@

N TP .

NAVAL POSTGRADUATE SCHOOL
Monterey , California

AD-A207 368

THESIS

RUN-TIME SUPPORT FOR
RAPID PROTOTYPING

by
MaryLou Barrett Wood

December 1988
Thesis Advisor:

Approved for public release; distribution is unlimited. D T l C |

ELECTE
‘ S APR2 8 1989

c/vE

Unclassified

Secunty Classification of this page

REPORT DOCUMENTATION PAGE

1a Report Security Classification U nclassified 1b Restrictive Markings
Za Secunty Classification Authority 3 Distribution Availabiluy of Report
2h Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.
2 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)
6a Name of Performing Organizauon 6b Otfice Symbol 7a Name of Montoring Orgamization
Naval Postgraduate School (If Applicable) 37 Naval Postgraduate School
6 Address (ciry, siate, and ZIP code) 7o Address (city, state, and ZIP code)
Monterev. CA 93943-5000 Monterey, CA 93943-5000
ba Name of Funding/Sponsonng Orgamization | 8b Office Symbol 9 Procurement Instrument ldentficalion Number

(If Applicable)
8¢ Address (city, state, and ZIP code) 10 Source of Funding Numbers

Program Element Number lprgw No ﬁask No lwo:k Urit Access:o- Ne

11 Title (Include Security Classification) Run-Time Support for Rapid Prototyping
12 Personal Authoris! MarvLou Barrett Wood
i3a Type of Report 13b Time Covered 14 Date of Report (year, morsh.day) 15 Page Coun:
Master’s Thesis From To December 1938 g

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number,

Ficid | Group Subgroup _ICAPS,prototyping, debugging, Dynamic Scheduler - o). g T 5T -

L_VL

19 Abstract (continue on reverse if necessary and ideniify by block number -

The Computer Aided Prototyping System (CAPS) uses rapid prototyping to quickly build an executable model of
the proposed system. This thesis discusses two aspects of the run-time support.system for CAPS. In particular. it
addresses the implementation of the error reponing functions in the CAPS debug@\% system and of the Dynamic

Scheduler. ~ . ;. St t.. s.ladale - e e -
20+ Distnibution;Availability of Abstract 21 Abstract Secunty Classificaton
unclassified/unlimited D same as report D DTIC users Unclassified
222 Name of Responsible Individual 22b Telephone (Include Area code) 22¢ Office Symbh.,
Lugi (408) 646-2735 52Lg
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this puge
All other editions are obsolete Unclassified

—j

Approved for public release: distribution is unlimited.

Run-Time Support For Rapid Prototyping

by

MaryLou Barrett Wood
Lieutenant, United States Navy
B.S.. Lock Haven State College, 1975

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
December 1988

N

‘J\ PPN W\
Author: ."] \\ V)'\ C e \JQ»\\.&% Yo
MaryLou Barrett Wood
’ A
Approved by: i—‘,‘-f -9 A

Luqi. Thesiy Advisor

//{V\%w/(& Cepa Ly

(Wm Second Reader

Robert McGhee, Chairman,
Department of Comgputer Science

B W

Kneale T Marshall, Deal\of
Informa

i1

ABSTRACT

The Computer Aided Prototyping System (CAPS) uses rapid
prototyping to quickly build an executable model of the proposed system.
This thesis discusses two aspects of the run-time support system for
CAPS. In particular, it addresses the implementation of the error
reporting functions in the CAPS debugging system and of the Dynamic
Scheduler.

Accession For

BTIS GRAAL
DTIC TAB
Unannounced O

Justification __

By.
Dlstribp}{qp/

Avalladbility Codes
Avail and/or
Dist Special

il |

iii

III.

TABLE OF CONTENTS

INTRODUCGCTION.ttt ert st crs e ceneeasennennsansans 1
A. BACKGROUND. ...ttt st ea st s e nee s e e naeenas 1
B. THE SCOPE OF THE THESISccccciitiiiiiiinniiiiiiinn e e vannans 4
SURVEY OF PREVIOUS WORKcccoouviiriniiiniiiniiiiiicnieineinannnneenn, 5
A. COMPUTER-AIDED PROTOTYPING SYSTEM......ccoocevvvinriinnnnnn.. 5
B. DEBUGGING SYSTEMS......ciittiiiiiiiiiiiiiiiniiieinen i siere e e 9
C. A PROTOTYPE IN SMALLTALK.....cooiiiiiiiiiincre e, 12
THE DESIGN OF THE DYNAMIC SCHEDULER...........c..ccceennenneen, 14
A. MODIFICATION TO THE ARCHITECTURE.......c...ccccvviiiiiiennnnns 14
B. DESIGN OF THE DYNAMIC SCHEDULER..........ccoovviiiiinnnennnen, 16
DESIGN OF THE DEBUGGING SYSTEM..............ccociivinniiiiinncennn.. 21
A. PURPOSE OF A DEBUGGING SYSTEM.......ccovviviiiiniiiiniiieen. 21
B. ERROR REPORTING IN THE DEBUGGING SYSTEM............... 21
C. ERRORS IDENTIFIED IN THE TRANSLATOR..........ccoeevtvnnnnnen. 22
D. ERRORS ENCOUNTERED BY THE STATIC SCHEDULER........ 23

IMPLEMENTATION OF THE DEBUGGING SYSTEMS

AND THE DNYNAMIC SCHEDULERcccctiiiiniiiiiiiinririreeiienenenens 29
A. PROGRAMMING ENVIRONMENT ...iitiiiiiiiiiiiiieieeienaiieaeaenen 29
iv

B. THE STATIC SCHEDULER AND ITS

DEBUGGING SYSTEM......cciuiitiiiiiniiiniiineeineteeiieeri e eeineennes 29
1. The Static Scheduler.........cc.covviiiviiiiiiiiiie 30
2. The Debugging System......c..ccoviviiiiivieiiiiiiniiniicrcre e, 31
3. The Create NTC_TasK.....cooceiniuiiiiiiiiiiiiniiiiireeeieeeenreesnens 35

C. THE DYNAMIC SCHEDULER AND ITS

DEBUGGING SYSTEM......c.iceutiiuiieriinirentnirnnieninnereeenerenieeanenns 37

1. Ada Constructs Important to the Dynamic Scheduler...... 37

2. The Dynamic Scheduler...........ccooveiiniiiiciinienncrinenennennnne, 43

3. The Debugging System for the Dynamic Scheduler.......... 45

VI. CONCLUSIONS AND RECOMMENDATIONS.............covvvviviinnnnnn. 48
A. CONCLUSIONS.....coiiitiiieniiiiii it eeeere e s 48

B. RECOMMENDATIONS.......coittiiimiiiiiiie ettt eeiie et esi e 49
APPENDIX A PROGRAM CODE FOR SS_DEBUG...........cccvvevinnnnnn... 51
APPENDIX B PROGRAM CODE FOR DS_DEBUG_PKG.................... 62
LIST OF REFERENCES........ccittiiiiriitiiiieiniiin e eeee e 69
INITIAL DISTRIBUTION LIST....ccouiiiiiiiiiiiiiieitiiiens et e v 71

Figure 2-1
Figure 2-2
Figure 2-3
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 4-1
Figure 4-2
Figure 4-3
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8

Figure 5-9
Figure 5-10

LIST OF FIGURES

The Prototype-Building Process.........cccoocoviivvivivivnrnnnnnnnn, 6
07N 2 T PP PPN 8
Execution Support System..........ccceeiiviriniiniiinniiiniineninn. 10
The Execution Support System, as Modifled.................... 15
The Dynamic Scheduler...........cccoovviiiiniiiiiiniiiiiinnn 16
The Static Scheduler...........ccoovviiviiiiiiiiiiiiiniriinienniiinnnnn.. 17
Coordination of Operators.........ccocuceeviniiiieiiniiineeiieenieennen 19
A Simple Dataflow Diagram.......c.c.occviviiiiinniniiiiiinncininnn.. 22
Operator DecompoOSitionvviiviiniiiniiiiiiiiii e, 26
Errors Encountered by the Static Scheduler.................... 28
Specification for SS_Debug........cococeviviiiiiiiiiniiiiiiniiii 32
Accept Statement from the Body of SS_Debug.................. 34
Example of a Non_Time_Critical_Schedule....................... 36
Example_Priority Program......cc..ccceoeviiiiiiiniiinniininn, 40
Output from the Example_Priority Program...................... 41
Example_Delay Package........c.cooovveviiniiiiiniiiiiniiiieenncnnnn.. 42
Main Program With Example_Delay Package................... 43
Output from Main Program With Example_Delay

PacCKage......c.ovviiiiiiiiiiiiiiciiniirii ettt ee e e 43
Specification for DS_Debug........cccoeeveiriniiriiinieniiiiiiiinnnnnn. 45
The Dynamic Scheduler...........ccooiiiiviiiininiiiiniinnn, 47

vi

THESIS DISCLAIMER

Ada is a registered trademark of the United States Government,

Ada Joint Program Office.

vii

I. INTRODUCTION

A. BACKGROUND

In 1980, the Department of Defense incurred software costs of
$4.10 billion and hardware costs of $1.28 billion [Ref. 1:p. 425]. In
1990, the Department of Defense (DOD) expects to incur software
costs of $37.99 billion and hardware costs of $5.89 billion [Ref. 1:p.
425]. Over a decade. software costs for DOD will have increased
approximately 900 percent, while hardware costs will have increased
only by approximately 460 percent. Using this calculation. software
costs for DOD are rising twice as fast as hardware costs. Furthermore,
these software costs are mainly concerned with hard real-time
embedded computer systems. As the requirements for embedded
computers in DOD increase. the cost of software will increase even
more dramatically.

Software costs will continue to rise for two reasons. First. as
advances occur in hardware technology. machines will become less
expensive. Second. more and more complex applications are becom-
ing possible candidates for automation. But as the complexity of
applications increases. the complexity of the associated software
development will become exponentially larger. Similarly, as the com-
plexity of software development increases. the cost for that develop-

ment will also dramatically increase.

Software today suffers from not only high development costs but
also poor quality. Symptoms of this poor quality are the lack of:

1. Responsiveness. Computer-based systems often do not meet
user needs.

2. Reliability. Software often fails.

3. Modifiability. Software maintenance is complex. costly. and
error prone.

4. Timeliness. Software is often late and frequently delivered with
less-than-promised capability.

5. Transportability. Software from one system is seldom used in
another. even when similar functions are required.

6. Efficiency. Software development efforts do not make optimal
use of the resources involved. [Ref. 1:p. 8]

A means must be found to reduce the prohibitive cost of software
and simultaneously to increase the quality of software. Established
techniques for developing software have proven incapable of accom-
plishing these improvements. Prototyping might prove to be one such
means.

Prototyping is an engineering-inspired design approach in which
an analyst quickly builds an executable system that may not be com-
plete. This prototype can be demonstrated to users and then easilv
modified. Although prototypes can be more rapidly developed by using
nonprocedural languages, generally, the prototype must be rewritten
in a procedural language to improve efficiency or add features.
[Ref. 2:p. 12]

There are several facts which indicate the advantages of proto-

typing. Users are not always aware of their requirements for a system.

If a user does know a requirement. he might not know the best
method to realize that requirement. Development of the prototype can
be started after only general objectives have been identified. After the
prototvpe is developed. it is shown to the user. The user can thus
observe the execution of the prototype and make recommendations
for modifications. The prototype is modified to reflect the recommen-
dations and then again shown to the user. This process of user obser-
vation and of modification is repeated until the system meets the
user’'s requirements. Butl since the user is now more actively involved
and is involved earlier in the design process. the development of the
prototvpe occurs more rapidly and efficiently.

When prototyping is combined with automated software tools in
order to develop the system even more quickly. that process is known
as rapid prototyping. One such system is the Computer-Aided Proto-
tvping System (CAPS). It combines rapid prototyping with automatic
program generation.

Some of the software tools included in CAPS are an execution
support system. a rewrite system. a syntax-directed editor with
graphics capabilities. a software base. a design database. and a design
management system [Ref. 3:p. 66].

By using both rapid prototyping and automatic program genera-
tion. CAPS will be able to develop a system that is responsive, reliable.
modifiable. timely. transportable, and efficient. CAPS is discussed in

greater detail in Chapter II.

