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ABSTRACT
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arguably more appropriate statistically testable assumption of essential
Y - queunidimensionality. Essential unidimensionality implies the existence of a unique

unidimensional latent ablity. Essential unidimensionality is equivalent to the

9 consistent' estimation of this latent ability in an ordinal scaling sense using any

balanced linear formula scoring scheme. A variation of this estimation approach allows

consistent estimation of ability on the given latent ability scale.
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i New Item Response Theory Modeling Ipproach

Introduction. Until recently, most theoretical and applied item response theory

(IRT) based research has uncritically assumed one of a small set of unidimensional,

locally independent monotone parametric models; e.g., one-, two-, or three-parameter

logistic and normal ogive models for a finite item test. (See Lord [1980] for a

survey of this IRT modeling research tradition and lislevy [1987] for a survey of

current IRT modeling research.)

By contrast, this paper makes a determined case for assuming a monotone

nonparametric (i.e., no specific functional form for item response functions assumed)

infinite item pool IRT framework with local independence replaced by a less

restrictive and, we claim, psychometrically more appropriate assumption, namely

essential indeDendence. Essential independence provides the basis for assessing the

essential dimensionality of test data. Essential dimensionality, much in the spirit

of counting the number of dimensions in a factor analytic model, is the number of

major latent dimensions with minor dimensions ignored. Essential unidimensionality,

the existence of exactly one major dimension, then provides a justification for

carrying out IRT based statistical analyses that require unidimensionality. We favor

the use of unidimensional IRT modeling approaches in applications when they are used

subseguent to a careful statistical analysis verifying that essential

unidimensionality fits the item response data sufficiently well. On the other hand,

the uncritical use of the standard unidimensional three parameter logistic model in

applications is the equivalent of Plato's cave dweller's attempt to interpret the

outside world entirely on the basis of shadows cast on his cave wall (see Reckase,

Carlson, ickerman, and Spray [1986] and Wang [1988] for implications of the

uncritical use of unidimensional models where multidimensionality holds).

Other nonparametric approaches appear in the literature. Iokken scaling, with

its stress on the Loevinger homogeneity index, has received considerable attention.
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See for example lokken and Lewis (1982) and Sijtsma and Iolenaar (1987). Cliff

(1977, 1979) proposes a non latent trait approach stressing the degree of consistency

of the order relationships between persons and between items. These approaches with

their emphasis on test scalability, which is only peripherally related to essential

unidimensionality, are not closely related to the nonparametric approach of this

paper.

Suppose that one uses the herein proposed infinite item pool modeling approach

and that essential unidimensionality is assumed - hopefully subsequent to a

statistical analysis of essential dimensionality. It is established below that two

major consequences follow: (i) the uniqueness of the latent ability in an ordinal

scaling sense and (ii) the consistency of estimation of the unique latent ability.

Thus, latent ability can be consistently estimated in the essentially independent,

essentially unidimensional case, even if the usual local independence does not hold.

This paper continues the work of Stout (1987), where essential unidimensionality

was first defined and a statistical test of essential unidimensionality proposed and

its properties and performance investigated. Indeed, it is important to emphasize

that for psychological test data the nonparametric, monotone, essentially

independent, essentially unidimensional model of this paper can be tested for lack of

statistical fit, as described in the 1987 paper.

Our paper is organized as follows: Section 1 reviews the traditional IRT

modeling approach. Section 2 defines essential independence and essential

dimensionality and presents basic properties. Section 3 considers the consistent

estimation of ability, establishes the "uniqueness" of the latent trait, and

introduces balanced linear emDirical scoring. Section 4 considers a conceptual

probabilistic framework for the generation of essentially unidimensional tests

consisting of multidimensional items. Section 5 briefly discusses and summarizes the

results of the paper.
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1. The Traditional IRT Modeling ADuroach. According to the latent trait viewpoint, each

examinee is indexed by a possibly vector valued variable 6, with many examinees permitted

to be assigned to each 0. Associated with each item i is an item response function

(IRF) Pi(O) that denotes the probability that a randomly chosen examinee from the

set of examinees with ability R will get the item right. (Various researchers

perfer various interpretations of Pi(2) - this one is our perference. See Hambleton

and Swaminathan, 1985, pp. 26-27 for discussion.) Random sampling of examinees from

a specified population induces a distribution F(!) on the latent trait space of Os

and hence a distribution for the test response UN (UI""'UN) of a randomly

chosen examinee. The random test response vector 4 will often be referred to as

the "test". Similarly, the random variable Ui will often be referred to as the ith

"item". Observed values of RN and Ui will be denoted by !N and ui
respectively. !N = (u1,"",uN) will always be a sequence of Os and Is. Ui = 1

denotes a correct response and Ui = 0 denotes an incorrect response to item i for a

randomly chosen examinee. The latent random vector is denoted by 0 and particular

values taken on by E are denoted by 0. Note that Pi(O) = P[Ui = 110= 93

E[Ui[Q = 9 for all i, 9. For notational convenience, let P(4I) denote the

conditional distribution PD_ = RNIQ = _C. It is important to stress that a "test"

can have many possible latent trait models. That is, there are many choices of

the pair F(0), P(!I0) such that, for all uN,

PUN f! J] f P dF(0) (1)

Note here that (UN, 8) are a pair of random vectors whose joint distribution is

specified by the marginal distribution F(!) and the conditional distribution

P(!INJ). Latent models for N will be denoted by (UN, O, P(UNI!), F(!)) or for

brevity by (UN, E).
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Three characteristics of latent models are of considerable importance:
(i) The model (UN2) is said to be monotone (1) if P[Uil= 1,...,U. = 1_ =

is nondecreasing in 0 for each subtest (Ui 1 ,.,Ui ) of 4 (here by

definition !1 !2 if and only if 0li 5 #i for each coordinate i; also

1 < i1 < ... < ik 5 N). The model is said to be strictly monotone if

"nondecreasing" is replaced by "strictly increasing."

(ii) The model (UN,_) is said to be d dimensional if 0 is a d dimen-

sional random vector. The d dimensional ability is then denoted by

(el,...,d). The dimensionality of 0 will be denoted by dim(_) or d.

(iii) The model (U, _ is said to be locally independent (LI) if

N
P(. IP P[U1 = Ul,'".,UN = UNIf 21 = ITr[ui = uit = (2)

N U.1-u.
= IT Pi()i [1-Pi()] 1

1=1

for all 0 and each of the 2N choices of (ul,.,uN).

The most commonly used class of models has been the LI, 1, d = 1 models. In

this case I is equivalent to the IlFs all being monotone. Usually for models when

1, d = 1 holds, the IlFs are typically strictly monotone. Note that in the LI, d=1

case with the latent distribution F(O) having density f(P) that (1) and (2) combine

to produce the "usual" IRT model equationr{ IN Ui1-u
P=N = = TPi(O) [1 - Pi(O)] f(0) dO. (3)

2. A New Concevtualization of Test Dimensionalitv. Let us recall the traditional

IRT definition of test dimensionality that almost always applies in IRT models:

Definition 2.1. The dimensionality d of a test U. is the minimal dimen-

sionality required for E to produce a latent model (U, 2) that is both LI

and 1. a

Although mathematically appealing, this definition is rather impractical for

mental testing because, in actual practice, individual test items clearly have
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multiple determinants of their respective probabilities of correct response. This

position has been pursued clearly and vigorously by Humphreys (1984), who states:

The related problems of dimensionality and bias of items are being approached in
an arbitrary and oversimplified fashion.. It should be obvious that unidimensionality
can oaly be approximated. ... The large amount of unique variance in items is not
random error, although it can be called error from the point of view of the attribute
that one is attempting to measure. ... We start with the assumption that responses to
items have many causes or determinants.

Humphreys (1984) points out that a dominant attribute (i.e., dominant dimension)

results from an attribute overlapping many items and asserts that attributes common

to relatively few items or even unique to individual items are unavoidable and indeed

are not detrimental to the measurement of a dominant dimension. In his writings,

Humphreys stresses that the low item intercorrelations typically observed argue

strongly for viewing individual items as determined by multiply attributes. Although

the existence of multiply determined items is rarely emphasized in the IRT

literature, it is a theme with a long history in the factor analytic test theory

literature. Classical factor analysis applied to binary test data of course

implicity assumes the possibility of many determinants, allowing for many

determinants specific to individual items in addition to one or more dominant

dimensions. McDonald (198,1) actually argues for the existence of "minor components"

in factor analytic modeling of test data. That is, he argues for the existence of

multiple determinants, many of which are common to relatively few items at most.

Tucker, Koopman, and Linn (1969) have developed a factor analytic test simulation

model that includes "minor factors" as well as dominant factors and unique factors.

Unfortunately, the traditional definition (Definition 2.1), based on local

independence, makes no distinction between dominant and minor dimensions. Thus, if

taken seriously, this definition compels us to take as test dimensionality the total

number of all item dimensions rather than adopting the more appropriate "factor

analytic viewpoint" by which only the number of dominant dimensions is counted. This

is true even in situations with only one dominant dimension where, both from the



viewpoint of psychmetric verity and of modeling parsimony, it would be desirable to

ignore multiple determinants (i.e., minor and unique factors) and categorize tests as

unidimensional. Thus the traditional definition requires us to assign dimensionality

d = d0 > 1 (d, possibly quite large in fact) in settings where it would be

desirable to assign d = 1. For example, if all items of a long test depend on O1

but Items 1 and 2 alone also depend on 02, then d= 2.

