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PREFACE

This report describes the effort of synthesizing two distinct image algebra developments,

sponsored by the Air Force Armament Laboratory (AFATL) at Eglin Air Force Base (AFB).

These algebras were developed independently, one by the Singer-Kearfott Corporation, and

the other by the University of Florida. The results of this effort are described in this report.

The report was prepared by the Department of Computer and Information Sciences, 301

Computer Science and Engineering Building, University of Florida, Gainesville, Florida

32611, under Air Force Contract F08635-84-C-0295.

The authors wish to thank the Air Force Armament Laboratory and the Defense

Advanced Research Projects Agency (DARPA) for sponsoring the development of the image

algebra. We are particularly grateful to Dr. Sam Lambert (AFATL), Dr. Donald Daniel

(AFATL), Dr. Jasper Lupo (DARPA), Mr. Patrick Coffield (AFATL), and to Mr. Neal

Urquhart for their continued support of this research.
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STANDARD SYMBOLS OF THE AFATL IAGE ALGEBRA

Symbol Explanation
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Z k the set of integers with binary representation of length k
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f "X---#Y f is a function from X to Y

f-1 the inverse of function f

f Ix the restriction of f to domain X
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XI× ... xX.X the n-fold cartesian product of sets X, • ..
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Pj(x• ,x,) projection of the jth coordinate, xj, of (x• ,x.)
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SECTION I

INTRODUCTION

The Air Force Armament Laboratory (AFATL) is developing autonomous seekers to

attack both mobile land targets and fixed, high-value land targets. The purpose of the

mathematical structure described in this report is to aid the efficient development of such

seekers. This mathematical structure, known as the AFATL Image Algebra, has been

specifically designed for the concise expression and clear representation of image processing

and pattern recognition techniques. This structure provides a common mathematical

environment for target detection, algorithm development, optimization, comparison, coding,

and performance evaluation. In addition, the Image Algebra provides a mathematical basis

for a universal image processing language which, when properly implemented, will greatly

increase a researcher's productivity as programming tasks required to compute image

transformations are greatly simplified due to the replacement of large blocks of code by con-

cise algebraic expressions.

Several previous attempts to develop a unified algebraic approach to image processing

have met only partial success in expressing all transformations of gray value images, Refer-

ence 1. In contrast, in addition to meeting the design specifications mentioned in the previ-

ous paragraph, the AFATL Image Algebra provides a complete unified algebraic structure

capable of expressing all image-to-image transformations. The Image Algebra's foundation

evolved from a 33-month Air Force/Defense Advanced Research Project Agency (DARPA)

sponsored research effort known as the Image Algebra Project. Two contracts to develop the

Image Algebra were awarded. One award went to the University of Florida, with Dr.

Gerhard Ritter as principal investigator, and the other to the Singer-Kearfott Corporation

with Dr. Charles Giardina as principal investigator.

The University of Florida's Image Algebra development proved highly successful, capa-

ble of fulfilling the tasks set forth by the Air Force Armament Division. In order to further

enhance t",e value of the algebra, the Air Force Armament Laboratory awarded a contract

extension to the University of Florida with the goal of providing an Image Algebra Fortran

implementation and to investigate a possible synthesis of the structures developed by the

Singer-Kearfott Corporation and University of Florida.

.. . .=,,=,, ....ml ln l m i / ' m ll I1



This report summarizes the University of Florida's analysis of the two algebraic struc-

tures and provides a tutorial overview of the AFATL Image Algebra.
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SECTION II

ANALYSIS OF SINGER-KEARFOTT'S IMAGE ALGEBRA

It became clear at the December 1985 DARPA/Center for Night Vision and Electro-

Optics (CNVEO) Image Algebra briefing by the University of Florida and Singer-Kearfott

that two vastly divergent algebras were being formulated. The University of Florida's alge-

bra was viewed as the more mature and superior of the two, and the suggestion was made to

continue the effort with the University of Florida as sole contractor. However, AFATL pro-

gram management decided to retain both contractors.