B. THE SCOPE OF THE THESIS

The scope of this thesis is the debugging system and the Dynamic
Scheduler in CAPS. This thesis implements the debugging systems for
the Static Scheduler and the Dynamic Scheduler. This thesis also dis-
cusses an implementation of the Dynamic Scheduler.

Chapter Il of this thesis discusses CAPS and the work accom-
plished on it to date as well as current work on several different
debugging systems.

Chapter 1l discusses the Dynamic Scheduler with particular
attention to how it coordinates execution of the critical and noncriti-
cal operators. Chapter IV discusses the design of the debugging sys-
tems. Chapter V' addresses the implementation of the debugging
svstems and of the Dyvnamic Scheduler. Chapter VI contains the con-

clusions and recommendations for future work.

II. SURVEY OF PREVIOUS WORK

A. COMPUTER-AIDED PROTOTYPING SYSTEM

CAPS is an environment designed to automate prototyping of large
software systems with real-time constraints. The environment consists
of a group of tools whose collective purpose is to provide a means to
write the specifications of a software system, to implement those
specifications. and to execute the resulting prototype. Most proto-
tvping systems perform these functions. CAPS is different in that it
combines rapid prototyping with a variant of automatic program
generation. This combination makes the process of developing the
prototyvpe more timely. efficient. and reliable.

CAPS includes a database of reusable software components. When
a specification for the system has been identified. the database is
searched for a matching specification. If one is found. the component
for that matching specification is retrieved. If no match is found. the
specification must be decomposed. The database is again searched for
matching elements. If the specification cannot be decomposed any
further. its implementation must be coded manually. The significance
of being able to retrieve components is that the prototvpe is developed
more rapidly. Time need not be spent repeatedly implementing the
same specifications in different systems. Figure 2-1 [Ref. 3:p. 67]

illustrates this process of decomposition and retrieval.

identify
Specifications

'

Decompose |——————=p Rewrite

Specifications

i '

Search
Database

Lowest
Leve!
Decomposition?

One

Select

Coce Component

Retrieve ¢

Component

Figure 2-1. The Prototype-Building Process

The major tools in the environment are: a User Interface, a speci-
fication language called the Prototyping System Description Language

(PSDL). an Execution Support System, a Design Management Base. a

e

Software Base, and a Design Data Base. The relationships among these
tools are shown in Figure 2-2 [Ref. 4]. A general description of each of
these tools follows. For more information regarding a specific tool, or

CAPS in general, please refer to Reference 5.

The User Interface serves two functions. First, it is the means by
which the user identifies the specifications for the system. The User
Interface includes a syntax-directed editor and a graphics editor to
enable the user to enter these specifications. Secondly, it serves as the
control unit for the development. When the user requests an action, it
is the User Interface which initiates the action. For example, when the
user requests the execution of the prototype, the User Interface calls
the Execution Support System, which is the process to accomplish
that request. Reference 6 contains a description and implementation
for the User Interface.

PSDL is the language used to develop specifications for the proto-
tvpe and was designed specifically for CAPS. PSDL supports the devel-
opment of prototypes for large systems by providing a computational
mode] that reflects the designer's view of real-time systems. The lan-
guage supports operators, data streams. and abstractions . Reference 5
contains a detailed description of PSDL. [Ref. 5:p. 11]

PSDL also supports hierarchical decomposition of operators
through data-flow diagrams. These diagrams show the connectivity of
the operators. Operators are connected through data streams which

contain the data values required by the operators. The User Interface

User
hterfoce

R { '
Desgn Execytion
Managemen® PSDL Support
Base System
R} — 3
A 2 Y
Syntax

Rewrite Graphcs Static Dynomic

Subsystem Dlocea Edtor Trarsiator Scheduler Scheduler

Design Software
Data Base Base

Figure 2-2. CAPS

contains a graphics editor to draw the data flow diagrams. Reference 7
discusses and implements the graphics editor.

The Software Base contains the reusable software components. On
the other hand, the Design Data Base contains information on the
design of a prototype and keeps copies of the different versions of a
prototype. Reference 8 discusses the design of the Software Base.

The Design Management Base is the tool which organizes and
retrieves components from the Software Base and which manages the
different versions of prototypes in the Design Data Base. Before the
management base stores or retrieves components or prototypes. the
specifications for the components or prototypes must be normalized
by the Rewrite Subsystem. The normalization of specifications is
accomplished by transforming specific words in the specification to
standard ones. For example, if the word output appears in the
specification, it would be converted to the word write. Normalization is

necessary because it reduces the time to search the databases. For

CAPS to be practical, the time to retrieve a component must be signif-
icantly less than it would be to code that same component.

The Execution Support System contains three processes: the
Translator, the Static Scheduler, and the Dynamic Scheduler. The
Translator transforms the PSDL source code into executable code for
both the time-critical and the non-time-critical operators. The Static
Scheduler creates a schedule by which the time-critical operators will
be executed. The Dynamic Scheduler then coordinates the execution
of the non-time-critical and the time-critical operators. References 9
and 10 discuss the design and implementation of the Translator.
References 11. 12, and 13 discuss the design and implementation of
the Static Scheduler.

As envisioned in Reference 11, the Dynamic Scheduler is invoked
when the user asks to exercise the prototype. The Dynamic Scheduler
then invokes the Translator and the Static Scheduler. The Translator
produces executable Ada code, and the Static Scheduler produces a
static schedule which is also executable. These two outputs must be
compiled and linked together. The resulting executable code is an
input to the Dynamic Scheduler. Repeated from Reference 11, Figure

2-3 illustrates the procedure described above.

B. DEBUGGING SYSTEMS

Debugging is one of the most time-consuming activities associated
with programming. When an error is encountered during testing, it
must be identified, located, and corrected. After that. the program

must be recompiled and tested again. If only one error is detected at a

time, the debugging process can rapidly mire in this cycle of identifi-
cation and correction. For this reason, much research is being done to
improve the capability of a debugging system not only to identify

errors but also to locate and correct them.

User

PSDL Source <
Interface

File

Dynamic
Scheduler

Static

Translator Scheduler
Ada Ada
Executable Executable
Code Code

Combiner
Linker
Exporter

Figure 2-3. Execution Support System

Isoda, Shimomura, and Ono [Ref. 14] have developed a debugger
for Ada called the Visual and Interactive Programming Support (VIPS).
VIPS uses graphics to show the static and dynamic behavior of a pro-
gram during execution. VIPS presents different views of the execution

in windows. These windows are: data, program text, block structure,

10

acceleration. figure definition, interaction, and editor. The data win-
dow is used to show which procedures or functions have been invoked

and to show the calling relationship among these units. The program

text window contains the source code and, during execution of the - -

program, highlights the active line. The block structure window
illustrates the nesting relationship of subprograms and internal pack-
ages. The acceleration window is used to display and to change the
execution speed of the program. The figure definition window displays
a list of variables that may or may not be stipulated by the user. The
interaction window is used when the user must respond to prompts
from the program. Lastly, the editor window is used to edit the source
program. The quantity and quality of information that can be displayed
in these windows greatly increases the ability of a programmer to
locate and correct errors.

Seviora [Ref. 15] states that debugging involves two main phases:
identification and repair. Knowledge-based debugging systems can use
three approaches to debugging a program: the program-analysis. 1/0-
based. and internal-trace-based. The program-analysis approach com-
pares the content of the program to its specification to determine
whether they are consistent. In order to do this, the system performs
a detailed analysis of the program. This detailed analysis takes a great
deal of time and, hence, these knowledge-based debugging programs
are only practical for small programs.

The 1/0-based approach examines only those portions of code in

which a bug might occur. To determine what the problem is, systems

implementing this approach compare the actual output with what was
expected. The system attempts to localize the bug in the section being
examined. 1/0O-based systems are not successful in locating the error if
the code has several errors in it, especially if the errors interact.

The internal-trace-based system compares the program code to
the output. Certain characteristics of the program are tagged and
traced through execution. This approach serves only to localize the
error within the program code.

Knudsen [Ref. 16] uses the sequel concept to declare an exception
and its handler together. He defines the sequel as an abstraction of the
goto statement. A sequel defines the name and handler of an exception
and its termination level. There are three types of sequels: the pre-
fixed sequel. which permits the specification of smooth termination:
the virtual sequel, which augments a handler in inner blocks: and the
default sequel. which makes default exception handling possible and.

hence, increases the possibility of smooth termination.

C. A PROTOTYPE IN SMALLTALK

Diederich and Milton [Ref. 17) state that Smalltalk is more than a
programming language. It is, in a sense, a tool that encourages proto-
typing. Smalltalk encourages experimentation with prototyping
because the designer is not caught in the midst of detail and because
the designer can make vast changes to a system with a good chance of
recovery. In Smalltalk, messages form modules which are simpler and
easier to understand. Interfaces between these modules are not nec-

essary because objects are passed as arguments to messages. Smalltalk

12

has numerous predefined objects and messages. These predefinitions
encourage prototyping because a database already exists that need only
be adapted to the user’'s needs. Other features of Smalltalk that
resemble prototyping include the ease of implementing alternatives;
any changes that are made are equivalent to changing specifications

vice changing code.

13

III. THE DESIGN OF THE DYNAMIC SCHEDULER

A. MODIFICATION TO THE ARCHITECTURE

There is a problem with the conceptualization of the Dynamic
Scheduler as it was presented in Chapter II. Because the Translator
uses the Kodiyak generator to produce the executable code for the
operators, the Dynamic Scheduler, itself an executable Ada program,
cannot invoke the Kodiyak Generator. Also, the Static Schedule, an
output of the Static Scheduler, is an input to the Dynamic Scheduler.
This input represents the schedule by which the critical operators are
to be executed. However, this schedule cannot be executed by the
Dynamic Scheduler until it is compiled and linked to the output of the
Translator. Herein lies another problem. Once an Ada program begins
execution, it cannot be suspended to compile an output from one of its
units and then resumed to begin execution of that compiled unit. For
these reasons. the Execution Support System and the Dynamic
Scheduler, in particular. have been modified as reflected in Figure 3-1.

The Execution Support System is revised as follows:

1. The Translator is distinct from the Dynamic Scheduler and
therefore is not invoked by it. It is a separate process which can
execute in parallel with the Static Scheduler.

2. The Static Scheduler is now part of a system containing the
Static Scheduler, its debugging system, and the process by which
the non-time-critical operators are transformed into executable
code.

3. The Dynamic Scheduler which coordinates the execution of the

critical and non-critical operators and its debugging system form
another distinct part of the Execution Support System.

14

User
interface

-~ 2 Translator

Static
Scheduler
Execution

System

Execution
Support
System

Combiner
Linker
Exporter

Dynamic
Scheduler

Figure 3-1. The Execution Support System, as Modified

It is important that each of the above be distinct from the others.
The Translator and the Static Scheduler can then be executed in
parallel. either in a single processor or in a multi-processor environ-
ment. These two functions produce three outputs: the executable code
for the operators. the Static Schedule for the time-critical operators.
and the listing of procedure calls for the non-time-critical operators.
These outputs must be compiled and linked together before the
Dynamic Scheduler can be invoked. The User Interface in CAPS is
responsible for invoking the Static Scheduler, the Translator, and the

Dynamic Scheduler. The User Interface will also ensure that the out-

15

puts above are compiled and linked before invoking the Dynamic

Scheduler.

B. DESIGN OF THE DYNAMIC SCHEDULER
The Dynamic Scheduler consists of three processes: the Static
Schedule, the non-time-critical operators, and a debugging system.

The relationships among these three are shown in Figure 3-2.

Dynamic
Scheduler

Critical
Schedule Operators

Debugging
System

Figure 3-2. The Dynamic Scheduler

The Static Schedule is assumed to have the format shown in Fig-
ure 3-3. Figure 3-3 shows the minimum amount of information which
must be specified for each operator in the Static Schedule. The vari-
able “Exception_Operator” is necessary to inform the debugging sys-
tem which operator experienced a run-time error. The third line of

Figure 3-3 is a procedure call to the code produced by the Translator.

16

’

"TL" is the package from the Translator which includes the execut-
able code for the operator. This is the line that actually executes the
operator. The if-elsif statement is necessary to coordinate the different
actions which occur based on the time. These actions are explained
below. The Ada constructs in Figure 3-3 will be explained in
Chapter V.

Exception_Operator := Name_Of_Next_Operator;
Current_Time := CALENDAR.CLOCK;
TL.Name_Of_Next_Operator;
if Current_Time > Next_Start_Time then
DS_Debug.Runtime_MET_Fagilure(Exception_Operator);
elsif Current_Time < Next_Start_Time then
delay Next_Start_Time - Current_Time;
end if;

—The same lines are necessary for each operator in the Static
--Schedule.

