
* ITJC F[LE coY
Suitability of Message Passing Computers for

N Implementing Production Systems

__ Anoop Gup" filind Tambe (
5. Dept. of Computer Scie=c Dept. of Computer Scienceo Stanford University Canegie Mellon University
CVStanford, CA 94305 Pittsburgh, PA 15213

DIS" I TTENENX~TT
Approved -1J. 'p'i5.ic n~eme f

Abstract been anaqzed. Considering WflCs is important, because MPCs
represent a major architectural and programming model in current

Two important parallel architecture types ane the shared-memory on viuythcomncao dlsinhehr mdehm
architectures and the messagepassing arhtctrs In th a imposei'He to be used for the purpose of exploiting fine grained
researchers working an the parallel implementations of production parallelism. However, recent developments in the implementations
system have focussed eithier an shrmeiory multprocessors or of WMs [3]. have reduced the communication delays and the
on special purpose architectures. Message-passing computers have message processing overheads by 2-3 orders of magnitude. Te
not been studied. The main reasons have been the Iarg message- prwc of thewe new generation MPCs such as the AbMK-2010

psng latency (as large as a few milliseconds) and high message [19] makes it interesting to consider MPCs for implementing
rctinoverheads (several hundred microseconds) exibi~ted by the production system.
fis .enrton message-passing computers. These overheads are too

large for the parallel implementation of production systems, where it This paper is organized as follows. Section 2 describes the OPS5
is necessary to exploit parallelism at a very fine gnularity to obai production system and the Rawe matching algorithm w.sd in
significant 5ieed-up (subtasks execute about 100 machie implementing it. Section 3 describes recent developments in the
instructicnsV'Hswever, recent advances in interconnection network NPCs and presents the assumnptions about their execution times
technology and prcsignode design have cut the network latency which we will use in our analysis. Section 4 presents our scheme for
and message rpto overhead by 2-3 orders of magnitude, making implementing OPSS on the NPCs. We then evaluate its performance
these computers Ma~ more interesting. In this paper we present and compare it with other parallel implementations of production
techniques for to ~ing production systems onto message-passing sytm.EL E C
computers Wec, ow that using a concurrent distrbuted hah taA R28198
data srcue'it is possible to exploit parallelism at a33eA R2818

graulrit tooban significant speed-ups from parallelim. 2. Background

1. Introduction 2.1. OPS5
Psoduction systems (or rule-based systemns) occupy a prominent An Oi's (2] production system is composed of a set of #'then

place in the field of AL They have been used e-tesively in the rules called productions that make up the production memaory, and a
attempts to understand the nature of intelligence as well as to develop database of temporary assertions, called the working meor The
expert systems sparing a wide variety of applications. Production individual anrtins one called working memory elements (WMEs).
system proginas, however, are computation intensive and run which are lists of auribute-value pairs. Each production consists of a
slowly. This slows down research and limits the utility of these conjunction of conditio elements (Crs) corresponding to the if pan1
systems. In this paper, we examine the suitability of message-passing of the rule (the left-hand side or LHS), and a se of actions
computers (MP1?s) for explosting pazallelism, to speed-up the corresponding to the then part of the rule (the righit-band side or
execution of prodaction systems. RS

To obtain significant speedup from parallelism in production The CFA in a production consist of attrbute-value trts, where
system it is neceusary to eaiit paraltelii at a very fine sonie attributes may contain variables as values. The attribute-value
granularity. For example, the average number of instructions tests of a CE must all be matched by a WME for the CE to match; the
executed by subtasks in the parallel implementation suggested in variables in the condition element may match any value, but if the
[10] is only about 100. In the past, researchers have explored the use variable occurs in more than one CE of a production, then all

of special-purpose architectures and shared memory multiproessr , ~ o of the variable must match identical values. When all
to capture this fine-prained parallelisn [10, 16,17.18, 11,21]. the C~s of a production are matched, dhe production is sasied and
However, the performance of MPCs for production systems has no an instantiation of the production (a list of VIM=s that matched it), is

crested and entered into the cop~fkit sat. Theu production system uses
a selection procedure called cotow VIiresohutie to choose a
production from the conflct set, which is then fred. When a

