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OPTIMUM DESIGN METHODS FOR STRUCTURAL SANDWICH PANELS

1. Introduction

Structural sandwich panels are composed of two thin, stiff

skins separated by a lightweight core. The faces are typically

strong materiels qnch, as aluminum or fibre reinforced con.poqites,

while honeycombs or foams are used in the core. The separation

of the faces increases the moment of inertia of the panel with

minimum increase in weight, giving a panel that is extremely

efficient in resisting bending and buckling. Because of this,

sandwich panels are used in applications where the weight of the

member is critical: in aircraft, marine and land vehicles; in

portable structures; in construction in remote areas; in roofing

shells; and in some types of sports equipment such as modern

downhill skis. Sandwich construction is even found in nature

where mechanical design is often optimized: in the skull, two

layers of dense, cortical bone are separated by a lightweight

core of sponge-like cancellous bone. In each case, the

mechanical behaviour of the sandwich panel depends on the

strength and stiffness of the face and core materials, on the

geometry of the panel and on the strength of the bond between the

faces and the core.

The aim of this project has been to find the minimum weight

design of a foam core sandwich panel for a given required

strength. The optimization analysis for this problem is

complicated by the fact that the sandwich may fail by one of

several different modes. The face may yield in tension or may

3
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compress

buckle locally in compression (or "wrinkle". The core may fail

in tension, compression or shear. And finally, the bond between

the faces and the core may fracture causing delamination. Each of

these failure modes is described by a different failure equation.

There is not A single, well defined constraint equ tior for the

required strength., then; instead; there is a set of contraint.

equations. The critical one for a given loading configuration

and beam design, occurring at the lowest load, must be determi'ned

to carry out the optimization analysis.

Failure mode maps, showing the range of beam designs for

which a'given failure mode is critical, have been developed in a

previous project (Fig. 1.1). Briefly, they are constructed by

equating pairs of failure equations in turn to give the equations

of the transition lines between failure modes. The failure

equations and transition line equations for foam core sandwich

beaths are given in Tables 1.1 and 1.2; the nomenclature is given

in the Appendix to the report. To simplify the development of

the failure mode maps, only the failure modes listed in Table 1.1

were considered; in particular, it was assumed that the bond

between the faces, and the core was perfect and that debonding did

not occur.

To proceed with the minimum weight analysis of a foam core

sandwich beam we proposed the following tasks for this project:

4
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Figure 1.1 A failure mode map for a sandwich beam loaded in three-point
bending. The beam has aluminum faces and a rigid polyurethane
foam core. This map has been made assuming that debonding does
not occur.
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TABLE 1.2 TRANSITION EQUATIONS FOR FAILURE MODE MAPS

FAILURE MODE TRANSITION EQUATION

Face yield - ac/p .= 2 /3 32i /2A
PC S 2/3 1/3 =Face wrinkling S 0.57 C E f J

Face yield - C2= C (p//P) 3  a

Core shear. C1  s yt

t C 2C 4 -2A YFace wr'.nkllng - 1./7...
Core shear 07

Note: These transition eqatlo-•s are based on the asg-nption that normal
stresses in the core are ir i~±±a~t ±n the core shield failure
mode.

7



(a) Failure Mode Map Finalize the Debonding Mechanism

The analysis of debonding in sandwich beams is incomplete;

to properly understand how debonding and delamination occur

requires the application of fracture mechanics'to the problem. A

crack in the bond will propagate (and cause debonding failure)

when the stress field around the crack produces a stress

intensity factor equal to the fracture toughness of the adhesive.

The analysis of the stress field around the crack is complicated,

but a simple dimensional argument can be used to characterize the

important parameters in'crack propagation. Experimental

measurements of the load required to propagate a crack of known

length can then be used to calibrate the dimensional analysis to

get a more exact description of crack propagation. In these

experiments, sandwich beams with deliberate areas of debonding in

them, simulating "cracks" will be made. The debonded area can be

made by inserting a thin piece of plastic between the face and

the core so that no adhesive reaches this area. The crack length

is given by the length of plastic strip used. The beams will

then be tested in bending to produce a debonding failure; the

failure load will be recorded. This will be repeated for

different crack lengths. This procedure should allow a complete

characterization of the debonding process in' sandwich beams.

SoB



(b) Optimization Analysis of a Sandwich Beam subject to a

Strength Constraint

In this part of the project we will do the optimization

analysis for the strength constraint. This can be done by using

each failure equation in turn as the constraint eouation in the

optimization analysis and then comparing all the results to

determine thp minimum weight solution. This, however, is time

consuming and laborious, as the equations may not have closed

form solutions . We intend to try to use the information given

by the failure map to simplify the optimization procedure; the

details will be worked out during this task.

Cc) Experimental Verification of the Optimization Analvsis

The properties of the foam to be used in the core of the

sandwich ',eams will first be measured so that the exact property-

density relationships can be used in the optimization analysis.

Then, a series of sandwich beams, of varying weight but constant

strength, will be designed, made and tested to failure in

bending. Load-deflection plots will be recorded for each beam

and the mode of failure noted. We will also take photographs of

the failed beams. If the results of the tests agree with the

analysis, they will increase confidence in it; otherwise they

will be helpful in indicating the deficiencies of the analysis.

