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THE INADEQUACIES OF DAMAGE ENERGY AS A MEASURE
OF DISPLACEMENT DAMAGE

INTRODUCTION

One of the few simple measures of radiation damage that relates damage in crystals at the

microscopic level to the gross behavior of the material is the number of Frenkel pairs produced

by a given irradiation. Even though a significant fraction of the pairs initially produced quickly

recombine, the expectation is that the number of vacancies produced by an irradiation is a rough

indication of the extent of permanent damage to the material. Currently there is interest in the

calculation of displacement damage because of the apparent relationship between the number of

displacements produced by an impinging ion and the damage suffered by semiconductor materials

and devices.
1 2

The underpinning of calculations of radiation damage is a model of the isolated

displacement event. Suppose an ion of charge Zle and mass A1 is moving with energy E in a

material and collides with a lattice atom of charge Z 2e and mass A2 , transferring an energy T to

the bound atom. The conditions under which a struck atom leaves its native site depends on the

momentum of the impinging ion, on the crystal structure of the material and on the form cf the

potential that holds the material together. A number of general discussions of displacement

effects are available (Dienes and Vineyard, 3 Sosin and Bauer,4 Robinson, 5 Lehmann, 6 Gittis, 7

Averback and Kirk8 )

To delineate our displacement model, we define a series of energy parameters. Let E0 be

the displacement energy; if T is less than ED, then the struck atom stays in place and shares its

newly gained energy with the lattice, but if T>E0 , then the struck atom is displaced and procedes

to move through the crystal. (In reality the displacement energy in a crystal depends on direction.

but we assume an isotropic value.) Further, if the incoming ion transfers an energy T>ED, but

retains an energy E-T<Eo , then it replaces the struck atom at the lattice site--no vacancy is

produced. If more than one species is present in the calculation, the role of replacements is more

complicated.)

We next allow a binding energy Eg. If a vacancy is produced, the displaced atom retains

energy T-Eg; the binding energy Es is accounted for by the relaxation of the lattice atoms

surrounding the vacancy. We assume that Es<E o and that the effect of the binding energy is

assessed after the collision. For example, if T>Eo , then there is a displacement even though it

may be the case that T-Es<Eo. Finally, we presume there are no binding icsses in replacement

collisions.

Mamcri= apped JamMry 29, 1989.
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We will follow the course of Robinson and Torrens9 in their binary-collision simulation

code MARLOWE by defining a cutoff energy Ec; ions moving with energies less than Ec are

considered to have stopped. This concept is useful in simulation calculations because it saves the

time necessary to follow the numerous, but ineffectual, slowly moving ions. While such a cutoff

has no particular benefit for analytical displacement calculations, we retain it so as to ease

comparisons of our work with the simulation models. We will use the values Ec = 0, ED, 2E 0.

Some of an ion's initial energy E, a portion labeled I(E), will go toward exciting the

electrons in the solid. Robinson and Torrens categorize the bins into which the remaining energy

falls as follows: binding energy loss B(E), as discussed above; remaining kinetic energy, the

energy retained by ions moving with energies less than Ec; and subthreshold loss, energies less

than ED acquired by (undisplaced) lattice atoms. We will combine the last two quantities into one,

which we call the thermal loss H(E). Thus we have

E - I(E) + D(E) - I(E) + B(E) + H(E) (1

The quantity D(E) is usually called the damage energy, which by definition is all the energy not

lost to inelastic processess.

Robonson and Oen1 ° point out that some of the subthreshold energy is lost to inelastic

processes, so that our I(E) should be somewhat larger and H(E) somewhat smaller. This effect has

no consequence for our principal results, which depend on the direct calculation of the number of

displacements without using the damage energy as an intermediate step. Their modification

would make some difference in our estimates of damage energy, but, as discussed later, the

concept of inelastic losses at very low energies is of dubious value.

In the early calculations of displacement damage 11 the inelastic loss was not specifically

included. Instead, the partition was often made that all of an ion's energy above some value EI

was lost to the electrons, while all of its energy below this value went into creating displacements

by means of elastic collisions; that is, the damage energy was E for E<Ej and El for E>E 1 . As the

calculations became more sophisticated, the inelastic losses were included throughout the

calculation. The loss I(E) to the electrons could be directly calculated, but the remaining energy

was still called the damage energy. It is not obvious, given the simultaneous inelastic losses as the

displacements are produced, that there is a direct relation between the damage energy and the

number of displacements. The examination of this point is the main goal of this report.

Several other assumptions should be pointed out. For a lattice atom that is given energy

T<Ec, we assume that all of the energy T goes into the thermal energy bin H(E). For bound or

captured ions with kinetic energies less than ED, we assume all of the energy is lost thermally,

even if these energies are greater than Ec.

