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OPTIMUM DESIGN METHODS FOR STRUCTURAL SANDWICH PANELS
1. Introduction
Structural sandwich panels are composed of two thin.'stiff

skins separated Ly a lightweight core. The faces are typically

strong materiels such. as aluminum or fibre reinforced conposites,

while honeycombs or foams are used in the core. The separation

of the faces increases the moment of inertia of the padel with

minimum increase in weight, giving a panel that is extremely

efficient in resisting bending and buckling. Because of this,
sandwich panels are used in applications where.the weight of the
member is critical: in aircraft, marine and land vehicles; in
portable structures; in construction in remote areas; in roofing
shells; and in some types of sports equipment such as modern
downhill sﬁis. Sandwich congiruction is even found in nature
where mechanical d§sign is often optimized: in the skull, two
layers of dense, cortical hone are separated bty a lightweight
core of sponge-like cancellous bone. In each case, the
mechanical béhaviour of the sandwich'panei depends on the
streﬁgthland stiffness of the face and core materials, on the.

geométry of the panel and on the strength of the bond between the

fﬁces and the core.

‘The aim of this project has been to find the minimum weight
design of a foam core sandwich panel for a given required
strengﬁk. The optimization analysis for this problem is
complicated by the fact that the sandwich may fail by one of

several different modes. The face may yvield in tension or may




buckle locally in compression lor "wrinkle;). The core may fail
in tension, compression or shear. And finally, the bond bet#een
the faces and the core may fracture causing delamination. Each of
these failure modes is described by a different failure equation.
There is.not a single, well defined constraint equatior for the
-required strength, then; instead, there is a set of contraint
equations. The éritical one for a given loading configuration
and beam design, occurring at the lowest load, must be determined
to carry out the optimization analysis.,

Failure mode maps, showing the range of beam designs fer
which a’'given failure mode is critical, have been developed in a
previous project (Fig. 1.1). Bfiefly. they are constructed by
eduating pairs of failure equations in turn to givé the equations
of the transition line§ between failure modes. The failure
equations and transigion line equafions for foam core sandwich
beams are given in Tables 1.1 ;nd 1.2; the nomenclature is given
in the Appendix to the report. To simplify the development of
the failure mode maps, only the failure modes listed in Table 1.1
were considered; in particular, it was assumed that the bond

b;tween the faces and the coieAwas perfect and that debonding did
not occur.

To proceed with the minimum weight analysis of a foam core

sandwich beam we proposed the following tasks for this project:




o

(e

FACE VYIELD

CORE RELATIVE -DENSITY, /5, (=)

=
0
SHEAR
FACE .
WRINKLING
-2 ‘
0 vy — 3 ‘= -
o 10 10 10
(a) FACE THICKNESS/SPAN LENGTH, t/i (-)

Figure 1.1 A failure mode map for a sandwich beam loaded in three-point
bending. The beam has aluminum faces and a rigid polyurethane

foam core. This map has been made assuming that debonding doés
not occur.
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. TABLE 3.1 FAILURE EQUATIONS FOR FOAM-CORE SANDWICH BEAMS

A, A
Ca(pc/p,) E, . Calp/Pg) Eq 1

t
202( /t) Ef

FAILURE MOOE FAILURE BQUATION
t
Face Yigld Pty - c:’yfbc :
EA!
2/3 . 1/3 . 2/3 t
Face Wrinkling Py = 0.57¢,C,° £,/ E, (pc/;fs)v > be - B
C, (p/py)® 0y e
Core Yield -~ Shear Pes -
) 2 ]
c, (osp ) E 1
3 c/ s ]
T . -
c, /¢ g, c,
Cq (»'a‘:/ﬂ»s)c O B¢
Core Yield-Tension P = - ys
ct A  — 2
Cyloe/pg)” B, +J [ca(Pc/Ps’ ,] g
t 3 : .
gcl (“re)E 2c, (*/¢)E, c,
F
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Core-Yield-Campression | P__ = ys

2 2
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t
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TABLE 1.2 TRANSITION EQUATIONS FOR FAILURE MODE MAPS

FAILURE MODE

TRANSITION EQUATION

g 3/2a
Face yleld - pJ/o_ = ~
Face wrinkling <8 0.57 csm g/ g3
T e IR SR o7 ~ SN R - -
Face yield - { = 24 (Pc/ps)B Z
Core shear C"l ] vt
T c, C P B-2A o
Face wrinkling - /e = 2 4 < 3 "'“T7§ZE‘§75
Core shear‘ 0.57C1 03 Pg Ef Es
Note: These transition ecuaticns are based on the assumption that normal

stresses in the core are irsignificant in the core shield failure

mode.,




{a) Failure Mode Map - Finalize the Debonding Mechanism
The analysis of debonding in sandwich beams is incomplete;
to properly understahd how debonding and delamination occur

requires the application of'fracture mechanics ‘to the problem.
crack in the bond will propagate (and cause debonding failure)
when the stress field around the crack produces a stress
intensiﬁy factor equal to the frac;ure'toughness of the adhesive.
The analysis of the gtress field around the crack is complicated,
but a simple dimensional argument can be used to characterize the
important parameters in crack propagation. Experimental
measurements of the load required to propagate a crack of known
length can then be Qsed to calibrate the dimensicnal analysis to
.get a more exact description of crack propagation. In these
experiments, sandwich beams with deliberate areas of debohding.in
them, simulating "cracks" will be made. The debonded area can be
made by inserting a thin piece of plastic between the face and
the core éo that no adhesive reaches this area. The crack length
is given by the length of blastic strip used. The.beams will

then be tested in bending to produce a'debonding failure; the

failure load will be recorded. This will be repeaied for

different crack lengths. This procedure should allow a complete

characterization of the debonding process in sandwich beams.
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ib) Ontimizationwggg)vsis of a Sandwich Beam subject to a
Strength Constraint |

In this part of the project we will do the optimization
analysis for the strength constraint. This can be dope by using
each failure equation in turn as the constraint equation in the
optimization analysis and then comparing all thé results to
determine the minimum weight solution. This, however, is time
coﬁsuming and laborious, as the equations may not have closed
form solutions . We intend to try to use the information given
by the failure map to simplify the optimization procedure; the

details will be worked out during this task.