The debonding study and the optimization analysis of a

sandwich beam subject to a strength constraint have been

completed and are described in more detail below in Sections 2

9
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aand 3. The experimental verification of the optimization

analysis has been omitted as the only tests that could be done

would duplicate ones done earlier in another study. Instead, we

have begun.-work on modelling creep in foam core sandwich panels;

this wetx is dksc'ribrd in Section 4.
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2. Debondih- in Foam Core Sandwich Panels

2.1. Introduction

Structural members made up of two stiff, strong skins

separated by a lightweight core are known as sandwich panels.

The senaration of the skins by the core increases the moment of'

inertia of the panel with little increase' in weight, producing an

efficient member for resisting bending and buckling loads. The

low weight of sandwich panels was first exploited by the aircraft

industry; ultra-light panels using carbon fibre-composite skins

and honeycomb cores are now used routingly in modern aerospace

components. Sandwich panel technology is now being transferred

to building applications such as roof and wall panels; the cores

of such panels are typically made of foam to give good thermal

insulation in addition to low weight.

It is critical that the bond between the skins and the core

remain intact for the panel to perform satisfactorily. In this

paper, we describe the criterion for debonding in a sandwich beam

with isotropic faces and a foam core in terms of the critical

strain energy release rate. Tests on sandwich beams with

aluminum skins and foamed polyurethane cores show that the

analysis describes debonding faiOre well. Comparisonoof the

load for debonding with that for other modes of failure, such as

face yielding, face wrinkling and core shearing, show that

debonding occurs only if there are relatively large pre-existing

cracks at the interface; otherwise it is preceded by another mode

of failure. The results are useful in determining the maximum

11
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permissible interface crack for a sandwich panel with a foam

core.

The propagation of a crack at the interface between two

dissimilar elastic media has been.studied by several workers.

England MI] calculated the stress intensity factor for normal

loading of an interface crack between two dissimilar elastic

media; this solution suffers from the difficulty that it requires

the two materialq to wrinkle and overlap near the-ends of the

crack which is physically unrealistic. Comninou 12-41 reexamines

England's solution and finds that if a frictional contact zone is

introduced at the ends of the crack, a more realistic solution is

possible. Sh- calculate's the stress intensity factor for both

normal [2,3] and shear [4] loading. The difficulty with such

analyses is that they are difficult to implement as the size of

the frictional zone ahead of the crack tip must be estimated.

Other workers, concerned with debonding in fibre composi e

laminates, have examined a more complex crack geometry w'th a

through crack in one layerrunning into a perpendicular nterface

crack between that layer and the next [5-9]; these analyses use a

complex variable formulation'to reduce the problem to a set of

integral equations which are solved numerically. Here, ge treat

the problem of the propagation of an interface crack in

sandwich panel with isotropic faces and a foamed core in a

simpler manner, by examining the strain energy release rate

required for crack propagation and measin'i-ng the critical strain

12
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energy release rate of the interface experimentally.

22. Analysis

Consider the sandwich beam shown in Fig. 2.1 of stiffness, S.

It has a length, 1, a width, b, and face and core thicknesses, t

and c. The density and Young's modulus of the core and face

materials are , 0+ ,E and E Th. flexural

rigidity of the beam is given by [10]:

EKbt3 F.btd2 Ecbc3 (1)

6 2 12

where d = c + t. The stiffness of the beam is 1101:

S p P CIC2AeGCD

- 3
Ep3 P; C2 3AeGc+ C ID (2)

CID C2AeGc

where A. (:bd&/c) is an equivalenz core area and C, and C are

const nts relating to tte loading geometry. For example, for a

simply supported beam urder three-point bending, C. = 48 and C -

2.

4.

The beam contains E crack of length 2a at the interface

between the face and core and is loaded by a concentrated load,

P. Wenowi determine the load, P, which causes the crack to

propagate by examining he strain energy release rate. The

13
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Fig. 2.1 The geometry of a sandwich beam with an interfacial crack of
length 2a.
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te core . is

V 2 S b/ c

elastic energy in a perfectly bonded beam is:

2 2 S

and the energy per unit volume, if the faces are thin compared to

the core, is

Ui 1 p2  (4)

... V 2 S1•c

If a > c, the volume unloaded by a crack of length a is 2abc

(Fig.2.2a) and the corresponding released energyv is:

¶ p2 p2a ( 5)

U(a)=-- -- 2abc=-
2 StI c Se

The mode II strain energy release rate, G. , for in-plane shear

delamination is given by:

all(al (6)
0II ="b •a

so that

15
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Fig. 2.2 (a) The unloaded volume for a crack half length greater than the depth4 of the core.
(b) The unloaded volume for a crack half length less than the depth of

the -core.
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S, ( 17)
Sb/

Fracture occurs when the strain energy release rate, GZ , equals

the critical strain energr rleaqP rote for the interface, G

G iI - 1Ci ( 8 )

which gives the failure load -

J SbeG~c (9)

If the crack length is smaller than the beam thickness, c, the

unloaded volume is roughly T a'b/2 (Fig. 2.2b) and the same

procedure gives:

p -2Sb"cGIzc (10)

Experimental evidence shows that debonding is not likely to occur

unless a large crack exists Pt the interface (in which- case equation

(9) gives the debonding load).

The critical strain energy release rate of the interface, G __

can be found from shear tests. Consider the double-shear

specimen shown in Fig. 2.3. The elastic energy in the specimen is:

17
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(a) b

~Fig. 2.3 •()The double-shear test specimens used to measure the critical
strain energy release rate of the interface.

