
Il1C ifLE " 0
Memory-Reference Characteristics

co of
(f) Multiprocessor Applications under MACHSl ELECTED

' Anant Agarwal" and Anoop Gupta EPR C 198E

Computer Systems Laboratory
Stanford University, CA 94305 0 H O

S Abstract Analysis of shaed-memory reference patterns is Deeded to

Idetermine the most suitable organization of the memory hi-
Shared-memory multiprocessors have received wide attention erarchy in multiprocessors. For example, several cache con-
in recent times as a means of achieving high-performance sistency algorithms proposed in the literature are based on
cost-effectively. Their viability requires a thorough under- subtle differences in the expected memory reference patterns.
standing of the memory access patterns of parallel process- lacking detailed data, the benefits of one scheme over another
ing applications and operating systems. This paper reports cannot be assessed accurately. While some previous studies
on the memory reference behavior of several parallel applica- have looked at shared-memory reference patterns. e.g., [2].
tions running under the MACH operating system on a shared- they did not fully address issues such as the temporal. spatial,
memory multiprocessor. The data used for this study is de. and processor locality of shared data, sharing in the operating
rived from multiprocessor address traces obtained from an system. and the impact on cache consistency. For example,
extended ATUM address tracing scheme implemented on a we show that shared references display a significant amount
4-CPU DEC VAX 8350. The applications include parallel of processor locality. The average number of read and write
OPSS. logic simulation. and a VSLI wire routing program. references to a write-shared block before a remote reference
Among the important issues addressed in this paper are the are 4 and 2 respectively. This locality is exploited by the
amount of sharing in user programs and in the operating sys- write-back class of cache coherence schemes to significantly
tern, comparing the characteristics of user and system refer- reduce the cost of references to shared data. Another surpris-
ence patterns, sharing related to process migration. Aad the ing result that we observed for shared data references is that
temporal. spatial. and processor locality of sharedlbocks. We the total bus bandwidth required is minimized when block
also analyse the impact of shared references on cache coher- size is 4 bytes and increases as the block size is increased.
ence in shared-memory multiprocessors. We also observe that processor migration causes a large in-

crease in the sharing level as observed by the caches, which
..4 can greatly increase cache coherence traffic on the bus.

1 Ito u to. This pape- is organized as follows. Section 2 presents back-
ground information about the ATUM address tracing tech-

Although we now have a reasonably good understanding of nique, the applications measured. and the MACH operating
memory system design for uniprocessors, very little is under- system. Section 3 defines our multiprocessor model and the
stood about memory system design for multiprocessors. A terminoloVL used throughout the paper. Section 4 constitutes
major reason for this has been the lack of real data about the bulk of the paper and is devoted to analyzing the traces.
memory reference patterns for multiprocessors, because of This section characterizes shared-memory reference patterns
the difficulty of tracing such machines. The problem of get- and looks at the impact of the reference characteristics on
ting realistic trace data is even more acute if one wishes to cache consistency algorithms. Specifically. in Section 4.1 we
the study the effects of operating system references, process present data about the general characteristics of the traces,
migration, and other such real system events. This paper including statistics about interlocked instructions. Section
attempts to correct this situation and analyzes memory ref- 4.2 assesses the temporal and processor locality of shared ref-
erence patterns of several parallel applications running under erences. Section 4.3 focuses on how the memory reference
the MACH operating system on a shared-memory multipro- characteristics affect the performance of various cache consis-
cessor. The address traces used in our study were obtained tency algorithms. Section 5 concludes the paper.
from a 4-processor VAX 8330 multiprocessor using an ex-
tended version of the ATUM [1) address tracing technique.
These traces contain both system and user memory refer- 2 Background and Methodology
ences, including process migration information.

ND ISTATi " 2f , Our study is based on trace analysis. The traces are obtained
.-- -using a multiprocessor extension of the ATU M tracing scheme

Ap - c rflacx.e f I). ATUM stands for Address Tracing Using Microcode and
. ,, .. ,works as follows: During the execution of each instruction,

... . . . -. the microcode writes out the memory references

"Anan AgSarwal is currently with the Liborator for Computer
Science (NE43-418). M.I.T. Cambridge, MA 02139

In Proceedings of SIG14ETRICS '88

' ' ,, inain i immnnI

made by the processor to a portion of memory reserved for
tracing. In the multiprocessor extension of ATUM. each ac- Table 1: Summary of trace characteristics. All numbers are
cess to trace memory is interlocked to enable the microcode in thousands.
in several processors to write their references to this memory. -Trace Ref ,st I cad DWrt sr ys
Thus a trace contains interleaved address streams of several POPS 3142 1624 1257 261 2817 325
processors. The traces used for this study were gathered on H 3 1 1
a 4-CPU VAX 6350 machine running the MACH operating THO 3S22 14 13 66 27 l_4 2
system. ATUM traces are -complete' in that they capture
all operating system and multiprogramming activity. Each
trace is roughly 3.5 million references long. In addition to
addresses. ATUM records the opcodes, and the virtual-to- 3 M ultiprocessor Model and
physical translations that occur during translation-lookaside- Definitions
buffer (TLB or TB) misses. A location is considered shared
when it is referenced by more than one CPU. Because differ-
ent processes could access a given shared location with differ- The multiprocessor model we assume for our analyses in this
ent virtual addresses. sharing is detected by translating the paper is quite straightforward. We assume that the system
various virtual addresses of a shared location to its common consists of several processors each with its own cache memory.

physical address. The caches are connected to a common system bus on which
shared main memory is located. We also make the simplifyingThe traces used in this paper are obtained from three pro- assumption that caches are infinite in size, since we would like

grams: POPS. THOR. and PERO. POPS [3] is a parallel t ion ta ca use ue o. hie we wud lok

implementation of a rule-based programming language called to concentrate on traffic caused due to shared data and not
mix it up with traffic due to limited cache sise.

