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COLLISIONLESS TEARING INSTABILITY OF A BI-MAXWELLIAN
NEUTRAL SHEET WITH EXACT PARTICLE ORBITS

I Introduction

The collisionless tearing mode in a neutral sheet 2" has received considerable at-

tention in the past two decades"' - . A neutral sheet can be described by a one-

dimensional magnetic field B(z) = B.(z)i such that B. is odd in z, the coordinate

normal to the plane of the sheet. A well-known model is the Harris equilibrium"

which is established by balancing J x B and Vp, where J(z) =( Jy(z)S is in the plane

of the neutral sheet. In its classic form2'3 the instability is due to the finite mass

of the current carriers, allowing the current sheet to filament (k = k.i) and attain

a lower magnetic energy configuration. For this process, the existence of regions

about z = 0 (the null plane) in which electrons and ions are essentially unmagne-

tized is critical. As the magnetic field is perturbed, an electric field is induced in

the y direction, accelerating the unmagnetized electrons and ions. In our model, we

will ignore the scalar potential. This instability is potentially important for mag-

netic reconnection processes that may occur in a number of physical systems such

as the magnetotai 12" 3 and in the day-side magnetopause 4 '5 . In realistic physical

systems, the magnetic field is generally not one dimensional. For example, the mag-

netotail would have a small B- component and the magnetopause would have a By

component comparable to the asymptotic B, component. However, the instability

occurring in a neutral sheet. may be prototypical, elucidating the essential physics

common to various configurations.

The majority of the previous papers on the collisionless tearing mode have used

Maxwellian equilibrium distribution functions, for which the mode grows only slowly
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(-I/wc, < 1). Applied to the earth's magnetotail, for example, this gives e-folding

times which are significantly longer than the relevant time scales for possible recon-

nection except in extreme situations. For example, using the Harris equilibrium,

Coppi et al. 6 , estimated -y t1/5 sect - 1/15 sec - 1 with pi/, 1, where pi is the

asymptotic gyroradius, and 6 is the magnetic scale length, which requires that the

global bulk plasma flow across the tail be comparable to the thermal velocities. Such

high-speed bulk flows are not necessarily observed prior to reconnection. However,

it has been known that an electron temperature anisotropy can significantly affect

the tearing instability growth rate. Forslund"6 showed that the mode was stabi-

lized in equilibria with (1 - T_1 /T 11) > p /6. However, Laval and Pellat1
7 later

showed that these equilibria were unstable to a quickly growing obliquely propa-

gating mode. A weak anisotropy Tj -, T,11 greatly increases the growth rate"6 . In

addition, an anisotropic neutral sheet should be unstable to the Weible instability 8 .

Thus, any electron anisotropy in the magnetotail plasma is likely to be non-linearly

isotropized by these an( other instail)titles on much faster time scales than the typ-

ical time scale associated with reconnection in the magnetosphere. More recently,

(lien and Palmadesso' investigated the dependence of the growth rate on the ion

temperature anisotro)y. They found that an ion temperature anisotropy could also

enhance the tearing mode growth rate. For TI_/T 11 z 1.2 - 1.5, the growth

rate was found to be one to two orders of magnitude greater than in the isotropic

case. This was later confirmed by simulation results''. For siiall to moderate ion

anisotropy T 1_/T i1 - 1.5, the e-folding time can be reduced to a few minutes for the

earth's :iagnetotail parameters, which is favorable in comparison with the observed
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substorm onset time scales of tens of minutes. This suggests that non-Maxwellian

features in the ion distribution function rather than in the electron distribution

are of interest for magnetospheric processes. We do not expect a significant ion

temperature anisotropy to be present in the quiescent magnetotail ° 21 '2 2 . However,

in a magnetotail-like geometry phase space is partitioned into disjoint subregions

containing transient, chaotic, and integrable orbits2 3 . Information of disturbances

far from the current sheet would reach these subregions in different characteristic

times, leading perhaps to non-Maxwellian features in the distribution function, a

process referred to as "differential memory" 22 These non-Maxwellian features can

persist on time scales of orbit diffusion across phase regions, a longer time than the

e-folding time of the ion anisotropic tearing instability.

In works previous to and including ref. [1] the complicated particle orbits of

the neutral sheet geometry have only been accounted for in approximate ways.

One method of approximating the orbits is a global energy principle5 '7 ' 24 computed

to first order in the ratio of the Larmor radius to the magnetic scale length (the

electron Larmor radius for an isotropic plasma). This method has the advantage

that a particular form for the functional dependence of the perturbation on z is

not assumed but, the disadvantage that only a stability criterion may be found. A

second method uses both approximate orbits and assumes a particular form for the

eigenfunction. The most common example of the latter method is the two region

approximation6 ' s '' 2 . In this approximation all orbits within a nearby region of

the field null are taken to be straight line orbits, and the eigenfunction of the

field perturbation is assumed to he constant within that. region (the "constant psi"
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approximation). Outside of this region, the orbits are taken to be the usual drifting

cyclotron orbits. Provided the ion distribution is isotropic and (Pe/pi) < 1, where

pe and pi are the Larmor radii of the electrons and ions, the ion contribution to the

non-adiabatic perturbed current is small6 . Thus, attention need only be paid to the

crossing electron orbits.