(b) The loading on one half of the double-shear specimen.
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with (for small strains)

r 'h(12)

so that

4 GU 2  (13)

where F is the applied Ioad, t is an average shear stress on

the face w'ith the crack, h is the depth of the specimen and G
2. C

is the shear modulus of the core. The average shear stress can be

approximated as

2hI(h 3 -2a 0 ) (14)

where h is the length of the specimen and a. is the crack

length at the foam-plate interface. It follows that the energy

per unit v'olume'can' be written as

u 72
-2 (15)

V C .h h13 (h13 2a 0 )

The energy released by a crack of length 2a (a > h ) is

92.

19
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2F a0 h h2 F2 a0 h2U(aO, 0"h 2 2 0 2
S' ( 40C h0 h 3 h3-2a0)

and the gtrain enerry releane rate is

I,' I WUaO) F2 h

G11* 0- 2 (17)
h I daO 4GC h,2(h3-2a0 )

2

At failure of the specimen (delamination)

Fd h2

IIC 2Gh (h 2a)()

w'here F•is the l'oad for delamination. Equatbain (38) can be

used for the evaluation of the critical strain energy release

rate for each foam density.

2.3. Experimental Method

The critical strain energy release rate for the interface

was measured using double shear specimens pulled in tension (Fig

2.3). The aluminum faces and rigid polyurethane foam cores of

densities 64, 96, 160, 192 and 320 kg/rn3  were bonded-together0

with a polyester resin adhesive. The dimensions of the specimens

11 were: h,,= 25.4 mm, h 9.5 mm (64 and 96 kg/mr specimens),

h =12.7 mm (160, 192 and 320 kg/m3 specimens) and h3 76.2 mm.

Cracks of length 31.8, 38.1 and 50.8 mm were introduced into the

0 interface by not applying the adhesive to the area of the crack

20
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and by inserting a removable plastic strip into the crack while

the specimens were pressed together and cured. The specimens

were loaded in tension in Instron testing machine and the load

and deflection recorded. Three specimens of each crack length

ard density were tested. Dpbonding did not ncrur in the C4 and

96 kg/mn density foam specimens even when the crack length was

two thirds of the length 6f the specimen; instead these specimens

failed by plastic shearing of the foam. The 160, 192 and 320 kg/m3

specimens failed by crack propagation along the interface.

In the case of the 160 and 192 kg/mr specimens, the crack

propagated through the foam adjacent to the interface, while in

the 320 kg/M 3 specimens it propagated within the adhesive layer.

The load, deflection behaviour was linear to failure for all three

densities.

The shear moduli of the foams were measured on double shear

specimens with no interface crack. The dimensions of the

specimenswere h 25.4 mm, h 2 9.5 mm and h3 76.2 mm. The

specimens were loaded in tension and were linear elastic.

A set of sandwich beams was made by bonding aluminum skins

to rigid foamed polyurethane cores with polyester resin.

Interface cracks of known length were introduced by the same

method as in the critical strain energy release rate tests. A

range of beam designs were tested. The beams were loaded to

failure in three point bending using a screw jack. Load and

deflection were measured during the test with a load cell and a

21
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•!;#0; LVDT and were recorded on an .-Y recorder. The beams were

•_ ~linear-elastic to failure w'hich was by crack propagzation along

•;•:"•the interface througzh the foam.

"2.4 Results and Discussion

The critical strain energy release rate was calculated from

the double shear tests using equation (18); the results are given

in Table 2.1 for each o' the foam densities tested for which

debonding occurred. G is independent of the length of the

crack along the interface. For the two lower density foams

for which the crack prmpagated through the foam along the

interface, GE corresponds to the surface energy of the foam at

the interface. The largest value of GrE , for the 320 kg/m 3

foam for which the crack propagated through the adhesive,

corresponds to the surface energy of the adhesive. There is a

transition from crack propagation in the foam to crack

propagation i6 the adhesive at a foam density between 192 and 320.

kg/mr

* The failure modes and loads of the sandwich beams are listed

in Table 2.2 along with the expected load for debonding failure

(equation (9) or I10), depending on the crack length). The beams

with interfacial acks which are largE relative to the core

thickness, c, failed by debonding. There is a slight dependence

of the failure load on the crack length, 2a, with the debonding

load decreasing by about 5% as the crack length increases from

127 mm to 204 mm. The agreement between the measured and

~CI~ 22



F C C C C % C 
0 

C" C" " o'- o dO° ' oC. ° o

TB 2. CI A C E R CA

(kg m- le g h oo d F (N Gr (j m2 G,- :•• ' J/°°m • •°o•

C. 2 1 9

TABLE 2.1. CRITICAL STRAIN ENERGY RELEASE RATES VOF THE FOAMS

Core density, Crack Measured failure Calculated Mean
•€ (kg/rn3 ) length, load, F (N) GT•(J/mL ) G-(Jim'

(2a 0 (mm } (eqn 18)

160 41.8 3150 1530 1560
38.1! 2840 1690

50.8 1760 1460

192 31.8 4,130 1580 1630
38.1 3670 1690
50.8 2390 1610

320 31.8 5480 2000 1900
38.1 4600 1910
50.8 2960 1780

Notes

1. For all specimens h, = 25.4 mm, h. 12.7 mm, h 3  - 76.2 mm.
2. The shear moduli of the foams were 16.2, 27.0 and 37.5 MN/rrn

for the .160, 192 and, 320 kg/mr3 densities, respectively.
3. The measured failure loads are the average of 3 tests.

