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SOUND PROPAGATION IN BUBBLY LIQUIDS. A REVIEW

INTRODUCTION

This work considers the propagation of sound waves in liquids
containing bubbles. The problem has been given considerable attention in
the past, but continues to be of interest, because it is of some importance
in a variety of situations. For example, underwater waves used in surface-
scattering experiments may encounter clouds of bubbles, whose effects on
the waves must be determined if the scattered signal is to be correctly
interpreted. Other examples include the study, by acoustic means, of
bubbles created by the breaking of wind-driven surface waves.

Because the best known effect of the bubbles on the waves is to
produce changes in the speed of propagation, there is a large number of
works in the literature which deal with the speed of sound in a bubbly
liquid. Unfortunately, the information available appears to lack the
consistency required to provide a solid foundation for the study of different
aspects of the problem. Further, the existing predictions for the speed of
propagation appear to be based on ad-hoc assumptions which have not been
critically examined. Consequently, their validity and limitations are not
well established.

The focus of the work, then, is the speed of propagation in the
simplest situation, namely, plane, monochromatic sound waves traveling in
a large body of liquid containing small, non diffusing gas bubbles of uniform
radius and devoid of surface tension effects. In particular, we consider the
equilibrium and the finite-frequency speeds, as calculated by Wood (1941)
and by Kennard (1943), respectively. In a separate report (included here as
Appendix A), we show that Wood's equation is generally incorrect, but that
in the case of bubbly liquids in water it gives correct numerical values
because the specific heat of liquids is very close to unity, and because, for
typical bubbly mixtures, the mass concentration of bubbles is a very small
quantity. However, in some conditions, bubbles may act as rigid spheres, in
which case the use of Wood's equation can produce significant errors, as
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then, the speed of propagation differs little from the pure liquid value.
Finally, In the case of finite frequencies, we conclude that Kennard's
equation at frequencies near or slightly beyond radial resonance of the
bubbles is questionable, at least for volume concentrations which are not
exceedingly small.

EQUIUBRIUM SOUND SPEED

We first consider the propagation of sound waves in a bubbly liquid of
infinite extent, when the bubble, or suspended phase, is in complete
thermodynamic equilibrium with the host liquid. This situation cccurs when
the frequency of the sound waves is much lower than the lowest
characteristic frequency of any mechanism playing a role in the
propagation. An important example of such a mechanism is the radial
resonance of the bubbles. Here the natural frequency in the absence of any
dissipation, surface tension, and nonlinear effects is given by Minnaert's
formula (Minnaert, 1933)

co = F33pp/pf (1)

where Ro is the mean radius of the oscillating bubble, cp is the speed of
sound in the gas contained in the bubble, and pp and pf are the ambient

densities of the gas and of the liquid, respectively. If this radial motion
were the only effect induced by the waves, then we would require that the
frequency of propagation co be much smaller than Oo. When other effects are
present, we require that the frequency of propagation co be much smaller

than the lowest characteristic frequency associated with them. In such

conditions, the two phases are in equilibrium with one another, so that we
may use simple thermodynamic arguments to obtain the speed of sound in
the mixture. Because thermodynamic equilibrium necessarily occurs at zero
frequency, this equilibrium speed must therefore coincide with the zero-
frequency limit, c(O), of a frequency-dependent speed of propagation, c(co),

which will be discussed in a later section. First, we consider some
thermodynamic properties of the mixture and derive Wood's equation and
the equilibrium speed of sound.

2



Equilibrium DroDerties of a gas bubble-liauid mixture

We consider a unit volume of a mixture of gas bubbles and a liquid. For

the mixture to be in equilibrium, it must be homogeneous. That is, every
volume element in the mixture must contain similar distributions of

bubbles. In such conditions, we may define define thermodynamic properties
such as pressure, density, etc., in terms of the volume fractions of the
bubble and liquid phases, and of the respective thermodynamic properties in
the pure phases. We denote the volume fraction of the bubbles by Cv. The
volume fraction for the liquid in the mixture is 1- Cv. Therefore, the

density of the mixture is given by

Pm = Pf(1- CV) + ppCv (2)

Another quantity of interest is the mass loading, given by the ratio of

gas mass to liquid mass in a unit volume. This is simply given by

ppCv (71 = PP V(3)
pf(1- CV)

This quantity should not be confused with the mass concentration of
bubbles in a unit volume of the mixture, D p, which is given by

Op = PpCv _ Cv(4)

pf(1 - Cv)+PpCv 8(1 - Cv) + Cv (4)

where 8 = pf/pp. However, for very dilute suspensions, the two quantities are

equal because Cv << 1, and Cv << 8, giving

(Dp = 1 -- Cv/8 (5)

For such suspensions, Pm - Pf.



Wood's equation

Perhaps the simplest formulation for the sound speed in a gross
mixture may be found in the book by Wood (1941). It is based on the
definitions of mixture density given earlier, and on a compressibility for
the mixture, which Herzfeld (1930), Wood (1941), and others define as

Km = Kf(1- Cv) + Kp Cv (6)

Here Kfand Kp are the isentropic compressibilities of the liquid and and of

the gas, respectively. Now, the isentropic compressibility of the liquid is
given by

2
Kf = l/pfcf (7)

and the isentropic compressibility of the gas is given by
2

Kp = 1/pp C2 (8)

In terms of these quantities, Wood's compressibility is given by

Km = (1- Cv)/pf cf + Cv/Pp cp (9)

Thus, on the basis of these definitions, Wood introduces a low-frequency

speed of propagation by means of

2 1
Cw = - (10)

pmKm

Using (2) and (9), we have

2 1Cw= 2 2 (11)
[(1- CV)/PfCf + Cv/pp Cp][(- Cv)Pf + CvPpI
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This may be written as

2 2
Cf Cf

2=(1Cv)2+C -+ Cv(1 -Cv) [N + pp/pf] (12)
cw Cp

where

2
pfcf
2N=- 2ppCp

is the ratio of liquid to gas compressibilities. For a water-air combination,
N is about 124, so that we can safely discard the density ratio in the square
bracket of the above equation. Finally, for the important case of dilute
mixtures, this equation can be written as

2
Cf 1

CW 1 + Cv N

Alternate derivation

Wood's equation was derived from first principles by Chambre (1954),
who obtained it using three different, but equivalent, methods. For the case
of gas bubbles in a liquid, the following variant of one of Chambre's
derivation is equivalent to those found in the recent literature (see, for
example, Batchelor, 1969; van Wijngaarden, 1972).