'i.u. p.i by . c.. C-d C Po"de DW " production fines, the RHS actions associad with that production ane
Captes end by f. Defense Advmsdftek ?ic m Age (DOD)6 ARPA Order executed. The RHS actions can add, remove or modify WMEs, or
No. 49,6 arner P3361S.87-C-199 and meilsad by U. Ak Pius Avioncs perform YO.
Labeenoy. Amspa " ispp - A by DARPA earne N00014-7482 enda
suwe face do NSWlu UquWem CWmdon. lMee view and camoes~ moaine Jn
OWb Im- avenes - anllneto .j asg .4r 5 j f4,.. Iemof3ins TheM production system is executed by an interpreter that
OshW pelsiu. old- squasid - knpi@4d of~a 11- mer C-PsrdMmm DOWha repeatedly cycles through three stp: march, corllict-resolurtion, and
E 4 Qui a--i ad do Defens Adance Resm AhJs Agency or d US act. The matching procedure determines the set of satisfied

AA'1- I AOU8 0 4 26 0 (i



psndullu.,the conflict-resolution procedure selects the highest __________________

dpsifintaiadi.n and the act procedure executs its RHS.
(P P1

(C2 ^attri 9 ^attr2 <x>) Root

3ge (C2 ^attri <x> ^attr2 15)

Ra M] is a hihyefiin match algorithm tha in also suitable
for pa11. imnplementations [9]. Reta gains its efficiency from two (remove 2)) C1 C2

oPUM&zawn Firt, it explIMs the fact that only a smal fraction of
wodtig memory changes each cycle by storing results of match from 12 9 15

previos cycles and usmg themi in subseqent cycles. Second. it129 5

expaits the commonality between M~ of productions, to reduc the '
pod CE:attrl - CE2:attr2 I

Rift uses a special kind of a dama-flow network compiled from the
LS of prolductions to perform match. The networ is generated at

Camile tme, before the production system is actually ron. The CE2 :attr2 -CE3 1atr 42
entities that flow in this network are called tokens, which consist of a Tw iput:at

tag. a fist of WME hAim-rags. and a it of varable bbufings. The tagnoe
is thra + or a -indicating the addition or deletion of a WjME The 0 Memory nod*3 P1
lis Of 'VM time-tags identfies the data elements matching a ii h e.ntok
subsequence of M~ in the production. 7he list of variable bindings Fgr -:TeRf ewd
associated with a token corresponds to the bindings created for ___________________________

variables in those CEs diat the system is trying to match or has ptnilyrdc h esg eeto vredb nodro
alred~tmatced.magududs. With today's VLSI technology, it is possible to construct

7bu wePriuadY 111 tyes f ndesin henetaskwhih ue MPCs with thousands of processing nodes mid hundreds of
sher aren-escprimabyohve t pes fods inathe: ewr hc s megabye of memory (3]. Thus very fine grain parallelism can now

1. Couaiut-lest nodes: These are used to test the constant-bexpotdaslwihheA .

Value attributes of the C~s Mid always appear in the top This raises the issue of whether production systems can be
Purt Of dhe network. They take less1 thanl 10% Of thtm inmplemented efficiently on the MPCs to give good speedups, which

spentin Mtch.we analyze in detail in this paper. For the purpose of this analysis.
2. Memsory WAdS: These sOre the results of the match phs we assume a 32-ivy 2-cube architecture (1024 nodes), with a 4 mIps

from Previous cycles as sawe. This sate consists of a list processor at each node simelar to the MDP. The various times thae
Of the tokens that match a part of the LHS of th required for our analysis are as follows. The latency of wormohole
associated production. This way only changes made to routing is given by
the working memory by the most recent production fixing Th- Tc (D L/W)
have to be processed every cycle.

3.7Two-inpua nodes: These test for joint satisfaction of C~s Wee

in the LHS of a production. Both inpu of a two-input TC Qiennel Delay. assumed to be So nanoseconds
node come from memory nodes. when a token atrives (ns), as in (3].
from the lkft memory, ize, on the lefi input of a two-inputW aneWitss edobe1bi.
node. it is compared to each token stored in the right ChneArfasmdtbe1bi.
memory. All taken pains that hawe consistent variable L Lengt of tho message in bits.
bindings anemn to the successors of the two-input node. D Distance or number of hops traveled by the
Similar action occurs when a token arrives from the right ~ ftopoesn oe r eetda

memoy. e reer o mch a acion s anod-ectiwton.random in a k-sty n-cube, then number of hops is

Fgur 2-1 shows the Re net for a production naned P1. n*(k - 1)1k - 22 for our 32 -ary 2- cube.