23
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S TABLE 2.2 FAILURE LOADS OF TEST BEAMS.

1 2a C t b A& P i,;I Mode P
K (mm) (mm) (mm) (mm) (mm) (kg/ni) IN IN)

(eqn 9 or 10)

381 127 51 3.18 38 160 3150 debonding 3030
381 152 51 3.18 38 160 30900 debonding 2990
381 204 51 3.18 38 160 2830* debonding 2930

381 127 51 3.18 38 192 3980 debonding 382-10
381 152 51 3.18 38 192 3910* debonding 3785
381 204 51 3.18 38 192 381Le debonding 3730

381 127 51 3.18 38 320 5420 debonding 4890
381 152 51 3.18 38 320 53110U debunding 4850
381 204 51 3.18 38 320 5190* debonding 479U

508 127 51 3.18 38 160 2910 debonding' 3110
508 152 51 3.18 38 160 2780* debonding 3U70

j 508 204 51 3.18 38 160 2650* debonding 2980

a 508 127 51 3.18 38 192 3790 debonding 3910
.508 152 51 3.18 38 192' 3720' debonding 3870

* 508 204 51 3.18 38 192 3670' debonding 3800

508 127 51 3.18 38 320 4860 debonding 502U
508 12 51 3.18 38 320 47504 debonding 4980
508 2 4 51 3.18 58 320 4670'" debonding 4930

241 5) 25 1.27 25 160 1100 'face yield 890
241 7 25 1.27 25 160 1090 face yield 1105
241 75 25 1.2( 25 320 1120' face yield 5450

S267 3 25 0.63 25 160 470 face yield 650
267 3ý 25 0.63 25 320 490 face yield 1490

Note

Failur loads marked by an arterisk are the average'of 2 tests;
otherw se, they are the result of 3 tests.

24
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calculated debonding loads is within 10% for all beam aeometries

and crack lengths. The analysis describes debonding in sandwich

beams with foam cores well.

The beams wit'h relatively small interfacial cracks yielded

before dehonding nrcurred; for these beams the pr-dicted

debonding load is grea'ter than the measured face yielding load

with only one exzception, for which the yield and debond loads are

similar. Similar calculations for a wide range of sandwich

beams indicate that debonding is usually'preceded by another

failure mode (eg. face yielding, face wrinkling or core shearing)

if the interfacial crack is small relative to the core thickness.

Triantafillou and Gibson (11] have recently analyzed the

various failure modes of aluminum skin - rigid polyurethane foam

core sandwich beams; the usual modes of failure are face

yielding, face %,rinkling and core shear. By comparing the

failure load for each of these mode-s with that for debonding it

is possible to determine whethei or not debonding is the critical

failure mode for a particular sandwich design.

2.5. Conclusions

Debonding in sandwich panels with foam cores can be

described in terms of the critical strain energy release rate of

the interface. The results of the analysis describe the measured

debonding load in sandwich beams with aluminum skins and rigid

polyurethane foam cores well. They suggest that debonding is

unlikely to occur unless the initial interfacial crack length. is
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Vrelatively large. The debonding failure load giv'en by the

anaysi prsened erecanbecompared with the failure loads

ssuch as face yielding, face wrinkling and core

shearing t determine if debonding is the critical failure mode

for a given beam geometry and initial crack length.
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3!. "nimum Weight Design of a Sandwich Panel for a Given

Strength

3.1, Introduction

, The goal of this part of the pro.ect is to find the minimum

weight design of a foam core sandwich beam fora given strernth.

The optimum value of three design variables are to be found in

the analysis: the face thickness, t, the core thickness, c, and

the core density, 0• , The use of previously developed models

for the behaviour of the foam core which relate the properties of

a foam to its relative density [1-31 allows the core density to

be included as a design variable for the first time. The

analysis presented in this section of the report is for a

sandwich beam with aluminum faces and a rigid polyurethane foam

core loaded in three-point bending. It is easily adapted to

other face and core materials andother loading conditions using

the method outlined below.

The possible failure modes which will be considered are face

y•ielding, face w.rinkling and core shea'ring. The results of the

first part of this study indicate that debonding is only possible

if very large cracks (larger than the core thickness) preexist in

the interfaces between the 'faces and the core; we assume here

that no such large cracks are present in the interfaces.
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3.2 Analysis

Strength contours may be superimposed on failure mode maps

by using the failure equations listed in Table 1.1 (Fig. 3.1) 14].

They indicate that the minimum weight design for a sandwich panel

occurs at the transition between one failure mode and an-ther.

For example, within the regime of face yielding, the core density

can be reduced tothat corresponding to the transition between

face yielding and face wrinkling with no change in strength.

Similarly, within the regime of core shear, the face thickness

can be reduced to that corresponding to simultaneous core

shearing and face yielding with no loss of strength. For each

transition between two failure modes, a minimum weight design can

be found by using the equation for the weight of the sandwich as

the objective function to be minimized and by using the two

failure equations for the modes under consideration as the

constraint equations. Two of the design variables (the face and

core thicknesses and the core density) are solved for in terms

of the constraint equations and substituted into the weight

equation. Setting the derivative of the weight equation equal to

zero then gives the minimum weight design. The results of the

analysis for each of the transitions between failure modes are

given in Table 3.1a for the general case and in Table 3.1b for a

sandwich beam with aluminum faces and a polyurethane foam core

loaded in-three point bending.