First, we define Wood's sound speed as
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.1__ = dpm2 dp (14)
2 dpCw

where p and Pm are the mixture's pressure and density, and where the

derivative is to be evaluated at ambient conditions. Using Eq. (1), we obtain

1 1 -Cv Cv dCv (15)
2 2 +  +  p

CW Cf Cp

where

C2 dp (16)f dpf

Cf=-dpf(6

C2 dp (17)Pdpp

are the isentropic speeds of sound in the pure liquid and pure gas,
respectively, also evaluated at ambient conditions.

The quantity dCv/dp in Eq. (15) is not zero because the sound waves
induce changes in the volume fraction. However, the mass concentration, or
equivalently, the mass loading TI, remains constant, because in equilibrium
the two phases move together. We take advantage of this fact to evaluate
that derivative, by using the isentropic equation of state for the gas, which
states that, pp p-W is a constant. (In doing so, we implicitly assume that all

changes of state for the gas in the bubble are connected by isentropes.)
Now, the mixture pressure p is, by the equilibrium assumption, uniform
throughout the mixture. That is, it is the same in both liquid and gas phases.
Therefore, pp = p. This enables us to write Eq. (7) as

P-YPCv = constant (18)
Pf (1 - CV)
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Taking a derivative of this to form dCv/dp as needed, and evaluating it at
ambient conditions, we find

dCV. Cv(1- Cv)[ 1  1 (9=p 2'1 ( 9
PfCf PPcP

Substitution into Eq. (14), yields Wood's equation.

Equilibrium sound speed

As the derivation above makes it clear, Wood's equation follows from
the assumption that the mass concentration is constant. Such condition is,
in fact, necessary for equilibrium. However, the equilibrium speed of sound
in the mixture is defined as

c 2(0) = (d1 (20)
dpmjm

that is, at constant mixture entropy. In true thermodynamic equilibrium, the
entropy of the mixture can remain constant only if the entropy increase of
one of the components is matched with a decrease by the other. This is not
the case with the derivation given earlier, which clearly requires only
mechanical equilibrium. The question of thermal equilibrium, required for
true thermodynamic equilibrium is not addressed in Chambre's derivations.
Thus, in general, Wood's equation does not give the equilibrium sound speed
in a gross mixture. Rather, as shown in a separate report included as
Appendix A to this work, the correct value for the equilibrium, or zero
frequency, sound speed is

1 - p(Yf- ( -

c2(0) = 1 - cp Cp f (21)

Pm [Cv Kp + (1 - Cv) Kf]

where cpp and cpf are the specific heats at constant pressure of the



particles in the mixture and of the fluid, respectively, and 7f is the ratio of
specific heats for the fluid. This result may be written as

10) (22)
pmKsm

where we have introduced the isentropic compressibility of the mixture,
Ksm, given by

Ksm = Cv Kp + (1 - Cv) Kf
fsm- P(23)

1- 1 -(P cpf PfTo

Thus, in general, the isentropic compressibility of a gross mixture differs
from that assumed by Wood (1941) and others. This may be significant is
some situations. For example, in the case of droplets in a gas, the second
term in the denominator of Eq. (22) can be of the order of one, even for
dilute suspensions, so that Wood's equation will produce significant errors.
However, in the case of bubbles in a liquid, that term is negligible because
then, the mass concentration in suspensions of low volume concentration is
very small, and because, for liquids, (yf- 1) << 1. For such a mixture, then,
Km - Ksm and Wood's equation gives the correct numerical result for the
speed of propagation at low frequencies. From now on, we will denote
Wood's cw by c(O).

Thus, the equilibrium sound speed in a bubbly liquid has a smaller
value than in the host liquid alone, by an amount that depends on the volume

concentration of the gas Cv. The dependence of cO) on Cv is shown in Fig. 1.

As Cv is varied from zero to one, the speed changes from the pure liquid
value to the pure gas value, as expected, but for values of Cv in a wide
range, it is even smaller than in the pure gas. At Cv = 0.5, for example, the
speed of propagation is only about 20 m/sec, but, as pointed out by
Batchelor (1969), it is difficult to imagine a homogeneous mixture of
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bubbles in a liquid having such a high gas concentration.

1.0

0.8

c(0)/cf

0.6

0.4

0.2

0.0 L

10-5 10-4 10- 3  10-2 10-1 100

Cv

Fig. 1 Speed ratio c(O)/cf as a function of the volume fraction Cv. The value of c(O)/cf at

Cv = 1.0 gives the ratio of speed in the pure oas to speed in the liquid.

In this work, we are interested only in mixtures having very small
volume concentrations. However, even for these, the speed of propagation
differs considerably from the value in the pure liquid. Thus, for example, Eq.
(13) shows that a value of Cv as small as 1.85x10-4 decreases the
propagation speed by 50%. Some of the consequences of such drastic
changes will be examined later.

Rigid bubbles in a liquid

In some instances, bubbles in liquids behave nearly as rigid bodies due
to the presence of surface impurities (see Batchelor, 1967). In these
instances, Wood's equation can be used provided we put the bubble's
compressibility equal to zero. Thus,
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2
Cf2f ( 2= 1 - 2Cv (24)

C2(0)

Thus, in this case, the equilibrium speed of sound in the mixture is only
slightly different from the speed in the pure liquid. This is important, for
it predicts a much larger speed of propagation than that computed by
assuming that the bubbles are clean, in which case we must use Eq. (13),

2
Cf

2 1 + Cv Kp/Kf (24a)c2(0)

The ratio of fluid to liquid compressibilities appearing here is, for the case
of air bubbles in water, larger than 16,000. Although the value of this ratio
for actual bubbles found in practice depends on the amount of impurities on
their surface, and this is generally not known, it is clear that a

significantly lower value than 16,000 must apply in some cases, and this
seems to have escaped the attention of previous investigators.

Some applications

Before concluding this section, we give some applications of the
results presented in this section, assuming that we are dealing with clean
bubbles.

1. Measurement of Cv

It should be noted that the theoretical derivation of Eq. (12) makes no
assumption about the size of the bubbles. All that is assumed is that their
distribution in the mixture is homogeneous, whether monodisperse (single
size) or polydisperse. However, a direct measurement of C, can sometimes
be difficult to perform. On the other hand, speed of sound measurements are
probably easier to make, and Eq. (13) offers an indirect manner of obtaining
Cv. Thus, if a measurement of the speed of sound in the mixture is
performed at very low frequencies, so that c(o) is known, we may obtain Cv
in a dilute mixture by means of

10



Cv  2 -1] N 2  (13a)
Cf

The procedure can also be used for non-dilute mixtures, but then the

working equation is Eq. (12).