OPS5. which is a widely used languages for the building ex-

pert systems. It exploits parallelism at a fine granularity and We introduce some nomenclature to help explain memory

makes extensive use of the shared memory provided by the access patterns. A block is the unit of data transfer between
architecture. THOR is a parallel implementation of a logic the cache and main memory. For the rest of the paper, we
simulator done by Larry Soule at Stanford University. The assume block size to be I word (4 bytes). The small block size
simulator transforms the task of circuit simulation into a se- is chosen so that the reference behavior for each data object
ries of node evaluations. where each node corresponds to a can be derived. However. characterization using larger block
device in the circuit. The parallel implementation evaluates sizes is also important to study the spatial locality of shared
these nodes in parallel. while taking care of the dependencies objects. and is dealt with in Section 4.3.
between them. PERO is a parallel VLSI router written by A read-shared block is one that is shared (accessed by mul-
Jonathan Rose at Stanford [4]. tiple processors). but never written into. A write-sharedblock

We briefly describe the MACH operating system, since is one that is shared. and both read and written into. A refer-
some of the shared references in the traces belong to it. and ence to a block B by processor i is said to ping if the previous
also because the programming style used in the applications reference to that block was by processor j. where j 1 i. We
was influenced by it. MACH is a multiprocessor operating call such a reference a pinging reference. Conversely, a refer-
system developed at Carnegie Mellon University. It is binary ence to a block B by processor i is said to cling if the previous
compatible with Berkeley Unix. and provides several new fa- reference to that block was also by processor i. Such a ref-

cilities to support parallel processing. It provides facilities for erence is called a clinging reference. By these definitions, a
multiple tasks to share memory permitting the exploitation ping can only occur on a reference to a shared block. Pings
of very fine grained parallelism. All three programs make use and clings to a block are determined simply by keeping track
of multiple tasks that share memory to communicate with of which processor last referenced a block. References are
each other and to share information. MACH is not a to- read references or write references depending on whether the
tally symmetric operating system in that kernel interrupts operation performed is a read or write. The state of a block
are handled by processor zero. This causes the memory ref- (clean/dirty) is determined by the references of the proces-
erence pattern of processor zero to be different from that of sor accessing it currently. A block is said to be dirty if it
the remaining processors. In parallel programs, where many has been written into after the previous pinging reference to
tasks are performing I/O. the high level of OS interrupts can it. Therefore. a block always starts out clean after a pinging
also cause excessive process migration. Fortunately, none of reference to it.
the programs that we study in this paper do very much 1/O. The notion of clings and pings yields useful insights on how

Table I presents general trace characteristics for the three various shared-memory multiprocessor architectures would

programs. The columns denote the total number of refer- perform. The appealing feature of clings and pings is that
ences. instruction references. data reads. data writes, user they do not depend on implementation details such as cache

and system references. Instruction and data references are sizes. Assuming a local cache, clinging read references never
about equal, while there are roughly three reads to every need the bus; pinging read references need to use the bus only
write. About 12K of all references are system, if the read misses or if the block is dirty in another cache.

A bus transaction must occur on a pinging write reference.
The ATUM traces used for this study do have some lim- In the ensuing discussion we will show results on the time

itations. The machine used had only 4 CPUs and it is not intervals between such clings and pings, and also on the fre-
clear how to extend the results to a larger number of proces- quency of various kinds of clings and pings. The time interval
sors. Work on this issue is in progress. Another problem is plots are a useful method of depicting the temporal locality
the unavailability of a large number of applications, but the of shared-memory references. while the frequency of clings
number is growing. and pings is a method of showing the "processor locality" of

references to a block. Besides spatial locality and temporal
locality, the form of locality important in a multiprocessor

2

context is processor locanitt - the tendency of a processor of unique blocks and the proportion of references to shared
to access a block repeatedly before an access from another blocks in the traces.
processor. A direct impact of this locality is noticed in the
performance of various cache consistency schemes, which ex-
ploit different locality patterns in references to read-shared or Table 2: Proportion of shared references and unique shared
write-shared blocks. Also notice that a high temporal local- blocks when the blocksize is 4 bytes. Both istruction and
ity of pinging references yields a low processor locality, and data references of user and OS are included. All numbers are
negatively impacts the performance of multiprocessor caches. in thousands. Block size is 4 bytes.

To separate the effects of process migration. we also Trace Refs Uniq BWks Sld Refs Shd Blks
present numbers for process- migration.shared blocks. These rcPOPS f3142 3 i 7.8 122 237
are blocks accessed from processor i by process p, and also TOR 3142 7.3 ;122 2.7
from processor j # i by the same process p. On the other PERO 3508 22.6 218 4.7
hand. real-shored blocks, are blocks accessed from processor
i by process p, and also from processor j 6 i by process q,
where q i p always holds. Table 3 gives the same statistics. but only for data refer-

It is useful to have a notion of time in the context of multi- ences of both user and the operating system. In addition,
processor execution. Our traces contain interleaved memory Table 3 presents the number of blocks that are written. Be-
accesses by the various processors in approximately the same cause the instruction space is usually read-only, it can be
order they occurred. However. the exact time at which the treated specially in memory management, and so most of the
reference was made is not clear. For example. if the pro- statistics presented later correspond to data references alone.
cessors i. j, and k each made references at real time in- Table 4 presents the same statistics for user data references
stants t. I + 1. and so on. the trace might have references alone.
i,.jt,kt. tt+i 1. 1j,. k,+,. and so on, where the order of the t" When both user and the operating system data references
references of the 4 processors might be random with respect are considered. the ratio of shared references to all data refer-
to each other. The traces also show clusters of memory ref- ences (averaged over all three traces) is 0.25; the ratio is 0.27
erences by the same processor. and the time interval between when only user data references are considered. We see that
references by the same processor also varies, the level of sharing in the operating system is only slightly

Due to this nature of the reference pattern, we will not try lower than in user.
to approximate real time. Instead, we will use the order of These traces have an insignificant amount of process-
occurrence of a reference in the trace as the index of time. So migration-related sharing. We also looked at some other
the r'h reference in the trace is considered to have occurred at traces for the same applications with a large amount of pro-
time r.' The paper considers several cases where the traces cess migration, and the levels of sharng are drastically differ-
are filtered to extract specific references (e.g.. user), and to ent in these traces. The ratio of shared to total is 0.9 for user
enable comparisons, the time index used for a reference de- data references when process migration is high: when process
pends on its index in the original trace. For example, when we migration effects are excluded (only references to real-shared
filter out operating system references while studying sharing blocks are counted), the ratio of user data references and all
in the user address space, the time index of a user reference data references falls to 0.2.
corresponds to its position in the unfiltered trace.

