
HCFILE. CORI

Competitive Management of Distributed Shared Memory C
David L. Black Anoop Gupta and Wolf-Dietrich Weber p CTE

Carnegie-Mellon University Stanford University APR2 8 1989
Pittsburgh. P.A 15213 Stanford, CA 94305 H

\Abstract useful for this work because they explicitly address the con-
Mstant factors ignored by standard complexity analysis. and
This paper presents and analyzes algorithms for managing because they are well-suited to the analysis of resource man-

the distributed shared memory present in non-uniform mem- agement problems. Previous work has developed competitive
ory access multiprocessors and related systems. The corn- algorithms for the related problems of optimizing the use of< petitive properties of these algorithms guarantee that their snoopy caches [8].
performance is within a small constant factor of optimal even The performance results for these algorithms are based on
though they make no use of any information about memory trace-driven simulations of several production applications
reference patterns. Both hardware and software implementa- from UMA multiprocessors. These results show that the pro-
tion concerns are covered. A case study of the Mach operating posed algorithms attain total speedups of 5 to 10 over random
system indicates that integration of these algorithms into op- assignment of pages. This indicates that significant locality
erating systems does not pose major problems. On the other (both code and data) may exist in a large class of multiproces-
hand. hardware support is required to obtain the full func- sor applications, and that this locality can be detected and
tionality of the algorithms. We also sketch possible algorithm exploited automatically. As a result such applications may
extensions to additional hardware architectures and softwae not require extensive design changes or modifications for use
programming models. 51:7 - . . " on NUMA multiprocessors; no such changes or modifications

Trace driven simulations are used to evaluate our approach were made to our applications.
and compare it to other alternatives. Speedups of 5 to 10 over This paper cctcentrates on the application aspects of our
random assignment of pages on production applications are work. Proofs o: - e competitive properties of the algorithms
achieved without modifying the applications for non-uniform can be found in [2]. The next section presents a basic model
memory access (NUMA) architectures. We compare our pro- that covers the systems to which our algorithms are appli-
posed hardware support with the more aggressive approach cable. This is followed by an introduction to competitive
of fully-consistent caches. An additional factor of 2 to 3 in algorithms. Section 4 breaks down the basic problem and
performance can be obtained from the cache approach, but at presents our competitive algorithms for solving it. Sections 5
the cost of much more hardware. These results indicate that and 6 continue with a discussion of implementation concerns
the algorithms and their hardware support may represent a including the difficulties imposed by most current hardware.
viable cost/performance tradeoff. Section 7 presents our performance results from trace driven

simulations. Sections 8, 9, and 10 briefly discuss extensions
of this work. Sections 11 and 12 conclude the paper with a

1 Introduction review of related work and a short summary of results.

The widespread use of uniform memory access (UMA) mul-
tiprocessors has sparked interest in using uniform shared 2 Basic Model
memory programming models on non-uniform memory access

- (NUMA) multiprocessors. Use of a common programming This section presents the basic memory model for which our
model enhances the portability of applications among such algorithms were developed. We assume an idealized machine
machines, and can reduce the effort required to fit or tune composed of processor-memory clusters, with physical mem-
applications to NUMA multiprocessors. New techniques are ory divided entirely among the clusters. A processor-memory

v required to manage the distributed physical memory found in cluster consists of one or more processors with local memory
Z a NUMA multiprocessor because the location of memory used that is equally accessible (in terms of latency) to all proces-

by an application (with respect to the processor(s) executing sors. Our idealized machine has two distinct memory access
7 the application) directly affects performance. Optimizing the latencies; the latency to access memory in the same cluster.

use of physical memory to minimize access costs is a major and a significantly larger latency to access memory in an-
issue that must be faced by any implementation of a shared other cluster. As a result all memory within a single cluster

_ memory programming model on such machines. This paper is equivalent, and all processors within a cluster have iden-
presents techniques and algorithms for this problem, along tical memory access characteristics (latency in terms of the
with preliminary performance results from trace-driven sim- cluster in which the accessed memory is located). Finally all

I ulations. memory locations outside the cluster have the same access
M Our algorithms are competitive in a strict theoretic sense, latency from any processor in the cluster.