2. Reflection coefficient at liquid-mixture interface

It is known that in certain situations in the ocean, clouds of bubbles
are found in the water as a result of breaking surface waves (Thorpe, 1982,
1987). If a sound wave were to meet such a cloud, a fraction of the incident
energy may be scattered by the bubbly could, in a manner that depends on
many factors, including cloud geometry, frequency, bubble size distribution,
etc. An idea about the magnitude of the effect produced by the interaction,
may be obtained by considering the reflection coefficient for plane waves
of very low frequencies, normally incident in a bubbly cloud of semi-
infinite extent. This is an application of the textbook example of the
reflection at the interface between two infinite media, each having a
different characteristic impedance. The well-known result for that
situation is

ar= Pic:- Prc(O)) (25)

where c(o) is, as before, the equilibrium speed in the mixture, and where the
density of the mixture Pm is given by Eq. (2). For low volume concentrations,
Pm is nearly equal to the speed of the liquid. Therefore, Eq. (23) reduces to

a r= cf-+ C(O)J2 (25a)

This result was apparently first given by Kennard in 1943. For finite volume
concentrations, the dependence of ar on Cv is shown in Fig. 2 below.

11



1.0

0.8

a r

0.6

0.4

0.2

10-5 10- 4  10- 3  I0-2 10-1 100

Cv

Fig. 2. Reflection coefficient at boundary between pure liquid and mixture.

These results show that a volume concentration equal to 1.85x1 0 4 ,

produces a reflection coefficient equal to 0.11. Thus, a non-negligible

fraction of the incident energy is reflected back into the pure liquid, and

this may be significant in some underwater scattering experiments.

Incidentally, Eq. 25 may be used to obtain c(o) in terms of ar. Thus,

Cf (1 + a r ) (25b)
C(0) (1 - ar )

Hence, a measurement of the reflection coefficient made at low frequencies

at an the interface between a bubbly and a pure liquid, will yield the speed

ratio. This ratio can then be used to obtain Cv.
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SOUND SPEED AT NON-ZERO FREQUENCIES

As the discussion in the above section shows, sound propagation in
bubbly liquids may take place at a significantly different speed than in the
host liquid, even at very small volume concentrations of bubbles. The
results presented above, however, are limited to equilibrium conditions in
the mixture, and therefore can only be used at very low frequencies,
although some authors indicate that the equilibrium speed of propagation
predicted by Wood's equation can be used at moderate frequencies.

The literature contains several equivalent theories for the
propagation, at finite frequencies, of sound waves in liquids with radially
pulsating bubbles (see, for example, Carstensen and Foldy, 1947; Meyer and
Skudrzyk, 1953; Drumheller and Bedford, 1979). These theories make it
clear that the bubbles affect the propagation in a non-trivial manner which
strongly depends on the bubbles response to the waves. In Appendices B and
C, we will examine some of the aspects of this response. Here, we review
the currently accepted theory for the finite-frequency speed of sound in a
bubbly liquid. This theory is for liquids containing radially-pulsating gas
bubbles. In this, as well as in other cases, propagation is dispersive,
implying that the speed of propagation is frequency dependent, and that
there is attenuation. In those conditions, the wavenumber k is complex, and
may be expressed as

k= kj + i k2  (26)

where

k1= /c(a)
(27)

k2= X

where a is the amplitude attenuation coefficient, and co is the circular
frequency of the waves. Thus, a plane monochromatic wave propagating in
the positive x-axis direction, produces in the bubbly fluid a pressure
fluctuation proportional to exp(-ax)cos(klx-o)t)

13



whereas in a pure liquid the equivalent result would be cos(kfx- ot), where
kf-= (0/cf is the wavenumber in the pure liquid. Of course, the problem is to

determine k, and k2.

Perhaps the earliest investigation of the problem was that of Kennard
(1943), who considered the effects of radially pulsating bubbles in an ideal
liquid. His work is, however, not widely known, as it first appeared in a
classified report. His results have been obtained by other investigators, on
the basis of similar arguments, and may be found in standard textbooks on
the subject (see, for example, Clay and Medwin, 1977). In what follows, we
will first present them without derivation. A short derivation is presented
after discussing some of the implications of the theory.

Now, in an ideal liquid, the dissipative effects of viscosity and heat
conductivity are absent. Therefore, the only manner in which bubbles can
remove energy from an incident acoustic wave, is by absorbing some energy
from the wave, converting it into mechanical energy of radial pulsations,
and radiating to infinity in the form of sound waves. This radiation is an
energy loss as far as the incident wave is concerned, and results in
attenuation and dispersion. Before writing Kennard's results, we introduce
the relaxation time scale for radial pulsations defined by

-1

TO=(00 (28)

where (o is Minnaert's equation for the natural frequency of an ideal bubble

in the absence of surface tension effects. We call this the relaxation time
scale for radial pulsations because it is the time scale associated with
them. That is, significant changes in the acoustic variables occur during
times that are comparable to t;o. With this definition, Kennard's results may

be written as follows

(kCf 2 =+Cv 2 2 1  N (29)0o1 i0 -/N) (0 t o0

14



This may also be written as

.--fJ2 X + i Y (30)

where the real quantities X and Y are given by

X=1+Cv N2 (1 - (2t 2 ) 2 + (3/N) (03 3 )2  (31)

and

33

0)2O0
Y = C v 3-N 2 2 2O3 o 2( 2

(1 - c ogo) + (( /-7N) t)2()

Separating Eq. (30) into its real and imaginary parts, we have

2
Cf

C_ _ _) -ii2 =  X(33)

2i cf/c((o) = Y (34)

where we have used the definitions of k, and k2 given earlier, and where i

is a non-dimensional attenuation coefficient, defined by

U = tLcf/o = aX/2 (35)

Equations 33 and 34 are readily solved In terms of the quantities X
and Y defined earlier, giving

15



c( ) = 1 (36)
c f !X+ L4x-(1 1Y 1/2

and
Y/2

= + 2 (37)

These equations were first given by Kennard (1943) and are plotted as a
function of coo in Fig. 3, for air bubbles in water, and for a volume
concentration C, = lx10-4 . We note that, according to these equations, and
for a wide range of frequencies beyond resonance, the speed of

10

Cf/C(o)) 1

a-.1

.01

.001
0 1 2 3

(0 TO

Fig. 3. Kennard's results for attenuation and dispersion. o: cf/c(o)). :c. Cv= 10- 4 .

propagation is significantly larger that the speed in the pure liquid. Also,
the attenuation per wavelength exceeds unity in a wide frequency band. Of

16



course, for such large attenuations, one cannot properly talk about
propagation, because the amplitude of the "propagating" waves decreases
extremely rapidly. For example, the amplitude of a wave would decrease to
less than 2/1000 of its initial value in a distance equal to X/21c.

