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1. INTRODUCTION

This report documents in-house efforts undertaken to understand the
problems confronting the utilization of "non-von Neumann" architectures.
It is easy to observe that a new era in computer architecture has
arrived. This is evidenced by the difficulty to obtain the necessary
performance from the conventional von Neumann computer model
designed in the 1940's. Hence, there appears to be a rapid
transformation from single processor machines, which are typically von
Neumann based, to multiple processor machines that emphasize
concurrent processing, which have been classified as non-von Neumann. It
is increasingly apparent that the utilization of non-von Neumann
computer systems is necessary to satisfy many of today's, as well as
the future's, computational requirements. The increasing complexity of
many applications demand higher computer performance every year. The
technological constraints that influenced the von Neumann machine
have drastically changed over the years. Advances in VLSI technology
have provided a multitude of relatively inexpensive high
performance processors. In lieu of utilizing a single computer, new
methods have been envisioned to reach solutions through the use of
many processors.

Quite simply, non-von Neumann architectures refer to the classification of
computer architectures that are not sequential (von Neumann) in
nature. Non-von Neumann computers have been designed to meet the
processing demands of a wide variety of computationally intensive
applications (both numeric and non-numeric in nature) that currently
exist in a diverse number of fields, ranging from education to aerospace
engineering. However, this report believes that the term non-von
Neumann is a bit of a misnomer. This report is concerned with only the
truly intended meaning of non-von Neumann architectures that
specifically involve some form of concurrency in the processing of
instructions and/or data. For lack of a better term, this subset will be
referred to as "non-von Neumann" architectures, or "NVN"
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architectures. The reason for the distinction is based upon the

observation that many current computer systems are by definition non-
von Neumann in nature, but do not support concurrent processing.

For example, consider MULTICS. MULTICS is basically a large-scale

processing system that employs a number of different processors and
allows for operations to be done simultaneously which does not adhere to
von Neumann programming techniques. Hence, MULTICS is obviously
a non-von Neumann computer. However, it cannot be considered a
"NVN" computer since it does not support concurrent processing of

one application. (A more formal definition of "NVN" computing is
provided in section 3.)

To provide a better illustration of what "NVN" computing is all about,

consider the following analogy between a compoter and a house. The
analogy is based upon the notion that the construction of a house is very
similar to some of the aspects of concurrent processing. For example,
each individual worker in the construction of a house can be thought of as
a single processor. In this light, the construction crew as a whole
represents a "NVN" computer. Just as several kinds of workers
(masons, carpenters, plumbers, electricians, etc) may be employed in
the making of a house, it is possible to design a concurrent computer that

is made up of several different kinds of processors, each specialized for a
particular task. Similarly, just as carpenters must communicate with e ch
other if they are to build walls that line up with one another, so must te
processors in a "NVN" computer be able to communicate with on,

another if they are to work together on a single large problem. The
analogy can also be extended to the way work is divided. Imagine
that in building a brick house, each bricklayer is assigned a particular

stretch of wall. Each worker executes the same operation, but in a

different place. Likewise, a computer problem can sometimes be divided
in such a way that each processor performs the same operation but on a
different set of data. Also consider that when a worker completes his

assigned task he can be reassigned another task. A processor can also be
reassigned tasks. In this sense the workers as well as the processors are
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both reprogrammable. (This analogy will be portrayed throughout the

remainder of this report to help describe "NVN" computing.)

"NVN" architectures can consist of tens, hundreds, or even thousands of

individual processors that are collectively grouped together. These

processors can be comprised of very simple processors (1 -bit) to a

collection of stand-alone processors, which are very powerful in their

own right. It is also possible to mix different processors together in a

"NVN" environment. The necessity for obtaining an understanding of

"NVN" architectures is based upon the realization that parallel

computing is drastically redefining traditional computing. Basically, the

"NVN" approach to computing has emerged as a promising architectural

alternative to bridging the gap that has appeared due to advances in

micro-circuit technology and the increasing costs associated with those

advances [35]. The foremost significant strength that the utilization of

"NVN" architectures lies in the fact that many applications and

problems inherently possess concurrency in their definitions. However,

the major obstacle that presently prohibits the effective use of these

advanced computer architectures is the identification of the most

productive means of applying them. Achieving high performance

through the effective utilization of "NVN" architectures does not

entirely depend upon using faster and more reliable components, but

also on developing major improvements in processing techniques, most

of which are software engineering issues.

There are currently numerous non-von Neumann architecture type

machines in existence today, with new and advanced architectures being

developed at an alarmingly increasing rate. It is apparent that

concurrent computing is a very strong candidate for future processing

needs, as is evidenced by the use of "NVN" architectures in many areas

of today's research as well as in commercial ventures. The

development and application of "NVN" systems requires a strong

knowledge of the underlying hardware and software structures. A

broad knowledge of parallel computing algorithms as well as the optimal
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allocation of system resources are also needed. Typically, "NVN" systems
entail such architectural classes as parallel processors, array processors,

pipeline machines, multiprocessors, vector processors, data flow
machines, and systolic array machines. These are discussed in greater
detail in section 3.

On the whole, this report is meant to provide insight into the
interaction between "non-von Neumann" architectures and the software

that they support. As the title of this report suggests, the largest
problem that "NVN" architectures currently face is not in the hardware

but in the software. Current technology has progressed to the point of
providing relatively complex and inexpensive means for building a
multitude of advanced computer systems. However, software

engineering technology remains oriented towards conventional von
Neumann methodologies. This has resulted in a very fragmented
software engineering environment. Since these machines are highly

concurrent in nature and usually rely upon the specific application to
determine their structure and size, a deep-rooted understanding is
necessary to determine exactly what software life cycle tools and
techniques are necessary for their exploitation. Many software

engineering disciplines need to be addressed, including: the choice of
high-order languages, the need for new languages, the actual coding in a

selected higher-order language, the need or utilization of translators, the
necessity for the development of truly parallel operating systems, the

availability and use of existing tools, and the need for the development of
new tools and techniques such as the development of an optimizing

language compiler. Ground rules need to be developed for architecture

selection. "NVN" system and software life cycle definitions are needed to
support current and future applications. It is also important to

understand the ramifications associated with how to best match
software engineering technology when the problem domain calls for a
hybrid mix, or in other words, when sequential and concurrent processing

is utilized in marriage with each other in a single environment. Hopefully

this report will provide the necessary insight into many of the
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software deficiency issues confronting the utilization of "NVN"
architectures.

2. BACKGROUND

2.1. History. It has been observed that since the inception of
electronic digital computers in the commercial world, since about 1950,
the performance of computing machines has increased at an approximate
order of magnitude every five years or so [36].

The underlying rationale for the development of new computer
architectures has remained relatively static over the years. Typically,
increased computing power and performance, reduced costs, application

The advent of modern
electronic computers Encore Multimax
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Figure 2-1: The Observed Performance Increase of
Modern Computing Machines
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support, and advanced programming language support have been the

main driving forces [2]. Figure 2-1 is provided to show the rate of

advancement in terms of computing power [36].

However, it should be noted that only a percentage of the performance
increase can be contributed to the development of new components

through the years, such as transistors and VLSI memory chips. Much
of the increase is largely due to various advancements that have been
made in computer architecture design and development. Obviously
many of the emerging advanced high performance computer
architectures that are continually being developed utilize new
technological advancements, but the underlying computer architectures
are the key to the performance increase. As noted previously,
however, is* that these machines need advanced software techniques to

fully realize their potential.

2.2. Computer Generations. The advancements that have been made in
computing and computing machinery can be roughly classified into a
number of generations (although some machines are extremely difficult to
place in one generation over another). Generally, there are a number of

driving forces that have been observed which can be used to determine
the evolution from one generation to the next, such as the underlying

system architecture, electronic component technology, processing mode,

and programming languages. The following subsections attempt to trace
the progress of computer technology through the years [26], [36], [38].
Many people have tried to classify computer technology advancements
into generations, such as the one that this report provides. However,
most of the time periods fluctuate between different viewpoints. For

example, Hwang defines the period entailing the second generation to be
from 1952-1963 while Baer projects that the period from 1958-1964 is
more accurate [6], [221. The computer generations that have been
provided in this report are yet another attempt to better pinpoint

generation time frames. The information is provided at a relatively high
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level of detail so that a familiarity of the rate of technological
advancements in the area can be appreciated.

Figure 2-2 portrays the evolution of "modern" computer systems that is
derived in this report. It should be noted that adjacent generations may
overlap each other since the life span of a generation is intended to
include both the technological development of computer architectures as
well as the utilization period of the machines within a particular

generation.

The advent of modern
electronic computers
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2.2.1. Zeroith Generation. Since the inception of modern electronic
computers occurred around 1950, 1950 is considered the beginning of the

computer age and will be referred to as the initiation point of the first
computer generation. Therefore it is only natural to describe computer
system design and development prior to 1950 as being the pre-first-
generation of computer architectures, or, as it will be termed here, as
belonging to the "zeroith generation." The very first electronic

computers that were built were based upon the work performed in the
1930's and 1940's. This work laid the fundamental foundation for the
advent of the first modern digital computer. (In fact, these first electronic

computers were either the result of government supported research
centers or academic efforts.) Many of the ideas and discoveries,
although considered as great technical advances in the field, were
mainly built upon work done by Charles Babbage nearly 100 years

before. Hence, the "Babbage" machine that was designed in the 1820's
and 1830's is generally referred to as the computer of the first general

purpose computing machine.

The ENIAC, which stands for the Electronic Numerical Integrator And

Computer, is considered to be the first electronic computer to actually
have been developed. Finished in 1946, the ENIAC was composed of
18,000 vacuum tubes, 1500 relays, and used 150 kilowatts of power.
Designed for the purpose of computing ballistic trajectories, it was built in
a U-shaped configuration that was over 100 feet long (overall) and 8 1/2
feet in height [22]. The machine was wired specifically for one
computational application at a time and any changes or modifications
necessitated rewiring the computer. Hence, the set-up time was very
long, typically anywhere between one-half hour to one day [261.

Also of significant importance during this time frame was the inception of
the concept of having a computer program stored in memory. John von

Neumann, who is credited with inventing memory stored computer
programs, became enlightened with this concept when working as a
consultant to the group that designed the ENIAC. Based on this
experience, von Neumann and his colleagues designed the first stored
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program computer, called the EDVAC (which stood for the Electronic
Discrete Variable Automatic Computer). The development of the EDVAC,
however, was severely hindered by the departure of key researchers,
including von Neumann. Subsequent to its fabrication, the research that
went into the design of the EDVAC gave birth to a number of other
machines and ideas. One was the work that von Neumann undertook
after leaving the EDVAC project. He and his collaborators designed and
built the IAS (Institute for Advanced Sciences) machine which is more
commonly referred to as the von Neumann machine [6]. Since this
particular machine is the frame of reference for what are now
considered serial computers, the definition of non-von Neumann machines
or architectures is can easily be derived (provided in section 3).

2.2.2. First Generation. First generation computers can be (arguably)
grouped into the time frame encompassing the years from 1950-1957. It
was during this generation that the commercial electronic computer
industry essentially came into existence. Hence, it is generally
accepted as giving birth to the computer industry. Computers designed
and developed during the first generation still utilized the vacuum tube
and electromagnetical relay technology of the 1930's and 1940's to
implement logic and memory. Generally, first generation computers were
designed for scientific processing applications and utilized machine
language programming. The major computer architectural advances that
transformed computer technology out of the zeroith generation and into
the first generation can be typically associated with the design and
development of the UNIVAC (UNIVersal Automatic Computer) machine.
The major computer architecture advancement of the UNIVAC was its
tape system - magnetic tapes that had the capability to be read forward
and backward, which also provided the capability for buffering and
error-checking [6]. Many models of the UNIVAC machine were
eventually developed and the UNIVAC-I was the first successful
commercial computer (developed for the Census Bureau).

18



2.2.3. Second Generation. Second generation machines roughly entail

computer architecture advancements that were observed in the period
from 1956 to 1964. The movement from the first generation to the second

was primarily due to significant advancements in electronic technology.

Generally, first generation machines are characterized by vacuum tubes.
Second generation machines now employed transistors. By utilizing

transistors, computers could be designed and built cheaper, smaller, and
with less heat dissipation problems. Other notable advancements that

are associated with second generation computers are their utilization of
magnetic core memory, mass storage utilization, the use of printed
circuits, the introduction of batch processing, input/output processors, and
index registers. Second generation computers were now designed for

scientific as well as business applications. Various assembly languages and

the first high-order programming languages - FORTRAN, COBOL, ALGOL,
PL/1, and even LISP - were also developed during this generation.

Although going through a number of changes, FORTRAN and COBOL (which
was developed under the direction of the DOD) are still considered to be

the standard high-level languages for non-academic purposes.
(Moreover, LISP is still widely used and is considered a standard for
Artificial Intelligence applications.) The IBM 700/7000 series is a typical

example of second generation computers [6], [24].