(c) Experimental Verification of the Optimization Analysis

The properties of the foam to be used in the core of the
sandwich Heam; will first be measured so that the exact property-
density relationships can be used in the optimization analysis.
Then, a series of sandwich beams, of varying weight but constant
étrength. will be designed, made and tested to failure in
bending. Lcad-deflection plots will be recprded for each beam
and the mode of failure noted., We will also take photographs of
the failed beams. If the results of tﬁe tests agree with the
analysis, thgy will increase confidence in it; otherwise they

will be helpful in indicating the deficiencies of the analysis.

The debonding study and the optimization analysis of a
sandwich beam subject to a strength constraint have been

completed and are described in more detail below in Sections 2
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"and 3. The experimental verification of the optimization

analysis has been omitted as the only tests that could be done ’ )
would duplicate ones done earlier.in another study. Instead, «e

have begun. work on modelling creep in foam core sandwich panels;

this werk is described in Section 4.

10
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|

Debondihg in Foam Core Sandwich Panels

2.1, Introduction

Structural members made up of‘two stiff, strong skins
separated by a.lightwei:ht core are known as sandwich panels.
The senaration of the skins by the core increases the moment of
inertia of the panel with little increase in weight, producing an
efficient member for resisting bending and buckling loads. The
low weight of sandwich panels was f{irst exploited by the aircraft
industry; ultra-light panels using carbon fibre-composite skins
and honeycemb cores are now usad ro:;}nggy in modern aerospace
components. Sandwich panel technology is now being transferred
to building épplications.such as roof and wall panels; the cﬁres
of such panels are typically made of foam to give good thermal
insulaticn in addition to low weight.
| It is critical that the bénd between the skins and the core
remain intact for th; panel to perform satisfactorily. In this
paper, we describe the criterionAfor debonding in a sandwich beam
with isotropic faces and a foam core in terms of the critical
strain energy felease rate. Tests on sandwich beams with
aluminum skins and foamed polyurethane cores show that the
analysis describes debonding fai{jge well. Comparison, of the
load for debonding with that fof other modes of failure, such as
face yielding, face wrinkling and core shearing, show that
debonding occurs only if there are relatively large pre-existing
cracks at the interface; otherwise it is precedéd b& anotﬂer mode

of failure. The results are useful in determining the maximum

11




permigssible interface crack for a'sand;ichfpanei with a foam’
core.

The propagation of a crack at the interface between two
disgsimilar elastic media has been.studied by several workers.
England {1]) calculated tﬁe stress intensity factor for normal
loading of an interface crack between two dissimilar elastic
media; this solution suffers from the difficulty that it requires
ﬁhe twd materjals to wrinkle and overlap near the ends of ihe
crack which is physically unrealistic. Comninou [2-4] reexamines
England’s solution and finds that if a frictional contact zone is

"introduced at the ends of the crack, a more realistic solution is
possible. She calculates the stress intensity fagtc} for both
n§rmal 12,3] and shear (4] loading. The difficulty with such
analyvses is that théy"are difficult to ihplement as the size of
the frictional zone ahead of the crack tip must be estimated.
Other workers, concérned with debonding in fibre composite
laminates, have examined a more complex crack geometry with a
through crack in one layer running into a perpendicular jnterface
crack between that layer and the next [5-9]: these analyses use a
complex variable formulation-to reduce the problem to a get of
integral equations which are solved numerically. Here, we treat
the problem of the propagation of an interface crack in A
sandwich panel with isotropic faces and a foamed core in|/ a

simpler mahner. by examining the strain energy release rhte

required for crack propagation and measuring the criticall strain

12
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energy release rate of the interface experimentally.

2.2, Analvsis

Consider the sandwich beam shown in Fig. 2.1 of stiffness, S.
It has a length, 1, a width, b, and face and core thicknesses, t
and ¢. The density and Young's modulus of the core and face

materials are F° ) /O+ » E. and E} . The flexural

rigidity of the beam is given by {10]:

3 2 3
‘Eebt btd E.bc (1)
D = 3.——- + E.t + :

6 2 12
vhere d = ¢ + t. The stiffness of the beam is [10]:

P clcerccn
, 3
p¢ , sz Ach+ CICD

CID CZAch

{29

where A g (=bd*/c) is an equivalent core area and C, and Cz are
const nts relating to the loading geometry. For example, for a
simply supported beam under three-point bending, Ci = 48 and C =
.. . .

The beam contains ? crack of length 2a at the interface
bgtween the face and core and is loaded by a concentrated 1ogd,

P. We now determine th# load, P, which causes the crack to

propagate by examining the strain energy release rate. The

13




Fig. 2.1 The geometry of a sandwich beam with an interfacial crack of

length 2a.

14
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elastic energy in a pertfectly bonded beam is:

2 (3)
U-lpa-l__
2 2 S

and the energy per unit volume, if the faces are thin compared to

the core, is

o

{d4)

< lc
[ ]

N oo

7]

<

0

If a > ¢, the volume unloaded by a crack of length a is Zabc

{Fig.2.2a) and the corresponding released energy is:

2 2 (3)
U(a) = -.i _E_.. 2abc --EL: °
2 Ske S¢

The mode 11 strain energy release rate, Glfc , for in-plane shear

delamination is given by:

av(a) : {6)
.- - e
S11 b oa

so that




Fig. 2.2 (a) The unloaded volume for a crack half length greater

of the core.

the core.

16

than the depth
(b) The unloaded volume for a crack half length less than the depth of



Fracture occurs when the strain energy release rate, Gq , equals

the critical strain energv r-:lease rate for the interface, Gf":

(8)
611 * S11c | A

vwhich gives the failure load -

Pw
Js"‘snc | (9)

If the créck Iength is smaller than the beam thickness, c, the

unloaded volume is roughly TT atb/2 (Fig. 2.2b) and the samel

procedure gives:

2S blc GIIC

pihaheie * o3 : (10)
Ta .