Clearly, it is an important psychometric goal to be able to statistically assess

whether or not a test U is driven by exactly one dominant dimension. As a

necessary precursor, a mathematical conceptualization of the number of dominant

dimensions is needed, namely the essential dimensionality of a collection of test

items. In order to present a rigorous definition of essential dimensionality, it is

necessary to conceptualize IN as the initial observed segment of an infinite item

pool {Ji, i > 1}. Here, it is assumed that whatever process has been used to

construct the first N items of the pool making up the test U could be continued

in the same manner by including further items from the pool. Thus the infinite item

pool {Ui, i > 1} is of the same dimensional character as N ={-Ui, 1 < i < N}. If

an actual item banking scheme with random sampling of items is being used to

construct the test, then UN and {Ui, i > 1} being the same dimensional character is

guaranteed. Such random sampling of items is often used for criterion referenced

tests constructed from item banks; see for example Hambleton and Swaminathan (1985,

Chapter 12). A latent model for {Ui, i > 1} is denoted by {f, 2, N > 1) or

more completely by {UN, 0, P(R-Nj), F(O), N > 1}, thus emphasizing that adding

successive items from the item pool generates a sequence of tests.

It will be assumed throughout the remainder of the paper that N consists of

the first N items of an infinite item test {Ui. i ? 1). This will be referred to

as the infinite item Rool formulation of IRT. This proposed replacement of UN for

fixed N by {Ui, i > 1} in IlT modeling is a specific instance of a standard and

useful modeling device used throughout mathematical statistics. For example, in
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order to study the performance of estimating a population mean by the sample average,

an infinite random sample {li, i > 1) is often posited, thus enabling one to

examine the asymptotic properties of 1N = i/N as N -®.

Our modeling approach deliberately tolerates the test RN (and hence the

infinite item pool) containing an insignificant number of atypical items. For

example every 2k-th item of a "mathematics" item pool could be a verbal item. The

allowing of an "insignificant number" of atypical items is facilitated by the

introduction of the concept of a collection of nonsparse subtests: Consider the

sequence of tests {fN,N > 1} obtained from the item pool {JUi,i > 1) by iterating

IN+I = A subtest of EN will be denoted by 'IN = {Ui 1 Ui2 ' Ui (N)}

for each N ? 1. Thus I(N) 5 N denotes the length of the subtest MN. A

particular collection of subtests {N,N > 1} is termed nons arse if it is nested

(AN C 'N+, for N > 1; that is, all items of MN+1 are also in AN) and there

exists e > 0 such that

Y(4)

for all N > 1. That is, (4) requires that the length of each subtest AN of the

collection must exceed a fixed possibly small proportion of the length N of the

corresponding test IN" Ioughly, a test is two dimensional if it has a subtest

measuring a second ability different than the latent ability of interest. For our

infinite item pool formulation, this translates into a sequence of subtests

{MN,N ? 1} measuring a this second ability. The theory of essential

unidimensionality then requires that these subtests be nonsparse and hence typical of

the infinite item pool.

Ve next define a weaker type of independence than local independence called

essential independence. The intuitive idea is that conditional on the latent random
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variable, the covariances between items are "small" on average, regardless of which

collection of nonparse subtests is being used.

Definition 2.2. The latent model {U, e, N > 11 is said to be essentially

independent (EI) if for every collection of nonsparse subtests for each 0 in the

range of e,

DN() (N))-I cov(Ui,UjI _) - 0 as N -4. (5)

Remarks. (i) From a measure-theoretic probability perspective, we mean by {UN,e,

N > 1} that the random variables {U1 i, i > 1} and the random vector e are

defined on a common probability space. In this paper issues of measure-theoretic

probability rigor, although always surmountable, are suppressed in the interest of

clarity.

(ii) The content of (5) is that coy (UiUjIe = Q) must be small on average

for a wide class of subtests, the collections of nonsparse subtests. For example

taking X,, = an EI latent model must satisfy for each 0 in the range of 0

cl<i<joN Cy (UiUjle = 0) (6)

as N-.

(iii) Cov(UiUjI = 2) # 0 holds if and only if there is latent information

beyond knowing = , that influences examinee performance on the item pair

(UiUj).

(iv) Observe that a sufficient condition implying (5) for all collections of

nonsparse subtests is that for each 0
v (o) 1 i~j N Icov(Ui,U 1)I° .

D-() -- -=0 as N -4. (7)

It is informative to contrast the definition of essential independence given by

(5) with the traditional latent trait conceptualization of local independence given

in (2). LI implies independence of all pairs (UiUj), given 9, which is

equivalent to cov(Ui,Ujil = J) = 0 for all P. By contrast, ElI is a weaker
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assumption than LI and only requires that for each fixed 0, cov(Ui,Ujl- = 2) is

small in magnitude on average as the test length N grows. The psychometric

interpretation of EI is that Q measures those individual examinee differences

that are essential or dominant in influencing item pool performance. Vhereas, E

must be augmented to QLI = ( ' ') in order that QLI measure all individual

differences that influence any of the items of the item pool; that is LI holds for

{IN,QLIN > 1}. 9' here consists of dimensions that have an inessential or minor

influence. For example a component of _' might influence examinee performance on

only one item.

From the mathematical viewpoint, it is not known whether it is possible to

construct a latent model for which essential independence holds (i.e., (5) for

nonsparse subtests) and yet (7) fails. Indeed, we conjecture but have not proved yet

that under a very mild hypothesis (5) does imply (7). However, from the applied

psychometric perspective, it is very plausible that (5) implies (7) in all realistic

IRT models of useful tests: To see this, suppose (7) fails. For simplicity, suppose

that (7) fails in the sense that there exists e > 0 and some value P of the latent

variable Q for which DI(P) > e for all N, rather than the technically connect

infinitely many N. Fix such a 2. Because Icov(UiUjI)I 5 1 for all (i,j)

pairs and D,(2) > e for all N, it follows that for each N there must exist many

item pairs (UiUj), 1 < 1 5 j 5 N for which

Icov(U i ,Uj l-Q =c

Thus it ia plausible that there exists a collection {N,N > 1} of nonsparse

subtests for which the above inequality holds for all item pairs of the collection.

Let, recalling the preceeding paragraph, QLI = ( '') be the augmentation of Q

that produces LI for {fN,N > 1}. Item pairs from a set of items all with similar

latent factor loadings on the components of QLI ("similar latent factor loadings"

to be informally interpreted) tend to be non-negatively correlated conditional on a

specific value of the latent vector _. Thus, it seems plausible that one can
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extract from {JIN,N 1} a collection of nonsparse subtest {J4,N > 1}; i.e., -1i C

AN for all N, for which cov(UUi, = ) >

for all items of I,N > 14. That is (5) fails for a collection of nonsparse

subtests. Thus, it is, as claimed, very plausible that (5) imples (7).

Because it is plausible that (5) and (7) are equivalent and because (7) is so

much easier to interpret, it is often useful to interpret EI using (7) instead of

(5)-the reader is encouraged to do so when appropriate. Also, when it is necessary

to prove mathematically that El holds, often this is done by proving that (7) holds

rather than (5).

Just as LI can be weakened to EI monotonicity can be weakened to to weak

monotonicity:

Definition 2.3. {fNI&,N > 1} is said to be weakly monotone (VI) if

N
N Pi(P)  is nondecreasing in 1 (8)

for all N.

In most of the results of this paper, it will suffice to assume Vi instead of I.

Note that VI does allow for some nonmonotone Ils in the item pool.

Now essential dimensionality can be defined.

Definition 2.4. The essential dimensionality dE of a test {Ui, i > 1} is the

minimal dimensionality required for a latent trait _ to make the latent model

{N' e, N ? 1) an EI, Vi model. When dE = 1, essential unidimensionalitv is

said to hold. If essential dE dimensionality holds using ability _ then

fUi, i ? 1} is said to be essentially dE dimensional with respect to ability .

Such a trait is called an essential trait for {Ui, i ? 1}.

emarks. (i) lthough dE = 0 is theoretically possible, it is psychometrically

uninteresting and does not occur in well designed tests. Thus, to avoid irrelevant

trivialities we assume dE ? 1 throughout this paper.

(ii) It is vital to note that the essential dimensionality (traditional

dimensionality too) depends simultaneously on both the infinite item pool and the



examinee population. The dimensionality of a test administration is determined by

the interaction between items and examinees. The dimensionality of a test

administration cannot be assigned without consideration of the examinee population as

well as the test items. Nonetheless it is a linguistic convenience to refer to the

"test dimensionality."

The theorems and examples in the remainder of Section 2 combine to produce a

partial taxonomy of infinite item pools {Ui, i > 1} for which essential

unidimensionality holds. lany variations and combinations of these theorems and

examples are easily derivable. In essence, it is shown that essential

unidimensionality holds for an item pool {Ui, i > 1} if

(i) only a "nondense" subsequence of the items depends on an ability (or

abilities) other than the ability of interest,

(ii) each ability other than the ability of interest influences at most K < m

items and moreover these incidental abilities are "orthogonal" to each other,

conditional on the ability of interest, or

(iii) the magnitude of the dependence of items on an ability (or abilities)

other than the ability of interest is asymptotically negligible, even though a

"dense" set of items of the test may depend on this other ability.

