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NOMENCLATURE

Roman

e a unit vector

Ek the Ekman Number

f any continuous function

h enthalpy per unit mass of fluid

ho  total enthalpy per unit mass fluid

how relative total specific enthalpy or rothalpy

Ho  total enthalpy of a fluid; in linear systems, the total

enthalpy of a fluid per unit length of blade

L lift per unit length of blade

m system mass

m mass flow rate

n a constant

p local static pressure

Po total pressure

q a generalized curvilinear coordinate

r radial coordinate of a cylindrical coordinate system

R position vector for the point of interest in a fluid

Re the Reynolds Number

s entropy per unit mass of fluid

S entropy

t time



T absolute temperature

U velocity of the blade and a function of the radius

V velocity

w specific work

W relative fluid velocity in a moving rotor frame

z axial coordinate of a cylindrical coordinate system

Greek

ot flow angle

F the circulation

the observed vorticity in any frame of reference

0 tangential angle coordinate in cylindrical coordinates

A the absolute viscosity

v the kinematic viscosity

p local fluid density

T volume

V/ a stream function

W angular velocity

Subscripts

i input conditions

o indicates inclusion of the kinetic energy or total

conditions

o outlet conditions

r indicates the radial component

s ideal state of constant entropy
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v indicates the absolute frame

vi indicates the viscous contribution

w indicates the moving frame

z indicates the axial component of velocity

0 indicates the tangential component of velocity

CO indicates a rotational component
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ABSTRACT

Galilean transformations between the absolute and
moving frame impose a crypto-steady-state relation between
time derivatives of a thermodynamic function in the
absolute frame and their gradients in the moving frame.
These crypto-steady relationships are inherently con-
tained within the Navier-Stokes Equations relating the
absolute and moving frames.

The substantial total enthalpy derivative coupled
with the substantial entropic energy derivative may be
written solely in terms of the flow field of the moving
frame. In the moving frame the relative total enthalpy,
known as the rothalpy, yields a vanishing substantial
derivative. Therefore, the substantial entropic energy
derivative is uncoupled and explicit in the moving frame.
This explicit substantial entropic energy derivative is
invariant in all frames and may be used to obtain an
uncoupled explicit substantial total enthalpy derivative.
This latter derivative was hypothesized to be a
differential form of Euler's Turbomachinery Equations
corrected for real viscous losses.

The fact that integration of the differential form
indeed yields the classical form of Euler's Turbo-
machfinery Equation validates the aforementioned
hypothesis. Also, it is demonstrated that energy transfer,
like lift, is a purely potential process involving kinetic
energy only.
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INTRODUCTION

Modem computational fluid dynamic solutions of the Navier-Stokes

Equations for incompressible turbomachinery domains appear to be on the

threshold of yielding details of the entire flow field of real

machines. It is therefore of great interest to determine the

thermodynamic energy transfer from the purely fluid dynamic aspects of

the flow. The computational device which serves this purpose is

Crocco's Equations [1,2].

A monument of turbomachinery technology is Euler's Turbomachinery

Equation which is based upon thermodynamic definitions of work and

Newton's Laws. Since the Navier-Stokes Equations and Crocco's Equation

in a rotating (moving) frame are also based upon thermodynamics and

Newton's Laws, they must in principle contain Euler's Turbomachinery

Equation in differential form and, on integration, in integral form.

Also contained within the moving-frame statement of Crocco's Equation

is a vector expression of the Galilean transformation that relates the

frames.

Integration of Crocco's Equation in the absolute frame has given

rise to the "Unsteadiness Paradox [3-7]" to explain rotor energy

transfer. An aspect of the paradox which must be rationalized (vide

infra) is Vavra's statement (page 209 of Reference 8) that if the

relative velocity and the rotor velocity are constant with time, then
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the absolute velocity must be time independent.

Preston has invoked the use of a time-dependent potential function

to obtain energy transfer in systems of potential vortices. He did not

concern himself with the practical problem of fluid boundaries because,

in effect his analysis of the point potential vortices did not raise

such an issue. Such a system of calculation cannot, of course, treat

non-ideal viscous systems with vorticity and with real moving physical

boundaries. The objectives in this study were to make no assumptions

with regard to ideality in the three-dimensional domain. However,

viscosity and vorticity were excluded in a two-dimensional study of the

linear rotor.

The Galilean transformation that connects the moving rotor frame

and the absolute or laboratory frame provides a relationship between

the frames so that integration of the energy rate may be conveniently

performed in a time-independent frame with a time-independent set of

coordinates. Time-dependence is largely ignored in the design of

marine propellers. The fact that energy transfer is routinely

calculated in a steady-state moving frame provides philosophical

questions concerning the proper interpretations of the Unsteadiness

Paradox.

The Galilean transformation leads to simplified expressions for

the substantial total-enthalpy transfer rate which is uncoupled from

the expressions for the substantial entropic energy rate. The fact

that the total enthalpy and the entropic energy rates are uncoupled

makes for simplified integration of the total enthalpy transfer and

leads to a differential form of the Euler Turbomachinery Equation and

2



the anticipated form of the integral Turbomachinery Equation corrected

for non-ideal flow. The uncoupled expressions were applied to a

two-dimensional linear turbine and yield the expected result. These

analyses and questions pertaining to the proper interpretation of

time-dependent terms in the absolute frame are addressed in the body of

this paper.
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2.0 The Galilean Transformation

The moving frame and the absolute frame of a turborotor are

connected by a Galilean transformation, which imposes relationships

between the coordinates of the frames. From these relationships the

vector operations in the two frames may be derived.