Experimental evidence shows that debonding is not likely to occur
unless a large c;ack exists;p£ the inteéface (in which case eqﬁation
(9) gives the debonding load).

The critical strain energy release rate of the interface, ch -

y can be found from shear tests. Consider the double-shear

specimen shown in Fig.'2.3. The elastic energy in the specimen is:

17"
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Fig. 2.3 . (a) The double-shear test specimens used to measure the critical
strain energy release rate of the interface.
(b) The loading on one half of the double-shear gpecimen.
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with {(for small strains)

where F is the applied lead, T is an average shear stress on
the face with the crack, hz. is the depth of the specimen and G‘
is the shear modulus of the core. The average shear stress can be

approximated as

: F
re ‘ ' (14
2n, (hy-2a,)
where h3 .is the length of the specimen and a,_ is the crack

length at the foam-plate interface. It follows that the energy

per unit volume can be written as

?2

2 _ (15)
hy (hy-2a5)

U .
v 86 h,

The energy released by a crack of length 2a° (ao > hz) is




o

approximated as

2
2F ag h h, - FPagh,

U(ao

)= -

— {16)
BGC h1 hs(h3-2a°) 4Gc hIhQ(h3-2aO)

and the strain energy release rate is

2
F h2

(17)
4Go hyé(h3-2ag)?

At failure of the specimen (delamination)

6 a M2 (18)
11¢ 7 3
4G, h,° (hy-2a,)

vhere Fg is the load for delamination. Equation (18) can be

“used for the evaluation of the critical strain energy release

rate for each foam density.

2.3. Expgrfmentgl Method

The critical strain energy release rate for the interface

was measured using double shear specimens pulled in tension
2.3).

(Fig

The aluminum faces and rigid polyurethane foam cores of

densities 64, 96, 160, 192 and 320 kg/m; were bonded together

-

The dimensions of the specimens

with a polyester resin adhesive.

were: h, = 25.4 mm, hz = 9.5 mm (64 and 96 kg/m3

specimens),
h, = 12.7 mm (160, 192 and 320 kg/m3

specimens) and h3 = 76.2 mm,

Cracks of length 31.8, 38.1 and 50.8 mm were introduced into the

interface by not applying the adhesive to the area of the crack
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and by inserting a removable plastic strip into the crack while
the specimens were pressed together and cured. The specimens
were loaded in tension in Instron testing machine and the load

and deflection recorded. Three specimens of each crack length

ard density were tested. Debonding did not occur in the €4 and

96 kg/m3 density foam specimens even when the crack length was
two thirds of the lehgth of the specimen; instead these specimens
failed by plastic shearing of the foam. The 160, 192 and 320 kg/m3

specimens : failed by crack propagation along the interface.

In the case of the 160 and 192 kg/mz specimens, the crack

propagated through the foam adjacent to the, interface, while in

the 320 kg/m3 specimens it propagated within the adhesive laver.

The load. . deflection behaviour was linear to failure for all three
densities.

The shear moduli of the foams were measured on double shear

specimens with no interface crack. The dimensions of the

spacimens were h = h, = 9.5 mm and h3

loaded in tension

25.41 mm,

= 76.2 mm. The

specimens were and were linear eiastic.
A set of sandwich beams was made by bonding aluminum skins
to rigid foamed polyurethane cores with bolyester resin.

Interface cracks of known length were introdﬁéed by the same
method as in the critical strai; energy release rate tests. A
range of beam designs were tested. The beams were lqaded‘to
failure in three point bending using a screw jack. Load and

deflection were measured during the test with a load cell and a

21
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LVDT and were recorded on an X-Y recorder. The beams were
linear+elastic to failure which was by crack propagation ajong

the interface through the foam.

2.4 Results and Discussion
*he critical strain energy release rate was célculated_from
the double shear tests dsing equétion {18); the results are given
in Table 2.1 for each of the foam densities tested.tor which

debonding occurred. is independent of the length of ‘the

Spe
crack along the interface. For the two lower density foams
for which the crack\Bfepazated through the foam aiong the
interface, GEo corresponds to the surface energy of the foam at
the interface. The largest value of GEC y for the 320 kg/m3
foam for which the crack propagated through the adhesive,
corresponds to the surface energy of the adhesive.: Thére is a
transition froh crack propagation in the foam to crack
prc#agation in the adhesive at a foam density between 192 and 320
kg/m> . | | |

| The failure modes and loads of the sandwich beams are listed
in Table 2.2 along with ﬁhe expected load for debonqing failure
(equation (9) or {10), depending on the crack length); The beanms
with interfacial :-acks which are largé relative to the core
thickness, ¢, failed by debonding. There ig a slight dependence
of the failure load on the crack length, 2a, with the debonding
load decreasing by about 5% as the crack length increases from

127 mm to 204 mm. The agreement between the measurec and

o
o



TABLE 2.1. CRITICAL STRAIN ENERGY RELEASE RATES OF THE FOAMS

Core density, Crack

Pe

160

320

Not

N

Measured failure

Calculated Mean
ng(J/m‘ ) GEC(J/m‘ )

(eqn 18)

(kg/m3 ) length, load, F, (N}
2a _(mm)
[-4

31.8 3150

38.1 2840

50.8 1760

31.8 . 4130

38.1 3670

50.8 2390

31.8 5180

38.1 4600

- 50.8 2960

es
For all specimens h, = 25.4 mm, h, = 12.7
The shear moduli of the foams were 16.2,
.for the 160, 192 and 320 kg/m? densities,
The

3.

1530 1560
1690
1460

1580 . 1830
1640
1610

2000 < 1900

1910
1780

mm, hy = 76.2 mm.

27.0 and 37.5 M\N/m?

respectively.

measured failure-loads are the average of 3 tests.

23
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JABLE 2.2 FAILURE LOADS OF TEST BEAMS.

