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0INTRODUCTION

From 7-10 November 1988, an interdisciplinary colloquium entitled "Symmetry

in the Basic Sciences" was held at the U. S. Air Force Academy, Colorado.

Participating in the colloquium were the Academy's Departments of Mathematical

Sciences, Chemistry, Biology, and Physics. Each day a faculty member or a team

of faculty members from one of the departments gave a presentation on the role

of symmetry in their discipline. This report is a summary of those talks. The

order of the chapters reflects the order in which the department presentations

were given. The chairman and organizer of the colloquium was Major David Jensen

from the Academy's Department of Mathematical Sciences.

0
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PLANE SYMMETRY GROUPS

David W. Jensen, Major, USAF

Department of Mathematical Sciences

US Air Force Academy

Colorado Springs, CO 80840

This paper presents the basic mathematical theory behind
plane symmetry groups. This theory is then applied in
classifying the symmetry of bounded figures, frieze
patterns and wallpaper patterns. Recently developed
algorithms are included to help analyze complex designs.
Numerous examples are presented to clarify concepts and
to illustrate the various symmetry types.

INTRODUCTION

Plane symmetry groups are a mathematical classification system for

describing the symmetry of two-dimensional figures and patterns. Here

mathematics truly comes alive, as abstract symbols used to describe symmetry

can be immediately visualized as the rotation of a snowflake, the pattern on a

vase, or the ceramic tile of an ornate kitchen floor. The goal of this paper:

to introduce the basic theory behind plane symmetry groups, and to present

some simple algorithms one may use to analyze complex designs.

To make the theory accessible to as broad an audience as possible, the

mathematics has been deliberately downplayed. Mathematical proofs are

relegated to the bibliography. Since mosaics and patterns are visual

creations, examples and illustrations are used frequently in the text. The

prerequisites to understanding the contents of this report are modest. The

author assumes that the reader is comfortable with the basic notation and

theory for sets, functions, and the composition of functions. This report is

an abbreviated version of an earlier paper written jointly by Major Jensen and

Cadet Firstclass Gary Harvey [5].
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Section I

BASIC THEORY

A binary operation is a function that takes two elements in a nonempty

set G and assigns to them a unique element also in the set G. Using standard

function notation, if * is a binary operation on C we write * : G x C + G.

Familiar examples of binary operations abound, with one of the easiest being

the real numbers under normal addition ( + : R x R + R).

With this notion of a binary operation we can define a group--one of the

most important algebraic structures in the world of mathematics.

Definition 1.1 Group (G,,)

A group (G,*) is any nonempty set G together with a binary operation

G x G + G that satisfies the following three properties:

Associative Property: a * (b * c) - (a * b) * c, for all a, b, and c c G.

Identity Property: There exists e c G such that a * e - e * a = a,

for all a E G. We call e the identity element

of the group.

Inverse Property: For every a c C, there exists b E G, such that

a * b = b * a - e.

-1
We call b the inverse of a and write b - a

We say (H,*) is a subgroup of a given group (G,*) when H is a nonempty

subset of G, and (H,*) is itself a group. Also, a group (G,*) is called

Abelian if all Its elements commute, that is a * b - b * a for all a and b

in G.

0

. . .. • 1 1 , m l l m-m m



0 The definition of a group is important because the properties listed

above give it enough structure to be useful, while at the same time the

definition is not too restrictive. There are lots of groups. The real
/

numbers under normal addition (R,+) form a group with identity e - 0 and

-1
inverses of the form a 1 -a. Rather than R, we could have just as easily

chosen the rational numbers Q or the integers I and formed the groups (Q,+)

and (I,+). For another example, the real numbers (excluding zero) under normal

multiplication, (R - {0}, .), form a group with identity e - I and inverses

given by a-  = 1/a.

It is also easy to define groups of matrices or groups of functions under

various binary operations. In particular, consider R2 , the set of all points

in the plane, and let G be the set of all one-to-one functions from R2 onto R2.

Then consider (G,o) where o represents the composition of functions. First, note

that all one-to-one, onto functions from R2 to R2 are invertible. Therefore,

elements in G have inverses. Moreover, * is a binary operation on G since the

composition of two invertible functions is again an invertible function. The

other two properties needed to establish that (G,o) is a group follow readily

from the fact that all invertibl- functions from R2 to R2 are associative

under composition, and the identity function i : R + R2 defined by i(p) - p

for all p c R2 is the logical choice for the group identity element.

Our first real progress in applying group theory to questions of symmetry

comes when we consider a special subset H of G. We let H be precisely the

invertible maps from R2 to R2 that also preserve distance between points.

Using the usual notation of vertical lines for distance, we have

-4-
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H = c re : p - q " (p) - (q)I for all p, q c R 2

where )p - qj is the straight line distance from point p to point q and

ja(p) - a(q)I is the straight line distance from point a(p) to point 01(q).

It is easy to show that H is a subgroup of G, and we call the elements of H the

motions, or isometries, of the plane [51. Moreover, it can be shown that there

are only four types of motions possible [1):

1. Translation A mapping a that sends all points in R2 the same dis-

tar-!e d in the same direction 9. To illustrate, con-

sider Pi, qi r R2 with a(pi) , q i' I - 1, 2, 3:

qd 
q3

p1  d P3

P2

Figure 1.1

2. Rotation A mapping a obtained by rotating the plane clockwise a

fixed amount * about a fixed point p. To illustrate,

consider p,, q, e R2 with a(p) q 1

p1  q,

P

Figure 1.2 O

-5-
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3. Mirror A mapping a obtained by reflecting the plane through a

fixed line L (that is, a mapping that sends each point p

to a point q such that L is the perpendicular bisector

of the straight line between p and q). To illustrate

consider pit q1 E R2 with a(pi) = i 1, 2, 3, 4:

P, 
• P3q

P2 P4
L -

q q4

2

q3
q 1l

Figure 1.3

4. Glide A mapping a composed of a translation in the direction

of a fixed line L, followed by a mirror through L. To

illustrate let pi, q, E R2 with a(p,) q,, 1 1, 2:

P1  "*..................

.................

L

q I2

Figure 1.4

Having defined the subgroup (H,o) of (G.o) we are nearing our goal of being

able to use group theory to analyze the symmetry of figures and designs in the

-6-



0
Euclidean plane. The next definition restricts (H,o) in a very natural way,

leaving us with precisely the motions we need to describe the symmetry of a

given figure.

Definition 1.2 Symmetry Group of T

Let T be any nonempty set of points in the plane, T C R2 . Define a sub-

set HT of H by H T -= {c £ H : a(T) - T I. Here a(T) - T denotes set invariance,

that is a(p) e T for every p c T. It can be shown that HT is itself a subgroup

of G [5]. We call HT the symmetry group of T.

The way to view the definition of HT is as follows:

- Start with a given figure in the plane. For a simple example, take a circle

of radius r centered at the origin of the Cartesian coordinate system.

- Consider the points that makeup the figure to be T. Therefore, for our

example, the set T is the locus of points satisfying x
2 + y 2fi r .

y

Figure 1.5

0
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- Then HT is exactly those translations, rotations, mirrors and glides that map

T back onto itself. When T is the circle shown in Figure 1.5 (in fact, when T

is any bounded figure) we will see in Section 2 that translations and glides

cannot be elements of HT. If we consider rotations, there are obviously an

infinite number of possibilities, since any rotation about the origin will

leave T invariant. In addition, any mirror through a line passing through

the origin will also map T onto itself.