One of the major differences of the two approaches was that Singer-Kearfott's algebra

had an infinite number of operators while the University of Florida's had 10. After this

meeting, Singer-Kearfott's operands and operators started, to some extent, mimicking the

operands and operators established at the University of Florida. However, as the University

of Florida's operands and operators became more refined, many of Singer-Kearfott's

operands and operators retained much of the appearance, characteristics, and properties of

several of the University of Florida's earlier defined operands and operators. In particular,

Singer-Kearfott's images are elements of X U U RA, where Z2 denotes the infinite planar
AEZ2

array with integral coordinates, R the set of real numbers, and RA denotes the set of all

functions from A to R. As we will show later on, this was the University of Florida's early

definition of real valued images. On the other hand, images in the University of Florida's

algebra are elements of FX, where X C Rk, Rk denotes euclidean k-dimensional space, and F

a set of values such as the set of real numbers, complex numbers, binary numbers of fixed

length k, etc. This allows for complex images as well as discretized computer images. As

Singer-Kearfott's images do not include complex imagery, we do not see how any Fourier-like

image transform can be accomplished within their setting.

As two Singer-Kearfott images need not have the same underlying array A, a simple

operation such as the addition of two images becomes a complicated issue, both in terms of

definition as well as possible software implementation. Specifically, the fundamental opera-

tors in the Singer-Kearfott algebra are:

3



I Addition
H Multiplication (D
III Maximum
IV Division
V Translation T
VI Rotation N
VII Reflection D
VIII Domain Extractor K
IX Parameter Extractor G
X Existential Operator E

Singer-Kearfott's image addition (D is defined as:

f(x,y) (x,y) E A - B
(fDg) =g(xy) (x,y) E B -A

f(x,y) + g(x,y) (x,y) E AnB
undefined (x,y) A U B

Image multiplication 0, maximum 0, and division & are defined in an analogous fashion

with + being replaced by., max, and +, respectively, in the above definition.

1. REMARKS AND OBSERVATIONS

We now consider each of the basic operations of the Singer-Kearfott algebra and discuss

them in the context of image processing applications and the corresponding operations of the

University of Florida algebra.

a. Image Addition, Maximum, and Division

Image addition, maximum, and division constitute the basic binary image opera-

tions in the Singer-Kearfott algebra. The University of Florida had defined this type of

image addition, multiplication, maximum, and division at the beginning of Phase I of the pro-

ject. The next page shows a viewgraph dating from the 2nd project review of Phase I

(March 27, 1985).
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Viewgraph of the 2nd project review of Phase I (March 27, 1985):

I MACBE" A L SEIEBRA PZ 0= ODnr C3 R:

THE OPERATIONS . V. vA A ON S

LET A BE AN IMAGE ON Ye AND B BE AN IMAGE ON -e, WHERE "S' P(X)

I. A + B C { (x,c(x)) a c(x) - a(x) + b(x), x E Vi 'Y ) U AsJB A

2 2122 3 4 56

22.22 3456 6:Y2

2 2 22 33 4 5 2 2 2 2

A B 2222

A + B

SIMILARLY

2. A * B C C (x, c(x)) : c(x) = a(x) * b(x), x EYCVY2 > U AB.JB A

3. A v B - { (x,c(x)) : c(x) = a(x) v b(x), x EY~T 2 } - .-e AB.JBA

4. A A B = C (x,c(x)) : c(x) = a(x) A b(x), x YV-l - U AB
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b. Critique of Basic Binary Operands

The University of Florida abandoned these definitions fairly early as they are too

clumsy from both the application and theoretical point of view and the image processing

community simply does not add images this way. In addition, there exist no natural additive

and multiplicative identities for these operations (i.e. a 0 and a 1 image). The only identity

that works for both is the empty set. This does not provide for a very useful mathematical

structure.

c. Corresponding University of Florida Operations

The Singer-Kearfott addition ( multiplication, maximum, division ), if ever

needed, can be easily expressed in terms of the University of Florida's current addition (mul-

tiplication, maximum, division) followed by the extension operator.

d. Image Rotation

Singer-Kearfott's rotation is defined only for multiples of 90 degrees about the

origin. In the University of Florida's algebra this can be accomplished through image

definition ( i.e. the assignment statement a(j,-i) = a(ij)) or with a template operation.