One reason for these remarkable features is that the amount of
dissipation associated with radiation, represented by the second term in
the denominator in Eq. (32) is very small. This has prompted some
investigators to study additional dissipation mechanisms whose effects
may decrease the maximum values of the attenuation. So that we can later
introduce some other dissipative effects, we modify Kennard's equations
using Minnaert's result, Eq. (1). This enables us to write

33 2

(qr2N) 03 0 = kfRoco2T 0 (38)

It is customary in the acoustics literature to write the quantity kfR 0 in
terms of an acoustic-radiation damping, and, in fact, several such damping
coefficients have been introduced, which, as shown by the papers of Devin
Jr (1959), Eller (1970), and Fairbank Jr (1975), have resulted in some
confusion. To avoid further confusion, we will use the symbol 213, as done by
Prosperetti (1977), to represent damping. The precise definition of this
quantity is made clear by simple reference to the bubble's equation for
radial pulsations given in Appendix B. Thus, since in Kennard's case the
damping is due to a monopole-type of radiation, we introduce a monopole

radiation damping rad by means of

kfRo= 213rad (0-1 (39)

As the defining equation shows, this damping coefficient is frequency
dependent. With this notation, Kennard's basic equation is

(kct2 2 1+C 2  12 (40)
2C22 m1=1+ CN1- 02T2 _ 2iPad~t (01 0 o ' rad o

17



Because, as mentioned earlier, radiation damping produces very small
dissipation, other damping coefficients have been introduced whose effects
on the propagation coefficients are assumed to be correctly taken into

account simply by replacing, in Eq. (40) P', withradwt

3= Prad + Ivisc + Pther + ... (41)

These separate coefficients are due to acoustic radiation, viscosity, heat
transfer, etc., and may depend on the properties of the liquid, the gas, as
well as on the frequency. We will now use this all-including damping for
radial pulsations to derive Kennard's results.

Derivation of Kennard's equation

In its simplest form, the derivation of Eq. (40) is based on the

equilibrium definition of the speed of sound, e.g.

1" = pmKm 
(42)

C

where, in view of our earlier comments, we have put Ksm = Km. As in the

equilibrium case, the compressibility of the mixture is now assumed to be
functionally given by the sum of the liquid and gas compressibilities. Thus,

k2 = pm[(l - Cv) Kf + CvKp] (43)

where we have put c(o)= w/k. We now take the bubble concentration Cv to be

very small so that the density of the mixture is basically equal to that of

the liquid. The compressibility of the liquid at finite frequencies is taken
to be equal to that of the pure liquid at zero frequency, i.e.,

2
Kf = 1/pfcf (7)

For the compressibility due to the gas bubbles in the liquid, we use the

basic definition of that quantity

18



1 CV- CV (44)Kp Cvo Pac

where Pac is the acoustic pressure, assumed uniform around each bubble,
and Cvo is the static value of Cv. Since Cv = (4/3)n7cR 3, where n is the number
of bubbles per unit volume of mixture, the changes in Cv, which are due to
the radius of the bubbles changing from Ro to (Ro + e), are approximately
given by

Cv - Cvo = 3Cvo0 /Ro (45)

where we have assumed that Il/Rol << 1, and this in turn requires that
I CV- Cvo!/Cvo ,, 1.-

The quantities Pac and e are given by Eqs. (B5) and (B7), respectively.
Substituting these results in the above equation for Kp, we obtain

3 1
Kp = 2 2 2 1 (46)

pfR o  CO - CO0 + 2iPc

Returning now to our basic equation, we substitute these results to obtain

3Cvc 2

3Ccf = Pm[ 21 (47)2 2 2 2f PffLo Ro 1 - o - 2i o0

2 2 2Using Minnaert's formula we have coo = 3 cp Pp/pf. Finally, if we put Pm= Pf

we obtain

1-.f2 + Cv N2  
(48)

FCO(02 IT2 1 O1C2
t o"o - 2il~3oyr o

This is the same as Eq. (40), with 13 now taking a broader meaning.

Let us now examine this equation in some detail. First, we separate
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its real and imaginary parts, to obtain

S2 - 2
Cf o

2 2 = 1 + C, N2  22 (49)
C2(o) ( - 0) 2 + (b ot 0o) 2

2qi /c(o)= Cv N2  22 (50)
(1 - Co : 0) 2 + (b ot0o) 2

where b = 2Vois a non-dimensional damping constant.

Except for the numerical coefficients appearing in these equations,

they are the same as those which describe the well known phenomenon of
"anomalous" dispersion of electromagnetic waves through an absorption

band, and, in retrospect, it is not surprising to find that sound propagation
through a liquid filled with radially pulsating bubbles of equal size, is
described by the same equations. Now, the equations may be solved exactly

for all values of the parameters appearing in them, and in fact, the solution
is given by (36) and (37), with the quantities X and Y appearing in those

equations now being given by

ST 22

X= 1 + C, N2  2 2 (51)
(1 T 0 ) 2 + (bo 0°Io) 2

bo 'ro

Y= Cv N2  22 (52)
(1 - o0 TO) 2 + (bcro) 2

This solution, with X and Y as above, will be referred to as the modified

Kennard solution. Figure 4 shows the attenuation and speed of propagation

as predicted by these equations, for the same Cv as that shown earlier, i.e.,
CV =1 04, and for a non-dimensional damping constant equal to 0.1.
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Fig. 4. Modified Kennard's attenuation and dispersion for Cv, 10-4 and b=0.lU: cf/c(0O). *:-a
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Fig. 5. Attenuation and dispersion for Cv 1 0-5 and b=O.1. U: cf/c(co). *:-a
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Figure 5 shows the same quantities for a volume concentration ten times
smaller than that of the previous figure, but with the same damping
constant. Figure 6 shows the same quantities for the same volume
concentration as in Fig. 1, but with a damping constant ten times smaller.