4.1.1 Statistics for Interlocked Instructions
4 Results and Analyses The VAX architecture provides seven interlocked instructions

for synchronization. These are: BBSSI - branch on bit set
We first present some general statistics about the traces. in- and set interlocked: BBCCI - branch on bit clear and dear in-
cluding data about interlocked instructions. We then present terlocked. ADAWI - add aligned word interlocked; INSQHI.
statistics about temporal and processor locality found in the INSQTI. REMQHI. REMQTI - four instructions to manipu-
traces when only user references are included and there is no late linked lists (queues) in an interlocked manner. The usage
process migration sharing, when both system and user refer- of these instructions is presented in Table 5, with separate
ences are included, and when the effects of process migration numbers given for operating system code and user code.
are taken into account. We then evaluate three different cache
coherence schemes on the basis of the amount of traffic they Table 5 shows that only BBSSI and BBCCI instructions
generate on a shared bus. Unless stated otherwise, we assume occur in the trace. The ADAWI instruction is used in the
infinite caches and a 4-byte block size. POPS code, although it does not occur in the instruction

references that our trace contains. These statistics show the
strong preference of programmers to use the simpler test&set

4.1 General Statistics type instructions for synchronization, rather than using the
more complex queue manipulation instructions. 0

The statistics in Table 2, for both instructions and data refer- The number of interlocked instructions as a fraction of all b
ences of user and the operating system, relate to the number instruction references is 0.1%-1.6% for the three programs.

'We believe that fine time distinctions are not significant in our While the fraction is as high as 1.2%-4.6% for POPS and
study. To approximate real time. one can keep a virtual system THOR, the fraction is only 0.1% for PERO. The reason is
time incremented by one unit for every n references in the trace, simply that the author of PERO had made an explicit deci-
where n is the number of processors. In other words, the times sion not to use locks for the most frequently used data struc-
specified in our paper can be divided by 4 to get a rough idea of ture, thus trading the quality of the final solution for extra
the real time. performance. Since executing an interlocked instruction may leg

be as much as IL-20 times more expensive than an ordinary r

3I I I

Table 3: Proportion of shared references and unique shared data blocks when the blocksize is 4 bytes. Only data references to
both user and OS are included. All numbers are in thousands.

Trace Refs I Uniq Bas IWritten Shd Refs Shd Blks Ihd Wrt

OPS 1346 29.3 9.1 576 19.8 4.0
THOR 1527 71.9 15.9 473 4.8 1.
PERO 1528 11.6 3.8 119 3.3

instruction on some multiprocessors, a small percentage of the process resumes execution on the same processor after be-

interlocked instructions can consume a large percentage of ing switched out. The first peak. clearly, is due to references
total execution time. We also note that most of the inter- within a context switch interval. The height of the second
locked instructions result from the user code ad not from peak is much larger in traces that show significant process
the operating system code. migration. This low temporal locality component of clinging

references introduced by process migration cf be deleterious

to cache performance.
a ce s l it These results are compared with those for pinging refer

User Data References ences, or for a reference to a block by a processor folowed

by a reference from another processor. Figure 2(a) showsThis section deals with dynamic memory access patterns and the cumulative distribution, and Figure 2(b) the frequency
characterizes the temporal and processor locality of real distribution. The time intervals in this case re interest-
shared user data references. The first few figures plot the ingly lower than for clinging references, which says that ref-
cumulative distrbutions and the frequency distributions of erences to shared blocks by different processors are usualy at
the time intervals between clinging and pinging references to east as finely interleaved as references by the same processor.
demonstrate the temporal locality of data references. All fig- Doubtlessly, the fact that our applications exploit parallelism
ures use a block size of 4 bytes. at a fine granularity is the cause of the high temporal locality.

Figure 1(a) shows the cumulative frequency distribution The small second peak at 256 time units in Figure 2(b) is
of the time interval between clinging references to a shared due to the process migrating to another processor following a
block. In other words, i point (r, m) on a curve means that context switch. If the level of process migration is high. this
c references occur to a block with the time interval between peak at a large time interval can become much taller, which
these references not more than z. The corresponding fre- falsely suggests that process migration lowers the temporal
quency distribution plot for one of these programs is also locality of shared references. In reality, process migration

shown in Figure 1(b). Due to the wide range of time inter- simply makes a large fraction of the logicalfly private blocks
vats in which the references occur. the bins on the X-axls appear shared. and it is references to these shared blocks
increase in powers of two. Therefore a bar at z with height alone that give rise to the tall second peak.
d in the f tequency plot, implies that references occur to a
block with an interval such that i ze < 2:. For brevity we Our analysis also shows that roughly a fourth of the data
plot the frequency distributions only for THOR. references are to shared data. However, a large part of

the shared references need not generate bus trafic because
The averge interval of time between accesses so the same in most multiprocessor architectures, the large number of

shared block is 1165 time units in THOR. This number is clinging references to shared blocks (especialy reads) can be
unusually large because even one reference with a very large treated in much the same manner as references to private
interval (or an outlier) can skew the averse towards large blocks, in other words, blocks cn be treated as private dur-
values. Therefore, in the context of time intervals, a more ing large windows of time.