We assume that the MDP is driven by a 100 no clock and that the

3- M N~l-PuintCom uter an An mptonstimie to exeute a send (broadcast) command is

PCs e LUWg compulers baoed on the programming model of T- P+NQ lc yls
*cnrt processes; communicating by mrnage passing. There is where a message of Q words is to be sen to N sites [5). The
no glaol shared memory and hence communication between the overhead of receiving messages is assumed insignificant (5]. Thus
concurent processe is explicit as in Hoste's CS? [12], though not there em two delays associated with a message: T, in transmrission,
necessarily synchronous. The eary MpCs such as the Comic T in its communication.
Cube (20] had a high network lancy of about -2 millisecond (ms)
and a high overhead of message handling of about -300
snicrescends (ii). As a result, it was impossible to exploit
Pmflelm at the fine granularity of %0-100 Its as is ,Nsay in 4. MapingIR Rete on the MPC-~wd syse In this section we describe our mapping of Rese on the MPCs. We

draw heavily from our previous work with the PSM implementations

ROcOM developmntsf in ?4PCs such as worm-hole routing [4] have of production systems on shared-memory multiprocessors (9, 10, 21].
educed the ne0twork latencies to 2-3 pr and the me of special n esieefrmpmntgOPSoteMP ass

Ircssr such as the MDP (Messag Driven Pmoessor) [5] can Oepsil caefripeetn P5o i ~ u



fOta viewing Ret in ani objct..rinted manner, where the nodes of right buckets at only one index nd to be accessed) 7This mapping is
Pae are objects and tokens are messages This scheme maps a single pictorially depicted in Figure 4-2. There is one restriction on the
object (nods) of Rate onto a single processor of the MPC. However, communication with the processor-par - it can only be done

V b. -w two serious probhinr. (1) IUh mapping requires one through die left -processor. Allowing communication with both left
priwU~r per node of the Rat net, and the processor utilization of and right processors can result in creation of duplicate tokens leading
such a sobmoe is expected to be very low. (2) Often. the processing to incorrect behavior, and it does not gain as much in concurrency.
of a WME change results in multiple activations of die sane Rete
node, which in die above mapping would be processed sequentially
on the amPE, thus causing diat PE to be a botlaweck Token Structure

___________________________________ 1/l nodeid IvarblI varb2l . tag Ivtag

control processor

Hash fn. Variables
involved in

Match equality tests at
processors Ulnchanged dust nodes

implement bits for #I ~Ind*x~bs
partition [r

a concurrent

JflblLLD J

4 constant 4 conflict---
node processors set processors

Figur 4-1: A high level view of the Mapping an the MPCs. ne

HT-base

To overcome the limitations of above mapping, we pr oe an
alternative mapping, a high-level picture of which is shown in Figure
4-1. At the heart of this mapping is a concarerd distribited
hash-idbc [6] data structure that enables fine-grain exploitation of ___ _ _ _

concurency. The details are described later in this section. As________
shown inthe figure 4-1, the parallel mapping consists of I control
processor. 4 constant-node processors, 4 com~lct set processors, and Lthe re an match processors. The coastant-test nodes of the Retm net
are divided into 4 peuts and assigned to the constant-node processors
The march processors perform the function of the rest of the Rete net.Mi onlc-o i, ,sotprfr7 onflct z2soato an die
insaintiatio[Is sen to them. Subsequently, they mend the best Left Hash Buckets Right Hash Buckets

instantiasiofsr performnmfitrsuiing mapnpthng.s

die interpreter.__ _ _ _ _ _ _ _ _ _

As mentioned in Section 2.2, most of the dime in match is spent A resa-i tghrprfmteacvtyoasnleod
proosoit to-inut odeAni~dOO Hahin th conent ofthe acti vation. Consider the case when a token corresponding to the