It is clear from these figures that both damping and volume concentration
have a most important effect on the propagation of sound waves in a bubbly
mixture. We note, however, that regardless of how small the damping coefficient
is, the typical curves (Fig. 5) associated with resonance occur only for the
smallest values of Cv. Even a volume concentration of 10-4 produces significant
distortion. It is also clear that the extreme values of speed and attenuation
depend critically on both Cv and b, but the dependence is not simple except for
very small volume concentrations. Nevertheless, several features stand out from
these graphs that are worthy of notice. One of them is that the minimum value of
cf;"c(c) occurs for wTo > 1, and approaches zero as Cv is increased while holding b
constant. A close examination of the exact solution shows that this limit is

100

10

c flc(CO)

.1

.01

.001

I *I

1 2 3

Fig. 6. Attenuation and dispersion for Cv = 10 4 and b=0.01. I: cf/c(w). *:-x
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never reached. However, a very small value of cf/c(Co) implies a speed in the

mixture which is considerably larger than that in the pure liquid. Such
values of the speed ratio are, however, accompanied by non-dimensional
attenuation coefficients which are of the order of one or larger. As
remarked earlier, in connection with Kennard's original solution, such

attenuation rates imply that sound waves do not propagate in the medium;
they decay to negligible amplitudes in an extremely short distance, just as
light waves are damped at an absorption band.

Let us now review some of the assumptions that we used in deriving
this result, and which do not appear to have been examined before.

1. The damping coefficient 13 was taken to be a constant, and the

effects of several distinct dissipative mechanisms were simply
incorporated in the formulation by substitution of Eq. (41) into Eq. (40). The
constancy of 13 is known to be incorrect, and the validity of the substitution

is questionable.

2. The bubbly liquid may be described as a two phase medium.
This assumption was used in ascribing properties to the mixture, and

requires that there be large numbers of bubbles in every volume element. On
the other hand, we have assumed that the pressure in the mixture is equal
to that in the pure fluid alone, and this requires that the volume

concentration be very small. In addition, we have computed a finite-
frequency compressibility of the bubbles, using the results for a single

bubble. This requires that the bubbles be sufficiently far apart from one
another.

3. The changes in volume fraction must be small. Using Eq. (45), and
Eq. (B8) this condition may be expressed as

I~y - vol _P 0  1 "1 (531C V1= PO2 2 1 2)2 (53)
CVO YfP(1 - 22)2 + (213co)2

where P0 is the pressure amplitude in the incident wave, and p is the mean

pressure. Now, the amplitude of the sound wave is by assumption small
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compared to the mean pressure. Thus, the above condition can be satisfied
provided that the "amplification factor", given by the second fraction on the
right hand side of the above equation, is, at most, of order one.

4. The compressibility of the mixture at finite frequencies is given by
the same functional dependence on the individual-phase compressibilities
as in the zero-frequency limit. This assumption has yet to be proven
correct.

5. The bubbles are only pulsating radially. Appendix C considers the
possibility of translational oscillation. Also, the possibility that surface
impurities may cause the bubbles to behave as rigid spheres has not been
considered.

CONCUJUKM

This report has reviewed some of the characteristics of sound
propagation in a bubbly liquid, giving special attention to the equilibrium
sound speed, as given by the Wood equation, and to the relationships, first
derived by Kennard, for the propagation constants at at finite frequencies,
assuming that the changes are due to radially pulsating bubbles.

We conclude that although Wood's equation is generally incorrect, it
gives the correct numerical value for the speed of propagation in a bubbly
mixture in the limit of zero frequencies, at least for small volume
concentrations of clean bubbles in liquids.

With regard to the modified Kennard's equations, we have shown that
they produce the correct values for very large and very low frequencies, and
that in between the values predicted are typical of wave propagation
through an absorption band. It has also been pointed out that within that
band, sound waves do not propagate in a bubbly medium, except for volume
concentrations which are exceedingly small. At larger, but still very small
concentrations, the waves are quickly absorbed. We have also pointed out
some of the limitations of these results, and believe that some of the basic
assumptions used in their derivation merit a further examination.

24



ACKNOWLEDGMENTS

This work was conducted while the author held an ASEE-NAVY Summer
Fellowship at the Naval Research Laboratory. He is grateful to Drs. F.
Erskine and R. Pitre of the the Acoustic Systems Branch for their useful
comments on this work.

REFERENCES

Batchelor, G.K., An Introduction to Fluid Mechanics, Cambridge University
Press, Cambridge, 1967, p. 237

Batchelor, G.K., "Compression Waves in a Suspension of Gas Bubbles in
Liquid." Fluid Dynamics Transactions, 4, 425-445, 1969. Institute of
Fundamental Technical Research, Polish Academy of Sci., Warsaw.

Carstensen, E.L., and Foldy, L.L., "Propagation of sound through a liquid
containing bubbles, J. Acoust. Soc. Amer., 19, 481-501, 1947.

Chambre, P.L. "Speed of a plane wave in a gross mixture." J. Acoust. Soc.
Amer., 26, 329-331, 1954.

Clay, C.S., and Medwin, H. Acoustical Oceanography: Principles and
Applications. J. Wiley and Sons, New York, 1977.

Devin Jr., C. "Survey of thermal, radiation, and viscous damping of pulsating
air-bubbles in water." J. Acoust. Soc. Amer., 31, 1654-1667, 1959.

Drumheller, D.S., and Bedford, A., " A theory of bubbly liquids." J. Acoust.
Soc. Amer., 66, 197-208, 1979.

Eller, A.I. "Damping constants of pulsating bubbles." J. Acoust. Soc. Amer.,
47, 1469-1470, 1970.

Fairbank Jr., W.M. "Damping constants for nonresonant bubbles." J. Acoust.
S.A!me.L., 58, 746, 1975.

25



Kennard, E.H. "Radial motion of water surrounding a sphere of gas in relation
to pressure waves," in Underwater Explosion Research, Vol. I1. The Gas Globe,
Office of Naval Research, 1950 (Original paper dated September 1943).

Meyer, von E., and Skudrzyk, E. "Uber die akustischen eigenschaften von
gasbalsenschleiern in wasser. Acustica, 3, 435-440, 1953.

Minnaert, M. "On musical air-bubbles and the sounds of running water."
Philosophical Magazine, Vol XVI, 7th series, 235-248, 1933.

Prosperetti, A. "Thermal effects and damping mechanisms in the forced
radial oscillations of gas bubbles in liquids." J. Acoust. Soc. Amer., 61, 17-
27, 1977.