In the following discussion the subscripts v, and w will represent

the absolute and the moving frame coordinate and vector values. (See

Figure 1 and the Nomenclature for definitions of quantities.) Time, t,

will be invariant in both frames so that

t, = t = t. (2.0.01)

The coordinate values r and z will exhibit similar properties

r, = rw = r, (2.0.02)

and

zV = z, + zo =z = z, (2.0.03)

where we have set z. to 0.

Thus, for these coordinates and the time, a subscript is

redundant. However, for the angular coordinate, 0,

0, = OW + ot, (2.0.04)

where co is the angular velocity.
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Now from the calculus, the total derivative of a function f is

Df = lIflq dt + (a f 1  dci1-4. (a f) dq2Lt q i L~ t,h:qtlLqJ ~i*q

+ ra I - dqh  (2.0.05a)
Lq3J t,qi * q 3

or

Df- -qdt + dR "Vf. (2.0.05b)

The Eulerian substantial derivative is contained within (2.0.05). The

first term of the derivative requires that the coordinates be fixed and

only time is varied. The second gradient term demands that time be

fixed.

Employing (2.0.04) and assuming that the angular velocity of the

rotor is constant,

dO, = dO, + codt. (2.0.06)

Also,

1(a I a1- I (alt) " (2.0.07)
V CO(t 

V

Similar results are obtained with cartesian coordinates. If U is the

velocity of the moving frame given by

yV = y,, + Ut, (2.0.08)

then

1 JY"t (2.0.09)

5



Equations (2.0.07) and (2.0.09) define, in fact, the "crypto-steady

criterion," for determining whether a frame exists in which the flow

regime is truly steady state.

The vector operator V in (2.0.05b) is independent of time. In the

absolute cartesian frame

if = T[ l JI l +k [ ](2.0.10)
yl,,z,t x,z,t + (,y,t

The vector operator V. in the moving cartesian frame is defined:

y,z,t x,z,t x,y,,t (2.0.11)

From (2.0.08) with or without the constraint that time is fixed

V, = V = = V, (2.0.12)

which applies wherever a moving device which can effect energy transfer

exists in the fluid. Since (2.0.12) represents a vector equation it is

applicable to all coordinate systems even though the unit vectors may

not be invariant under imposition of the transformation (2.0.04).

Now from (2.0.07) for any function f,

[L51) U U.Vwf (2.0.13)

where qi represents all the position coordinates and q. is the

moving-frame coordinate of a generalized curvilinear orthogonal

coordinate system which completely defines the position and velocity of

the energy-transferring device such as a sail or rotor. Equation

(2.0.13) is an extension of the usual crypto-steady relation.

Finally, the Galilean transformation relates the velocity V, the
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relative velocity WV, and the velocity U of the device or rotor engaged

in energy transfer, i.e.,

V= W + U. (2.0.14)

Equation (2.0.14) is the vector derivative of Equations (2.0.02)

through (2.0.04). The converse arguments starting from (2.0.14) and

(2.0.01) would lead to (2.0.02) through (2.0.04).

2.1 The Interpretation of Time Derivatives

The time derivative of the static blade to blade pressure is

obtained from Equation 2.0.13 by substituting p for the function f.

Using cylindrical coordinates

r,0, U r,t,z - () (2.1.01)

Figure 2a shows a point P(rz,t) fixed in the absolute frame

between blades of a rotor rotating into decreasing values of 6,. The

thermodynamic properties of the point P at the suction side of blade 1

change as time advances and the pressure side of blade 2 approaches P.

When the wall passes through point P fluid properties cease to exist

at P. Thermodynamic information about the fluid at that point ceases.

The time interval A t for n blades and angular velocity w is

t2 - tj = At(r,z) = (2xiln - 6(r,z))/Iw , (2.1.02)

where c(r,z) is the blade thickness in radians.

Although time is fixed in the moving spatial derivatives, the
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point P(r,z,t.) of Figure 2b must span the entire blade space in that

fixed instant of time. The angular change A O. and the distance Aa is

in a direction negative to the blade motion rw.

Aa = rA0, = r(27r/n - J. (2.1.03)

Figure 2c shows a curve of the intra blade pressure distribution

changing with time in the absolute frame. In the moving frame, it

represents the spatial distribution in a fixed instant of time.

2.2 Time Dependence and Frame of Reference

Vavra has noted that Equation (2.0.14) suggests that if W is

independent of time, then V is also independent of time. This point is

an overlooked aspect of the Unsteadiness Paradox - The converse

statement is also true and the Unsteadiness Paradox would imply that

flow must be unsteady in the moving frame. With a slight rearrangement

(2.0.14) becomes

w=V- U. (2.2.01)

If V is time dependent, how can W not be time dependent? The observer

who sits on an ideal rotor in an ideal infinite fluid sees no time

dependence in measured thermodynamic properties at a point. However,

when the same observer passes to the absolute frame, he measures

time-dependent thermodynamic properties each time a blade passes by

that point.

The problem is resolved by noting that the coordinates used in

8



(2.0.14) or (2.2.01) determine whether the observer perceives time

dependence. If the velocity vectors are written in terms of r, 0., and

z, the measurements are in the moving frame and both V(r,O.,z) and

W(r,O.,z) are time independent. Writing V and W in the absolute

coordinates requires that 0., be written

0. = . - Wt . (2.2.02)

Therefore, V(r,O,-wt,z) and W(r,0,-wt,z) are both time dependent in the

absolute frame. To demonstrate note that

I -rtV , - .(2.2.03)

absolute L r, ,,z L tJ r,O,,z

Now dropping all subscripts but 0. and 0w,

=at Ld+ t r1 ,z) w] (2.2.04)

Finally

0IVI 0O-coa W :4 0. (2.2.05)

The reader may now prove that [.VT7 does in fact vanish.