An informal statement of this property is that the algorithms This basic model subdivides memory into pages and pages
are essentially the best that can be achieved in the absence into locations. Pages are the fundamental unit of memory
of information about future memory reference behavior. The management; locations are the fundamental unit of memory
techniques of competitive algorithm analysis are particularly access. We assume the existence of ual mem 7 2

Tlo C1 . 89 4 2b

, .L ;(..

ping mechanisms. and therefore distinguish between virtual (ie related problem of snoopy caching- our model and its
pages (in the address space of some program or the operating realizations do not have broadcast, invalidate, or snooping
system) and physical pages (actual memory in the clusters), mechanisms that can maintain consistency among multiple
Mapping virtual pages to physical pages is one of the responsi- copies of a virtual page when writes occur. This prohibits
bilities of a memory management facility. Sharing may result replication of writable pages. Because we have separated the
in more than one virtual page in one or more address spaces issue of page reclamation, migration of read-only pages make
being mapped to the same physical page. The page size used little sense: replication is less costly. and provides the benefits
by our algorithms can be no smaller than the hardware page of local access to two clusters instead of one. As a result the
size if mapping is used, but it may be a multiple thereof. overall problem splits into two sub-problems:

We normalize our model by assuming the difference in cost * Replication of read-only pages.
between an in-cluster memory access and a remote-cluster
memory access is 1; this cost includes the effects of both in- a Migration of writable pages.
creased latency and use of interconnection bandwidth. This If a virtual page is both read-only and writable at different
cost only applies to accesses that actually use the intercon- times during the execution of an application, we consider each
nection network; if caches are present at the processors. we segment (read-only or read/write) of the page's existence to
only consider accesses that miss in or bypass the appropri- be a separate instance of the corresponding problem.
ate cache. In addition, we are assuming that read and write
costs are identical: all of our work generalizes to cases in which
these costs are not identical. 4 Basic Algorithms

This model permits us to analyze techniques for managing
the performance impact of distribution in a shared memory Effective use of replication and migration presents an enigma.
system. We concentrate on two major tools for this manage- Replicating or migrating a page that will never be referenced
ment: replication and migration of virtual memory. Replica- again is very costly, but so is failing to replicate or migrate a
tion consists of making a copy of a virtual page in another page that will be used heavily in a remote cluster. Avoiding
cluster and updating mappings that benefit from this copy (in these situations seems to require knowledge of the future that
reduced access time). Migration consists of moving a virtual is not available when decisions must be made; this results in
page from one cluster to another and updating all mappings a situation where any decision about replication or migration
to that page. We formalize the costs of replication and migra- could be both wrong and costly. Problems that require these
tion as r and m respectively in terms of access costs. These decisions to be made (affected by future system behavior, but
costs include latency and overhead components. but do not must be made without any knowledge about this behavior)
include the additional costs of allocating a physical page in and algorithms that make these decisions are called on-line.
a cluster with a page shortage (i.e. causing pageout) or the
additional benefits of freeing a physical page in such a cluster Results obtained from the analysis of competitive algo-
(i.e. avoiding pageout). We separate the issues involved in rithms provide a solution to this enigma. An on-line algo-
page reclaim from migration and replication; these are ad- rithm is called competitive if its cumulative cost on any se-
dressed in section 5.1. quence is within a constant factor of the cost of the optimal
Our basic model applies to any machine that can ima- algorithm' on the same sequence. and no such algorithm ex-Ourment b Aic mor aplies o cluds a machine s tatcists for any smaller constant. Competitive algorithms have

thaimplement te mdey Tisctl ue l [A anre- been found for a number of problems. including list manage-that implement the model directly (e.g. Butterfly [5]), no re. ment 116], snoopy caching [8], and some server problems [10].
mote memory access (NORMA) machines with uniform ac- This paper extends past work by presenting competitive al-
cess costs, and network shared memory implementations on This r epato by retin o petite &I-
networks with uniform communication costs. For the last two gorithms for replication and migration of distributed shared

classes of the machines, it is essential that the system (hard- memory.

ware and/or software) support access forwarding so that ac-
cesses to pages that are not in local memory can be satisfied 4.1 Replication
at remote memory without moving the entire page to local
memory (an expensive operation). Most current NORMA The on-line replication problem consists of determining when
machines (e.g. hypercubes) and network shared memory im- in a sequence of accesses a page should be replicated into
plementations [4,9,21] do not support this functionality, other clusters, without look-ahead. Under our model all clus-

ters are uniformly equidistant; if a page is not resident locally,
the cost to access it does not depend on the cluster in which

3 Basic Problem it is accessed. As a result the decision to replicate a page into
a given cluster is independent of the decisions to replicate

The problem we address here is the management of dis. into any other clusters. Hence the general replication prob-
tributed shared memory in architectures conforming to our lem reduces to the replication problem for two clusters with
model. For architectures utilizing a single copy of the operat- the page initially resident in only one cluster. Algorithm R
ing system (NUMA multiprocessors), this includes not only is our algorithm for this problem.
memory shared explicitly, but also memory shared implicitly Algorithm R:
via copy-on-write techniques. Since we rely on replication
and migration to perform this management, the problem can Count remote accesses from the cluster that
be restated as 'When and under what circumstance should does not have the page. When this count exceeds
(virtual) pages be replicated into or migrated to memory in the replication cost, r, replicate the page into the
other clusters?" cluster.