1 2 ¢ t b e s Pl Mode P
{mm) (mm) (mm) {(mm) (mm) (kg/m") {N) {N)
(egn 9 or 10}

381 127 51 3.18 38 160 3150 debonding 3030
381 152 51 3.18 38 160 3090™ debonding 2940
381 204 51 3.18 38 160 2830* debonding 2930
381 127 51 3.18 38 192 3980 debonding 3870
381 132 31 3.18 38 142 3910 debonding 3745
381 204 51 3.18 38 192 3810% debonding 3730
281 127 351 3.18 38 320 " 5420 debonding 1890

- 381 152 51 3,18 38 320 5310 debonding 1850
381 204 31 3.18 38 320 5190* debonding 479U
508 127 51 3.18 38 - 160 2910 debonding 3110
508 152 51 3.18 38 160 . 2780* debonding 3670
508 204 351 3.18 38 160 2650 debonding 2980
508 127 31 3.18 38 192 3790 debonding 3910
508 152 51 3.18 38 gz 3720 debonding 3870
508 204 51 3.18 38 192 ! 3670 debonding 3800
508 127 51 3.18 38 320 4860 debonding 5020
508 152 51 3.18 38 320 4750 debonding = 1980
508 2p4 51 3.18 L8 320 4670* debonding 1930
241 30 25 1.27 25 160 1100 face yield 890
241 76 25 1.27 25 160 1090 face yield 11035
241 7 25 1.27 25 320 1120 © face vield 5450
267 3 25 0.63 25 160 470 face vield 650
267 3 25 0.63 25 320 490 face vield 1390
Note

Failur} loads marked by an arterisk are the average of 2 tests;
otherwise, they are the result of 3 tests.
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. 3

calculated debonding loads is within 10% for all beam geometries
and crack lengths. The analysis describes debonding in sandwich
beams with foah cores well,

The beams wifh relatively small interfacial cracks yielded
before debonding occurred; :for these bo;ms the predicted
debonding load is greater than the measured face yielding load
with only one exception, for which the yield and debond loads are
similar. Similar calculations for a wide range of sandwich
beams indioate that debonding is usually preceded by another
failure mode (eg. face vielding, face wrinkling or core shearing)
if the interfacial crack is small relative to the core thickness.

Triantafillou and Gibson [11] have recently analyzed the
various failure modes of aluminum skin - r%gid polyurethane foam
éore sandwich beams; the usual modes of failure are face
yieldiﬁg. face wrinkling and core shear. By comparing the
failure load for each cf these modes with that for debonding it
is possible to determine whether or not debonding is the critical

failure mode for a particular sandwich design.

2.5, Cénélusions

Debonding in sandwich panels with foam cores can be
described in terms of the critical strain energy release rate of
the interface. The results of the analysis describe the measured
-debonding load in sandwich beams with aluminum skins and rigid
polyurethane foam cores well. They suggest that debonding is

unlikely to occur unless the initial interfacial crack length is




¢ ©
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relatively farge. The debonding faiiure load given by the

analysis presented here can be compared with the tailure loads
for other modes such as face yielding, face wrinkling and core
shearing to determine if debonding is the critical failure mode

for a given beam geometry and initial crack length.
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g;\\ﬁinimdh Weight Design of a Sandwich Panel for a Given

.

Strength

3.1 Introduction

The goal of this part of the project is to find the minimum
weight design of a foam core séndwich beam for. a gfven strength.
The optimum value of three design variables are to be found in
the analysis: the face thickness, t, the'core thickness, ¢, and
the core density, fk . The use of previously developed models ‘
for the behaviour of the foam core which relate the properties of
a foam to its relative density [1-3) allows the core density ta
be included as a design variable for the first time. The
Analysis presented in this section of the report is for a
sandwich beam with aluminum faces and a rigid polyurethane foam
core loaded in three-point bending. It is eaéily adépted to
other face and core materials and.other léading conditions using

the method outlined below.

‘The possible failure modes which will be considered are face
vielding, face.wrinkling and core she&ring. The results of the
first.part of tﬁis study indicate that debonding is only possible
if very large cracks (l&rger than the core thickness) preexist in
fhe interfaces between the faces and the core; we assume here

that no such large cracks are present in the interfaces.



3.2 Analysis

Streng(h contours may be superimposed on failure mode maps
by using tﬁe failure'equations listed in Table 1;1 (éig. 3.1) 14].
They indicate that the minimum weight design for a sandwich panel
occurs at the transiticn between one failure mode and an-~ther.
For example, within the regime of ftace yielding, the core density
can be reduced to .that corresponding to the transition between
face yvielding and face wrinkling with no change in strength.
Similarly, within the regime of core shear, the face thickness
can be reduced to4that corresponding to simultaneous core
shearing and face vielding with no loss of strength. For each
transition between two failurg modes, a minimum weight design can
be found by using the equation for the weight of the sandwich as
the objective function to be minimized and by using the two
failure équations for the modes under consideration as the
éonstraint'equations.v Two of the design variables (the fece and
core thicknesses and the coré density) are solved for in terms
éf the constraint equations and substituted into the weight
equation. Seﬁting the derivative of the weight equation equal to
zero then gives the minimum weight design. The regults‘of the
analysis for each of the transitions between failure modes are
~given in Table 3.la for the general case and in Table 3.1b for a
sandwich beam with aluminum faces and a polyurethane foam core
loaded in three point bending.