Before proceding with developments below, it is useful to restate

a set of rules implied above which should simplify analysis for the

reader.

1. For operations in the absolute frame use absolute frame

variables. This implies that

W(0,) , W(O,,,t) . (2.2.06)
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2. For operations in the moving frame of the rotor use moving frame

variables to obtain steady state. This implies that using (2.0.04)

V(Ovt) V(O) . (2.2.07)

If the variables 0, and t are not entirely constrained according to

(2.0.04) then the flow is not truly crypto-steady.

3. The partial derivatives with respect to time in the moving and

absolute frames cannot in general, be equal, i.e.,

at)O1 (2.2.08)

10



3.0 Derivation of the Differential and Integral Forms

3.1 Aspects of Time-Dependence in the Absolute and Moving Frames

The Navier-Stokes Equations exhibit a modified formalism including

Coriolis terms in a unique steady-state rotating frame which develops

from the Galilean transformation (2.0.14). Even in the frames of a

device without rotation, the definition of the moving frame inherently

contains and always invokes the crypto-steady relation. Provided there

is uniform upstream flow, an observer moving with the device (for

example a sail) may observe crypto steady-state behavior in the fluid.

Nevertheless, the time-dependent terms must be recovered on imposition

of the Galilean transformation to the absolute frame.

The Navier-Stokes Equations may be formalized to exhibit

explicitly the rotational motion of the energy-transferring rotor

device in incompressible flow thus:

-- + V.V- =- + W.VW + 2x W - VU2/2

. + vV 2 V. (3.1.01)

p

If the moving frame is in fact a steady-state frame and if the angular

velocity vanishes then explicit rotational terms must drop out and

11



+ V.VV = WVW = -p + v-V (3.1.02)

p

Preston6 has shown that time dependence and a non-vanishing

acceleration can be recovered in the absolute frame with an analysis

based upon potential functions to describe the flow. Resorting to

relations of the type of Equation (2.0.08) he obtained the required

time dependence. Vavra8 has also shown that time dependence may be

recovered by use of a viscous model. Nevertheless, as mentioned above,

Vavra asserts (pages 110, 111 of Reference 8) that if in Equation

(2.0.14) the relative velocity, W, is steady state, so must V be steady

state. Likewise, if V is unsteady then W must be unsteady. Following

the discussion in Section 2.2, the paradox is resolved by noting that

the coordinate frame must be specified to determine whether

time-dependence may be observed. The steady-state equations involving

O, or y,, may be rewritten with substitution of these variables using

Equations (2.0.04) and (2.0.08) respectively. Then, time dependence is

captured in the absolute frame.

Considering the linear rotor it is also possible to demonstrate

recovery of the acceleration term using (2.0.12) and (2.0.14). Using

(2.0,14) to replace W in (3.1.02) the result is:

aV

a- + V-VV = (V - U).V(V - U) . (3.1.03)

Remembering that

U.VU - , (3.1.04)

the result obtained is

12



- a V VV = V-VV - U*VV. (..5(T-_ + €V- fi v -. (3.1.05)

Therefore

av = -- U av (3.1.06)

Equation (3.1.06) follows from Equation (2.0.14) and the fact that the

Navier-Stokes Equations are invariant with respect to the

substitution (2.0.14). However, (3.1.06) is anticipated by (2.0.13)

and provides an indication that the argument used for (2.0.13) is

consistent.

Following the above arguments it is affirmed that

time-dependence and acceleration are recovered in the absolute frame

even though these are not present in the moving frame.

3.2 The Coupled Substantial Total Enthalpy and Entropic Energy Rate

with Viscous Terms in the Moving and Absolute Frames

It will be assumed that time dependence in the moving frame is

negligible. Therefore in (3.1.01) the acceleration term in the moving

frame will be dropped.

aT + vV2/2 - V x (V x V) = W .VW + 2 co x W - VU2/2

+ VV2; (3.2.01)p

If the gradient form of the second law, and the definitions of the

13



total enthalpy namely

!pVh - TVs, (3.2.02)

and

Vh o = Vh + VV2/2 , (3.2.03)

are combined with (3.2.01), Crocco's Equation with viscosity is

obtained which for the absolute frame is

aV (3.2.04)- Vx(VxV) = -Vh O + TVs + vV2V

Taking the dot product of the velocity on (3.2.04) and rearranging,
V.V° - V2/2

V-Vh0  - -- + TV.Vs + VVV2 V. (3.2.05)

The substantial derivative of the total enthalpy is

Dh _t rat~ + +V-Vh 0 . (3.2.06)

Combining (3.2.05) and (3.2.06) the substantial derivative with

non-ideal viscous terms is obtained.

Dh = fh1 + T-.Vs + vV. 2V . (3.2.07)

Using the time derivative of the second law, i.e.,

1I + T a (3.2.08)

and substituting (3.2.08) in (3.2.07),

h  _ 1 + T - + VV.V. (3.2.09)

Employing Equation (2.0.13) with the static pressure as the arbitrary

14



fu..ction

Dh U a T Dst+ T' lyt + VV.'V2V (3.2.10)

where x. is the velocity of device in the moving frame.

Since the gradient of static quantities is invariant in all frames

U a - U a p - f
pr != = K -Vp. (3.2.11)

Combining (3.2.10) and (3.2.11) the equation of the substantial total

enthalpy derivative is

Dh U.Vp + T Ds + VV .V2 (3.2.12)

It is not obvious in (3.2.12) how to decouple the enthalpic energy rate

from the entropic energy rate. The value of (3.2.12) derives from the

fact that Equation (3.2.01) may be used to replace the pressure

derivative. From the dot product of U with the moving frame equality

in (3.2.0 1) the pressure gradient term becomes

u a - . .(W ,.V)W + 2U--xw

-U.VU2/2 - vUV 2 V. (3.2.13)

Equations (3.2.12) and (3.2.13) may be added to eliminate the pressure

gradient term. This operation yields the coupled substantial total

enthalpy and entropic energy rates in the moving frame.