Note that in each case (i) - (iii) it is intuitively clear that there is one

dominant dimension with possibly many minor dimensions; that is, essential

unidimensionality clearly ought to hold.

Recall that we propose using {Ui, i > 1} as a model for a given finite item

test. From this viewpoint (i) - (iii) holding for {Ui, i > 1} translates into

(i') - (iii') respectively holding for the finite test RN:

(i') Few items of UN depend on an ability (or abilities) other than the

ability of interest,
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(ii') each ability other than the ability of interest influences at most a

small number of items of IN and moreover these incidental abilities are

"orthogonal" to each other, conditional on the ability of interest,

(iii') the magnitude of the dependence of the items of 'N on an ability (or

abilities) other than the ability of interest is small, even though most of the items

may depend on this other ability.

The purpose of the statistical test proposed in Stout (1987) is to assess for a

test -N administered to a population of examinees whether essential

unidimensionality provides a good data fit-for example, because (i') (ii') or (iii')

holds. In Section 4 a model for test item construction is proposed, making explicit

how we view the dimensional character of - as being the same as that of {Ui, i

1}. This helps demonstrate the close relationship between (i) and (i'), between (ii)

and (ii'), and between (iii) and (iii').

The basic thrust of essential unidimensionality (recall Definition 2.4) is that

the same unidimensional latent trait e makes the average conditional covariances

of item pairs small for all collections of nonsparse subtests. This will hold even

if a "nondense" subsequence of items in the infinite item test depend on an ability

other than that intended to be measured, as the following example illustrates.

ExamDle 2.1. Assume VI. Suppose every 2kth item is a pure verbal (e2) item and

the rest are pure mathematics ((1) items, with mathematics the ability intended to

be measured. Thus we suppose for all 01 that

cov(UiUje I = 01) = 0

for all pairs (UiUj) of mathematics items. An easy calculation shows that (7) and

hence that (5) holds; i.e., essential unidimensionality holds. o

The above example is easily abstracted into a conceptually useful theorem.

ik
First, a set of indices {i1 < i2 < ...I is said to be nondense if - m as

k -,
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Theorem 2.1. Assume VI. Let A = {i1,ii,. ..} denote a nondense set of indices.

Suppose for an item pool {Ui, i > 1) there exists a unidimensional latent ability

e for which for all 0
sup Icov (U l 8= 0)1 -40

ifA,jA,ij!i-jjIN IU

as N -4 m. Then essential unidimensionality with respect to e holds.

Remark. The hypothesis of Theorem 2.1 states except for item pairs coming from a

nondense sequence of items, that the magnitude of covariances, conditional on E

asymptotically approaches 0. For example, it might be that items with indices in A

depend on other dimensions besides 0.

Proof. Fix 6. Fix 1 > e > 0. Let Num (B) denote the cardinality of any set B.

Let AN = {ik in A such that ik ( N}. Choose N0  such that
] [ Num(A N)

sup Ncov(Ui,UjIe = 0) , N < 
iA,jAIi-jI ? N0

for all N > NO. Split item pairs from {Ui, 1 < i < N) up into those for which at

least one item is in AN; those for which li-jil < No  and both i 0 AN, j V AN;

and those for which li-i ? No  and both i j AN, j £ AN. Then, for N > No, noting

that Icov(UiUjIe = O)I 5 1 for all i, j, 0,

Il<i<j5N[COv(Ui,UjIE = 0)1 CN2 + NN0

+ 1l(i<jSmjiijjmo"iANJfAm COv(UiUjie = 0)1

5 EN2 + NN0 + EN2 .

Then, DN(O) 5 3e for N large, thus establishing (7) and hence establishing

essential unidimensionality. 0

The following example suggests how essential unidimensionality can fail when two

psychometric dimensions are present.

Examule 2.2. Modify Example 2.1 by making every lOk-th item a verbal item. Assume

there exists c > 0 and 01 such that cov(Ui, UjIl 1 = 01) ( for all pairs of

verbal items. Consider N = 10k; k = 1, 2,.... Then, it is easily seen that
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DN(O1) -. 0 as N -, m and hence that (5) does not hold for all collections of

nonsparse verbal subtests. The point is that {U1o , U20,...) really is measuring a

different dimension (verbal) from the intended dimension to be measured

(mathematics). Vence the scaling = U1ok/N is an empirical verbal scale, =1

U2i+I/N is an empirical mathematics scale, and Ui/N is a combined mathematics

and verbal scale.

0

The following commonly occuring test setting illustrates that essential

dimensionality (Definition 2.4) and traditional dimensionality (Definition 2.1) can

differ considerably. It also illustrates a setting where essential unidimensionality

is the result of (ii).

Example 2.3. Consider the construction of a paragraph comprehension test of length

N = 5n, where n = number of paragraphs and each paragraph is followed by five

related questions. Assume total independence between questions involving different

paragraphs given e, where for convenience we think of E as reading ability.

Suppose VI with respect to 0. Note, using Icov(UjlujI = 0) 1 S 1 for all i, j,

0 that

IDN(O) I 5N(N 2 1) 1lNi<j<x Icov(Ui'JUjI = 0)1

< 2 ~ 2 - 0 as N - W.M N(N - 1)1+1

Thus essential unidimensionality holds, whereas a traditional dimensionality of

n + 1 seems necessary for a test of length N = 5n. Reading ability E is the

essential trait for this essentially unidimensional model. o

The example, by displaying a test that clearly should be psychometrically

labeled as "unidimensional", illustrates our view that minor or idiosyncratic

dimensions should be ignored in assessing test dimensionality from the applications

viewpoint. Our requiring EI rather than LI is the key step that makes it possible to

ignore minor dimensions in assessing dimensionality.
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The following theorem makes (ii) precise and hence demonstrates one way in which

essential unidimensionality holds..

Theorem 2.2. Let {Ui, i > 1} be given. Suppose that local independence holds with

respect to 0 = (0,G1,02,--.). Suppose conditional on ( that (01,E2,...) are

mutually independent. Suppose that each 0i  influences at most L items and that

each item depends on at most K 6is. Suppose V1 holds for f]N,Q,N > 1}. Then

essential unidimensionality holds with respect to 8.

Proof. It suffices to prove (7). Consider 0 = (,9(1),0(2),20(3)), a splitting of

0 up into four subsets. Consider Ui, U. for which Ui depends on (8, _(1)) and

U. depends on (6, !(2)) with no dependence on 9(3) . Then, using the standard

calculus for conditional probabilities,

cov(U i , U-I) = E[cov(UiUee(1),e( 2))te] + cov[E(UiiE,_(1),6-(2 )),
E(U, Ie,e(1),e(2))Ie] = cov[E(ie,e() ,e( 2)) , E(Ujee(1), _(2))16]

Here we have used the fact that by local independence and the nondependence on 0(3 ),

0 = cov(UiU )= cov(UiU. 1,-(1),( 2))Now, coy [E(U. Ie (1,( 2)), E(U, le,e{t1),e(2) le

- , [)(u, 2e)e(1),e( 2))E(u Ie,e( 1),e(2))Ie] -

E[E(U i  ,e1, _2) ] E. [Ei(uj 8, E)(1) ,6-(2))l1e]

= 0.

The above factoring was allowed because _ ) and ()(2) are independent given e by

hypothesis. Thus, we have proved that when Ui depends on (E, E(1)) only and U

depends on (e,2(2)) only that

cov(Ui,U j ) = 0. (9)

Recall that

I cov (U9 a ujp er b
for arbitrary i, j. Thus, using (9) an upper bound for Dl((e) of (7) is given by

-- -- • • • | | | |N
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1 C

TT.C
where C is the number of item pairs with indices N N for which both items depend on

at least one common 0e. Consider a fixed item with index < N. It depends on at

most K is. For each such 0i there are at most L items also dependent on 0i.

Thus the total items sharing at least one common 0i is bounded above by LK. Thus

the total number of item pairs C is bounded above by LKN. I.e.,

1 2LKN

as N -4 w, as desired. Since VI holds by hypothesis, the theorem is proved.

0

Remark. The mathematical assumption of LI with respect to 2 in Theorem 2.2

simply means from the psychometric viewpoint that examinee performance is completely

explained by 2

Theorem 2.3 now makes explicit one way in which (iii) above implies essential

unidimensionality.

Theorem 2.3. Let {Ui, i ? 1} be given. Suppose that local independence holds with

respect to e = (ee(1)) = (,1,02,...). Define

ei(8) = sup Pi(O, ( 1 )) - inf Pi(8,1)).

0(1) o(1)

Suppose that the dependence of items on 0(0) is asymptotically negligible in the

sense that the IRFs Pi(! satisfy for every 0

-- 2i=1 fi(e) - 0 (10)

as N - ®. Suppose I holds for {fN,B,N > 1. Then essential unidimensionality

holds with respect to 0.