Turning specifically to displacement mechanisms, as opposed to energy loss mechan;sins,

we note that an ion moving in a crystal with energy less than ED can produce neither replacements

nor vacancies. If the ion has an energy between ED and 2ED, it cannot produce a vacancy, but

2



may generate a replacement collision. Figure I summarizes the collisional possibilities of our

model. Starting with a zero cutoff energy in fig. Ia, we see the thermal loss, vacancy production

and replacement regions of the E-T,T plane. For an ion of energy E (E=5.4Eo in this example),

all of its possible (elastic) collisions lie on the dashed 45 degree line. In fig. Ib we impose the

cutoff Ec-Eg. We presume that all ions of energy less than the cutoff lose their energy to thermal

processes; specifically, there are no electronic losses in the cutoff (C) region. We see that the only

difference in Ecm0 and Ec-E0 calculations is in the relative amounts of thermal and electronic

6 (a) 6 (b)
V

"v v
T V T R

2 2

0 0 I C
2 4 6 2 4 6

T/ Ed T/ Ed

6 (c)

WJ4 V
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V: VACANCIES
I j 2 ,R: REPLACEMENTS

_ _ _T: THERMAL LOSSES

o R0'\ t C: CUTOFF REGION
2 4 6

T/ Ed

Fig. I -- The various collision possibilities as a function of energy transfered and energy
retained; shown for cutoff energies of a) Ec-0, b) Ec-Ec and c) Ec=2Eo. The thermal loss,
replacement producing, vacancy producing, and cutoff regions are shown. See the text for a
detailed discussion.
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loss. As we view the case Ec-2E0 in fig. Ic we note a further shift in the relative thermal and

inelastic losses. A cutoff of 2E0 also reduces the estimated number of replacements, because some

ions that would undergo replacement collisions are no longer followed.

Almost all displacement calculations have assumed that the initial ion, of energy E>ED, is

itself a displacee--produced, for example, by an incident neutron. If N(E) is the average number

of vacancies resulting from an ion of energy E, then this initial displacement assumption amounts

to the requirement that

0, E <E(
1, ED < E < 2E0 .

We find it more natural to assume the cascade starts with an ion of energy E moving freely in the

crystal and to calculate the number of secondary vacancies that are produced, which we call

Nv(E). For the monatomic substances that we consider, we find--it follows from the integral

equation--that NV(E)-O for E<2EO. The two estimates of displacement damage are related by

N(E)-NV(E)+l for E>E o .

The earlier calculations of displacement damage involved solving an integral equation 3 for

N(E). More recently, the LNST (Lindhard, Nielsen, Schraff and Thompsen) 12 results for the

damage energy D(E) (see Sigmund13 for a brief history of their approach) have been widely used

to estimate displacement damage through the use of the Khinchin-Pease formula

N(E) - E) / (2 ED , (3

where xc is a constant of the order14 of 0.8. In our approach we return to a direct calculation of

N(E). Because we also calculate D(E), we can compare the two approaches and judge the worth

of the damage energy approximation for estimating displacement damage.

In the next two sections we lay out the formalism that leads to integral equations for

Nv(E), H(E), B(E), I(E), which we have discussed, and NR(E), the number of replacements

produced by an ion of energy E. We compare our results first with the binary-collision

simulation code MARLOWE, 9 and then with the standard analytical transport theory of LNST.

All of the numerical results in this paper and much of the discussion assume a monoatomic

crystal; the extention to complex substrates is straightforward, but does not affect the points made

here.

An preliminary version of this work was reported some time ago. 15 At about the same

time, Coulter and Parkin 16 independently investigated some of these same questions.

CROSS SECTIONS AND STOPPING POWERS: GENERAL FORMS

Let the differential cross section O(E,T)dT represent all of the scattering processes that an

ion can undergo, wherein the ion retains energy E-T and transfers energy T to some other

particle in the solid. The total scattering cross section is given by

4



O(E) - J0 dT O(E,T) (4

We suppose that O(E,T) is composed of four additive parts,

*(ET) = OE(E,T) + ON(E,T)

- ,E(E,T) + .r(E,T) + OR(E,T) + $V(E,T), (5

representing the following types of collisions: electronic, thermal, replacement, and vacancy,

respectively. The last three are all portions of the elastic scattering cross section ON(E,T), as

pictured in fig. 1.