There is a significant difference between this problem and 'The optimal algorithm may look at the entire sequence before
making any decisions

2

Cr

Results: information and alo becanme it makes the resulting benefits
available to all applications on the system. instead of just

1. Any on-line algorithm for this problem must have a cost those that are modihed to use our algorithms.
that is at least twice the cost incurred by an optimal
off-line algorithm on some sequence of accesses.

2. Algorithm R is competitive. i.e. its cost is always 5.1 Limited Physical Memory Size
within a factor of two of optimal on any sequence of
accesses. Since there are many other demands on physical memory

besides those generated by replication and migration (e.g.
Algorithm R (and algorithm M to be presented later) are memory allocation, file mapping, internal use by the oper-

algorithms that perform well across the entire spectrum of ating system, etc.), extending the replication and migration
possible sequences. If the specific sequence that will occur is algorithms to control memory usage is not appropriate. We
known in advance, an on-line algorithm can be constructed believe that the operating system should separate reuse of
that performs well on that paricular sequence. but will per- physical memory (pageout or page reclaim) from replication
form worse than our algorithm on many other sequences. and migration issues. Even the fallback position of dedicating
This embodies the optimality property of our competitive al- a fixed amount of physical memory to replication/migration
gorithms, they are essentially the best possible in the absence and managing that is not a good idea: this prevents realloca-
of knowledge about what will happen in the future. tion of memory to the uses for which it is in greatest demand.

We propose the use of independent pageout daemons for

4.2 Migration the management of various cluster memory pools. These dae-
mons can respond appropriately to the potentially different

The on-line migration problem consists of determining when memory demands from cluster to cluster. Any of several
in a sequence of accesses a page should be migrated to another standard paging algorithms can be used to implement the
cluster without look-ahead. Unlike the replication problem, daemons [183. The migration and replication costs can be
migration depends on the number of clusters: of all the clus- dynamically modified to feed information about page avail-
ters that would benefit from having the page. only one can ability back into the replication and migration algorithms.
actually have the page. Decisions to migrate different pages These modifications should be restricted to increasing costs
are still independent, so the migration problem reduces to mi- above their basic levels to reflect page shortages and hence
gration of a single page in response to accesses to that page. discourage future use of memory in clusters with page short-
Algorithm M is our algorithm for this multiple cluster page ages. Decreasing migration costs to encourage freeing mem-
migration problem. ory in clusters with shortages, and cost-based reclamation of

Algorithm M: replicates are fraught with potential danger; this is because
not all system components that use memory are or can be

Associate a counter with each cluster: initial- sensitive to costs - hence these cost-driven alternatives may
ize the counts to zero. Access from a cluster result in heavily used pages being evicted in order to retain
that does not have the page increments that clus- lightly used ones for cost-insensitive components.
ter's counter. and decrements some other clus-
ter's counter, but not to less than zero. When
a dusters counter reaches twice the migration 5.2 Memory Management Interactions
cost (i.e. 2m) migrate the page to that cluster
and zero its counter. Access from a cluster that Algorithms M and f can be incorporated into the operat-
has the page decrements some other cluster's ing system's memory management code on a NUMA multi-
counter, but not to less than zero. processor. Implementing these algorithms inside the operat-

ing system allows their benefits to accrue to all uses of the
All of the counters for a page will be zero after a migration machine, but also results in interactions with other memory

due to the way they are maintained by algorithm M. management functions that must be dealt with as part of the

Results: implementation.
We use the virtual memory management portion of the

1. Any on-line algorithm for this problem must have a Mach operating system [12) as a base for a case study of these
cost that is at least three times the cost incurred by an interactions. Mach is a multiprocessor operating system de-
optimal off-line algorithm on some sequence of accesses. veloped at Carnegie-Mellon University; its VM system pro-