Figure 3-3. The Static Schedule

The Dynamic Scheduler serves to coordinate execution of the
time-critical and non-time-critical operators. The time-critical opera-
tors are executed through the Static Schedule. Initially, the Static
Schedule is invoked. It must be the process which executes first
because its first operator is assumed to begin at time zero.

After the first operator finishes execution, the current time is
compared to the time the next critical operator must start execution.
Depending on the results of that comparison. one of three actions

might occur:

17

1. If the current time is less than the start time for the next critical
operator, the static schedule must suspend execution until the
next start time, and then the non-time-critical operators begin to
execute. At the time the next critical operator must begin execu-
tion, the non-time-critical operators are suspended and the
Static Schedule is resumed. When the processes resume execu-
tion, they do so at the point where they were suspended.

2. If the current time is equal to the start time for the next critical
operator, then the Static Schedule continues execution.

3. If the current time is greater than the start time for the next
critical operator, then the Static Schedule notifies the debugging
system in the Dynamic Scheduler that a run-time execution error
has occurred. The user is queried as to whether to continue exe-
cution of the prototvpe. Regardless of his decision, information
about the error is written to a file. In this way, a historical record
is maintained. After the prototype has finished execution, either
normally or abnormally, the user is able to update the execution
times for the pertinent operators.

An example may clarify this coordination. Figure 3-4 shows a
Static Schedule and a listing of non-time-critical operators. For the
Static Schedule, the number on the left side of each solid horizontal
line represents the time that the succeeding operator must start
execution. For example. operator A must start at time 0, B must start
at time 15. C at time 22, and so on. On the other hand. the non-time-
critical operators are executed sequentially as time allows.

When the Dynamic Scheduler is invoked, operator A will begin to
exccute. because it must start at time 0. But suppose the operator
completes execution at time 12 (represented by the dashed line in
Figure 3-4). Operator B does not execute until t:me 15. Thus. there is
an interval of three time units in which the Dynamic Scheduler may
execute the non-time-critical operators. Before the first non-time-

critical operator may begin execution. the Dynamic Scheduler must

18

suspend the execution of the Static Schedule and save its state of exe-
cution. Operator X is then executed. The non-time-critical operators

continue to execute until time 15. At that moment, the Dynamic

Scheduler suspends execution of the non-time-critical operators, -

saves their state, and then restores the state of execution for the
Static Schedule. In this way, the Static Schedule is resumed at the

point where operator A ended and operator B is to begin execution.

Non-Time-
Stotic Critical
Schedule Operators
c
A os X
g - e
] < \pormm Y
B Z
zZ
C
L
D

Figure 3-4. Coordination of Operators

Now suppose operator B completes execution at time 22. Since
this is the time operator C must begin execution. the Static Schedule
continues to execute. However, operator C completes execution at
time 45— after the required start time (40) for operator D. In this case.
the Dynamic Scheduler must suspend execution of the Static Sched-
ule. save the state of the execution, and then inquire of the user
whether to continue. If the user wants to continue, the Dynamic

Scheduler must adjust the time backwards to the start time required

19

for operator D, restore the state of execution for the Static Schedule,
and then resume execution of the Static Schedule.
The process described above continues until all operators have

executed.

20

IV. DESIGN OF THE DEBUGGING SYSTEM

A. PURPOSE OF A DEBUGGING SYSTEM

The purposes of debugging systems are to identify errors and, if
possible, correct them. The latter is the more difficult purpose to
accomplish. If an error is syntactic in nature, it is fairly easy to correct.
For example, if a variable is undeclared, it is easy to correct that error
by simply declaring the variable in the proper manner. If, on the other
hand, the error is semantic in nature, the error is harder to correct.
For example, if an end statement is missing, only the user knows the
correct location for it. It is possible in CAPS to have both syntactic and
semantic errors. The debugging system for CAPS must then be capable

of handling both types of errors.

B. ERROR REPORTING IN THE DEBUGGING SYSTEM

Because the Static Scheduler and the Dynamic Scheduler are dis-
tinct from each other, each scheduler must have a debugging svstem
to process those errors encountered by each scheduler. The debug-
ging system in the Static Scheduler will process those errors encoun-
tered while creating a Static Schedule. The debugging system in the
Dynamic Scheduler will process those errors that occur when the
operators execute.

Both debugging systems will report errors in a similar manner.
When an error has been encountered, the debugging system should

notify the user that an error occurred and the nature of that error. If it

21

is possible to correct or adjust the error, the user should be queried as
to whether he wants to terminate or to continue execution. Regardless
of the decision, information pertaining to the error should be written
to a file. This information should contain sufficient information for the -

user to understand the error and, possibly, to correct the error.

C. ERRORS IDENTIFIED IN THE TRANSLATOR

When the Translator transforms the PSDL source code into exe-
cutable code, it identifies three possible errors. Figure 4-1 shows a
simple data-flow diagram. The arrow entering the bubble represents a
data stream serving as an input source. The bubble represents an
operator. The arrow leaving the bubble represents a data stream serv-
ing as an output source. When an operator attempts to read the data
stream, it expects to find a value there. If no value is present on the
data stream. an error exists which must be processed by the debug-
ging syvstem. This error is called Buffer Underflow. Similarly, if the
operator is placing a value in the output data stream, it expects the
data stream to have room for it. If the data stream is full, an error

exists. This error is called Buffer Overflow.

Figure 4-1. A Simple Dataflow Diagram

22

——-

PSDL permits onlv one exception per data stream. If a data stream
has an exception in it and another exception arrives, an error has
occurred that must be processed by the debugging system. This type
of error is called Exception Error.

The Translator only identifies where these errors may occur. The

Buffer_Underflow, Buffer_Overflow, and Exception_Error actually
occur only when the operators execute. Therefore, these errors are

processed by the debugging system within the Dynamic Scheduler.

D. ERRORS ENCOUNTERED BY THE STATIC SCHEDULER

The Static Scheduler creates a Static Schedule by which the time-
critical operators must execute. This schedule ensures that all timing
constraints are met. A time-critical operator may have the following

timing constraints:

1. A maximum execution time (MET) stating the length of time
required by the operator to execute.

2. A maximum response time (MRT) stating how much time passes

from the arrival of input values to the placement of the output
values into the data streams.

3. A minimum calling period (MCP) stating the time between
arrivals of input.

All time-critical operators have a maximum execution time. Only
sporadic operators have maximum response times and minimum call-
ing periods. If an operator has a maximum response time, it must also
have a minimum calling period. Sporadic operators are executed when
new input arrives; periodic operators execute at regular intervals

called periods.

23

During the process of creating a Static Schedule. the Static
Scheduler must examine the timing constraints to ensure they are
valid for the operators. If the constraints are not valid. an error is
reported to the debugging system. Timing constraints are valid if the

following relationships occur:

1. The MET for an operator is less than its MRT and MCP. Other-
wise, the operator may not complete execution before it must be
executed again.

2. The MCP for an operator must be less than its MRT. If it is not,
the operator may not produce an output before it must execute
again.

3. If an operator has an MET, all operators in its decomposition
must have METs.

4. If an operator has an MET, the MET for each operator in its
decomposition must be less than or equal to the MET of the
operator at the upper level.

5. If an operator has an MET, the sum of the METs of the operators
in its decomposition, if applicable, must be less than or equal to
the MET of the operator at the upper level.

6. If an operator has a period, MRT, or MCP, it must have an MET.

7. The MET for an operator must be less than its period. Otherwise,
the operator may not complete execution before its next execu-
tion time occurs.

If any of these relationships is invalid. an error results which must
be resolved before the Static Scheduler can continue. These errors are
called MET_Not_Less_Than_MRT, MET_Not_Less_Than_MCP, MCP_
Not_Less_Than_MRT, MET_Required, MET_GT_Parent, MET_Sum_
GT_Parent, Crit_Op_Lacks_MET, and MET_Not_Less_Than_Period.

The debugging system has two options with regard to processing

these errors: terminate the Static Scheduler or correct the error. If

24

the error is to be corrected, the user must be queried as to the proper
value for the invalid constraint. Changing the value for a constraint on
an operator at one level of decomposition may affect constraints for an
operator at an upper level of decomposition. Consider Figure 4.2. The
METs of the operators in the second level of decomposition are valid;
their sum is less than or equal to the MET for operator A. However,
the sum of the METs for operators E and F is greater than the MET
for operator D. The simple way to correct this error would be to adjust
the MET of operator D. By changing the value of the MET for operator
D to 45ms, the value of the MET for operator A is now invalid. This
rippling effect must be considered when correcting timing con-
straints. Since the timing constraints for operators at upper levels of
decomposition must be reexamined each time a constraint has been
altered at a lower level, large amounts of processing time may be spent
correcting timing constraints. For this reason, after a specified num-
ber of corrections to timing constraints, if the timing constraints are
still invalid. the Static Scheduler should notify the debugging system
of the situation and processing should be terminated. This error is
called Excessive_Constraints_Altered.

The debugging system should maintain a record of the changes
that were made to the timing constraints. After the prototype has fin-
ished execution. either normally or abnormally, the user is then able

to use this historical record to update the PSDL source file.

25

80ms

25ms 20ms 35ms

15ms 30ms

Figure 4-2. Operator Decomposition

The Static Schedule may encounter other errors while creating a
static schedule. It may not be able to locate the operator to be sched-
uled first, or it may not be able to locate the successor of an operator.
These errors are called No_Initial_Link_Op and No_Matches_Found,
respectively.

In order to schedule the operators, the periods of the operators
must be exact multiples of some base period. This base period must be
determined. An error, called No_Base_Block, results if the base period

cannot be determined.

26

The following errors may occur when the Static Scheduler is cal-

culating the times that the operators must start execution:

1. The MET of an operator is greater than or equal to half of the
period for the operator.

2. The total time that the operators need to complete execution is
greater than the length of the harmonic block (the set of opera-
tors whose periods are multiples of some base period).

3. The ratio of the MET divided by the period for an operator,
summed over all the operators, is greater than the number of
processors being used.

4. Given the timing constraints, a Static Schedule is not possible.

The first three errors above are called Fail_Half Period,
Bad_Total_Time, and Ratio_Too_Big. The fourth error has been
divided into three errors depending on when the determination has
been made that a static schedule is not possible. These errors are
called Over_Time, Invalid_Schedule, and Schedule_Error.

There is one more error associated with the Static Scheduler.
This error is the Runtime_MET_Failure. When the Static Schedule is
actually being written by the Static Scheduler, the completion time of
the current operator is compared against the start time for the suc-
ceeding operator. If the completion time is after the start time. the
debugging system is notified of the error. The Runtime_MET_Failure
error will occur only during execution of the Static Schedule, and thus
this error will be processed by the debugging system in the Dynamic
Scheduler.

Figure 4-3 lists all of the errors that can be encountered by the
Static Scheduler while creating a Static Schedule. Items 1 through 13

27

were identified in Reference 11. Reference 13 changed the name of
Item 2 from “MET_Equals_Period” (as originally given) to its present
name. This change occurred because in a single-processor environ-

ment it is permissible for the MET to be equal to the period. The only

requirement is that the MET of an operator not be greater than its
period. If it is greater, there is no guarantee that the operator will
complete execution. Items 14 through 17 were identified in Refer-

ence 13.

MET_Not_Less_Than_MRT
MET_Not_Less_Than_Period
No_Initial_Link_Op
No_Matches_Found
MCP_Not_Less_Than_MRT
MET_Not_Less_Than_MCP
No_Base_Block
Fail_Half_Period
Bad_Total_Time

10. Ratio_Too_Big

11. Over_Time

12. Invalid_Schedule

13. Schedule_Error

14. MET_Required

15, MET_GT_Parent

16. MET_Sum_GT_Parent

17. Crit_Op_Lacks_MET

18. Escessive_Constraints_Altered

VONOCOLWLN -~

Figure 4-3. Errors to be Processed by the
Static Scheduler’'s Debugging Systems

28

V. IMPLEMENTATION OF THE DEBUGGING SYSTEMS
AND THE DYNAMIC SCHEDULER

A. PROGRAMMING ENVIRONMENT

The programming environment for the implementation is the
Unix operating system run on a Sun workstation. The programming
language used is Ada. When active, a debugging system will have a
dedicated window on the screen to interact with the user. This

implementation operates in a single-processor environment.