An interesting facet of the work in ref. [1] was the identification of an ion-

intermediate region within which the ion orbits were approximated by straight lines

but the electron orbits were approximated by drifting guiding center orbits (the

"3-region" approximation). This ion-intermediate region proved to be important in

the ion anisotropic case; if the region was included the tearing mode growth rate

increased by nearly an order of magnitude over a similar calculation where the ion

contribution to the current outside of the electron inner region was taken to be

negligible (the usual "2-region" approximation). It was therefore expected that the

straight-line approximation for orbits within this large ion-intermediate region, as

well as the "constant psi" approximation could be limiting for all but the smallest

values of pi in the presence of an ion anisotropy. Recently, Chen and Lee 2 have

developed a method in which growth rates could be calculated taking into account

all of the orbits exactly. This method removed the limitation in applicability arising

from the constant-V, approximation and from approximate orbits. They applied the

treatment to a delta function particle distribution in perpendicular energy. This

choice gave rise to a highly non-Maxwellian distribution function with a very fast

growth rate, i.e. approaching the ion-cyclotron frequency. The eigenfunction was
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highly structured within the electron inner region, so that the constant-lk approxi-

mation would have been invalid. However, such a specialized distribution function is

not likely to occur in physical systems, such as the magnetosphere; quantitative re-

stilts require a more broadly applicable distribution function such as a bi-Maxwellian

distribution function. In addition, their choice has not been previously analyzed by

approximate linear theories, or by simulation, and there is no isotropic limit.

In this paper, we apply the integro-differential method of Ref. [26] to the bi-

Maxwellian system. In addition to being more physical for the magnetotail, this

model has the advantage that the equilibrium quantity T±/T I 1 is continuously vari-

able so that it would be a better basis for a more complete study. We have solved

the full integro-differential equation for the bi-Maxwellian neutral sheet with no

restrictions on T±/Til or pj/i. The solution shows that for T±/TI~i > 1 the growth

is significantly enhanced and the maximum growth wavenumber k is increased in

comparison with the isotropic case, in qualitative agreement with an earlier study

(ref. [1] which used the 3-region approximation). However, the exact result re-

veals that the 3-region approximation underestimates the growth rate by a factor

of two to five. This is found to be caused by incorrect classification of crossing and

non-crossing orbits and by the constant.-V" approximation, which is taken in many

approximate theories.

Although the integro-differential formalism can provide the exact answer, it is

generally nontrivial to use. In particular, for complex systems, the orbit contri-

butions for each matrix element. may have to be evaluated repeatedly in order to
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determine the dispersion relations, which may make the actual computation pro-

hibitive. In this paper, we will describe a new approximate technique which is a

simplified application of the full integro-differential treatment and which properly

accounts for the essential features of orbit contributions. In particular, contributions

from different types of orbits are properly taken into account and no assumption

on , is necessary. This approximation allows much more efficient computation of

matrix elements with minimal loss of overall accuracy. In order to fully understand

the validity and advantages of this simplified integro-differential treatment, we will

describe the the new approximation and its physical basis. In this connection, we

will use the three-region approximation to illustrate the essential physics.

This paper will consist of two major components. In the first part (Secs. II

and III), we will present. the formulation and solution of the full integro-differential

equation. In the second part (Secs. IV and V), we will discuss the reasons why

previous approximations break down and describe a simplified integro-differential

method which does not suffer from similar errors.
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II Formulation

A Bi-Maxwellian, Neutral Sheet Equilibrium

A well known equilibrium exhibiting a neutral sheet is the Harris11 equilibrium. For

each species we choose a modified Harris equilibrium which includes a temperature

anisotropy
110

fo 0 ,r/r, xp[-HUlllTii]F (1)

where
F = e X p ( -V ,,  1 ) e p -(2l

7reVx)T - - VPy)/T±]. (2)

Here P, = nv, + (q/c)A,,(z), H = mt,'/2, H= mt,'/2, T = nv 1 2, T11

111112/2, and V is an adjustable parameter representing the average velocity of

the species under consideration. The subscripts "I" and "11" refer to components

perpendicular and parallel to the equilibrium magnetic field

B = Botanh(z/A)6x. (3)

The vector potential corresponding to this field is

A ,(z) -Bolnrcosh(z/6)]. (4)

The relations

T,1 -' (5)

V p
7- (6)



are a result of the quasi-neutrality condition and Ampere's Law. Here p is the gy-

roradius in the asymptotic field, p t'T, / where w, = qBo/mnc. As a consequence

of these relations, we find the pressure profile

2
P(:) = BO2 secI2(Z/6). (7)

87r

B The Fundamental Integro-Differential Equation

In this section we will briefly review the integro-differential equation for complete-

ness' sake. The derivation is essentially the same as in 26, except that we have the

simplification that Ofo/HII = (T1 /TI)Oo/OH±.