The electronic cross section is OE(E,T)dT, where T represents the sum of the energies

transferred from the moving ion to the electrons of the lattice atom. All of this energy goes into

inelastic losses; no displacements are produced. In the rest of this paper we will have need only

for the electronic stopping power, given by

rE
SE(E) =0 dT T E(E,T), (6

and not for the cross section itself.

For the thermal losses we write

OT(E,T) dT - OM(E,T) U(Eo-T) dT, (7

where U( ) is the unit step function and ON is the macroscopic, elastic scattering, differential cross

section. We define a quantity that we call the thermal stopping power,

rE
ST(E) - dT T ON(E,T) U(Eo-T), (8

which is analogous to the electronic stopping power.

The replacement and vacancy cross sections are

OR(E,T)dT - ON(E,T) U(Eo-(E-T)) U(T-E 0 ) dT (9

and

0v(E,T)dT - Om(E,T) U(T-E 0 ) U(E-T-Eo) dT. (10
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The total cross sections for the replacement, vacancy and thermal processes are given by

01(E) J fo dT .1(E.T) , i-,V,T; (11

and we set

OVE) - O,(E) + O(E). (12

In the same spirit that we defined the electronic stopping power and the thermal stopping

power, we define a binding energy stopping power, given by

Sq(E) - Eq Or(E), (13

and a replacement stopping power, which represents the kinetic energy retained by the

replacements as they are bound onto lattice sites, given by

St(E) - J dT (E-T) .(ET). (14

DERIVATION OF THE INTEGRAL EQUATIONS

The following discussion parallels the approach of LNST.12 Suppose that we are

interested in some physical process, such as the average number of vacancies Nv(E) that an ion of

energy E will produce. Suppose the ion undergoes a collision that results in its retaining an

energy E-T and transferring energy T to some other particle in the solid. These two particles will

traverse the solid producing more vacancies; we measure the extent of these effects by Nv(E-T)

and NV(T-E), where ER-Es when a vacancy is produced and ER-0 otherwise. In addition, a

vacancy may be induced at the collision site itself. We measure this collision dependent effect

with the function NV(E,T), which will be either zero or one.

Because some such collision is part of the natural chain of events that leads our original

particle to produce a number Nv(E) of vacancies, we know that, on the average, the effect of

Nv(E-T), Nv(T-Es) and Nv(E,T) must be the same as that of the incoming ion. By averaging over

the collisional possibilities, we can express this equality as

4(E) Nv(E) M J dT f(E,T) [Nv(E-T) + Nv(T-ER) + Nv(E,T)]. (15

One can find more detailed derivations of eq. (15) in LNST and elsewhere (Sigmund et al, 17

Winterbon, Sigmund and Sanders1 8 (WSS)), but in substance they reduce to this balancing
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argument.
If we split the cross section into its four components and replace the total cross section

f(E) by its integral form, we obtain

oM JE-E dT 01(E,T) [ NV(E) - Nv(T) - NvI(E,T)]

+ I E d Ov(E,T) [ NV(E) - NV(E-T) - Nv(T-ES) - NvV(E,T) ]

Eo dT° * (E,T) [ Nv(E) - Nv(E-T) - NV.T(ET) ]

+ 5 dT "S(E,T) [NV(E) - NV(E-T) - NVE(ET) 1 (16

where we have let Nv j(E,T) represent the number of vancancies produced at the collision site
when the j (j-V,a,T,E) cross section is operative. Only a vacancy producing collision results in a
non-zero value of Nv,j(E,T), j=V,R,T,E, so that

Nv,v(E,T) - 1

Nv,j(E,T) - 0 , jmR.T,E. (17

In eq. (16) LNST would have replaced Nv(T-Eq) by Nv(T), because Eq is small compared
to the other energies and because they were not interested in the effects of a binding energy. We
will keep the Es parameter, although we often set its value to zero. We now make use of an
approximation of LNST: that the energy transfer in electronic colisions is small compared to the
energy of the scattered ion. For Nv(E-T) they would write

Nv(E-T) s Nv(E) - NV(E) T (18

in the integral with the electronic cross section, so that the first two integrals in the last line of eq.
(16) are replaced by SE(E) Nv'(E). We also impose approximation (18) on the thermal collisions, so

that the integral of the first two terms in the third line of eq. (16) is replaced by ST(E) Nv'(E).
Because the energy transferred in a thermal scattoring is, by definition, less than E0, the relation
(18) will be a good approximation in thermal collisions except, possibly, for energies E<ED. We
show, in Appendix B, that this approximation L warranted. For convenience, we call these the
electronic stopping power and thermal stopping power approximations.