B. THE STATIC SCHEDULER AND ITS DEBUGGING SYSTEM

The Static Scheduler and its debugging system are implemented
as two tasks: the Static_Scheduler and SS_Debug, respectively. These
two tasks are dependent on a main program which also includes a
procedure, the Create_NTC_Task. Since SS_Debug must cooperate
with the Static_Scheduler, they were implemented as tasks because
this cooperation among processes is a purpose for tasks. These two
tasks cooperate in order to process errors encountered while creating
a Static Schedule. The Create_NTC_Task is implemented as a proce-
dure because it only needs to be executed if the Static_ Scheduler was
successful in creating a Static Schedule.

This implementation of the debugging system for the Static_
Scheduler does not correct errors. When the Static_Scheduler
encounters an error during processing, it notifies the debugging sys-

tem and then terminates execution. The debugging system will

29

process the error by explaining the error to the user, and then it too
will terminate. Appendix A contains the code for the implementation
discussed in this section.

1. The Static Scheduler

Reference 14 implemented the task called Static_Scheduler.
Since Appendix A includes that task, a brief discussion of the task's
activity follows. For more details, refer to Reference 13. Three phases
of the Static Scheduler have been implemented. The Read_PSDL
phase, implemented on the Kodiyak Generator, produces a text file
consisting of the names of the operators, the timing constraints, and
the link statements.

The FILE_PROCESSOR package contains two procedures,
SEPARATE_DATA and VALIDATE_DATA. The former procedure reads
the text file produced by the Kodiyak Generator and separates the
time-critical operators. the non-time critical operators., and the link
statements. The time-critical operators and their timing constraints
are placed in a data structure called an NARY_TREE. The names of the
non-critical operators are written to a text file called NON_CRITS.
The link statements are placed into a linked list.

The VALIDATE_DATA procedure examines the NARY_TREE
to determine whether the timing constraints for the operators are
valid. If an invalid constraint is identified, an exception is called. The
exception then notifies SS_Debug of the error. An exception is used so
that the task terminates gracefully. When an exception is identified,

the system looks at the unit in which the exception was identified. If

30

the exception is not found there, the system terminates that unit and
goes to the next outer scope to locate the exception. If the main pro-
gram is reached without locating the exception, the system terminates
execution and reports that an exception was not located.

The TOPOLOGICAL_SORTER package contains two proce-
dures. CREATE_LISTS and SORT_REMAINING_OPERATORS. The
former procedure locates the operator which must execute first.
SORT_REMAINING_OPERATORS identifies those operators which
must follow each other. Errors are processed in the same manner as
that described for the FILE_PROCESSOR package.

The task called the Static_Scheduler is formed by importing
the FILE_PROCESSOR and the TOPOLOGICAL_SORTER packages. The
body of the task then calls the procedures in the packages. When the
implementation of the Static_Scheduler is completed. the remaining
packages and procedure calls will be included in the task
Static_Scheduler.

2. The Debugging System

As mentioned previously, the debugging system for the
Static_Scheduler is implemented as a task named SS_Debug. The
cooperation between SS_Debug and the Static_Scheduler is known in
Ada as a rendezvous. A rendezvous occurs when one task calls an entry
in another task. The entry statements for a task are located in its
specification. Each entry statement in the specification has a corre-

sponding accept statement in the body of the task. The accept state-

31

ment lists the action or actions to be taken for the entry. The accept
statement may be either a single statement or a compound statement.
In SS_Debug, the entry statements are the name of the errors
listed in Figure 4-3, with the exception of the error Excessive_Con-
straints_Altered. This error will occur when numerous corrections
have been made to the timing constraints. Since SS_Debug does not
correct any errors, Excessive_Constraints_Altered is not imple-
mented. The specification for task SS_Debug is shown in Figure 5-1.
For those errors triggered by a specific operator, the name of that
operator is provided as the value to the parameter Exception_

Operator.

task SS_Debug is
entry MET_Not_Less_Than_MRT (Exception_Operator @ VSTRING):
entry MET_Not_Less_Than_Period (Exception_Operator : VSTRING);
entry No_lnitial_Link_Op:
entry No_Matches_Found (Exception_Operator © VSTRING):
entry MCP_Not_Less_Than_MRT (Exception_Operator : VSTRING):
entry MET_Not_Less_Than_MCP (Exception_Operator : VSTRING),
entry No_Base_Block:
entry Fail_Ha!f_Period (Exception_Operator : VSTRING).
entry Bad_Total_Time;
entry Ratio_Too_Big:
entry Over_Time:
entry Invalid_Schedule:
entry Schedule_Error;
entry MET_Required (Exception_Operator : VSTRING):
entry MET_GT_Parent (Exception_Operator : VSTRING):
entry MET_Sum_GT_Parent (Exception_Operctor : VSTRING);
entry Crit_Op_Lacks_MET (Exception_Operator : VSTRING);
entry Static_Scheduler_Done;
end SS_Debug:

Figure 5-1. Specification for SS_Debug

Figure 5-1 also indicates that the specification for SS_Debug

includes one other entry statement. This entry is called Static_

32

Scheduler_Done and is called by the Static_Scheduler task when a
schedule of time-critical operators has been successfully created.
SS_Debug then knows the Static_Scheduler has terminated and,
hence, it too should terminate.

Each of the entries in the specification has a corresponding
accept statement in the body of SS_Debug. Because each entry is pro-
cessed in a similar manner, each accept statement is similar. Because
there are two actions to be performed, the accept statements are
compound. Additionally, the accept statements are located inside a
select loop. When different rendezvous can occur at the same time, a
select loop permits SS_Debug to select the accept statement for the
current rendezvous. The loop is then re-started to await the next ren-
dezvous. Although in this implementation only one accept statement
will be executed, future implementations may choose to correct errors
and then the possibility for more rendezvous may occur. Therefore.
this method of implementation was chosen with an eye to the future.

The actions to be performed in the accept statement are
shown in Figure 5-2. Because each accept statement is similar. only
one is shown for illustration purposes. The first action taken is to
assign the value of true to the variable Error_Exists. The value of this
variable is a signal to continue execution (if false) or to terminate exe-
cution (if true). The next action is to call a local procedure to print the
information pertaining to the error. The explanation of the error and
the name of the operator causing the error, if applicable, are written

to a file called Information. The accept statement is exited, followed

33

by the exit from the select. A determination is then made to exit the
loop based on the value of the variable Error_Exists. If the value of that

variable is true, SS_Debug is terminated.

loop
select

accept No_lnitial_Link_Op do
Error_Exists .= true;
Print_No_lnitial_Link_Op_Message (Information);
end No_lInitial_Link_Op:

end select:;

end loop:

Figure 5-2. Accept Statement from the Body of SS_Debug

The implementation of the accept statement for Static_
Scheduler_Done is only slightly different than that for the other entry
statements. The code for Static_Scheduler_Done also has two actions.
The first action is to assign the value of true to the variable Static_
Scheduler_Finished. Like Error_Exists, this variable is used to deter-
mine whether the task should be terminated. The second action in the
accept statement is to call the procedure Creat_NTC_Task. This pro-

cedure is described in the next section.

34

In summary, SS_Debug is a task whose main body consists
mainly of a select loop which contains an accept statement for each
entry. The declarative portion of the task body contains the proce-
dures to print the error messages.

3. The Create _NTC_Task

The Create_NTC_Task is a procedure declared in the main
program. It is called from within SS_Debug. Because it is only required
to execute if a Static Schedule has been created, the most logical time
to have it called is after the Static_Scheduler has completed. It could
be called in the main body of the program, but this would require the
main program to monitor the Static_Scheduler for termination. This
monitoring would be in the form of a “busy wait” which wastes pro-
cessing time. It is more efficient and more logical to have the
Create_NTC_Task called by SS_Debug.

The Create_NTC_Task has the sole function of producing a
file called Non_Time_Crits.a. This file will contain the specification
and body for an Ada package called Non_Time_Crits_PKG. Inside this
package is the specification and body of a task called Non_Time_
Critical_Operators. It is important that this package compile and that
the included task be capable of executing.

The Create_NTC_Task creates the package by writing the
necessary verbiage to the file. The names of the operators which must
be written to the output file are located in a file called NON_CRITS.
This is the file produced in the Static_Scheduler. The names of the

operators in the file must be converted to procedure calls. Because the

35

code for these procedure calls is located in the package produced by
the Translator, the names of the operators must be appended to the
package name. If the NON_CRITS file is empty, the Create_NTC_Task
will not write any procedure calls. The last action taken is a call to
DS_Debug to notify the debugging system in the Dynamic Scheduler
that all non-time-critical operators have executed.

Figure 5-3 is a sample output from the Create_NTC_Task.
Note the verbiage and format of the file. It is similar to the style a pro-
grammer would use and should be capable of being compiled. Observe
that the specification for the task includes a pragma. This pragma is

important when the task is ready to be executed in the Dynamic

withTL; --Translator package
with DS_Debug_PKG; --Debugging system

package Non_Time_Crits_PKG s
task Non_Time_Critical_Operators is
pragma Priority (1);
end Non_Time_Critical_Operators;
end Non_Time_Crits_PKG;

package body Non_Time_Crits_PKG is
task body Non_Time_Critical_Operators is
begin
TL.First_Operator;
TL.Second_Operator;
TL.Third_Operator;
DS_Debug.Non_Time_Critical_Operators_Done;
end Non_Time_Critical_Operators;
end Non_Time_Crits_PKG;

Figure 5-3. Example of a Non_Time_Critical_Schedule

36

Scheduler. The section on the Dynamic Scheduler will explain why
this pragma is necessary.

In summary, the main program consists of the Static_Sched-
uler and the SS_Debug tasks and the Create_NTC_Task procedure.
When the main program terminates, there will either be two files, one
containing a task for the Static Schedule and one containing a task for
the non-time-critical operators, or a file containing an error message.

If created, the packages will be imported by the Dynamic Scheduler.

C. THE DYNAMIC SCHEDULER AND ITS DEBUGGING SYSTEM
1. Ada Constructs Important to the Dynamic Scheduler

Ada offers facilities which can directly influence the imple-
mentation of the Dynamic Scheduler. The more important of these
facilities are: the library unit CALENDAR, the sub-program task unit,
the pragma PRIORITY, and the reserved word DELAY. Each of these
features contributes significantly to the method in which the Dynamic
Scheduler can be implemented.

In Ada, there is a library unit called CALENDAR. This unit
provides the means to use real time in a program. The unit is a pack-
age consisting of the data types DURATION and TIME, and of several
procedures which permit manipulation of tirﬁe. Manipulation of time
is critical in applications involving real-time embedded systems.
DURATION is a fixed-point type so calculations can be performed
without losing accuracy. The procedures included in CALENDAR
enable the programmer to add and subtract time, to compare times

against each other, to set time, and to split time into its component

37

parts, i.e., month, day, year, and seconds. Again, these operations are
critical to embedded systems which monitor time.

Ada also includes tasks which are program units that allow
processes to execute in parallel. Tasks also permit cooperation among
themselves. This cooperation is particularly important for applications
which must communicate with physical systems in real time.

Tasks in Ada have two parts—the specification and the body.
The specification is used to describe how a task cooperates with other
tasks. The body of a task describes the action to be performed by the
task. A task is activated at the end of the parent’s declarative section.
The body of the main program is considered to be an undeclared task
and, as such, is executed first. The dependent tasks are then executed
in an unpredictable manner. The execution of tasks is time-shared so
that each task is given an opportunity to execute.

In the Dynamic Scheduler, the Static_Schedule and the Non_
Time_Critical_Operators must operate in conjunction with each other.
While the Static_Schedule is executing, the other task must be sus-
pended but ready to execute. At other times, the Non_Time_Criti-
cal_Operators may be operating and the Static_Schedule suspended
awaiting some action. Therefore to implement these processes as
tasks is appropriate.

The order in which tasks are executed can be controlled by
the pragma PRIORITY. A pragma notifies the compiler of comments
which are not part of the program. These comments serve as instruc-

tions to the compiler. Some of the instructions may include when to

38

start a new page for a listing, when and what to optimize, or whether
to list sections of the program. One pragma important to the imple-
mentation of the Dynamic Scheduler is the PRIORITY pragma. This
pragma specifies the priority of a task or of the main body. It takes an
argument which can be either an integer or an expression which eval-
uates to an integer. A task with a higher priority will be executed
before a task with a lower priority. The PRIORITY pragma may only
appear in the specification of a task or within the declarative part of
the main body.