It remains to ideﬁtify which transition between failure

modes corresponds to the overall minimum weight design for a




CORE RELATIVE DENSITY. p/n (-)

FACE

CORE SHEAR

WRINKLING

FACE THICKNESS/SPAN LENGTH ;t/I (-)

Figure 3.1

A failure mode map for a sandwich beam loaded in three-poiné
bending with strength contours superimposed on the map.

map is for a beam with aluminum faces and a rigid polyurethane
foam core.
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Table 3.1a Minimum Weight Design of Sandwich Beams for Each

Transition
Between Failure Modes
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a = 0.57 c,2/% g /3 g 23
Face Yielding./Core Shear
B-1 B
2B Py P B, 1/ ] 281
c = —_ ; (C, €, o..)
cpt _ 2 "4 ys
CI(B 1) Pg °yf




opt

P/Pg)

a = 0.57 C

3

2/3

E

f

1/3

E

2/3




Table 3.1b Minimum weight Design of Sandwich Beams for Each

Transition Between Failure Modes

Face Yielding / Face Krinklink

as
'toft' = 0.0050 (P/bl) 1 . t/1 ¢ 0.00164
B ‘
copt = 0.5801 (P/b11°7 1 P/bl ¢ 0.107
Qa.lia,)or{ = 0.0389
_.Face Yielding [/ Core Shear G e e e e
' ates
topt = 0.0039 (P/bl) 1 t/1 > 0.00164
V- ¥ 11 .
Copt  * 0.7470 (P/bl) 1. P/bl > 0.315
- 0.4
Qa"/.,) opt = 0-0685 (P/bL)" " /o‘/f‘> 0.0389
Face wrinkling / Core Sheszar
aqe .
taot = 0.0048 (P/bl) 1 t/1 ¢ 0.00164
¥ -0.64
Cqpt = 0.0241 (P/bly 1 P/bl ¢ 0.079

(/u{ab‘?{ = 0.6556 (P/bl) Pela < 0.0389

Face Yielding / Face Wrinkling / Core Shear

0.00164 1

'1.7683 (P/bl) 1

= 0.3887

-~
®
\“:-

L/
-2
Pes
]

Notes . -

1. This table was obtained using the equations from Table 3.1a

with the values of the material properties for aluminum faces and

a rigid polyurethane foam core. They are:

P4 = 2700 kg/m> P = 1200 kg/m3 C,= 4 A
€4 = 70 GN/m* E; = 1.6 GN/m? Ciz= 2 B
Gy = 86 MX/m* Cys 127 MN/m2 . Cg= 1.13

’ 4= 0.31

2. P/bl is in MN/mz i t, ¢, and 1. are in m.




given required strength. This is done by comparing the minimum

weight for each transition between failure modes for a range of
given strengths; the results are shown in Table 3.2 for the
aluminum face-polygréthane core sandwich bear. Note that the
minimum weight design for a particular transition must fall
Fithin the feasible region of the transition it corresponds to;
othervise it is not a valid failure mode. We find that for any
given P/bl (the requirea stfquth per unit width per unit length)

one transition gives the absolute minimum weight design and that

the transitions are:

P/b1_< 0.107 MN/ml Face vielding / .ace wrinkling
0.107 < P/bl < 0.315 MN/m* Face yielding / Face wrinkling / Core shear

P/bl » 0.313 MN/m®* Face vielding / Core shear

Having identified the failure modés which give the minimum
weight beam for a given strengtg. the weight of the optimal beam
can be plotted against strength (Fig. 3.2). The design variables
(the face and core thicknesses, t and c, and the cﬁre densigy,

/ki can be found using Table 3.1 for the appropriate transition.
For the aluminum face-polyurethanevcore sandwich beam, the
.Vobtimum beam dimensions are plotted in Fig. 3.3 as a function of
the required strength of the beam per unit width and length,
?/bl. It is interesting to note that the optimum relative
density of the core is between 0.04 and 0.06 for P/bl up to 0.7

MN/m (or 100 psi), corresponding to densities between 3 and 4.5
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P/bl
{MN/

0.01
0.05
0.10
0.15
0.20
0.30
0.40
0.50
0.60
0.70

Note

1.
for

2.
the
the

Table:3.2 Comparison

° <

of Mi

nirum Weight as a Function of Strength
for Transitions Beiween Failure Modes

Y

2
Minimum Mass per (Length) , W,;, /81* (kg/m* )

FY/FW FY/Fw/CS FY/CS FW/CS
n>)
5.405 9.682 NV 6.473
11.990 12.979 NV 12.915
17.195 17.103 NV NV
NV 21,226 NV NV
"NV ©25.354 NV NV
\V 33.601 \V NV
\V 41.847 41.813 NV
NV 50.099 49.079 NV
NV 58.345 " 56.525 NV
NV €6.552 .63.265 NV
s

The underlined values are the overgll minimum weight designs
each P/bl. . ' .
NV = not a v-lid failure mode (the optimum design given by
equations of Table 3.1 for this failure mode lies outside of
feasible region of the mode).
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Figure 3.2 The minimum weight per unit width per unit lengf‘n2 as a
function of the required strength per unit width per unit
length. The plot is for a sandwich beam with aluminum faces
and a rigid polyurethane foam core loaded in three point bending.
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Fig. 3.3 a Optimum core thickness as a function of required strength per
unit width and length for a sandwich beam with aluminum faces
and a rigid polyurethane foam core loaded in three-point bend- '
ing.
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p/bl = 0.107

P/bl = 0.315

0.1

0.2 = ‘ 0.6

Strength per unit width and length, P/bl (MN/mz)

Fig. 3.3 b

Optimum face thickness as a function of required streng
unit width and length for a sandwich beam with aluminum
and a rigic polyurethane foam core loaded in three-poin
ing. '
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Fig. 3.3 ¢ Optimum core relative density as a function'of required strength
per junit width and length for a sandwich beam with aluminum faces
and |a rigid polyurethane foam core loaded in three-point bending.
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pounds per cubic foot. The ﬁhermal conduétivit& of foams is
lowest at these densities, so that the minimum‘weight design also
optimizes the thermalﬂperfbtmance of the panel.

A series of minimum weight beams for various P/bl,
corresponding *o the line in Fig. 3.2 have been designed. For
one value of weight for each transition between failure modes, a
series of sandwich beams has been designed. For a given P/bl
{and weight) the optimum values of the design variables, t, ¢ and
are found. A series of beams with the same weight as the optimum

but with different strengths were designed by holding the core

density at its optimum value:and varving t aﬁa c. This process
was repeated, holding each design variable constant at its
optimum value in turn, for each of the transitions between
-failure modes. The beam designs for the transition between face
vielding and core shear failure had unreasonably large core
thicknesses. They were reduced by redesigning the beamé for {ace
yvield failure only; to do this, slightly higher core densities
than those corresponding to the transition between face yielding
and core shearing were used. The resulting beam designs are
given in Table 3.3 and a plot'of the strength per unit weight of
these beams (Fig. 3.4) sﬁows the maxima corresponding to the
minimum weight designs.