Example 2.1 Find the symmetry group of T where T contains only two distinct

points, say T - {p,p 2 1. Note first that the identity map i is in HT . For if

i(p) - p for every p in the plane, then certainly i(T) - T. To determine the

other motions in IT, let L be the straight line through points p1 and P29

and let L2 be the perpendicular bisector of the line segment from p, to P2.

* .L2

S ..... ...........
P1 PO P2

Figure 1.6

Using the definitions of a translation and a glide, it is easy to see that as

in the case of the circle, translations and glides cannot be elements of HT .

The only rotation in HT is the rotation of 180 about the point pO. (We don't

count the case where we pick a point, say p,, and rotate everything 360* about

that point. After all, this just yields the identity map, which we have already

acknowledged as being in HT.) The only two mirrors possible are reflections

through the lines Li and L2. Note that although reflection through L1 leaves

points p, and P2 unchanged, it certainly changes other points in the plane and

-8-



is therefore distinct from the identity map. We conclude that 'T contains

exactly four elements: the identity map, 1800 rotation about pO, reflection

through L,, and reflection through L2.

Example 2.2 Find the symmetry group of T where T is the set of points that

makeup the footsteps depicted below [2]:

SI S I 1

I I I
IS I

Figure 1.7

The footprints are assumed to continue infinitely to the right and to the left.

There are no rotations or mirrors in HT. However, this is the first example we

have encountered where translations play a part. A translation of length t (or

any integer multiple of t) in the direction of L will map T onto itself. There

is also a glide in this case consisting of a t/2 translation (or any integer

multiple of t/2) in the direction of L followed by a reflection through L. Note

that because different integer multiples of the period t (t/2) give rise to

different translations (glides), HT has an infinite number of elements. A

symmetry group that has an infinite number of elements is called an infinite

symmetry group. Likewise, a finite symmetry group Is one with only a finite

number of elements.

In this section we have introduced the basic theory behind plane symmetry

groups. In the next three sections we will see how to use this theory to

classify the symmetry of different figures and designs in the plane.

-9-



Section 2

SYMMETRY GROUPS FOR PLANE BOUNDED FIGURES

A bounded figure in the plane is one which can be encompassed by a circle

of finite radius. In this section we classify the types of symmetry groups,

that is the sets of motions HT, that are possible for plane bounded figures.

The task is easier than it might first appear. Translations (and glides) cannot

be motions in the symmetry group of a set T which represents a bounded figure.

A simple proof of this fact can be found in [5]. Therefore, in dealing with

plane bounded figures, we need only consider rotations and mirrors.

Consider the symmetry group of an equilateral triangle:

LI . • .

• .
L 2

-10-
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IT " 2, 3 ,, 4 ,* 5,'% I where

- identity map

= rotation 120 ° clockwise around p

-= rotation 240* clockwise around p

C% = reflection through L1

= reflection through L2

M reflection through L3

We call this symmetry group a dihedral group and write D 3. The order of a

group is simply the number of elements in the group. Therefore, the order of

D3 is 6. A part of D3 that we are especially interested in is the subgroup

C3 - {ua,a 2 ,a31. Note that C3 can be generated by repeated compositions of the

single rotation a2 :

C3  " {a , 'c i1  { 2 ' 2  " a2 -" - (2 } " . 2,c3

A group which is generated by a single element in the group is called a cyclic

group. Therefore C3 is a cyclic subgroup of order 3.

From the development of D3 , the symmetry group of an equilateral triangle,

it is easy to envision a similar development for the symmetry group of a square.

We would obtain a dihedral group D 4 with eight elements, (4 reflections and 4

rotations). Once again, the rotations would form a cyclic subgroup, in this case

C4 . More generally the symmetry group of any regular n-sided polygon is Dn

(with subgroup C n ) where [21:

C is a cyclic group of order n, consisting of clockwise rotations through
n

k(2Y-), 0 < k < n, around a fixed point p.

-n-
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D is a dihedral group of order 2n and consists of C together with reflec-n n

tions through n axes that intersect at p and divide the plane into 2n equal

angular regions.

With these definitions of C and D we can now classify all possiblen n

finite symmetry groups for plane bounded figures. Specifically, we have the

following powerful result:

Theorem 2.1 A finite symmetry group of a plane bounded figure must be either

a cyclic group C or a dihedral group D •
n n

An especially well-written proof of Theorem 2.1 is provided by Durbin [21.

We will not discuss the proof here except to note that the word "finite" is

important. The circle we discussed in Section 1 is certainly a plane bounded

figure, but it cannot be classified as either C or D for finite n. As we sawn n

earlier, the symmetry group of a circle contains an infinite number of rotations

and reflections. The symmetry groups for circular figures are a special case

and are called continuous symmetry groups. They are often denoted C... Except

for circular figures, all plane bounded figures have finite symmetry groups and

Theorem 2.1 applies.

While Cn and D (and C for circular figures) classify the symmetry for

bounded figures, we still need to address the more difficult unbounded case.

That's the next challenge to be taken up in Sections 3 and 4 where we will look

at patterns (figures that repeat themselves at regular intervals in the plane).

Before moving on however, let's consider some especially beautiful examples of

plane bounded figures. The cardioids and roses that follow were derived from

0 -12-



Dr. Peter M. Mauer's recent work in computer graphics (9]. A special thanks to

Lt Colonels William J. Riley and Robert L. James, Office of the Dean of

the Faculty, U. S. Air Force Academy, Colorado, for programming Dr. Mauer's

algorithm and actually generating the illustrations.

Figure 2.2

"Spiral of Archimedes"

Symmetry: DI (Bipolar Symmetry)
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Figure 2.3

*Symmetry: C 2
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Figure 2.4

Symmetry: D 8

Figure 2.5

Symmetry:D
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Section 3

FRIEZE GROUPS

A frieze is any decorative strip or border that contains lettering, sculp-

ture, pictures, etc. (In classical architecture, the frieze is that part of the

entablature between the architrave and the cornice.) From our group symmetry

point of view we are interested in those two-dimensional designs located in a

frieze that repeat themselves at regular intervals. We assume these designs

continue infinitely in both directions along a straight line. The footsteps we

encountered in example 1.2 are a good example of a frieze pattern.

Figure 3.1

Like all frieze patterns, the symmetry group of the footprints Is an infinite

symmetry group. However, note that the footprints do have a minimum translation

period, in this case t. The existence of a minimum translation period identifies

0 -16-



the pattern as having what is called a discrete symmetry group. This is not

always the situation, as when we consider the stripe pattern depicted below:

Figure 3.2

A stripe pattern has no minimum translation period and we say that its

symmetry group is continuous (this is really the same idea we encountered with

circles when dealing with bounded figures--there no minimum rotation existed).

We will assume for the rest of this paper that we are dealing with only discrete

symmetry groups.

The symmetry group of a frieze pattern is called a frieze group, and there

are exactly seven types of frieze groups [8]. This classification is based on

the fact that the only motions possible for a frieze pattern are:

- translations along a fixed line L
- 1800 rotations about points on L
- a horizontal mirror through L
- vertical mirrors perpendicular to L

- glides with respect to L

Every frieze group must have translbtions, but it is the presence or absence of

the other motions that defines the symmetry. The seven types of frieze groups

are depicted in the following illustrations taken from John R. Durbin's book [21,

"Modern Algebra: An Introduction."