Proof. It suffices to prove (7). For an arbitrary pair of items (Ui, Uj), using

standard probability calculus, by the assumption of local independence,

Icov(UiujIe)I = IErcov(Ui,U j)119)e] +cov[E(IJ2I), E(Ujl2)19]l
= Icov[E(Uilg), E(Ujle)I1.

Since cov(I,Y)2 < Var(I) Var(Y) holds in general,
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IcovEE( iI ), E(UjIl ]I91
<Var 1/2[(E(UiJ9le)] Var1/2 [E(U le_ I@]

- Var 1 /2[Pi(e)e] Var1/ 2 [Pj 1 8].
Combining,

Icov(iU iUIG) I < Var 1/2[Pi(e_)e ] Varl1/2 [Pj E)e] . (I

Since for ai 0 , 1 aiaj < (I ai]2 , it follows that, using (11),

a' 1/ ( )] 2
ITi-< Icov(Ui'Uj 1 O) 1 T1 7 il ar/[Pi-ee)

Because 0 a 5 I < b implies Var I < (b -a) 2, it follows that

- icov(Ui,Ujl()l l i4<N [ )

Thus (7) follows by (10). a

3. AD2lication to Consistent Estimation of Ability. Ve turn now to the problem of

estimating a particular latent ability e of interest in the presence of other

("nuisance") abilities. The act of specifying an IRT model usually includes the

choice of a snecific latent ability scale B and hence a specific scale for the

ability of interest e. Throughout this paper "6 scale" will refer to the scale

for the ability of interest that is predetermined by the specific IRT model chosen.

The following dichotomy holds for ability estimation: (i) Because the 0 scale has

been established by its use in other test settings, because the 0 scale is linked

to some external criterion, or because the 0 scale has an intrinsic theoretical

justification, etc., one may insist on estimating the ability of interest using the
0 scale; or (ii) nothing about the test setting makes the 0 scale or any other

scale particularly preferable to use. That is, in the case of (ii), any strictly

increasing transformation A(#) yields an equally acceptable scale for the purpose

of estimating ability. In Case (ii), it is thus appropriate to choose, for

statistical convenience perhaps, a particular scaling A(0) on the real line with

apparent interval scaling properties as long as inferences drawn depend only on the
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ordinal nature of the real line. The point is well discussed in Section 1.6 of Lord

and Novick, 1968. In summary Lord and Novick state "A major problem of mental test

theory is to determine a good interval scaling to impose when the supporting theory

implies only ordinal properties." For example, LOGIST and BILOG, likely the two

most commonly used ability estimation programs, both create such an "interval"

ability scale. lislevy (1987) stresses that from a pure IIT model fit viewpoint

(that is, without extraneous requirements such as Iasch's specific objectively), only

ordinal scaling properties are defensible. Ye will refer in this paper to the

creation of a convenient ability scale in the absence of prior scaling constraints as

ordinal scaling.

The modeling framework we adopt to investigate ability estimation is the W1, El

infinite item pool framework {U, 2, N 1} introduced in Section 2. It is

assumed that the ability of interest 0 is determined by g; that is, that e is

a function of E. Mathematically speaking, there may well exist item pools

{Ui, i > 1} for which dE = w. But, psychometrically this is unrealistic: Recall

that it is assumed that the {Ui, i > N} is constructed by continuing the same

process that produced U and thus that {Ui, i 1} will be of the same

dimensional character as UN. Taking this into consideration, from the psychometric

viewpoint it is clear for virtually all tests to be modeled that it is realistic to

assume at most a finite number of dominant latent dimensions. Thus we assume for our

infinite item pool framework that {UN' 8, N > 1} has dE < w with the assurance

that this assumption is not psychometrically restrictive.

In order to illuminate certain theoretical issues most clearly, in Section 3.1

ability estimation will be considered first in its simplest setting, namely where

only ordinal scaling (recall (ii) above) is required. Then, in Section 3.2 we

consider ability estimation for the perhaps more useful case where use of the 0

scale is desirable or required.
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3.1 Estimati' of ability in the ordinal scaling case. We first select a natural

scale for the ability 0 of interest. Let

Pi ( $) = E[Pi(2)e = 0] (12)

where Pi( ) is the ith item response function of the latent model {N' N > 1},

G is the random latent variable of interest, and the conditional expectation in

(12) is with respect to the conditional distribution of e, given e = 0.

* •The following probabilistic calculation justifies calling Pi(O) in (12) the

ith marginal item response function with respect to ability 0: By definition

Pi P =P[Ui = 1ie = C.

Thus

E{Pi(2)e = 01= E[ui = 1 ]le = 0

= P[Ui = ie= 0],

this last equality holding since expectation is a "projection operator." We have

thus proved that for all 0,

Pi(s) = P[Ui = lie = 0. (13)
That is, Pi(O), while defined as the probabilistic average of getting Item i correct

with averaging over all 0 for which e = 0, is also an item response function in

the ordinary sense of being the probability of getting Item i correct for a randomly

sample examinee of ability e = 0.

Let

IN(a) = =iPi(O)/N (14)

AN(O) is called the intrinsic ability scale for 0 relative to the test N and

the examinee population e. AN(O) has an interpretation bridging classical test

theory and IRT: AN(O) is the expected test score, that is, true score, among all

examinees with latent ability 0. Under the assumption of strict monotonicity for

J =IPi( )/N of the latent model, a slight modification of Theorem 3.1 below implies

that AN(d) is strictly increasing in 0 and hence is an acceptable scale for

estimating the ability of interest 0 in the ordinal scaling case. As such, AN(O)
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for fixed N is our recommended choice of scale in the ordinal scaling case. It

helps to recall that the assumption of WX is that J=lPi(P) is monotone.

Considerable recent attention has been focused on nonmonotone unidimensional

item response functions. It has been shown that "attractive distractors" are a

source of nonmonotonicity in multiple choice items. It has been suggested that the

existence of attractive distractors may be explainable by multidimensionality of the

ability space. In this regard, it is interesting to note that a multidimensional

item response function P(2) can be monotone and yet the corresponding marginal item

response function P(8) be nonmonotone:

Exaple3. Let P(8 1 , 82) = (01 + 02)/17, 1/4 < 01 1, 0 < 82 16. Define the

conditional distribution of E2  given (1 = 81 by f(82 101) = 01/4 if 0 02

4/01; = 0 otherwise.

Then the marginal item response function with respect to 81 is giVen by

P(8 1 ) = J/1  f' ( 2 8 d82

+- " 1] 2  1/4 < 81< 1.

But P(81 ) is decreasing in 81 for all 81. 0

Of course, as is intuitively clear, mild and natural regularity conditions

preclude this nonsonotone behavior. Indeed, the nonsonotonicity of marginal item

response function can occur only when the multidimensional ability 0 has some sort

of negative association among its components, as Theorem 3.1 below makes clear by

setting N = 1.

Definition 3.1. A random vector Y is said to be stochastically larger than a

random vector I if, for all t,

P[ i t 5 PL ](

with strict inequality for at least one t.

The following fact is well known:
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Lema 3.1. Let Y be stochastically larger than I, and let f be a nonnegative

real valued function that is nondecreasing in each of it arguments. Then

Theorem 3.1. Let 'NiPi(P) for the latent model (UN, ) be monotone. Let 0

(8, 9(2)). Suppose that, for every 0' < 0" pair of real numbers that the

distribution of (_(2) given e = o is stochastically larger than the distribution

of _e(2) given E = 0'. Then, N(O) is monotone.

Proo. It must be shown for each i that

I p.(0=l 1( 2 ))dP(( 2 ) O)

is nondecreasing in 0 where p(!(2)10) denotes the distribution of e (2), given

0 = 9. Fix real numbers 91 < 0. By Leoa 3.1, noting that 'N pi(0,0(2)) is

for fixed 0 a nondecreasing function of 0(2) by the assumption of monotonicity,J 0,(2) ) dP (!(2)I 1 J Pi(,9(2))dP(!( 2 )I9"). (16)

But, because Pi(e, !(2)) is nondecreasing in 0 for each fixed !2,

M .P(9, 9(2) )dP(!(2)I') iJiPi(O" ,( 2 ))dP(!( 2 )I#a). (17)

The combination of (16) and (17) yields the desired result. a

Iemark. If a LI model (,,) has 2i=lPi(1) monotone then Theorem 3.1 sakes

clear that assuming IN(O) monotone is a mild assumption.

Ve now turn directly to the ability estimation problem in the ordinal scaling

case. Is we shall see, essential unidimensionality characterizes the consistent

estimation of the unidimensional latent ability on some scale; moreover, it implies,

from the ordinal scaling viewpoint, that the latent ability is unique. It is in this

spirit that an essential trait (recall Definition 2.4) can be referred to as the

essential trait with respect to which the items are essentially unidimensional.

Theorem 3.2 below asserts that essential unidimensionality is precisely the

condition needed for consistent estimation of ability. Before stating Theorem 3.2,

we must carefully state what it means to consistently estimate ability using an

infinite item pool formulation. Recall our ordinal scaling viewpoint that any
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strictly monotone transformation of 0 - for example AN(0), which is strictly

monotone when the marginal IIFs are - is an acceptable scale on which to

estimate 0.

Definition 3.2. (i) It is said that e may be consistently estimated (in

probability) if for every collection of nonsparse subtests, for each 0, given

e=e

P(a)j 0 (18)

in probability as N w.