Thorpe, S.A., "On the clouds of bubbles formed by breaking wind-waves in
deep water, and their role in air-sea gas transfer." Proc. Roy. Soc. Lond. A
304, 115-210, 1982.

Thorpe, S.A., and Hall, A.J. "Bubble clouds and temperature anomalies in the
upper ocean." Nature, 328, 48-51, 1987.

Wijngaarden, L. van, "One dimensional flow of liquids containing small gas
bubbles. Annl. Revs. Fluid. Mech., 4, 369-396, 1972.

Wood. A.B. A Textbook of Sound, 2nd Ed. G. Bell & Sons, London, 1941. pp
361- 363.

26



APPENDIX A.

EQUILIBRIUM SOUND SPEED IN A DILUTE FLUID-PARTICLE MIXTURE

S. Temkin
Department of Mechanical and Aerospace Engineering
Rutgers University

INTRODUCTION

It is well known that the speed of sound in liquids containing bubbles
is considerably different from the speed of sound in the liquids alone. The
differences are produced by compressibility and density changes resulting
from the presence of the bubbles. They can be very significant throughout

the frequency range, and are particularly drastic at frequencies near the
bubble's resonant frequency. However, even for frequencies that are very
small compared to that resonant frequency, the speed of sound in the bubbly
mixture can be considerably less than in the pure liquid. For example, a
concentration, by volume, equal to 1.85 x 10-4, can decrease the speed at
low frequencies by 50%. This can be very significant in several situations,
particularly in low-frequency scattering experiments.

Because such differences are important, we have considered the speed
of propagation for sound waves in a fluid containing small particles in
suspension, in the limit of low frequencies, using equilibrium
thermodynamic arguments. Particular examples include bubbles in a liquid,
droplets in a gas, and other immiscible particles in a liquid or in a gas. We
show that, in general, Wood's equation is incorrect, but that in the
particular case of dilute suspensions of bubbles in water, the speed it
predicts is numerically correct, owing to the low concentration of bubbles,
by mass, and to the values of the thermodynamic properties of water. For
other situations, significant differences can exist. In the case of bubbly
liquids, we also point out that in the case of bubbles whose surfaces
contain surface impurities, making them behave as rigid, the speed of
propagation differs little from that in the pure liquid, and this may by
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important. In the case of solid particles in a gas, our results agree with

those that have been obtained in other studies.

2. WOOD'S EQUATION

In the limit of low frequencies, it is often assumed that the speed of
propagation in a fluid-particle mixture is given by

2 1
Cw = (Al)

pmKm

where

Pm = PpCv + (1-Cv)Pf (A2)

is the density of the mixture, Cv is the volume concentration of the
suspended particles and Km is the compressibility of the mixture, which
Wood (1931) defines in terms of Cv and of the compressibilities of the
particles and of the host fluid. Thus,

Km= KpCv + (1-Cv)Kf (A3)

Now, the simplicity of Eq. (Al) is appealing, and in fact, equilibrium

thermo-dynamics can be invoked to show that an equation of that type must
exist in the limit of low frequencies. The problem is, however, that this
compressibility is simply a model which has not been derived from first
principles. It is true that Chambre (1954) has shown that Eq. (A3) is a
logical consequence of the density law given by Eq. (2), but a cursory review
of his work reveals that his Km is not the isentropic compressibility of the
mixture, as required by thermodynamics. Rather, his derivation of Eq. (A3)
shows that Wood's Km only requires that the mass concentration of the

mixture be a constant. This condition insures mechanical equilibrium. It is

therefore a necessary, but not sufficient condition, to insure
thermodynamic equilibrium.

28



MIXTURE IN THERMODYNAMIC EQUILIBRIUM

The following derivation imposes thermodynamic equilibrium in the
mixture, and assumes that the mixture is an ideal one. Effects such as
adsorption or diffusion are not included. We will require some basic
definitions. In addition to the quantities introduced above, we will need the
mass concentration of particles, op, defined as the ratio of mass of
particles to the mass of the mixture; the density of the particulate and
fluid phases, op and of = 1 - op, respectively. These are not to be confused
with the densities of the particulate and fluid material, pp and pf,
respectively. These quantities are interrelated in several ways, and the
following relations among them will be used later.

op = pp Cv (A4)

of = (1 - Cv)pf (A5)

(=p = P op/Pm (A6)

It follows from the above definitions that

1 Dp = 1- Cv Sp=C (A7)

where 8 = pf/pp. These enable us to write for the density of the mixture the
equivalent, but more fundamental expression

1 1 -4' (
m - (A8)

PM Pf Pp

Also, from Eqs. (A2) and (A7) it follows that

Pm = 1- Cv (A9)
Pf 1- A9p
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Because the mixture is in equilibrium, we can define its entropy per unit

mass as

Sm = (1 - Cv)sf+ Sp Cv (A10)

where sf and sp are the entropies, per unit mass, of the fluid and of the
particles, respectively.

SPEED OF SOUND

We now proceed to obtain the equilibrium speed of sound in the
mixture using the usual thermodynamic expression, i.e.,

c 2(0) = (All )
(dpm)sm

where pm is the pressure in the mixture. This speed must correspond to the
limit as (o ---> 0, of a frequency-dependent phase speed c(0) in the mixture.

Now, we will assume that the total volume occupied by the particles
is very small, and that the particles, while numerous enough to enable us to
describe the medium as a homogeneous two phase medium, must
nevertheless be separated by distances which are large when compared to
their diameters. Under these conditions, the pressure in the mixture is
simply equal to the pressure in the fluid alone, i.e., Pm = p = pf(pf,sf). Hence

d dp.m = (d.p_.f+ ()dsf (A12)dp dpfjsf  (d LdSf)p f

2The first derivative on the right hand side is simply cf, the equilibrium

sound speed in the pure fluid. The second derivative may be expressed as

S=f (ye-1) (A13)

~p3f Pf
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where Of is the fluid's coefficient of thermal expansion and Yf is its ratio of

specific heats. Thus,

2 pf
dpm = cf dpf + -' (f-1) dsf (A14)O~f

Now, as Eq. (12) prescribes, the derivative there is to be taken at constant

mixture entropy, which does not generally imply constant entropies for the
mixture components. These are related by Eq. (Al0), with dsm = 0. Thus,
because in equilibrium there is no relative motion between fluid and
particles, op is a constant. Therefore, thermodynamic equilibrium requires
that

(p

dsf =-1- p dsp (A15)

This gives

2 fp
dpm =cf dpf -(7-) ds (A16)