-17-



L L L tg

TTTT t

t rgv

t rhv

Figure 3.3

Key: t - translations
g - glides
v - vertical mirrors
h - horizontal mirror
r - rotations

Doctors Bruce Rose and Robert Stafford have recently created a simple

algorithm to aid in classifying frieze patterns [10]. With slight modification,

the algorithm is as follows:

*-18-



Translations? no Not a Frieze Group]

yes

ExCl 3.1"s

Clssfyth smmtye ru 11Ts fos th grpiffx)oBn

fthtx)g

Figure 3.4

Exampe 3.
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While translations along the x-axis (minimum period of 2) are obvious,

there are also 180* rotation points along the x-axis at + nw, n an integer.

Using the algorithm in Figure 3.4 we would next ask if HT contains a hori-

zontal mirror through the x-axis. It doesn't, but we do observe that a trans-

lation of w units along the x-axis followed by a reflection through that axis

is a member of the symmetry group. Therefore, glides are elements of HT and

we conclude that the symmetry type is "trgv".

We conclude this section with seven illustrations taken from Owen Jones'

classic "The Grammar of Ornament," first published in 1856 [6]. As an

example of the impact color has on symmetry, notice that the shading in the

"trhv" illustration doubles the minimum translation period. Polychromatic

Symmetry is a fascinating field. For those interested in learning about this

subject, one of the most enjoyable places to start is Caroline MacGillavry's

book (71, "Fantasy and Symmetry: The Periodic Drawings of M. C. Escher".

Key to Figure 3.6:

t - Medieval Stained Glass - Cathedral of Bourges

tv - Medieval Stained Glass - Cathedral of Bourges

tr - Persian Manuscript - British Museum

trhv - Persian Manuscript - British Museum

th - Medieval Stained Glass - Cathedra! of Bourges

tg - Persian Manuscript - British Museum

trgv - Greek Vase - Britsh Museum or the Louvre

-20-0
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Section 4

WALLPAPER GROUPS

Wallpaper patterns are those patterns in the plane that repeat themselves

at regular intervals in two non-parallel directions.

L2

Figure 4.1

The above pattern is a reduced copy of an actual wallpaper sample. Notice

that we have independent translations along the two lines L1 and L2. We assume

the wallpaper design repeats itself infinitely, filling the entire plane. We

call the symmetry group of a wallpaper pattern a wallpaper group. As with a

frieze group, a wallpaper group is an infinite symmetry group. The key to

classifying wallpaper groups was unlocked in the 1890's by the Russian

crysotllographer E. S. Fedorov: he determined there are only 17 types of

wallpaper groups. We will not take up the proof of Fedorov's assertion, except

to say that at the heart of the proof lies one of the most elegant and useful

tools found in any branch of mathematics, the Crystallographic Restriction.

The Crystallographic Restriction tells us that the only nontrivial rotations

possible in a wallpaper group are rotations of 60, 900, 1200, and 180.

-22-



The beat informal discussions that explain the Crystallographic Restriction and wily

there are 17 types of wallpaper groups are given by Durbin [2] and Schattschneider

[111. For those with a hearty background In mathematics, a full group theory

development is given by Schwarzenberger [12].

In theory, determining the symmetry type of a given wallpaper pattern should be

easy and straightforward. In reality, however, the symmetry type can often be

devilishly obscure. Therein lies the challenge and fun. Fortunately, there are some

marvelous aids to help us analyze complex designs. Schattschneider has compiled a

useful table for classifying wallpaper patterns [Ill. Virtually the same table has

been put into algorithm form by Drs Rose and Stafford [101 and Is reproduced from

Durbin's book [2] in Figure 4i.2.

^rn~tors. w No Not a two - dillomionsli

t dir tions?

L

nlose Mie? ,rror lines?tomrrlie

Yes Noj

Nor Y- Iet. I~ NOtt Glide lines pawralela s

""?t~f for toMrtorline

No No 3o Yes

-Ye r Ca't of) r 0 3 i nde Glipd e f yt n litoer

Find ~ ~ hi thatt ore tyrrr retrilebune

rotaion or ptter. i fr. do, 37Enirr i

,by

N N~rr
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In Figure 4.2 the symbols used for the 17 types of wallpaper groups (also

called two-dimensional crystallographic groups) are those most commonly

accepted and come from a coding system designed by crystallographers. A full

explanation of the symbols is given by Schattschneider [Il].

Example 4.1 Classify the symmetry group H for the following illustration

taken from Owen Jones' book [6), "The Grammar of Ornament."

9 I

Figure 4.3

This pattern is easy to analyze using the algorithm in Figure 4.2. First, note

that there are vertical mirror lines through the center of each leaf. By

observation, these are the only mirror lines for this pattern. Therefore,

non-parallel mirror lines do not exist. We next ask if there are horizontal

glide lines (perpendicular to the vertical mirror lines). The answer is no,

since any horizontal reflection would have to change the "arches" from being

concave down to being concave up. This brings us to the final question: Are

there vertical glide lines? Careful observation tells us that there are if we

shift the pattern vertically half a period and then reflect it through lines

like the one depicted in figure 4.4. Figure 4.5 traces the decision process we

have followed and we conclude that the pattern has symmetry "cm".
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Figure 4.4 Figure 4.5

We conclude this section with illustrations of the 17 types of wallpaper

groups. The examples are originally from Schattechneider's work [11]. They can

also be found in Gallian's book [31.

--25-
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SYMMETRY AND CRYSTALLOGRAPHY

Thomas E. Erstfeld, Captain, USAF

Department of Chemistry
U.S. Air Force Academy, CO 80840

The symmetry operations relevant to crystallography are
discussed. In particular, the seven crystal systems that
classify the thirty-two crystallographic point groups are
described. These are then used to construct the Bravais
lattices.

Many are fascinated by the beauty of crystals, those objects

of polyhedral shape bounded by flat faces. One observes several

elements of symmetry when studying the surfaces of large crystals,

but most are surprised to learn that it is not that a crystal

possesses certain symmetry elements, but that symmetry defines the

crystal system being studied. The purposes of this paper are: 1)

to define crystallinity and some reasons for studying it; 2) to

describe the symmetry elements which define crystals; and 3) to

describe the different crystal lattice systems that symmetry does

allow.

In defining a crystal, one must be aware that the much-admired

large, beautiful single crystals found naturally are not the only

substances that can be classified as crystals. Erosion or

intentional destruction can obliterate the flat faces and1

polyhedral shapes of these crystals, yet whait rem i ns i.; t;ti I I

crystalline. In addition, many materials do not exist as single

crystals, but exist as an aggregate of thousands of microscopic

crystals; these materials are called polycrystalline. A definition

of crystallinity which includes the different types of materials

listed above was stated simply by Barrett: A crystal consists of

atoms arranged in a pattern that repeats periodically in three
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dimensions [I]. This periodic arrangement of atoms is what 0
distinguishes crystalline solids from amorphous solids. 'Th,.

"pattern" in the definition can consist of a single atom, a group

of atoms, a single molecule, or a group of molecules.

The reason crystals are formed can be explained by energetics.

Consider the cooling of a liquid. When the temperature of the

liquid drops below its freezing point, the molecules of the liquid

no longer have sufficient kinetic energy to overcome the

intermolecular forces among the molecules. The molecules assume

fixed orientations and positions with respect to one another, and

solidification occurs. As each molecule joins the growing solid

particle, it is oriented so as to minimize the forces acting upon

it. Each molecule entering the solid phase is influenced in almost

exactly the same way as the preceding molecule; therefore, the

solid particle consists of a three-dimensional ordered array of

molecules, i.e., it is a crystal.