Remarks. Specialized to the present setting,. the traditional statistical definition

of consistency applies separately to each estimator 6N(U) of 0 as follows:

6N(UN) is a consistent estimator of 0 if for all 0, given e = 0,

in probability as N - .. By contrast, our psychometric notion of item pool

consistency proposed by Definition 3.2 is: (i) s than the traditional

definition in that convergence is required simultaneously for all collections of

nonsparse subtests; (ii) weaker in the sense that the required convergence for each

scaling {6N(U) = 1()U /I(N)} is not to 6 but rather to a convenient rescaling

of 0 that varies with {6b(U)}, and hence the psychometric notion of consistency

is an ordinal scaling concept; and (iii) different in the sense that statistical

consistency is a property that each estimator {(U), N > 1} either has or doesn't

have while psychometric consistency is a property that the infinite item pool (that

is the sequence {Ui , i > 1}) either has or doesn't have.

The intuitive idea of Definition 3.2 is that any reasonable collection of

subtests should be able to estimate 0 in our ordinal scaling sense. Not all

collections of subtests need necessarily be usable to estimate 0 in the ordinal

scaling sense. For example if every 2kth item in a "mathematics" test were a

"verbal" item, then 1 U m/I would estimate verbal ability. But this is

developed from a nondense collection of subtests and hence is not required to
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asymptotically estimate 0 for consistency to hold. However, if every 10th item

were a verbal item, then Definition 3.2 implies that consistency does not hold

because obviously the corresponding subtests are nonsparse.

A reasonable question to ask is whether in formulating our definition of test

consistency, it would suffice to merely require for each 0 that, given 0 = 0,

UN - .= Pi(G)/N , 0 (19)

in probability as N - . instead of requiring (18). However merely requiring (19)

is vacuous: Any test N of fixed length N can be appropriately embedded in an

essentially unidimensional sequence of tests {DN, 0, N 1} for which (19) holds

for a judicious choice of 9. The following example (suggested by remarks of D. I.

Divgi) illustrates this embedding for a test where 50% of the items measure one trait

and 50% measure a second trait. It presents an essentially two dimensional infinite

item pool where (19) is satisfied for a mathematically judicious choice of 9, 0

being some function of the dimensions (01,02). This is a situation where most

psychometricians would prefer to split the test up into two unidimensional tests and

only then address the issue of consistency. Requiring (18) instead of (19) as a

definition of consistency reflects this consideration.

ExaDle 3-.2. Let ROM ? 1) be a LI, I latent model with I = (01,02) and

for i > 1,

P2i(f) = 01, P2i-1 (1) = 02

where the distribution of Q is given by 01, 02 independent identically

distributed with 01 uniformly distributed on [0,1]. Let 0 =01 + E2. Fix

0 < 1. Then, standard multivariable calculus yields for 1 < i, j; 1 < k

E(UkIe = 9) = 0, cov(U 2i 1l, 2jI0 = 9) = -, (20)

and, if i # j,

covOJ 2  02 2  tO = 9)
2iU2j= , cov(U 2 i ,U2j_1 = 9) =-

Thus, using (20),
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1 ~2K1
Va[r(U;2111 Var(Uite 0) + cov(UiUj - 0)]

Tar( 2z - O) ij2K
- 1 6 r1  ei 202 [K] + y~~2]l
(21) 7 

2 k ' i I -1 -f [W [L2]J i2  J
= [ 1- - 02 -+ 0 as K -4w 2

Further, E1U2118 = 0] = 0/2. Thus P[IU2K- > e = 0] _ Var(U2K)/ 2  0 as

K -4 w. Hence, for each 0, given E = 0,

2K 0
U21 - -'

" 0

in probability as K -, w. A similar analysis holds for U2K-1 and also for 1 < 0 < 2.

Thus (19) does hold in what is clearly an essentially two dimensional sequence of

tests. However, it is intuitively clear that (18) fails since the even items can be

averaged to consistently estimate 01 and odd items to consistently estimate '2.  a

Remark. Example 3.2 illustrates that UN will estimate a mixture of the

essential dimensions when they exist in asymptotically fixed proportions as N

increases.

Now Theorem 3.2 can be stated and proved.

Theorem 3.2. Let {ui,i >- 1} be essentially unidimensional (dE = 1) with respect

to ability 8. Then, 0 may be consistently estimated. In particular, for each

given E = 0, (19) holds.

Conversely, if for some VI latent model {fkN,, N > 1} the unidimensional 0

may be consistently estimated then {UN, 8 ,N > 1} is an EI, V1 representation and

hence dE = 1 holds.

Proof. Assume dE = 1 with repect to 0. Let { 1N} = {(Ui ,...,Ui )} be a

collection of nonsparse subtests. Fix c > 0 and 0. Then

S1().# I > eIE = 0 < Var. U e /2 (21)P ~ I jli j=l ij 0  (N)jl ~

because E le= C .(N)p(). But, noting by nonsparseness
bM j=1 Ij j=1 "j

that N/I(N) C C < for all N and that
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SI(N) Var(UiJ8 ) < 1 (22)
1

it follows that

0 5 Var' j=) je = e]= (N Var(Uiie = 0) + IN) I DN(O )
IM 1j= i 81 (N)2i1(N

C + DN(G) - 0 (23)

by the assumption of essential unidimensionality. Combining with (21) then

establishes test consistency, as desired.

Conversely suppose 0 may be consistently estimated. Fix 0 and a collection

of nonsparse subtests {fiN}. Then, by (23)

C (24)DN(P) if - I

Thus, DN(O) cannot have any negative limit points.

For any bounded random variable I, denoting the bound by a (i.e., III _ a)

the well-known converse to Chebychev's inequality states that

PHIXI ?_ El ?_ E( 1 2 1 - E2.(5

Let

IN = [I(N) - I(N) P.()]
xN = M mTT =.: i-j=l 1j( 1

Then noting that "INI i 1,

P[IN 1 > fle = ] _ EIIN1 21e )-2 > Var(INIe =8) - f2. (26)

By consistency, IN -4 0 in probability as N -. Thus,

P[JINI > c8l = 0] -4 0 as N-4.

Thus, using (23) and (26), for each ( > 0,

1 (N) Var(Uile = 0) + I DN() - 2il+ II(N)2 iN(=) -(

has no positive limit points. But, by (22) and the fact that 1(N) -4 m it then

follows that DN(8) has no positive limit points. Since it was also concluded that

DN(O) has no negative limit points, DN(G) 4 0 as N - w. Thus dE = 1 has been

established, as desired. 0
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Remark. It is interesting to note that Theorem 3.2 guarantees the consistent

estimation of ability even if the IRFs are unknown to the practitioner. That is, use

of N to estimate I i)/N does not require knowledge of Pi(O)N. Is long

as no attempt is being made to establish a standardized ability scale across tests

(e.g., as a precurser to equating tests) knowledge of the IRFs is not required.

It is a foundationally relevant fact that essential unidimensionality implies

under a mild and natural regularity condition for {Uii ? 1} that the latent

ability is, in the ordinal sense, unique, as Theorem 3.3 below asserts.

Definition 3.3. Let {Ui, i > 1} be essentially unidimensional with respect to

ability 6 and let I be the range of 8 (i.e., P[e c I] = 1 with I

"minimal"). Suppose for every 01 in I that there exists > 0 and an open

neighborhood 1 of 91  such that for all 02 E 1 in the range I of e that

I N> >0 forall N. (27)

Then {JN,O,N ? 1) is said to be locally asymototically discriminating (LAD) with

respect to E.

N
Remarks. That LID really supposes is that i= Pi()/N is increasing faster than

some positive-slope linear function in some neighborhood of 0 for every 0,

independent of N. LAD guarantees that on average the items of the test {Uii ? 1}

are sufficiently discriminating locally with respect to 0. Note that LAD is a

strengthening of VI.

Theorem 3.3. Suppose {Uii > 1} is essentially unidimensional with respect to both

E and e'. Let the corresponding marginal item response functions be denoted by

Pi ( #) = E[UiI = , PI(O) = E[UilI' =

for all 0. Suppose {Uii > 1} is LAD with respect to 6. There then exists a

function g defined on the range R' of 6' such that
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9 = g(O'), g nondecreasing

and the range of g is I.

lemarks. (i) Theorem 3.3 states that in the sense of ordinal scaling, that all

scales with LAD holding are the IM. In this precise sense the latent variable is

unique.

(ii) Since a d = 1, VI, LI model is also an EI model, note that Theorem 3.3

holds for d = 1, LAD, LI models as well. Thus Theorem 3.3 may be of interest even

if one does not wish to use EI in IRT modeling.

Proof of Theorem 3.3. By Theorem 3.2, for each 9 and 0'

I N - AN(f) -4 0 (28)

in probability given E = 8 (and hence on any subset of E = 0) and

- A (') -4 0 (29)

in probability given E' = 0' (and hence on any subset of E' = d') where

AN($) = E[UNIO = C] and A[($') = E[UNIe' = 0].

Let

= [e= ] n [e' = 9']
for all 0, 0'. Then, for each 9, 9' such that Go,, , (28) and (29) imply on

G ego, that

IN(e) - 1'(0') -4 0. (30)

Fix 9' E i' and let, denoting the empty set by 4,

B , = {9 e hG,, # 0).