2. Algorithm M is competitive, i.e. its cost is always vides advanced memory management functionality including
within a factor of three of optimal on any sequence flexible sharing (both read/write and virtual copy), mapped
of accesses. files, and external memory management. This functionality

stresses the interactions of our algorithms with the remain-
der of the operating system, and serves to expose potential Sl

5 Operating Systems Issues problems. o
The Mach \;M implementation is cleanly split into 0

There are two sets of operating systems issues that must be machine-independent and machine-dependent portions. The
addressed in implementing our algorithms: (i) how do we take machine-dependent portion consists of a single module. the
into account the limited size of physical memory: and (ii) pmop module, that is responsible for all physical map opera-
what are the interactions between the proposed algorithms tions. The machine-independent portion of the system &sso-
and the memory management portion of an operating sys- ciates a pmap with each address space and invokes the pmap
tern. The second issue arises primarily if the algorithms are module as needed to perform mapping operations. Mach sup- -odeI
implemented in the operating system kernel: this is an attrac- ports parallel execution of multiple threads within a single/or'-
tive choice both because it permits direct access to mapping task's address space: this- -parallel execution can result in a

- .. i i n,,,,In
m

3 CpC
INSPECT_

47

single pmap being used simultaneously by more than one pro-
ceswOr.

p p
Mach envisions support for non-uniform physical memory

by adding a NUMA layer between thme mnachine-independent CAHCCE
and machine-dependent portions of the VM system [18]. C-H
This layer hides the non-uniformity of the memory structure MEORY 000
by translating logical pages (manipulated by the machine-
independent portion of the V\M system) to physical pages N.I. N
(in the hardware) in order to implement architecture-specific
memory management policies (e.g. replication, migration). A
similar translation process is needed for pmaps to allow repli- NETWRK
cation within a single address space if its threads are spread
across multiple clusters: in this case each cluster would have
its own physical map, but the collection of these pmaps would
appear as a single logical pmap to the machine-independent Figure 1: Architectural model
portion of the VM system. This adds additional complexity
to the NUMA layer to better support multi-threaded appli-
cations, and may complicate interfaces that allow users to reference counters is required per processor in the system.
modify replication and migration behavior because an ad- Together with increment/decrement logic these maintain the
dress space no longer uniquely specifies a cluster, counts required by algorithms R and M. An exception is

There are two other minor interactions of the NUMA layer caused when the built-in threshcld for migration or replica-
with the remainder of the Mach VM system, and one major tion is reached. The operating system then deals with the
interaction. The two minor interactions are: copying and remapping operations required.

* Pageout functionality must be moved into the NUMA The counters are kept with their associated memory page.
layer and redesigned to use multiple pageout daemons For a 64-processor system and 16-bit counters. we thus re-
as discussed in Section 5.1. The resulting daemons quire 256 bytes of memory per page. This translates to 50%
must cope with system-wide (logical) page shortages overhead for 512-byte pages, 25% overhead for 1K pages.
as well as page shortages in the individual clusters. 6.25% for 4K pages and 3.1257 for SK pages. The overhead

* There must be a physical page available for every free seems quite acceptable for pages in the 4K - 8K range.
logical page. Therefore use of a physical page for repli- For replication, we only need to increment a single counter.
cation may require stealing a logical page from the res- Migration, on the other hand. requires updating two counters.
ident page subsystem to maintain this invariant. Free- one of which must be chosen from the non-zero counters for
ing of such a replicate should cause the stolen logical that page (local references only update the latter counter).
page to be returned to the resident page subsystem's Since the updating of the counters must take place trans-
free list. parently and at the same speed of a memory reference. a

sequential search for non-zero counters is not acceptable. AnNeither interaction poses great difficulties for an implemen- alternative is to pick a counter and decrement it if it is non-
tation. zero. This is much simpler to implement and our simulations

The major interaction involves replication and copy-on- indicate that its performance is similar to the original migra-
write. If the system has replicated a shared page that must tion algorithm.
be copied if written, then the replicates can be used to sat- Copy on reference is the major alternative to our repli-
isfy write faults on the page; this avoids the costs of creating cation approach. It should be used where enough locality
an extra copy, but imposes extra costs if the replicate was is known (e.g. from previous experimentation) or expected
used by more than one address space and has to be recreated (e.g. code) to exist to cause replication by algorithm R, if
as a result. The easy case is if there is a replicate that is replication is going to occur, it is always more efficient to
only being used by the address space that caused the write do it in response to the first reference. The proposed algo-
fault; this replicate can always be used to satisfy the fault. rithm R, however, has an advantage in cases where read-only
For multiple address spaces, we would propose always using data may not be accessed enough to cause replication: sys-
the replicate unless one of the other spaces has indicated that tems that manage large amounts of data for which locality
the replicate is needed (cf. the always replicate operation in cannot be assumed are an example. The choice of approach
section 10). An additional primitive must be added to Mach's should depend on the situation being faced: copy on reference
machine-dependent interface to implement this functionality; is probably more applicable to the most common situations
the fault handler must be able to find out if the NUMA layer than our delayed replication approach.
has a replicate that can be used to satisfy a write fault.