2.2.4. Third Generation. The passage into the third generation of
computers was not a clear-cut transition in terms of technical advances as
was evidenced in the transition into the second generation. The third

generation is typically identified with the advent of integrated circuits

and generalized multiprogrammed operating systems and can
generally be associated with the time period from 1962 to 1980. During

this generation, the size and cost of computer systems significantly
decreased due to two related facts - the widespread use of small-scale
integrated (SSI) and medium-scale integrated (MSI) circuits, and the

decrease of hardware costs. Also, multi-layered circuit boards were now

used. Computers of the third generation could generally support efforts in

all application fields. Magnetic core memory that was prevalent in earlier
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computers now utilized semiconductor memory technology by
implementing solid-state memories [6]. Processor design became easier
and more flexible due to microprogramming techniques.
Multiprogrammed operating systems, timesharing, and virtual memory
developments were also being incorporated [22]. Furthermore, the
advances made in compiler technology during this period greatly
increased cost effectiveness [26].

The IBM System 360/370 series is a typical example of a third generation
machine. The major differences between the IBM 700/7000 series and
the IBM System 360/370 series were made in the CPU. However,
the differences were severe enough that compatibility between the series
was non-existent. Other third generation machines include the PDP-8,
PDP-11, and CDC 6600 [36].

2.2.5. Fourth Generation. Generally it can be said that we are

currently experiencing the fourth generation of computer technology,
which commenced around the mid-1970's. The fourth generation has

experienced many new and advanced high performance computer
architectures. Many of the machines that utilize these advanced
architectures are being developed to exploit new technological
breakthroughs in both hardware and software, although at this point in
time software development is severely lacking when compared to
hardware advancements. Typically, fourth generation computers are
characterized by large-scale integration (LSI) and very large-scale
integration (VLSI) technology to construct logic and memory
components. Most of the operating systems for fourth generation
machines are timeshared and utilize virtual memory. Parallelism,
pipelining, and multiprocessor techniques are also widely prevalent.

High-level languages are being extended to handle both scalar and vector
data structures [26], [36]. The fourth generation of computers also
witnessed the proliferation of small machines, mostly in the nature of
personal computers.
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2.2.6. Fifth Generation. Generally, fifth generation architectures are aimed

at artificial intelligence and knowledge-based systems. Manipulation

of massive amounts of information, inference processing and problem

solving, and user-friendly interaction via man-machine interfaces are
the key design concerns [38]. Most current computers, whether they be

von Neumann or non-von Neumann based, possess relatively inflexible 1/O
interfaces. For systems to become more user-friendly, interaction with

users must be achieved at a higher level through such means as speech,
pictures, and natural language. The application of technology to
problem application representation and solution is generally considered

as the major driving force behind the future move into fifth generation

design and development. Allowing voice, pictures, and natural language
input to be accomplished in real time requires computing power that

is not currently available on standard architectures [261. Hence, the
actual transition into fifth generation machines has not occurred yet.

2.2.7. Summary and Observations. It has become apparent that the
future in computer architecture design, development, and utilization has
seen a sharp departure from the original von Neumann computer model.
Many of the changes that have evolved from one generation to the next
have provided the necessary impetus for this departure. Most of the

changes have severely impacted the speed, flexibility, and cost of the
various components that are utilized in today's computer systems.

Obviously, this report bases its premise on fourth generation computers
since, generally, "NVN" machines can be classified as fourth generation
computers. Software development has steadily progressed throughout the

evolution of previous generations but has so far been severely lacking in

the utilization of many fourth generation computer systems. Software
based methods, techniques, tools, and algorithms are sorely needed to

fulfill the promised speed and applications that "NVN" machines offer.

It is interesting to note that despite the advances made in computer
systems, and the increasing number of individual components that make

up these systems, today's computers are really quite basic in terms of
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functionality. For example, consider the world's first computer
designer, Charles Babbage, who primarily designed in the 1820's what is
considered to be the first general purpose digital computer. Called the
Analytical Engine, and although never built, Babbage formulated ideas
that have been re-utilized over and over again throughout the history of
computer architecture development. Although today's computer systems,
and their predecessors before them, are primarily considered as direct
descendants of ideas that were devised in the 1930's, these ideas were
basically rediscoveries of what Charles Babbage had written about in the
1820's and 1830's. In fact, by the mid-1950's, most of what Babbage had
proposed had been implemented. Moreover, Babbage's design methods
and ideas for machine organization are still being utilized even in current
computer systems.

2.3. Today's Processing Demands. As today's processing needs and
requirements continue to become more and more complex, enormous
processing power is required to meet their associated computational
demands. To be able to solve these requirements in a reasonable time,
very powerful computer systems are needed. Much of today's current
computing equipment is based on the von Neumann type architecture.
Since the von Neumann architecture is characterized by sequential
processing techniques, utilizing word-at-a-time processing, it has been
found to be very successful performing complex computations on
relatively small amounts of data. However, this architecture is
extremely inefficient when performing even simple computations on large
amounts of data. This is due to the fact that a von Neumann type
machine does not utilize its hardware efficiently. It has been shown that
the performance of a conventional serial computer of this type is severely
limited by the data transfer capability between the processor and
memory. (The time required to transfer data is usually limited by the
speed in which data and instructions can be moved both in and out of
memory). The inability to quickly utilize memory at an appropriate
speed has been generally referred to as the von Neumann bottleneck.
This bottleneck has been a major driving force behind the advancement of
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new and advanced computer architectures which are better suited for
current processing demands and techniques.

As mentioned in section 2.2, many efforts have been pursued to increase
the processing speed of computers. For a long time, most speed
increases were achieved using faster components while maintaining the
same basic computer architecture structure (ie, vacuum tubes were
replaced by discrete semiconductors - those discrete components were in
turn replaced by integrated circuits core memory was replaced by
integrated memory chips). However, today's components seem to be
approaching a practical speed limit - the speed of light. (It is known that
signals cannot propagate through a semiconductor faster than the speed
of light). To help alleviate this constraint, modem high-speed chips are
designed to be extremely small in order to reduce the length of
interconnections and thus increase speed [40].

Since faster components alone do not satisfy the current demands for
high speed computing, the use of other approaches are being exploited to
alleviate the performance limiting bottleneck described above.
Typically, the methods for computation speedups that are necessitated by
these demands involve both hardware and software [28]. Figure 2-3 is
provided to show the basic speedup mechanisms and associated
problem areas for "NVN" applications.

Subsequently, "NVN" architecture approaches have been developed to
provide the necessary processing power for application domains which
require concurrent processing of large amounts of data. These
approaches utilize the fact that many computations in a program do not
depend on each other, and can therefore be executed simultaneously,
allowing the computer to process information ten to one-hundred times
faster than conventional uniprocessor systems.

One such approach is to overlap execution, which is generally referred to
as pipelining. This approach is extensively utilized in many modern
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supercomputers (such as the Cray-i and Cyber 205). Another approach is
the use of a collection of computers coupled in some way to do faster

processing, which has been referred to as parallel processing. Many
ways to combine computers have been proposed and implemented
ranging from multiprocessor systems, where a set of identical and/or

different processors are interconnected, to array processors, where a large
number of processors execute the same instruction on different sets of

data.

Mechanism Problem Area

1) Faster and More: Reliable Electrical Engineering
Components Material Engineering

Physics

11) Advanced Architectures System Design Engineering
(Including Interconnection
Networks)

Ill) Programming - Advanced Computer Science
Languages Computer Programming

Mathematics

IV) Optimizing Compilers Software Engineering
Computer Programming

V) Software Engineering Systems Engineering
Environments Software Engineering

VI) Computation Analysis Computer Science
and Testing Software Engineering

Figure 2-3: Computation Speedup Mechanisms for "NVN" Computing
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A major advantage of a "NVN" architectural based implementation is the

time sharing of processing and peripheral units of a computing system
among several jobs. The prime impetus for the original development of
non-von Neumann systems arose from their potential for high
performance and reliability [28]. Today, it appears that performance,
cost, and programmer productivity are the primary driving forces

(which are influenced by both hardware and software). It is easily
recognized that non-von Neumann systems have a multitude of
advantages over the von Neumann system. Non-von Neumann systems
can promise a much higher availability of resources since they operate
as storehouses of resources organized in sequential classes. They also
possess a great reserve power which, when applied to a single
problem with the appropriate degree of parallelism, can yield a high

performance and extremely fast turnaround time. By utilizing two or
more central processing units (with all units operational), each processor

can be assigned a specific activity within an overall control program.
The failure of any one processing unit would degrade, but not immobilize,

the system since a supervisor program could re-assign activities and
can reconfigure a system so that a deficient processing unit is logically
"out" of the system configuration. The failure of a processing unit
in a conventional von Neumann system, however, would disable the
processor completely. Also, the fact that surplus resources can be
applied to other jobs (so that the system is potentially ultra-efficient)
produces a very high utilization of available hardware.

Sharing in non-von Neumann processing systems is not, however, limited
to only hardware. For example, many systems utilize common use of data
sets that are maintained in a system library or file structure. This may

represent significant savings in memory storage space as well as in the
processing time associated with I/O and internal memory hierarchy

transfers. Another advantage of many of today's non-von Neumann
computers is their intrinsic modularity. This facet allows for the
expansion of the basic system architecture in which the only effect of
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expansion on the user is improved performance. Many times the
expansion of a non-von Neumann system consists of nothing more than
networking identical processor-memory modules. Before, if a user needed
additional computing power on a von Neumann based machine, they
would typically have to purchase a larger machine or physically
reconfigure the current system configuration (ie, add memory, upgrade

I/O capability, etc). This is not the case for most non-von Neumann
based machines since add-on modular growth without system
restructuring is usually possible.

2.3.1. Ramifications. Where does today's software engineering
technology stand in relation to "NVN" computer utilization? Until
recently, software engineering technology has focused on the use of
conventional von Neumann computer architectures and non-von
Neumann architectures that do not support concurrent processing. As
previously mentioned, current computer systems typically feature
increasing computational resource requirements which have become
unfeasible or unrealizable using conventional von Neumann techniques.
The advent of "NVN" architectures has provided the necessary
impetus to offer solutions that can achieve this application requirement.
Since "NVN" architectures feature multiple processing elements, they
possess a much greater utilization factor than sequential architectures
characterized by von Neumann machines. Because of this, a multitude of
application areas can be addressed which were once not possible.
However, manufacturer's are increasingly concerned that they are
unable to commercially sell their products. The problem lies primarily
in software. Quite simply, there does not exist enough "real" software,
nor software engineering tools, to effectively support these machines.

The field of "NVN" computing is at an extremely critical juncture. If the
pace of progress for these machines is to continue, software
development holds the key to success. From a system standpoint, such
topics as how processors are coupled, how they communicate, how they
perform computations, and how an application needs to be broken down,

26



are very important considerations. The software development and
engineering mechanisms to perform these functions are just as critical.

3. BASIC CONCEPTS

3.1. "Non-von Neumann" Computers. What exactly is a "NVN" machine?

Quite simply (as alluded to in section 1), the term non-von Neumann
computers refers to the class of machines that are not based upon the
architecture of a sequential machine. (Also mentioned earlier in this
report was that the notion of having a program stored in memory is

generally attributed to John von Neumann, hence the term von
Neumann computer). This report is concerned with the subset of non-von
Neumann architectures that support concurrent processing, which this
report denotes as "NVN".

It should be noted that there exist two conditions for supporting "NVN"
computing as it is defined in this report. For one, a non-von Neumann
architecture is necessary to provide the required hardware vehicle to
support concurrent processing. Secondly, the sufficient mechanisms to
allow the hardware to permit concurrent processing to occur, such as
communication and synchronization methods, must be present. Hence, for
"NVN" computing to occur, there must exist both necessary and sufficient
conditions. Obviously then, the utilization of a non-von Neumann
machine does not in itself provide the-means for "NVN" processing. To
effectively utilize the hardware, software mechanisms must also be
employed. However, it will be beneficial to explain what a conventional
von Neumann serial computer is in order to understand what a non-von

Neumann machine is not. Once this is accomplished, the subset of "NVN"
computers will be easier to understand. Therefore a detailed
description follows [61, [91, [431.
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Specifically a von Neumann computer exhibits an architecture that
consists of the five basic elements (von Neumann referred to them as
"main organs") portrayed in Figure 3-1 below.

CONTROL

V I TA.L. 

Key:
-- ,o-Data/Instruction Flow

$* Control Flow

Figure 3-1: The von Neumann Machine Architecture

To put words to the picture, the following dissertation is also provided to
help further describe the "specific components of a von Neumann
machine architecture:

1) Input. The input element transmits data and instructions from
the outside world to the memory. This allows a user or operator to
communicate with the computer.
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2) Memory. The memory element stores the data and
instructions that are transmitted via the input. Information used during

the computational period performed by the computer are also stored in
memory. Conceptually, there are two different forms of memory:

the storage of numbers and the storage of instructions (called "orders" by
von Neumann). Von Neumann formulated the concept that if the
instructions of a computer could be reduced to numerical form, and the

computer could distinguish between a number and an instruction, then
the memory element could be used to store both numbers and
instructions, hence, the genius of the first memory stored program

machine.

3) Control. The control element sequences and controls the
operation of the computer. Specifically, the control circuitry of
the computer interprets the instructions of the program (stored in
memory) and then orders the arithmetic logic unit to perform the

necessary operations.