Furthermore, rotation using a template is a one-step operation and images can be rotated

through any angle and about any point.

e. Image Translation and Reflection

The operations of translation and reflection as defined in the Singer-Kearfott

algebra can again be accomplished by a simple assignment statement or a one step template

operation. Furthermore, Singer-Kearfott's translation is a simple linear coordinate shift

while translation by templates encompasses both linear and non-linear translations.

f. Domain Extractor and Parameter Extractor

The domain extractor and parameter extractor correspond to the University of

Florida's operation of domain and range, respectively.

g. Existential Operator

In regard to the existential operator, we prefer to adhere to standard textbook

mathematics and leave it as a function definition statement (e.g. "Let a be the function

defined by.. .) instead of viewing it as an algebraic operation. Our view is identical with

computer language implementations in general. Functions that do not exist in a particular

language are defined by assignment statements (e.g. a(ij) = i+j, etc.).

h. Remaining Operators

The remaining operators consists of an infinite number of macro operators
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(subroutines) which are defined in terms of the 10 elementary operations. This approach

makes even the simplest algorithm appear extremely unreadable and cumbersome to express.

Two examples should suffice.

(1) Morphological Operations

The simple operations of dilation, erosion, opening and closing have the fol-

lowing ungainly appearance:

[ N(f,g) I(ij) = E( V. { A(f, gj) }, (ij) ]

[ P (f, g) J(ij) = E[ V0 { A(f, e&,) }, (ij)]

6P(f,g) = ER [I1 {f, N2(g)}, N2(g)]

ft (f, g) - 1[: f g),, g

where

V. (f) = G [V S[T_,_..(f), { (0,0)}II
(ij)EA I

A~f, g) Ar E)( [ g]®l,, oAL~JB (D )]oArSe

S(f,B) = M(fIB), and M(fg) = A(fDg, 0A )

In addition, g is assumed to be symmetric.

(2) The Gradient Operator

The explanation of the common gradient operator is as follows:

Ewf,M,N,t) = Tt N. {F(f,M), 1(f,N) }]

EI(f,M,N,t) = Tt [N {Yf,M), Y(f,N) }]

E2(f,M,N,t) = T [N2 {7(f,M), Y(f,N) },

In each of the above, M and N are images which, in practice represent directional masks.

Here

N..(fj,f2,...) =i k IIf

" ' i i7



m

NI(fl,f 2,...,fm) = k1
m 1

N~f1,f2,'".,frn) -- { [. k 12 }1

F(f,g) - E [E [ D, [(f,Ti.(g) ), T i (g) 1, {(i,j) }
(ij)EA

where Y denotes& addition,
Oj)EA

Do(f,g) = " [f(g], 'o(f) = G [ A $ [T..1._4(f), {(0,0) }1]
(iW)EA

T0(f) f[(f 0OA)@ o(f @ OA)IC,  eof =(ef)eoA

"t = U(f6tA IA), where 0A =E[0,K(f)]

and

ctPA f = E(a,K(f)) Of.

2. SUMMARY

Overall, we found the Singer-Kearfott algebra extremely cumbersome and ungainly, not

in step with much of current image processing practice. The algebra is extremely difficult to
use in expressing even the simplest algorithm, let alone an algorithm of any major complex-
ity. This defeats at least one major goal of AFATL's image processing language develop-

ment project, namely simplicity and translucency of algorithm representation.

In all fairness to the Singer-Kearfott effort we must add that our conclusions are based

on very scant reference material. Our reference material consisted of Singer's Phase I final
report and the Phase I1 final review viewgraphs. Singer-Kearfott's final report, which was
requested by us and the intended basis of this analysis and synthesis, was never forwarded by
AFATL. Both, Singer's Phase I final report and the Phase 11 final review viewgraphs are
sorely lacking algorithmic image algebra expressions, i.e. image algebra pseudo code of algo-

rithms that represent more than just a simple transform or maximum operation.