D h  Ds
]'t = U-(W.V)W + 2U*0xW - J.VU/2

+ VW.V 2(W +U). (3.2.14)

15



Note that the pressure term may also have been eliminated by employing

the dot product of U on the acceleration term in the absolute frame.

Since, the difficulty of integration with time-dependent boundaries

must first be addressed, there may be little advantage in this.

Nevertheless, for completeness, the equivalent form in the absolute

frame is appropriate here.

D h  _ T D = 6-- + U'(V.V)V + v(V-U)'V2 . (3.2.15)

Although static quantities are invariant in all frames, the total

quantities are peculiar to their frame because they contain kinetic

energies which are a function of the frame. In Equation (3.2.14) the

substantial total energy rate in the absolute frame is defined in terms

of quantities and coordinates in the moving frame.

It is now useful to inquire into the substantial relative total

energy rate of the moving frame.

3.3 Uncoupling the Substantial Total Enthalpy Rates and the

Entropic Energy Rates

Equation (3.2.01) is the starting point for developing the

objective. The gradient of the absolute kinetic energy is subtracted

in the moving frame.

'V x (VxV) = - VV 2 /2 + VW 2 /2 + (V x W) x W'

+ 20xT - VU 2 /2 = - V(h + V2/2) + TVs + vV 2V. (3.3.01)

16



Using (2.0.14) to eliminate V in the right member of (3.3.01)

-VWU - Vu2 + (VxW+2cW)xW

= -Vho + TVs + vV2(W+ U). (3.3.02)

Before substituting the terms, an intermediate expression is useful.

h + - UWu" U 2 = h + - - how, (3.3.03)

where the quantity how in (3.3.03) is the total relative enthalpy7 or

the rothalpy. Combining (3.3.02) and (3.3.03) an expression for

Crocco's Equation in the moving frame is derived.

Vho, - TVs = Vx(Vx W + 2(o) + vV2( W + U). (3.3.04)

Now, if the upstream flow is thoroughly mixed and without energy

gradients

Dt = 8 + - Vho, = W"Vh,, (3.3.05)

and

T T .. T +TW Vs = TW'Vs T (3.3.06)

where the last equality in (3.3.06) indicates that the entropic energy

rate is invariant in all frames. Taking the dot product of W on

(3.3.04) yields

Dh = T Ds
-T 1t + vW.V(W+U) . (3.3.07)

Now Vavra notes (Reference 8, page 124) that in the moving frame

following a particle of fluid

17



Tds = dq. - dtWf r , (3.3.08)

where q. is the specific external heat rate and dtW" f is the specific

thermal equivalent of frictional work. Since it is assumed that there

are no external heat sources or sinks, and that crypto-steady flow

prevails, it may be stated that

TDs W. ff W - 72(W + U) (3.3.09)

Combining (3.3.07) with (3.3.09) the desired result is

Dh= = 0 (3.3.10)

Therefore, using (3.3.05) it is asserted that for arbitrary real

flows without external heat sinks and with crypto-steady

characteristics

Vh + 2 0V(h - UVO) = 0. (3.3.11)

The right member of (3.3.11) is one of the differential or gradient

forms of Euler's Turbomachinery Equations in the absolute frame.

Integration over a stream tube in the absolute frame yields the classic

Euler Equation.

Ah o = A (UVU). (3.3.12)

Note that (3.3.12) is contained within Crocco's Equation (3.2.14).

Combining (3.3.04) and (3.3.11), the entropic energy gradient may

be defined thus:

TVs = (V x WV + 2 W) x WV - vV2(W" + U) , (3.3.13)
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and the substantial entropic energy rate is

TDs - VW.72(W+U = VW.VX7XW (3.3.14)

For real fluids, dissipation is at least positive and

W VxVxW 2 0 t W.V 2(W+U). (3.3.15)

The substantial total enthalpy rate in the absolute frame is now

obtained by eliminating the entropic energy rate in (3.2.14) with

(3.3.14).

Dh=t = U-(W-V)W + 2U'cox . (3.3.16)

Equation (3.3.16), expressing the power transfer, is another of the

differential forms of Euler's Turbomachinery Equation.

With (3.3.14) it is now possible to resolve the problem proposed

following Equation (3.2.12) of how to uncouple the total-enthalpy,

pressure relationship. Equation (3.3.14) can be used to eliminate the

substantial entropic energy derivative.

_. + V- 2W+ Uf U(3.3.17)

From both (3.3.16) and (3.3.17) it may be concluded that only the

component of flow paralleling the blade velocity U contributes to the

energy transfer between the fluid and rotor. Also, from (3.3.15) the

viscous term is greater than zero, and it may be deduced that for

turbines which have positive U energy transfer is less than ideal. For

compressors, with negative U, energy transfer is greater than ideal.

One of several significant issues raised by Equations (3.3.16) and
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(3.3.17) is that (3.3.16) is a valid expression for both ideal and

non-ideal flows, since the viscous correction has already been made.