interesting number is the median, or the time interval overwhich half the clinging references occur. It is easy to see that The previous figures did not distinguish between read and
over 50 of the intervals are 25 time units or l i THOR. write references. Making this distinction is necessary because
(The much larger averase is due to the bias brought in by a in many high-performnce multiprocessor architectures, only
few outlers.) Not surprisingly, these numbers indicate that pinging references to dirty blok. cause bus tralrc when the
blocks are re-referenced at small intervals of time. which is new value of the dirty block must be somehow transmitted to
simply a reconfirmation of the fact that memory references the requesting processor. Figure 3 shows the distribution of

display a high temporal locality, and is the precise rean why the time interval between pinging references to a dirty block.caching is successful. The values at 4K-K time units form The total number of pinging references o dirty blocks is far
a second peal (Figure 1(b)). although the height is much less than all the pinging references. As we shall show later
mauler than the first peak at 16-32 time units. This second in our discusson or, cache consistency performance sophisti-
peak ca be explained as clinging references that occur when cated cache management schemes that take advantage of such

features can have significant advattes over simpler schemes.

few o

blck ar rei frne at sml inevl of tie whc is nwvleoIh it lc msesmhwtasitdt

Table 5: Interlocked instruction statistics. Note the numbers are not in thousands.

IBS B(X T U - TOA e16. e-S

Trace Ue OSW ses User OS U .s-e '*oF-&al-jg

POP OnM6 -@U THOR (a..1O6mwMed7

--mo (.. 05.Mm JO

...................... . .

Figure 2: Distribution of the time interval between plinging references to a sa block. Only real-shared data references of e
urincluded.

POP (Ao- M. ed10)T M (OS-166 M8 07

-POP$ (A 4216, Mk.M -TMSv"1S)MW79
--- TiHON (AV,.11744. Ms.1773)5

PERO W=2 v71. kMst 711)

-I A I'.
4

II

I it IS M lo 1 4 0 at Of WO hIM 4M OOM
Mt; Moemh n Ph9obJ ns.". s M 6mV a Ti. ThiI 0160 bRow." f ay a"*

0)4
Figure 3: Distribution of the time interval between pinging references to a dirty block. Only real-shared data references of user
included.

Comparing Figures 2(b) and 3(b), we see that the peak One of the chief differences between some of the snoop-
&roend the time interval 4-8 in Figure 2(b) is caused by ref.- ing cache consistency schemes is the way they treat write
erence to read-shared objects. Because Figure 3(b) does not references. One set of schemes, e.g.. DRAGON [7) or FIRE-
show this early peak, we believe that references to write- FLY (8], &low caches to hold valid copies of blocks that are
shared blocks have less temporal locality than references being written into by others, and update the values on writes.
to read-shared blocks, which benefits multiprocessor caches. Another set of schemes prefer to allow only one copy of a writ-
A possible case is the test-and-test&set synchronization se- ten block (e.g., Berkeley Ownership [9], or various Savors of
quence. where one might expect multiple reads from several directory schemes [6]). The performance of one or the other
processors, but less frequent writes. The low temporal lo- method is predicated on the locality of references to write-
cality in pinging references to dirty blocks encourages us to shared blocks, which we address next.
believe that for large time periods blocks can be considered Figure 5 shows the number of read and write references -
as private and no traffic need be generated in maintaining at least one reference a write - before a pinging reference.
consistent caches. Several observations can be made from this figure. First, the

As caches grow bigger. blocks are expected to stay in the average number of references to write-shared blocks by the
cache for long periods of time. In such a situation, a bet- same processor before a pinging reference is 5.6 for POPS. 3.6
ter characterization uses the notion of processor locality. (A for THOR, and 7.5 for PERO. Write references are relatively
similar characterization has also been used in [5]). We will fewer than reads and contribute 1.6, 1.7, and 1.2 respectively
address processor locality in two ways. The first looks at the to these averages. These averages indicate that the processor
number of references to a block before a pinging references locality of shared-writable blocks is higher than that of read-
to it. and the second looks at the number of references to a shared blocks. (Recall that the corresponding numbers for
block before a pinging reference to it, given that at least one all references were 1.8, 1.3, and 2.5). The higher processor
of the references was a write. Each of the above two char- locality indicates that a shared written datum is accessed
acterizations is pertinent to some cache consistency scheme. multiple times by a processor before being relinquished.
For example. the first one indicates the potential of a cache A more important observation from Figure 5 is that the
consistency scheme that allows only one cached copy of a total number of these pings are approximately an order of
block, magnitude lower than all pinging references, which lessens the

Figure 4(a) shows the cumulative distribution of the num- adverse impact of the low processor locality of write references
ber of references to a block before a pinging reference. and on the performance of cache consistency schemes.
Figure 4(b) the frequency distribution. In Figure 4(b) for As noted earlier, the average number of writes to a block
THOR, there are about 200.000 pinging references to a block before a pinging reference is small (I.T for THOR); there are
referenced only once by the previous processor. Unlike in several possible reasons for this low value. We expect a low
the distributions of time intervals, where we used the median value for references caused by spinlocks. We also expect this
as a measure of temporal locality, here the average is more value to be low for shared objects which move from one pro-
indicative of processor locality, because outliers represent a cessor to another, with each processor making some modifica-
large number of references. and must be weighted accordingly. tions to the object. Also mostly-read-only objects are written
The low average of 1.3 indicates that interleaved references once, and then numerous pinging read references are made by
by different processors &,e as frequent as clinging references, other processors.
implying low processor locality. We evaluated a cache con-
sistency scheme that allowed only one cached copy of any Thus far, we saw that the processor locality of shared-
block [6]. and it performed abysmally for this very reason. references is moderate, with roughly 2 writes and 4 reads

6

STHO (AvI I. M I)m Ml
AW °......................... : .

am

so
Iw POP$ yw Muk I) N

THe (Avii d. MUI)
* PMPER O M.. Muld-I)

I * 4 8 fe At f I mWI fs WI m* I N6 8 f t to o IWg Ja

Figure 4: Distribution of the number of references to a block before a pinging reference. Only real-shared data references of
user included.