associted memory nodes, instead of string them in liea lists, left-activation of a two-input node arrives at a processor-pair. The
rednes the number of comparisons performed during a node- left processor immediatly transmits the taken to the dogt processor.
activation and thus improves die performance of Rema One hash m.o left processor then copies the taken into a data-structure and adds
table is ased for all left memory nodes in die netwok and th te it to the appropriate hash-table bucket Meanwhile, the tight
for all ight memory nodes. The hash function that is applied to the processor compares the token with contents of the appropriate right
tokens takes into account (1) the variable bindings teste for equality bucket to generat tokens required for successor node activaiNons.
at the two-input node, and (2) the unique node-identiier of the The right-processor than calculmts the hash value for the newly
destiation two-input node. This perma quick deteton of th created tokens, and mends echb taken to the processor pair which
taoen doat are likely to pass the equal variable tn.owns the buckets that it hashes to. The activities performed by the G s

individual processors of the proceso pair are called nicro-tests, and C
ho our mapping, to allow the parallel processin Of (1) tokens all thes mcro-aks on the varios proceso pairs are performed in0

destined for the swe two-input node and (2) tokens destined for palel
diffren two-input nodes, the hash tables buckets storing the tokens
an distributed among the PEa of the processor array. In particular, a The performance of this scheme depends on the disciiminability of
smal nmber of corresponding buckets fromn the left and right hash hsig. Two obiservations can be made in this respect:
tables are assgnd to each processor pmsr in the array -- the left- 1 ahn sbn neult et nCsad9%o h
bucket to the left procesr and the right buckets to die right test Hashing ipu based o n equality t in (sa90)oth

apr osr (Noes that when processing a node activation, the left and tssa w nu oe r qaiytss[] o

copy
INSPEOcLO

M4,



2. The locks on the hash tables in the PSM implementations 5. Perforrmance Analysis
have noe been seen to be bottlenecks [10, 21]. We now evaluate the UPC implementation using the

mesuamnsothe Reftet from [9]. 2 ThWepoint of the analysis is
Thus badring is not expected to be a problem in general. to establish thst the MPr-s will provide good speedups, compared to

However, in certain production systems, a large number of two-input other previously proposed parallel imlmnainrather than to
no. do noe have any testa. For such nodes, various schemes as estimate the exact performance that will be obtained on a real
rof osed in [1). can be used to introduce diacriminability into the machine.

tokens generated. Furthermore, when the compiler does come across
nodes which cannot be hashed, it can assig a larger number of One of the important numbers for this analysis is the time spent in
pancesors for that pair of buckets, (since all the token would end up the processing of one node activation. Using that, we can estimate the
in a single pair of buckets) thus breaking up the processing. time for a micro-task. A node activation is identical to a lark on the

PSM, which takes 200 pis on a 1 MvIPiS proceasor (10].
The code for the Rcte net is to be encoded in the OPS83 [8] Measurements of the number of instrutions executed indicate that

soltwasmtchnology. With this encodinig. larg OPS5 programs (with about 50% of that time is spent in updating the hash bucket and 50%
-1000 productions) require about 1-2 Mbyses of memory - a in performing tests with tokens in opposite memory. We therefore
plollm since each MIPC processor has only 10-20 kbytes of local assume that on our 4 MIPS processor, performing a micro-task will

memory. We therefore use two stategies to save space: take about 25 its, which is 200 jas *l1/ (due to processor speed) *0.5
1. Partition the nodes of Rt such tha each processor (due to partitioning of the node-activation into micro-tasks).

evaluates nodes from only one partiion This
partitioning is easily achieved if the hash function Since the procesor-pairs communicate via tokens, we also need to
preserves some bits fromn the node-id. To avoid calculate the overhead of a taken message. The length of a token-
centenfior, nodes belong to a single production are put message is dependent on the number of variable bindings and the
into different partitions. numbe: of WME timetags carried by the taken. There are on average

four variable bindings per production [9]. The number of WME
2. One cause of the lap memory requirement is tei-ic timetag s dependent on the number of C~s in a production.

expansion of procedures. We can instead encode the two- Assuming the number of C~s to be (M =5) for the moment, we use
input nodes into structures of 14 bytes, indexed by the the toe-acure in Figure 4-2 to estimate 42 bytes of information
node-id. A smnall performance penalty of loading th per token. The overhead of sending the token message will therefore
required information into registers is then paid in the be equal to To=(5 +Q N)clock cycles, with Q =42/4 words and N
beginning; of the computation. - I processor (see section 3). Substituting, we get T. - 1.6 Ls. The