6 Hardware Support 7 Performance Analysis

Existing multiprocessor hardware will not allow a sufficiently 7.1 Architectural Model and Assunp-
accurate implementation of the NUMA memory management tions
schemes discussed in this paper. Software systems that im-
pose a level of indirection on all accesses to memory or The architectural model shown in Fig 1 was used for the anal-
shared memory can not hope to recover from this perfor- ysis of the algorithms presented in this paper, It consirts of
mance penalty. Thus we propose an architecture with hard- several nodes linked by an interconnection network. Each
ware support for our algorithms. For each page. a set of two node has a network interface(N.I.). its share of the global

E .
I4

.......J a m
m i

i m d l m (p ifV

imemory. a processor and a cache. In the case of the NUMA
architecture. the cache is write-through and is only used to

Cah eoy oain in the local portion of the global-a
metory. Global cache consistency is thus assured. Tile fol- ni
lowing costs were used for the various operations in our sim- so -

711ulations: Op ertonn

local reference 0.1,s Ps
remote reference 4.0 ps
replication of a page 1200 j~s -"
migration of a page 2100 s a S -

The access costs are based on those found in the Butterfly; a o- -0 uo
replication and migration costs were estimated by examining 2- .. pTIM

page fault overheads in Mach (e.g. replication is very similar t,
to a copy on write fault). These times include the overhead 0s _ ____,_/____

of updating page tables: this results in larger migration costs
because more page tables must be changed by a migration Only
than by a replication. Figure 2: Performance Improvements

We also evaluate a system that allows the caches to cache
all memory locations and uses a directory-based scheme to
keep the caches coherent [1]. The hardware requirements of the effect of varying page size against the simulated run time
this scheme are greater. both in terms of memory require- of the trace. This time is shown as a percentage of the time
ments and in terms of complexity of the directory controller, required to execute the trace with replication and migration
\We assume the cache scheme has the following costs for corn- turned off (i.e. "neither" in Fig. 2).
parison with the NUMA scheme:2 Two effects are important when deciding the most efficient

Operation Time page size. Smaller pages are basically smaller units of repli-
cache bit 0.1 ps cation/migration and would be expected to efficiently track
cache miss 4.0 ;s the sharing needs of a program. At the same time. however,
invalidation 4.0 ps the fixed portion of remapping overhead makes larger pages

more efficient. These two effects result in a U-shaped curve as
The algorithms were evaluated using multiprocessor traces seeiie. Alto tesitin o the curves

of three parallel applications: LocusRoute [13), MP3D (11] seen in Figure 3. Although the position of the curves for the
ofd thr arallel1app7icatios LocusRoute [1s aD [t d cdifferent applications varies vertically, their shape is basically
and P-THOR [17]. LocusRoute is a standard cell global identical. In every case the best page size was 512 bytes. but
router, which exploits parallelism at a fairly coarse grain, the effect of using larger pages was not significant.
NIMP3D is a 3-dimensional particle simulator. It uses dis-
tributed loops and is a typical example of parallel scientific
code. P-THOR is a parallel logic simulator.

The traces were gathered on a VAX 8350, using a combined 0

hardware/software scheme [T]. All traces were 8-processor Is -- .. :
runs and contain about half a million references per processor i Is "'.
(4 million references total). 14 ,

A simulator was used to keep track of the location of every
memory page and the values of the various counters. The
initial placement of each page was random. Code pages were I s-
allowed to replicate while data pages could only migrate.