4) Arithmetic Logic Unit. The arithmetic logic unit (ALU)
performs arithmetic and logical operations on the data that is stored

and fetched from memory. The control element tells the arithmetic

logic unit which operation it is to perform and also supplies the necessary

data for it.

5) Output. The output element transmits the final results and
messages to the outside world, which are usually coordinated by the

control unit. This event occurs when a computation has concluded or

when the computation has progressed to a previously determined point.

Basically then, a non-von Neumann architecture does not adhere to this
methodology. To further narrow down this description, "NVN" processing

is a computing technique that involves two or more interconnected
processors (which can be von Neumann in nature) that concurrently

perform different portions of the same application.
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Figure 3-2: "Non-von Neumann" Computers

As seen in Figure 3-2, there exists a wide variety of computers that can be
classified as non-von Neumann. Since this report is intended to provide
insight into the concurrency issues of non-von Neumann computing.
the following subsections briefly describe the types of machines whose
architectures are classified as "NVN" [6], [10], [15], [22], [25], [26], [36].

3.1.1. Array Processor. An array processor is nothing more than an
attached processor that uses pipelining to manipulate vectors, but
without utilizing vector instructions. Array processors are also
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referred to as attached processors and are considered a low-cost
alternative to a vector computer.

3.1.2. Associative Processor. An associative processor is basically a
processor with an associative memory. Instead of having a random access
memory, an associative memory permits the entire memory to be
simultaneously searched. The Goodyear Aerospace STARAN is an example
of an associative processor.

3.1.3. Data Flow Computer. A data flow machine possesses an
architecture in which the sequence of instruction execution depends not
on a program counter, but on the availability of data. An instruction
executes when, and only when, all the operands required are available.

3.1.4. Multicomputer. A multicomputer is a multiple-CPU computer
designed for parallel processing, but which does not utilize a shared
global memory scheme. Instead, each processor has its own private
memory. All communication and synchronization between the processors
is accomplished via message passing. The Ametek S/14 and the Intel
iPSC are examples of multicomputers.

3.1.5. Multiprocessor. A multiprocessor is a shared memory
multiple-CPU computer designed for parallel processing. Unlike
multicomputers, multiprocessors are allowed to directly share main
memory. The processors in a tightly-coupled multiprocessor set-up
employ a central switching mechanism that allows them to utilize shared
global memory. The Delencor HEP, Carnegie-Melon's C.mmp, and Encore's

Multimax are examples of tightly-coupled multiprocessors.
Loosely-coupled multiprocessors, on the other hand, share memory space
by combining the local memories of the individual processors. Examples
of loosely-coupled multiprocessors are Carnegie-Melon's Cm* and BBN's
Butterfly machine.
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3.1.6. Neural Networks. Neural network architectures are a relatively
new type of computer architecture configuration. Basically, neural
networks organize processing element activities in a manner that
reflects a simplified model of biological neurons and their behavior. Very
few machines based on neural network principles have been built.

3.1.7. Parallel Processor. Quite simply, a parallel processor is a
processor that is designed for the purpose of parallel computing. More
specifically, it is a processor that utilizes information processing which
emphasizes the concurrent manipulation of data elements belonging to one
or more processes solving a single problem.

3.1.8. Pipeline Processor. Basically, a pipeline processor is a specific
example of an array processor. Specifically, a pipeline processor
speeds up array computations via simultaneously processing by breaking
a complex function into a series of simpler and faster operations.

3.1.9. Processor Array Computer. A processor array computer is a
vector computer that is implemented through the use of multiple
processing elements. Each processing element has its own local memory
which is acted upon by the control unit of the computer.

3.1.10. Supercomputer. A supercomputer is a general-purpose computer
that is capable of solving individual problems at extremely high
computational speeds, compared with other computers built at the same
point in time. This implies that a supercomputer today may not be
classified as a supercomputer tomorrow. For example, a typical personal
computer (PC), such as the Apple MacIntosh, would have been considered
a supercomputer in the 1950's.

3.1.11. Systolic Array Processor. A systolic array processor refers to a
collection of special-purpose, rudimentary processing elements with a
fixed interconnection network. By replacing a single processing element
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with an array of processing elements, a higher computation throughput
can be achieved without increasing memory bandwidth.

3.1.12. Vector Computer. A vector computer is a computer with an
instruction set that includes operations on vectors as well as scalars, as
opposed to a von Neumann computer that allows only for the
manipulation of scalar operations.

3.2. Interconnection Networks. To accommodate the use of "NVN"
architectures, particular emphasis must be placed on methods to allow
processors to communicate and synchronize with one another. Hence,
multiple module interconnection strategies must now be considered to
replace conventional strategies. It has been observed that conventional
interconnection strategies, such as time-shared/common buses, simple
crossbar switches, and multi-port memory schemes are not particularly
well suited for systems involving a large number of components [22]. To
effectively use "NVN" architectures, various interconnection
methodologies to connect individual processors to each other and to
memory for communication purposes have been implemented. An
interconnection network for a "NVN" machine provides the necessary
vehicle, through a connection of switches and links, that allows the
aforementioned communication to take place [2], [6], [13], [14], [22], [26],
[37]. Figure 3-3 portrays the multitude of interconnection network
schemes. The determination of the best network for a particular system
must be determined by a trade off between cost and performance
characteristics such as component cost, potential growth of the network,
fault-tolerence capabilities, and hardware configuration.

3.2.1. Topologies. The easiest way to describe interconnection
networks is pictorially. Therefore, the following topologies are
provided to depict the different types of interconnection networks [22].

3.2.1.1. Processor-to-Processor Schemes. The following diagrams
exhibit the nature of interconnection network topologies between
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processors, from elementary examples to the more intricate schemes that
are prevalent in many "NVN" architectures. Processor-to-processor
schemes are also referred to as static networks and are normally

7

Regular

.(Impractical)

Processor Processor
to to

Processor Memory
(Static) (Dy namic)

n3-4 -D u Single- Dual- Multiple Crossb a r

Bus Bus Bs Sic

Figure 3-3: Interconnection Network Choices
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represented as undirected graphs whose nodes are processors and whose

edges are the connections. (Processor nodes are symbolized by small

circles; interconnection links are identified by solid lines).

3.2.1.1.1. One-Dimensional Topology: In one-dimensional topologies, the

nodes are connected in a line. This network topology is extremely simple

but very slow. Figure 3-4 portrays one-dimensional topologies.

In a one-dimensional topology, it should be evident that processors can be

arranged in a multitude of different but very unique schemes. The two

portrayed in Figure 3-4 are intended to show only two possible

configurations. The basic premise is that the processors are all connected

in one continuous line. This is very similar to the electrical wiring of a
house in a serial manner. For example, when an electrician wires a house,

he starts at the source of power (the electrical box where the power enters

the home) and runs a wire to a number of outlets and switches. This is

done by connecting one outlet/switch at a time. When there is a sufficient
load on one run of wire, he simply ends the line and returns to the input to

start a new line. Each line is similar to a one-dimensional topology scheme.

i) Vertical ii) Horizontal

Figure 3-4: One-Dimensional Topologies
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iii) sing tv) Me

Figure 3-5: Two-Dimensional Topologie

3.2.1.1.2. Two-Dimensional Topology: This class of interconnection
networks, displayed in Figure 3-5, represents the most widely used
(currently) configurations. The graphs of two-dimensional (as well
as one-dimensional) interconnection networks are planar. Due to this
they can be easily layed out on an integrated circuit.
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i) Completely Connected ii) Chordal Ring

iv) 3-Cube Connected
iii) 3-Cube Cycle

Figure 3-6: Three-Dimensional Topologies

3.2.1.1.3. Three-Dimensional Topology: Three-dimensional topologies
are also widely in use today. However, since three-dimensional
tolologies are not planar, they are much more difficult to implement. The
most prevalent three-dimensional topologies are shown in Figure 3-6.

3.2.1.1.4. Four-Dimensional Topology: These interconnection networks
are very difficult to implement, but are becoming more popular. Figure 3-
7 shows two variations of four-dimensional topologies.
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i) 4-Cube

ii) 4-Dimensional Hypercube

Figure 3-7: Four-Dimensional Topologies

3.2.1.1.5. N-Dimensional Topology. N-dimensional topologies can also be
refened to as n-dimension hypercubes. Basically, the topology of an n-
dimensional topology (n-dimension hypercube) consisting of x nodes is
created recursively from two cubes each consisting of x/2 nodes. For
example, using the associated diagrams above, it can be easily shown
that a four-dimensional cube is composed of the interconnection of two
three-dimensional cubes.
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3.2.1.2. Processor-to-Memory Schemes. Processor-to-memory schemes,
also known as dynamic networks, are also widely understood. The basic
topologies are presented below:

3.2.1.2.1. Single-Bus Organization. Single-bus topologies utilize a shared,
bi-directional bus. Of all the interconnection networks, this organization
is probably the least complicated. The bus is a common communication

path that connect all of the components of a system (processors,
memory, printers, etc) but only allows one processor to access the shared
memory at a time. Although this configuration is easy to implement, bus
contention severely degrades system performance. Figure 3-8 gives a
very simplistic representation of a single-bus structure.

M*. se M N

PO P1 oo00I

Figure 3-8: Single-Bus Organization

3.2.1.2.2. Dual-Bus Organization. Dual-bus topologies normally employ a
two-bus structure, each uni-directional. The extention of the single-
bus organization into a dual-bus organization resolves some of the
problems inherent to single bus contention problems, although there is still
a great deal of bus contention due to the fact that most operations in
such a system normally requires the use of both buses. A typical dual-bus
organization is shown in Figure 3-9.
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Figure 3-9: Dual-Bus Organization

3.2.1.2.3. Multi-Bus Organization. Multi-bus topologies consist of
multiple bi-directional buses. This organization allows for multiple
simultaneous bus transfers, alleviating the bus contention problems
found in single-bus and dual-bus organizations. Multi-bus organizations
are very prevalent in many of today's popular "NVN" type machines.
However, there still exists a great deal of overhead time associated with
processor-to-memory transfers, memory-to-processor transfers,
processor-to-processor transfers, and memory-to-memory transfers.

This organization is shown in Figure 3-10. It should be noted that in this
configuration, the number of buses is arbitrary. However, by increasing
the number of buses to match the number of processors and/or memory
does not guarantee faster throughput. This is due to a number of factors,
like bus interference and contention.

This organization looks very similar to the next configuration strategy, the
crossbar switch organization. These schemes are not as similar as they
appear however.
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Figure 3-10: Multiple-Bus Organization

3.2.1.2.4. Crossbar Switch Organization. Crossbar switch topologies
utilize a grid-like scheme with processors along one axis and memories
along another. In this organization, portrayed in Figure 3-11, every
processor is logically connected to every other processor. The nodes
(portrayed by small circles in Figure 3-11) represent the switches that
connect processors-to-processors and processors-to-memory. The
switches are capable of connecting cross-wise, hence the name crossbar
switch. This type of network is extremely fast.

3.2.1.2.5. Multi-Stage Interconnection Organizations. There exist a
multitude of interconnection network topologies that connect processor
and memory modules via specialized networks. These topologies are
rather intricate to graphically represent (and are therefore not
included in the context of this report). Fundamentally, they are all
equivalent and differ only in their interconnections between adjacent
processors and/or memories. For further detail on multi- stage
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Figure 3-11: Crossbar Switch Organization

interconnection networks, the reader is referred to a number of
publications that are referenced at the end of this report. However, to
provide a well-balanced cross section of the types of networks that are
classified as multi-stage interconnection topologies, consider that the
following networks are classified as such: the butterfly network, the
omega network, the SW-B anyon network, the baseline network, the flip
network, the indirect binary n-cube network, the multi-stage
shuffle -exchange network, the generalized cube network, and the
extra-stage cube network to name but a few.

3.3. Classification Schemes. A number of classification schemes have
been developed that attempt to classify computer architectures [5], [191,
[20], [271, [36], [40]. However, the emergence of "NYN" architectures
has placed serious problems on many of these schemes. For example,
some architectures can be placed in more than one class within a
particular classification scheme. It appears that no single
classification scheme is sufficient to properly classify "NVN"
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architectures. The examination of different system attributes has been
the primary driving force behind the classification of computer

organizations. Basically, these system attributes have been:

1) the type and number of distinct elements (processors, memory,

I/O devices, etc) in a particular computer system,

2) the specific topology of the interconnections (interconnection

network) in the system,

3) the specific nature of the processor-to-memory interconnection

scheme (local, global), and

4) the intended purpose or application that the system is intended

for.

It appears that the development of a "hybrid" classification scheme may
be more beneficial. The following paragraphs briefly present the more
popular classification schemes for computer architectures.