When we make use of the various definitions of cross sections and stopping powers that

7



appear in the previous section and adopt these two approximations, we can write our integral

equation in the form

(S(E) + S(E) I Nv'(E) + 40(E) Nv(E) + Jr(E) - GV(E) (19

where GO(E) is the integral expression

GV(E) - J0 dT ( #*(E,T) Nv(T) + s*V(E,T) [ N,(E-T) + NV(T-ES) 1 (20

and Jv(E) is the inhomogeneous term

Jr(E) - -4 (E). (21

In exactly the same manner (see Appendix A) we can derive integral equations for the

quantities Nt, B, H, and I. We solve these integral equations numerically using a cubic spline

method. 9

COMPARISON WITH BINARY-COLLISION SIMULATIONS

The best, readily available, method of calculating displacement damage is the binary-

collision simulation code MARLOWE, 9 which simulates radiation effects by following individual
ions through a psuedo crystal. Among the many differences between the simulation code

MARLOWE and the present, analytical transport theory, approach are the following:

a) MARLOWE models a crystalline material, instead of treating the substrate as

amorphous.

b) MARLOWE calculates the exact scattering angles and energy transfers for each

collision using the Moliere potential.20 This potential is a version ofthe Thomas-

Fermi potential with an exponential tail and is thought to be more realistic."1 The

present theory uses an approximate cross section zz based on the Moliere potential,

which is obtained by using the same approximations2 that Lindhard, Nielsen and

Scharff 24 (LNS) use to obtain their cross section from the Thomas-Fermi potential.

The detailed forms of the Moliere potential and cross section can be found in

Appendix C.
c) With MARLOWE one has a choice of inelastic loss mechanisms. Several

differential cross sections for electronic loss are built into the code, as is a

nonlocal, continuous slowing down, model of electronic lcss. The present

analytical method incorporates only a continuous slowing iown model that is

similar, but not identical to, that used in MARLOWE.

d) MARLOWE imitates the effects of many body collisions by allowing, in a fashion,

several binary collisions to occur simultaneously.
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e) MARLOWE imposes a cutoff in the maximum impact parameter for which a

collision, elastic or inelastic, may occur.

f) MARLOWE remembers previous damage, so that, if the cascade doubles back on

inself, the same lattice atom cannot be removed from its lattice site twice. The

analytical code is essentially an ensemble average, each (figurative) element of
which sees only virgin substrate.

As the first stage of comparison, we want to eliminate as many of these differences as

possible. In particular, if we could turn all of them off, and if we then found that the two

calculations gave similar results, we could examine the effect of each dissimilarity by selectively

turning it back on.

We examine the case of an fcc copper crystal. For the screening length that appears in the

Molibre potential we use the value a-7.38 pm.2 5 For the energy parameters discussed in the

introduction we use E9=0 and Ec-Eo=25 eV. In order to effect the comparison, we make the

following modifications and adjustments to MARLOWE:

a) We run MARLOWE in its amorphous mode, in which the crystal is rotated through

some random angle after each scattering. This has the effect of imitating, if not

duplicating, the amorphous character of the analytical code.

b) We insert into MARLOWE a new scattering angle subroutine that simulates the

effect of the approximate cross section that the analytical code uses. In

Appendix C we indicate how to start with the approximate Moliere cross section

and obtain the scattering angle versus impact parameter relation that we use in

MARLOWE.

C) We turn off the inelastic stopping in both codes. Because of the conceptual

differences in the two models of inelastic loss, there is no simple way to make

them comparable. In any case, we are not interested at the moment in differences

in displacement damage caused by different electronic loss models.

d) We make use of a MARLOWE provision that allows the simultaneous collision

feature to be turned off.

To a greater or lesser extent these modifications remove the major dissimilarities between the two

approaches.

For the moment we ignore differences (e) and (f), as well as any others that we have not

identified. In order to compare the two approaches we plot the displacement efficiency as a

function of energy. The displacement efficiency Kv(E) is defined in terms of the total number of

displacements by

N(E) - Kv(E) D(E) / 2E o . (2

The quantity Kv(E) measures the efficiency with which vacancies are produced relative to the

hard core model, for which Kv(E)-I. Because we have turned off the inelastic losses, all of the

9



energy is damage energy, so that D(E)-E.
In fig. 2 we show that displacement efficiency for the present theory, for MARLOWE

with the changes listed above and for a straight MARLOWE calculation modified only by the

absence of inelastic losses. We see that the agreement between the present theory and the

modified MARLOWE results is quite good. Both approaches indicate that the displacement

efficiency becomes constant at 0.5-1.0 keV. For the standard MARLOWE calculation there is

more structure in the displacement efficiency curve due to the effects of the lattice. The more

realistic MARLOWE calculation indicates a somewhat (9 percent) higher disolacement efficiency

above I keV.