*, O--0 MO

7.2 Results 4 o To

Figure 2 shows the performance increases gained by apply- I

ing replication and migration. We are plotting the overall _ _ _,_,_ _ _ _

runtime for four schemes. "Neither" designates a random in 612 1k 2k Sk
placement of memory pages in the nodes with neither repli- p e (01s1)
cation nor migration allowed. The other points show the Figure 3: Effect of page size
effect of allowing only migration. only replication and then
both. Each curve shows the results for one of the three ap- Tuning the thresholds in these algorthms to match ex-
plications. When both replication and migration are allowed, pected access patterns may improve average case performance

the overall runtime dcreases by a factor of 5 to 10. without sacrificing constant factor bounds on the worst case

We also explored variations of three parameters: page size, performance. Tuning increases the constant factors in the
replication threshold and migration threshold. The results bounds (i.e. the resulting algorithms are no longer competi-
from varying the page size are shown in Figure 3. We plot tive). but, the increases may be offset by the improved average

case behavior. For example changing the replication thresh-
2N-te that the cost given for invalidation is a per remote invol, old in algorithm R from r to 0.hr or 2r increases the constant

. idatios cost. Thus if a write reference results in invalidations in factor in the performance bound from 21 to 3. Our results
three remote caches, the total cost is assumed to be 12 Ms.

show that threshold tuning har very little effect on overall!*

performance. In each case lowering the threshold increases which a static access pattern distributed over lihe ring can

performance by a very small amount. Most of the pages are cause a page to cycle around the ring interminably (using up

replicated or migrated just once. so the sooner the movement ring bandwidth) when it should stay put. It is possible that

takes place. the lower the overall cost. more sophisticated algorithms that keep additional informa-

In the results presented above, each page was allowed to tion about the pattern and history of accesses can avoid these

migrate any number of times. WVe also explored a variation problems. but this extra state and the cost of updating it may

where only a single migration per page was allowed - this ba- affect the overall utility of such algorithms.

sically allowed the program to achieve a good initial page as-
signment. The performance of this variation was just. as good
as when multiple migrations were allowed, indicating that a 9 Replication of W ritable Pages
good initial assignment is the most critical factor. This may
be due in part to the length of the traces. Longer traces may So far we have not allowed the replication of writable pages.

show a larger benefit for dynamic migration, as the program For portions of shared memory that are rarely written (called
moves from one -working set" to another. mostly-read obects in [20]). the amortized costs of the atomic

Tables I and 2 compare the performance of the NUMA updates required by the writes may not be prohibitive. Such

memory management scheme to that of a directory-based a scheme can be implemented by using hardware mechanisms

cache scheme. Due to limitations of space, only results for to cause a trap if a write occurs to any of the replicates. The

LocusRoute are shown, but the relative performance was sim- handler for this trap can then perform the atomic update by

ilar for the other two applications. The data shows that the disabling all access to all copies until the write has been prop-

cache scheme does about twice as well as the NUMA scheme. agated to all of them. Relaxed consistency constraints are

W \hile cost for local references are comparable. the extra cost preferable if the data has to be updated frequently. On the

of remote references in the NUMA scheme is not offset by the other hand. if the memory is never written after some point.

extra cost of misses and invalidations in the cache scheme. then replication is a very good idea. Researchers working on
the ACE project at IBM Hawthorne have found this to be
the case for a parallel shortest path program: the data struc-

Table 1: NUMA scheme performance tures describing the graph to be searched are never written

NUMA after the initialization phase. but are read heavily during the
Count Operation Cost (psj search. Replicating these structures into local memories on

36 replication 43,200 their machine produced major improvements in the run time

86 migration 180.600 of the application [3).

227.304 remote ref 909,216 Algorithm R may not be appropriate for managing repli-
4.114.180 local ref 411.418 cated writable shared memory because it ignores the costs of

-Total 1.544.434 updating other replicates in response to a write. The General-
Snoopy-Caching algorithm in [8] is a better choice if these
costs are important because it takes them into account; this
algorithm is competitive with a competitive factor of 3. If

Table 2: Cache scheme performance update costs depend on the number of replicates (e.g. if indi-

CACHE vidual messages are required to update each replicate), then

Count Operation Cost (AS) the algorithm must be modified accordingly in order to re-

31.435 read miss 125,740 main competitive.