3.3.1. Flynn's Taxonomy. One of the early (and most widely used)

fundamental classification schemes of computer organizations was
developed by Michael Flynn in 1966. Probably the most recognized
classification scheme, Flynn's taxonomy classifies computer

organizations into four classes according to the uniqueness or
multiplicity of instruction streams and data streams. The instruction
stream refers to the sequence of instructions as performed by the
machine, which can be either one sequence (single instruction stream) or
many sequences (multiple instruction stream). The data stream refers to

the sequence of data that is manipulated by the instruction stream,
which also can be singular or multiple (single data stream or multiple

data stream). By observing all possibilities for instruction and data

streams to be configured, Flynn devised four classification classes which

are presented in the following subsections.
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3.3.1.1. SISD. A Single Instruction stream, Single Data stream
computer, abbreviated SISD, usually consists of a single processor
connected to a single memory. A SISD computer fetches its instructions
consecutively and then fetches one data item at a time. SISD systems
typically entail sequential and uniprocessor computers and are
considered the serial (or classic) von Neumann machine. Variations of
SISD machines have been implemented that utilize advanced techniques,
such as pipelining. However, although instructions may be pipelined,
only one instruction can be decoded per unit time. Also, SISD systems
can have multiple functional units under the control of a single control
unit. Many standard computers fall into this class, such as the DEC VAX

11/780 and IBM 360/370 series.

3.3.1.2. SIMD. SIMD refers to systems that employ a Single Instruction
stream, Multiple Data stream configuration and typically consist of a
single control unit, multiple processors, multiple memory modules, and an
interconnection network. In SIMD architectures, the control unit fetches
and decodes an instruction. The instruction is then executed either in
the control unit itself, or is broadcast to any of a number of processing
elements. These processing elements operate synchronously where all
processing elements execute the same instruction at the same time, but
with their own data. Processor arrays (pipeline processors, vector
processors, array processors, and associative processors) fall under this
category. Specifically, the Illiac IV, the STARAN, and the MPP computers
are examples of SIMD machines.

3.3.1.3. MISD. A Multiple Instruction stream, Single Data stream
(MISD) machine is a computer in which the same data item is operated on
simultaneously by several instructions. This mode of operation is
realistically very impractical and only a few processors of this type have
ever been built. Moreover, no computer systems presently exist that
can be categorized uniquely as MISD machines.
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3.3.1.4. MIMD. In MIMD (Multiple Instruction stream, Multiple Data

stream) systems, all processing elements execute asynchronously on their

own data, but share access to a common memory. Hence, each processor

follows its own instructions (multiple instruction stream) and also
fetches its own data on which it operates (multiple data streams). The

coupling of processor units and memories is one feature to differentiate

between MIMD designs. Another is the homogeneity of the processing

units. Many computer systems fall under this category, including the

BBN Butterfly, the Cm*, and the Cosmic Cube.

3.3.1.5. Observations. Flynn's taxonomy naturally encompasses any

computer architecture that can be described as executing instructions
which operate on data. Although this taxonomy is still in use today,

many of the current advanced computer architectures that have

emerged have presented problems. This classification scheme is too
ambiguous to permit an ironclad labeling of many "NVN" architectures.
Depending on one's definition of instruction and data stream, some

architectures can be placed in more than one class. For example, the Cray-
1 computer has been classified in literature in three different classes.
Handler and Thurber classify it as a MISD machine, Hockney and Jesshope

classify it as a SIMD machine, and Hwang and Briggs classify it as a SISD
machine.

3.3.2. Handler's Taxonomy. Wolfgang Handler's classification scheme,

developed in 1977, prescribes a notation for expressing the parallelism
and pipelining that occurs at three levels of a computer system - at the
processor control unit level, the arithmetic logic unit level, and at the

bit-level circuit level. A system is represented by three pairs of integers:
C=(KD,W) where K is the number of control units, D is the number of
arithmetic logic units controlled by each control unit, and W is number of

bits in an arithmetic logic unit. (For example, the IBM System/370 is
denoted as (1,1,32) and the Illiac IV as (1,64,64)). However, this

classification scheme has severe limitations in terms of identifying
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important features of a computer system, such as instruction and data

flow, and memory configuration (ie, shared vs distributed).

3.3.3. Feng's Taxonomy. Developed in 1972, Tse-yun Feng's

classification scheme is based upon serial processing versus parallel

processing. It uses the degree of parallelism according to the word
length of a machine to classify various computer architectures. This

taxonomy is not very useful when considering "NVN" systems. The

multiplicity of instruction and data streams, the type of memory
configuration, and the number of processors are some of the important

features not recognizable by this scheme.

3.3.4. XPXM/C Taxonomy. This taxonomy is a relatively new

classification scheme that is based upon the classification of the
processor coupling techniques used within microprocessors. Basically,
XPXM/C refers to single-or-multiple (denoted X) Port, single-or-multiple

(also denoted X) Memory/Channel. The different coupling techniques are
used to determine the number of simultaneous transactions that a
multiprocessor system can support, and provides for a relatively good
basis for comparison of multiprocessors. Used in conjunction with other

existing classification schemes that describe the topological and

functional characteristics of complete multiprocessor systems, the
XPXM/C taxonomy helps to emphasize the constraints on parallel system
operation. However, this classification is not intended for "NVN"
architectures outside the multiprocessor realm.

3.3.5. Other Taxonomies. There are a number of additional taxonomies in
existence that help to classify many of the aspects of "NVN"

computing, but which fail to provide a full-scaled comprehensive
classification scheme. These include such taxonomies as Haynes (1982),
Schwartz (1983), and Mak (1986). There are also a few subtaxonomies
that exist that are useful to classify specific types of operations such as
Treleaven (1982) and Srini (1986) which are useful for data flow

architectures. Hockney and Jesshope (1981) present a taxonomy that is
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good for processor arrays. Yau and Feng (1977) present a taxonomy that

provides insight into associative processors.

4. SOFTWARE FOR NON-VON NEUMANN ARCHITECTURES

4.1. General Considerations. Once a decision has been made to utilize

"NVN" architectures, a number of very important considerations are
placed on the development of software for these architectures. The
first consideration, to map a particular problem or application for a

"NVN" architecture implementation, the computer programmer must
partition the problem into a number of concurrent units and then decide
upon the preferred communication/synchronization mechanism. This is
true no matter what the problem/application or what "NVN" machine is
chosen. The key issues and technology areas that are associated with
software for "NVN" architectures can be broken down into a number of
distinct areas, namely: problem/application decomposition,
communication/synchronization, parallel algorithms, languages,
compilers, and operating systems. These are discussed in greater detail

further in this section and depicted in Figure 4-1.

It has become increasingly apparent that the development of software for
*many applications is by far the most complex and time consuming.
Hardware is being designed and developed at a much faster rate than
software. It is also a fact that the hardware no longer encompasses the
greatest cost of a computer system. Software development now typically
costs several times more than the development of hardware. Also,
software usually out-lives the life of a normal hardware configuration.
This report supports the notion that the most successful approach for

developing software for "NVN" architectures may employ a "software
first" methodology. This approach basically employs a philosophy that
focuses on software development first, and then focuses on the
development of the appropriate hardware that will effectively support
the execution of the software.
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Figure 4-1: Software for "Non-von Neumann" Architectures

4.1.1. Typical Computer System Utilization. The first observation that
should be made is how a typical "NYN" computer system is devised, and
how does it compare to a von Neumann system configuration. Figure 4-2
portrays a very vivid overview of how computer systems are used.
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Figure 4-2: Typical Computer System Utilization

Sequence of Events

Generally, it can be observed that this configuration holds true for any

computer system, whether it be von Neumann or non-von Neumann in
design. Once a problem has been determined, a computer analyst
examines the problem using some kind of known methodology. The
analyst then comes up with the necessary algorithm to solve the problem.
After the algorithm has been developed, the algorithm is programmed
via some programming language that supports the algorithm and
associated data structures. Next, the program is translated and the
executable code that is produced is run on the computer system together
with some data and produces an output result.

4.1.1.1. Possible Choices. It should also be noted that at each stage in the
utilization of a computer system (as portrayed in Figure 4-2), solutions
can be accomplished differently. Obviously, some are better than others.
For example, in the design of an algorithm, the desired speed and
memory space requirements are important considerations. In
programming there exists a number of design decisions. As an example, a
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programmer has a multitude of programming languages to chose from.
He/she may choose the one that is most familiar or comfortable for their
use, or may choose a language that inherently displays the capabilities to
better solve the problem. Also, every programmer has their own
individual programming style [20]. Clearly, there are a number of
possible computer programs that could result from a single algorithm.
Many of these issues are discussed in greater detail in the following

subsections.

4.2. Problem/Application Decomposition. The purpose of designing any
kind of computer system is to serve some audience of users, whether it
be for general-purpose use or directed towards a specific application. At
this point in time, it appears that "NVN" computers are predominately the
latter. In fact, the design factor considerations of many of today's
"NVN" architectures were based on a specific users desires and needs. It
is therefore very important to initially segment a problem or application
into units that will execute in a parallel nature, with no emphasis being
placed on a particular architecture or machine [291. At this point, the
analyst is only concerned with devising a very high-level
decomposition of the problem. The selection of a particular "NVN"
machine will be emphasized later.

4.3. Communication/Synchronization. Next, the analyst must decide upon
the mode of processor communication and synchronization between
each other. Again, this is only done at a very high-level. At this time no
importance is placed upon a particular architecture. However, decisions
made for communication/synchronization may play a very important part
in the eventual decision to pick a particular class of machines [15], [23].

4.4. Designing Parallel Algorithms. Designing parallel algorithms can be a
very complex and time-consuming undertaking. The use of existing
algorithms can also be very difficult. Algorithms that were originally
designed for a von Neumann based (sequential) machine which are now
redesigned for a "NVN" architecture may not even resemble each other,
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even though they are solving the exact same problem [24], [36]. There

has been very little effort at establishing general techniques for the

formulation of parallel algorithms [8]. Moreover, many different

algorithms can be utilized to solve a single problem. For example,

consider the single problem of sorting a set of numbers. There exists a

number of unique algorithms to solve this problem, ranging from a simple

bubble sort to a more complex perfect shuffle algorithm. The point here is

that the same problem can be solved via different approaches.

Basically there are three methods that can be utilized to dpsign a

parallel algorithm:

1) Utilize an existing sequential algoritnm and exploit any inherent

parallelism that can be found in order to formulate a "parallel" version of

the algorithm for a particular problem,

2) Utilize an existing parallel algorithm that solves a similar
problem and adapt the algorithm to solve the problem at hand, or

3) Design a new parallel algorithm.

It must be understood that there is not an easy and straightforward

approach to selecting the "right" method for parallel algorithm

development for a particular application. Each method has its own

advantages and disadvantages. For example, by utilizing an existing

sequential algorithm, it may be possible to profit from work that has
already been done by someone else. However, if a complete understanding

of the underlying problems that can arise from transforming a sequential

algorithm are not examined, many difficulties may occur. Some

sequential algorithms possess no obvious parallelism, while others

display parallelism that practically jumps out. Also to be taken into
consideration is speedup. Even if a particular sequential algorithm can
quite easily be transformed into a parallel algorithm, it may exhibit very

inadequate speedup and not provide any performance increases over its
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sequential counterpart. Therefore it may be wise to design a new parallel
algorithm.

4.4.1. Design Considerations. There are a number of considerations that
a designer should take into account when designing a parallel
algorithm, whether it be an adaption of an existing algorithm or a new
design. Again, the process of designing a parallel algorithm can be very
difficult [311. Hopefully, a careful observation of the problems that
directly affect the design process of a parallel algorithm will provide
sufficient insight into the difficulties of developing a parallel
algorithm. Basically, there are five key concerns that a designer must
consider:

4.4.1.1. Parallel Thinking. Probably the hardest "process" to initially
comprehend is parallelism itself. We live and think in a very logical and
sequential world. To suddenly stop and try to logically think in a
concurrent way is initially very difficult. It is easy to observe that the
vast majority of people appear to be better suited to focus their attention
on one activity at a time. Thinking of more than one activity, or thinking
in parallel, is very difficult. For example, consider an exercise of trying to
read two books at once. First you read one line from the first book,
then you read one line from the second, then the second from the first,
then the second from the second, and so on. If you continue to follow this
alternating pattern for the duration of both books, it is obvious to see
that a number of deficiencies may appear (such as reading
comprehension). Obviously, thinking in parallel can create many problems.

Once accustomed to focusing on the key concepts of parallelism, a
programmer will be able to design much more efficient parallel
algorithms. However, learning to program in parallel is very different
than learning to program sequentially. As an example, consider the
construction of a house analogy. Suppose two carpenters are applying
plywood to the frame of a house. Carpenter one measures the size of
plywood needed and then informs carpenter two of that measurement so
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he can cut it correctly. Carpenter two then gives the cut plywood sheet

back to carpenter one so he can nail it up. By thinking beforehand

about the task to be performed, a great deal of speedup can be

accomplished. Consider that while carpenter two is cutting a sheet of

plywood, carpenter one is measuring the size needed for the next sheet.

Therefore, when carpenter two delivers a sheet to carpenter one for

nailing, carpenter one can inform carpenter two the size needed for the

next sheet. This is much more efficient than if the sequence of

measuring, cutting, nailing, measuring, cutting, etc, was performed. This

is also true for a computer programmer. An adaption to thinking in

parallel beforehand will allow for designing more efficient parallel

algorithms. This leads to insight into parallelism.

4.4.1.2. Insight Into Parallelism. Insight into parallelism is a very
important consideration when designing efficient parallel algorithms.