Mestensoealoeainis as Mows: communication delay T,h~ is given by TC(D + W.W). This
Th e covrll popersaluteionEchne n communication will be between a random pairs of processors

trn. it The cotheon nd processor s evlae MEcag hemfore, D = 22. We have assumed TC to be 50ns and W to be 16.
Uanait5it o te cnstnt i~d PTce5O~LOur L is 42 * 8=336 bits. Substituting. we get Tb m 2.2 las. The

2- The constant node processr match the WMB with the total delay will be therefore 1.6 + 2.2 = 3.8 gzs par token message
constants in the CEs. The result of this match is tokens between processor-pairs.
that have bindings for the variables in matched CEs.
These tokens repreent individual node activations and We can now estimate the cost of one match cycle. The steps
are sent to qaprpriate processor pairs. below correspond to the algorithm in the previous section.

3. The following steps are then repeated by the pocessor-se :TeW Ecagsaetanitdt h osatnd
- unil ompetin o mach:processor. The cos of addition of a WME is as follows. The

" Split the nods-activation into macro-tasks; an average WNdE consists of 24 attribute value pairs, which can be
perform them in parallel. encoded in 24 bytes for attributes + 24 worda for the values =30

" Count the number of suicessor tokens generated words. Broadcasting this WYAM takes T. = (5 + 30 words *4

due to this token-, if no successor are generated, processors) clock cycles L~e., 12.5 pa.
than send an acknowledgement (ack) message to
this processor pair's activator. For the communication delay, Th. D =1I since the constant node

processors are one hop away from the control processor. The value
" Accept ack mansages frmtesaesmI of Lis 30words *32 bits/word a960 bitsW = 6 and the value of

accounted for all soccessor of a token, send an ac TC is fixed at 50. Substituting, we get T,, m 3.1 las. Thuis the total
maessage to the activ'ator. time spent in communication during WIME-addition is 15.6 jps.

DuseagW terminatio, in a distributed system is a complex For deleting a WMdE, only the imtetag of the WMdE to be deleted is
probleas i itself 1151. The ack messages provide an easy and passed on to the constant-node processors. Calculating T, and Tin

* reasonably efficient method of inforning the conflict-set processors a similar fashion, we ge the total time spent in delete to he 1.1 pL.
lAsot dcompltion n thert match cyclae, th prcssn of th Ther is an average of 2.5 WMdE changes per cycle. Assuming equal

he owAbacknhe, Il mtoh controanl esra of wh c proportions of adds and deletes, the cost of the first step is 1.25(1.1 +
ifmsteconflict set prcesors thtat thre matcht is 15.6) 21 its

Ime *mn 10% .1 th tins in a wrijal unpuaam. Sion we hse divided up the monfi
m md pipathud tOn amum pan wat h n am* tee dmuld wk evm h um Vune h.

Int =a. ty dD beIn boumuk vaciou Icumn dituemd in (91 =mt be =d %n ved~m
thtirovebss&



* Step 2: The constan tests we now evaluated. Assuming that the 6. Discussion
c oan tst a implemented via hashing ther are 20 constant- Comparing the MIC implementation to a shand memory multi-

r" node activatios per WVWE change [9]. On aversge, each partition processor implementation, we see that the principle advantage of the
will have 5 activaions per WME change. Thus about (5 * 2 / 4 MIC implementation is the absence of a centralized task-scheduler,
MIPS) 2.5 ps are spent in matching die constant nodes. A token which can be a potential bottlneck As shown in [9]. in shaed-
snucture is then generated and bindings ar created for the variable(s) memory implementations, a slow scheduler forces saturation speedup
of the Cgs which passed the ts. Measurements [9] show that there with relatively small number of processors, uiespective of the
will be about 5-7 such tokens geerated per VME change, which we inherent parallelism in the system. However, the MPC
assume to take 20 ps. This whole operation of processing a WME- implementation suffers fron a statf partitioning of the hash tabls. It
change by a constant-node processor is thereo estimated to take is possible that distinct tokens, which could potentially be processed
about 22.5 ps. For the 2.5 WME-changes, (22.5 * 2.5) - 56 ps will in parllel a processd sequentdally because they hash to the same
be spent in processing the constant nodes and generting the initial processor pair. Such a possibility does not arise in the shared-
tokens in a cycle. The generation of these tokens is pipelined with memory implementation, since the size of the hash table is
sending the tokens to the match processr, independent of the number of processomr.