Figure 5-4 is a sample Ada program that demonstrates the
use of the pragma PRIORITY. The priority for a task, if applicable, is
declared within the specification for that task. Notice that task Two,
although declared second, has a higher priority and, thus, should exe-
cute first. Because task One has the next lower priority, it should exe-
cute second. Because task Three and the main body have no declared
priority, there is no way to determine which will execute third and
fourth.

Figure 5-5 is a copy of the output produced when the pro-
gram in Figure 5-4 is executed. Note that the tasks were executed in
the expected order.

One disadvantage with tasks is that they cannot be separately
compiled. However, this problem is overcome by including a task
inside a package. The package can then be separately compiled, thus

accomplishing the desired result.

39

with TEXT_IO; use TEXT_IO;
procedure Example_Priority is

task One is
pragma Priority (1);
end One;

task Two is
pragma Priority (2);
end Two;

task Three;

task body One is
begin
PUT_LINE (‘Task One executed.");
end One;

task body Two is
begin
PUT_LINE ('Task Two executed.”);
end Two;

task body Three is
begin
PUT_LINE ("Task THREE executed.”);
end Three;

begin
PUT_LINE ("Main body executed.”);
end Example_Priority;

Figure 5-4. Example_Priority Program

40

Task Two executed.
Task One executed.
Task Three executed.
Main body executed.

Figure 5-5. Output from the Example_Priority Program

The DELAY statement is used in Ada to suspend execution of
a task or main body. DELAY takes an argument which is a constant or
an expression that has a value of type DURATION. The value is
expressed as the number of or portion of seconds the task or main
body will be suspended. After a task is suspended by a DELAY state-
ment, other tasks, including the main body, may execute. However,
when the length of the delay is over, the task which was suspended
will be ready to execute when the processor is available.

Figure 5-6 illustrates how the DELAY statement is used. Task
Two prints a line of text to the screen and then delays for one-tenth of
a second. During this time, task One will be executed. After the time
specified in the delay statement has expired. task One is suspended
and task Two is resumed. The line of text after the DELAY statement
in task Two is then executed. and the loop is repeated indefinitely.
Figure 5-7 is the program Main again, but this time including Exam-
ple_Delay. Figure 5-8 is a portion of the output produced by Main. This
portion is then repeated indefinitely.

41

with TEXT_IO; use TEXT_IO;

package Example_Delay is
task One is
pragma Priority (1);
end One;

task Two is
pragma Priority (2);
end Two;

end Example_Delay;

package body Example_Delay is
task body One is
begin
loop
PUT_LINE ("One executing.”;
end loop;
end One;

task body Two is
begin
foop

PUT_LINE (‘Two entered before delay

statement.”);
delay 0.1;

PUT_LINE ("Two executing after delay

statement.”);
NEW_LINE;
end loop;
end Two;

end Example_Delay;

Figure 5-6. Example_Delay Package

42

with Example_Delay:

procedure Main is
begin
null;
end Main;

Figure 5-7. Main Program With Example_Delay Package

Two entered before delay statement,
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
One executing.
Two executing ofter delay statement.

Figure 5-8. Output from Main Program
With Example_Delay Package

2, The Dynamic Scheduler
The Dynamic Scheduler is implemented as a main program
called Dynamic_Scheduler. It imports the packages containing the
tasks for Static_Schedule and the Non_Time_Critical_Operators.

Because the Static Scheduler is not fully implemented, these tasks do

43

not yet exist. The theory behind the implementation of the Dynamic
Scheduler has been demonstrated by writing the small programs
discussed previously.

The function of the Dynamic Scheduler is to coordinate the
execution of the two tasks of operators. Because the schedule for the
time-critical operators must begin at time zero, the Static_Schedule
task must be executed first. In order to insure this, the pragma
PRIORITY and the reserved word delay are used. The pragma
PRIORITY must be included in the specifications of the Static_
Schedule and Non_Time_Critical_Operators tasks. As was seen in Fig-
ure 5-3, the pragma is included in the Non_Time_Critical_Operators.
When the Static Schedule is written, it too must include a pragma
PRIORITY in the task specification. Because the Static_ Schedule must
be executed first, it must have a higher priority. This higher priority
will ensure that when the Static_Schedule is ready to resume
execution, it will be given control of the processor at the first available
opportunity. Refer to Figure 3-3. The coordination of the execution of
the operators in the two tasks is also obtained by having the delay
statement follow the execution of each operator. Note the delay
statement in the Static_Schedule is part of an if-elsif statement and is
only executed when time remains before the next operator must start
execution. It is this delay statement that suspends the execution of the
Static_Schedule and permits the Non_Time_Critical_Operators to
execute. When the length of the delay is over, the Static_Schedule is

given the use of the processor at the first available opportunity. The

44

state of execution for both tasks is automatically restored by the
processor upon resumption of execution of the task.
3. The Debugging System for the Dynamic Scheduler
The debugging system for the Dynamic Scheduler has been
implemented as a task called DS_Debug. Appendix B contains the code
for DS_Debug. The specification for the task has six entry statements,
one for each expected error and two to indicate when the other tasks

have completed. This specification is shown in Figure 5-9.

task DS_Debug is
entry Runtime_MET_Failure (Exception_Operator : VSTRING);
entry Buffer_Underflow;
entry Buffer_Overflow;
entry Exception_Error;
entry Non_Time_Critical_Operators_Done;
entry Static_Schedule_Done;
end DS_Debug:

Figure 5-9. Specification for DS_Debug

The implementation for the body of DS_Debug is similar to
that of SS_Debug, except for the Runtime_MET Failure error. The
only difference in the implementation for the latter error is in the
actions performed by the accept statement. The user must be queried
as to whether to continue or to terminate execution of the prototype.
This interaction with the user occurs in a dedicated window on the
Sun Workstation. If the user wishes to terminate execution, an error
message is printed to the file called Information before termination

occurs, in a manner similar to that described for SS_Debug.

45

_

On the other hand, if a user wants to continue execution,
adjustments must be made to the time and the new time returned to
the Static_Schedule. An error message is still printed to a file so as to
provide a historical record of needed modifications. Consideration
must be given to the fact that an operator may execute numerous
times. If an operator which frequently executes exceeds its MET, the
error message should not be repeatedly written to the file. To prevent
this from happening, a data structure called Operators_Overrun is
maintained.

Operators_Overrun is a simple linked list whose nodes are
records. Each record contains three fields—one for the name of the
operator, one for the number of times it has executed and one for a
pointer to the next node. Therefore, when an operator exceeds its
runtime MET, it is compared to the Operators_Overrun list to deter-
mine the appropriate action. If the operator does not appear in the
list. then a node for it is inserted and execution continues. If, on the
other hand. the operator appears in the list, and if it has executed less
than six times, the second field is updated and the execution of the
prototype continues. If, however,the operator appears in the list and it
has executed more than five times, then an error message is printed
stating that an operator with an invalid MET is executing too fre-
quently, and then execution of the prototype is terminated. Note that
the number five is an arbitrary limit. When familiarity is gaiued with
the average number of times an operator may execute, this figure may

be revised.

46

-

DS_Debug does have an inherent disadvantage. Because the
tasks for which it must rendezvous are imported, DS_Debug cannot be
located inside the Dynamic Scheduler. If it were, it would not be visi-
ble to the Static_Schedule and to the Non_Time_Critical_Operators
which would be declared before it. For this reason, DS_Debug must be
separately compiled, and then the Static_ Schedule and the Non_
Time_Critical_Operators packages must include statements for
DS_Debug.

In conclusion, the Dynamic Scheduler is implemented as a
main program which relies on imported packages to execute the
schedules at the appropriate times. The code for the Dynamic_

Scheduler is shown in Figure 5-10.

with Static_Schedule_PKG;
--package containing Static Schedule
with Non_Time_Crits_PKG:
--package containing Non_Time_Critical_Operators

procedure Dynamic_Scheduler is
begin
null;
end Dynamic_Scheduler;

Figure 5-10. The Dynamic Scheduler

47

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis provides an implementation for the Dynamic
Scheduler and debugging systems for the Execution Support System of
CAPS and describes the interactions among the units. The need to
divide the Execution Support System into the Static Scheduler Exe-
cution System and the Dynamic Scheduler was identified and imple-
mented. The thesis demonstrates how the Static Scheduler executes
in conjunction with a debugging system to process errors. It also
demonstrates how the Dynamic Scheduler can coordinate the execu-
tion of the critical and non-critical operators. The implementation is
based on the assumption that the Static Scheduler produces a Static
Schedule as described in the thesis. If this assumption proves incor-
rect when the static Scheduler is fully implemented, then the work in
this thesis will have to be re-examined in the new context.

Selecting Ada as the implementation language had a significant
effect on the feasibility of implementing both parts of the Execution
Support Svstem. The existence of tasks in Ada allows the two sched-
ules of operators to execute in parallel, whether in a single-processor
environment or in a multi-processor environment. The delay state-
ment allows the execution of the Static Schedule to be suspended,
when applicable, and the Non_Time_Critical_Schedule to be executed
in any open time slots. Additionally, the ability to separately compile

48

modules and then import these modules into another program
directly affected the implementation of the Dynamic Scheduler. Ada
has demonstrated its suitability as a programming language for real-

time embedded systems.

B. RECOMMENDATIONS

There are significant opportunities for future work in the aspects
of the Execution Support System covered in this thesis. One of the
important areas is the expansion of SS_Debug to incorporate more
interaction with the user, especially with regard to correcting errors.
In particular, the possibility of correcting errors in timing constraints
during the validation phase of the Static Scheduler should be exam-
ined. The correction of as many errors as possible will make the envi-
ronment more responsive to the user.

Another possible area of work is to have both debugging systems
provide statistical information and debugging facilities. Debugging
facilities will support monitoring or tracing relevant information con-
cerning operator execution and displaying a record of events that
occurred during execution, including computed values and their asso-
ciated input and output times. Statistical information collected during
execution will include frequency of operator firing, number of excep-
tions occurring, and statistical data on timing parameters for critical
operators. [Ref. 5:p. 40]

A third area of interest is implementing the capability to process

hardware or operator interrupts. The Execution Support System

49

should be able to respond to an interrupt about equipment failure or to

an interrupt from the operator to abort execution.

50

APPENDIX A
PROGRAM CODE FOR
SS_DEBUG

- This program implements the debugging system for the Static Scheduler

-- in the Computer Aided Prolotyping System (CAPS). The program

-- consists of a procedure and (wo tasks. The procedure

-- Create_NTC_Task produces a file that contains an Ada

-- package which can be compiled. This package contains a task that

- will call the procedures to execute the operators. One of the tasks

-- is SS_Debug. This task processes errors encountered during execution

-- of the second task, the Static_Scheduler. The code for the body of

-- this task is only partially complete. The procedure mentioned

-- earlier is only called if the Static_Scheduler completes execution

- Included in the FILES package, the library unit VSTRINGS is a generic

-- string package. It provides the data type VSTRING and also includes

-- procedues/functions to manipulate the strings. Since it is generic,

-~ VSTRINGS must be instantiatd, and the new name must be made visible.

- The FILE_PRCOCESSOR package includes the procedures SEPARATE_DATA and
-- VALIDATE_DATA. The TOPOLOGICAL_SORTER package includes CREATE_LISTS and
-~ SORT_REMAINING_OPERATORS.

with FILES;

with FILE_PROCESSOR;,

with TOPOLOGICAL_SORTER;
use FILES;

procedure Main is

Exception_Operator : VARSTRING.VSTRING :=
VARSTRING.VSTR("").