Being able to spot where, when, and how to utilize parallelism is very

important. If parallelism is carefully and skillfully applied then a more

fruitful algorithm will be produced. For example, to solve a problem
via a parallel algorithm approach, some prior or acquired
knowledge/insight into choosing a method for the design is very

desirable. As mentioned previously, the utilization of a good

sequential algorithm or parallel algorithm that solves a similar problem

can be a very good starting point. If it is determined that the existing

algorithm is not particularly parallelizable, then a knowledgeable
understanding of the particular problem must be utilized in order to

break up the problem into reasonable "chunks" that may be able to be

parallelized for designing a new algorithm [20].

Overall, if an algorithm consists primarily of sequential steps, the use of a
"NVN" approach is not feasible since not much speedup can be

obtained. However, if an algorithm can be decomposed into "chunks" that

can be executed in parallel, then "NVN" computing is very desirable.

Obviously, the process of algorithm decomposition is very critical to the

success of possible parallel processing attempts [45].
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Decomposition primarily consists of two issues: partitioning and
assignment. Partitioning is concerned with the splitting of an
algorithm into procedures, modules, and processes (ie, chunks).
Partitioning is considered the key to efficiently extracting the
parallelism of an algorithm. Assignment, on the other hand, is
concerned with allocating these chunks to available processors. For
example, when a house is being built a number of activities can take
place concurrently. Roofers, electricians, masons, etc, can all be
performing their associated tasks at the same time. As in "NVN"
computers, each of these tasks can be considered a single process for a
specific application, which in this case is the building of a house.
However, the sufficient conditions must be present in order for a task to
be performed concurrently. Allocating a roofer to shingle a house
presumes that there is a roof to shingle. If the carpenters have not
progressed to the point of building a roof, it make no difference
whether or not a roofer has been assigned to shingle. Such is the case
with "NVN" machines. If an algorithm has been decomposed into
parallelizable processes, there must exist available processors in order to
achieve the necessary speedup.

4.4.1.3. Synchronous vs. Asynchronous Algorithms. An important issue
when designing a parallel algorithm is whether algorithms communicate
between one another synchronously or asynchronously. In synchronous
algorithms, tasks communicate interactively with other tasks, but must
wait for other tasks to finish before proceeding. Also all of the parallel
tasks must wait for the slowest task which reduces performance. However,
if a problem can be evenly distributed where each processor performs
the same instructions and communication scheme, processing is very fast.
In asynchronous algorithms, tasks are not required to wait for each
other, but rather communicate dynamically through messages or global
memory. There is a need for much more overhead due to the nature of
communication. Nevertheless, a wide range of application areas lean
toward this implementation.
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4.4.1.4. Speedup vs. Communication Costs. The primary reason to

exploit concurrency in a given algorithm is to obtain an improvement in
the speed of algorithm execution. Obviously, this is obtained via
concurrent processing by executing several portions at the same time.
However, a trade-off must be considered between speedup and
communication costs when the communication complexity of a certain
algorithm is higher than the computational complexity. Once again,
consider the building of a house analogy. Suppose a number of masons
are building a brick wall. Their individual responsibilities are to
construct a wall using bricks and mortar supplied by an apprentice. If the
apprentice cannot mix the mortar and/or supply the bricks to the
masons fast enough, the masons will experience periods of inactivity and

will not perform to their full capability. Such is the case with
computers. For example, if more time is spent routing data among
processors than actually performing the computation, little is gained.

4.4.1.4.1. Amdahl's Argument. At this juncture, it is important to
reflect upon a measure of speedup that can be obtained. When referring

to speedup calculations, Amdahl's work is usually the point of

reference.

Amdahl's argument (a more formal definition is known as Amdahl's
Law) states that for any fixed number of processors, speedup is usually
an increasing function of problem size [171, [36]. Realistically, Amdahl's
argument proposes that the limitations to speedup are due to the degree
of parallelism in an algorithm. The limiting factor to increasing the speed
of a concurrent algorithm is the reciprocal of the fraction of the
computation that the concurrent algorithm must do sequentially. This is
normally derived by the formula shown in Figure 4-3.
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- as P becomes large
F +1 (1 -F) F

~P

S = Speedup
P = Number of Processors
F = Fraction of operations in a computation

that must be performed sequentially

Figure 4-3: Amdahl's Argument

However, it has been observed that this argument relies on the
estimation of the percentage of sequential operations in an algorithms
execution. For example, a very significant speedup is realizable if the
portion of the sequential instructions in a program is estimated to be
very small, say one percent, as compared to ten percent, of the entire
program.

4.4.1.5. Architecture Considerations. Ultimately, the rate of success or
failure of parallel processing implementation directly depends upon the
ability to implement an algorithm efficiently on a particular non-
sequential system. The level of parallelism is also highly dependent
on the machine architecture that will be utilized. Clearly there is a wide
variety of machines and computers that can be classified as "NVN" which
are possible candidates. As mentioned previously, these machines may
range from array processors to vector processors to multiprocessors,
all of which have distinct architectures. The multitude of machines
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provide a number of diverse means to solving a particular problem via

some parallel route. However, because of this, the performance of an

algorithm can be radically different on different architectures. Many
factors can account for this, such as communication overhead,

synchronization, and granularity. The key point here is that the algorithm

must be designed to fit a selected architecture.

4.5. Languages and Programming. A major software issue for "NVN"

systems is that of partitioning a given application by extracting
parallelism via computer programming techniques. This can be obtained
either explicitly or implicitly. (Normally, explicit parallelism is provided
by a programming language and implicit parallelism is provided by a

compiler). Basically, explicit parallelism provides a user with
programming abstractions that specify concurrent operations. However,

it has been observed that conventional languages lack the syntax and

vocabulary for specifying parallelism.

"NVN" programming should not be a totally new concept for most of

today's experienced uniprocessor-based programmers who design and
develop code for large-scale sequential machines. Basically, the
underlying principles and fundamentals of von Neumann programming can
be carried over into the "NVN" world. For example, many of the basic

operations, like synchronous shared variable access methods and shared
data structure concepts, are highly utilized by programmers involved in

many of the sophisticated uniprocessor operating systems in current use

(for example, the latest versions of MULTICS and Unix). However, "NVN"
programming appears to be very excruciating for most of today's

programmers.

When constructing a house, a builder has a number of factors to consider
in order to implement many design features. For example, consider the

exterior of a house. The builder can finish the exterior in a multitude of
materials such as aluminum siding, vinyl siding, bricks, cedar planks,

etc. Each has their advantages and disadvantages which range from price
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to durability to appearance. There are also many factors to be considered

in choosing a particular programming language for a "NVN" architecture.

The most important factor of all is the application domain feature [4],

[18]. For example, LISP is generally used only for artificial intelligence

applications, the C programming language is preferred for operating

system based applications, and Ada is usually better for data description

applications [18], [39]. Obviously, there are numerous trade-offs

between the use of one language over another. Therefore, when choosing a

language, a careful study of the advantages and disadvantages of a

particular programming language should be made in order to effectively

compare it to other candidate languages. For non-von Neumann-

computers, certain language extensions are usually necessary to exploit

parallelism [21]. Moreover, there are also a wide variety of

implementations for a single programming language. These are also

important considerations. If no specific language, or extended language,

can be utilized to support a specific application, the development of a

new programming language may be necessary.

There are basically two methods to high-level programming language

development for "NVN" computers - new language development and

existing language extension. From personal observation, it appears that

the majority of the currently available parallel computer languages have

been derived from one of the two methods, although some "NVN"

machines utilize existing sequential languages and force the compiler to

detect any inherent parallelism of a program. For example, this is

especially true in vector processors. Basically, a vector compiler will

compile a program written in a specific sequential language and attempt to

extract any inherent parallelism to generate vector instructions. This

section deals only with explicit language development (compilers are

discussed in paragraph 4.6).

4.5.1. New Language Development. If no specific language, or extended

language, can be utilized to support an application, the development of a

new programming language may be necessary. The same holds true for a
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carpenter. For example, if a carpenter cannot purchase or adapt a
window for a specific application, he will build one from scratch. The new
language approach is based upon developing new concurrent or

parallel languages for the purpose of supporting non-von Neumann
architectures. An analysis of the new languages that have been
developed (such as Occam, PPL, Actus II, BLAZE, and Parallel Pascal to
name a few of the more well-known languages) has shown that these
languages usually contain various application oriented parallel
constructs that are oriented toward a particular architecture.
Therefore, these new languages are usually not very portable from one
machine to another. Moreover, none of these new languages have been
universally accepted in any commercial supercomputer.

Probably the most widely recognized new programming language that
has been designed primarily for parallel processing is Occam. Basically,

Occam provides explicit partitioning mechanisms where variables are
declared by the programmer at the beginning of a program. However,
Occam is not universally viewed as a sufficiently diverse parallel
programming language since it does not support many applications.

4.5.2. Existing Language Extension. As is the case with developing

parallel algorithms (as discussed in section 4.4), the utilization of an
existing sequential language can be exploited. This method allows for an
existing sequential language to be extended using "NVN" architecture
constructs to support concurrent processing. For example, FORTRAN
extensions have been implemented to control directed decomposition of
specific program elements, such as large DO loops, by extending a new DO
PARALLEL directive to the existing language [10]. Other program

directives have also been extended to the standard FORTRAN syntax
which establish how (and if) data will be shared among the
individual processors of a "NVN" system. Other extensions of conventional
FORTRAN have been utilized by only incorporating communication

facilities that are added to specify message passing. Normally these
extensions to existing serial languages are very dependent upon a
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specific "NVN" architecture and are explicitly designed to utilize the
extreme computing power of the specific architecture. Obviously, there is
very little hope of portability since these languages are usually extended
with one machine in mind. This causes two very critical issues. First, if a
user employs a new target machine, recoding of a particular
application will most likely need to be accomplished in another extended
language, or by re-extending the originally employed language.
Secondly, since the extended language is designed to exploit the
underlying architecture of a particular "NVN" machine, the programmer is
forced to understand the architecture. Thus, program development is
much more difficult.

4.5.3. Obstacles. There are a number of direct observations that can be
made of the obstacles confronting both new language development and
existing language extension methods:

1) Learning a new programming language places many problems on
the programmer. For one, programmers are very resistant to change
and therefore tend to solve problems in terms of well-established and
familiar language structures. Therefore, this makes concurrent
programming more difficult right from the start. Also, learning
programming details of a new language, or of an extended standard
language, is very difficult.

2) Programming in a concurrent language is much more difficult than
writing sequential code. Concurrent program logic is more difficult to
understand and implement in code. Also, concurrent language syntax is
different. The specification of processes and the control of their
interactions is very important which is something that is usually not
considered in sequential programming. However, some do not share this
observation. Some believe that the parallel behavior of a sequential
program need not be considered [25]. The position taken here is that
concurrent processing is very different from normal sequential
programming and therefore may require a better solution than just a new
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language or language extension. Software support tools are lacking for
concurrent design and implementation at the language, compiler, and
run-time package levels.

3) Because of architectural differences, software reusability
between different "NVN" machines is usually not possible. Obviously
then, portability is almost non-existent unless the new target machine is
inherently similar to the original machine. It is very difficult and time
consuming to re-write code every time an application is hosted on another
machine. Since experience gained from utilizing one programming
environment is usually not transported to another environment, expensive
software development costs are likely to incur. This may directly
affect future gains in software productivity. If reusability problems can
not be alleviated, at least to some degree, "NVN" use in
"mainstream" computing will be greatly hindered.

4) Program modification or maintenance is virtually impossible by
anyone other than the original programmer. By the very nature of
parallel programming, one programmer will normally code in a manner
that is unique. This is based on their background in
computing/programming, understanding and interpretation of the
programming language, and understanding of the host computer.

5) Code designed and written for a "NVN" machine may be
extremely difficult to debug. Since deadlocks may occur due to the very
nature of the architecture which the programmer is unaware of, bugs--
are not necessarily due to errors in the code. Also, since operations
on multiple processors do not necessarily occur in precisely the same
sequence from one program execution to another, finding exactly where
errors occur can also be very difficult.

4.5.4. Ada. Since the development of the Ada programming language was
sponsored by the United States Government to write effective software
for computer components of military systems, particularly for command
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and control systems, it is a strong programming language candidate for

"NVN" architectures in the DOD world. The very nature of many DOD

systems underly many of the principles of parallelism. For example,

typical military command and control systems often require the

monitoring of many concurrent activities, whether they be worldwide or

systemwide. The ability to keep track of and monitor many concurrent

activities and quickly respond to unpredictable events, is a very

important concern of command and control systems. Writing effective

software for these systems is of the utmost concern. Nonetheless, it is very

unclear as to whether Ada is a good choice for concurrent software

development.

As alluded to above, one of the reasons that Ada was specifically

designed was to facilitate concurrent programming for command and

control systems. Most of today's popular programming languages were

designed for writing sequential programs. Ada, however, allows a
programmer to establish many separate threads of control via

multitasking. The trends toward multiprocessing and distributed systems

dictates the need for concurrent programming languages like Ada.
However, up to this point Ada has not been widely accepted in the

sequential world, much less in the non-sequential world of "NVN"
architectures. This is due mainly to the lack and immaturity of Ada

support tools and inefficient real-time processing capabilities [18].

Therefore, it is very uncertain whether Ada will play a major role in

language development for "NVN" architectures. A serious challenge

exists to understand and extend the benefits that Ada possesses for

"NVN" applications.