In summary, the University of Florida's image algebra is capable of expressing Singer-

Kearfott's elemental operators in a straight forward fashion and thus encompasses all capa-
bilities of the Singer-Kearfott algebra. In addition, considering the shortcommings of the

8



Singer-Kearfott algebra, we feel that any synthesis of the two algebraic structures would be

counter-productive to the goals of the AFATL image processing language development pro-

ject. We therefore recommend the algebraic structure developed by the University of

Florida to represent the AFATL standard image algebra.

9



SECTION II

IMAGE ALGEBRA

In the remaining part of this document we provide an overview of the AFATL Standard

Image Algebra. We begin by introducing the basic operands and operators of the algebra.

1. VALUE SETS AND COORDINATE SETS

The image algebra defined in this paper is capable of multivalue image manipulation and

constitutes a heterogeneous algebra in the sense of Birkhoff, Reference 2. This general form

of the image algebra is discussed in the last sections of this document. In this section we res-

trict ourselves to single-valued image manipulation.

The image algebra deals with six basic types of operands, namely value sets, coordinate

sets, the elements of each of these sets, images, and templates. The only value sets con-

sidered in this section are the set of integers, real numbers, extended real numbers (which

include the symbols +oo and -oo), complex numbers, and binary numbers of fixed length k,

which will be denoted by Z, R, Ro, C, and Zk, respectively. These correspond to the

values commonly encountered in most image processing routines and in the modeling of such

routines.

An unspecified value set will henceforth be denoted by F. The operations on and

between elements of a given value set F E{Z,R, R.,C,Z } are the usual elementary

operations associated with F. Thus, if F = R., then the operations are the usual arithmetic

and logic operations of addition, multiplication and maximum, and the complementary

operations of subtraction, division, and minimum. In addition to these elementary operations

on elements of value sets, the image algebra also includes the operations of union, intersec-

tion, set subtraction, choice function, and cardinality function on subsets of F. The choice

function applied to a set returns (chooses) an arbitrary element of the set, while the cardinal-

ity function yields the number of elements in the set. Union, intersection, set subtraction,

choice function, and cardinality function will be denoted by U, n, \, choice, and card,

respectively.

Coordinate sets are subsets of n-dimensional Euclidean space R'. We reserve the letters

X, Y, and W to denote coordinate sets. Elements of coordinate sets will be denoted by bold

lower case letters. In particular, if xEX and XCR , then x is of form

10



x = xl, x2••, x.), where each coordinate x (i = 1,2, ... ,n) is a real number.

It follows from the definition that coordinate sets can be rectangular, hexagonal, toroidal

discrete arrays as well as infinite subsets of R1. Providing coordinate sets with such wide

varieties of shapes, sizes and dimensions allows for a coherent mathematical approach to the

modeling and manipulation of continuous as well as discrete images on any desired type of

coordinate set.

Image algebra operations acting on coordinate sets are operations on subsets of coordi-

nate sets as well as operations between coordinate points. In particular, operations on sub-

sets of coordinate sets are U, n, \, choice function, and cardinality function. Image algebra

operations on or between elements of coordinate sets are the usual operations between coor-

dinate points, i.e., vector addition, scalar and vector multiplication, dot product, etc.

2. IMAGES

Thus far we have defined two types of objects, value sets and coordinate sets. These

sets and their elements constitute some important operands of the image algebra. However,

the most fundamental of the algebra's operands are images. The most general, yet useful,

mathematical definition of an image involves the previously defined concepts of value sets

and coordinate sets.

Given a coordinate and value sets X and F, respectively, then an F Ivalued image a on

X is the graph of a function a:X -* F. Thus, an F valued image a on X is of the form:

= { (x,a(x)) : xEX },

where a(x) E F.