on average to write-shared objects before a pinging reference. 4.2.2 Effects of Process Migration
Therefore, a good cache consistency scheme must ensure ef-
fective handling of repeat read-references to shared blocks. Since the three traces we have discussed so far do not show a
Given the moderate processor locality of shared-data, we can- significant amount of process migration, we used three other
not directly determine whether invalidating cache consistency traces of the same applications that did. Due to space con-
schemes such as the Berkeley Ownership protocol or directory straints we will only summarize our findings here and details
schemes, or the updating protocols such as the Dragon and are presented in [10].
Firefly schemes are superior. More detailed evaluation that The temporal locality of clinging references decreases if
takes into account the cost of updating versus invalidating processes are rescheduled on the same processor, after having
must be undertaken to make a decision. run on another processor (it will show up as a large increase in

the height of the second peak in Figure I(b)). One component
4.2.1 Sharing Characteristics of Both User and of cache interference caused by migration is similar to the

OS References interference caused by context switching.
Perhaps the most important effect of process migration is

The following discussion focuses on the sharing characteris- the significant increase in the number of blocks that get phys-
tics of both user and system references, where instruction ically shared by several processors. although the logical shar-
references are excluded, as before. The general observation is ing in the program might be much smaller. For instance, the
that the sharing characteristics of user and system are not sig- fraction of references to shared data blocks increases from
nificantly different, although the temporal locality of shared 0.2 to 0.9 with process migration. Due to the typically long
system references was slightly lower, and the processor local- intervals between process switches (thousands of references).
ity was slightly higher. the time interval between pinging references to these shared

For the times between clinging references in POPS, THOR, blocks is very large, and causes a much larger second peak in
and PERO. the medians occurred at 26, 27. and 27772 for user Figure 2(b). Similarly. the average number of references to a
and system, while the corresponding numbers for user alone block - at least one reference being a write - before a pinging
were 23. 25, and 28188. The times between pinging references reference is 13 with process migration and less than 2 with-
were different by roughly the same ratio. while the times be- out. This perceived decrease in the temporal locality and the
tween pinging references to dirty blocks showed greater vari- increase in processor locality of shared references stems from
ation. The medians for user and system were 438, 2095, and the fact that many of these references are to logically private

'fn data objects that are not referenced by other processors until12446, as compared to 363, 1779, and 19711 for user alone. thprcsatulymgtetonterrcso.
The processor locality metrics also showed only small dif- I me process migrat o cress.

ferences from the case of user references alone. In general, In summary, although process migration increases the pro-
for the user and system references the average number of ref- cessor locality and decreases the temporal locality of shared
erences to a block before a pinging reference were roughly blocks, it increases the total number of shared blocks sub-
5% greater. A similar trend was observed for the number of stantially, and potentially impacts both intinstc cache per-
references to write-shared blocks. formance, and the performance of cache consistency schemes

adversely.

- rHO (Av.-. Med-I)

s PRO (*an-.9, Msd4a

jo~~ ~ r --P -
I AoS - L

Mm,, e thu to a m 14 M S 8 ib s s ou IN Mis M 1sW A

Figure 5: Distribution of the number of references to a block before a pinging reference to the same block, given that at least
one reference was a write. Only real-shared data references of user are included.

4.3 Cache Consistency Implications three kinds of bus transactions: block transfers, updates, and
invaidations. A block transfer transaction transfers a block

The memory reference traces also yield useful insights about from memory to cache or vice versa. For example, a block
the effectiveness of various cache consistency schemes. For transfer into a cache on a read miss. An update transaction
example. they enable an accurate determination of the traffic updates the contents of a location either in main memory
caused on a shared bus by any given cache consistency scheme (e.g., on a processor write in WTI) or in a remote cache (e.g.,
under realistic load conditions. While a detailed analysis of on a write to a shared location in WBU). The update trans-
the numerous cache consistency schemes proposed in litera- fers only one word, and is hence cheaper than a block transfer
ture [11.9.7.12,8] would be interesting, it is beyond the scope with a large block size. A processor uses an invalidation to
of this paper. Instead, we consider one representative each purge cache blocks in other caches to get exclusive ownership
from the write-through with invalidate, write-back with inval- of the block. No data transfer is required for this transaction,
idate. and write-back with update classes of cache coherence only the address of the cache block to be invalidated need be
schemes. To help explain the various phenomena observed specified. Note that block transfers and updates can simulta-
here. we use the data presented in earlier sections. As before neously serve as invalidation transactions, and this is usually
we assume infinite caches. and unless otherwise stated. block exploited in most coherence schemes.
size is one word (or four bytes). Table 6 presents the event frequencies for the three traces

The first scheme discussed in this paper is write-through as a function of the cache coherence strategy. Because of our
aith iv'alidate (WTI) commonly used in commercial mul- interest in characteristics of shared references, we only include
tiprocessors. In this scheme, every write from a processor cpu-shared user data references for POPS, THOR, and PERO
accesses the bus both to update main memory and to in- (see Table 4 for details). Because caches are infinite. a data
validate that location in other caches. Examples of write- item brought into the cache remains there until invalidated.
back with invalidate schemes are Goodman's write-once [11], From Table 6 we derive the total number of block transfer
Rudolph and Segall's scheme [12]. Berkeley Ownership (9]. transactions and update transactions that would occur in a
and the directory scheme (13]. We consider write-once as the multiprocessor and present the numbers in Table 7. The table
second scheme in this paper. In this scheme. the first write also presents data for 16-byte and 64-byte blocks to study
to a location uses the bus to update main memory and to in- spatial locality in shared references.
validate that location in other caches. Subsequent writes to We first examine Table 7 for 4-byte blocks. Comparing
that location by the same processor do not result in any bus total number of transactions. the WTI scheme is worse than
traffic. as that location is now owned locally. This scheme is both WBI and WBU. WTI looses to WBI because of the
labeled WBI in the following discussion to indicate the class processor locality displayed by write references, as shown in
it belongs to. Examples of the write-back with upd ate schemes Figure 5. While every write generates bus traffic in WTI,
ate Dragon [7] and Firefly [8). We use Dragon as the third clinging write references do not cause bus traffic in WBI.
cheme. and denote it WBU. In the Dragon scheme, all writes Clining WI r nces do ot caebs tratc in WBatto a shared location (a location present in multiple caches) Comparing WTI and WBU, both schemes generate an update

transaction for every write to a shared location. However,
result in a bus access to update the value of that location in WBU saves about 25% updates because before the point that
other caches. For non-shared locations, the cache acts like a a location becomes shared (a second processor requests it),
regular uniprocessor write-back cache. only the first read or write produces a bus transaction. WBU