It remains to identify which transition between failure

modes corresponds to the overall minimum weight design for a
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SFigure 3.1 A failure mode map for a sandwich beam loaded in three-point
bending with strength contours superimposed on the map. The

~map is for a beam with aluminum faces and a rigid polyurethane
S~foam core.•

~30



o 1

S~C b

0 o 0 b c

•, ~~~ o • opt o :

ay,

Table 3.la Minimum Weight Design of Sandwich Beams for Each Transition

Between Failure Modes

Pace Yieldirna/Face Wrinkltng

copt * F C+p b

(PIP slyf)

(PC /Pslopt 
13/2A

0. 7 C 2/'3 "' 1/3 E 2/'3
3= 0.57 E 2s

Face Yleidina./Core Shear

B-I B

o2B PfP-t 1/B PC

c opt- s yf (C 2 C4 ]ys)
C I ( -1) ps a 7



opt

C - 0 C b

Face topt I o
•;:.•- • 1 yt Coptb
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Face Wr~nkflin!Core Shear
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Table 3.1b Minimum Weight Design of Sandwich Beams for Each
Transition Between Failure Modes

Face Yielding L Face Wrinklint

t 0.0050 (P/bl) I t/1 < 0.00164

c 0.5801 (P/bl)• 1 P/bl < 0.107

, 1. l,%) =0.0389

Face Yielding L Core Shear .

tO* = 0.0039 (P/bl) 1 t/I .> 0.00164

o &~s
cort = 0.7470 (P/blo I, P/bl ) 0.315

t=0.06.85 (P/bl) > 0.0389

Face Wrinkling 4 Core Shear

t : 0.0048 (P/bl) I t/l < 0.00164

c C. : 0.0241 (P/bl) 1 P/bl < 0.079

1:)t=0.6556 (P/bli ) 0.0 38 9

Face Yielding / Face Wrinkling L Core Shear

0.00164 1

cart = 1.7683 (P/bl) 1

S0.3887

Notes

1. This table was obtained using the equations from Table 3.1a
with the values of the material properties for aluminum faces and
a rigid polyurethane foam core. They are:

2700 kg/m 10s .1200 kg/mr C,: 4 A = 1.71
70 GN/mI E 1.6 GN/m2 C1 : 2 B = 1.52
86 MN/m2" A = 127 MN/m2" C3= 1.13

C = 0.31

2. P/bl is in .N/m' ; t, c, and 1 are in m.
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given required strength. This is done by comparing the minimum

weight for each transition between failure modes for a range of

given strengths; the results are shown in Table 3.2 for the

aluminum face-polyurethane core sandwich bear.. Note that the

minimum weight design for a particular t,,nsition must fall

within the feasible region of the transition it corresponds to;

otherwise it is not a valid failure mode. We find that for any

given P/bl (the required strength per unit width per unit length)

one transition gives the absolute minimum weight design and that

the transitions are:

P/bl ( 0.107 MN/m 1 Face yielding / Ace wrinkling

0.107 < P/bl < 0.315 MN/ml Face yielding / Face wrinkling , Core shear

SP/bl > 0.315 MN/mz Face yielding / Core shear

Having identified the failure modes which give the minimum

weight beam for a given strength, the weight of the optimal beam

can be plotted against strength (Fig. 3.2). The design variables

(the face and core thicknesses, t and c, and the core density,

f4) can be found using Table 3.1 for the appropriate transition.

For the aluminum face-polyurethane core sandwich beam, the

optimum beam dimensions are plotted in Fig. 3.3 as a function of

the required strength of the beam per 'unit width and length,

P/bl. It is interesting to note that the optimum relative

density of the core is between 0.04 and 0.06 for P/bl up to 0.7

MN/m (or 100 psi), corresponding to densities between 3 and 4.5

K• )

fL ia , .



Ooo • • • °• • 9 oo o0 o 0 o 00

o7Z

00 oc0o "- - C

%

., 0 0 0 0 ° 0- 0 ° o• °° ooo

Table 3.2 Comparison of Minirum Weight as a Function of Strength,
for Transitions Be,,een Failure Modes

Minimum Mass per (Length) '=, Wmi Igli (kg/mlt

P/bl FY/FW FY/FW/CS FY/CS FW/CS
(MN/min

0.01 5.405 9.682 NV 6.473
0.05 11.990 12.979 NV 12.915
0.10 17.195 17.103 NV NV
0.15 NV 21.226 NV NV
0.20 NV 25.354 NV NV
0.30 NV 33.601 NV NV
0.40 NV 41.847 41.813' NV
0.50 NV 50.099 49.079 NV

0.60 NV 58.345 56.525 NV
0.70 NV 66.592 63.265 NV

Notes

1. The underlined values are the overall minimum weight designs
for each P/bl.

2. NV = not a v-lid failure mode (the optimum design given by
the equations of Table 3.1 for this failure mode lies outside of
the feasible region of the mode).
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Figure 3.A The minimum weight per unit width per unit length2 as a
function of the required strength per unit width per unit
length. The plot is for a sandwich beam with aluminum faces
and a rigid polyurethane foam core loaded in three point bending.
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Fig. 3.3 a Optimum core thickness as a function of required strength per
unit width and length for a sandwich beam with aluminum faces
and a rigid polyurethane foam core loaded in three-point bend-
ing.
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Fig. 3.3 b Optimum face thickness as a function of required streng h per
unit width and length for a sandwich beam with aluminum faces
and a rigid polyurethane foam core loaded in three-poin bend-
ing.
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Fig. 3.3 c Opt mum core relative density as a function of required strength
per unit width and length for a sandwich beam with aluminum faces
and a rigid polyurethane foam core loaded in three-point bending.
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pounds per cubic foot. The thermal conductivity of foams is

Lowest at these densities, so that the minimum weight design also

optimizes the thermal 'performance of the panel.