The set X is called the set of image coordinates of a, and the range of the function a
(which is a subset of F) is the set of image values of a. An element (x,a(x)) of the image a is

called a picture element or pixel, where x is called the pixel location, and a(x) the pixel value

at location x. The set of all F valued images on X is denoted by FX. Here we follow the

usual mathematical convention of denoting the set of all functions from a set A to a set B by

BA.

If the value set F = Z or F = R, then we are dealing with integer or real valued

images, respectively. Similarly, replacing F by C, or Zk, provides for complex or finite digi-

tal images, respectively.

11



In the next chapter we extend the notion of value sets in order to include such objects as

vector valued images. This fact and the above examples should make it clear that the vari-

ous choices for F and X allow for a far greater variety of image operands than are currently

used by the image processing community.

3. BINARY AND UNARY OPERATIONS ON IMAGES

Operations on and between F valued images are the natural induced operations of the

algebraic system F. For example, for real valued images (i.e. elements of RX), the opera-

tions are the elementary operations induced by the vector lattice (a vector space which is

also a lattice) R. Thus, the basic real valued image operations reflect the arithmetic and

logic operations on R. In particular, the binary operations of addition, multiplication, and

maximum on RX are defined as follows:

Let a, b E RX. Then

a + b {(x,(x)) :c(x) a(x) + b(x), x E X) (1)

a * b {(x,c(x)): c(x)= (x).b(x), x Ex} (2)

a V b {(x,(x)) :c(x) a(x) V b(x), x E X (3)

These are the basic binary operations for real valued images. As complex numbers are

not endowed with a "natural" lattice structure, only operations 1 and 2 are basic operations

between complex valued images.

Analogous to the development of the algebra of real numbers, other binary and unary

operations on real valued images can now be derived from the basic operations either directly

or in terms of series expansion. However, instead of reinventing the wheel, we assume fami-

liarity with the algebra of real numbers and let the remaining operations on RX again be

induced by the corresponding operations on R. Two of these operations - commonly used in

image processing - are exponentiation and the computation of logarithms. In particular, if a

and b are real valued images on X, then

ab = {(x,C(x)) : C(x) - a(X)b(x) if 4x) # 0, otherwise c(x) = 0, x E X }. (4)

As we are dealing with real valued images we follow the rules of real arithmetic and res-

trict this binary operation to those pairs of images ab for which a(x)b(x)ER whenever

12



a(x) #0. This prevents the creation of complex pixel values such as (-1) '. The inverse of

exponentiation is defined in the usual way by taking the logarithm, namely

log.b ={ (x,c(x)) : c(x) = log 1)b(x), x E X (5)

As for real numbers, logsb is defined only for those images a and b for which a(x) > 0

and b(x) > 0 for all x E X. The next basic binary operation, called the dot product, distin-

guishes itself from the above five in that its output is not an image but a real number. Let

X be finite, then the dot product is defined as:

a.b _= a(x)b(x)
xX(

An image a is called a constant image if all its gray values are the same; i.e. if a(x) = k

for some real number k and for all x E X.

Two constant images are of utmost importance in the image algebra; these are the zero

image, defined by O ({(x,O):xEX}, and the unit image, defined by l--((x,I):xEX.

Suppose k E R and a is a constant image with a(x) = k. Then we define:

bk bs and kb = ab

kb .*b and k+b - a + b

logkb - logsb.

In the definition of log we assume, of course, that k>0 and b(x)>0 for all x. We also note

that exponentiation is defined even when a(x) = 0.

Subtraction, division and minimum are defined in terms of the basic operations and

inverses. Specifically:

a - b -- a + (-b) and a/b - a*b- , where -b = ((x,--b(x)): (x,b(x)) E b

a A b M--(-& V-b)

The images 0 and 1 have the obvious property a +0 = a and a*I - a. On the other

hand, b*b - ' does not necessarily equal 1. However, b*b-'*b = b. For this reason b- 1 is

called the pseudo inverse of b. Inequalities between images are defined in terms of maximum

and minimum. Thus, for example, ab if and only if aVb =b. These observations show

that the ring (RX, +, *) and the lattice (RX, V, A) behave very much like the ring and lat-

tice of real numbers.
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There are various useful unary operations definable in terms of the basic binary opera-

tions. For example, we have already provided the definitions of kb and logkb, the exponen-

tial of an image and the logarithm of an image b to the base k, respectively. In particular,

the exponential of an image b, exp(b) = eb = &b, and the natural logarithm of b is defined

as Inb =_-logmb, respectively, where a is the constant image defined by a(x) =_ e for all x EX.