To study the exact origin of this difference, we start with the standard MARLOWE

1.0 1 1 1

MARLOWE
U .95T

MODIFIED MARLOWE

z PRESENT THEORY
- .90

Is.

z .85

.80

.75

I -

0.1 0.3 1.0 3.0 10

ENERGY [E (keV)]

Fig. 2 -- A comparison of Iisplacement efficiency as estimated by the present theory,
MARLOWE, and MARLOWE as modified to contain some of the same approximations as the
present theory. (The case shown is for fcc copper with Ed-25 eV and no inelastic losses.)
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calculation, at E-1 kev, and selectively turn on various combinations of approximations. Table I

shows the results of this procedure. We see that the effects of the different approximations are

not additive. The only consistent effect seems to be that an amorphous substrate tends to reduce

the number of vacancies by 5-10 percent.

Table I -- Effect of Various Approximations on the
Number of Vacancies

Approximations Added to the Standard Percentage Change
MARLOWE Calculation in N(E) at I keV

Amorphous Isolated WSS Cross
Substrate Collision Section

.. . . . . . . ..

X . ........ +1

-X . ......... +3

X X .......... 0

X - .. . ...... -4

X X -. ........ -5

X X ......... -11

X X X .......... -9

We can compare the efficiency with which replacements are produced in the same manner

in which we examined vacancies. We define a replacement efficiency

NR(E) - KR(E) D(E) / 2ED . (23

Using the same assumptions, we again have D(E)-E. We see in fig. 3 that the present results are

somewhat lower but of the same pattern as the amorphous, WSS cross section, isolated collision,

version of MARLOWE. But the effect of neglecting the crystal structure is large in this case, as

one might expect; the present results are only 30 percent of the straight MARLOWE results.

11



II I I II

1.2 4
LU T

w * MARLOWE
0.8

U. 0 MODIFIED MARLOWE
LU

IT- PRESENT THEORY
2
LU

0.4 0

LU

0
0.03 0.1 0.3 1.0 3.0 10

ENERGY [E (keV)]

Fig. 3 -- A comparison of replacement efficiency shown for the same conditions as the last
figure.
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COMPARISON OF DAMAGE ENERGY ESTIMATES

Comparisons of the present approach and MARLOWE are difficult when electronic losses

are included. We use the LNST continuous slowing down model (see eq. (C 15)); the Firsov

stopping power coefficient has the value k-0.2077 ev 112 A ' for copper. The energy loss process

is applied continuously in the differential equation so that, figuratively, each moving ion

continuously undergoes inelastic losses. MARLOWE can also use this non-local stopping law, but

it is applied to the line segments that are generated by the elastic collision asymptotes. At low

energies, especially, there are a number of differences in the two methods.

MARLOWE also can use a local electronic loss mechanism, with a differential cross

section of exponential form, such that the stopping power resulting from that cross section is

essentially the same as that of the continuous slowing down model. In fig. 4 we show the results

of MARLOWE runs with both stopping mechanisms and the results of the present approach. At

low energies there is notable disagreement between them. At higher energies the local stopping

1.0

0 0 MARLOWE (NON-LOCAL STOPPING)

Uj x MARLOWE (LOCAL STOPPING)
0

wPRESENT THEORY

- 0.8 xo_ X
0 0

4X

00
Uj

40.6- x

0

0

0.4 I I
0.03 0.1 0.3 1.0 3.0 10

ENERGY [E (keV)]

Fig. 4 -- A comparsiou of the damage fraction (D(E)/E) for the same conditions as fig. 2,
except that inelastic losses are included.
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method in MARLOWE agrees more closely with the present approach than with the other

MARLOWE model. We conclude that differences in the models preclude good agreement in

estimates of damage energy.

EFFECT OF POTENTIAL

The conventional LNST energy partitioning theory is based on the Thomas-Fermi

interaction. Figure 5 serves to demonstrate the effect on energy partitioning of changing the

interaction. AU of the curves are based on the formalism of this paper. The solid curve
represents the results of using the WSS18 fit to the LNS24 version of the Thomas-Fermi cross
section, with the Lindhard screening length a-10.78 pm. (The details of these interactions and the

expressions for the screening lengths are given in Appendix C.) The two dashed curves represent

1.0

0.8

U.0.61.7

LU - 5-

THOMAS-FERMI

I II
0.1 1.0 10 100

ENERGY [E (keV)l

Fig. 5 -- A comparison, using the present theory, of the damage fraction ir copper using three
different cross sections.
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the results of using the cross section based on the Molibre potential, both for the Lindhard value

of the screening length and the Torrens and Robinson2 value a-7.38 pm, which was obtained by
adjusting the screening length so that the low energy portion of the Moliere potential agreed with

a Cu-Cu interaction that reproduced some of the bulk properties of copper. We see that there are

large shifts away from the LNST (Thomas-Fermi interaction with LNST screening length) in the

damage energy, produced by switching from the Thomas-Fermi to the more realistic Moliere

potential, and then produced by switching to the smaller, more realistic, screening length.