8.547 write miss 34,188
5.192 invalidation 20,768

4.301.493 hit 430.149 10 Input and Feedback
Total 610,845

If additional information is available about the access pat-
terns for a page, the algorithms M and R can be further
improved upon. We propose four primitives to help specify

8 Extensions to Other Architec- this additional memory usage information. The actual infor-
mation may be provided by the user directly or it may come

tures as feedback from a profiler. The primitives are:
have been Never replicate: On average, this page is used so infre-

Competitive replication and migration algorithms hvbenquently in this cluster that it should never be repli-
found for certain extensions to our basic architectural model.
A companion paper [2) presents competitive algorithms for cated, even if it accumulates r accesses.

replication and migration in arbitrary trees and architectures Always replicate: On average, this page will be used
based on trees including hypercubes and meshes. The related enough in this cluster to justify replication as early as
topologies of rings and toti handle replication easily, but pose posible. Alternatively, this page is read-only due to
problems for migration. the use of copy-on-write techniques and is going to be

Migration on rings and toi (products of rings) is problem- written (which will require a copy to be made).

atic. Bidirectional rings exhibit the phenomenon of pinning Never migrate: On average, this page is used so infre-
[15] in which accesses in both directions from the far side of quently that it should not be migrated to this cluster

the ring can pin a page in place and prevent it from migrating even if it accumulates enough accesses to justify migra-

closer to the accesses. Unidirectional rings or unidirectional Lion.

routing structures imposed on bidirectional rings avoid this Anchor: This page will be so heavily used in this cluster that
problem. but instead exhibit the phenomenon of cycling in it should be anchored here and not allowed to migrate

6T

I .., ,.-. !.'.

, •~ ~ .-" -. . .'.+' - . +

until further notice. An option to reverse this effect is erence behavior. A ca.se studi of the Mach VM system in-
also needed. dicates that incorporation of these algorithms into an oper-

ating system kernel should not pose any great difficulties.
Lazy evaluation can be used to delay the effects of always In contrast, hardware support is required to obtain the full

replicate until the memory in question is actually accessed. functionality of our approach on most multiprocessors. We
This is done by unmapping the page in hardware and per- have also sketched extensions of our approach to additional
forming the operation in response to the page fault generated hardware architectures (e.g. hypercubes) and software pro-
by the first access. This permits greater flexibility in the use gramming models (e.g. weak consistency).
of this primitive, as no additional cost is imposed for pages
that are not used: similar functionality is provided by copy
on reference. and compare it to other alternatives. Speedups of 5 to 10

over random assignment of pages are achieved on production
These primitives can also be used to provide feedback from applications without modifying the applications for NUMA

the management algorithms and other instrumentation over architectures. These results indicate that significant instruc-
multiple runs of an application to improve its performance tion and data locality may be present in many shared mem-
by adapting its memory usage to the memory structure of ory multiprocessor applications, and that this locality can
the machine. This feedback may reduce the effort required to be exploited automatically. We also compare our proposed
restructure data to take advantage of non-uniform memory hardware support with the more aggressive approach of fully-
architectures. consistent caches. An additional factor of 2 in performance

can be obtained from the cache approach, but at the cost of
much more hardware.

11 Related Work

Competitive management of distributed shared memory is a Acknowledgements
topic at the juncture of several active areas of research. Li [9),
Cheriton [4). and others have implemented distributed shared Most of the theoretical results in this paper represent joint
memory using messages on a network. The hardware for these work with Daniel Sleator; complete proofs and details can be
implementations does not support remote accesses or access found in [2]. We would also like to thank Richard Rashid
forwarding: this removes the choice of the amount of data to and Roberto Bisiani for encouragement and support. Anoop
send in response to a request that is critical to our work. Most Gupta and Wolf-Dietrich Weber are supported by DARPA
research projects in the area of NUMA architectures have im- contract N00014-87-K-0828. Anoop Gupta is also supported
plemented a shared memory programming model: the best by a faculty award from Digital Equipment Corporation.
known is BBN's Uniform System [19]. and it typifies them
in that it directly exports the non-uniform memory structure
to users. Our work supports automatic management mech- References
anisms that free users from some of the details involved in
managing non-uniform memory, and should make these ma-
chines easier to program. Scheurich and Dubois [i15] have [11 A. Agarwal, R. Simoni, J. Hennessy. and M. Horowitz.
independently discovered an extension of our migration algo- An Evaluation of Directory Schemes for Cache Coher-
rithm to mesh-connected machines and hypercubes, but not ence. In 15th International Snlmposium on Computer
its competitive properties. They also note the pinning prob- Architecture, 1988.
lem for bidirectional rings, but not the cycling problem for [2] D. Black and D. Sleator. Algorithms for the 1-Server
unidirectional rings. Rudolph and Segall [14) are investigat- problem with Excursions. Technical report, Computer
ing a bus-based hardware consistency mechanism for pages. Science Dept., Carnegie Mellon University, Pittsburgh,
Their work differs from ours in that it depends on a hard- PA, 1988. to appear.
ware consistency mechanism to permit replication of writable [3] W. Bolosky. Personal Communication, September 1988.
pages without weakening consistency. Finally our work makes
contributions to the area of competitive algorithms; the mi- [4] D. Cheriton. Unified Management of Memory and File
gration algorithms are competitive solutions to several cases Caching Using the V Virtual Memory System. Techni-
of the 'one server with excursions' problem (10]. While we cal Report STAN-CS-88-1192, Computer Science Dept.,
would like to solve this problem in full generality (i.e. for any Stanford University, Stanford, CA, 1988.
topology), we are of the opinion that any such solution must [5] W. Crowther, J, Goodhue, E. Starr. R. Thomas, W. Mil-
maintain too much state to be applicable to real systems. Fi- liken, and T. Blackadar. Performance Mmeasurements
nally the techniques of competitive algorithm analysis may be on a 128-node Butterfly Parallel Processor. In Intl. Conf.
applicable to other resource management problems that oc- on Parallel Processing, pages 531-540, 1985.
cur in distributed systems and multiprocessors, such as load [6] A. Ezzat. Load Balancing in NEST: a Network of Work-
balancing [6]. stations. In Fall Joint Computer Conference (FJCC),