As in the previous derivation, we take for the l)erturbed vector potential the

usual tearing perturbation

Al(z,x,t) = 6y0(z)C(k - t). (8)

The perturbed y-directional current is found to be

4ir v 1 2TL { 2( Z)

- I: 1 ±Tl sec1 ip) x,

+/d. Y. - , (9)

and Amptre's Law may he used t.o give a single equation for /

(9 2 , 4r
K?] - az 2  cJI (10)

where 5'S contains the integration over nperturl)ed orbits

t',,zrjwl t'( z' )ci(kvll w)(t't) (11)
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In this configuration, particle motion is regular with a period that depends upon

the constants of motion, T( H_, P, ). Thus the quantity i,( z') ,(z') may be expanded

as a Fourier series in '

n =-0

where Q = 27r/T. The D,'s are the Fourier coefficients at. the current. time t, that

is

These may be found by an integration starting at the current time and extending

over one period

dtl , -i ci1 t"t)

T - t

Hence, we may write the identity

zt T di t [ 1  in(t"t)} io(t't)

We may now complete the ' integration in S, to find

-w 1 It+T dil -I" 1

Qw - k 1!1 T .t [ 1

Thus we have replaced the integration over an infinite number of orbits with a sUlm

over an infinite number of harmonics of the orbital period. Physically, we know that

the higher liarmonics 7 ?- 0 correspond to resonances between the orbital motion

and the oscillation of the eigenfunction. Resonances with time higher harmonics may

be discarded if the frequenc., of the fields is much less than the frequency of tihe

orbit, w - Q for all ',, and 1I. When the orbits correspond to cyclotron motion,

9



this is identical to the low frequency approximation. In this formulation, we will

assume that all contributions from resonances with higher harmonics are negligible,

and therefore we ignore all of the terms but n = 0.

-W 1 f t+T [''tsy- = - dtH / ' ' ) (12)
w-t I V

Iii the last equation we have reduced the double prime to a single prime for conve-

nience. Our manipulations upon S., have separated the parallel direction from the

perpendicular direction. Now, we may complete the parallel velocity integral in the

perturbed current

4 2 T {sech(z/6)ik(z)4c q =6 T-L + T-L

+[Zo+ (1 ~k(1 +±Z( ))]Q(z)} (13)

where

Q /2, YF f it' dr[j'( z (14)S V T t V

w/kit', and Z is the plasma dispersion function. The integration over one

orbital period may be replaced by an integration along the path of the orbit. Thus

21,,v i dz' [,' ( ,
Q(z) fd2v F J ,(z,)g.(z) . (15)

The period is given by

1 dz'

10



C Method of Solution

The general numerical method used here is a reduction of the integro-differential

equation to a matrix equation, and then a numerical solution of the eigenvalue equa-

tion for the growth rate. Such a method was used in ref. [261 so we will only touch

on this briefly. For further details see refs. [26,27]. In our case, however, we found

that we could reduce the computationtime for each matrix element significantly by

changing the order of integration, and we will discuss this change in some detail.

As in ref. [26], the numerical solution of Eq. (10) with Eq. (13) is found by

representing the eigenfunction ,(z) as a sum over basis functions

,(z) = 1: a.,.(z).
71

Multiplying Eq. (10) by a basis function, ( , and integrating over all z we obtain

0 = anGm (16)

where the matrix elements

Gnn = k f d 7-. Ott+ dz ° " Okm  2 dzsech(Z/) 1 q.m

G Oz Oz b2

2 ± ( 1 + K , . ( 1 7 )

spees Ti- 1 Ti- ) I

and

K nm rf dZ4 , n(Z)/d2V! F 1 dziL[J, ( z'(1"r T !,,.(z,)l V P, )•(8

We solve Eq. (16) numerically by first solving the eigenvalue equation

A a.,, , a,,G,,n

11



and then searching for a frequency root of the dispersion relation

A(w, k) = 0. (19)

In order to find the parameters upon which Kn, depends, we find it convenient

to normalize our variables. When occurring within the integration of K,,, time

will be scaled to the cyclotron period in the asymptotic field. Thus for the orbital

period,

T- =wT.

Distance will be scaled throughout to the magnetic scale length 6. Thus,

z z/6 and k = k.

The velocities are then scaled by

Note that the quantity tvy/V becomes fi,(6/p)2 . We also scale the constants of

motion H1 and Py so that

h, - H, IW2)
2 C

and

are only dependent upon i'., f'i, and i. The quantity K,, becomes

K,.. (/p) eX,[_(j~/) 2 jK
7r

12



where

Kn =f dz m()Jd2i iyF,. f drz' ) (

and

F exp -(b/p)2 h ± 2p].-

Thus Kmn is a function of p/ 6 only. The nmatrix elements K.,, must be calculated

for each spccies using the appropriate gyroradius pi or p.. However, they need

not be calculated anew for a change in any other parameter such as frequency,

wavenumber, or temperature anisotropy. This property may not be preserved in

other geometries.

We now restrict the problem to a consideration of only symmetric solutions.

Thus, we only need perform the i and ' integrations over contributions in the first

quadrant. Therefore, we write, after a change in the order of integration

f" ' A dh-(blp)'h v/h dp 2p

Cj dp e2

xg(p, h) 2fz d 2 f (z d.-' vu(z) , ,Zl (20)

where
1 P < Oh

g(p,h-)=

The turning points z, and z2 are determined by fz = 0 and are given by

JArccosh fexp[-f-p} p

0 
Vh > p >-/h

13



and

. Arccosh fexp [V/ - p] }
Note that the value p - vfh- unambiguously distinguishes between crossing (- < _

p < v"h) and non-crossing (p < - v'r) orbits.