We can make another comparison of the effects of changing the potential be examining

the number of vacancies produced in each case. In fig. 6 we plot the number of vacancies

produced per unit energy (N(E)/E) as a function of energy. The two potentials that use the 10.78

pm screening length are in rough agreement at all energies, presumably because the Thomas-

Fermi and Molisre cross sections coincide for higher relative energy transfers. Upon comparing

-0. 75
\ --- MOLIERE

07 THOMAS-FERMI

0.70 --

U Az0.65

a 
.0

z 0.50 - P " -

0. 0.3 1.0 3.0 10

ENERGY [E (keV)]

Fig. 6 -- A comparison of the number of vacancies produced for the same three cross sections
as the last figure.
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fig. 5 and fig. 6, we fail to see any clear relation between damage energy and number of

vacancies, relative to changes in the potential.

We can examine this disparity by looking at other properties of the cross sections. In

fig. 7 we show the ratio of the total elastic stopping power to the electronic stopping power for

each of the three potentials. The total elastic stopping is given by

SM(E)- 0dT T 4u(E,T) (24

Clearly, the reason that the Thomas-Fermi interaction leads to greater damage energy than does

the Moli6re is that the elastic stopping dominates the electronic to a much greater extent in the

Thomas-Fermi case. We note that the WSS cross section and the Moliere (each with the 10.78 pm

screening length) lead to the same stopping at high energies, as we would expect. But the

LU- MOLIERE

-20 __
STHOMAS-FERMI

Cr. .. 70.

0
o. 12 - a 10-_

0

a = 7 Pmn .. . .

02 4 . -- '

0.1 0.3 1.0 3.0 10

ENERGY [E (keV)]

Fig. 7 -- A comparison of the ratio of nuclear and inelastic stopping powers for the same three
cross sections as fig. 5.

16



corresponding damage energy curves do not merge. The relative amounts of elastic and inelastic

loss depends sensitively on the behavior of the many cascade atoms moving with lower energies,

for which the disparity in relative stopping power is still felt.

BINDING AND CUTOFF EFFECTS

In fig. 8 we show the effect of introducing a binding energy of 10 eV on the various

measures of damage. (This is an unnaturally large value, but it serves to indicate tendencies.) We
assume that each displacement, but not replacement, costs the displaced atom 10 eV. The solid

curve in fig. 8 shows the percentage reduction in the number of Frenkel pairs as a function of

energy. Also shown are the percentage changes in the thermal loss H(E) and the damage energy

D(E)-H(E)+B(E). We see that the imposition of a binding energy produces opposite effects in the

damage energy and the number of displacements, indicating that damage energy is not a good

measure of displacement production.

The imposition of a finite cutoff energy makes no change in the number of Frenkel pairs

produced, but the asymptotic value of the damage energy fraction is reduced by 18 percent and

15

10

z

Iu

I-z
U N(E)

. -(E)

-15
0.1 1.0 10 100

ENERGY [E (keV)]

Fig. 8 -- The percentage change in the number of vacancies, damage energy and thermal losses
when a 10 eV binding energy is imposed.
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25 percent when the cutoff energy is 25 eV and 50 eV, respectively. This is another example that

the estimates of the number of vacancies and of the damage energy are sensitive to different

effects.

COMPARISON TO LNST

Our formalism coincides with that of LNST when Ec, ES and ED are zero, in which case

our integral equation for D(E) is identical to the LNST equation for damage energy. In the

absence of a finite displacement energy, we would naively expect that there would be no damage

energy, because all of an ion's energy would eventually be drawn off by collisions with the

electrons. LNST find, however, that if the inelastic stopping goes to zero as EP and if the

interatomic potential falls off as r-s, then there is a non-zero solution of the damage energy

equation provided that s< 2 /(l-p). (In fact, the value of s should not be very close to the limit.)

For the standard velocity-proportional inelastic stopping, this requires s<4. LNST use the

Lindhard, Nielsen and Scharff cross section, which is a form of the Thomas-Fermi cross section

that has the low energy behavior equivalent to s-3. In order to effect a comparison with LNST,

we use the WSS fit to the LNS cross section (see Appendix C, eq. (CI) and eq. (C)) and the LNST

electronic stopping (eqs. (Cl5-C17)).