A series of minimum weight beams for various P/bk,

A/

corre.ponding *o the line 'n Fig. 3.2 hoa.e been designed. For

one value of weight for each transition between failure modes, a

series of sandwich beams has been designed. Tor a given P/bl

land weight) the optimum values of the design variables, t, c and

are found. A series of beams with the same weight as the optimum

but with different strengths were designed by holding the core

density at its optimum value and varying t and c. This process

was repeated, holding each design variable constant at its

optimum value in turn, for each of the transitions between

*failure modes. The beam designs for the transition between face

yielding and core shear failure had unreasonably large core

thicknesses. They were reduced by redesigning the beams for face

yield failure only; to do this, slightly higher core densities

than tho-se corresponding to the transition between face yielding

and core shearing were used. The resulting beam designs are

* given in Table 3.3 and a plot of the strength per unit weight of

these beams (Fig. 3.4) shows the maxima corresponding to the

minimum weight designs.

In a previous study (4] the failure equations for each mode

of failure described here were confirmed experimentally on

sandwich beams with aluminum faces and rigid polyurethane foam

cores loaded in three-point bending. In addition, the failure

38
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Table 3.3 Beam Geometries

Transition Between Face Yielding and Face Wrinkling

W :5.22 N 1: 1.0 m b 0.05 m

tort = 0.00102 m c,, = 0.107 m /qt = 48 kg/m 3 P/bl 0.039 MN/mr

t (m) fkg/m 3 ) c (m) P/bl(9N!mN4 W IN)

0.00102 48 0.107 0.039 5.22
0.00102 16 0.322 0.033 5.22
0.00102 32 0.161 0.037 5.22
0.00102 64 0.080 0.028 5.22
0.00102 80 0.064 0.022 5.22
0.00102 9c 0.054 0.019 5.22

0.00102 48 0.107 0.039 5.22
0.00041 48 0.176 0.025 5.22
0.00064 48' 0.150 0.033 5.22
0.00081 48 0.131 0.037 5.22
0.00127 48 0.079 0.035 5.22
0.00160 48 0.042 0.023 5.22

0.00102 48 0.107 0.039 5.22
0.00160 16 ).107 0.012 5.07
0.00127 32 0.107 0.030 5.04
0.00064 54 0.107 0.024 5.05
0.00041 80 0.107 0.015 5.28
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Table 3.3 Beam Geometries

Transitidn Between Face Yielding, Face Wrinkling and Core Shear

W = 1.55 N 1 0.5 m b 0.025 m

Soft; = 0.00324 m ct= 0.173 m/o,rt= 48 kg/mr P/bl 0.199 MN/mr

t (m). , kg/ml) c (m) P/bl (hN/m') w '(N)

0.00324 48 0.173 0.199 1.55
0.00324 16 0.517 0.155 1.55
0.00324 32 0.258 0.164 1.55
0.00324 64 0.129 0.144 1.55
0..00324 80 0.103 0.115 1.55
0.00324 96 0.086 0.096 1.55

0.00324 48 0.173 0.199 1.55
0.00162 48 0.217 0.122 1.55
0.00256 48 0.191 0.168 1.55'
0.00408 48 0.149 0.176 1;55

40.00508 48 0.120 0.141 1.55
0.00640 .48 0.083 0.098 1.55

S0.00324 48 0.173 0.199 1.55
0.008.12 16 0.173 0.038 1.51
0.00.508 32 0.173 0.110 1.52
0.00164 64 0.173 0.193 1.63

40
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Table 3.3 Beam Geometries

Transition Between Face Yieldin. and Core Shear - Face Yieldir.g

Only~

W = 3.12 N 1 0.5 m b = 0.025 m

t 0.00926 m c* 0.136 m 96 kg/mr P/bl 0.444 MN/mi

t (m} •4 (kg/m') c (m) P/bl (MN/rn) W (N)

0.00926 96 0.136 0.444 3.12
0.00926 48 0.273 0.322 3.12
0.00926 64 0.205 0.374 3.12
0.00926 80 0.164 0.321 3.12
0.00926 128 0.102 0.321 3.12,
0.00926 192 0.068 0.214 3.12

0.00926 96 0.136 0.444 3.12
0.00164 96' 0.242 0.137 3.12
0.00256 96 0.229 0.202 3.12
0.00408 96 0.208 0.292 3.12
0.00640 ?6 0.175 0.385 3.12
0.00812 96 0.151 0.422 3.12
0.01016 96 0.122 0.426 3.12
0.01272 96 0.086 0.291 3.12