Because the three-dimensional array of molecules in a crystal

is ordered, one can consider any point within the crystal. Movincj

one's reference in a straight line from this point will eventually

take one to a new point with an environment identical to the

original point. This can be repeated until one reaches the surface

of the crystal. This array of points is actually periodic in the

direction defined by any line connecting two identical points, but

all of the directions can be described by taking vector sums of two

arbitrary nonparallel vectors.

To aid discussions )nd calculations it is convenient to choose

:;ome points afnd axes of refor.once. This may be done by choosing

one point ,at rnhom, zlnd them con..idot-'ilnq a1 L point.; i dent i -,1l
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with this point. In three dimensions, this set ol identical point;

is called a "lattice". If the lattice points are connected by

straight lines, the three-dimensional space can be divided into

equal parallelepipeds. Note that choosing any one of these

parallelepipeds and repeatedly translating it generates the whole

crystal. The generating parallelepiped is called a "unit cell". A

unit cell is always a parallelepiped, and it is a template for the

structure. By knowing the arrangement of atoms within one unit

cell, one knows the atomic arrangement for the entire crystal.

The size and shape of a unit cell may be specified by means of

the lengths a, b, and c of the three independent edges and the

angles x, , and i between these edges. The angle a is between b

and c, is between a and c, and Y is between a and b. These axes

define a coordinate system appropriate to the crystal. In some

respects it would be simpler to always use a Cartesian coordinate

system, but the advantages of a coordinate system based on the

lattice vectors outweigh the simplicity of Cartesian geometry.

Any parallelepiped whose edges connect lattice points is a

valid unit cell, and there are an infinite number of such

possibilities. It is even permissible to have lattice points

inside a unit cell. A unit cell with lattice points only at the

corners is called "primitive"; otherwise the cell is said to be

"centered". As with the case of the selection of coordinate axes,

the decision to select a centered or primitive unit cell depends on

which would provide a greater advantage in defining a particular

crystal.

The study of crystals provides one with chemical information

about a substance. As stated earlier, it would in some respects be
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simpler to define crystalline axes based on Cartesian coordinates.

However, this would be useful only if the crystal's environment

remained constant. For example, if a crystal's axes were defined

by Cartesian coordinates, could one be assured that the lengths a,

b, and c would change proportionately upon heating? Or, would the

angles remain at 900? Because crystals are based on symmetry

rather than Cartesian coordinates, this problem does not arise. If

two directions in a crystal are equivalent by symmetry, they

necessarily have the same thermal expansion coefficients, and will

remain equivalent with changing temperature. Besides thermal

expansion, other physical properties of crystals which depend on

direction include electrical conductivity, magnetic susceptibility,

elasticity, and optical properties [2]. Determination of these

physical properties can only be performed on crystalline

substances. In contrast, an amorphous solid, such as glass, which

has its atoms arranged randomly, cannot have the same forceE;

interacting between atoms. Therefore, glass shatters rather than

cleaves along crystalline planes. Glass softens and eventually

liquifies rather than possesses a sharp melting point.

Because crystals are defined by symmetry, it is best at thi:;

point to define the term "symmetry" and describe the symmetry

operations which pertain to crystals. Sands described symmetry as

follows: An object or figure is said to have symmetry if some

movement of the figure or operation on the figure leaves it in i

position indistinguishable from its original position [2]. Table I

summarizes the symmetry operations that leave at least one lattice

point unchanged. Detailed descriptions of Table I can be found

elsewhere [2-4]. The Schoenflies symbol for symmetry elements is



generally used by spectroscopists, whereas the Hermann-Mauguin

symbol is used by crystallographers. Because crystalline arrays

are considered to be infinite, crystals also possess translational

symmetry which leaves no points unchanged.

Because the symmetry elements which are important to the study

of crystals have been defined, it is now possible to describe the

different crystal systems allowed by symmetry. Consider the

development of a lattice for a crystal having a twofold, i.e.,

1800, rotation axis. The rotation axis can intersect a plane at a

point arbitrarily labelled (0, 0, 0).

The direction of the twofold axis will be called the y

direction. Any point on this axis will have the coordinates (0, y,

0). Consider also two other lattice points (x', y', z') and (x",

y", z"); the x and z coordinates refer to arbitrary axes, which are

not necessarily lattice vectors. They are chosen, for convenience,

normal to the y axis. It should be obvious that if lattice point

(x', y', z') exists, the twofold axis through the origin will

generate lattice point (-x', y', -z'). Because lattice points are

equivalent, one must consider the twofold axis also passing through

these points, which further generates other lattice points. New

lattice points can be generated by taking sums or differences of

the coordinates of lattice points. For example, the sum of the

coordinates of the two lattice points cited above yields the

lattice point (0, 2y', 0). This coordinate shows there exist an

infinite number of lattice points along the y axis, at integral

multiples of 2y'. Scaling things as nicely as possible, let one be

the distance between adjacent lattice points in the y direction,

and choose the b axis as the vector between these adjacent lattice
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points; the coordinates of successive points become (0, 0, 0), (0,

1, 0), (0, 2, 0), etc. If n is an even number, y' is an integer,

and the lattice point (x', y', z') may be written (x', m, z') where

m is an integer. A new lattice point may be generated by the

difference (x', m, z')-(O, m, 0) = (x', 0, z'). If n is an odd

number, y' is a half-integer, i.e., 1/2, 3/2, etc. In this case, a

lattice point (2x', 2y', 2z') could be rewritten (2x', m, 2z'), and

the difference (2x', m, 2z')-(O, m, 0) = (2x', 0, 2z') generates

another lattice point. Since either (x', 0, z') or (2x', 0, 2z')

is a lattice point, and since any point with a zero y coordinate is

in the plane referred to originally in this discussion, the vector

from the origin to this point is a lattice vector perpendicular to

the b axis. One can set z' = 0, and x' is either an integer or a

half-integer. By similar reasoning, either (x", 0, z") or (2x", 0,

2z") is a lattice point. One therefore discovers two lattice

vectors perpendicular to b, which can be called a and c. As a

consequence of the presence of a twofold rotation axis, it is

possible to choose unit cell edges so that a = 90° and , = 900.

This choice of axes is also possible if the symmetry operation is a

mirror plane rather than a twofold axis. In this case the unique

axis is perpendicular to the mirror plane. Furthermore, point

group C2h, which contains a C2 axis and a perpendicular mirror

plane, also requires the existence of two lattice vectors normal to

the unique axis.

The requirement of two lattice vectors normal to the unique

axis characterize:; the monoclinic system. A crystal is said to be

monoclinic if symmetry elements are present such that it i:

possible to pi,.2k a unit cell that has - 900 and = 900, with no
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other conditions on the dimensions and shape of the cell. The

point groups that impose these, and only these, restrictions on the

lattice vectors are C2, Cs, and C2 h, and these are the monoclinic

point groups. It is not sufficient to define the monoclinic system

by stating a # b # c, a = Y = 900 4 f". It is the fact that ' = ' =

900 by virtue of symmetry that characterizes the system as

monoclinic.

Two point groups impose no restrictions on the lattice

symmetry. These are C1 and Ci, which characterize the triclinic

system.