The factor g(p, h) is due to the distinction between crossing and non-crossing

orbits. This can be explained as follows. For non-crossing orbits, Fig. 1 shows the

regions of integration in the i - V' plane for two cases of the niomentum and a

sample value of the energy. The gray shaded regions are the areas of integration for

the value p = -vJi - E as E -0 . For E sufficiently small, non-crossing orbits can

come arbitrarily close to the null plane. The cross-hatched regions are the areas of

integration for a smaller value of the momentum (p <. - ji) such that the orbital

turning points are at .z 1 = zl and z2. Further decreases in the momentum p -- -oo

lead to farther separation in the two areas of integration, the top area tending to

= Z" = oo and the bottom area to i= -' = -oo. There is no region of integration

in the second and fourth quadrants (izi' < 0) because no non-crossing orbit passes

through two planes with z-coordinate ' and Z' that are on different sides of the

null plane. For crossing orbits, Fig. 2 shows regions of integration. The interior of

the larger square (the gray shaded area, plus the cross-hatched area) represents the

area of integration with the largest. value of momentum corresponding to a crossing

orbit, p = -v/h. Further increases in the momentum lead to decreased areas of

integration, such as the the cross-hatched area shown, until the area shrinks to zero

for p = v/-, which is the largest value of the momentum kinematically allowed.

14



Imposing symmetry in ;, only the quadrant with both i and V greater than zero

need be included in the integration, and therefore we simply must multiply the

crossing orbit contribution by a factor of four and the non-crossing orbit contribution

by a factor of two. The crossing orbit contribution is thus weighted by an additional

factor of two. For odd modes (in Z), the factor g(p, h) is unity for non-crossing orbits

and zero for crossing orbits.

Equation (20) has three desirable properties: it is symmetric under interchange

of m and n, neither of the coordinates z and z' is preferred, and for nm = n, the

result, K,,,,, is positive definite. Numerically, Eq. (20) only requires three nested

integrations since the ' and V' integrations may be performed independently. This

represents a substantial savings in computer time and accuracy over the form used

in ref. (26] which requires four nested integrations.

D Implementation

The basis functions which we have chosen are the chapeau functions,

(_: _ Mr_)/( - _ Zm- < < "
= (r,,+ - )/(.+ - e,) Z, _ <z,+i

0 ,otherwise

except. for the last basis function at -zN >> 1

( N-1)/( N - ZN-1) ZN-l < Z _ ZN
1 0 otherwise

and the basis function at the neutral plane,
4'1~ ~ ~ ~ ~ 1 = ( - )/z0_< Z,5z

I V 1 - z 1
0 otherwise.

15



The primary advantage offered by these chapeau functions is that the cell-

ter points need not be regularly spaced. Thus in the asymptotic region where

, - exp(-ks) we may place the basis function centers far apart. We tested the

sensitivity of our code to the number of basis functions by doubling this number to

the present value (100) using a mode with a slow exponential decay in the asymp-

totic region (k = 0.1) compared to the fastest growing mode. Such an increase

changed the computed frequency by less than 5%. This suggests that the code is

capable of finding very extended eigenfunctions with good accuracy.

Actually, the worst accuracy linitation arose in the matrix solver (single pre-

cision on a 32-bit computer), which requires some diagonality to solve very large

matrices. For large pi, however, the large ion orbits make the matrix K,, very

non-diagonal, and therefore G,, becomes non-diagonal. Since, in the routine we

used, the accuracy of the computed eigenvalues is decreased as the matrix becomes

less diagonal, the frequencies computed by our method are less accurate for larger

values of pi/b. In practice, this led to an inaccuracy of around 2% in computed

values of the frequency for pi/S = 1/2.

16



III Results

We have solved the full integro-differential equation Eq. (10) by solving the equiv-

alent matrix equation Eq. (16) using exact equilibrium orbits. In Fig. 3, the solid

line is the solution of the dispersion relation [Eq. (19)] for the isotropic temperature

case (Tj_ /iTj1 = I) with pi/, -= 1/10. The dashed line is the 3-region result for the

same parameters. In this isotropic case, the 3-region approximation gives nearly

the same result as the classical 2-region approximation as shown in Ref. [1], and we

see that the previous approximation agrees well with the exact solution. However,

it has been shown that even small to moderate deviations from exact ion temper-

ature isotropy can cause the 2-region approximation to break down; inclusion of

the ion-intermediate region can lead to a one to two order of magnitude increase in

growth rate' In Fig. 4, we show the case for Ti±/T il = 1.2 with pi/ 6 = 1/10. The

solid line again is the exact solution and the dashed line is the 3-region result. The

peak growth rate of the exact solution is roughly five times greater than that of the

3-region approximation and the marginal wavenumber is significantly greater than

the approximate result. We emphasize that the 2-region approximation is already

completely invalid in this region, giving growth rates one to two orders of magnitude

lower than that indicated by the dashed-line 3-region result. Clearly, the 3-region

approximation which included the ion-intermediate region provided significant im-

provement over the conventional approximations, but evidently still fell far short of

the exact solution. The shortcoming of the 3-region approximation cali be traced to

the fact that the different types of orbits, crossing and non-crossing, are incorrectly

17



accounted for in the inner and outer regions and that the eigenfunction 4/ is assumed

to be constant in the electron-inner region and ion-intermediate region. These are

two aspects of the problem that cannot be easily dealt with approximately so that

an integro-differential approach is necessary. In Sec. V, we will discuss these issues

in greater detail in formulating a simple method of solving the integro-differential

equation while correctly taking into account the essential physics.