Thus

1[2 1 ]1 (yf-1)(p dsD (A17)

Pm Pp Pff

We now obtain approximate values for the total derivatives appearing in the
right hand side of this expression. Consider first dpf/dsp. To compute its

value, we note that the entropy change of the particles is

s pd_. !dP (A18)

ds=Cpp Tp pp Tp

where dTp is the temperature change of the particles, and cpp is their

31



specific heat at constant pressure. Now, in equilibrium, dTp must be equal
to the fluid temperature change dTf, and in an acoustic wave this is equal to

13fToC
2

dTf = dpf (A19)
Pfcpf

2Similarly, in equilibrium, the pressure is dp = cf d-,,. Further, the

temperature changes are small so that in the denominator of we may put
Tp = To. We thus obtain

2

, -f C(A20)
dpf 3f c pf - fto )

Substituting this result into EQ. (A17), yields

1(7 1 ) (C U_ - _

c2(O) 1 - ) p cpf J 0. 2c - df (A21)I_.. pp + ]

Pm[ 2 dpf 2PP Pf

It remains to compute dpp/dpf. For the acoustic case, where the changes are

due to an imposed pressure p', say, these are given by the isentropic
relationships

dpp = pp Kp p', (A22a)

and
dpf = pf Kf p', (A22b)

where Kp and Kf are the isentropic compressibilities of the particles and of

the fluid, respectively. Thus

= p(A23)
dpf pfKf
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Substituting this into EQ. (A21), and using Eqs. (A7) and (A9), we obtain

1 ( 1 ) ( CR . 8

C2(0) = _ -00p Cpf f) (A24)
Pm [Cv Kp + (1 - Cv) Kf]

where we have used the definition of Kf to set pf Cf Kf = 1. This is the

desired result. It can be put in the form of Eq. (Al) by defining the
isentropic compressibility of the mixture as

Ksm Cv Kp + (1- Cv) Kf(D (A25)1 - ( -l) 1 - (-cf J o)

This differs from Wood's compressibility, Eq. (A3), by the factor
(D 2 CD 8 1

[ 1 -( 7 0 -) 1 _f Ip( p , -')
(DP 3f 0)

Thus, in general, Wood's equation is incorrect, being correct only when
PfTo = pfcpf/ppcpp, or when yf =1. However, for the specific case of gas
bubbles in water, his equation yields the correct numerical value, because,
then, both Op and (f-1) are small. In other situations such as some of those
considered below, differences may occur. To apply Eq. (A24) to special
cases, it is useful to write it as

2Cf (1- Cv + Cv/8) (1 - Cv + CvKp/Kf)(1 - p) (A26)
c2(0) 1 - 4p [1 + (yf-1) C - f
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13UBLYUD

Consider first the case when the particles are gas bubbles in liquids.
8 >c 1 8

Here, 30 Cpf and (yf)- 1. Thus,

2
cf (1 - Cv + Cv/8) (1 - Cv + CvKp/Kf)2 8 (A27)

c (0) 1 + (D p (yf- 1) T

However, in mixtures to which this work applies, the mass concentration is

exceedingly small. Therefore

2cf

2 1 + Cv Kp/Kf (A28)
c2(0)

This is, of course, Wood's result for dilute bubbly suspensions.

RIGID PARTICLES

Consider now the case when the suspended particles may be regarded

as rigid. This includes solid particles, small droplets, and may include

small gas bubbles whose surfaces contain impurities making them appear

as rigid. Of course, particles in a fluid may be considered rigid only if their
compressibility, Kp, is much smaller than that of the surrounding fluid. For

such cases, Eqs. (A2) and (A26) give

2
cf (1 - Cv + Cv/8) (1-Cv) (1 - (Dp) (A29)

c2 (0 -
-

c2(0) 1 - (Ip [1 + (yrl) (CCpf - F- ) I

Two limiting situations are of particular interest.
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1 8 << 1. Dense particles in a gas

With Cv = 4OpS <<1, 8 /PfTo << 1, we obtain

2 2
Cf 1cIp

2 (A30)
c2(0 ) - p[l + C2 (yf-1)]

Cpf

For small mass concentrations, this yields

2
cf

- =l+cDp[ 1 + CP (7-) ] (A31)
c2(o) Cpf

This result agrees with those obtained earlier by Chu (1960) and by
Rudinger (1965), who derived it for solid particles in a perfect gas It also
agrees with the limit of low frequencies of a more general result obtained
by Temkin and Dobbins (1966).

2. 8 >>1. Rigid bubbles in a liquid

Here, Op = Cv/8 << Cv << 1. Hence,

2
cf 2

2 (1-C v) 1 -2Cv (A32)

Thus, in this case, the equilibrium speed of sound in the mixture is only
slightly different from the speed in the pure liquid. This is important, for it
predicts a much larger speed of propagation than that computed by means of
Eq. (A28). The ratio of fluid to liquid compressibilities appearing there is,
for the case of air bubbles in water, approximately equal to 16,000.
Although the value of this ratio for actual bubbles found in practice depends
on the amount of impurities on their surface, and is generally not known, it
is clear that a significantly lower value than the above figure must apply in
some cases, and this seems to have escaped the attention of previous
investigators.
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3. Neutrally buoyant elastic particles

Finally, we consider the case when 8 = 1. In this case, Pm Pp = Pf, and
Cv = (4p , so that Eq. (29) gives

2

2cf (1 - (t p + ( pKp/Kf) (1 - (A33)

20) (-p [1 + (1) C- 1 I

This may be written as

2 Op
cf _r ) + 1- c Kf ] (A33a)S 2 ( 0 )P) 1 o p ( ,f- 1 ) ( C 21 I- OP Cpf o)

For low mass concentrations, this yields

2
cf KCpOf2 1 + OP[ 1 2+ (yf-1) ( -- -

c 2 (0) Kf Cpf f)] (A34)
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APPENDIX B

RADIAL PULSATIONS OF GAS BUBBLE IN A SOUND FIELD.