In a preVious study (4] the failure equaiions for each mode
of failure described here were confirmed experimentally on
sandwich beams with aluminum faces and rigid polyurethanevfoam

cores loaded in three-point bending. In addition, the failure
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Table 3.3 Beam Geometri;s

©

—_——

Transition Between Face Yielding and Face Wrinkling

W=5.22N 1:=1.0m b=0.05m

' - - - - 3 _ , A 3
toff = 0.00102 m C’P*’ = 0.10"T m /q?t- 48 kg/m P/bl = 0.039 MN/m

t (m) /hfkg/m’) e (m) P/bl (MN/m* ) W O(N)
0.00102 48 0.107 0.039 5.22
0.00102 16 0.322 0.033 5.22
0.00102 32 0.161 0.037 o2
0.00102 64 . 0.080 0.028 5.22
0.00102 80 0.064 0.022 5.22
0.00102 96 0.054 0.019 5.22
0.00102 48 0.107 0.039 5.22
0.00041 48 0.176 0.025 5.22
0.00063 48 0.150 0.033 5.22
0.00081 48 0.131 0.037 5.22
0.00127 48 0.079 0.035 5.22
0.00160 48 0.042 0.023 5.22
0.00102 48 0.107 0.039 5.22
0.00160 16 9.107 0.012 5.07
0.00127 32 0.107 0.030 5.04
0.00064  S4 0.107 0.024 5.05
0.00031 80 0.107 0.015 5.28
\

39




o s ° e .o
° s o
g ¢°° o . B co - ° e ¢ b . <ot

d'!.'a(blieo 3.% Beam’ Geometries : ’ ~.°

TransitidnaBetween Face Yielding, Face Wrinkling and Cor

1]
172]
-
® -
o
e

W=1.55N 1=05m bzo0.025m

i . i - ) s N .
t‘{t = 0.00324 m chi = 0.173 m Aot = 48 kg/m”~ P/bl = 0.199 MN/m

t (m) fL(kg/m‘) c (m) P/bl (MN/m®) W (N)
0.00324 48 0.173 0.199 1.35
0.00324 16 0.517 0.155 1.55
0.00323 32 0.258 0.1864 1.55
0.00324 64 0.129 0.144 1.55
0.00324 8U 0.103 0.115 1.55
0.00323 96 0.086 0.096 1.55
0.00324 48 0.173 0.199 1.55
0.00162 38 0.217 0:122 1.55
0.00256 48 0.191 0.168 1.55
0.00308 318 0.149  0.176 1:55
0.00508 18 0.120 0.141 1.55
0.00630 48 '0.083 0.098 1.55
0.00324 48 0.173 0.199 1.35
0.00812 16 0.173 0.038 1.51
0.00508 32 0.173 0.110 1.52
0.00164 64 0.173 0.193 1.63
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Transition Between Face Yfelding and Core Shear

Tabié 3.3 Beanm beoﬁétriés

Only

W=3.12N 1=0.5m

0.025 m

°
°
o
»
°
o

Face Yieldirg

- . - o - . 3 - Y
t 0.00926'm C.P' = 0.136m /Q,rf- Y6 kg/m° P/bl = 0.444 MN/m

ori-
3
t (m) /& (kg/m ) ¢ (m)
0.00926 96 0.136
0.00926 48 0.273
0.00926 64 0.205
0.00926 80 0.164
0.00928 128 0.102
0.00926 192 0.068
'0.00926 us - 0.136
0.00164 T3 ' 0.242
0.00256 ug - 0.229
0.00408 96 0.208
0.00640 v 0.175%
0.00812 96 0.1351
0.01016 6 0.122

0.01272 96 0.086

0.00926 96 0.
0.01932 16 0.136
0.01272 64 0
0.01016 80 0.
0.00640 128 0.136

P/bl

0.444
v.322
0.374
0.321

0.321
0.214

0.444
0.137
0.202
0.292
0.385
0.422
0.426
0.291

¢.444
0.030
0.248
0.348
0.299

i

W (N)

3.12
3.12
3.12
3.12

©3.12

3.12

3.12
3.12
3.12
3.12
3.12
3.12
3.12
3.12
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Figure 3.4 aSandwich beams designed for the same weight but different
strengths. The optimum beam fails by simultaneous face
yielding and face wrinkling; it has P/bl = C.039MN/m% and
a weight-0f-3.22 N or 1.17 1b., The failure modes of the
other beams are: @ face yielding; A face wrinkling; O
core shearing; and ® simultaneous face yielding, face
wrinkling and core shearﬁg. : s
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- Figure 3.4h%) Sandwich beams designed for the same weight but different

strengths.

The optimum beam fails by simulaneous face yielding,

face wrinkling and core shearing; it has P/bl = 0,199 MN/m? and

a weight of 1.55 N or 0.35 1b.
are:

simultaneous face yielding 2gd fa;e wrinkling.