Note that Be, # 4 for each 9' e I because each examinee has an ability value for

both e and 0'. Suppose 81 # 82 with 01 E Be, 02 E Be, and 02 > 81 without

loss of generality. Then (30) implies that

AN(0 2 ) - IN(91 ) -, 0 as N -.

That is,
N Pi(0 2) - Pi(01 )
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contradicting (27). Thus Be, consists of a unique 0 E I for each 0': i.e., a

function g is defined:

8 = g(O') for all 0' E '.

Choose O >0 with 0' I', 0j E 1'. Then define

02 = g(90), 1 = g(00).
Now,

e(p ) - ye(0i ) > 0

because the essentially unidimensional model {,0',N ? 11 is VI. By the

definition of g, recalling (30), it follows that AN(02 ) - IN(81) has no negative

limit points. Thus 02 ? 01 by monotonicity of 1N(0) . That is, g is monotone

nondecreasing and well defined for all 0' E 1'.

Because [8' = 0'] c [9 = g(P')] the probability space, say 0, satisfies

0= U (E' = 0') c 'U (= g('))
O'ER, 0El'

and 0 can be partitioned

0= U (e= 0)

it follows that the range of g is 1. 0

Remarks. (i) Note that Theorem 3.3 does not claim that g is strictly increasing.

That is, the rescaling given by g could assign many 0' to the same 0. Because

no assumption analogous to (27) was made for 9', this is of course expected. For,

the e' scale could produce a finer partition of the latent ability space than

needed to achieve essential unidimensionality. Thus the collapsing of distinct 0'

into a single 0 by g(O') cannot be ruled out. For example, if for the e'

scale there exists an interval [a,b] such that,
d
d P (0') = 0 for all i, 0' E [a,b]

then the 0' scale should be rescaled so that all 0' E [a,b] should be collapsed

to a single point, say 0. lowever, assuming (27) for 0' as well does imply a

strictly increasing g.
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(ii) In a private communication, Brian Junker has pointed out that an alternate

proof of Theorem 3.3 can be given that produces g exuligitly. See Junker (1988)

for details.

(iii) Note that the infinite item pool formulation was essential for

establishing the uniqueness of ability scale. It is the author's position that an

infinite item pool formulation greatly aids the study of many foundational IRT

issues. Indeed, that is a major point of this research.

(iv) for unidimensional EI and hence a fortiori for unidimensional LI

models Theorem 3.3 formalizes the well known notion that the E scale is not

completely pinned down. Indeed unless there are solid psychometric grounds for

preferring one interval scale over the rest, the situation is one of a unique ordinal

scale with the choice of a convenient interval scale left up to the practitioner to

be decided on pragmatic grounds.

It is an often quoted axiom of psychometrics that a "test" should be

unidimensional. If not, it should be broken up into a battery of unidimensional

subtests, each to be analyzed separately. Thus, in the context of this paper, the

axiom becomes that a test should be essentially unidimensional.

Theorem 3.2 has an interesting multidimensional analogue. Denote the

multidimensional Ils by {Pi(U), 1 ? 1).

Theorem 3.4. Suppose essential dE dimensionality with respect to ability Q for

{Ui, i > 1}. Then, I is able to be consistently estimated in probability in the

sense of (18) with 0 replaced by J in (18).

Suppose that the essential dimensionality exceeds d for {Ui, i 1}. Then

there does not exist a d dimensional _ such that {RN,Q,N > 1} is WI and for

each collection of nonsparse subtests for all 2, given =

1 I) . P( 0 (31)

IM j=1 Ij j=1 j

in probability as N - m.

Proof. Analogous to that of Theorem 3.2 and omitted. 0
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lmark. Assume essential dE dimensionality with respect to for some dE > 1.

Then according to Theorem 3.4 every collection of nonsparse subtests estimates a

unidimensional latent scale in the sense that for each P given _ = 9, (31) holds.

Let g,)(Q) denote the latent scale 1Pi ()/I(N) of (31). Consider two different

collections of nonsparse subtests resulting in two different choices of gA,().

Then the two different gs may be ranking examinees on the basis of two (or more)

totally different abilities, which is unacceptible from the viewpoint of requiring

test consistency. For, consistency requires that all of the gs indeed rank

examinees on the basis of the IM unidimensional latent ability. Thus the

unidimensionality of each {gAN(Q),N > 1] in (31) is useless because it masks an

inherent and unacceptable (from the practical viewpoint) multidimensionality.

Essential unidinensionality for the essential trait 0 clearly guarantees the

consistent estimation of the unique latent trait 0 by the results of Section 3.1.

The practitioner who wishes to estimate 0 then needs to assess for a particular

test IN administered to a particular population whether it is reasonable to adopt

an essentially unidimensional model. The author (Stout, 1987) has developed a

statistical procedure specifically designed to assess whether essential

unidimensionality holds or not. This procedure is based on a test statistic that

basically is large or small according as DN(.) of (7) is large or small. Thus the

issue of essential unidimensionality is an enirically verifiable one. It is the

position of this paper to recommend that the usually untested assumption of a LI,

d = 1, 1 IRT model be replaced by testing whether the more realistic dE = 1 IRT

modeling approach fits the data-well or not.

3.2. Balanced linear emoirical scaling. Sections 2 and 3.1 combine to produce a

theory that applies to scoring examinees using proportion correct over all

collections of nonsparse subtests. It seems useful to generalize this to a theory

that applies to aUl reasonable linear formula scoring schemes instead of just

proportion correct. Ve can do so by a minor modification of the concepts of
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essential independence, essential unidimensionality, and consistency. In each case

the term "strong" will be used to distinguish these concepts as defined here in

Section 3.2 from Sections 2 and 3.1.

Definition 3.4. (i) A triangular array of item coefficients {aNi} {ai, 1 < i <

N, N > 1) is said to be balanced if there exists C > 0 such that

0< aN i (32)

for all i and N.

(ii) For a given infinite item pool {Ui, i > 1}, the linear formula scoring

sequence 1'i a~iU1, N ) 1}1 is called a balanced empirical ability scaling

provided {aNi} is balanced.

lemarks. (i) Definition 3.4 needs interpretation. First, given any triangular

coefficient array {aNi}, J~~ asflUi specifies an ability scale for the test VNin

the sense that it ranks examinees. This ability scale is not a latent ability scale:

it scales examinees entirely on the basis of their item response patterns and hence

is an empirical (manifest) ability scale. Assumption (32) guarantees that the

scaling is reasonable in that (a) each correct answer can only increase examinee rank

and (b) no single item is allowed to dominate the scaling. Intuitively, as made

precise below, IL1 aNiUi for large N can be thought of as an empirical scale that

approximates some unidimensional latent scale.

(ii) Several special cases of linear formula scores are balanced. First

ai,N = 1/N for i ( N, yielding {UN, N ) 1}, is clearly balanced. That is,

proportion c-rrect is balanced. Second it is easy to modify the proportion correct

empirical scaling by using only items from nonsparse subtests to form the proportion

correct scaling. To motivate the third scoring scheme, suppose a two parameter

logistic model for {Ui, i ? 1} with discrimination parameters ai satisfying

0 < c < ai 5 K for all i.

Then, the normalized sufficient statistic
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j= a U

is clearly balanced with ai,N ai/1i1 ai"

(iii) In addition to the special cases discussed in (ii), Junker (1988) has shown

that the theory of balanced linear scores plays a central role in his establishing

the robustness result that the traditional maximum likelihood estimator e of 0

is consistent (in the statistical sense) for 0 even when only EI is known to hold

rather than LI.

Definition 3.5. Strong essential indeDendence holds if for every balanced

{aNi}, for each 0, given Q = 2,

aNiaNj cov(UiU j t =) 0.o. (33)

l<i#j<N

euark. (33) is easily seen to be equivalent to

Var[r... aNjU~I -4 0 as N -4 (34)

for each 0. Note that (7) implies strong essential independence, which in turn

implies essential independence as defined by (5). Recall that (7) and (5) can be

considered the same for practical purposes. lence (7), (5), and strong essential

independence can be thought of as the same for practical purposes. It follows that

(33) and hence (34) can be thought of as characterizing essential independence with

respect to e.

Vhen one views essential independence as (33) and hence as (34) holding, then

for each balanced {aNi}, by Chebychev's well-known probability inequality,

N U - gN(!) -4 0

in probability as N -, w for some latent scaling gN(! . Thus balanced empirical

scalings do, as suggested above, approximate some latent scale. Thus (33) emphasizes

the ability of any admissible empirical scaling to "recover" a latent scale. This

will be expanded upon in Section 3.3.

Let A {aNi} denote an arbitrary balanced sequence. Define the notation

gAN(O) for a unidimensional 0 by
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N

gJN(0) i=1aNiPi(e) (35)

Definition 3.6. It is said that e may be strongly consistently estimated if for

every balanced empirical scaling { aN i Ui, N > 11, for each 0, given E = 0,

aNi Ui - g,N() - 0 (36)

in probability as N -4.

Remark. Clearly strong consistency implies consistency as defined in Section 3.1.

It is not known whether consistency can hold and strong consistency not hold.