-- The Create_NTC_Task procedure writes lines of -
-- text (o a file called Non_Time_Crits.a. The procedure also reads --
-- lines from the file NON_CRITS and writes them to the first file. -

procedure Create_ NTC_Task is
Non_crits : FILE_TYPE; --name associated with NON_CRITS file
Non_Time : FILE_TYPE,; -- name associated with the Non_Time_Crits.a
-- file
Operator_Name : VSTRING;

begin
open (Non_crits, IN_FILE. "NON_CRITS"),
create (Non_time, OUT_FILE, "Non_Time_Crits.a");

PUT_LINE (Non_time, "with TL. --Translator package");

PUT_LINE (Non_titne, “with DS_Debug_PKG: --Debugging package")
NEW_LINE (Non_time);

51

PUT_LINE (Non_time, "package Non_Time_Crits_PKG is"):
PUT_LINE (Non_time, " task Non_Time_Critical_Operators is");
PUT_LINE (Non_time, " pragma Priority (1);"):

PUT_LINE (Non_time, " end Non_Time_Critical_Operators;"),
PUT_LINE (Non_time, "end Non_Time_Crits_PKG;");
NEW_LINE (Non_time);

PUT_LINE (Non_time, "package body Non_Time_Crits_PKG is"):
PUT_LINE (Non_time, " task body Non_Time_Critical_Operators is");
PUT_LINE (Non_time, " begin");

if END_OF_FILE (Non_crits) then
PUT_LINE (Non_time, " null;");
else
while NOT END_OF_FILE (Non_crits) loop
GET_LINE (Non_crits, Operator_Name);
PUT (Non_time, " TL.");
PUT (Non_time, Operator_Name);
PUT_LINE (Non_time. ";");
end loop;
end if;

NEW_LINE (Non_time);

PUT (Non_time, " DS_Debug.Non_Time_Critical_");
PUT_LINE (Non_time, "Operators_Done.");

PUT_LINE (Non_time," end Non_Time_Critical_Operators;");
PUT_LINE (Non_time, "end Non_Time_Crits_PKG;");

close (Non_crits);
close (Non_time);
end Create_NTC_Task;

-- The task specification for task SS_Debug contains an entry -
-- statement for each error that can be encountered by the --
-- Static_Scheduler task. The names of the entries correspond to --
-- the names of the errors. The last entry statement indicates that -
-- the Static_Scheduler has successfully completed execution. The --
-- parameter 1o the entry statement, where applicable, will provide --
-- the name of the operator which caused the error. -

task SS_Debug is
entry MET_Not_Less_Than_MRT (Exception_Operator : VSTRING);
entry MET_Not_Less_Than_Period (Exception_Operator : VSTRING):
entry No_Initial_Link_Op;
entry No_Matches_Found (Exception_Operator : VSTRING),
entry MCP_Not_Less_Than_MRT (Exception_Operator : VSTRING).
entry MET_Not_Less_Than_MCP (Exception_Operator : VSTRING);
entry No_Base_Block;
entry Fail_Half_Period (Exception_Operator : VSTRING).
entry Bad_Total_Time;
entry Ratio_Too_Big:

52

entry Over_Time;

entry Invalid_Schedule;

entry Schedule_Error;

entry MET_Required (Exception_Operator : VSTRING);

. entry MET_GT_Parent (Exception_Operator : VSTRING),
entry MET_Sum_GT_Parent (Exception_Operator : VSTRING),
entry Crit_Op_Lacks_MET (Exception_Operator : VSTRING),

. entry Static_Scheduler_Done;

end SS_Debug;

-- The task body of SS_Debug contains seventeen procedures - one for -
-- each expected error. Each procedure will print an error message --
-- to a file called Information. The two BOOLEAN variables control -
-- or not the task will terminate. The task body consists of a select --
-- loop that contains an accept block for each entry statement in the --
-- specification. In this version, although any call to a accept --
-- block will terminate execution of the task, the accept blocks were --
-~ placed in a loop with an eye to future revisions. --

task body SS_Debug is
Information : FILE_TYPE;
Error_Exists : BOOLEAN := false;
Static_Scheduler_Finished : BOOLEAN := false;

procedure Print_MET_Not_Less_Than_MRT_Message (Information : FILE_TYPE;
Exception_Operator : VSTRING) is
begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEW_LINE (Information);
PUT (Information, "The maximum execution time (MET) is");
PUT (Information, " greater than or equal ");
NEW_LINE (Information);
PUT (Information, "to the maximum response time (MRT) for the");
PUT (Information, " operator. The"),
NEW_LINE (Information);
PUT (Information, "operator can only be scheduled for execution ");
PUT (Information, "if the MET");
NEW_LINE (Information);
PUT (Information, "is less than the MRT. The operator which ");
PUT (Information, "triggered the");
NEW_LINE (Information);
PUT (Information, "error is:");
NEW_LINE (Information);
PUT (Information, " ");
PUT (Information, Exception_Operator);
NEW_LINE (Information);
end Print_MET_Not_Less_Than_MRT_Message.

procedure Print_MET_Not_Less_Than_Period_Message

(Information : FILE_TYPE: Exception_Operator : VSTRING) is
begin

53

PUT (Information, "EXECUTION TERMINATED ABNORMALLY."),
NEW_LINE (Information);
PUT (Information, "The length of the execution time for the ");
PUT (Information, "following operator");
NEW/_IINE (Information); .
PUT (Information, "is greater than the length of time that must ");
PUT (Information, "pass before");
NEW_LINE (Information);
PUT (Information, "the operator is executed again. For an "),
PUT (Information, "operator t0");
NEW_LINE (Information);
PUT (Information, "be scheduled for execution, its execution time");
PUT (Information, " must be less"),
NEW_LINE (Information);
PUT (Information, "than its period.");
PUT (Information, "The operator which caused the error is:");
NEW_LINE (Information);
PUT (Information, " "),
PUT (Information, Exception_Operator);
NEW_LINE (Information);
end Print_MET_Not_Less_Than_Period_Message,

procedure Print_No_Initial_Link_Op_Message (Information : FILE_TYPE) is
begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY.").
NEW_LINE (Information);
PUT (Information, "An operator could not be found that did "),
PUT (Information, "not have input");
NEW_LINE (Information);
PUT (Information, "into it. Such an operator must exist before "),
PUT (Information, "a schedule");
NEW_LINE (Information);
PUT (Information, “"can be built.");
NEW_LINE (Information);
end Print_No_Initial_Link_Op_Message;

procedure Prim_INu_Mawhe<_Found_Message (Information : FILE_TYPE.
Exception_Operator : VSTRING) is :

begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEW_IINE (Information);
PUT (Information, "The following operator does not match an");
PUT (Information, " output");
NEW_LINE (Information):
PUT (Information, "operator in a link statlement. The ");
PUT (Information, "operator which");
NEW_LINE (Information): -
PUT (Information, "caused the error is:");
NEW_LINE (Information):
PUT (Information, " "); -
PUT (Information, Exception_Operator):
NEW_LINE (Information);

end Print_No_Matches_Found_Message;

54

R —

procedure Print_MCP_Not_Less_Than_ MRT_Message (Information : FILE_TYPE;
Exception_Operator : VSTRING) is
begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY."),
NEW_LINE (Information);
PUT (Information, "The minimum calling period (MCP) is greater"),
PUT (Information, " than or equal”),
NEW_LINE (Information);
PUT (Information, "to the maximum response time (MRT) for the ");
PUT (Information. "following operator.");
NEW_LINE (Information);
PUT (Information, "For an operator to be scheduled, its MCP must ");
PUT (Information, "be less than");
NEW_LINE (Information);
PUT (Information, "its MRT. The operator which caused the error");
PUT (Information, " is:");
NEW_LINE (Information),
PUT (Information, " ");
PUT (Information, Exception_Operator),
NEW_LINE (Information);
end Print_MCP_Not_Less_Than_MRT_Message;

procedure Print_ MET_Not_Less_Than_MCP_Message (Information : FILE_TYPE:
Exception_Operator : VSTRING) is
begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY."),
NEW_LINE (Information);
PUT (Information, "The maximum execution time (MET) is greater”):
PUT (Information, " than or equal”);
NEW_LINE (Information):
PUT (Information. "to the minimum calling period (MCP) for the ");
PUT (Information. "following operator.");
NEW_LINE (Information);
PUT (Information, "For an operator to be scheduled, its MET must "),
PUT (Information, "be less than");
NEW_LINE (Information);
PUT (Information, "its MCP. The operator which caused the error”),
PUT (Information, " is:"),
NEW_LINE (Information);
PUT (Information, " ");
PUT (Information, Exception_Operator);
NEW_LINE (Information);
end Print_MET_Not_Less_Than_MCP_Message;

procedure Print_No_Base_Block_Message (Information : FILE_TYPE) is
begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEW_LINE (Information);
PUT (Information, "The base block could not be determined.").
NEW_LINE (Information);
end Print_No_Base_Block_Message;

procedure Print_Fail_Half_Period_Message (Information : FILE_TYPE:

55

_

Exception_Operator : VSTRING) is
begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEW_LINE (Information);
PUT (Information, "The maximum execution time (MET) for the ");
PUT (Information, "following operator");
NEW_LINE (Information);
PUT (Information, "is greater than or equal to half of the "),
PUT (Information, "operator’s period.");
NEW_LINE (Information);
PUT (Information, "This relationship cannot hold for a static ");
PUT (Information, "schedule");
NEW_LINE (Information);
PUT (Information, "to be created. The operator which caused the");
PUT (Information, " error is:");
NEW_LINE (Information);
PUT (Information, " ");
PUT (Information, Exception_Operator),
NEW_LINE (Information);
end Print_Fail_Half_Period_Message;

procedure Print_Bad_Total_Time_Message (Information : FILE_TYPE) is
begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY."),
NEW_LINE (Information);
PUT (Information, "All operators in a block cannot be scheduled ");
PUT (loformation. "according t0"):
NEW_LINE (Information);
PUT (Information. "their timing constraints. This has been ");
PUT (Information. "determined by");
NEW_LINE (Information);
PUT (Information, "multiplying each operator's maximum ");
PUT (Information, "execution time"),
NEW_LINE (Information);
PUT (Information, "by the number of times it is supposed to be "),
PUT (Information. "scheduled within").
NEW_LINE (Information);
PUT (Information, "the block (block length / operator period). "),
PUT (Information, "The sum");
NEW_LINE (Information);
PUT (Information, "over all the operators must be less than the ").
PUT (Information, "block length.”);
NEW_LINE (Information);
end Print_Bad_Total_Time_Message;

procedure Print_Ratio_Too_Big_ Message (Information : FILE_TYPE) is
begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY."),
NEW_LINE (Information),
PUT (Information, "For a schedule 1o be created. an operator's ").
PUT (Information, "execution”).
NEW_LINE (Information);
PUT (Information, "time divided by its period summed over all *);

56

PUT (Information, "operators must "),
NEW_LINE (Information);
PUT (Information, "be less than or equal to the number of ");
PUT (Information, "processors available.");
NEW_LINE (Information);
PUT (Information, "This requirement has been violated, and a ");
PUT (Information, "Static Schedule");
NEW_LINE (Information);
PUT (Information, "cannot be created.");
NEW_LINE (Information);
end Print_Ratio_Too_Big Message;

procedure Print_Over_Time_Message (Information : FILE_TYPE) is

begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEW_LINE (Information);
PUT (Information, "A static schedule cannot be created based on "),
PUT (Information, "the given");
NEW_LINE (Information);
PUT_LINE (Information, "timing constraints.");

end Print_Over_Time_Message;

procedure Print_Invalid_Schedule_Message (Information : FILE_TYPE) is

begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEW_LINE (Information);
PUT (Information, "A static schedule cannot be created based on ");
PUT (Information, "the given "),
NEW_LINE (Information);
PUT_LINE (Information, "timing constraints.”);

end Print_Invalid_Schedule_Message,

procedure Print_Schedule_Error_Message (Information : FILE_TYPE) is

begin
PUT (Information. "EXECUTION TERMINATED ABNORMALLY.");
NEW_LINE (Information);
PUT (Information, "A static schedule cannot be created based on ");
PUT (Information, "the given"); '
NEW_LINE (Information);
PUT_LINE (Information, "timing constraints.");

end Print_Schedule_Error_Message,

procedure Print_ MET_Required_Message (Information : FILE_TYPE;
Exception_Operator : VSTRING) is
begin
PUT_LINE (Information, "EXECUTION TERMINATED ABNORMALLY.");
PUT (Information, "The following operator has a maximum ");
PUT (Information, "execution time (MET)."),
NEW_LINE (Information);
- PUT (Information, "However. in its decomposition, at least one ");
PUT_LINE (Information, "of the operators"):
PUT (Information, "does not have an MET. The operator with the ")
PUT_LINE (Information. "incorrect "),