November 1986.

12 Conclusion [73 S. Goldschmidt. Simulating Multiprocessor Memory
Traces. EE390 Report, Stanford University, Dec. 1987.

This paper has presented and analyzed algorithms for man- [8] A. Karlin. M. Manasse, L. Rudolph. and D. Sleator.
aging memory in NUMA multiprocessors and related sys- Competitive Snoopy Caching. Technical Report CMU-
tems. Competitive algorithm analysis guarantees small con- CS-86-164. Computer Science Dept., Carnegie Mellon
stant factor bounds on performance with respect to optimal University. Pittsburgh, PA. 1986. Preliminary version
algorithms that require information on future memory ref- appeared in 27th FOCS. 1986.

4 _.

r t 9• .. , ".

[9] K. Li and P. Hudak. Memory Coherence in Shared Vir-
tual Memory Systems. In 5th Symp. on Principles of
Distributed Computing, pages ",9-239. 1986.

(10] N1. Manasse, L. McGeoch. and D. Sleator. Competitive
Algorithms for Server Problems. In 20th Symp. on The-
ory of Computing, pages 322-333. 1988.

[11] J. McDonald. A Direct Particle Simulation Method for
Hypersonic Rarified Flow on a Shared Memory Multi-
processor. CS411 - Final Project Report, Stanford Uni-
versity, Mar. 1988.

[12] R. Rashid. A. Tevanian Jr., M. Young. D. Golub,
R. Baron, D. Black. J. Chew. and W. Bolosky. Machine-
Independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Archtectures. IEEE
Trans. Comput., 37(8):896-908. August 1988.

[13] J. Rose. LocusRoute: A Parallel Global Router for Stan-
dard Cells. In Design Automation Conference, pages
189-195. June 1988.

[14] L. Rudolph and Z. Segall. Dynamic Paging Schemes for
MIMD Parallel Processors. Research notes on work in
progress.

[15] C. Scheurich and M. Dubois. Dynamic Page Migration
in Multiprocessors with Distributed Global Memory. In
Int. Conf. on Distributed Computer Systems, pages 162-
169. 1988.

[16] D. Sleator and R. Tarjan. Amortized Efficiency of List
Update and Paging Rules. Commun. A CM, 28(2):202-
208, February 1985.

(171 L. Soule and T. Blank. Parallel Logic Simulation on
General Purpose Machines. In Design Automation Con-
ference. pages 166-171, June 1988.

[18) A. Tevanian Jr. Architecture.Independent Virtual Mem-
ory Management for Parallel and Distributed Environ-
ments: The Mach Approach. PhD thesis, Carnegie Mel-
lon University, Pittsburgh. PA, December 1987.

[19] R. Thomas and W. Crowther. The Uniform System:
An approach to runtime support for large scale shared
memory multiprocessors. In Proc. of 1988 Int. Conf. on
Parallel Processing, Vol I1, pages 245-254, 1988.

[20] W.-D. Weber and A. Gupta. Analysis of Cache Invalida-
tion Patterns in Multiprocessors. In Third International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS I1), Apr.
1989.

[21] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Ep-
pinger, J. Chew, W. Bolosky, D. Black, and R. Baron.
The Duality of Memory and Communication in the Im-
plementation of a Multiprocessor Operating System. In
11th Symp. on Operating Systems Principles, pages 63-
76. 1987.

--. - aim • ii i ii ""i • 8