0.00926 96 0.136 0.444 3.12
0.01932 16 0.136 0.030 3.46
0.01272 64 0.136 0.248 3.17
0.01016 80 0.136 0.348 3.0?
0.00640 128 0.136 0.299 3.19
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Figure 3.qaSandwich beamis designed for the same weigh:t but different
strengths. The optimum beam fails by simultaneous face
yielding and face wrinkling; it has P/bl - 0.039MN/ml-and
a weight--of---3.22 N or 1.17 lb. The failure modes of the
other beams are: s face yielding; A face wrinkling; bE
core shearing; and. 0 simubltaneous face yielding, face
wrinkling and core shear4g. .
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mode maps, showing the transitions between modes were also found

to describe the experimental results well; the results are shown

in Fig. 3.5 and 3.6. These results, along with the plots shown

in Fig. 3.4 indicate that the analysis outlined above will indeed

give the minimum weight deLign of a snri4,,i!h beam of a given

strength. In the original proposal we suggested performing

another set of experiments to confirm the optimization analysis;

to do this a series of beams like thosi given in Table 3.3 would

be required. The results of the previous tests [4) indicate that

the failure equations developed previously, and used in the

analysis here, give the expected failure loads and modes for the

beams; the set of tests we origina'lly proposed would only

duplicate these results. Consequently, we decided not to pursue

the testing of the sandwich beams further. Instead of the

originally planned tests, we began work on another-aspect of

designing sandwich panels: that of predicting the creep behaviour

of sandwich panels made w.th a foam core which creeps.

3.3 Conclusions

The values of the face and core thicknesses and of the core

density which minimize the weight of a sandwich beam of a given

strength have been found. The analysis has been presented for

the case of a sandwich beam with aluminum faces and a rigid

polyurethane foam core loaded in three point bending; the method

can easily be applied to other face and core materials and other
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*ig. 3.6 The results of-Fig. 3.5 ploted using the measured strengths.

For the purposes of comparison, the theoretical strength contours
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loading conditions. For strengths per unit width and length,

P/bl, of less than 0.107 MN/m" , the minimum weight beam fails by

simultaneous face yielding and face wrinkling; for P/bl between

0.107 and 0.315 MN/mi, it fails by simultaneous face yielding,

face wrinkli'r Pnri (t-r- '-bearing" -;?d f')r P/bl grestet than 0.315

MN/mt, it fails by simultaneous face yielding and core. shearing:

For a given required strength of beam, P, span, 1, and width, b,

the optimum values of' face thickness, t, core thickness, c, and

core density, , can be found from Fig. 3.3, while the minimum

weight itself can be read from Fig. 3.2. The values of core

density which minimize weight also optimize the thermal

performance of the panel.
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4. Creel of Sandwich Panels 0 0

r i, . Introduction

At and above their glass transition temperature polymers

show slow, permanent, time-dependent deformations, or creep.

For many polymers the glass temperature is near room temperature

(Table 4.1) making creep an important consideration in the design

of sandwich panels using polymeric foam cores. Metals and

ceramics creep, too, though the rate of creep is significant only

when the temperature is greater than about one third of their

melting temperature. In this part of the project, our goal is to

describe the creep of u sandwich panel with a polymeric foam core

which creeps with time. We plan on first modelling the creep of

"a foam under constant load and then using the model to describe the

resulting creep of the panel. To date, we have reviewed the

literature on models for creep in polymers and foams and have

done some preliminary calculations on calculating the creep of a

sandwich panel with a creeping core. We plan on continuing this

work in the next year of the contract.

!4.2 Models for Creed in Polymers and Foams

Several models exist for the creep of solid polymers. The

simplest are the linear spring-dashpot models: the Maxwell

:element, consisting of a-spring and a dashpot in seris., the

Voift element, a spring and dashpot in parallel; and the Burger

body, a Max,'ell element in series with a Voigt element. The.

behaviour of each of these elements is described in many

"texts,.see McClintock and Argon [I], for instance. Linear
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Table 4.1 Glass Transition Temperature for Some Common
Polymers

Polymer Glass Temperature (OC)

Thermoplastics

Polyethylene 20
Polypropylene -20
Polystyrene 100
PolYvinyl chloride 80
Polymethylmethacrylate 1O0
Nylons 70

Thermosets

Epoxies 110
Polyesters 70
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creep, for which superposition of stress is valid (e.g. a

doubling of stress results in a doubling of the strain at a given

* time) can be modelled using some combination of these elements.

In practice,'most polymers do not exhibit linear creep and more

K refined models are required to describe their behaviour. The

three most common-descriptions of non-l'inear creep in polymers

are: power-law method, the arc-sin.h method and the multiple

integral method. Spring dashpot models with non-linear springs

and dashpots are also sometimes used.

A plot, of creep strain against time often shows three

regimes: primary creep, in which the creep strain-rate'decreases

with time; secondary creep, for which the creep strain-rate is

constant; and tertiary creep, for which the creep strain-rate

increases with time. Materials with a constant, steady-state

secondary creep strain-rate can be described by power law creep

according to:

"and

o- where G is the secondary creep strain-rate, A is a constant,

Q is the activation energy for the creep process (a material

property), R is the universal gas constant, T is the temperature,

"is the applied stress, 6' is a material property and n is
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another material property. If the duration of the load is large

then the pr~imary creep strains are small compared to the

secondary ones and this equationgives a good prediction of the

total creep strain. The secondary creep strain-rate of a wide

range of metals nnd _e:aai• 'an be described using tI,.s

equation; it is less commonly used for polymers. Gibson and

As hby have shown that a foam made from a solid cell wall material

that obeys power law creep should creep according to 12]:

where the superscript * refers to the foam property and the

subscript s refers to the solid cell wall property. C and C

are constants which can be determined b~y considering the two

limits of plastic collapse (for which n. *a and )s= C'ý . and of

linear elasticity (for which n E - E and

We find C 0.6 and C 1.7. Although both polymer and metal

foams have been tested in the creep range, the data are not

complete enough to allow a test of t.e above equation 13-61.