Replacing collections of nonsparse subtests by balanced linear formula scores

yields a slightly modified version of Theorem 3.2, which is stated below. First we

define strong essential dimensionality.

Definition 3.7. (i) An item pool is said to be weakly monotone for all balanced

sequences (VIB) with respect to I if

is monotone for all N and for every balanced {aNi}.

(ii) The strong essential dimensionality dE of a an item pool {Ui i > 1} is the

minimal dimensionality required for a latent trait Q to make the latent model

{N' f, N > 1} a strongly essentially independent MIB model. Vhen dE = 1 in

the strong sense, strong essential unidimensionality is said to hold.

Theorem 3.5. Let {Ui, i 1} be strongly essentially unidimensional with respect

to ability e. Then e may be strongly consistently estimated. In particular, for

each given e = 0, (18) and (19) hold.

Conversely, if for some monotone latent model {,N' e, N > 1} the

unideminsional 9 may be strongly consistently estimated, then {lN, e, N > 1} is

a strongly essentially independent, VIB model and hence strong essential

unidimensionality holds.

o Analogous to that of Theorem 3.2. Omitted. o
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3.3. Estimation of ability when the ability scale is specified. The use of {UN}

N
or more generally of a balanced empirical scale a iN U as a sequence of

estimators of 0 in the ordinal scaling case was developed in Sections 3.1 and 3.2.

Estimation in the ordinal scaling sense is inappropriate when it is either desirable

or required that the 8 scale be used for the ability of interest. In many such

applications, the items (or at least a common core of them) have been calibrated

relative to the constructed standardized ability scale 0. Estimation of 8 with

known IlFs has been widely treated in the literature (see for example Eambleton and

Swaminathan, 1985, Section 5.3). laximum likelihood estimation (ILE) is one method

of choice in this setting. The ILE 8 congerges in probability to 0 under

suitable regularity conditions in the sense that, given e = 0, 8 -4 8 in

probability as the number of items N - w. Only rarely however, is it possible to

provide a simple formula for the ILE as a function of N" The ILE is usually a

highly non-linear function of IN. Thus in the case of known Ills it seems

desirable to seek alternatives to ILE that are based on linear formula scoring and

for which simple formulae are available. We now propose a family of such estimators,

using the results of Sections 3.1.

Let

IN(#) =i= P )/Nt Ye )  i= Pi()

and

N NuN~ Ui/N,IN= aNUi
i=1 i=1 aN i  "

lecall from Theorem 3.2 that when {Ui, i > 1} is essentially unidimensional

with respect to 8 then for each given 8 = 0,

9N - IN () -o

in probability and N -4 w. This suggests estimating 0 by {I-NI(uN)} and also

suggests for each given 8 = 0 that

.N i(UN
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in probability and N - s should hold. loreover, recalling Theorem 3.5 this result

should generalize to balanced scoring with, for each 8 = 0,

in probability and N -4 w. Theorem 3.6 below states that this is true provided a

slightly modified local asymptotic discrimination holds. Definition 3.8 is the

appropriate analogue of Definition 3.3.

Definition 3.8. Let an infinite item pool be essentially unidimensional with respect

to ability 0. Let !N(O) a niPi(f be formed from a balanced sequence

{aNij. Suppose for every fixed 01 such that 11 is in the range I of e that
there exists e1 > 0 and an open neighborhood Be, of 01 such that for all 02 E

101 and in the range I of 8 that

8i1 iN Pi(02 ) -i1 ai N Pi(01)

02 - 1 a A 0  for all N. (37)

Then { E), IN(P), N > 1} is said to be locally asvMtoticallv discriminating

(LAD) with respect to 8 and {aNi}.

Usually iN(8) is continuous in applications, thus making its inverse well

defined over its range. lowever, in order to have a theory that allows for

discontinuities, the following definition of 1 l(u) will be used

i1 (u) = inf { 0: 1N( 0 ) > u}.

fere I denotes the range of 8. Note that AN(9 ) - or m is possible; e.g.,

if u = 1/5 and AN(8) 1/4 for all 0.

Therm 3.. Let {fN, 0 , N > 11 be strongly essentially unidimensional with
N

respect to 8. Suppose !N(e) = an i Pi(O) is formed from a balanced ability

scaling UN = i. Ui  Suppose {fN' 8, IN(O),N > 1) is LID with respect to
=a ni f

19 and fa Ni} Then, for each given 8 = 0,
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IN-(uN) 9 0 (38)

in probability as N -4.

EL. Fix 9. By Theorem 3.5, given 8 = 0,

0 - IN($) - (39)

in probability as N -4. It is an elementary lemma of probaoility theory that XN -4

I in probability as N - s if and only if each subsequence 1N(j) contains a

further subsequence IN(j(k)) -4 I with probability one as k - w. Thus to prove the

theorem, it suffices to select an arbitrary subsequence {N(j)} and then prove there

exists a further subsequence N(j(k)) such that

IN(j(k))(UN(j(k))) 4 e
with probability one as k -.. Choose {N(j)}. Then (39) implies that

U Nj) - I N(j )(8) -4 0

in probability as j -4 w. Then, using the above mentioned lemma, there exists a

further subsequence N(j(k)) for which

VN(j(k)) - iN(j(k))(o) - 0 (40)

with probability one. By (37) and the definition of the inverse, for all P2 - 0N(G)

sufficiently small in magnitude and satisfying p2 > info 1N(6), there exists

[9 < a such that
1I1'(,2) - K o91p2 - !N(O)I for all 0. (41)

Fix a typical point in the probability space. Now, it may be that for some

arbitrarily large k

d N(j (k)) info 0 N(j (k)) ( "  (42)

By (40) and LAD, there exists ck - 0 such that for all large k

UN(j(k)) > N(j(k))( 0 - ek).

Thus UN(j(k)) > info IN(j(k))(O) for all sufficiently large k using LAD. Hence

(42) cannot hold for arbitrarily large k and thus (41) can be applied with

p'2 = N (j(k)) '

Thus, combining (40) with (41),
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IAN(j(k))(UN(j(k))) - 01 IOI UN(j(k)) - N(j(k))(O)I o

with probability one, as required. 0

Iemarks. (i) Theorem 3.6 provides a large class of sequences of estimators of 0,

including {AI(UN)}, based on linear formula scoring. In practice, one needs to

compute IN(#) and its inverse 1N (8) to make use of one of these estimators.

(ii) It is to be noted that lolland, Junker, and Thayer (1987) have proposed

using {ANi(u) ) to estimate the distribution of 0 and have proved a convergence

in distribution result to justify this. Their motivation for suggesting {AI(UN)}

is different from ours.

(iii) It is elementary to show that (38) holding for all 0 implies

INI(UN) , e (43)

in probability as N -4 .. Given the IRT context, (38) is perhaps a more

interesting formulation than (43). It does of course follow from (43) that N 1(fN)

can be used as a method of estimating the distribution of E.

(iv) Note that (38) states that convergence in probability to individual

ability holds regardless of which of a large class of estimators is used. That is,

convergence in probability to individual ability holds for every balanced scaling.

Theorem 3.5 and 3.6 show how close the traditional statistical notion of .onsistency

and our psychometric notion of consistency really are. By Theorem 3.5, strong

consistency is equivalent to strong essential unidimensionality, which by Theorem 3.6

implies that a wide class of natural estimates is consistent in the ordinary

statistical sense.

(v) A version of Theorem 3.6 is possible that only deals with UN:

Theorem 3.61. Let {uN,O,N > 1} be El and LAD with respect to 0. Then,

for each gevin 8 = 0,

ANI(UN) - 0

in probability as N -4.
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4. A Stochastic lodel for the Construction of Essentially Unidimensional Tests.

In Section 2 and 3, the case has been made for using essentially unidimensional

IT models both in applications to real test data and in the investigation of

theoretical issues. This approach leads to the uniqueness of the unidizensional

latent ability scale and the consistent estimation of latent ability both in the

ordinal and the fixed scaling case. This new modeling approach requires the

replacement of modeling a fixed finite length test RN by modeling an infinite item

pool {Uii > 1}. {Uii > 1} is the test that would result were one to continue

constructing items {Uii > N}, "in the same manner" as RN = {Ui'1 < i N} was

constructed. It has been stressed throughout that essential unidimensionality is an

empirically testable property, using Stout's (1987) statistical test of

unidimensionality.

Now it seems appropriate to present and study a model showing a plausible way in

which essentially unidimensional infinite item pools {Uii > 1} can be constructed.

The actual observed test 1N is then obtained by terminating the process of

constructing items after N items have been obtained.

Ve assume e is the ability to be measured and that the items also depend on

finitely or infinitely many other abilities (e1,E2,...) and that the resulting

ability space ( = (e,@ 1e2,...) is "complete" in the sense that 9 explains the

variation between individuals in item/test performance. That is, we assume that

{Uii > 1} has a Vi, LI IIT model {ke,N 1} where a = (e,Ol,...). This

assumption is neither mathematically nor psychometrically restrictive.

Issume thoughout Section 4, consistent with Theorem 3.1, that (RN,e,N > 1) is

an essentially unidimensional V1 model. It is assumed that the representation for

_ is orthogonal in the sense that all ej, e, pairs are independent given e.