Point groups D2, C2v , and D2h require there exist three

mutually perpendicular lattice vectors. Therefore, it is possible

to choose a unit cell with a = 0 = y = 900 -- the orthorhombic

system.

If the point group includes one (and only one) 4 cL 4 axis

there exist vectors so that it is possible to choose a = b,

, = Y = 900 with c parallel to the 4 or 4 axis. This is the

tetragonal system.

The presence of a 6 or 6 axis characterizes the hexagonal

system. If c is parallel to the sixfold axis, the unit cell has

a = b, 6 = 900, y = 1200.

The presence of one (and only one) 3 or 3 axis denotes the

trigonal system. Two types of lattices occur in the trigonal

system, one being identical with the hexagonal system. The other

trigonal lattice has a = b = c, q = V = Y. The lattice is called

rhombohedral, and the threefold axis is along the cell body

diagonal.
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If the point group includes four threefold axes, the system is

cubic. It is possible to choose three equal axes at right angles

to each other, and the four body diagonals of the unit cell cube

will correspond to the threefold axes.

A summary of the crystallographic point groups defining these

systems is given in Table II. This is also given in stereographic

projection form, as shown in Figure I [4]. For these projections,

the following must be noted: filled points represent atoms in the

upper hemisphere, open circles represent atoms in the lower

hemisphere, vertical planes of symmetry are represented by straight

lines, and tilted planes are represented by curved lines. In

addition, rotation axes are represented by the following symbols:

2 , 3 -A& , 4 -+ , 6 -0 , -3 -A , -4 -+, 6
The last few paragraphs discussed seven crystal systems

allowed by symmetry. Although individual molecules may have, for

example, C5 symmetry, this is not possible in a crystal due to

translational symmetry. (A proof of this is given by Sands [2].)

There are only thirty-two combinations of symmetry elements

possible in a crystal, as was shown in Figure I.

In selecting a unit cell based on symmetry elements, it may

turn out that a nonprimitive, or centered, cell is obtained. In

the triclinic system no symmetry restrictions occur, so a primitive

cell can always be chosen. In other crystal systems, however,

centered cells are frequently encountered. In the development of

the monoclinic system, by starting with a lattice point (x', y',

z'), it was proved the lattice point (0, 2y', 0) exists, with 2y' =

n. It was also shown that either (x', 0, z') or (2x', 0, 2z') i.

lattice point, and that the vector from the origin to this point is
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* a lattice vector perpendicular to b. If both x' and y' are half-

integers, the point (1/2, 1/2, 0) is a lattice point, and the unit

cell defined by (1, 0, 0), (0, 1, 0), and (0, 0, 1) is not

primitive. A primitive cell may be selected, but it would not be

possible in this case to have b lie on the unique axis and

U = y = 900. To preserve the advantages of a unit cell chosen on

the basis of symmetry, a centered cell is chosen. This unit cell

is called C centered; the centering is on the C face - the face of

the unit cell bounded by the a and b axes. There are lattice

points at (0, 0, 0) and at (1/2, 1/2, 0). Points differing from

these by 1, m, n, where 1, m, and n are integers, are also lattice

points.

In considering nonprimitive cells, one must be aware of the

number of lattice points per unit cell. The primitive unit cell

has eight lattice points at each of its vertices. Each lattice

point is shared by seven other unit cells; therefore, 8 x 1/8 = 1

lattice point is in a primitive cell. The C centered unit cell has

two lattice points in a plane shared by one other cell, in addition

to the eight points at the vertices; therefore, the C centered cell

has (8 x 1/8) + (2 x 1/2) = 2 lattice points. In general, a unit

cell containing n lattice points has a volume n times the volume of

a primitive cell in the same lattice. The volume of a C centered

cell is, therefore, twice the volume of the corresponding primitive

cell. In addition, a unit cell could be body centered, i.e., it

has a central lattice point unshared by other cells in addition to

its eight lattice points at the vertices. The body centered cell

has (8 x 1/8) + 1 = 2 lattice points, and twice the volume of the

corresponding unit cell. Finally, a unit cell could have lattice
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points in the center of all its faces shared by one other cell, in

addition to its eight points at the vertices. This face centered

cell has (8 x 1/8) + (6 x 1/2) = 4 lattice points, and four times

the volume of the corresponding unit cell.

It was shown earlier that a monoclinic cell may be primitive

or C centered. Are other distinctive types of centering possible?

There could be A centering, but this differs from C centering only

in the choice of names for the a and c axes, so this is not

distinct. It is possible to construct a body centered monoclinic

cell, but when two adjacent unit cells are considered, one may draw

different axes which produce a C centered monoclinic cell With a

lattice of monoclinic symmetry, one will always be able to select

either a primitive or C centered cell satisfying the monoclinic

condition i = i = 900. These are the only distinct lattice types

consistent with monoclinic symmetry. These considerations may be

extended to the other crystal systems. The result is that there

are just fourteen of these space lattices. These were first

deduced by M.A. Bravais in 1848, and are referred to as Bravais

lattices [2]. The fourteen Bravais lattices are shown in Figure II

(5].

This report merely touches the surface of the fascinating

field of crystallography. In addition to using symmetry to define

Bravais lattices, symmetry also defines the 230 space groups that

are allowed by translations of the Bravais lattice points, symmetry

is used in x-ray crystallographic determination, and other areas of

crystallographic study as well. It is hoped the reader will be

stimulated to !earn more about crystals.
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TABLE II. CRYSTALLOGRAPHIC POINT GROUPS

Hermann-
Crystal Schoenflies Mauguin Order of
system symbol symbol group

Triclinic C1  1 1

Ci  2

Monoclinic C2  2 2

Cs m 2

C2h 2/m 4

Orthorhombic D2  222 4

Cv m2 4

D2h nmm 8

Tetragonal C4  4 4

S4
Clh 4/m 8
D4  422 8

Cv 4mm 8

D2d 42m 8

D4h 4/mmm 16

Trigonal C 3  3 3

C3 i (or S6 ) 6

D, 32 6

C3v 3m 6

D3d m 2

Hexagonal C6  6 6

C3h 6 6

C6h 6/m 12

D 622 12

C6v 6mm 12

D3h 6m2 12

D~h 6/mmm 24

Cubic T 23 12

Th m3 24

0 432 24

Td  4*m 24

Oh  m3m 48
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SYMMETRY IN BIOLOGICAL FORMS: THE CHAMBERED NAUTILUS

Joseph E. Toole, Lt Col, USAF

Department of Biology

U.S. Air Force Academy

Colorado Springs, CO 80840

Biologists are sometimes reluctant to describe
phenomena in terms of known physical laws. D'Arcy
Thompson, however, is an exception to that generality.
His work on growth and form of molluscan shells is
reviewed with an attempt to explain the consequences
of that growth and form to the natural history of the
Chambered Nautilus and its ancestors.

1. INTRODUCTION

As part of scientific endeavor, there is a need to quantify

* phenomena--weight, mass, time, that is, to conceptualize through

numbers. Unfortunately, the biologist, though not in all

sub-disciplines of biology, has been slow to call upon mathematics and

physical laws to deal with seemingly complex phenomena. More often than

not descriptive life scientists invoke ingenious design--a supernatural

creator--to explain these phenomena. Enter D'Arcy Wentworth Thompson,

whose two volume treatise [4] on growth and form has transformed the way

we look at life forms.