However, in (3.3.17) the second term of the right member vanishes for

ideal flows. Also (3.3.17) indicates that neither axial or radial

pressure gradients are germane to the calculation of specific total

enthalpy transfer. (Mass flow rates are of course a function of axial

or radial pressure gradients.) Note, in constrast with some views (see

Reference 9 pages 7 and 8), only transverse pressure gradients parallel

to U contribute to total enthalpy transfer. The impulse stages of

turbomachines prove that axial or radial pressure gradients play no

role in energy transfer. Moreover, from (3.3.16) for ideal flows which

have no vorticity only kinetic energy gradients paralleling the blade

motion U contribute to total enthalpy transfer. Thus total enthalpy

transfer like lift is an ideal flow phenomenon (see below) and is a

linear rather than a non-linear property of the flow.

Moreover, since the effects of compressibility may arise

explicitly only in the viscous terms (the argument has thus far ignored

compressibility although extension to the compressible domain demands

addition of a second viscous term), it is concluded that

compressibility effects do not contribute to the ideal mechanism of

total enthalpy transfer. It is restated again that specific total

enthalpy transfer arises only from kinetic energy gradients which lie

parallel to the blade velocity U.

The substantial total enthalpy rate given by (3.3.16) is a

differential form of Euler's Turbomachinery Equation in the

time-independent coordinates of the moving frame. A proper test of
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(3.3.16) would be the applicability of the equation to integration over

the rotor blade-to-blade flow. Moving-frame integration should predict

a total enthalpy transfer compatible with that of the Euler

Turbomachinery Equation. Therefore, the integration of (3.3.16) will

be performed in two tests, one in the three-dimensional domain and the

second in a two-dimensional linear turbine. Compatibility of the

results with Euler's Equation or the consequences thereof will lend

credence to the logic of analysis employed in the derivation of

(3.3.13) through (3.3.17).
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4.0 Integration of the Total Enthalpy Rate

In the integration process it will be assumed that the flow may be

divided into streams which pass between a given pair of blades. In the

rotating frame the streamtube walls are fixed steady-state walls

associated with a steady-state mass flow rate m which may consist of

radial and axial mass flow components.

4.1 Derivation of the Integral Form from the Differential Form

The differential form of Euler's Turbomachinery Equation (3.3.16)

is reproduced here for clarity and ease of discussion:

=t = U.(W.V)W + 2UwxW . (4.1.01)

On integrating it will be necessary to multiply by the density.

fffp fffh0 dT

= fffp[ U(WV)W + 2UcoxW ]rdrdOdz (4.1.02)

The first term of the right member of (4.1.02) is the tangential

component of the convective term obtained on dot multiplication with U,

i.e.;
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pU.(W.V)W

I aW0 W+ aw 0 + Wo WrWG 1
r + --- +W --- + ( rT41 a3

The units in (4.1.03) are power per unit volume of space. The first

and last terms of (4.1.03) will be combined in an integral indentified

by 1,4 thus:
fffrcow rW0

j4r - ' - rdrd~dz •  (4.1.04)

The factors in (4.1.04) may be rearranged to express the radial mass

flow. First notice that

mr(r) PWrAr = mr (4.1.05)

where A,, the normal radial area, is given by

Ar(r) = ff rd0dz = rA OA z . (4.1.06)

If pA OA z is nearly constant in the blade space for steady-state radial

flow then

rW, = constant. (4.1.07)

It will be assumed that an average rWr allowing for blade

thickness variations, etc. has been defined through

rW,(r) = rWr d~dz . (4.1.08)

Then
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1M,(r) =" prr -d-A =- p Wr(r)dOdz = mr (4.1.09)

The last equality arises because the radial mass flow must be

constant in the steady state. We may write:

r cI' 8" r W0
II, 4  (ffprWrdOdzl J r dr (4.1.10)

where

W0 (r) = ff x W dOdz.. (4.1.11)

Combining (4.1.09) through (4.1.11), the resultant integral is

11,4 = mr f d(UW0 ) = mr[(UW) a - (UW O)rl] (4.1.12)

The third term of the right member of (4.1.03) may be written to

show the axial mass flow rate mz explicitly.

13 = f (fp VzrdrdO] dz, (4.1.13)

where the axial velocity Vz has been averaged over A r and AO and

OW(z) = 1 f UWodrdO (4.1.14)

Substituting the axial mass rate for the parenthesis in (4.1.13),

13 = i1 z f d(tt0W) = nj(;[ 0 z)2 - (WOWz 1 . (4.1.15)

The second term of the right member provides an integral which
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contains the tangential kinetic energy.

12 = Jf 2 fj-W d) drdz

- if p [W2(0 2) - W2(0,)]drdz =0. (4.1.16)

Since the tangential velocities at the blade walls is the blade

velocity, the integral vanishes.

Now identifying the second term of the right member of (4.1.02)

as, I5, we may write

IS = f{{ 2pU-cxWrdrdOdz, (4.1.17)

and

15 = fff 2pao2rWrrdrdOdz . (4.1.18)

Again we display the terms representing radial mass flow.

15 = 20 2 f , ffprW, dOdz)dr = 2W2mr f rdr. (4.1.19)

Finally, following the arguments above,

15 M mr[JMr 2 - M( r1] . (4.1.20)

Summing the components of integration, 11,4 through 15,

T P t dr = mr[A,(UW,) + A'r U2]

+ Ml fA CW) . (4.1.21)
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where A r and Az represent the change along r and z respectively.

Now adding mAzO2 which is zero to (4.1.21),

ff PDhd = mrA,[(u+;e)u]

+ m7A[(Oj+W 9)t (4.1.22)

In (4.1.22) the terms W are averaged over 0 and z in the first

term and over r and 0 in the second term. If the total steady-state

mass rate m between a pair of blades is

m = mr + Mi, (4.1.23)

then,

Aho = f, AjOV 6 ) + fz 'Z(V 0) ' (4.1.24)

Equation (4.1.24) represents Euler's Turbomachinery Equation with

mixed flows and the terms V 0 and 0 are averaged over the blade space

where necessary. The coefficients f, and fz represent the radial and

axial fractions of the mass flow.