Similarly, the absolute value of an image a can be defined by I al 5aV(-a).

In view of these examples it is obvious that there are various operations on and between

images of different degrees of complexity that can be derived from the operations defined

thus far. Phrasing some of these in terms of the basic operations would result in complicated

algebraic expressions or infinite series representation. However, this would defeat the goal of

providing a simple language for image processing tasks. Instead, we follow our initial philo-

sophy and define the operations on FX to be the operations induced by the (usually well-

known) operations of the algebraic system F. In particular, the common unary operations on

RX are functions available in most high level programming languages. More generally, any

function f: R -- R induces a function RX --- RX, again denoted by f, and defined by

f(s) = {(x,c(x)): c(x) = f(a(x))}

For example, sin(&) - {(xsin(a(x))): x E X }. Similarly, if Xs denotes the characteristic func-

tion with respect to some set S C R, then

s(a) - {(x,(s(a(x))): x EX} - { (x,c(x)) : c(x) - 1 if a(x) E S, otherwise c(x) = 0.

Excepting the formalism, many of the operations of the algebraic system RX described

thus far are not new, and are well-known to the image processing community. What is new

is the concept of raising an image to the power of another image or taking the logarithm of

an image to the base of another image. This generalizes the common pixel level operations

of raising an image to a constant such as taking the square root of an image at each pixel or

taking the natural logarithm of an image at each pixel.

The idea of having more versatile pixel level operations has led to the following generali-

zation of the characteristic function: Given aEFx and SE( 2F)x, where 2F denotes the

power set of F so that S(x)CF for each xEX, then

Xs(a) = { (x,c(x)) : c(x) = 1 if a(x) E S(x), otherwise c(x) = 0 }. (7)

Pixel level image comparison provides a simple application example of the generalized
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characteristic function. Given the image b E RX, we define S b E (2R)x by

S<b(x)-{r ER: r <b(x) }. The functions S<b, S-b, S>b, and S>b are defined analogously.

Thus, for example, S>b(x)-{rER:r > b(x)} and S.b(x)-{rER:r=b(x)}. Substituting

these set functions for S in Equation (7) yields:

Xsb(a) = { (x,c(x)) : c(x)=1 if a(x)> b(x), else c(x)=0 },

XS_<,(a) = {(x,c(x)) : c(x)= if a(x)<! b(x), else c(x) =0 }, etc.

In order to reduce and simplify notation, we define X>b XS>b, XY-b Xs_, X<b Xs<b,

X>b - XS,6, and Xb = xs b. As alluded to earlier, these generalized characteristic functions

could have been defined in terms of the more elementary image operations. Specifically, we

could have defined

X>b(a) - [(a-b) V 0]1-' * [(a-b) V 0]

Obviously, if A=b, then (a-b) V 0 = 0 and X>b (a) = 0-1*0 = 0 since by definition of

exponentiation, 0-1 - 0. The function X<b is defined in a similar fashion. The remaining

characteristic functions that compare two images can then be defined in terms of products

and complementations. In particular, if we define the complement i of an image a by

1 - a*a- , then we obtain

X<b(a) - X>b(A), _X_>(A) - X<b(a), and Y'(a) = X<b(a) * X _ a

Whenever b is the constant image with gray values equal to k it is customary to replace

b by k in the above definitions. Figure I below provides an example of the operation X__k(a),

where k = 15. In a likewise fashion we can retain pixels whose values are within an interval

[m,n] by using

Nm,nl(a) = X>,(&) * X<0(a)
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Figure 1. Example of the Operation X>1,5(a)