In Fig. 5, we have plotted (solid lines) tile peak growth rate versus T±/Till

for several values of pi/6. The short and long dashed lines represent a number

of approximations and will be discussed later (Sec. V). The solid curve "a" is the

case pi/ = 1/2, curve "b" corresponds to pi/b - 1/10 and curve "c" is pi/6 =

1/100. Because of the approximate scaling y/wci "" (pi/6)5 /2 in the isotropic limit

the growth rate is greater for larger pi/ 6 . However, at a moderate temperature

anisotropy, Tt±/Tilj - 1 > pi/ 6 , the growth rate scales as an inverse power of pi/6.

(The approximate theory has the growth rate scaling of pi/6 in this regime.) For

small values of pi/6 the transition between these two regimes of anisotropy occurs at

smaller anisotropies, so that the growth is enhanced more quickly as the anisotropy

is increased in this regime of pi. Thus, curve "a" shows the least variation and curve

"c" shows the most variation as Tj±/T111 is increased. For curve "c" the growth rate

increases by nearly four orders of magnitude as Tit/TI11 increases from exact isotropy

to 1.5.

Figure 6 shows the peak wavenumber versus T±/T1 1j for the examples shown

in Fig. 5. Again, the solid curves represent the exact solution and the short and

18



long dashed lines are approximate results to be discussed later. For the present

discussion, the important point is that the wavenumber corresponding to maximum

growth increases with increasing T±/Til, favoring shorter wavelength modes. This

effect is also stronger for smaller pi/h. The results of the 3-region approximation

(short dashed lines) are in qualitative agreement with the exact result but, as with

the dispersion relation, essential quantitative disagreement develops except for rel-

atively small degrees of anisotropy.

We have seen that the collisionless tearing mode in a neutral sheet requires

solution of an integro-differential equation except. for limited parameter values

(.5 A / .05 and T±/T, - I <- .5pi/). However, the integro-differential

treatment is highly non-trivial even for the relatively simple system given here. For

more complex systems, such as the sheared magnetic field geometry, solution of the

full integro-differential equation may be prohibitive in terms of the necessary com-

putation. It is, therefore, desirable to devise a method which provides a solution

of the integro-differential equation without sacrificing accuracy and validity. In the

following sections, we will describe a method using a new piecewise-straight-line

approximation of crossing orbits in evaluating the matrix elements. It is important

to point out that this method still solves the integro-differential equation, but the

time required for computation of the matrix elements can be reduced significantly,

allowing for solution of the problem in comlplex systems.

In order to understand the physical basis for the method, we will use the 3-region

consideration to illustrate the essential physics required. Then we will apply the
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new simplified treatment to the bi-Maxwellian tearing mode problem solved in the

preceding sections to demonstrate its validity for a wide range of parameter values.
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IV Review of the "3-Region" Approximation

We briefly review the "3-region" approximation of (hen and Palnadesso1 , which

has been used to discuss the ion anisotropic tearing mode. In this apl)roximation,

the sheet is divided into three regions; 1.) the elect ron-inner region, Izi < de, within

which both the electrons and ions are modeled by free trajectories, 2.) the ion-

intermediate region, d , - jzj -- di, where the electrons are magnetized but. ions still

have free trajectories, and 3.) the outer region, izI di where both species are

magnetized. The parameters di and d, are chosen to be

The position d, is the turning point of the axis crossing electron orbit with

p 0, in the limit p, 1, and d, is one half the turning point, of the orbit with

p-O.

In the electron inner region the current is taken to be

Jly = Jad + J, + J,'.

In the ion-intermediate region, we have

J1, = Jd + J, + J,<,

and in the outer region

Jly Jad + J "I + j.

Here, the adiabatic current is

• ld - 2 - c - sech2 (-), (21)
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For each species, the inner region current is

J< = c 2 T-L j 1 Z,)

47rb2 Tj+TI, [Z(I)+(1- )
1 6 2 d0

x ~ di ± )fi'(), (22)

and the outer region current is

41r6 2 F1L, ± T± kZ()- I1+ I +

+ p )sechh( ) ) (23)

Had we included the density profile sech2 ( ) in writing Eq. (22), the resulting matrix

elements, K,,,,, would be proportional to rd d- 4,,()sech(i)fdd' 4,(E'). Such a

non-symmetric matrix is undesirable on both physical and computational grounds

(the eigenvalues of the integro-differential operator, and also of the matrix G,,

must be real27 . The lack of symmetry arises because the straight-line model orbits

in the inner region are inconsistent with an equilibrium sech 2( ) pressure profile.

We must therefore take a uniform pressure profile.