Step 3: The processor-pain perform the rest of the match. The Another tradeoff to be considered is between processor utilization
node-activation typically go to different processor-pairs, and ve and the number of processorL With a higher number of processors,
procesed in paralleL Therefoe, the total time to finish the match is the processor utilization will be low, but the message contention in
determined by the longest chain of dependent node-activations, since the network will be reduoed. As the ninber of processors is reduced,
the micro,-tasks in the chain have to be processed sequentially. On an processor utilization will be improved; but again, this will also
average, the chain will be generated after 50% of the initial tkens in increase the hash table contention. Thus them as some interesting
a cycle have been geneated. A constant-node processor takes 56 ps tradeoffs involved in moving towards the MPCs.
to generate all the initial tokens; therefore, we assume that the initial
token generating the long chain will be creatd after 28 I ncluding A mapping similar to one proposed in this paper has been used to
the constan-node processors, let the longest chain be of length M = implement production systems on the simulator for Nectar, a network

. conputer architecture with low messe passing latencies [13].
These simulations show that g speedup can be obtained by

When a token arives at the left processor, it is immediately implementing production systems on MPCs with low latencieo [22).
tansmitted to the right processor. For this transmission, T, is sill 1.6 The simulations also indicate that the constant node processrs can
P. But, Th = 50(1 channel +42 * 8/16) = 1.1 s. Thus, after a quickly become bottlenecks if the initial tokens ve not generated and
token arrives at the left processor, it will take 1.6 + 1.1 - 2.7 s to st fast enough. In our curnt implementation, we have hashed the
reach the right processor. The right processor will take 25 ps to finish constant nodes to take care of such a possibility. If the constant node
the micro-task. It will then take 3.8 It for the successor token to processors continue to be bottlenecks inspite of this, then schemes

acb its destination. Thus, the time to complete a micro-task is 25 + proposed in [22] can be used to remove them.
2.7 + 3 .8 = 31.5 pt. A chain of length 5 will therefore take 31.5 * 4 +
28 ps (due to the constant nodes) = 154 ts. (Similar analysis could Finally, we would like to reiterate the importance of mapping
be done if the successors vs generated by the left processor). prodction systems on MPCs. Current production systems offer

limited (10-20 fold) parallelism [9]. We have shown that the MPCs
The ack messages an propagated beck thrugh the node activation a capable of expliting this limited paraleism. However,

chain, after the last activation is processed It is 1 word of production systems with more inherent parallelism ve geting
information and so we estimate T h = 1.2 ps and T, = 0.6 ps. designed [14]. In such production systems, the parallelism is
Assuning that the ak is processed in 1 p , the time spent in the expected to be much higher [21]. For such production systems, it
chain ofack messages is (M = 5) * (1 + 1.2 + 0.6) - 14.0 ts. Adding becomes necessary to analyze euily scalable architectures such as
all the numbers together, we get the time for MPC to match to be the MPC& for their implementations.
approimately 154 + 14 + 21 = 189 pa.

A production system generates 200 micro-tsks on an 7. Summary
averesgiycle, and therefore a uniprocessor will take 200 * 25 a 5000 Recent advances in interconnection network technology and
A per cycle. Using this we get about 26 fold speedup for the Sbove prmesng node design have re ed the latency and mesage

system with the lngest chain of M = 5. This is - handling overheads in MPCs to a few micnseconds. In this paper we
maximumI parallelism exploitable on an ideal multi-processm at this addressed the issue of efficiently implementing production systems
rmulay. Our calculations show that the speedups is - 14 fold if M on these new-geneation lPCs. We conclude that it is indeed quite

-10 and -9 fold if M a 15. Again, this is -60% of the maximum pmssible to implement production systms efficiently on MPCs. At a
available pmllelism. This is comparable with the estimate of 60% high level, our mapping corresponds to an object oriented system,
exploitable psallian in shard memory multiprocessors at e with Ree network nodes passing tokens to each other usmng
node-ctivation level [91. This coarser grain node-activation level messages. At a lower level, however, instead of mapping each Rete
parallelism can be exploited on the MPCs by allocating both the left node onto a single processor, the stae and the code associated with a
and right buckets to one processor. Our calculafion show t node s distibutd amog die multiple proessors. The main data

micro-task besed scheme is capable o exploiting 1.5 time more sucture that we exploit in our mapping is a concurrent distributed
speedup than a scheme to exploit the node-activation level hash-table that not only allows activations of distinct Raft nodes to
pallelism, be processed in parallel, but also allows multiple activations of the

samie node to be processed in parallel A single node activation is
further split into two micro-tasks that are processed in parallel,
remsultiqg in very high expected performance.