We evaluate the performance of the above three cache co- also has fewer block transfers because, unlike WTI. it never
herence schemes in terms of the bus transactions generated invalidates a location from a cache. The details of the events
on a shared-memory multiprocessor. We distinguish between are in Table 6.

8

Table 6: Events. bus transactions, and event frequencies. Each event is a triple: event-type (read-miss. write-miss, write-hit).
state in local cache (not present, clean. dirty), and state in remote cache (not present, cle.n. dirty). We use abbreviations d
for block transfer. a for update, and i for invalidate. Only cpu-shared user data references are considered. All numbers are i-
thousands.

Event Bus Transactions POPS THOR PERO
Type WTI WBi WBU WTI WBI WBu WTI Wir WBU WT WBr 'BU
total refs ..- 575.6 575.6 575.6 473.1 473.1 473.1 119.0 119.0 119.0
read-hits (rh) 429.5 429.5 451.8 416.3 416.3 423.8 102.3 102.3 105.3
read-misses (rmI

rm-np-np Id ld Id 10.01 10.01 10.01 2.55 2.55 2.55 3.20 3.20 3.20
rm-np-cl id Id ld 59.24 25.11 13.46 14.21 2.14 0.54 7.13 3.57 2.53rm-np>-di - d ld -34.13 23.52 -12.06 6.186 3.56 1.57

write-misses (win)
wwm-np-np ld. I id ld 9.72 9.72 9.72 2.28 2.28 2.28 0.08 0.08 0.08
wm-np-cl Id. I Id Id. is 12.81 4.39 1.74 0.12 0.01 0.00 0.38 0.10 0.10
wm-np-di - Id ld.li - 8.42 1.90 0.11 0.03 - 0.28 0.15

wite-hits (wh)
wh-cl-np is Is 0 7.64 2.14 2.14 7.39 2.15 2.15 1.38 1.08 1.08
wh-cl-cl)I Is l 46.63 22.12 1.35 30.27 9.00 0.16 4.53 3.33 1.06
wh-cl-di l - - 23.87 - 8.75 1.95
wh-di-np - 0 0 30.01 5.50 - 26.50 5.24 1.49 0.29
wh-di-cl , . - I Is - 30.58 I . 21.45 1.65

Dividing the total number of bus transactions generated by is no spatial locality or the cache interference neutralizes the
all three programs for the WBI scheme in Table 7 (161.6K) benefits due to locality. THOR behaves differently. Whenby the total number of references that resulted in these trans- the block size is increased from 4 to 16 bytes, the number of
actions (1168.7K), we see that there are approximately 0.138 block transfers increases by a factor of 1.5. This indicates that
bus transactions generated per reference. This number ap- negative cache interference effects dominate.2 In contrast topears quite large given infinite caches, and there are two rea- POPS and THOR, increasing block size has a very positive
sons for this. First, this data represents only cpu-shared user effect on PERO. The number of block transfers decrease bydata references, which show poor processor locality as in Fig- a factor of 2 as the block size is increased from 4 to 16 bytes,
ure 4, or equivalently, which display a high temporal locality and further by a factor of 3.4 when the block size is increased
of pinging references as in Figure 2). Consequently they do from 16 to 64 bytes. The number of update transactions de-
not benefit much from the read-sharing allowed by the WBI creases steadily too. Thus the PERO program appears toscheme. If one includes both user and OS references, and have high spatial locality with almost no cache interference.
both data and instructions, then the number of transactions Another interesting result that can be observed by exam-
per reference falls to 0.031, which is much better. This re- ining the total traffic lines in Table 7 is that for shared data
duction is primarily due to the large number of read-shared references the total bus bandwidth required is minimized
references generated by instruction fetches. (Consequently, when block size is 4 bytes and increases as the block size
allowing read sharing for instructions is crucial in multipro- is increased. This result is in start contrast to uniprocessor
cessor caches.) The second reason for the high value is that caches, where the optimal block size tends to be much larger.
block size is 4 bytes. When the block size is increased to 16 The only exception is the PERO program when block size
bytes, the number of transactions per reference drops down equals 64 bytes.
further to 0.016. primarily due to the high spatial locality of
instruction fetch references. We were interested in estimating the effects of obviating

broadcasts in cache consistency schemes to enable scalability.In general, two opposing forces come into play as the block Table 8 presents the number of caches in which blocks aresize is increased - one trying to decrease the number of trans- actually invalidated, whenever a reference that could potn-
actions and the other trying to increase them. As the block tially invalidate other caches is processed in the WBI scheme.
size is increased the number of bus transactions is reduced Sucl references for the WBI scheme are all write misses and
because the bus access or invalidation cost is amortized over all write-hits to a clean location in the local cache. The to-
several words. Contrarily, a large block size increases the tal number of such references is given in column three. Theprobability of unrelated objects residing in the same block, inv-0 column gives the number of potentially invalidating ref-
and a write to one object can unnecessarily invalidate an ac- erences that resulted in no actual invalidations, the inv-I col-
tive unrelated object in a remote cache. umn gives the number of such references that resulted in ex-

To study the spatial locality characteristics of cpu-shared actly one invalidation, the inv-2 column gives the number
user data references, we now examine the bus transactions that resulted in an invalidation in two other caches, and the
generated by WBI in Table 7 as the block size is increased. inv-3 column denotes an invalidations in three other caches.
For POPS the number of block transfers decreases from Since all the traces are four-processor traces, no reference can
91.86K to 47.15K to 46.23K as the block size is increased result in invalidation in more than three other caches.from 4 to 16 to 64 bytes. This indicates that there is high 2Another factor contributing to the increased number of block
spatial locality at 16-bytes, with little cache interference due trinsfers is the fact that as block size s increased, the number of
to coresiding unrelated objects. Beyond 16 bytes, either there cpu-dhar references also increases.