4.2 Closure in Three Dimensions

The integral expression Equation (4.1.24) exhibits a formal

similarity and compatibility with Euler's Turbomachinery Equation. The

derivation lends credence to the hypothesis that Equation (3.3.16) is

indeed a differential form of Euler's Turbomachinery Equation, (3.3.12)
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in time-independent frames.

A two-dimensional test of the differential form (3.3.16) on an

ideal linear device where the solution is known precisely will now be

examined.
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5.0 The Substantial Total Enthalpy Rate in a Two-Dimensional Device

An infinite circular cylinder with bound circulation, as shown in

Figure 3, is an elemental linear turbine. It may be considered as an

infinite sail on a sailboat or an infinite wing on a sailplane. The

device extracts energy from the ideal inviscid working fluid. Work is

performed on the sailplane (fixed to a vertical rail) by raising its

height at uniform speed U against gravity. Work on the sailboat is

performed by moving the boat at uniform speed U which elevates a weight

attached at minus infinity by an infinite tether. In the moving frame

the apparent velocity of the ideal working fluid at infinite distance

is W 0. The relationship between the absolute and moving coordinate

system and the velocities is given by the Galilean transformation

following (2.0.08) and (2.0.14).

5.1 The Total Enthalpy Transfer Rate

The flow field will exhibit no relative enthalpy gradient in

accordance with (3.3.11) and in the absence of vorticity and viscosity

no entropic energy gradient in accordance with (3.3.13) and is

therefore ideal.

Since the flow field is ideal, the flow domain may be described by
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a potential function or its conjugate stream function. The lift is

therefore the ideal lifting force, L, of the Kutta-Joukowski Equation

given by

L = pWX, (5.1.01)

where F is the scalar circulation. The units are force per unit length

of cylinder. In the absolute and moving frame the lift component LY

directed parallel to the y axis of Figure 3 is given by

Ly = pWo = pVoj', (5.1.02)

where the subscript x represents the x component. Recalling that U is

the velocity of motion of the device (sail or wing or rotating

cylinder) as perceived in the absolute frame, the power is the product

of U and Ly.

Power unit length = pUWo . (5.1.03)

Since we assume that there is no heat rate,

DHf= = -pUW 'F (5.1.04)

where He is the total enthalpy of the system per unit length. Equation

(5.1.04) is the anticipated relationship which should ultimately be

developed from the differential form (3.3.15). Successful derivation

of (5.1.04) from the differential form (3.3.15) should provide further

confirmation of its validity.
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5.2 The Stream Function, Velocity and Relative Enthalpy in the

Frame of the Blade

Since ideal flow has been assumed in the moving frame of the

blade, the stream function, y/, is the usual function modified for

motion along the y axis.

= -Woy(l-a 2/t9)rcosO + Wo1(1-a2/r2)rsinO

+ (f/27r)ln(r/a) . (5.2.01)

The constant a is the radius of the cylinder.

The velocity components in cylindrical coordinates are

Wr = Woy(1-a 2/)sin0 + Wox(1 -a2/r2)cos0 , (5.2.02)

and

W 0  Wo,(1 +a 2/r2)cosO - Wo0 (l +a 2/r 2)sinO - r/27rr .(5.2.03)

The cartesian velocity components are obtained by the usual

transformation as follows:

= W + a2Wo0 (Y2x2) 2a2WovxyWX = x Wo + +y") V (x+ y) z

4- F -(5.2.04)

= -7+

Wy=Wy2a2 W xY a 2W- (X2-y 2 )

(x"7 + y) (ty "

F (x (5.2.05)
S (x2+y2-)  3
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Now the relative vorticity must vanish because potential flow

cannot have vorticity. A check of the vorticity in the relative frame

shows that indeed it vanishes.

Vj X - 0. (5.2.06)

W x  WY 0

If the time-dependent portion of the total enthalpy change does not

vanish, the local time derivative of the relative velocity must be

examined. From (5.2.04) and (5.2.05)

=vl/t = 0 . (5.2.07)

Thus, as expected, from (3.1.01) with vanishing entropy gradient,

angular velocity, viscosity and fixed U,

Vho0  = -awlt + W x (V x V) = 0 . (5.2.08)

5.3 The Substantial Total Enthalpy Derivative Without Rotation

In the linear two-dimensional system, the differential form of the

turbomachinery equations (3.3.16) is simplified because the rotation

vanishes.

Dh = U.( .V)W. (5.3.01)

Since the vorticity vanishes
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W -VW = VW/2, (5.3.02)

and employing (2.0.13)

Dh U - UW 2

fDhf = UVW2 - 2- - . (5.3.03)

The integrated substantial total enthalpy rate per unit length is

DH =f Dt dydx -- 2- dydx. (5.3.04)

The subscript on y in (5.3.04) has been dropped. In terms of the

velocity components

DH = pf U 8(W2  dydx. (5.3.05)

Integration of (5.3.04) will be performed over all space per unit

length z of the blade. The choice of time is immaterial since the

fluid dynamics are steady state in the moving frame and the

thermodynamic rates over all space are invariant with time. It is

understood that the integration applies only to the fluid domain and

that boundaries at solid walls are observed.

DH =U 0r 8W 2/2

t U dydx
- -OO

= 00 f d (W2/2)dx. (5.3.06)

- 0 -Go

See Figure 4 for a definition of the boundary conditions of y on the

blade wall. Since the kinetic energy in a conservative system, like

thermodynamic quantities, is a function of state, the integration in
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(5.3.06) is a function of the endpoints only which is verified by the

fact that the integrand is a total differential.