4.6. Compilers. There is also a very urgent need for the development of

compilers for the successful utilization of "NVN" architectures [7], [33].

Parallelizing compilers allow for implicit extraction of parallelism.

Basically, the compiler uses program restructuring techniques to

transform a sequential program into a concurrent form that is suitable for

"NVN" machines. There are primarily two methods for compiler
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development, namely new compiler development and existing compiler

extension. These are further discussed in the following subsections. It
should also be noted that although there exist a number of automatic
parallelizing compilers in the marketplace, most of these only achieve a
very small degree of parallelism and are usually limited to small, localized

segments of code.

4.6.1. New Compiler Development Method. In the case of new parallel

language development, there is a very direct correlation between the

constructs and capabilities of the newly developed compiler to the

underlying architecture. Again, compiler portability is a major
concern. However, it is not the concern of the programmer, but rather of

the writer of the compiler. At this point in time there does not exist a

universal compiler that can be utilized for even a subset of "NVN"

architectures. More effort needs to be directed for new compiler
development as well as to new language development.

4.6.2. Existing Compiler Extension Method. The underlying premise of

this method is based upon the utilization of existing serial compilers
already in the marketplace. It should be noted that there is an obvious

overtone of the hand-in-hand association between languages and
compilers. Therefore, this method is basically an extension to the
existing language extension method (section 4.5.2). This method is the

more widely accepted and used of the two, but it has its advantages and

disadvantages:

4.6.2.1. Advantages. One advantage for the use of an existing language
and its associated compiler allows for programming in a familiar
language where no new constructs need to be learned. A second
advantage, utilizing existing compilers, a programmer can design, write,
and debug new code for parallel algorithms in the same manner that they

are accustomed to for sequential processing. A third advantage,
utilizing an existing serial compiler and language, the programmer can

utilize existing sequential programs and applications to be transposed
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directly for parallel applications. The fourth, and last advantage, is the
issue of portability. Usually only a minimum of changes are required
to the existing compiler (to support changes made to the existing
sequential language) when shifting an application to a new machine.

4.6.2.2. Disadvantages. All the inherent concurrent constructs of a
particular program may not be recognizable by its accompanying compiler.
Secondly, a program cannot be written in which the compiler can take
full advantage of the machine and its underlying architecture without a
great deal of effort. This would require the programmer to be
intimately familiar with the architecture at hand as well as assist the
compiler, through sophisticated programming techniques and tricks, to
recognize and exploit the architecture. Another disadvantage is that the
use of a sequential compiler and its associated sequential language, forces
a programmer to program parallel algorithms in sequential form.

4.7. Operating Systems. Operating system issues for "NVN" computers
are similar to those for large computer systems that utilize
multiprogramming [34]. In a typical multiprogramming system, the
operating system will allow for more than a single program to be in some
state of execution at the same time. This is similar, from an overall
standpoint, to the way an operating system for a "NVN" based system
should work. However, there is a very big difference in the complexity of
a"NVN" operating system and a multiprogramming operating system. A
"NVN" operating system must support a number of asynchronous tasks
which are running in parallel via the simultaneous interaction of
multiple processors, not multiple programs.

"NVN" operating systems must also have capabilities that are beyond the
scope of those required for a multiprogrammed system, such as additional
I/O capabilities. Resource utilization, processor load-balancing, and
system reconfiguration problems must now also be handled in addition to
the exception handling, system deadlock, memory contention, resource
allocation, data protection, and management overhead problems that are
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supported in multiprogramming systems. For resource utilization to
occur, a mechanism must provide the necessary vehicle to assign a task to
each available processing node (or set of nodes) as the tasks and nodes
become available. In processor load-balancing, the ability to effectively
distribute tasks among the processing nodes in order that maximum
utilization occurs is the key concern. System reconfiguration issues are
also very important. Basically a fault-tolerant concern to insure that a
failure does not "kill" a system, system reconfiguration allows for graceful
degradation of an affected system where the only outcome is lessened
performance.

Typically, the vast majority of industrial and academic endeavors in the
development of operating systems for "NVN" architectures has resulted in
either front-end hosts or in adaptations of existing operating systems.
However, many of the operating systems that run on "NVN" systems are
limited to library routines with very little additional capabilities. Many
"NVN" computers themselves are only back-end machines that utilize
front-end host machines to provide many of the functions that the
necessary operating system would provide, such as I/O support and
processor scheduling. Most are built upon either a version of the UNIX
operating system, or upon Mach, which is a new experimental distributed
operating system aimed at parallel processing systems utilizing
multiprocessors (built by researchers at Carnegie-Mellon University and
funded by DARPA). Mach overcomes many of the limitations UNIX places
on "NVN" system configurations by implementing message passing
and shared-memory techniques. However, Mach also has many
disadvantages. UNIX has been widely used because there exists a large,
well-established user community. Many programmers are quite familiar
with UNIX. Also, many UNIX facilities do not have to be reinvented for
"NVN" machines since some are applicable to both the von Neumann and
non-von Neumann world of processing. However, UNIX does possess
a multitude of limitations, such as user interface deficiencies and
interprocessor communication problems, which need to be resolved for
any widespread acceptance in many current advanced systems [37].
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More emphasis needs to be placed on developing new operating systems
for "NVN" architectures, other than just expanding UNIX or Mach, which
seems to be the current "rule-of-thumb." There are currently only a
few schemes that have been employed in the design of new operating
systems for "NVN" architectures. These schemes have been reluctantly
used, which can be attributed to the widespread use of UNIX and
Mach adaptations. However, there exist a great number of deficiencies
peculiar to many "NVN" systems that these approaches do not support.
The three schemes presented below offer a glimpse of some of the work
that is being accomplished for "NVN" operating systems development.
More endeavors in this area need to be pursued, but the three schemes
presented here are a step in the right direction. It is felt that all three
offer insight into many of the issues confronting "NVN" operating system
development which will hopefully lead to something that will
significantly advance the state-of-the-art.

4.7.1. Master-Slave Scheme. In this operating system configuration, one
of the processors of a "NVN" machine is given the role of the executive
supervisor (master) for the purpose of allocating work to the other
processors (slaves), as well as maintaining the status of them. The
executive program always runs in the master processor, This scheme is
subject to catastrophic system failure if the master processor fails. This
operating system scheme is very effective for systems that employ an
asymmetrical architecture configuration. Figure 4-4 illustrates this
scheme.

Overall, the master-slave operating scheme is relatively inflexible
when compared to the other two schemes.
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Figure 4-4: Master-Slave Operating System Scheme

4.7.2. Separate-Supervisor Scheme. The separate-supervisor scheme,
portrayed in Figure 4-5, allocates control to each processor in a "NVN"
system. By having a separate supervisor in each processor, each
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Figure 4-5: Separate-Supervisor Operating System Scheme

processor services its own needs and has, in effect, its own set of I/O, files,

data, etc. The separate supervisor that exists in each processor is basically
a kernel, or subset, of the operating systems.

4.7.3. Floating-Supervisor Scheme. This scheme employs a method of
"floating" the supervisor role (master) from one processor to another. This
method allows for the greatest amount of flexibility and greatest resource
efficiency, but is also the most difficult to implement. Another critical
issue exists in the very nature of the scheme -more than one processor
can execute supervisor functions at the same time - which can obviously
create havoc. For example, since several processors can be in a
supervisory state simultaneously, access conflicts can occur. This scheme
does however provide for very graceful degradation in the event of a
failure within a system. This scheme is shown in Figure 4-6.
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Figure 4-6: Floating-Supervisor Operating System Scheme

4.8. Fault-Tolerance. Fault-tolerant techniques must be understood and
utilized for the successful utilization of "NVN" systems as well [3], [22],
[25], [44]. In any system, whether it be von Neumann or non-von
Neumann in nature, a number of steps are required to handle faults:

1) Detection. Detection is the realization that a fault has occurred
based upon an observation of the symptoms that are present.

--2) Diagnosis. Diagnosis provides the necessary method or
methods to ensure further contamination of the system does not occur.
This is accomplished by the identification of the underlying causes of a
fault.

3) Recovery. Recovery provides the necessary action to retain and
preserve the availability of a system.
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Hence, a "NVN" system must be capable to automatically detect and
isolate failures, and to dynamically reconfigure itself in an
environment that may possess multiple errors. Any single failure should
not be catastrophic, but rather, result in a graceful degradation of
system performance. Generally, detection is accomplished by "spying" on a
processor, usually involving duplication of hardware modules. Results are
normally decided upon via some kind of voting mechanism. There are a
number of varied techniques that employ this philosophy. However,
there are a number of significant disadvantages. For example, a large
amount of extra hardware is required and graceful degradation is not
usually possible. Dynamic reconfiguration is controlled by hardware
and/or software. Today's systems possess memory configurations that
usually include error correcting and detecting schemes. Also, most local
area networks have provisions to continue operation in the presence
of errors. Efforts are needed to provide both hardware and software
fault-tolerance for "NVN" architectures. Error checking throughout a
"NVN" system must be more active and more comprehensive than in a
sequential environment. Limiting the propagation of errors is also more
critical.

Many "NVN" architectural topologies inherently possess many of the
necessary underlying vehicles to easily facilitate fault-tolerance. For

example, consider the Hypercube. The very nature of its physical
interconnections allow for more than one optimal configuration for a
number of applications. This is due to the fact that there exist some
applications that do not utilize the total topology of a Hypercube.
Consider a 32-node Hypercube configuration that supports an application
that only uses an 8-node processing scheme. Since there exist many 8-
node configurations, if a node "dies" the application can be mapped to
another 8-node configuration which offers the same performance since it
is just as optimal as the original configuration. Obviously, hardware
redundancy and interprocessor communication are very important in a

Hypercube scheme.
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4.8.1. Hardware Fault-Tolerance. As alluded to above, hardware
fault-tolerance is typically characterized by brute force methods to
assure high system reliability and availability. Basically, hardware fault-
tolerance assumes that the hardware works correctly unless there exists
a transient or solid component failure. Usually hardware fault-
tolerance is achieved through hardware redundancy and comparison of
outputs of parallel processors.

4.8.2. Software Fault-Tolerance. Software fault-tolerance can be
simply defined as the reaction and accommodation of faults that occur
during the execution of a program. Typically, research into the field of
reliable software development for conventional von Neumann computers
has evolved from the adaptation of hardware reliability techniques to
software. However, software fault-tolerant development techniques are
much more difficult than hardware fault-tolerance mechanisms. Work is
needed to address software fault-tolerance and its contributions to
meeting "NVN" system requirements. Software for non-von Neumann
computers is intrinsically error prone due to many factors. For
example, the nature of multiple path execution can place a number of
different errors throughout a process.

The two most widely employed schemes for providing software

fault-tolerance are the recovery block scheme and the N-version
programming scheme. The recovery block scheme incorporates strategies
that provide for error detection, backward error recovery, and fault
treatment. N-version programming uses N independently designed
modules that work concurrently to "vote" on outputs. For computer

systems that employ limited hardware resources, or possess
characteristics which make a voting check inappropriate, the recovery
block scheme is usually chosen. However, for systems that are
comprised of redundant hardware resources, the N-version programming
technique is more desirable.
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Fault avoidance is also a key issue of software fault-tolerance. To

accomplish this, the characterization and development of new and

innovative software requirements and design strategies that "build-in"

software fault-tolerance are needed for "NVN" architectures. New

programming and testing techniques that verify software fault-tolerant

performance are also of importance, possibly utilizing automated test

tools and proof of correctness techniques.

5. SOFTWARE UTILIZATION ISSUES

5.1. Basic Considerations. Effective software utilization issues for "NVN"

architectures are the next logical venture after software development

has been accomplished. Issues include software development

methodologies (and the impact of DOD-STD-2167A), programming

environments, software tools, advanced communication methods, and

software development environments for hybrid systems. The following

sections are intended to provide a better understanding of some of the
issues associated with the need for these software utilization

mechanisms for the present and future use of "NVN" systems.

5.2. Software Development Methodology and DOD-STD-2167A. An

assessment is needed to identify the various shortfalls within the current

set of software engineering methodologies imposed upon by "NVN"

architectures. The specific phases of the software life cycle and how the

life cycle is affected by developing software for "NVN" machines must

also be considered as well. The software development methodology most

familiar to military software development is DOD-STD-2167A (and its

predecessor, DOD-STD-2167) [12]. Because of this, this section deals

primarily with DOD-STD-2167A and not to other similar methodologies.

In the 1970's, the "waterfall" model of software development was devised

to help alleviate the problems that were being encountered in major

system development efforts. The waterfall life cycle model is primarily

based upon setting firm requirements early in the software development
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process to avoid the extremely high cost of making requirements changes

to nearly completed software. DOD-STD-2167A is based upon the waterfall
model.