Polymers which do not have a constant, steady-state creep

strain-rate can be described in two ways: by the arc sinh method

or the multiple integral method. Both are essentially curve

fitting techniques. In the arc sinh method, the creep strain is

given by [7]:
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where 6 is the creep strain, ( is the applied stress, t is

time, and no M, t , 0"g , and r'^ are material constants which

are found empirically from a series of creep tests for different

levels of applied stress. The above equation can be used to

calculate the creep strain of a beam, and hence a foam, made rrom

a material following arc sinh creep. This remains to be done.

Green and Riv'lin 181 and Pipkin 19] have shown that the

nonlinear creep behaviour of polymers may be expressed as the sum

of multiple integrals up to the fifth order. To determine the

27 material constants for the multiple integral representation of

creep behaviour under multiaxial stresses the results of three

tension tests, t'.o torsion tests and two tests under coml:ined

tension and torsion of a thin walled tute are necessary. Brown

and Sidebottom [10],.in comparing the accuracy of the arc sinh

theory and the multiple integral theory found that although the

multiple integral theory was more complex, 'it was no better at

predicting creep strains of polyethylene under simple tension,

compression or torsion. Because of this, we will not consider

the multiple integral theory further.

.'Little data for the creep of foams exists. The most

complete study is that of Nolte and Findley [11] who measured the

creep response of both solid and foamed polyurethane under simple

1 tension, compression and torsion and under combined tension and

torsion. They used the multiple integral representation to
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predict the creep of the solid polyurethane and found that the

creep of the foam could be pr'edicted by multiplying the solid

creep strains by the ratio of the Young's modulus of the foam to

that of the solid.

4.3 Future Work

Creep of foams

Creep teýts at dift'Ji'•nt stress levels of foam6 L,1 dittertnt

relative densities and of the solid polymer from which they are

made are required to determine which creep theory to use to

describe the creep of a polymeric foam core and to measure the

material properties required for the use of the creep law. In

sandwich beams with a creeping foam core, the core may be subject

to either simple shear stresses or combined axial and shear

stresses; the creep tests of foams under. both loading conditions

will be necessary to predict the creep of sandwich beams.

CreeR of sandwich beams

The elastic deflection of a sandwich beam is the sum of the

bending deflection of the beam, which depends on the overall

flexural rigidity of the beam, and of its shear deflection, which

depends on the shear rigidity of the core. We propose first to

analyze the creep of a sandwich beam in which the foam core

creeps but faces do not (eg. a beam made with a polyurethane foam

core with aluminum faces). Creep tests on sandwich beams with

aluminum faces and polyurethane cores will be performed to
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:: :!f'compare the analysis with creep data. If cthe analysis for a.o

Zcreeping core is satisfactory, then the analysis will be extended

;•i!••..,to •examine the problem of a sandwich beam made with both faces

:: and a core that creeps (as in, for instance,-a sandwich beam made

i[with %;ocd faL.ns and a folxrr onre). Again, creep tests Ln sandwich

beams with w~ood faces and a polyvurethane foam core will be

• iperformed to compare the analyNsis with creep data.' It is hoped

•'r: .that the analssis w€ill suggest design methods w~hich minimize the

!/•!creep of a sandwich beam under constant load.
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From this study of optimum design methods for structural

sandwich panels we conclude the following.

(a) Deboncting

The equationR derived for the debonding load describe

the experimental data well. Debonding is only a problem w:hen

there is a preexisting crack larger that. twice the depth of the

core, which is unlikely to be the case.

(b) Minimum weight design of sandwich beam of a given strength

Failure mode maps can be used to find the critical failure

mode for any given strength of sandwich beam of known width and

span. The analysis gives the face and core thicknesses and the

core density which minimize the weight of the beam for any giv:en

strength; the results are summarized in Fig. 3.3. and 3.4. The

optimum core density for a sandwich beam with aluminum faces and

a polyurethane foam core loaded in three point bending is between

3 and 4.5 pounds per cubic foot for P/bl up to 100 nsi;, it is

interesting to note that the thermal .conductivity of foams is

lowest at 'this density so that this optimizes the thermal

performance of the panel also.

(c) Creep of sandwich beams

The initial literature review of models for creep in solid

polymers and foams is complete. We propose continuing work on

creep of sandwich beams in the second year of the project.

Specifically, we propose measuring creep in foamL and in sandwich

beams made using those foams.
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APPENDIX LIST OF SYMBOLS

1 'I

Sanduich beam geometry

b width
c core thickness'
1 span
t face thickness
W total weight of the beam
g acceleration due to gravity
W/g total mass of the beam

Loading configuraticn

C, a constant relating the product of the applied load, P, and
the span, 1, to the maximum moment acting on the beam

C2  a constant relating the applied load, P, to the maximum
shear stress in the beam
P/bc t.

Material Properties

0, density of the face material
"Ef' Young's modulus of the face material

0- yield strength of the face material

J oe density of the foam core

EC Young's modulus of the foam core
GC shear modulus of the foam core

Cit tensile yield strength of the foam core
• . compressive yield' strength of the foam core

shear yield strength of the foam core

,Ps density of the solid from which the core is foamed
Es Young's modulus of the solid from which the core is foamed
c-$ yield strength of the solid from which the core is foamed
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. .The following relationships apply to the foam core and the solid) !. from which it is foamed:

i•- r. 3 C
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