conclusions may be drawn:
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1. In situations where the statistical distribution of the quantity

being sampled is not known, lower bound estimates made using Log-

Normal statistics are generally more accurate and less sensitive to

confidence level than those made using either Normal or Weibull

statistics for sample sizes between 3 and 31 and confidence levels

between 90% and 99%.

2. Testing more than three specimens does not linearly decrease the

error associated with the estimated lower bound value; the most

significant error reductions being achieved by the first few

additional specimens tested. The amount of error reduction achieved

by additional testing does not depend strongly on either the

distribution sampled or on the confidence level of the lower bound

estimate. It was determined that, after the twelfth experiment, no

additional experiment will reduce the lower bound estimation error by

more than 2.5% for all statistical distribution / confidence level

combinations considered.

3. A Monte Carlo simulation can be used to assess the maximum expected

lower bound estimation error as a function of sample size and

confidence level, provided that the characteristics of the population

have been established by previous testing. The results of this type

of analysis can be used to determine the minimum sample size needed

to obtain a lower bound estimate of acceptable accuracy.
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Figure 1: Relation of the minimum of n samples (n shown on figure) to the
rest of the population at various confidence levels, after ref.
[2].
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Figure 2: Probability distribution functions drawn from (a) Normal, (b) Log-
Normal, and (c) Weibull statistical models. The three curves on
each graph show the different shapes each model can produce.
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Figure 3: Probability distributions sampled in this study; the numbers in
parenthesis are the distribution median and standard deviation,
respectively.
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Figure 4: Schematic of Monte Carlo simulation process for determining maximum
lower bound estimation error.
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from 1,000 Samples of Size n

50

5True

40 ........ . Lower

-------------------------------- -----------------------------------
Bound

-------------------------

30

Statistical Model

20 Weibull

Normal
----- Log Normal

10 t

0 5 10 15 20 25 30 35
Sample Size (n)

(a)
Range of Estimated 95% Lower Bound Values
from 1,000 Samples of Size n

50

True
Lower
Bound

25

0 I

Statistical Model
-25 Weibull

Normal

Log-Normal

-50
0 5 10 15 2.0 25 30 35

Sample Size (n)
(b)

Figure 5: Results of Monte Carlo analysis for (a) an approximately symmetric
distribution, and for (b) a distribution that is skewed left. The
sampled distributions are shown on each figure.
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Figure 6: Maximum error of (a) Normal, (b) Log-Normal, and (c) Weibull
estimated 95% confidence lower bounds as determined by Monte Carlo
simulated sampling of the probability distributions shown in Figure
3.
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Figure 7: Comparison of the maximum estimation errors for (a) 99%, and (b)

90% confidence lower bound estimates to that of 95% confidence
lower bound estimates for various statistical models and sample
sizes.
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Figure 8: Reduction of the error in Log-Normal estimated lower bounds having
90%, (b) 95%, and (c) 99% confidence with increasing sample size.
The sampled distributions are shown in Figure 3.
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Figure 9: Histogram based on 1559 CVN tests of a high strength steel
conducted at +300 F. All fracture surfaces exhibited 100%
microvoid coalescence.
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Figure 10: Reduction of Log-Normal lower bound estimation error with increased
sample size for the population shown in Figure 9. Percentages on
the graph indicate the confidence level associated with the lower
bound estimate.
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