57

PUT_LINE (Information. "decomposition is:"),
PUT (Information, " "),
PUT (Information, Exception_Operator).
NEW_LINE (Information);

end Print_MET_Required_Message;

procedure Print_MET_GT_Parent_Message (Information : FILE_TYPE;
Exception_Operator : VSTRING) is

begin
PUT_LINE (Information, "EXECUTION TERMINATED ABNORMALLY.");
PUT (Information, "An operator in a decomposition has a maximum ");
PUT (Information, "execution time");
NEW_LINE (Information);
PUT (Information, "time that is greater than the pre-decomposed ");
PUT_LINE (Information, “one. The ");
PUT_LINE (Information, "pre_decomposed operator is:");
PUT (Information, " ");
PUT_LINE (Information. Exception_Operator);

end Print_ MET_GT_Parent_Message;

procedure Print_ MET_Sum_GT_Parent_Message (Information : FILE_TYPE;
Exception_Operator : VSTRING) is

begin
PUT_LINE (Information, "EXECUTION TERMINATED ABNORMALLY.");
PUT (Information, "An operator which has a maximum execution ");
PUT_LINE (Information, "time has been");
PUT (Information, "decomposed. The sum of the execution times ");
PUT_LINE (Information, "in the decomposition");
PUT (Information. "is greater than the pre-decomposed operator's").
PUT_LINE (Information, " execution time.");
PUT (Information, “This situation cannot occur. The operator ");
PUT_LINE (Information, "whose execution time");
PUT_LINE (Information, "was exceeded is:");
PUT (Information. " "),
PUT_LINE (Information. Exception_Operator);

end Print_Met_Sum_GT_Parent_Message:

procedure Print_Crit_Op_Lacks_MET_Mcssage (Information : FILE_TYPE;
Exception_Operator : VSTRING) is

begin
PUT_LINE (Information, "EXECUTION TERMINATED ABNORMALLY.");
PUT (Information, "Even though the following operator has some ");
PUT_LINE (Information, "timing constraints,");
PUT (Information, "it does not have a maximum execution time. ");
PUT_LINE (Information, "This situation”);
PUT (Information, "cannot exist. The operator causing the error),
PUT_LINE (Information, "is:");
PUT (Information, " ");
PUT_LINE (Information. Exception_Operator);

end Print_Crit_Op_Lacks_MET_Message.

58

begin -- main body of task Debug
create (FILE => Information,
MODE => OUT_FILE,
NAME => "Information”),

loop
select
accept MET_Not_Less_Than_MRT (Exception_Operator :
VSTRING) do
Error_Exists := true;
Print_MET_Not_Less_Than_MRT_Message (Information,
Exception_Opeiator);
end MET_Not_Less_Than_MRT;
or
accept MET_Not_Less_Than_Period
(Exception_Operator : VSTRING) do
Error_Exists := true;
Print_ MET_Not_Less_Than_Period_Message (Information,
Exception_Operator),
end MET_Not_Less_Than_Period;
or
accept No_lInitial_Link_Op do
Error_Exists := true;
Print_No_Initial_Link_Op_Message (Information),
end No_Initial_Link_Op;
or
accept No_Matches_Found (Exception_Operator : VSTRING) do
Error_Exists := true;
Print_No_Matches_Found_Message (Information,
Exception_Operator);
end No_Matches_Found:
or
accept MCP_Not_Less_Than_MRT (Exception_Operator : VSTRING) do
Error_Exists := true;
Print_MCP_Not_Less_Than_MRT_Message (Information,
Exception_Operator);
end MCP_Not_Less_Than_MRT:
or
accept MET_Not_Less_Than_MCP (Exception_Operator : VSTRING) do
Error_Exists := true;
Print_MET_Not_Less_Than_MCP_Message (Information,
Exception_Operator);
end MET_Not_Less_Than_MCP;
or
accept No_Base_Block do
Error_Exists := truc;
Print_No_Base_Block_Message (Information);
end No_Base_Block;
or
accept Fail_Half_Period (Exception_Operator : VSTRING) do
Error_Exists := true;
Print_Fail_Half_Period_Message (Information,
Exception_Operator):

59

end Fail_Half_Period:
or
accept Bad_Total_Time do
Error_Exists := true.
Print_Bad_Total_Time_Message (Information),
end Bad_Total_Time;
or
accept Ratio_Too_Big do
Error_Exists := true;
Print_Ratio_Too_Big_Message (Information),
end Ratio_Too_Big;
or
accept Over_Time do
Error_Exists := true;
Print_Over_Time_Message (Information),
end Over_Time;
or
accept Invalid_Schedule do
Error_Exists := true;
Print_Invalid_Schedule_Message (Information);
end Invalid_Schedule;
or
accept Schedule_Error do
Error_Exists := true;
Print_Schedule_Error_Message (Information);
end Schedule_Error;
or
accept MET_Required (Exception_Operator : VSTRING) do
Error_Exists := true;
Print_MET_Required_Message (Information. Exception_Operator):
end MET_Required.
or
accept MET_GT_Parent (Exception_Operator : VSTRING) do
Error_Exists := true;
Print_MET_GT_Parent_Message (Information, Exception_Operaior),
end MET_GT_Parent;
or
accept MET_Sum_GT_Parent (Exception_Operator : VSTRING) do
Error_Exists := true;
Print_MET_Sum_GT_Parent_Message (Information,
Exception_Operator),
end MET_Sum_GT_Parent;
or
accept Crit_Op_Lacks_MET (Exception_Operator : VSTRING) do
Error_Exists := true;
Print_Crit_Op_Lacks_MET_Message (Information,
Exception_Operator).
end Crit_Op_Lacks_MET:
or
accept Static_Scheduler_Done do
Static_Scheduler_Finished := true;
end Static_Scheduler_Done;
end select;

60

if Error_Exists or Static_Scheduler_Finished then
close (Information);
exit;

end if;

end loop:
end SS_Debug;

task Static_Scheduler;

The task body is the main driver for the Static Scheduler. It -
calls the procedures within the FILE_PROCESSOR and --
TOPOLOGICAL_SORTER packages. When complete it will -
also call the procedures within HARMONIC_BLOCK_BUILDER --
and OPERATOR_SCHEDULER. --

task body Static_Scheduler is

LNKS : LINKS_LIST.LIST;

OPS : OPERATORS_LIST.NARY_TREE;
ATOMIC_OPS : ATOMIC_LIST.LIST;
PRECE : PRECEDENCE_LIST.LIST;

begin
FILE_PROCESSOR.SEPARATE_DATA(LNKS,OPS);
FILE_PROCESSOR.VALIDATE_DATA(OPS,ATOMIC_OPS);,
TOPOLOGICAL_SORTER.CREATE_LISTS(LNKS.PRECE).
TOPOLOGICAL_SORTER.SORT_REMAINING_OPERATORS(LNKS ,PRECE):

exception

when FILE_PROCESSOR.CRIT_OP_LACKS_MET =>
SS_Debug.Crit_Op_Lacks_MET;

when FILE_PROCESSOR.MET_REQUIRED =>
SS_Debug. MET_Required;

when FILE_PROCESSOR.MET_GT_PARENT =>
SS_Debug MET_GT_Parent;

when FILE_PROCESSOR.MET_SUM_GT_PARENT =>
SS_Debug. MET_Sum_GT_Parent;

when FILE_PROCESSOR.MET_NOT_LESS_THAN_MRT =>
SS_Debug. MET_Not_Less_Than_MRT,

when FILE_PROCESSOR MET_NOT_LESS_THAN_PERIOD =>
SS_Debug MET_Not_Less_Than_Period;

when TOPOLOGICAL_SORTER.NO_INITIAL_LINK_OP =>
SS_Dcbug.No_Initial_Link_Op:

when TOPOLOGICAL_SORTER.NO_MATCHES_FOUND =>
SS Debug.No_Matches_Found;

end Static_Scheduler;
end Main;

61

APPENDIX B
PROGRAM CODE FOR
DS_DEBUG_PKG

-- The Global_Declarations package contains an instantiation of the

-- generic unit VSTRINGS. The instantiation is called VARSTRING. The unit
-- contains the data type VSTRING and procedures/functions to manipulate

-- strings.

with Global_Declarations;

use Global_Declarations;

with TEXT_1O, CALENDAR;
use TEXT_IO, CALENDAR;

-- The following package contains the debugging system for the Dynamic

-- Scheduler. Implemented as a task, the debugging system is called DS_Debug
-- and processes errors identified during execution of both the time and

-- non-time critical operators.

package DS_Debug PKG is

- The specification for task DS_Debug contains six entry statements.

-- The first four statements identify errors that may be enountered when the

-- operators execute. The last two entry statements identify when the

-- Static_Schedule and the Non_Time_Critical_Operators tasks have completed.

task DS_Debug is
entry Runtime_MET_Failure (Exception_Operator : VARSTRING.VSTRING;
Current_Time : in out TIME;
Next_Start : TIME);

-- The in value for Current_Time is the time the operator completed -
-- execution. The out value for Current_Time is the adjusted time -
-- backgrounds. Next_Start has as its value the time the next oper- -
-- ator must start execution. -~

entry Buffer_Underflow; --input queue empty
entry Buffer_Overflow; --output queue full
entry Exception_Error; --unprocessed exception
entry Static_Schedule_Done;
entry Non_Time_Critical_Operators_Done;
end DS_Debug;
end DS_Debug_PKG;

package body DS_Debug PKGis
task body DS_Debug is
type NODE,;
type LINK is access NODE;

type NODE is
record

62

Operator : VARSTRING.VSTRING,; --name of operator exceeding MET
Executed_count : NATURAL; --number of times operator has executed
Next : LINK;

end record;

Exception_Operator : VARSTRING.VSTRING; --operator causing error
Information : FILE_TYPE; --file containing error information
Error_Exists : BOOLEAN := FALSE;
Static_Schedule_Finished : BOOLEAN :=FALSE;
Non_Time_Critical_Schedule_Finished : BOOLEAN := FALSE,;
Found : BOOLEAN := FALSE; --indicates if operator already in list
Choice : CHARACTER :=A’; --operator’s decision as to continue/terminate
Operators_Overrun : LINK := null; --list of operators that have exceeded
-- their MET
Current : LINK; --pointer to operator in list
Difference : DURATION; --time over MET
Max_Executions : CONSTANT NATURAL := §; --maximum number of times an
--operator whose MET is exceeded
--can operate

-- The Find procedure identifies whether the operator is in the list. --
-- Name contains the name of the operator with the runtime error. Ifthe --
- operator is in the list, Current will point to it. If the operator is --
-- notin the list, Current will point to the last node in the list. The --
-- value of Found will identify if the operator is already in the list. --

procedure Find (Head : in LINK; Name : in VARSTRING.VSTRING;
Current : in out LINK; Found : out BOOLEAN) is
begin
Current ;= Head;

if Current = null then --if no nodes in list
Found := FALSE;
elsif Current.Next = null then --if only one node in list
if VARSTRING.equal (Current.Operator, Name) then
Found := TRUE;
else
Found := FALSE;
end if;
else --traverse list
while Current.Next /= null
loop
if VARSTRING.equal (Current.Operator, Name) then
Found := TRUE;
end if;
Current := Current.Next;
end loop;

-- when traversing list, the last node will not be examined.