9

Table 7: Bus transactions. Only cpu-shared data references of user are included. All numbers are in thousands.

Bus POPS THOR PERO
Transactions WTI' "WBI WB1 WTI I WBI WBU WTI WBI WBUBlock-Size = 4 by' tes

block-xfers (d) 91.86 91.86 60.42 19.15 19.15 11.58 10.79 10.79 7.63
updates (u) 76.79 24.25 59.43 40.06 11.15 30.38 6.37 4.42 4.91

Total Traffic id + Y) 160.65 116.11 119.85 59.21 30.30 41.96 17.16 15.21 2.54
Block-Size = 16 bytes1

block-xfers (d) 47.15 47.15 22.97 29.77 29.77 20.27 5.05 5.05 3.44
updates (Y) 78.47 15.04 61.48 49.39 12.38 34.02 6.57 2.14 5.26

Total Traffic (4d + v) 267.07 203.64 153.36 168.47 131.46 115.10 26.77 22.34 192
Block-Size = 64 bytes'-

block-xfers (d) 46.23 46.23 9.30 l 29.75 29.75 16.68 1.50 1.50 0.94updates (u) 79.39 20.17 65.09 86.99 1 16.61 73.15 .9 0.70 5.61
Total Traffic (16d + v) 449.23 390.01 1139.49j[324.99 1254.61 206.59 18.95 12.70 13.13

We would like to remark on two aspects of the data pre- then either the lock will not have too many processes wait-
sented in Table 8: the fraction of references that invalidate ing on it and thus only one or a few caches will need to be
multiple caches as compared to those that invalidate only one invalidated, or such an occurrence will be very rare, and the
cache, and the effect of changing the cache block size. Let us probability of invalidating many caches will be very small.
examine the first aspect. The data for 4-byte blocks indi- The second common use of write shared objects is as
cares that the fraction of references that cause invalidations mostly-read-only objects. An example is multiple programs
in three caches (1.3%) is quite small compared to the fraction sharing a database that is occasionally modified. By occasion-
that cause invalidations in one cache (61.0%)? It is interest- ally we mean that relative to the number of references made
ing to speculate if this phenomenon - that on an invalidate to that object, the number of writes is small. On a write to
transaction, with high probability, data in only one or very a mostly-Tead-only object, multiple caches may have to be
few caches needs to be invalidated - is true even when the invalidated, but since writes are rare, the overall fraction of
number of processors is large. If it is true, then instead of multiple cache invalidations still stays low. The third com-
building broadcast-based cache consistency mechanisms, one mon use of write-shared objects is where one process works
can build message-based mechanisms where the invalidation on an object for some time, then another process, and so on.
message is sent only to those caches that contain that data. Shared objects protected by locks often behave this way. In
The resulting reduction in bandwidth requirements makes it this third case, when one process is working on an object,
possible to build scalable shared-memory multiprocessors. In that object resides in the cache of the associated processor.
the following paragraphs, we speculate why the above result When that object moves to another process (and possibly to
should also hold for a larger number of processors. another processor), the cache entries in the previous proces-

There are three kinds of data objects in parallel programs: sor are invalidated, but that corresponds to invalidation in
(i) non-shared, (ii) read-shared. and (iii) write-shared objects. only one other cache. So it is still consistent with our con-
The non-shared objects normally do not cause any invalida- jecture that in larger multiprocessors invalidations will hap-
tions except due to process migration. in which case all the pen in only one or in a very small number of other caches
invalidations go only to the processor that previously ran that with high probability. The above observations suggest the
process. The read-shared objects also do not cause any in- use of a message-based cache consistency protocol. instead of
validations. So the multiple cache invalidations come from a broadcast-based protocol. We are analyzing this issue in
write-shared objects. We now explore some common ways in detail and results will be presented in a future paper.
which write-shared objects are used in parallel programs. We now look at the effect of increasing the cache block

The first common use of write-shared objects is as spin size on the number of invalidations. The fraction of refer-
locks or other similar synchronization related structures. Let ences that cause invalidations in multiple caches increases
us consider the spin lock as the typical case. If the spin lock with block size. As an example. for POPS, consider dividing
is implemented in a straightforward way using an interlocked the entries in the inv-3 column by corresponding entries in
test&set instruction, since the instruction ends in a write, at the total column in Table 8. The numbers we get are 2.1%,
the end of each instruction only one cache contains the data. 4.6%, and 6.2% respectiveiv. The primary reason for this
and only one cache has to be invalidated on a subsequent ref. phenomenon is that as block size is increased, unrelated data
erence by a different processor. If the spin lock is implemented objects fall into the same cache block. Multiple processors
using a test-and-test&set i.struction,' then with some prob- accessing these distinct objects cache the same block, and a
ability the lock will be present in multiple caches. When the subsequent write results in an invalidation in multiple caches.
lock is set free by writing into it, these multiple caches have
to be invalidated. However, if the program is "reasonable"
(i.e., there is no excessive contention for the locked object), 5 Summary and Conclusions

3The reason why this ratio is smaller for POPS and THOR for
larger block sizes is discussed later. We have presented data characterizing the memory refer-

4In a test-and-testkset instruction, if the first test fails we ence patterns in shared-memory multiprocessors. Our data
simply loop back and do not execute the test&set part of the is based on traces obtained for three applications from a 4-
instruction.