The failure modes ¢f the other beams
® face yielding; A face wrinkling; U core shearing; and B




c = 5.375 in ' be1.0in -
L = 19.6875 in

t = .090 in.

l)
-
AL
-
=
—
[
3
]
-l
o -
]
Yat
')
[
-
&
el
e
L)
It
o
®

60

40

25. 1 ‘ ek Y K]
4.0 8.0 e .05 10 ¢t
(in) (in)
Figure 3.4 c) Sandwich beams designed for the same weight but different
strengths. The optimum beam fails by face yielding; it has
2/bl = 0.444 MN/mn® and a weight of 3.12 N or 0.70 1b. The
failure modes of the other beams are: M face yielding and
face wrinkling; @ face yielding; A face wrinkling; O

core shearing; and®simultaneous face ylelding, face wrinkling
and core sheu‘i_ng.
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nod; ;aps. showing(the transitions £§t;e2n mod€s &eré aiso }ound
to describe the e#perimental results well; the results are sho@n
in Fig. 3.5 and 3.6, These resﬁlﬁs. along with the plots shown
in Fig. 3.4 indicate that the analysis outlined above will indeed
give the minimum weight design of a san-vich beam of a given
strength. In the ofizinal proposal we suggested performing
another set of experiments to confirm the optimization.analksis;
to do this a serjes of beams like those given in Table 3.3 would
be required. The results of the previous tests [4]) indicate that
the failu}e equatiohs developed previously, and used in the
analvsis here, give the expected failure loads and modes for the

beams; the set of tests we orisinilly proposed would cnly

, duplicate these results. Consequently, we decided not to pursue

the testing of the sandwich beams further. Instead of the
originally planned tests, we began work on another aspect of

designing sandwich panels: that of predicting the creep behaviour

of sandwich panels made with a foam core which creeps.

3.3 Conclusions

The values of the face and core thicknesses And of the core
density which minimize the weight of a sandwich beam of a given
strength ﬁave been focund. The analysis has been presented f;r.
the case of a sandwich beam with aluminum faces and a rigid

polyurethane foam core loaded in three poin; bending: the method

can easily be applied to other face and core materials and other

45




Face yielding

%

Face yieldihg
. Py Core shear
N w & Face wrinkling
Face wrinkling. Core shear ' Debonding

Local crushing

Core relative density,

~

'1

10™% 103 1072

Face thiciness/span length, t/g (=)

v

Experimental results of sandwich beams tested in three point
bending, plotted on a failure mode map. The beams were 1" wide
and had a core thickness of 1". The measured failure modes
agree well with those predicted by the map; in particular, the
transitions betw2en modes are well predicted. .
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Fig. 3.6 The results of ‘Fig. 3.5 plotted using the measured strengths.
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For the purposes of comparison, the theoretical strength contours
have been superimposed on the map; the agreement is good.
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loading conditions. For strengths per unit Lidtﬁ and

length,

P/bl, of less than 0.107 MN/m* , the minimum weight beam fails by
simultaneous face yvielding and face wrinkling; for P/bl between

0.107 and 0.315 MN/m2, it fails.by simultaneous face yielding,

face wrinkline and cors» chearing; and foar P/bl greater than 0.315
MN/m2, it fails by simultaneous face vielding and core, shearing.
For a given required strength of beam,‘P. span, 1, and width, b;
_the optimum values of fgce thickness, t.‘core thickness, ¢, eand
core density, /5 , can be found from Fig. 3.3, while thg minimqm
weight itself can be read from Fig. 3.2. The values of cor;

density which minimize &eight also optimize the thermal

performance of the panel.
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| At and above their glass transition temperature polymers

show slow, permanent, time-dependent deformations, or creep.

For many polymers the glass temperature is near room temperature
(Table 3.1) making creep an important consideration in the design

pf sandwich panels using polymeric foaﬁ cores. Metg;s and

ceramics creep, too, though the rate ofvcreep is significant only

when the temperature is greater than about one third of their

melting temperature. In this part of the project, our goal is to

‘describe the creep of & sandwich panel with a polymeric foam core

which creeps with time. We plan on first modelling ‘the creep of

‘a foam under constant load and then using the model to describe the

resulting creep of the panel. To date, we have reviewed the
literature on models for creep in polymers and foams and have
done some preliminary calculations on calculating the creep of a
sandwvich panel with a’creepihg core. We plan on continuing this

work in the next year of the contract.

4.2 Models for Creep in Polymers and Foams

Several models exist for the creep of solid polymers. The

simplest are the linear spring-dashpot models: the Maxwell
"~ element, consisting of a.spring and a dashpot in serius; the

Voigt element, a spring and dashpot in parallel; and the Burger

body, a Max'iell element in series with a Voigt element. The
behaviour of each of these elements is described in many

texts, see McClintock and Argon {1], for instance. Linear
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able 4.1 The Glass Transition Temperature for Some Common
Polvmners . . - -
Polymer Glass Temperature (°C)
Thermoplastics
Polvethvlene 20
Polypropylene =20
Polystyrene + 100
Polyvinyl chloride 80
Polymethylmethacrylate =~ 100
Nylons 7
Thermosets
Epoxies. - 110

Polyesters 70
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cr;eﬁ. f;£ which superpoéiii;n of stresg i§ vali; (e.g.ha
doubli;g of stress results in a doubling of‘the strain at a given
. time) can be ﬁodelled usiné some combinatioﬁ of these elements.
In practice, most polyﬁers do not exhibit linear creep and more
refined models are required to describe the?r behaviour. The
three most common -descriptions of non-linear creep in polymers

are: power-law method, the arc-sinh method and the multiple

integral method. Spring dashpot models with non-linear springs

and dashpots are also sometimes used.
A plot of creep strain against time often shows three

regimes: primary creep, in which the creep strain-rate decreases

«ith time; sccondary creep, for which the creep strain-rate is
constant; and tertiary creep, for which the creep strain-rate
increases with time. Materials with a constant, steady-state

secondary creep strain-rate can be described by power law creep

_é_., Lo\
o

€

according to:

and

. = A q;PC- Yer)

. whe;e é is the secondary‘creep strain-rate, A is a constant,
Q is the activation energy for the créep process (a material
property), R is the univgrsal gas constané, T is the temperature,

is the applied stress, ¢ is a material property and n is
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another m;terial pro;erty. 1f the duration of the load is large
tgen the pr}mary creep strains are small compared to the
secondary ones and this‘equation.gives a good predigtion of the
total creep strain. The secondary creep strain-rate of a wide
range of metals and -eraai.: can be described using tu:s
equatidn; it is less commonly used for polymers. Gibson and
Ashby have shown that a foam made from a solid cell wall material

'

that obeys power law creep should creep according to [2]):