-- following "if" ensures last node examined
if Current.Next = null then

63

if VARSTRING .equal (Current. Operator, Name) then
Found := TRUE,

else
Found := FALSE,;

end if;

end if;
end if;
end Find;

-- The Insert procedure will place a node at the end of the list. The
-- node will contain the name of the operator with the error and the number
-- of times the operator has executed. The number is initialized to one.

procedure Insert (Head : in out LINK; Name : VARSTRING.VSTRING) is
Temp_Pt : LINK;
New_Node : LINK;

begin
New_Node := new NODE’ (Name, 1, null);

if Head = null then
Head := New_Node;
else
Temp_Pt := Head;
while Temp_Pt.Next /= null
loop
Temp_Pt := Temp_Pt.Next;
end loop;
Temp_Pt.Next := New_Node;
end if;
end Insert;

-- The next five procedures print an error message to the file Informa-

-- tion. The name of each procedure indicates the name of the error it is

-- processing. The last procedure is called when an operator has excecuted
-- more frequenty than the permitted number of executions (for an operator
-- exceeding its MET).

procedure Print_Buffer_Underflow_Message (Information : FILE_TYPE) is
begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEW_LINE (Information);
PUT (Information, "There was an attempt to read a data buffer ");
PUT (Information, "that");
NEW_LINE (Information);
PUT (Information, "contained no data.");
NEW_LINE (Information);
end Print_Buffer_Underflow_Message;

procedure Print_Buffer_Overflow_Message (Information : FILE_TYPE) is
begin

PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEW_LINE (Information);
PUT (Information, "There was an attempt to store data into a ");
PUT (Information, "data buffer");
NEW_LINE (Information);
PUT (Information, "that was already full.");
NEW_LINE (Information);
end Print_Buffer_Overflow_Message;

procedure Print_Exception_Error_Message (Information : FILE_TYPE) is
begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
NEW_LINE (Information);
PUT (Information, "One exception was not processed when another ");
PUT (Information, "one was");
NEW_LINE (Information);
PUT (Information, "raised.");
NEW_LINE (Information);
end Print_Exception_Error_Message;

procedure Print_Runtime_MET_Failure_Message (Information : FILE_TYPE;
Exception_Operator : VARSTRING.VSTRING) is

begin
PUT (Information, "EXECUTION HAS BEEN SUSPENDED OR HAS ");
PUT_LINE (Information, "TERMINATED ABNORMALLY");
NEW_LINE (Information);
PUT (Information, "The following operator did not complete ");
PUT (Information, "execution *);
NEW_LINE (Information);
PUT (Information, "before its maximum execution time was "),
PUT_LINE (Information, "expired. The operator");
PUT (Information, "which caused the error is:");
NEW_LINE (Information);
PUT (Information, " "),
VARSTRING.PUT (Information, Exception_Operator);
NEW_LINE (Information);
NEW_LINE (Information);

end Print_Runtime_MET_Failurc_Message;

procedure Print_Too_Many_Executions_Message (Information : FILE_TYPE;
Exception_Operator : VARSTRING.VSTRING) is
begin
PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");
PUT (Information, "The following operator, which executes ");
PUT_LINE (Information, "frequently, has a maximum");
PUT (Information, "execution time that is not long enough. ");
PUT_LINE (Information, "Execution has been");
PUT (Information, "terminated because processing time is being ");
PUT_LINE (Information, "wasted by having");
PUT (Information, “to handle the error each time the operator ");
PUT_LINE (Information, "executes. The operator is:");
PUT (Information, " "),
VARSTRING.PUT_LINE (Information, Exception_Operator);

65

—

end Print_Too_Many_Executions_Message;

The following procedure is called when an operator first exceeds its

MET. The procedure queries the user as to whether to terminate or not.

The user is given three attempts to input valid data - either A or B.

If he has not provided valid data, the procedure will return a value

of A to terminate execution. Also, the procedure will print a message
stating that execution has been terminated due to invalid input.

Choice : in out CHARACTER) is
Count : INTEGER;

procedure Print_Too_Many_Tries_Message is

begin
NEW_LINE;
PUT ("You exceeded the number of atempts authorized to ");
PUT ("enter data.");
NEW_LINE;
PUT ("Therefore, execution of the prototype has been ");
PUT ("terminated.");
NEW_LINE;

end Print_Too_Many_Tries_Message;

begin
Count := 1;
NEW_LINE;
NEW_LINE;
PUT ("Execution of the prototype has been suspended because an")
NEW_LINE;
PUT (“operator exceeded its maximum execution time. The");
NEW_LINE;
PUT_LINE ("operator causing the error is: ");
PUT (" ")
VARSTRING.PUT (Exception_Operator);
NEW_LINE;
NEW_LINE;
PUT_LINE ("Do you want to ");
PUT_LINE ("A. Terminate execution of the prototype?");

PUT ("B. Adjust the execution time of the operator and continue");

NEW_LINE;

PUT (" execution of the prototype?");

NEW_LINE;

NEW_LINE;

PUT_LINE ("Type the letter preceding the option you want.");

loop
GET (Choice);
NEW_LINE;
NEW_LINE;

66

procedure Obtain_User_Choice (Exception_Operator : VARSTRING.VSTRING;

if Choice = 'a’ then

Choice :="A";
end if;
if Choice = 'b’ then
Choice :='B’;
end if;

exit when Choice = A’ or Choice = ’B’ or Count = 3;

PUT ("You typed: ");

PUT (Choice);

NEW_LINE;

PUT_LINE ("You must type either A or B.");

Count := Count + 1;
end loop;

if Choice /= A’ and Choice /= 'B’ then
Choice = "A";
Print_Too_Many_Tries_Message;
end if;,
end Obtain_User_Choice;

begin -- main body of task DS_Debug
create (FILE => Information,
MODE => OUT_FILE,
NAME => "Information");

loop
select
accept Buffer_Underflow do
Error_Exists := true;
Print_Buffer_Underflow_Message (Information);
end Buffer_Underflow,
or
accept Buffer_Overflow do
Error_Exists ;= true;
Print_Buffer_Overflow_Message (Information);
end Buffer_Overflow;
or
accept Exception_Error do
Error_Exists := true;
Print_Exception_Error_Message (Information);
end Exception_Error;
or
accept Runtime_MET _Failure
(Exception_Operator : VARSTRING.VSTRING;
Current_Time : in out TIME;
Next_Stan : TIME) do

67

Find (Operators_Overrun, Exception_Operator, Current, Found);
--is operator in Operators_Overrun list?

if Found then --check number of executions
--if operator executed less than that authorized, update
if Current.Executed_count <= Max_Executions then
Current Executed_count := Current Executed_count + 1;
else --terminate and print error message
Error_Exists ;= true;
PUT_LINE ("EXECUTION TERMINATED ABNORMALLY.");
Print_Too_Many_Executions_Message (Information,
Exception_Operator);
end if;
else --query user as to terminate/continue
Obtain_User_Choice (Exception Nperator, Choice);

case Choice is
when 'A’ => Error_Exists := true; --terminate
when 'B’ => Insert (Operators_Overrun,
Exception_Operator);
--insert operator into Operators_Overrun list
when others => null;
end case;

Print_Runtime_MET_Failure_Message (Information,
Exception_Operator);
--print error message first time operator exceeds MET
end if;

Difference := Current_Time - Next_Starn;
--calculate time over MET
Current_Time := Current_Time - Difference;
--reset time to the start time of the next operator
end Runtime_MET _Failure;
or
accept Static_Schedule_Done do
Static_Schedule_Finished := true;
end Static_Schedule_Done;
or
accept Non_Time_Critical_Operators_Done do
Non_Time_Critical_Operators_Finished := TRUE;
end Non_Time_Critical_Operators_Done;
end select;

if Error_Exists or (Static_Schedule_Finished and
Non_Time_Critical_Operators_Finished) then
close (Information);
exit;
end if;

end Joop;

end DS_Debug;
end Ds_Debug_PKG;

68

10.

11.

LIST OF REFERENCES

Booch, G., Software Engineering With Ada, 2nd ed., The Benjamin/
Cummings Publishing Company, Inc., 1986.

Whitten, J. L., Bentley, L. D.,and Ho, T. I. M., Systems Analysis and
Design Methods, Times Mirror/Mosby College Publishing, 1986.

Lugi and Ketabchi, M., “A Computer-Aided Prototyping System,”
IEEE Software, pp. 66-72, March 1988.

Discussion among Software Engineering with Ada class, 29 July
1988.

Luqi. Rapid Prototyping for Large Software System Design, Ph.D.
Dissertation, University of Minnesota, Duluth, Minnesota, May
1986.

Raum, H., The Design and Implementation of an Expert User Inter-
Jface for the Computer Aided Prototyping System, Master's Thesis,
Naval Postgraduate School, Monterey, California, December 1988.

Thorstenson, R., A Graphical Editor for the Computer Aided Proto-
typing System (CAPS), Master's Thesis, Naval Postgraduate School,
Monterey, California, December 1988.

Galik. D., A Conceptual Design of a Software Base Management
System for the Computer Aided Prototyping System, Master's The-
sis. Naval Postgraduate School, Monterey, California, December
1988.

Moffitt 11, C.. A Language Translator for a Computer Aided Rapid
Prototyping System, Master's Thesis, Naval Postgraduate School,
Monterey, California, March 1988.

Altizer, C., Implementation of a Language Translator for a Computer
Aided Rapid Prototyping System, Master's Thesis, Naval Postgrad-
uate School, Monterey, California, December 1988.

Janson, D. M., A Static Scheduler for the Computer Aided Proto-
typing System: An Implementation Guide, Master's Thesis, Naval
Postgraduate School, Monterey, California, March 1988.

69

12.

13.

14.

15.

16.

17.

O'Hern, J. T., Conceptual Level Design for a Static Scheduler for
Hard Real-Time Systems, Master's Thesis, Naval Postgraduate
School, Monterey, California, March 1988.

Marlowe, L., A Scheduler for Critical Timing Constraints, Master's
Thesis, Naval Postgraduate School, Monterey, California, Decem-
ber 1988.

Isoda, S., Shimomura, T., and Ono, Y., “VIPS: A Visual Debugger,”
IEEE Software, pp. 8-18, May 1987.

Seviora, R. E., “Knowledge-Based Program Debugging Systems,”
IEEE Software, pp. 20-31, May 1987.

Knudsen, J. L., “Better Exception-Handling in Block-Structured
Systems,” IEEE Software, pp. 4049, May 1987.

Diederich, J., and Milton, J., “Experimental Prototyping in Small-
talk,” IEEE Software, pp. 50-64, May 1987.

70

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

Office of Naval Research

Office of the Chief of Naval Research
ATTN: CDR Michael Gehl, Code 1224
800 N. Quincy Street

Arlington, VA 22217-5000

Space and Naval Warfare Systems Command
ATTN: Dr. Knudsen, Code PD 50
Washington, DC 20363-5100

Ada Joint Program Office
OUSDRE(R&AT)

Pentagon

Washington, DC 20363-5100

Naval Sea Systems command
ATTN: CAPT Joel Crandall
National Center #2, Suite 7N0O6
Washington, DC 20363-5100

Office of the Secretary of Defense
ATTN: CDR Barber

STARS Program Office
Washington, DC 20301

Office of the Secretary of Defense
ATTN: Mr. Joel Trimble

STARS Program Office
Washington, DC 20301

71

10.

11.

12.

13.

14.

15.

16.

17.

Commanding Officer

Naval Research Laboratory
Code 5150

ATTN: Dr. Elizabeth Wald
Washington, DC 20375-5000

Navy Ocean System Center
ATTN: Linwood Sutton, Code 423
San Diego, CA 92152-5000

National Science Foundation
ATTN: Dr. Wiliam Wulf
Washington, DC 20550

National Science Foundation

Division of Computer and Computation Research
ATTN: Dr. Tom Keenan

Washington, DC 20550

National Science Foundation
Director, PYI Program
ATTN: Dr. C. Tan
Washington, DC 20550

Office of Naval Research

Computer Science Division, Code 1133
ATTN: Dr. Van Tilborg

800 N. Quincy Street

Arlington, VA 22217-5000

Office of Naval Research

Applied Mathematics and Computer Science, Code 1211

ATTN: Mr. J. Smith
800 N. Quincy Street
Arlington, VA 22217-5000

Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)

ATTN: Dr. Jacob Schwartz

1400 Wilson Boulevard

Arlington, VA 22209-2308

Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO])

ATTN: Dr. Squires

1400 Wilson Boulevard

Arlington, VA 22209-2308

72

“

18. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
ATTN: MAJ Mark Pullen, USAF
1400 Wilson Boulevard
Arlington, VA 22209-2308

19. Defense Advanced Research Projects Agency (DARPA)
> Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, VA 22209-2308

20. Defense Advanced Research Projects Agency (DARPA)
Director, Strategic Technology Office
1400 Wilson Boulevard
Arlington, VA 22209-2308

21. Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, VA 22209-2308

22. Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office
1400 Wilson Boulevard
J Arlington, VA 22209-2308

23. COL C. Cox, USAF
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, DC 20318-8000

24. LTC Kirk Lewis, USA
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, DC 20318-8000

25. U.S. Air Force Systems Command
Rome Air Development Center
RADC/COE
ATTN: Mr. Samuel A, DiNitto, Jr.
Griffis Air Force Base, NY 13441-5700

73

28.

26.

27.

U.S. Air Force Systems Command
Rome Air Development Center
RADC/COE

ATTN: Mr. William E. Rzepka

Griffis Air Force Base, NY 13441-5700

Professor Luqi, Code 52LQ
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

MaryLou Wood

NARDAC, NAS Jacksonville
Jacksonville, FL 32212-0111

74