Issued by the Department of Defense, DOD-STD-2167A is a specification
standard that military software systems must conform to. DOD-STD-
2167A is well known to most everyone involved at all in military

software contracting. in either government, industry, or academia.
Basically, this standard was developed to establish a uniform set of
requirements for software development that are applicable throughout
the system life cycle, namely through the acquisition, development, and
support of software systems. Specifically, six phases of the software life
cycle are identified in DOD-STD-2167A: requirements, preliminary
design, detailed design, coding and unit testing, integration, and

system testing. Each phase must be analyzed to determine what impact
"NVN" machines and "NVN" applications place on each phase and what
changes (if any) are required. For example, consider the coding and unit
testing phase. In this phase the software engineer is required to produce
an implementation of specification modules in a chosen language and
then perform unit testing. However, some new problems have surfaced
due to the advent of "NVN" architectures. For one, there exists a lack
of debugging tools to assist the software engineer. Also, memory
contention bugs and deadlock bugs are more difficult to detect. Some
"NVN" machines (mostly distributed memory machines) do not allow for

any I/O from the nodes. Furthermore, there also exists a data display
problem due to the fact that most "NVN" computer perform so rapidly that

the large amount of data that is produced cannot be viewed in real-
time. Hence, because of problems such as these, simulation

techniques have been devised to assist the software engineer prior to the
commitment to a particular "NVN" system. However, simulators do not
exist for many machines. A decision must then be made as to whether or
not a simulation should or should not be developed first. It is felt that
the development of a simulation would be very beneficial.
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As alluded to above, there exist many definitions and variations of the
software life cycle, but are all made up of essentially the same phases.
Figure 5-1 portrays the system and software life cycle as seen from the
perspective of DOD-STD-2167A.
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However, this software life cycle, and its cousins, were developed when
most software was designed for sequential -based von Neumann

architectures. Because non-von Neumann architectures execute
primarily in a non-sequential domain, a number of previously
undefined issues need to be included in the software engineering
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methodologies that are to be used for software development for this class

of architectures, such as:

1) the underlying architecture (hypercube, multiprocessor, data

flow),

2) the programming technique that is employed (parallel

language, extended serial language, vectorizing),

3) problem decomposition issues,

4) interprocessor communication problems,

5) memory contention issues,

6) 1/0 capabilities, and

7) how to accommodate high data volume.

Therefore questions arise concerning the specific nature of the software
life cycle for "NVN" architectures since additional issues may or may not

lead to a refinement or expansion of the phases within the life cycle.

Generally, the overall structure of the software life cycle depicted in
Figure 5-1 can be applied to "NVN" architectures with minor changes.

However, at this point it is very unclear as to the nature of possible
refinements to the specific phases of the software life cycle. These

changes are direct modifications that support new software development

issues that have surfaced with the advent of "NVN" processing. The

common thread of this report has repeatedly stressed that it is more

difficult to design and develop software for "NVN" systems than for von

Neumann systems. Software development issues for "NVN" computers
introduce such concerns as communication overhead, synchronization,

decomposition, and memory contention problems that were previously
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not considered for von Neumann machines. For example, consider the

product design phase of the software life cycle. Before any detailed
design of a system is conducted, it is necessary to decide on a particular
mode of parallelism. This is primarily due to:

1) the large number of parallel modes (SIMD, MIMD, vector, etc)

that are currently available,

2) the various programming methods that exist, and

3) the wide variety of interconnection networks (bus mesh, crossbar,
hypercube, etc.) that are currently being employed.

5.3. Programming Environments. A new paradigm in programming

systems has evolved over the last few years, known as the
programming environment [1], [16], [37]. It is considered a major
software issue for the effective use of "NVN" machines. A programming
environment designed with "NVN" architectures in mind is usually based
upon the same framework for serial architectures but with a different
set of requirements. Basically, a programming environment can be
defined as a collection of software engineering tools and techniques
capable of supporting software life cycle development that should allow
programming on a "NVN" machine to be fairly easy and straightforward.

Such an environment oversees all of the activities related to the
development of a computer program. Typically, these tools include
language-oriented editors, debugging tools, program management
facilities, monitoring and instrumentation tools, and performance

enhancement mechanisms.

The advent of "NVN" machines has introduced new issues that must be

considered in the design of a programming environment. Programming
environments are built to provide a number of tools for both assisting the
programmer as well as helping to manage programming. The hardware

that comprises the "NVN" system is very important as well, because it
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limits the type and functionality of the tools that can be supported in a
"NVN" environment. Probably the most important consideration when

designing a programming environment, whether it be for a von Neumann

or non-von Neumann based system, is integration. The collection of tools
that form the programming environment must interact and support one
another. Therefore, the method employed to achieve this integration is
also a very important consideration.

It is apparent that with the advent of "NVN" computing, parallelism must

be supported both in future languages as well as in their programming

environments. This is true for all facets of non-von Neumann computing,
whether it be for a single machine or a network of machines.
Programming many processors with a diverse multitude of

communication and synchronization occurring between them is very
difficult. A programmer needs a level of abstraction that allows parallel
tasks, and their associated data exchanges, to be accomplished as
simply as possible. For example, a user should not have to specify how a
set of tasks should be allocated. Furthermore, how they are implemented

should also not have to be specified. The compiler and operating system
should provide the required facilities to alleviate the specifying of these
things, as well as for low-level concurrency and message routing. A

sophisticated debugger should also be available to detect and isolate
errors. As mentioned previously, the debugger should be capable of
analyzing results, diagnose errors, and respond to users.

In general, the programming support environment should supply the
underlying framework for effective "NVN" implementation. It should be
designed and integrated so that a user can apply an application concept
and then carry out the necessary design in a simple and straightforward
manner. At this point in time, it does not appear that there are any

efforts that are significantly addressing these problems. Perhaps the
Software Life Cycle Support Environment (SLCSE) could be adapted and
extended to provide such support in the future.
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5.4. Software Tools. In order for "NVN" machines to be utilized to their
full potential, various software engineering tools are needed. It is
therefore very important to obtain information about the software
engineering tools, techniques, and methods that are currently available for
use on "NVN" architectures in order to determine how they can be
exploited for meeting the needs of many applications, including C31
applications. Although many software engineering tools have been
developed for von Neumann machines, it is much more difficult to develop
software and software tools that take full advantage of the processing
power associated with "NVN" machines. The insufficient fallout of
software that has occurred has drastically resulted in decreased
productivity for software developers.

Software engineering tools are needed to examine and understand
program performance and operation in concurrent environments. These
tools can be designed to assist both the programmer and program
manager at the system level. These include parallelization type tools,
software translation tools, program restructuring tools, debuggers,
analysis tools, simulators, linkers, loaders, application libraries, software
performance monitors, software directories, management tools, monitoring
tools, control tools, automated data collection tools, and windowing
methods tn name a few [32]. There are currently well over a hundred

software engineering tools available in the marketplace for "NVN"
computers, some of which are depicted in Figure 5-2. The point here is
that, while there does exist a fair number of tools, there is a growing need
for even more sophisticated tools that break away from the normal
development methods that go into the design of software engineering
tools. The implicit behavior of "NVN" systems, and their capabilities, need
to be further exploited into the realm of software support tools.
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Tool Name Type of Tool I I Language/System
See~ue 1 1 Support

SeeCube Monitor NCube

Monit Performance Monitor Sun-3 Workstation

Belvedere Debugger Parallel Languages

Euclid Simulation Model Multiprocessing

Parallel Fortran Translator Fortran
Converter

Parafrase Program Fortran, C
Restructuring

Pdbx Debugger Sequent

Instant Replay Debugging BBN Butterfly
Environment

SCHEDULE Program Interface VAX 11/780,
Alliant FX/8,
Cray-2

Figure 5-2: Some Existing "NVN" Software Tools

As alluded to above, most of the software engineering tools and

techniques that are employed today for "NVN" machines are nothing

more than straightforward extensions of traditional software

development methods previously designed for serial computer

systems. For many applications, these tools are inadequate or

inappropriate for the successful software design development and
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maintenance issues unique to "NVN" systems. For example, consider

debuggers. It is easy to see that parallel programs are much more
difficult to debug than sequential programs. After a bug is supposedly
fixed, it may be impossible to reconstruct the sequence of events that

led to the exposure of the bug in the first place. Obviously, it is also not
feasible to correctly certify that a bug has been removed. For
example, debugging on the Hypercube is generally accomplished by
receiving and responding to actions that a user specifies, such as

breakpoints or by displaying memory or register contents. The unique

capabilities and applications supported by "NVN" architectures need to

be reflected in the tools, techniques, and methods used throughout the
entire software life cycle. Some of these tools need to be designed to

provide a user with the necessary capability to deal explicitly with the
non-sequential nature of "NVN" systems. Others need to be designed to

permit a user to design software targeted for sequential machines and
to then employ the necessary tools to effectively exploit the concurrency

of the system and express it automatically.

5.5. Communication/Synchronization Methods. In order for "NVN"
machines to effectively operate, a variety of communication and control

mechanisms to minimize contention, and to optimize use of system
resources, are neec-d. To accommodate communication and

synchronization among processors, a particular interconnection network
(as portrayed in section 3.2) must be implemented. Deciding on a

particular interconnection design choice is normally the result of many
concerns, such as the application demands for the machine, the
number of processors that will be employed, and the data speed
reqairements to name a few. A number of technical questions must also

be imposed by a system designer prior to the selection of one

interconnection network over another, such as:

1) What type of switching methodology should be employed?

Basically, there are three switching methodologies - circuit, packet, and

integrated. In circuit switching there exists a physical path between
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two nodes. In packet switching there does not exist a physical path.
Rather, data is stored in a "packet" (with a prespecified length) and then
independently routed to a particular destination, usually using store-and-
forward procedures. Integrated switching provides the capabilities of
both circuit and packet switching.

2) What type of communication scheme will be present? Synchronous
or Asynchronous? Synchronous communication allows for communication
to be accomplished via a shared variable scheme or through message
passing in which the connection paths are all centrally supervised.
The particular architecture of a machine may dictate the type of
communication scheme [16]. For example, consider multiprocessors. By
definition, multiprocessors do not have any type of shared memory
whatsoever. Obviously then, multiprocessors must achieve
communication through means of message passing. Asynchronous
communication provides for a dynamic communication scheme in which a
communication path can be connected or disconnected at any time.

3) Should a static or dynamic network topology be used? A static
topology allows for only dedicated links between processors wherein a
dynamic topology allows for reconfiguration of the processors for
whatever purpose, be it a processor failure or rescheduling of
processors.

4) What routing technique is best suited for determining the
available paths and resolving possible conflicts inflicted by path
contention? Three methods are currently in use - centralized,
distributed, and adaptive. These are pretty much well understood and
widely utilized.

Synchronization is very much related to communication requirements.
Basically, synchronization controls interference between the outside
world and the individual processors. Synchronization is also concerned
with the governing and cooperation of events in a system. For example,
consider requests to and from memory for data. Clearly two individual

81



processes cannot access the same data at the same time. Synchronization
mechanisms prevent this from becoming a deadlock situation.

Communication and synchronization methods are very important
considerations for "NVN" architectures. Some are quite similar to
conventional serial processing techniques, but the complexity of the
topologies that comprise the architectures of many of today's advanced

machines introduces many new issues and complexities.

5.6. Software Development Environments for Hybrid Systems. There also
exists a need for the development of software when the problem domain
entails the utilization of both von Neumann as well as "NVN" systems in
conjunction with one another. A "hybrid" system of this nature is very

likely when considering possible utilizations for military system
configurations, especially for command and control functions, since
specific functions can often be divided into distinct architectural classes
(von Neumann or non-von Neumann). For example, a von Neumann class

machine may act as a front-end scheduler for a "NVN" machine.
Therefore, the development of software for systems that possess this

configuration is also needed. Of course, the mix of existing serial based
software tools would be a logical starting point for this development,
but the "NVN" portion of the system, even if it comprises only five percent
of the whole system, may be the bottleneck to overall system
performance. Therefore, software development for the "NVN" portion
is probably the critical area of concern for software development for
hybrid systems.

Obviously, for the efficient software development in hybrid systems, the
use of consistent development methods and transparent user support are
needed. Software must be developed in such a fashion as to insure

software engineering support is sufficiently powerful and flexible to
adapt to the mix in architectures. Hybrid systems may possibly place

constraints on the type of support that is required as well. Moreover,
there may exist a need for dual environments, one for the "NVN" based
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subsystem, and one for the von Neumann subsystem. System function
allocation between hybrid classes, as well as programming techniques,
are also important issues confronting the development of software for
hybrid systems.

6. RECOMMENDATIONS.

6.1. Fundamental Research. To begin with, a numbe. of issues need to be
addressed at the fundamental research level. In general, there are two
classifications of fundamental research that needs to be addressed, core
research and applications research:

6.1.1. Core Research. Core research is needed to evaluate the use and
improvement of "NVN" computing in the generic sense. Work needs to be
done for algorithm development, the development of new software and
new programs, and a baseline needs to be defined for analyzing
which problems are best suited for parallel processing.

6.1.2. Applications Research. Applications research relates to specific
areas in science and engineering which can utilize "NVN" computing.
Work needs to be accomplished to determine how "NVN" computing

can be exploited for such areas as artificial intelligence, logic
programming, image processing, signal processing, and data processing,
to name just a few.