Thompson [4, p. 151 contends that growth and form are understood

only in terms of physical constraints operating on the expression of the

genome of organisms, and one must realize that no living thing survives

unless it conforms to the laws of physics and mathematics. Hand in

hand with this idea is the realization that growth, in itself an

* exceptionally complex affair, must be understood before one can
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understand form. Growth brings about form in living things--an increase

in size, simply, or the development of complex structures from

undifferentiated beginnings.

The inducer of growth and its consequent form is force. If we can

recognize or deduce the forces acting on organisms, or their parts,

during growth, we may not only understand more about these resultant

forms, but predict changes in form as the forces vary.

Form is explained in terms of magnitude and direction, while growth

involves these same concepts, plus the concept of time. In attempting

to explain form one also must consider that as the surface area

increases as the square of a linear dimension, the volume increases by a

power of three. One can show that growth in volume is almost directly

related to an increase in weight or mass, provided the form and specific

gravity are unchanged [4, p. 231. This relationship between volume and

weight will allow us to make inferences about growth and form.

Symmetry abounds in the biological world, from the bilateral

symmetry of the flatworms, earthworms, and humans, to the

radial symmetry of starfishes and hydroids. Another way of looking at

symmetry in biological forms takes its roots from the mathematicians'

and physicists' definition of symmetry. In this sense, symmetry exists

in systems if an operation is pertoimed on that system and the system

essentially remains unchanged [3]. This paper will show that, within

the broader definit ion of symmetry de:scribed above, the equiangular

spiral growth of mollu3can shells is such that the symmetry of the shell

is maintained and -nly .ne scalar dimensions change.

2. MATHEMATICS OP SPIRALS
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There are two types of spirals described in mathematics--the equable

spiral or spiral of Archimedes, and the equiangular spiral, first

described by Descartes. The equable spiral is described with a point of

origin (0) from which generates a radius vector (R) and a point (P)

traveling along the radius vector at a constant velocity [4, p. 752]

(Figure 1). What results is akin to coiling a rope on a hard surface.

Equiangular spirals, on the other hand, are described if our point (P)

moving along the radius vector increases velocity as it moves from the

pole (Figure 2). In other words, there is a geometric progression in

length of the radius vector not an arithmetic increase.

The equiangular spiral may be described in a number of mathematical

ways. First (see Figure 2), the distances measured along the curve from

* its origin (0) intercepted by various radii (B, C, etc.) are

proportional to the lengths of the radii (OB, OC) (4, p. 7541. Another

way of mathematically conceiving equiangular spirals is seen in Figure

3. If we resolve growth at any point (P) into a force F acting along

the line joining (P) to the origin (0) and a force T acting

perpendicular to (OP), and the magnitude of these forces remains

constant, then the resultant of the two forces (PQ) will make a constant

angle with the radius vector--the very property Descartes discovered [4,

p. 757], and thus the name, equiangular spirals.

3. SHELL GROWTH IN THE CHAMBERED NAUTILUS

Figure 4 shows a cross-examine of a Chambered Nautilus shell. Unlike

other spiral-shelled molluscs whose body mass extends throughout the

spiral shell, the Nautilus and its allies (nautiloids and ammonites)

reside only in the most recently laid down chamber of the shell. In
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nautiloids, there is a small hole which connects the chambers into which

extends a living tissue, the siphuncle. The function of the siphuncle

putatively is to balance fluids and gas in the chambers to influence

buoyancy. Growth in Nautilus occurs as shell material (a proteinaceous

matrix embedded with calcium and other ions) is secreted by living

tissue. Each increment of growth is similar to the preceding one. Thus

it appears that the shape of the organism is not altered with growth.

But does this growth truly result in an equiangular spiral, as defined

previously?

Aristotle noted that certain things are not altered in shape when

growth occurs. He referred to such growth as gnomonic growth. A gnomon

is defined as that which remains after a figure has been removed from a

similar but larger figure. Figure 5 helps to illustrate this idea.

The isosceles triangle ABC, when either of the two base angles is

bisected by BD, results in a new triangle, BCD, similar to the original

and a gnomon, ABD [4, p. 761]. If we take an isosceles triangle (Figure

6) and add or subtract a series of gnomons, then the apices (A, B, C,

etc.) of all the triangles have their loci on an equiangular spiral [4,

p. 762, 7631. Returning to the Nautilus, if we see that the growth of

the shell is such thaL each successive addition is similar in shape to

the previous (i.e. gnomonic), then the shell must be an equiangular

spiral, provided the force driving the rate of growth remains relatively

constant. Mosely [1], in tacL, confirmed qnomonic qrowth in Nautilus by

taking median transver;e sert ions through the ;hIIs and found that the

distance of any two whorls measured on a rad i Us vector is 1/3 of the

next two whorl:,, and is thus an equiangular spiral.
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4. CONSEQUENCES AND CONSIDERATIONS

At the end of the Cretaceous period of the Mesozoic era 65 million

years ago, many groups of plants and animals died out. One of these

groups was the ammonites. The genus Nautilus is the only remaining

group of relatives of those once abundant molluscs. Several hypotheses

attempt to account for this large extinction. Since hard parts of

organisms tend to fossilize better than soft parts, the ammonites end

their nautiloid relatives lend themselves to study. One researcher,

Peter Ward [51, has advanced the hypothesis that the extinction of the

dmmonites (and conversely, the ability of the nautiloid.; to have

survived) is due in part to their inability to adapt to selection

pressure in their marine ecosystem. Such pressures would have

* influenced the form of these groups of organisms (and hence growth)

through differential reproductive success.

Ammonoid shells come in a variety of shapes and sizes (most conform

to equiangular spirals). Since ammonoids and nautiloids were predators,

so long as food sources were abundant in their environment, and they had

no significant predators themselves, there was no selective pressure for

efficient motility. If, however, food sources became depleted in an

area, or if there were increased competition, then pressures may have

driven changes in groups of these organisms toward more efticient

motility. Investigations [5, p. 139] have uncovered just such a

situation in the late Mesozoic era. At that time, more efficient

predators (such as marine reptiles, bony fishes, and the like) appear in

the fossil record which may have preyed on the ammonoids directly or

* competed with them for prey. In either case, the selection pressure was
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there. If the trend in ammonoid shells can be shown to move toward a

more efficient motile structure, then we may have indirect evidence to

support Ward's extinction hypothesis.

David Raup [2] has investigated the swimming efficiencies of various

shell shapes based on computer modeling (See Figure 7). He considered

three parameters: shape of the closed curve generating the shell, given

as a ratio of breadth to height of opening (S), rate at which the

generating curve expands (W), and rate at which the generating curve

moves away from coiling axis (D). To analyze the effects these three

parameters have on swimming ability, one must consider attitude control

[5, p. 139]. Swimming in ammonoids and nautitoids is accomplished by

forcing water through a nozzle of tissue, much like squids and

octopuses. In ammonoids (and nautiloids), the center of mass and

buoyancy are separated. The greater this separation, the greater the

dynamic stability. High W, low D shells (Figure 7) have centers of mass

and buoyancy widely separated and are good swimmers (Nautilus, e.g.).

Low W, high D shells would have centers of mass and buoyancy close

together and the water-jet propulsion exhibited by ammonoids and

nautiloids in this situation would result in spinning rather than

efficient forward movement [5, p. 141]. The ts-ij records show us that

many ammonoids had the low W, high D type shells possibly rendering them

unfit to compete in the late Mesozcic. But, a trend is seen in the

ammonoid fossils recovered prom near the end of the Mesozoic toward the

high W, low D type shells sagqesting selective pressure at work.
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Unfortunately, the adaptation to more efficient swimming (translated

into the ability to compete successfully) came too late to stave off the

extinction of the ammonoids.