Admowledlements [14] LAird, J. ., Newell, A.. & Roseabloom, P. S.
We would like to thank IL T. Kung for questioning our Soar- An archiectur for general intelligence.

amumptions about shared memory architectures. We would like to ArtficialIntelligence 33:1-64, 1987.
thonk Charles Porgy, Brian Milnes, Allen Newell and Peter [15 Manem, F.
Smakiste for many useful comments on eaier drafts of this paper. Attm.f d

We would also lie to thank Kathy Swedlow for technical editing. Jourit of Distributed Computing 2:161-175, 1987.

[16] Miranke, D. P.
Reereaces TREAT: A New and Efficient Algorithm for AlProduction

Systems.
[1] Acharya, A., KaLip, D., Tambe, M. PhD thesis, Columbia University, 1997.

Cross Products and Long Chains. [17] Oflazer, IL
Techmical Report, Carnegie Mellon Univeity Computer

Science Department, In preparation. Partitioning in Parallel Processing of Production Systems.
PhD thesi. Carnegie-Mellon University, March, 1987.

[21 Brownton, L, Farell R., Kant, E., Martin, N.
Programming Expert Systems in OPS5: An roduction to(18] Schiner, F., Zime , .

Rule-basedProgramming. Pesa- 1 - A Parallel Architecture for Production Sytems.

Addison-Wesley, 1985. In International Conference on Parallel Processing. 1987.

[31 Daily, W. L (19] Seitz, C., Athas, W., Flaig, C., Martin, A., Seizovic, J., Steele,

Directions in Ccncunent Computing. C., Su, W.
In Proceedings ofICCD-86. October, 1986. The Architecture and Pogramming of the AMMEK 2010Multicomputer.

[4] Daily, W. y. In Hypercube concurrent computer and applications. 1988.
Wire Efficient VLSI Multiprocessor Communication

Netwoa [20] Sie C. L.

In Stanord Conference on Advanced Research in VLSI. The Cosmic Cube.

1987. Communications of ACM C-33(12), 1984.

[51 Daly, W. J., Cha, L, Chien, A., H S., Horwat, W., [21] Tambe, M. S., Kaip, D., Gupta, A., Forgy, C. L, Milnes, B.,

Kaplan. J., Song, P., Totty, B., Wills, S. Nell A.

Amhitecture of a Message-Driven Procssor. Soar-PSM : Investigating match parallelism in a learning

In International Symposium on Computer Architecture. 1987. psd otion system.
In Proceedings of the PPEALS-. 1988.

[6] Daily, W. 3.A VSI Architecue for Concurrent Data Structures. [22] Tambe, M., Bitz, F., Steenkiste, P.
APhD~f t chtre a fni Iniut f ta Technologyu1 . Production Systems on the Nectar: Simulation Results and

hD thesis, Caifornia Institte of Technology, 1987. Analysis.
71 Forgy, C. L Technical Reprt, Carnegie Mellon University Computer

Rate: A fast algorithm for many pattem/many object pattern Science Department, In preparation.
match problem.

Artificialinteligence 19:17-37, 1982.

i Frgy,C. L
77e 0PS83 Report.
Technical Report 84-133, Carnegie Mellon University

Computer Science Department, May, 1984.

[91 Gupa, A.
Paralelism in Production Systems.
PhD thes. Carnegie Mellon University. Mach, 1986.

1101 GOpta, A.Forgy, C. L., KaIp, D., Newe A., Tambe, M. S.
Parallel OPSS on the Encore Multima.
In Proceedings of the International Conoerence on Parallel

Processing. August, 1988.

[111 Hillyer, B. LandShaw,D.E.
Exeoution of OPS5 production systems on a Massively

Paral Machine.
Jwnal of Parallel and Distribued Processing 3:236-268,

1986.

[121 Ham, C. A. R.
Commamicating sequential pocesss
C rnia s of ACM 21(8):666-677, 1978.

1131 Kung, It T., Steenkim, P., Bitz, F.
The Nectar computer architectu.
Personal Communication.