However, if a differential equation approximation is desired (as in ref. [1]), we

may take the constant-i' approximation for the integral fjd di'V,( '). Then there is

no problem with retaining the physical pressure profile, and the inner region current.

may be written as

2 [+zTt ) + (c)( )](j ± 1)sechI'() ). (24)J 4 -r6 41Tj_i + Z(v) + (ITI 11- 2Z +

Therefore, if we model the inner region orbits as straight lines, we must, either take

the constant-g, approximation, or we must use a constant pressure profile. This
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restriction applies because the inner region is entirely composed of crossing orbits

in this approximation. When we discuss the piecewise-straight-line approximation,

which does not have an inner region or outer region as such, we need not be con-

cerned about the consistency between the orbits and the density profile.

23



V Features of the Exact Solution and Compari-
son to the 3-Region Approximation

An important diagnostic of the integro-differential equation is the effective potential,

defined by
41rb'

c

so that the integro-differential equation takes the form of the Schr~dinger equation

02,

0-2 (V 1 () - E) = 0,

where E -k 2. The approximate 3-region effective potential we have used is given

by
lj ± V' < + Vi O~<d

lff(I) + I + 1; d, < I-Sd, (25)

Tr + V- + V>  di < I1

where

V'o -2 sech2 ( ), (26)
2T (162 SCI2

21," &Z ±, 2+ ( ) ± 1 sech2 (5), (27)
TI? + The, ~ 2 p

211- , I sec, -
- - T,- Z ( , ) 1+ 6 set(5.), (28)

T 2 2' tanh2 ()
2T,_ i Z( - (1 T i 1 62(+ I))](l11

I' " T ± T T I ( '1 i ( 2 - - ± ) sec h '( 5)(2 9 )

and

TiTi I + { I26 sech 2 (i)' (30)
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This potential is found by dividing the current [Eqs. (21),(24), and (23)] by ,'(i).

In Fig. 7, we show the effective potential for a solution of the integro-differential

equation (solid line) together with the a the 3-region approximation to the effective

potential (dashed line) for an isotropic example. Although the overall shapes of the

exact and approximate potentials are quite similar, important differences exist both

within the electron-inner region and in the ion-intermediate region. For isotropic

plasmas, we will find, the most important differences between the exact and ap-

proximate potentials are clue to the response of electron crossing orbits and occur

within the electron-inner region. The differences between the two potentials which

exist in the ion-intermediate region will be found to be of less importance to the

isotropic tearing instability, but of major importance to the anisotropic instability.

An enlargement of Fig. 7, which shows the details of the ion-intermediate region

potential, is shown in Fig. 8. The straight long-dashed line is the level E = -k 2 .

In the exact effective potential, there are additional features not given by Eq. (25).

Specifically, there is a negative spike in the exact, potential, located just outside of

the electron inner region, which is due to the contribution of figure-8 electron orbits.

(Orbits such that 0 - p .> -vIrV make a figure "8" in the reference frame moving

with the drift speed of the orbit.) Such orbits are not fully accounted for by the

straight-line approximation. Also, the ion crossing orbit contribution is extended to

greater values of .: than in the approximate potential. (This contribution appears

as the difference between the solid line and the short. dashed lane from i = di to

0.6.) This is due to the crossing ions which have energies greater than the

thermal energy.
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The effective potential curve for an approximation may be used to assess the

inaccuracy in the eigenfunction solution. The area between the approximated and

exact potential curves relative to the total area between tihe exact potential curve

and the energy, E = -k 2 , is a measure of the inaccuracy incurred in using the

particular approximation. In addition, the inaccuracy attributable to a particular

type of orbits can be evaluated by calculating the area difference due to the or-

bits in question. Features in Fig. 8, specifically the negative spike due to electron

figure-8 orbits and the contribution from the high energy ion orbits are found to be

unimportant in the isotropic case.

Of much greater importance is the difference between the exact potential and

the approximate potential within the electron inner region, as was shown in Fig. 7.

The constant- /, approximation is probably the origin of the large difference between

the potential of the 3-region approximation and the exact potential in the electron-

inner region. In reality, since the potential is much larger than than the energy

the eigenfunction is strongly evanescent in the electron-inner region and not at

all constant. The physical interpretation is this: Rather than a uniform perturbed

current density forming throughout the electron-inner region, actually strong "skin"

currents form at the edge of the inner region as a response to the induced electric

field Ej = y" ,/c. However, a certain amount of total current. is required within the

electron inner region to maintain the magnetic field perturbation, and this total

current is now seen to be carried by the thin "skin" current, rather than by a

uniform current density. Thus the induced electric field must be larger than the

constant-V, approximation woul(d lead us to believe, implying a larger growth rate.
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Therefore, we see that. the constant-V, approximation under estimates the growth

rate because it does not account. for the current density gradient in the inner region.

The growth rate for the isotropic case, pi/, = 1/10, as a function of k is given

in Fig. 3. Although the 3-region approximation (dashed line) under estimates the

growth rate, as has been predicted, the approximation does much better here than

in some cases we will discuss presently.

In the anisotropic case, shown in Fig. 4, the agreement of the 3-region approx-

imation with the exact solution is not nearly so good. Here, the peak growth of

the exact, solution is about four times the peak of the 3-region approximation and

unlike in the isotropic case, the 3-region approximation now over estimates the

wavenumber corresponding to the peak of the growth rate.