* ¢ . Py 3050,
€ . Ca Cio (2ng+ D) [ : (9_,> Y
os A+ 2 . ng G ‘1'9*

where the superscript % refers to the foam property and the
subscript s refers to the solid cell wall property. and Cw

are constants which can be determined by considering the *wo

limits of plastic collapse (for which n =z and (€ = ¢ys ) and of

) Ce

linear elasticity {(for which no= 1y g’ = g™ and — = E;.
. s

We find Cq £ 0.6 and CID: 1.7. Although both polymer and metal

foams have been tested in the creep range, the data are not

complete enough to allow a test of the above equation [3-6].
Polymers which do not have a constant, steady-statg creep
strain-rate can be degcribed in two ways: by fhe arc sinh method
or the multiple integral method. Both are essentially curve
fittiné techniques. In the arc sinh method, the creep strain is

given by [7]:

€ = <E; S4n&1<§;ﬁ> + ~¢.+” ISR (%; \s
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where € is the creep strain, & is the applied stress, t is
ot ' '
time, and € , m , N1, 05, and 0, are material constants which

o

are found empirically from a series of creep tests for different
levels of applied stress. The above equation can be_used to
calculate the creép strain of a beam, and hence a foam, maée from
a material following arc sinh creep. This remgins to be done.
Green and R;vlin lBi and Pipkin [9] have shown that the

nonlinear creep behaviour of polymers may be expressed as the sum

of multiple inteﬁrals up to the fifth order. To determine the
27 materigl éénstants for the multiple integral representation of
créep behaviour under multiaxial stresses the results of three
tension tests,';wo torsion tests and two tests under comﬁined-'
tension and torsion of a thin walled tute afe necessary. Brown
and Sidebottom [10], . .in cemparing the accuracy of the arc¢ sinh
theory and the multiple integral theory found that although the
multiple integral theory was more complex, it was no better at
predicting creep strains of polyethylene under simple fensidn,
compression or torsion. Because of this, we will not consider
the multiple integral theory further.

. 'Little da;a for the créep of foams exists. The most
complete study is that of Nolte and Findley (11) who measured the
creep response of both solid and foamed polyurethane under simple
tension, compression and torsion and under.combined tension and

torsion. They used the multiple integral representation to
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predict the creep

2

of
creep of the foam could be predicted by multiplying the solid
creep strains by the ratio of the Young’s modulus of the foam to

that of the solid.

4.3 Future work
Creep of foams

Creep teafs at diftorent stress levels of foams o1 ditterent
relative densities and of the solid polymer from which they are
made are required to determine which creep theory to use to
describe the creép of a polymeric foam core and to measure the
material properties requiredlfor the use of thg creep law. In
csandwich béams with.é creeping foam core, the core madv bhe subject
té either simple éhear séresses or combined axial and shear
stresses; the creep tests of foams under. both loading'conditions

will be necessary to predict the creep of sandwich beanms.

Creep of sandwich beams

The elastic deflection of a sandwich beam is the sum of the
bending deflection of the beam, which depends on the overall
flexural rigidity of the beah, and of its shear deflection, which
depends on the shear rigidity of the core. We éropose first to
analyze the creep of a sandwich beam in which the foam core
creeps but faces do not (eg. a beam made with a polyurethane foam
core with aluminum féces). Creep tests on sandwich beams with

aluminum faces and polyurethane cores will be performed to
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compﬁre the analysi§ with c}éépvdntg: lgcihe analgsiéofor a
creeping core is satistactory, then the analysis willybe extended
to.ex;mine the problem of a sandwich beam made with both faces
and a core that creeps {(as in, for instance, ‘a sandwich beam made
with vood faces and a foum cere). Again, creep tests un sandwich
beams with wood faces and a polyurethane foam core will be
performed to compare the analysis with creep data.’ It is hoped

that the analysis will suxgest design methods which minimice the

creep of a sandwich beam under constant load.
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- From this study of optimum design methods for structural

sandwich pahels we conclude the following.
(a) Debondipg |

The equations derived for {he debonding load describe
the e#perimental data well. Debnnding is only a problem vhen
there is a ﬁreexisting crack larger thar twice the depth of the
core, which is unlikely'to be the case.
{b) Minimum weight désign of sandwich beam of a given streﬁzth

Failure mode maps can be used to find the critical failure
mode for‘any given'strength of saﬁdwich beam of kﬁown width and
span. The analysis gives the face and core thicknesses and thé
core density which minimize the weight of the beam for any given
strength; the resultis are summerized in Fig. 3.3. and ¥.4. The
optimum core density for a sandwich beam with aluminum faces and
a polyurethane foam core loadea in three point bending is between
3 and 4.5 pounds per cubic foot for P/bl up to 100 nsi; it is
interesting to note that the thermal conductivity of foams is
lowest at tﬁis density so that this optimizes'the thermal
performance of the panel also.
(c) Creep of sandwich beams

The initial literature review of models for creep in selid
polymers and foams is complete. We propose continuing work on
creep of sandwich beams in the second year of the project.
Specifically, we propose measuring creep in foamg and in sandwich

beams made using those foams.
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PENDIX =

LIST OF SYMBOLS

|

Sandwich beam geometrv

width

core thickness’

span

face thickness .

total weight of the beam

acceleration due to gravity
/¢ total mass of the beam

oA o0

Loading configuration

a constant relating the product of the applied load, P, and
the span, 1, to the maximum moment acting on the beam
= PY/M, .,

Cl

C, = a constant relating the applied locad, P, to the maximum
shear stress in the beam '
= P/be T, -

Material Properties

Pt density of the face material
Eg - Young’s modulus of the face material
be yield strength of the face material

p‘ density of the foam core

E. Young's modulus of the foam core

G, shear modulus of the foam core

O tensile yield strength of the foam core

0.e compressive yield strength of the foam core
« shear yield strength of the foam core

f& density of the solid from which the core is foamed

E, Young's modulus of the solid from which the core is foamed
Cys vield strength of the solid from which the core is foamed
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“The. following ;'eclunticoﬁgsohipsa apply to the focinln c;re and the solid
from which it is.foamed: o .
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