Puf [ d(W2/2)

- 0

+ f 00 d(W2/2)] dx . (5.3.07)

( a2-x2 )

Since the velocity is uniform at infinity (and all time and space

derivatives vanish at infinity), the contributions at infinity will

cancel in (5.3.07). Therefore

DH 0p 0 (a2 X2) j4
= - (a-X 2 ) dW 2/2)dx (5.3.08)

- Oo-a-
2

According to Figure 4 integration of (5.3.08) with respect to x

yields contributions from -a 5 x a only.

DH =-pU a r(a2-x2) 4J t =-pUd(W 2 + W )/2dx . (5.3.09)
- a -(a 2 -x 2 ) j4

Now from Equation (5.2.04) and (5.2.05) and noting from Figure 3 that

-U = Woy, (5.3.10)

we obtain,
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2 4W2
(W2/2),-.0 = +-+ 2 (x+Y) _ (x'+-y)

+ r 2 2 + a 2W2" ( If2-x + 2a 2Wo .Uxy+ 7r&( x+ + (x+y&)( + (x +yz ) 2

+ Fro. If + 2a 4WoyU x YUy2-x 2)
2 72 ( X,&+ YA) (x- +y-)-

+a2W a ( y4 2-- X 2) + a 2  (5.3.11)+ 2 7r (x,&+ y")" -3 7(xA + y,&)"

and

2 U2  a 4U2(x X 2y 2a 4UWo xy(_.y2)(Wy/2)t-0--"- + 2(x +y + (x +y)

2a 22( 24W 222aU7;pxy aUU (+xy 2) + 2a 0 y 2

+ (x +  Y.4) + (x 2+Y) (x & +Yr'

+a 2Wo ,r 2x + - X 2 + U x

7r(x &+y )+ X2+(x +y')+ 27r(x 2 +yz)

+ U ~ Y-) (5.3.12)
2xt (x-+y)

Now the integration of the total derivative in (5.3.07) is performed

using Equations (5.3.11) and (5.3.12).
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DH -p a F4UWox(a2 -x2);(2x2-a 2)

+ 2W 0 1 Frx (a 2 -X2 ) + 8WoUx(a2 -x 2)
2 WoFT(a2 x2 ) 4a

+ Wor(a 2-x2) + 4W 0 Ux(a 2 -x 2)$4(a 2-2x 2)

+ W '(a 2x 2 )a4) 4(a2- 2x 2) ]dx. (5.3.13)

Note that only terms of (5.3.11) and (5.3.12) which are odd terms in y

make any contribution to (5.3.13). Since the first and fifth terms

cancel, only four terms remain. The integration with respect to x is

performed through a transformation employing

x - a cos0, (5.3.14)

and

dx - -a sinO dO. (5.3.15)

The integration limits are given by

0 = 7r when x = -a

0 = 0 when x = a. (5.3.16)

Making the substitutions
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t -p (W o cos2esin2Ode
0 w 0

- 8WoUa 0 cos0sin 2OdO WO 0 sin26d

- sin2e(I2coe)de) . (5.3.17)
it

In (5.3.17) the second integral makes no contribution because it is

antisymmetric. The first integral cancels the second term in the last

integral to yield from the surviving terms

DH -pWjU = - pVFU . (5.3.18)

Equation (5.3.18) is identical with (5.1.04), and this result

consititutes confirmation of the validity of the differential form of

the turbomachinery Equation (3.3.15). For the linear case, the energy

transfer rate of the rotor is proportional to the component of the

kinetic energy gradient parallel to the moving rotor (or sail).

Recall that energy transfer occurs in the narrow domain of

integration indicated in Figure 4 which ranges to infinity. Thus the

velocity of sound must be infinite in the potential system in agreement

with the assumption of incompressibility.
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6.0 The Integral and Differential Isentropic Efficiency

The usual expression for the isentropic efficiency of a turborotor

is integral in form. The information used to generate the isentropic

efficiency is obtained from the measured thermodynamic flows, the

pressure, and the temperature at the inlet and outlet frames of the

device or if possible of the rotor and stator sections. The recorded

information represents the integral end points of the thermodynamic

conditions and the integral form of the efficiency is the useful form.

6.1 The Integral Expression for the Isentropic Efficiency

The classical isentropic turbine and isentropic compressor

efficiencies, ilt and il, are given by

77t = ((Aho)ide.l/AhO)' (6.1.01)

and

=1, = (A ho)ida./jA h, . (6.1.02)

The ideal integral total enthalpy change includes the entropic loss

term.

(A h0)idwa = A ho- I Tds . (6.1.03)

The absolute value of the ideal total enthalpy change is larger than

I AhoI for the turbine rotor and smaller than IAhoI for the compressor
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rotor.

The rotor entropic energy rate is obtained from the integration of

(3.3.14) over the rotor space.

Df dr = -ff uW.V 2(f+ J)rdrddz, (6.1.04)

Finally,

DT dr = ds (6.1.05)

Combining (6.1.04), (6.1.05) and (6.1.03) with (6.1.01), the isentropic

device efficiency becomes

= (1 - fTds/Lho)± (6.1.06)

The positive subscripted exponent is used for the compressor rotor

efficiency where Ah. is positive, whereas the negative sign is used for

turbine rotors wherein A ho is negative. The integral form of the

efficiency may be written

J7+ = (1 +# f -V2( W + U)dr/iipU.(WVW+2W x W)d) ±'.(6.1.07)

6.2 The Differential Form of the Efficiency

A differential form ID is obtained from Equation (6.1.07) by

dropping the integrating operations.