The effective potential for the fastest growth eigenfunction in Fig. 4 is shown in

Fig. 9. The nininium value of the effective potential in the ion-intermediate region

is roughly given by the 3-region approximation, which for these parameters scales

with 1 - TI/Tt11, however, important differences exist, in the shapes of these two

potentials. For p,/6 small, as in this case, the contribution from non-crossing orbits

is small. The contribution to the potential from the crossing orbits is therefore the

difference between Veif and the adiabatic potential V0 = sech 2(-); in the 3-region

approximation, this difference is given by V<. It, is important to note that in the

anisotropic case the contribution from the ion crossing orbits has changed sign,

and again extends to larger values of . than the 3-region approximation indicates.

Further, the contribution has increased in absolute value, so that the area between
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the exact and approximate potential in the ion-intermediate region is comparable

to the total area between the exact potential and the energy. Thus, the differences

between the exact and approximate potentials due to the ion crossing orbits domi-

nate, rather than differences due to electron crossing orbits which dominate in the

isotropic case.

The effect of increasing the ion temperature anisotropy on the '/, eigenfunction

is shown in Fig. 10 (these are the eigenfunctions corresponding to the maximum

growth rate). As the anisotropy is increased the eigenmode appears to becomes

more strongly trapped in the ion-intermediate region potential well, which becomes

deeper. Because the eigenfunction becomes more trapped in the ion-intermediate

region, constant-V, approximation breaks down inside of -- d.

To summarize the comparison between the isotropic and anisotropic case, in

the anisotropic case the ion contribution to the effective potential (Vef - V,) in

the ion-intermediate region has changed sign and the difference between the ion-

intermediate region potential well and the adiabatic potential well is greater than

in the isotropic case. Thus the difference between the potential of the three region

approximation and the potential of the the exact solution in the ion-intermediate

region will become more important as the anisotropy is increased. This difference

is primarily due to the inclusion into the exact potential of the contribution of

high energy crossing orbits. Further, the constant- , approximatioi of the 3-region

approximation will be less valid as the anisotropy is increased.

Returning to Figs. 5 and 6, we can see that as the temperature anisotropy is
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increased, the 3-region approximation (dashed line) disagrees more with the exact

solution (solid line). Also, as pi/ is decreased, the disagreement of the 3-region

approximation becomes greater. As we can see from the effective potential, shown

in Fig. 11, as pi/b is decreased, the contribution to the effective potential from

crossing orbits, especially the electron crossing orbits, is increased. Thus, as pi/6

is decreased, the role of the electron inner region "skin" currents discussed earlier

becomes greater and the constant-g, approximation becomes more invalid. Thus we

have the rather surprising result that as pi/6 is decreased, the constant-V, approxi-

mation is less valid.

The dashed line, which agrees with the solid line much better, especially in the

large pi (pi/ 6 = 1/2) and in the small pi (pi/ 6 = 1/100) cases, gives the frequency

solution of our piecewise-straight-line approximation.

A A piecewise-straight-line approximation

We have solved the integro-differential equation in the neutral sheet geometry with-

out approximating the particle orbits or the perturbed potential eigenfunction, and

the results show that in much of parameter space either the constant-V, approxi-

iation is invalid or the approximate orbits as in the 3-region approximation are

not valid. Computation of the K,,, matrix elements, however, is time consuning.

In fact, if the matrix elements depended upon more than a single parameter, as

they fortunately do in this geometry, the problem would not be practical to solve

in this way. In more complicated geometries, such as the sheared field geometry,

the matrix elements would not only be more complicated to comnpute, but they
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would have to be recomputed more frequently to perform a parameter search. In

the sheared field geometry, for example, the matrix elements would also depend

upon the wavenumber as well as the dependence upon the asymptotic gyroradius.

The essentials of the full integro-differential equation is that no form for the per-

turbed potential eigenfunction is assumed, such as the constant-g! approximation,

and that orbits are treated as crossing or non-crossing depending upon the values of

the azimuthal momentum and the energy, rather than the position i. The adverse

impact of approxinating crossing orbits by straight lines seems to be smaller.

Therefore, we have approximated the orbit integration over a basis function by

assuming that the velocity is roughly constant over that basis function

J d ;' /_ O ' (; ' ' '7' i( ) .. d (
I lIZ(Z')l "  ' )  = ) ,,

provided the orbit is a crossing orbit. Here, ni and z,, are the minimum and

maximum extents of the chapeau basis function centered at _z. If the turning

point occurs within the basis function, however, the contribution from that orbit,

is discarded. It would also be straightforward to include the contribution from the

turning point in some approximate way. The exact contribution from the electrons,

and the exact contribution from the non-crossing ion orbits are retained in this

approximation.

As we may see from Figs. 5 and 6, the piecewise-straight-line approximation

agrees very well in both the small and the large pi/l! cases with the exact solution.