6.2. Standardized Classification Scheme. As pointed out in section 3.3,
the development of an adequate means of identifying and classifying the
types of non-von Neumann and "NVN" architectures and implementations
is sorely needed. The increasing number of new and diverse computer
architectures and implementations for "NVN" systems are proof that
parallelism is, and will be, exploited in the near future. Therefore, of
significant importance is the need to classify these new
architectures and machines as well as to obtain the necessary metrics to
compare them for such things as performance, application domain, and
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behavior. By doing this, a tangible criteria baseline can be developed to
compare diverse systems so that a set of measurable objectives for
possible applications can be made. Since a single application may
possibly be solvable via a number of different "NVN" architectures, it is
very important to gain comparable knowledge of the
advantages/disadvantages of each system so that it can be more easily
discernable why one architecture or machine is better than another.
Obviously, the selection of the wrong architecture can preclude the use of
a less effective and/or more costly system for years.

The recent activity in the research community, both in industry and
academia, that has been directed toward the classification of "NVN"
computers has resulted in either incomplete classifications, or in
methods of classifying machines by examining only one architectural
feature. For example, classification schemes have been devised based
upon classification by: memory organization, control type, number of
processors, processor size, synchronization overhead, and processing
element assignments.

There exists a growing need for a more comprehensive method of
identifying the fundamental characteristics of "NVN" computers, as well as
identifying the applications they are best suited for. Possibly a hybrid
scheme could be developed. The multitude of existing classification
schemes has provided insight into the many different architectural
features of "NVN" machines. Many possess information to identify the
advantages and disadvantages that these machines offer in solving a
particular problem. Primarily, the main consideration confronting the
choice of a particular machine for a given application is how to best
match the most important features of a particular machine to a specific
application. However, how the other features of the machine may
adversely affect the task. These "other" features may do more harm
than good.

84



In the development of a hybrid classification scheme, it will be very

important to include information that is contained in all of the
previous means of classification, both the well known schemes as well as
the not so well known academic-based type schemes, into one
comprehensive scheme. Once developed, this architectural classification
scheme could then be applied to existing machines as well as to models or
simulations of proposed architectures.

6.3. Software Support. As discussed throughout section 5, many of the
existing software practices that are currently utilized for sequential
machines need to be readdressed for "NVN" based machines. "NVN"
hardware advancements have progressed significantly in recent years, but
"NVN" software development has not. In fact, software development for
"NVN" architectures has not advanced very far from its uniprocessor
origins. Programming languages, particularly high-level languages, are
very limited in terms of support for the growing multitude of advanced
computer architectures in existence today. The underlying concurrency
applications that are supported by most of these architectures are

currently not well suited for today's modern programming languages. New
languages are needed. Still, most of the high-order programming
languages that are being currently utilized to program "NVN" machines

are only extensions of languages which were specifically designed for
sequential machines. Moreover, these languages were primarily developed
in the 1950's and 60's.

Multitasking, dynamic allocation techniques, dynamic load-balancing,
task migration methodologies, and fault-tolerance are just some of the

software issues that need to be integrated into an operating system that is
capable of responding to uncertain and changing environments. The

operating system must be able to assign, monitor, and terminate new or
reallocated tasks. All this must be accomplished with real-time
requirements and utilize processor resources optimally.
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There is also a very limited set of software tools for "NVN"

architectures [29]. Presently, there exists very few tools for the
purpose of creating software programs for these new machines, fewer
tools for debugging and analyzing these programs, and even fewer
programming environments. A study of the tools that do exist, as well as

an identification of those that are needed, is critically important if
applications intended for concurrency are to be matched to these
machines for C31 problems. Without sufficient knowledge of these tools, it
will be impossible to effectively exploit what is currently available.

Without insight into new tool development, potential uses of "NVN"
machines is impossible as well. For economical reasons, whether they be
financial, technical, or strategic in nature, the future of "NVN" systems is
largely dependent on the success of software and system development.

Much more research is needed not only for the development of concurrent
software algorithms and in software implementation mechanisms, but also
in making them partitionable and fault-tolerant. Advances in
programming support environments are also needed. There exist very
few tools to assist a user in partitioning and evaluating a particular
application to exploit any inherent parallelism. New languages and
compilers are needed to extract parallelism. More specifically,
different types of programming languages (conventional, object-oriented,
logical, functional, etc) should be considered in order to determine the best

concepts and building blocks to design effective parallel programs.

6.4. New Software Development Methodologies. New software
development methodologies will most likely play a very important role
in the effective production and maintenance of software for "NVN"

computers. Whether or not DOD-STD-2167A can be utilized or be modified
to assist in the development of a software development methodology is
uncertain. The issues confronting the use of DOD-STD-2167A were

previously discussed in paragraph 5.2 and are certainly valid for new
development methodologies. A comprehensive comparison to the DOD-
STD-2167A software life cycle needs to be accomplished to assess the
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advantages/disadvantages and the strengths/weaknesses of new software

development methodologies for "NVN" software production. Associated

with this includes the development of new tools and techniques that will

support a possibly new DOD-STD-2167A based methodology, with a

complete analysis and examination of each phase of the life cydle.

Many new methodologies are emerging with the premise of "NVN"

architectures as the root. Many are dissimilar to the typical
"waterfall" approach employed in many conventional methodologies. One

of these new approaches is rapid prototyping, which has received a great

deal of attention. Basically, rapid prototyping utilizes the first part of the

development cycle to build a quick prototype in order to analyze

requirements, validate requirements, and to detect performance

bottlenecks. In some paradigms the prototype is then discarded since it is

never intended to be anything more than a means to check the design

against requirements. This is based upon the observation that the

requirements definition phase and subsequent system concept design

phase (of the waterfall model) may occur years before the final

implementation of the software. This assumes that the "right"

software design decisions were made up front, since it places an early

commitment to requirements for the final implementation of the software.

New techniques need to be developed that allow rapid, low-cost

prototyping of existing, and/or experimental, high performance computers

that are "NVN" in nature. Hopefully, a rapid prototyping mechanism

intended for "NVN" computing could be developed that would provide the

capability to evaluate alternative approaches to parallel processing

applications such as developing simulations. By quickly building

prototypes and running experiments, a number of design problems and

performance bottlenecks could be identified early in the software design

phase. Obviously, the major premise of this approach is the ability to

quickly advance to each new iteration of the prototype and

specification. Work in other new methodology approaches, including
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data-flow techniques and evolutionary development methods, also need to
be investigated for "NVN" applications.

6.5. "Non-von Neumann" Machine Assessment. Research is also needed to
assess and explore the underlying architectures and application domains
that encompass the class of "NVN" machines, specifically for the purpose of
evaluating the impact of these architectures on the software life cycle
and their potential for Air Force mission critical C31 applications.
Specifically, many issues need to be addressed, such as:

1) What types of "NVN" architectures and machines currently exist?
What types of "NVN" machines are being developed?

2) What types of applications and algorithms are being run on each
machine? Conversely, what machines are best suited for current
applications? What will be the best (or potentially the best) architectures
for future applications?

3) What are the strengths and weaknesses (advantages and
disadvantages) of the existing set of non-von Neumann machines?

4) What kind of success has been experienced for commercially
available "NVN" machines?

5) What is the state of development for research-based "NVN"
machines? Are they in a state of simulation? Do there exist prototypes?
Are there plans to manufacture for commercial use?

6) What is required to support the development process of these
architectures? What software is required to exploit these machines?
What type of technical and financial investment is required?

These issues should provide the necessary baseline assessment of "NVN"
architectures. It will be a much easier task to apply the impact of these
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architectures if these issues can be understood and utilized. Until then,

architecture applications cannot be made knowledgeably.

7. CONCLUSIONS.

7.1. General Conclusions. As shown in this report, parallelism can be

applied in a number of ways. Summarizing we can observe that
parallelism can be accomplished:

1) in an algorithm - written to express the solution to a problem,

2) in a single processor - to enhance the performance of an

executable instruction,

3) in a computer system - to allow for more than one processor to

solve a problem, and

4) between systems - to allow for more than one system to solve

a problem.

The utilization of "NVN" architectures is definitely a very strong

candidate for many current and future applications. It is apparent that
what is exciting and challenging about the advent of "NVN" architectures is

that they are new. Based on the understanding that is possessed by the
technical community, the knowledge that has so far been obtained is only
the "tip of the iceberg" [111. Since most of the current "NVN" machines

are primarily used in research labs, software for realizing the parallel
nature that these machines possess is sorely needed in order to effectively

utilize them in commercial and government application environments.

Once the issues portrayed in this report are successfully addressed,
"NVN" architecture utilization will be more easily pursued in many areas of

technology. Without this research, it will not be possible to effectively
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exploit what is available, nor understand the ramifications (strategic,
technical, or financial) of utilizing these machines. However, if new
technology gains can be realized using "NVN" architectures, software
and systems development costs may be reduced and more reliable systems
may be possible.

7.2. Command and Control Utilization Observations. It is evident that
"NVN" architectures are, and will continue to be, a very important
avenue for providing the necessary processing power to solve many
problems in a number of application areas. It is obvious that many
command and control applications are suitable for exploitation by "NVN"
machines. It can be observed that there exist a number of design
concerns t~iat are specifically applicable to the utilization of "NVN"
computers for command and control environments:

7.2.1. Types of Processors. It appears that the types of "NVN"
architectures that possibly will be employed in command and control
environments will be systems built around a hybrid organization
consisting of both sequential and "NVN" components. Furthermore, it
appears that off-the-shelf processors, such as Intel's 80XX series,
Motorola's 68XXX series, or National Semiconductor's 32XXX series may be
the most promising types of processors to employ. (The math co-
processors associated with each wili also be employed). It is felt that
these commodity level processors will be utilized because they offer
the lowest cost, highest availability, and possess the most software and
hardware support. The use of special purpose hardware is not desirable
since they are typically expensive, hard to maintain, offer lower
reliability, and offer very little initial software support. In addition to
designing and developing the hardware for the system, the software must
also be designed and developed. Generally off-the-shelf software
packages cannot be utilized.

7.2.2. Processor Granularity, Should fine-grained architectures, which
typically consist of a large number of processors, or coarse-grained
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processors, which consist of relatively few (usually 2-20)

computationally powerful processors, be utilized? It appears that

coarse-granularity "NVN" architectures are more applicable to command

and control environments. This is due to a number of observable

factors. For one, course-grain machines are the most cost effective, since

the processors that make-up coarse-grained systems are usually stand-

alone processors. Because of this, coarse-grain machines suppcrt generic

operating systems more easily. (It appears that fine-grained machines

require a separate operating system processor to control such things as

communication and synchronization). Maintainability of coarse-grain

machines is easier, reliability is higher, graceful system degradation
problems are handled easier, and interprocessor topologies are not as

complicated.

7.2.3. Subset Machine Environment. A great deal of software support

that is necessary for command and control environments could be done via
a subset machine environment, especially if the aforementioned design

criteria is employed (a coarse-grained system utilizing commodity level
processors). By utilizing only a two or four processor configuration for a

desired "NVN" architecture, many areas could be explored at a greatly
reduced price, both in terms of cost as well as resource utilization. A
"desk-top" configuration of this nature could directly support such things

as software development, software testing, software too! design,

simulations, and training. Obviously the low-cost distributed
environment that would evolve would be very beneficial. For one, by
obtaining only a subset of a desired "NVN" system, many software issues

could be explored prior to the commitment to a particular system. Based

upon results, a desired system may not provide the necessary
processing capabilities as was thought. Hence, it is felt that the

effective emulation of a full-blown system in a subset machine

environment will be very beneficial. By utilizing a desk-top

configuration, many command and control applications could be easily

operated in a typical personal computer type of environment. For

example, NCube offers a unique desk-top capability for their system.
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The "guts" of their subset machine environment is a four-node board with

a PC/AT bus interface that allows up to four boards. The intention by

NCube is to provide a limited multiprocessing environment to more

potential users.

7.3 Closing Remarks. As has been the underlying theme of this report,

"NVN" processing has progressed largely because of advancements in

computer architectures and hardware technology. Unfortunately, there

has not been comparable investment of either research funds into the

development of parallel programming languages or software support tools

and techniques to utilize these technological and architectural

advancements. Although the development of "NVN" computer systems

are direct fallouts of hardware technology and computer architecture

advancements, software development issues represent the primary

roadblock to rapid implementation for these systems. In fact, hardware

for "NVN" computing is probably five years ahead of software. The

rather weak commercial market for the sale of "NVN" computers provides

clear evidence of this. Moreover, the development and sale of

commercial software for "NVN" computer systems has significantly lagged

far behind the development of hardware for these systems [11].

Typically, only library subroutines that assist a programmer to perform

parallel operations are provided by today's manufacturer's, but still the

programmer usually must modify their particular computer programs to

take advantage of them [28]. It has taken more than three decades to

build the foundation for sequential processing, yet it is very unclear as to
whether any of this previously developed software technology baseline

can be applied or extended to "NVN" machines. It appears that sequential

processing can be used as a starting point, but major technological

breakthroughs in software techniques are sorely needed.

Hopefully, this report has provided a better understanding of "NVN"

architectures and the underlying software issues that surround their

effective implementation. If nothing else, it is hoped that the reader has

obtained at least some kind of knowledgeable insight into many of the
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afeas of "NVN" computing. Possibly, this report has fueled an interest
to obtain further specific information on "NVN" processing. If so, the
reader is advised to utilize the reference list at the conclusion of this

report.
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