In fig. 9 we compare our results for the fraction of energy that is damage energy. The

LNST curve is the equal mass result of Winterbon, 26 plotted as a function of the reduced energy

value e=E/EL (Eq. (C4)). The present theory is represented by three curves, for three different

values of e-ED/EL. (The limited extent of the eD-hxl0 "7 curve is due to a numerical quirk in

the code that was not worth removing for the sake of this one demonstration.) For definiteness,

in the case of copper the specific values of the displacement energy corresponding to the the three

curves are 0.14 eV, 14 eV and 1400 eV. Even in the case of the tiny 0.14 eV displacement

energy, there is a marked difference between our results and the Eo-0 results of the LNST

method.

The LNST results are always noticeably lower than the present results. The reason for this

is that in our approach, for energies below ED, certain modes of energy loss are prohibited. Most

ions with energies below ED are tied to lattice sites, either by way of having been a lattice atom

that received a subthreshold energy transfer or because they arrived at a lattice site as a

replacement. In both cases, in our model, they are incapable of losing energy to electronic

processes. In the LNST model ions continue to lose energy electronically until they have zero

energy. This effect is insensitive to changes in the displacement energy. When we halve the

displacement energy, we roughly double the number of displaced atoms, each of whose energy

eventually drops below the new ED value and is prohibited from losing energy electronically. It is

this prohibit , loss mechanism in the present approach that accounts for the qualitative difference

between the curves in fig. 9.

In closing this section, we note that there are other ways to estimate a damage energy

without imposing restrictions on the low energy behavior of the interatomic potential. Miller and
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Boring,27 for instance, require that the inelastic stopping vanish at low energies, of the the order

of the ionization energies of the electrons. As in our model, this condition prohibits inelastic

losses below certain energies and guarantees a finite damage energy.

CONCLUSIONS

The present theory yields good estimates of displacement damage when compared to the

binary-coillsion simulation code MARLOWE. Agreement is quite good when MARLOWE is run

in its amorphous mode using the modified cross section that is used by the present approach. But
even when these allowances are not made, the present theory differs from MARLOWE by less

than 10 percent in the case (fcc copper) we examined. Changes in interatomic potential have a

much different effect on the damage energy, which is widely used to estimate displacement

damage, than they do on a direct calculation of the number of displacements. Similarly, a finite

binding energy creates differing responses in the two approaches.

1.0

0.d 70-3

S0.9

z

00

U.

0.8

0.7 I 1I I I

10-4 10-3 10-2 10-1

REDUCED ENERGY (- = E/E L]

Fig. 9 -- A comparison of the damage fraction as a function of energy for a variety of
displacement energies.
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Finally, we have noted that any evaluation of the damage energy requires some restriction

on the relative strength of the inelastic and elastic cross sections at low energies. LNST assume a

very soft low-energy elastic cross section, whereas we assume that atoms bound to the lattice

suffer no inelastic loss. We again find that these differences in the models create large

differences in the estimates of damage energy.

We conclude that the direct calculation of the displacement production is considerably

more reliable than estimating it from the damage energy.
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APPENDIX A: DERIVATION OF THE OTHER INTEGRAL EQUATIONS

In the same manner that the integral equation for Nv(E) was derived in Section 3, we can

develop the equivalent integral equations for the other quantities of interest. We can let Fi(E)

(i-e,3,TE) stand for the quantities NR(E), B(E), H(E), and I(E), repsectively. Then Fi,j(E,T)

represents the residual quantity Fj(E,T) that appears when a collision occurs under the influence

of the j cross section, j=V.R,T,E. The only non-zero F1j(E,T) are

Fv,v I
FR,Rt -I

F,v- Es

FT,r - T

FT. - E-T

FE,E - T. (AI

The form (19) can be used to represent the integral equation for Fi(e),

[SE(E) + ST(E) ] F1'(E) + OR(E) FI(E) + J1(E) - G1 (E) (A2

where Gj(E) is the integral expression

Gi(E) - J dT (O%(E,T) Fi(T) + 4V(E,T) [ F(E-T) + F1(T-E9) j), (A3

and the appropiate inhomogeneous term for these are

Ji(E) - -41t(E), S,;(E), -ST(E)-SR(E), -SE(E), (A4

for i-,B,T,E. We note that if the equations for B(E), H(E) and I(E) are added, we obtain an

integral equation for F(E)-B(E)+H(E)+I(E) that is satisfied by F(E)-E.
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APPENDIX B: TEST OF THE THERMAL STOPPING APPROXIMATION

In order to assess the accuracy of the thermal stopping approximation we consider its

effect on the calculation of I(E). Replacing the integral

dT *,(E,T) I (E) - I(E-T)

by ST(E) 1(E) will clearly be least accurate for E<E0 . For energies of this order we can easily

obtain the first few terms of a power series solution as of the integral equation for I(E). Using the

WSS (Winterbon, Sigmund and Sanders)18 form of the LNS 24 version of the Thomas-Fermi cross

section (see Appendix C, Eq. (Cl) and Eq. (C)), and using the LNST 12 electronic stopping (Eqs.