Even in the intermediate, pi/ = 1/10 case, it is much better than the 3-region

30



approximation. The inclusion of the turning point contributions would make the

agreement of the piecewise-straight-line approximation much better in all cases.
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VI conclusions

We have calculated the exact growth rate, -(k), eigenfunctions, and effective poten-

tials for the collisionless tearing mode in an anisotropic bi-Maxwellian neutral sheet

by solving the integro-differential equation and using the exact particle orbits. The

results are not qualitatively different than those reported earlier in the literature1 ,

although the best previous approximation, the 3-region approximation, under esti-

mates the growth rate by a factor of two to five. We find that the presence of a

favorable anisotropy (T±/T 1i!) greatly increases the growth rate and decreases the

characteristic wavelength, especially in the case of pi/ < 1.

When comparing the numerical integro-differential equation solution to the 3-

region approximation for the isotropic tearing mode (see figs. 12 and 13) we found

that the 3-region approximation breaks down in the small pi regime. In this regime,

the increase in the difference between the height of the effective potential in the

electron inner region, and the adiabatic potential means that the eigenfunction is

strongly evanescent inside of the electron inner region, and constant-V, approxima-

tion of the 3-region approximation breaks down.

When an ion anisotropy was included, the difference between the three region

approximation and the numerical solution of the integro-differential equation also

increased. This is due primarily to the extension of the contribution of crossing

ions to the potential for positions 5 outside of the ion-intermediate region which is

due to high energy crossing ions,and to the break down of the local approximation

in the ion intermediate region. In particular, for small pi, the eigenmode becomes
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deeply trapped in the ion-intermediate region as the ion anisotropy is increased, and

therefore an approximation which assumes V, is constant within the ion-intermediate

region, such as the 3-region approximation, is contradictory.

We have also used a piecewise-straight-line approximation to solve the integro-

differential equation in a simplified manner. This approximation allows quick eval-

uation of the matrix elements, facilitating the solution of the integro-differential

equation, although it retains the essential features of the integro-differential treat-

ment. In particular, this piecewise-straight-line approximation correctly classifies

the orbits as crossing or non-crossing based on their value of momentum and energy

rather than upon position, and assumes no particular form for the eigenfunction.

This should be contrasted with the conventional straight-line and constant-., ap-

proximation in which all orbits within a given distance from the null plane are

treated as straight-line orbits without distinguishing between crossing and non-

crossing orbits and in which V, is assumed to be constant near the null plane.

For our piecewise-straight-line approximation, we assumed that the velocity is

constant over one basis function for ion crossing orbits. When a turning point

occurred within a basis function, however, we ignored the contribution from that

orbit. A further refinement to this approximation would be to include the turning

point in some approximate fashion. In the large pi limit, our approximation becomes

exact since these crossing orbits are much larger than a basis function. Because in

the small pi limit, the region that the crossing orbits occupies is small, the details

of particle orbits are not so important. Thus, in the small pi limit the key aspect of

33



the piecewise-straight-line approximation is that is does not assume any particular

form for the V, eigenfunction.
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A ,
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aA z1  z 2

Figure 1. The region of integration for some non-crossing orbits. The gray shaded region

is the region of integration for the non-crossing orbit with p = -vh, while

the cross-hatched area is for an orbit with p < - Vh.
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z

A

Figure 2. The region of integration for some crossing orbits. The gray region is the area

of integration for the crossing orbit with the largest turning point, p = - v/hi.

The cross-hatched region is for an orbit with smaller turning points, i.e. p >

-v3.
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Figure 3. The growth rate vs. k for pil/6 1/10 and for the isotropic case, Tjj±/Tjjj1

The short-dashed line is the 3-region app~roximuationl solution.
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Figure 4. The growth rate vs. k for pi = 1/10 and Ti.L/Tl = 1.2. The short-dashed line

is the 3-region approximation solution.
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Figure 5. The peak growth rate as a function of ion anisotropy. "a", pi/ = 1/2. "b",

pi/, = 1/10. "c", pi/b = 1/100. The short dashes are the solution with

the 3-region approximation, the long dashes are found using out piecewise-

straight-line approximation, described in Sec. A.
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Figure 6. The wavenumbers corresponding to the peaks of the growth rate in Fig.9.
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z
Figure 7. The effective potential well. The short dashes represent the 3-region approx-

iniation of Eq. (25). Parameters are pi/ = 1/10, T_±/Tjjj = 1, k = .5, and

-yl ,i = 1.43 x 10- 4 .

44



0

0.0 I

V I

geff

-2.0

-4.0
0.4 0.6 0.8 1.0

de di
z

Figure 8. An enlargement of Fig. 3, showing the ion-intermediate region potential well.
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Figure 9. The effective potential well for p/= 1/10 and T±/T il = 1.5. k = 1.64 and

-/wci = 1.43 x 10- 2.
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Figure 10. Eigenfunctions with pi/ 6 = 1/10. "a"; T,±/TIl = 1, = 0.31 and '/yw,=

1.58 x 10- . "b"; T±/TIi = 1.05, k = 0.52 and -,/wd = 3.74 x 10- . "c";

Ti-±/T il = 1.2, k = 0.86 and y/wc, = 1.96 x 10- . "d"; T.±/T,.Ii = 1.5, k = 1.64

andy/wj =- 1.44x 10 2 . "b"; TLI/TII = 1.05, k 0.52 and y/Loi = 3.74x10 - 4 .
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Figure 11. The effective potential well with pi/b = 1/100.Ti-I/T il= 1, =.5, and

'wi=4.74 x 10- 7.
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