Consequently, the growth and form of ammonoids and nautiloids (the

equiangular spiral) influenced their ability to survive in their marine

ecosystems. Selective pressures on growth resulted in equiangular

spirals in ammonoids that ultimately may have led to their demise.

Nautilus remains as a relic. As Ward concludes [5, p. 1471: ". .

the time for chambered shells, no matter how well engineered, is past."

Thus, the developmental program (genotype) of these organisms that

dictated the equiangular spiral pattern of growth resulted in a form

which allowed their successful radiation for millions of years, but may

* have also ultimately led to their downfall.
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Figure 5. Isosceles triangle with its gnomnon.
[4, p. 762]
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Figure 6. Isosceles triangle with gnomonl
generated equiangular spiral. [4, p. 7623
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Figure 7. Computer generated shapes of shells.

(See text for explanation.) [2, p. 141]
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SYMMETRY IN PHYSICS
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Symmetry has increasingly played a central role in physics. We
examine that role by examining the Principle of Least Action and
the invariance of the Lagrangian under a transformation.
Noether's Theorem guarantees that a conservation law is
associated with each of these symmetries. Examples include the
conservation of energy, linear momentum, and angular momentum as
well as the purely quantum mechanical symmetry of invariance
under an exchange operation. A brief look at gauge theories is
the final example of how symmetry has become a guiding principle
in the formulation of new theories.

I. INTRODUCTION.

The noted physicist Richard Feynman stated, "A thing is symmetrical if

there is something we can do to it, so that after we have done it, it looks

the same as it did before." [1, p. 52-1] The earlier discussions have

examined "things" such as wallpaper, seashells, and crystals. We will deal

with more abstract quantities like Lagrangians, Hamiltonians and wave

functions that model physical systems. Theoretical physicists construct these

mathematical models of the physical system so that they can explore the

properties of the system without actually having to do experiments on the

system. The theoretical physicists predict results that the experimental

physicists try to measure to test the theories.

Physical theories have always had symmetries in them, but they were not a

central result or fundamental concept until recently. As Eugene P. Wigner,

one of the key players in the early development of group theory and quantum

mechanics, said, "Symmetry considerations were not thought to be particularly

important before this century, and were not well articulated." (2, p. 4]

However, modern theories, in developng a model of reality, frequently start

with a particular symmetry. The most grandiose theory, Grand Unification
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Theory, begins with the assumption that nature is symmetric under the exchange

of bosons and fermions in an attempt to unify all known forces into one force.

Noether's Theorem states that for every continuous symmetry

transformation under which the Lagrangian is invariant in form, there is a

conservation law [3]. Conservation laws are important because they help

unravel the behavior of a system. For example, if we know linear momentum is

conserved in a collision of two particles, we can relate quantities before and

after the collision. A continuous symmetry transformation is a mathematical

operation such as a rotation about some point, or a translation in space or

time, that is performed on the physical system (or the mathematical quantity

that models the system). (The mathematics of continuous transformations lead

into the study of Lie groups, which is beyond the scope of our discussion.)

What is meant by a "Lagrangian" will become clear later but for the moment we

just take it to mean a particular mathematical function. "Invariance in form"

means that the mathematical function doesn't change its form when we operate

on it. If we begin with a constant, say C , times a variable, say x , we

will end with a constant, say C' , times a variable, say x' . The constants

and the variables may have changed but the form has not. The invariance of

form means that the laws of physics that govern the behavior of the system

remain unchanged by the transformation.

Some of the quantities that are conserved include energy, linear

momentum, angular momentum, electric charge, baryon number, lepton family

number, isospin, and strangeness. However, not all the symmetries that

generate these conservation laws are known. These are some of the mysteries

that are yet to be solved.

II. THE PRINCIPLE OF LEAST ACTION.

At first, the theories that describe how nature behaves seem diverse.



Physicists study nature by examining the interactions between two distinctly

different types of things, particles and fields. Newtonian mechanics

describes the motion of individual particles while classical statistical

physics describes the dynamics of a large ensemble of distinguishable

particles. Maxwell's equations describe the dynamics of electromagnetic

fields. Einstein's general relativity describes the behavior of gravitational

fields. Quantum mechanics retains the distinction between classical particles

and fields, calling the particles that make up nmatter fermions and quantizing

the fields into particles called bosons. Yet a common thread in all this

diversity is the Principle of Least Action. At the core of the Principle of

Least Action is symmetry.

Following Hill [4], we can define an integral, S, that we call the

"action":

~(1)

Here, xk represents independent variables that describe the system, while

the 1# are dependent variables that, with their first derivatives, ,

describe the physical system. The integrand is the function we call the

Lagrangian. It has units of energy, and in a simplistic way can be thought of

as the difference between a system's kinetic energy and its potential energy.

That difference is the amount of "action" left in the system. Nature appears

to dislike higher derivatives, as they are not needed to adequately describe a

physical system. The fundamental laws of classical physics result from

finding the extremum of this action integral:

SS o (2)
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This is usually a minimum condition, hence the name Principle of Least Action,

although sometimes we are surprised to find that nature maximizes the action

integral. Finding the extremum is the realm of calculus of variations; our

problem is finding the system's Lagrangian. Once we have the Lagrangian, we

can obtain equations of motion that tell how the physical system modeled by

the Lagrangian behaves.

To obtain the Lagrangian, the first approach is to work backwards from a

known law of physics. This is how the principle was first discovered. The

Principle of Least Action arises in many fields of physics: Hamilton's

formulation of classical mechanics, Fermat's principle in optics, and

Feynman's path integral formulation of quantum mechanics are three examples.

This approach showed the generality of the Lagrangian formulation but failed

to show the underlying symmetries.

A more useful approach is to obtain the Lagrangian by restricting the

form of the Lagrangian with known symmetries. We then eyhaust all possible

restricted forms of the Lagrangian to see which form agrees with experiments.

We can also postulate new symmetries to further refine the Lagrangian. For

example, some particle physicists are proposing a Lagrangian based on the Lie

group SU(5) to model the Grand Unified Theory.

Let's illustrate this approach by constructing the classical Lagrangian

of a free particle (a point particle of mass m whose potential energy is

zero) by simply using known symmetrics. We know that the laws of physics

should be invariant under a translation in space-time, i.e., the laws of

physics don't change anywiere in the universe at any time. This is one of the

central postulates of Zinstein's theory of special relativity. If we restrict

our study to low speeds, then we can treat space and time separstely. We will

need to study the Lagran-ian under various transformations, such as a change

of coordinate systems. The space and time intervals in two different



coordinate systems can be related by

Here, time is the independent variable and the position, r , is the

dependent variable. The first derivative of T is the velocity of the

particle. Thus the Lagrangian has the form

-X it ,4)

The first symmetry is a translation symmetry due to the assumed

homogeneity of space. For example, a pendulum should behave the same whether

it is in New York or Paris. So we require the Lagrangian to be invariant

under an infinitesimal translation of axis which implies that it cannot depend

on r

We also assume that space is isotropic, i.e., the Lagrangian should be

invariant under an infinitesimal rotation of the axes. This is a rotational

symmetry, Cap . Thus the Lagrangian cannot depend on a vector, but only on

the magnitude of the velocity:

", r 64 4 Xr , 1(7 ,t)(6)

It also shouldn't matter when we perform our experiment. In other words,

we assume that time is homogeneous, so that the Lagrangian is invariant under

O an infinitesimal translation in time and thus cannot depend explicitly on
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time:

r (7)

We need the Lagrangian to have units of energy, so we "guess" at a form:

This is the classical expression for kinetic energy of a free particle. The

key point is that the result was obtained solely from symmetry constraints on

the Lagrangian.