This assumption basically amounts to choosing an orthogonal coordinate system for the

latent ability space and hence is not unduly restrictive.
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It is assumed that all items are inherently multiply determined, as motivated by

discussion in Section 2. That is, each item can depend on one or more of the other

abilities 9i besides e. Consider the construction of the ith item. Let

Pij = P[Item i depends on j].

The assumption of multiply determined items then translates into the assumption that

for each i

Pij > 0 for some (possibly many) j can hold.

Implicit in the introduction of the pijS is the assumption that the

determination of which abilities in addition to e influence each item can be

viewed as a random process. (This is not the same as saying it is inherently a

random process like radioactive decay - for example the digits of i can from the

statistical perspective be well-modeled by a random process). That is, the "context"

of each item can be viewed as randomly determined.

There are deliberately no model assumptions made here about other

characteristics of the items such as discrimination, difficulty, guessing, etc.

Also, no assumptions are made about the amount of item dependencies on various

dimensions Oi, although such a refinement is possible and could be helpful.

Because in a typical aptitude or achievement test, different items are often written

by different individuals and item selection is controlled by factors such as

discrimination, difficulty, congruence with intended content domain 0, etc., the

assumption of random item context together with-no assumptions about item

characteristics seems appropriate, even if there is no explicit random mechanism for

choosing item context.

Veak and natural restrictions placed on the magnitudes of the {Pij} suffice to

guarantee that essential unidimensionality holds; as is now established. Let

Ni = Number of abilities besides 0 influencing item i

and

Nj = Number of the first N items dependent on 9.

3 3
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Theorem 4.1. Suppose for {Jii > 1} that

E(Ni) _<I < w for all i (44)

and that for all j,

N .E-40 as N -4 (45)

Suppose independence of the "assignment" of abilities to item pairs in the sense that

for all j

P[Ability e. assigned to item i and to item i'] = pijpi j  (46)

Then, essential unidimensionality with respect to 0 holds in the precise sense

that for each 0, DN(O) of (7) satisfies DN(G) -4 0 in Rrobabilitv as N -# w.

lenark. lere, "in probability" refers to the random process partially specified by

the pijs that determines which Pjs influence which items. Thus according to

Theorem 4.1, for fixed large N, "most" of the infinite item pools constructed will

produce a "small" DN(8).

Proof. According to the proof of Theorem 2.2, cov(Ui,Ui, e = 0) = 0 for all 9

unless Ui, Ui, depend on at least one common 8j. Thus, using (46)J®

E[Icov(Ui,Ui,[e = 0)1] S P[Ui,Uil depend on some Gj] _ PiJPiJ

Note that

N
E(Ni) = i E(NO.) Pij"

Thus,

E[- F1 N I cov(ivjV, 8 ) 1]
-< 2 I) <i<N ':PiiJ

M<- N 2 1) 1I I Pij i,i j

I~~,NJ=1
2

S (2 NKN(N -4 0

as N -4 . But 1N _ 0, EIN -4 0 implies IN -4 0 in probability holds for arbitrary

random variables {N1 . a
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Suppose the designers of the test are deliberately being careful not to let too

many pairs of items depend on any one 9., in an effort to create contextual

balance. Then clearly assumption (46) is inappropriate and should be replaced. In

appropriate assumption is for all i, i', j that

P[Ibility Oj assigned to Item i and Item i'] 5 PijPi' j .  (47)

Clearly the above proof is valid if (47) replaces (46). This yields:

Corollary 4.1. Suppose for {UiJi 1} that (44), (45), and (47) hold. Then

essential unidimensionality with respect to E holds in the sense stated in

Theorem 4.1 a

There is a deterministic version of Corollary 4.1 that makes no assumptions

about randomness and generalizes Theorem 2.2.

Corollary 4.2. Suppose for {Ui,i > 1) that the dependence of abilities on items is

such that

Ni  I < w for all i (48)

and that for all j

N 0
- < O as N .. (49)

Then essential unidimensionality with respect to 0 holds.

Proof. cov(Ui,Ui,I8 = 9) = 0 unless Ui, Ui, depend on at least one common 9.

Thus a simple counting argument yields

i cov(UiDi,(8 = 0) 1

5NN2 ) IE-40as N -4,

R . The mild hypotheses of Corollaries 4.1 and 4.2 suggest one strategy for

essentially unidimensional test construction in the face of multiply determined

items: Keep the number of abilities per item as low as possible (see (44) or (48));

keep the number of items influenced by any one ability other than 0 as low as

possible (see (45) or (49); and, subject to these constraints, keep the number of

item pairs assigned to each ability other than 0 as low as possible (see (46) or
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(47)). This last constraint can either be accomplished by a random or pseudorandom

assignment of abilities to items so that (46) tends to hold, or a deliberate effort

can be made to balance, in an experimental design sense, the assignment of minor

abilities to various items in the sense that (47) tends to hold.

There is an unavoidable paradoxical aspect to the model of this section and

indeed to the infinite item pool model of this paper. In order to arrive at a

rigorous and useful conception of essential unidimensionality it was necessary to

replace modeling of the observable finite length test IN by the unobservable

(except for its initial segment DN) infinite length pool {Ui,i > 1}. But in order

to apply this new modeling framework, one must assess the degree to which essential

unidimensionality well-models the observable test 1N rather than the unobservable

item pool {Uii > 1}. To address this paradox, recall that essential

unidimensionality holds provided for all 0

DN( )  - as .

Thus, the practitioner needs to assess, based on actual test data for E. whether,

for the actual test length N, for all 0

D 0 (50)

A close examination of the statistical test for essential unidimensionality in Stout

(1987) - see Section 5 and Formula (17) of that paper in particular - shows that

the test is designed precisely to assess the degree to which (50) holds for nonsparse

subtests. The Monte Carlo simulations presented in that paper justify using the

statistical test of essential unidimensionality for ability tests as short as 25

items with as few as 750 examinees.

The model of this section with its large number of parameters {Pij} is intended

for conceptual purposes and is not intended to facilitate analyses of real test data.

lowever consequences of the model such as Theorem 4.1, Corollary 4.1, and Corollary

4.2 may be useful, as remarked, as guides to good unidimensional test construction.
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5. Discussion and Summary of Results.

The purpose of the paper is to present a new IRT modeling approach based on the

embedding of the test Ix into an infinite item pool {JUii > 1} and then to show

the usefulness of this approach to certain fundamental test measurement topics such

as dimensionality and ability estimation. The paper provides a new conceptualization

of latent dimensionality, essential dimensionality. This conceptualization depends

on the replacement of local independence by the weaker and, in our opinion,

psychometrically more appropriate notion of essential indenendence. Essential

dimensionality, designed to dovetail with the. empirical reality of multiply

determined items, attempts to count only the dominant dimensions. Theorems 2.1-2.3

present conditions that guarantee that essential unidimensionality holds. In

particular, dimensions distributed nondensely over items or dimensions having a minor

influence on possibly many items do not negate essential unidimensionality.

In Section 3.1, essential unidimensionality is shown in Theorem 3.2 to

charactriz the consistent estimation of a unidimensional ability in the ordinal

scaling case: The ordinal scaling case holds when any monotone transformation of the

given ability scale is an acceptable choice for the ability scale to be used. The

consistent estimation of ability is precisely defined in Definition 3.2 and a slight

variant in Definition 3.6. Roughly, a test {Uii > 1} consistently estimates

ability if all reasonable-to-use linear formula scores asymptotically estimate

different monotone transformations of the same unidimensional latent ability.

"Reasonable-to-use" is formalized by examining collections of nonsnarse subtests and

balanced linear emnirical scalinMs. In order to facilitate this development, the

concepts of marginal item resonse function and intrinsic ability scale are

presented. The estimation of ability in the ordinal scaling sense does not require

the MI]s to be known (i.e., calibrated).

Theorem 3.3 shows that essential unidimensionality guarantees, under the mild

regularity condition of local asvmntotic discrimination of {U.,i 1}, that the

• • i i IA
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latent ability is unique up to a monotone transformation, that is, in the ordinal

scaling sense.

Section 3.2 extends the theory from collections of nonsparse subtests to

balanced linear empirical scalings, thus yielding results for a wide and natural

class of empirical scalings.

Section 3.3 addresses the estimation of ability 0 on the snecified 0 scale

when IiLs are assumed known. Theorem 3.6 presents a large class of estimators of

0 that consistently estimate 0 on the 0 scale in the sense that each such

estimator A1 (UN) satisfies for each 9, given E = 9

-49

in probability as N -4. Tlis includes in particular the estimator AINI(UN). Each

such estimator is computable, has a simple formula, and is based on an admissible

linear formula scoring scheme in an intuitively natural way.

Section 4 presents a conceptual model for the construction of essentially

unidimensional tests in the presence of the unavoidable empirical reality of

multidimensional items. A test developers' prescription for essentially

unidimensional test construction emerges: keep the number of abilities per item

small; keep the number of items dependent on the same ability (other than the

to-be-measured 9) small; and keep the number of item pairs assigned to the same

ability other than 0 small. It is stressed in Section 4 and throughout the paper

that essential unidimensionality, while defined for the unobservable {Uii > 1}, is

statistically testable based on data from RN and that the statistical test given in

Stout (1987) is precisely designed to assess the degree to which 4 is well modeled

by the assumption of essential unidimensionality.
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