(C15-16)), both solutions can be written (in the equal mass case) in the form

I(E)/E- as + a2 s2 + a3 s3 ,

s - (2k/A) (E/EL)"/ 6  (B I

where E,. is the Lindhard energy unit (eq. (C4)), k is the electronic stopping coefficient

(Eq. (C15)), and Aw.309 appears in the WSS cross section. We find that the coefficients (a,, a2 ,

a3) are (0.5973, -0.3794, 0.2543) for the present theory without the thermal stopping

approximation and are (0.5714,-0.3333, 0.1975) with the approximation. The form (BI) should

only be used for energies less than the displacement energy, due to the discontinuity in the second

derivative of I(E) at E-ED.

When we use typical values of ED and examine elements from beryllium to uranium, we

find a systematic error in (E) of about 4 percent at E-ED due to the thermal stopping

approximation. The error for energies less than ED is only slightly larger. It should be negligible

at higher energies. This error is certainly less than other inaccuracies associated with this type of

displacement damage calculation, so we are justified in using the thermal stopping approximation.
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APPENDIX C: SPECIFIC CROSS SECTIONS AND POTENTIALS
The most commonly used cross section for atomic scattering problems is the LNS24 version

of the Thomas-Fermi cross section. By using what we will call the LNS method,2 they obtain a

simple, universal, cross section based on the Thomas-Fermi potential. They write the cross

section as

O(E,T) dT - n ir a2 s- 2 fL(s) ds, (CI

s2 E T / ( -yEL2 ), (C2

7 4 A1 A2/ (A1 +A2)2 , (C3

EL- ZIZ 2 e2 (Al + A+ )/(aA ) (C4

a - [2(31/32)2/3] [Rj2/(me 2)] Z- 1/ 3 = 0.8853 ao Z- 1/ 3 
, (C5

Z = ZL = ( Z1
2/ 3 + Z2

2/ 3 )3/2. (C6

where n is the number density of the atoms in the substrate. The LNS screening length depends

on their choice of Z=ZL. Another common choice is that of Firsov, 29

Z - ZF - ( ZI 1/ 2 + Zz 1/2 )2. (C7

LNS supply the kernel of their cross section, fL(S), in tabular form. More convenient is the fit to

fL by WSS, in the form is

fu(s) - A 1/3 ( I + (2 4/3)2/3 r3/2 , A - 1.309 . (C8

The MoLitre potential is 20

V(r) - [ ZI Z2 e2 / r ] x"(r/a) . (C9

Xdx) - 0.35 exp(-0.3x) + 0.55 exp(-1.2x) + 0.10 exp(-6x) (CI0

One can follow the LNS method and obtain the cross section equivalent (within the assumptions

of the LNS method) to this potential. This cross section has been fit to a convenient form22

(0.007 + s/2) / (0.0387 + 0.826 s s2 , s>s*=.06
f2(s) - (CI

-s 20.45 In(s) - 71 s + 422.097 s2 
- 1429.70 s3 ,S
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In order to use the LNS approximate form of the Molibre cross section in the code

MARLOWE, we make use of the relation between the impact parameter and the energy transfer

given by

(p/a)2  ds s2 f(s) (C12

where

s* - (E TO / "7 EL2) 112 . (C13

Given the value of s* in eq. (C12) corresponding to p/a, we can determine the energy transferred

T* in the collision from eq. (C13). The scattering angle is then given by

0 - 2 sin" (T*/yE) 1 2 . (C 14

We note that we also set the apsis of the collision equal to the impact parameter, which is a part

of the LNS approximation.

The LNST 12 expression for of the electronic stopping (eq. (6)) is

SC(E) = kL E I /2 , (C15

kL - .7323 n Z, 7 / 6 Z2 ZL-1 A2
"1 A, "- / 2 eV1/2 A' . (C16

where n is in units of gm/cm3 and the masses in amu. The equivalent Firsov expression can be

obtained from Eqs. (16-19) of Ref. 9; it also has the form (C15) with

kF -. 2024 n (Z, + Z2 ) A2
"I Al "1 / 2 eVt / 2 ' (C17
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