ID. = (1 +VfV2(W+U/U.(W.V'W+2w xW,))± . (6.2.01)
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This differential form is not very fruitful for calculations of the

integral device performance. Nor is it very sensitive as a measure of

the local level of loss in the design of blade shapes. A parameter, fl,

more sensitive by an order of magnitude should be the ratio of the

entropic energy rate to the substantial total enthalpy rate or

S= _vW" V 2(W+ ) (6.2.02)
U.tVW 2 /2+ Z x W]

It is interesting to separate the potential and rotational

components of the total enthalpy transfer. Moreover, it is noteworthy

that great success has been achieved in the design of marine screws,

etc., using the assumption of pure potential flow. Therefore, the

rotational component of the flow will be written thus:

VxW+2w = (VxWs+2O)+VxW,, i = , (6.2.03)

where V x W is the non-ideal vorticity, V x W5 is the relative vorticity

in ideal flow, the parenthetical ideal term vanishes, and e is a

residual vorticity arising from non-ideal viscous mechanisms. Then

16 = vW" V2 (W + U) (6.2.04)
U.[VW 2 /2+ xW]

Also the ratio may be written with non-dimensional starred variables

including the Reynolds and Ekman numbers.
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[R j. V* j* /2

vW* V* 2 ( W*+U*)

+UkT* • *xw'* - (6.2.05)
+ Ek v*W*-V*2(W*+O*)

In bulk axial flows, the residual vorticity will be small compared with

the linear velocity. Therefore, in the bulk flow the Ekman number will

be small and the rotational contribution will be small. In the

boundary layers the Ekman term will be the more significant term. In

any case, the beta ratio can be examined immediately to study the

consequence of modifying blade geometry and fluid flow field.
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7.0 A Practical Application of the Differential Form

Let it be assumed that the differential form, Equation (3.3.15),

is employed in a situation where the Coriolis term may be neglected.

This will be the case when the ratio of forces from linear kinetic

energy gradients to Coriolis force is large (as measured by the Rossby

number) in a linear cascade of rotor blades. For this system the

geometry may be cartesian. Then from (3.3.15)

Dh U aW (7.0.01)
5t = U'VW2/2+U'(VxW+2co)xW = --F-" .

Note that in an ideal system the vorticity term would vanish in any

case.

In a turbine rotor, it is expected that most of the flow will

exhibit a negative substantial total enthalpy derivative so that net

work is performed by the rotor outside the system. Figure 5 shows the

streamlines of a linear cascade observed by the observer moving with

the blades. Velocity vectors just above the suction surface of the

blades are significantly larger than the velocity vectors on the

pressure surface of the blade. On the pressure surface there is a

sudden decrease in the velocity. In contrast, the velocity increases

rapidly just above and beyond the stagnation point over the suction

side of the blade. Thus for this region the kinetic energy gradient

must be positive with total enthalpy.
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Figure 6 shows lines of equal total pressure for a two dimensional

moving cascade of turbine blades10 . Although the analytical results

displayed in the Figure are based upon a viscous Navier-Stokes

treatment of the flow field, the viscous losses are only of the order

of 6%. Thus, the total enthalpy gradient is approximately very similar

to the total pressure gradient. The results in the Figure show that

positive increases in the total enthalpy occur just above and beyond

the stagnation point on the suction side of the blade as predicted in

the previous paragraph.
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8.0 Conclusions

Galilean transformations between the absolute and moving frame

impose a crypto-steady-state relation between time derivatives of a

thermodynamic function i. the absolute frame and their gradients in the

moving frame. These crypto-steady relationships are inherently

contained within the Navier-Stokes Equations for the absolute and

moving frames.

The substantial total enthalpy derivative coupled with the

substantial entropic energy derivative may be written solely in terms

of the flow field of the moving frame. In the moving frame the

relative total enthalpy, known as the rothalpy yields a vanishing

substantial derivative. Therefore the substantial entropic energy

derivative is uncoupled and explicit in the moving frame. This

explicit substantial entropic energy derivative is invariant in all

frames and may be used to obtain an uncoupled explicit substantial

total enthalpy derivative. This latter derivative was hypothesized to

be a differential form of Euler's Turbomachinery Equations corrected

for real viscous losses.

The fact that integration of the differential form indeed yields

the classical integral form of Euler's Turbomachinery Equation

validates the aforementioned hypothesis. Applied to a two-dimensional

linear turbine such as a sailplane with infinite sail, the significant

contribution derives from the gradient of the kinetic energy in the
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direction of blade motion.
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a) Absolute frame
P(r, 0v, z) is fixed in space. Time changes. Blades rotate.

SUCTION SIDE

PRESSURE SIDE

B ADE 2 pz

r,Ov, z r r,z,t

OVER TIME, ..It, THE PRESSURE SIDE OF THE NEXT BLADE
MOVES TO THE POINT P(r, 0 , z).

Fig. 2. Interpretation of the time-dependent pressure term in rotor flow
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b) Moving frame
P(r, z, to) moves towards increasing 0,, in a fixed instant, to. Blades appear stationary.

C)

Ov IS FIXED IN SPACE t IS FIXED IN TIME

P2 - LL P2 -

U) P1  - U) PiU) WLU a:
a0.

A= (2rr/n - 8)/ .)Aw = 2ivn -

I __ __ __,__ _ __ __ _ _ I_

time OW, Ow OW,

Fig. 2. Interpretation of the time-dependent pressure term in rotor flow (cont.)
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Fig. 4. Zone of interaction between the fluid and the blade.
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Fig. 5. Fluid field behavior in a moving cascade of blades
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Fig. 6.Lines of constant total pressure (not to scale) (After Rai).
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