10

Corporation. Hudson. made multiprocessor ATUM possible,
Table 8: Cache invalidation statistics for the WBI coherence and Digital Equipment Corporation made the ATUM mi-
scheme. Only user cpu-shared data references are included. crocode available for our use. Larry Soule and Helen Davis at
All numbers are in thousands. Stanford helped with the THOR program and Jonathan Rose

Tra - - - with PERO. Finally many ideas presented in this paper came
up during discussions with Susan Eggers, Mark Horowitz,

4 46.77 11.85 29.24 4.69 0.99 John Hennessy, and Rich Simoni. We appreciate their contri-
POPS 16 27.06 3.89 18.51 3.42 1.24 butions. The research reported in this paper was funded by

64 30.18 ,1.33 20-07 6.92 1.86 DARPA contract MDA903-83-C-0335. Anoop Gupta is also
4 13.55 4.43 8.97 0.13 0.02 supported by a faculy development award from DEC.

THOR 16 14.72 5.11 8.69 0.74 0.18
64 18.06 3.28 13.72 0.94 0.12

4 4.87 1.16 2.65 0.98 0.08 References
PERO 16 2.18 0.47 1.17 0.50 0.04

- 64 0.72 0.14 0.42 0.14 0.0? [1) Anant Agarwal. Richard L. Sites, and Mark Horowitz.
ATUM: A New Technique for Capturing Address Traces
Using Microcode. In Proceedings of the 13th Annual

processor VAX 8350 using the ATUM address tracing tech- Symposium on Computer Architecture, pages 119-127,
nique. The traces used are "complete", in that they contain June 1986.
information about both system and user references, references [2] F. Darema-Rogers, G. F. Pfister, and K. So. Memory
due to interrupts, process scheduling. etc. access patterns of parallel scientific programs. In Pro-

Our analyses shows that a large fraction (about one-fourth) ceedings of the 1987 ACM SIGMETRICS Conference,
of references in the traces are to shared objects. These shared pages 46-58. May 1987.
references display a significant amount of temporal locality, 13] Anoop Gupta, Charles Forgy. and Robert Wedig. Paral-
and only a small amount of processor locality for both read lel architectures and algorithms for rule-based systems.
and write references. For example, the average number of In Proceedings of the 13th Annual Symposium on Com-
reads and writes to a write-shared block before a remote ref- puter Architecture. June 1986.
erence (a ping, which may possibly invalidate the data) are [4) Jonathan Rose. Locusoute: A Parallel Global Router
4 and 2 respectively. Nevertheless, caching shared data is [4] J tan Ros. Lo c aoReprl obuter
still highly useful because of the significant amount of read tor Standard Cells. Technical Report, Computer Sys-sharing. tems Laboratory, Stanford University, 1987.
sharin. p[5] Susan J. Eggers and Randy H. Katz. A Characterization

We also present statistics about the use of interlocked in- of Sharing in Parallel Programs and its applicability to
structions. The traces show that 0.1%-1.6% of instruction Cohe-ncy Protocol Evaluation. EECS Department, UC
references are to interlocked instructions, and that most of Berkeley. October 1987.
these instructions references are from user code. The paper
also touches on the effects of process migration. Process mi- [6] Anant Agarwal, Richard Simoni, John Hennessy, and

gration causes a large number of logically unshared references Mark Horowitz. Scalable Directory Schemes for Cache

to become shared references with respect to the cache system. Coherence. Computer Systems Laboratory, Stanford

The nature of shared-memory reference patterns also yields University, October 197. Submitted for publication.

insight on how various cache consistency schemes will per- [7] E. McCreight. The Dragon Computer System: An Early

form. We present the analysis for three classes of cache Overview. Technical Report, Xerox Corp., September

consistency schemes - write-through with invalidate (WTI). 1984.
write-back with invalidate (WBI), and write-back with up- [8) Charles P. Thacker and Lawrence C. Stewart. Firefly: a
date (WBU). For shared data references. WTI performs worse Multiprocessor Workstation. In Proceedings of ASPLOS
than both WBI and WBU as it uses the bus on every write. 11, pages 164-172. October 1987.
Comparing WBI and WBU, the former seems to have an edge [9] R. H. Katz et al. Implementing a cache consistency
for 4-byte blocks, while WBU does better for 16-byte and 64- protocol. In Proceedings of the 11th International Srvn-
byte blocks. Another surprising result that we observed for posium on Computer Architecture. pages 276-283. June
shared data references is that the total bus bandwidth re- 1985.
quired is minimized when block size is 4 bytes and increases [10] Anant Agarwal and Anoop Gupta. Memory-Reference
as the block size is increased. Our traces also show that when Characteristics of Multiprocessor Applications under
a reference that could possibly invalidate a cache is processed. MA CH. Computer Systems Laboratory, Stanford Uni-
with a very high probability (61.0 %) it invalidates only one versity, February 1988.
other cache. The probability of causing an invalidation in all 111 James R. Goodman. Using Cache Memory to Re-
three caches is only 1.3%. We discuss why this should also be [uce Jam es MeGoma Tin ach e demor t e
true for multiprocessors with larger number of processors, and duce Prcessor-Memory Trapo ic. In Proceedings of thesuggest the use of messagebasd cache consistency schemes lth~ Annual Svrnposnim on Computer Architecture,
rather than broadcast-based cache consistency schemes pages 124-131, June 1983.[12] L. Rudolph and Z. Segall. Dynamic decentralized cache

consistency schemes for mimd parallel vrocessors. In

6 Acknowledgements Proceedings of the 12th International Symposum on
Computer Architecture. pages 340-347, June 1985.

Several people have helped us in obtaining the traces. We to [13] Lucien M. Censier and Paul Feautrier. A new solution to

thank Roberto Bisiani and the Speech Group at CMU for let- coherence problems in multicache systems. IEEE Trans-

ting us use their VAX 8350. Dick Sites at Digital Equipment actions on Computers, c-27(12):1112-1118, Dec. 1978.

11