Translation invariance (the fact that space is homogeneous) implies that

total linear momentum is conserved. If a force is applied tc the particle,

space is no longer homogeneous. in one direction, the particle "feels" a

force. The symmetry is said to be broken and the conservation law is no

longer valid. So even the breaking of the symmetry tells us something - the

particle accelerates! The sya;ietries we find in nature are usually broken

symmetries; the manner in which the symmetries are broken provides clues to

developing correct theories. IZottnional invariance leads to conservation of

total angular momentum, a symmetry that is broken by applying a torque to the

system. Invarfance unler ti.: translation tells u thaio the total energy of

the systen is conserved. 11;.ever, j . G.. fvuzy world of quantum mechanics,

other symmetries and conservation jaws e:Ast that are not so well connected.

We will discuss tOese after a hriort divers~on iLto the Lagrangians of quantum

mechanics.

III. QUANTU;I LAGRANGIANS.

In qu ntrm mech ,nics, the wave function is a complex-valued function that



contains all that is physically knowable about the system. The Schr~dinger

wave equation is the nonrelativistic equation that tells how the wave

function, and thus the physical system, evolves in time and space. Consider a

particle of mass m that is in a region of space where a potential V( )

exists. Let 'i (r, t) be the wave function that describes the particle. The

Lagrangian is

~9 V( 3,0 , =L - .v -v (9)

where i is the imaginary unit, P , and li = 1.0546 X 10-3 4 J-sec. The

independent variables are r and t , while the dependent variables are the

wave function and its first partial derivatives in space and time. If we seek

the extremum by applying the variational rule

0 (10)

we obtain the Schr~dinger wave equation (SWE):

The Lagrangian given in Eq(9) lacks symmetry under a space-time inversion,

i.e.,

Notice that the spatial derivatives in the Laplacian are invariant under the

spatial inversion, but the temporal derivative changes sign. We can construct

a Lagrangian that has symmetry under a space-time inversion. If we try
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we obtain the Klein-Gordon equation, which is the relativistically correct

version of the SWE:

Jle= a -+72C4 (13)

Notice that the derivatives in Eq(12) are all squared, giving rise to a

symmetry under the space-time inversion.

If we solve the S6E, we only .,2t positive energy eigenvalues. The

Klein-Gordon equation predicts negative energy states, which initially seemed

to be extraneous. We now know that the negative energy states predicted by

the Klein-,ordon equation represent antimatter, a prediction that is justified

by the increased symmnetry of this equation over the SWE.

IV. PARTICLi EXC[ANGiCL SYMMETRY.

Consider two identical, indistinguishable particles, such as atoms of the

same element, that are non-interacting. Then we can represent the total wave

function of the syst._,m of two particles by the product of the wave functions

of each particle:

!t , ,. , ) - . F, . € ' , (14)

This looks oddit lile tne probability of two independent events, ard indeed

the wave funct ion ;ias a pr babi i3ti c i:terpretation (if it is suitably

normalized). The - -f t:,.e lni.te o the wave function represents the

probability of findivi tike two particles at locations r I and r 2  at some

time t . Re sym-,ietry is tLat t( e probabiiity cannot rhange if we exchange



O these two indistinguishable particles:

I "i-a = 1 (15)

Taking the square root, we obtain two different cases. If

O 43k (16)

the total wave function is said to be symmetric and describes bosons, the

particles that quantum mechanics uses to describe fields. An example is the

photon that is the quantum of the electromagnetic field. If

- _ (17)

the total wave function is said to be antisymmetric and describes fermions. A

deeper development shows that fermions have a unique property: only one of

them can be in a given quantum state. This is called the Pauli exclusion

principle and accounts for the fact that matter takes up space. Examples of

fermions include protons, neutrons, and electrons that make up ordinary

matter. This is another fundamental result that is due solely to a symmetry.

V. GAUGE THEORIES

Our final topic is a brief discussion of gauge theories [5]. A gauge is

simply a measure like a yardstick or stopwatch. It makes sense that changing

the length of our gauge shouldn't change the physical system being measured.

This is called a global gauge transformation. For example, we can change the

electric potential at every point in space by the same amount and not change

the physical laws, because it is only the potential difference that matters.
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Thus the systerI n : ri . under s;uch a giouni gauge transformation. This 0
symmetry leads t c -, .-vation of electric chairge.

A ,lob;-] trlformation on the wave function has the form

-' e A (18)

Here, q and - are constants. .ote that Lhe pr-,babiii j represented by

the squareP of the auplitudc of the wave function is unaffected by the

transformatl o;-i, ;,ain illustratin the Jnvarinnce to the ;Iobal gauge

transform~ation.

The reri interest st-tc; when wt" look at invariarce under a local gauge

transformatLon .erWJi we chan-le the vail'e of Lune w-ive lunction at every point

by an amourt that depends on tia iocatiJOn in srw'ce and time:

/ L~j.(r 4t (19)

Here, the ga,.ae _j. (r,t) i scalar .unction of sace and time. If we

require that the Schr dinger wave equo.ijon be invariant in form, we must

introduce a ficid represented by a v',ctor potential A and a scalar potential

A into the equatio-,:

L +(20)
__- - __- r "l+. +(). + (0

This new Wield I-' C'v ii j li' ro;-oInei .7- fir.1J., which we ar,- forced to

include in 'pm. : ,,c ,t r, the a _ is of symmetrv ['].

The tPrwe .cr) , 1, i:; i,:1 ('amne of a unitary

transfuolilattc;> ' do.t._',t Ohe, 9(1). Yro, and Mil ls extcn,'ed the concept of

loca u. , o 1,o d i;ornsi.ons whe)re the ,',u-,.,o function is now a

... r,7 ,



matrix and the wave function is a vector [7]. Although Yang and Mills

attempted to obtain a theory for the strong nuclear force and failed, Steve

Weinberg and others later showed this model to be correct for the weak force

[5, p.132]. Based solely on this symmetry, they predicted new elementary

particles, the intermediate vector bosons, that were found exactly as

predicted. It now appears that all four fundamental forces (the weak force,

gravitational force, electromagnetic force, and strong force) are described by

models that are invariant under a local gauge transformation, another example

of how symmetry plays a central role in the description of nature [5].

Vi. CONCLUSION.

The symmetries that a physicist sees are more subtle than those we

observe in everyday life. Symmetries represent transformations on a physical

system that, although they have the power to alter the system, leave the

system unchanged. Such invariance leads to conservation laws that govern the

physical system. The profound role of symmetry in the laws of physics has

finally come into its own through the Principle of Least Action and gauge

theories. The study of nature, at the fundamental level, is the study of

symmetries and the breaking of those symmetries.

Michael Faraday wrote, "We come into this world, we live and depart from

it, without our thoughts being called specifically to consider how all this

takes place; and were it not for the exertions of some few enquiring minds,

who have looked into these things, and ascertained the very beautiful laws and

conditions by which we do live and stand upon this earth, we should hardly be

aware that there was anything wonderful in it." So it is with symmetry in

physics.

0
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