We consider here the radial pulsations of a small gas bubble due to an
imposed monochromatic sound field of circular frequency co. Although the

bubble's spherical shape is due to surface tension effects, we will not
include them, even though they may be important for some range of bubble
sizes. In the linear approximation, the bubble behaves as a harmonic
oscillator, so that the departures e from the equilibrium radius Ro are
small, and are described by

2
Mo + 2PMo0 = -4nRo(Pb - Pe) (B1)

where Pb is the pressure in the bubble, Pe is the pressure outside it, Mo is
the added mass of the bubble, and where P3 is the damping coefficient,
assumed to represent all dissipative effects acting as a result of the radial
pulsations. Now, the external pressure is equal to the sum of the
equilibrium pressure p, and the acoustic pressure Pac. If the wavelength of
the sound wave is very large compared to the equilibrium bubble radius, we
may take the pressure around the sphere to be uniform, so that every
portion of its surface is acted by a radially-directed force of equal
magnitude. Similarly, we take the pressure inside the bubble to be uniform
an equal to the equilibrium pressure p, plus the excess pressure due to
small changes in bubble size. We take those changes to occur isentropically,
which implies that the imposed frequencies cannot be too high. In these
conditions,

Pb - Po= -3yppc/Ro (B2)

where yp is the ratio of specific heats of the gas in the bubble. This gives

22 -1

i + 20c + co2e = -4nRoMo Pac (B3)
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where c% is Minnaert's resonant frequency. Because we have assumed that

the pressure is uniform around the bubble, we must limit these results to
frequencies such that kfRo << 1. In this 'irnit, the added mass is equal to

3
4nRopf. Now, for the acoustic pressure, we assume that the incident

acoustic field is a plane wave, described by a potential 0 given by

O= Aei(kfx - (ot) (B4)

The acoustic pressure around the sphere is obtained from this potential by
the usual acoustic relation Pac = -pf(D4t/at). This gives

Pac = icpfAe - i ( ot - kx) (B5)

At x=O, where the bubble is located, this gives

i+ 2pi+ 2 = -ikoAe-iWt/Ro (B6)

Assuming a solution of the form

P-= Re(t6e - i Ot )  (137)

we obtain

icoA 1
t- 2 2 (B8)

The radial velocity of points on the bubble surface is obtained from

L ' = (de/dt). Thus, if we write
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= e- e io t  (B9)

then

= 2 A 2 
(B9)

S o co - 2io (o

This gives

o02A e-(ico~t - 1i )B 0
-- -"e 2)2 2 /2 (B1iO )

Ro [(o 2  2) + (2 co)2] 1

where

tani- 2 2 (Bll)
coo - c)
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APPENDIX C

TRANSLATIONAL MOTION OF A RIGID BUBBLE IN A SOUND WAVE

Because the size of the bubbles is usually considerably smaller than

the wavelength of the sound waves, it is usually assumed that the pressure
around the bubble is uniform. That is, if a bubble is placed in a plane sound
wave that has a pressure distribution given by Poexp(ikx - (ot), the pressure

around the bubble is given by the sum of the ambient pressure, p, plus a
time dependent pressure, given by Poexp(- iot). This is deemed to be a valid

approximation because on the bubble's surface, the spatial dependence
varies by an amount which is of the order of kRo, and this is negligible in

the conditions given. However, the presence of a bubble necessarily
modifies the acoustic field, making it not completely uniform around the

bubble. Such a nonuniformity would induce the bubble to move in the
direction of the wave, that is, to execute translational oscillations. As it
may be anticipated, the most significant modifications occur when the

effects of viscosity are taken into account, for then the bubble must adhere
to the surrounding fluid.

To compute the magnitude of the variations of pressure around the

bubble, we simply use an order of magnitude argument based on well-known
results. A more detailed description of the translational response of a rigid
bubble to a sound field may be found elsewhere (Temkin & Leung, 1977).
Now, in the immediate vicinity of the bubble, the fluid can be regarded as
incompressible. Therefore, provided the frequency and the Reynolds number

are very small, the pressure in the immediate vicinity of the surface of the
bubble, differs from its "free stream" value by an amount that is
proportional to Igf(Uo/Ro) cos O,where gf is the viscosity coefficient of the
liquid around the bubble, and 0 is the polar angle between the position

vector and the instantaneous fluid velocity, measured from the forward

stagnation point, and Uo is the velocity amplitude in the wave. The
magnitude of this pressure is small compared to the acoustic fluid
pressure, pfcfUo, which exists without the bubble. However, it and the

accompanying shear stresses produces a lateral force that induces a lateral
motion. The effects of such a motion on the speed of propagation have not
been investigated, although Batchelor (1969) considered its as an additional
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damping mechanism. However, it is clear that this translational motion
adds a relaxation mechanism which is capable of inducing further changes
in the speed of propagation.

Derivations of the equations for the translational oscillations of a
rigid sphere in a sound wave travelling in a viscous fluid were presented
elsewhere (Temkin and Leung, 1976). Here we simply reproduce the basic
results for the case when the sphere density is much smaller than that for
the fluid, and for the case when the force on the sphere can be computed
from incompressible fluid theory. These results are approximately valid fo,
small bubbles, because they appear to behave as rigid spheres owing to
impurities in the host liquid which contaminates the interface.

Now, under the influence of the sound wave, the bubble will execute
translational oscillations in the direction of the wave. Its translational
velocity may be expressed as

U = Lo e-i1t (Cl)

Because the bubble is much less dense than the surrounding fluid, it is
convenient to introduce a dynamic translational relaxation time for the
bubble, tdb, defined by

'Cdb = P /9vf (02)

The meaning of this relaxation time may be easily grasped by reference to
the equation of motion of a rigid bubble, This may be expressed as

mb(1 + -- = 6 fRo(U - u) + ... (C3)

where the dots represent additional forces. Here t is the translational
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velocity of the bubble, mb is its mass, and u is the fluid velocity. As already
stated, this equation assumes that the bubble is rigid. Now, because the
density of the liquid is much larger than that of the gas of the bubble, we

1 Pw,
have, approximately, mb(1 + L'p = (2/3)nR 3pf. The bubble's equation of

motion can therefore be written as

d--= (IJ - U)/tdb + (C4)

This is a typical relaxation equation, so that tdb, as defined above, is seen
to play the role of the relaxation time for the translational motion. For
future reference, we note that this time scale is related to the radial
relaxation time To by means of

tdbc 3 Pp/Pf 9vT (C5)' d =" pppf 9Vw

For a 0.01 cm air bubble in water, this gives Tdb = 103 t0 . Thus, the
frequencies where translational relaxation effects are most significant,
i.e., when C0tdb - 1, correspond, for this radius, to a value of cco equal to
about 0.001. Again, for the same bubble size, the most significant
translational effects occur at a frequency in the vicinity of 140 Hz. The
magnitude of this effect is not known exactly, but as Batchelor (1969)
points out, the changes it produces on the speed of propagation are likely to
be small.
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