When considering an expression of the form sin(a), one rarely thinks of the image a as a

function. However, images, as defined in this report, are functions, namely elements of FX,

and several important mathematical notions used in image processing are the restriction,

extension, domain, and range of a function. We express these notions as basic operations of

the image algebra. In particular, if a is an image on X, then the Domain function of an

image a is defined simply as

Domain(a) = set over which a is defined,

e.g., Domain(a) = X The range function of an image lies on the other side of the spectrum,

and it provides the set of values assumed by the image. Thus, if a E FX, then

Range(a) = set of values determined by a,

e.g., Range(a) C F is the set of all values a assumes on X Therefore, the output of domain

or range is not an image array but a set of coordinate points or a set of values, respectively.

Let a E FX. The restriction of a to a subset Y of X is denoted by al. Thus, al E F".

Here a user would specify the coordinate set Y C X. As an example, he could set Y =

{xEX : 5 <1x <20 }. We also allow the restriction of a to a subset of X specified by an
image-dependent property such as Y = {xEX:a(x)E S}, where S C F. This type of res-

triction is denoted by a double vertical bar and provides a useful tool for expressing various

algorithmic procedures. For example, if Y = {x EX: a(x) > T }, where T denotes a given

threshold value, then we define aj>1 by ar --szex:u>,.. In this case, note that
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Domain(agJ is the set of all locations where a exceeds the threshold T.

Let a be an image on X, b an image on Y, and X C Y. The extension of a to b on Y

is defined by

aa(x) ifxEX
aI (b'Y)(x) =ib(x) ifx EY\X,

where Y\X = {yEY: y X}. In actual practice, the user will have to specify the func-

tion (image) b on Y.

4. GENERALIZED TEMPLATES

In terms of image procesing applications, templates and template operations are the

most powerful tool of the image algebra. The image algebra definition of a template unifies

and generalizes the usual concepts of templates, masks, windows and neighborhood functions

into one general mathematical entity. In addition, templates as defined in this report gen-

eralize the notion of "structuring elements" as used in mathematical morphology, Refer-

ence 3.

Let X and Y be coordinate sets and F a value set. A generalized F valued template t

from Y to X is a function t:Y--. FX. Thus, for each y E Y, t(y) E FX, or, equivalently,

t(y) is an F valued image on M[ The set Y is called the target array, and the set X is called

the source array of the template t. For notational convenience we define ty =-t(y). Thus,

ty - {(x,tY(x)):xEX}. The point y is called the target point of the template t, and the

values ty(x) are called the weights of the template t.

The set of all F valued templates from Y to X will, henceforth, be denoted by (FX)Y.

If t is a real valued template from Y to X, then we define the support of ty to be S(ty) = x

E X: t,(x) # 0 }. If t is an extended real valued template then we also define So(ty) = { x

E X: t,(x) 0 --oo }. The sets S(ty) and $(ty) are also referred to as the configuration of t

at target pixel y or simply as the source configuration. Figure 2 illustrates these concepts.
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target pixel y / Source Configuration t,

Target Array Y Source Array X

Figure 2. Pictorial Example of a Template from Y to X

If t E (RX)X or t E (R )X, then t is called translation invariant if and only if for each

triple x, y, z E X with y+s and x+s E X, we have that ty(x) = ty+s(x-). A template

which is not translation invariant is called a translation variant or, simply, a variant tem-

plate. A large class of translation invariant templates with finite support have the nice pro-

perty that they can be defined pictorially. For example, let X = Z2, where

Z 2 
- Z X Z C R 2 is the set of discrete lattice points with integral coordinates. Let y =(x,y)

be an arbitrary point of X, xI = (x,y-l), x2 = (x+l,y), and x3 = (x+1,y-1). We now define

a template t E (Rx) X by defining - for each yEX - its weights as t,(y) = 1, ty(xj) = 3,

tY(x2) = 2, t,(x3 ) = 4, and t,(x) = 0 if x is not an element of the set {y,x1 ,x2,x 3}. Note that

it follows from our definition of t that S(ty) = {y,x 1 ,x2,x3}. Thus t has configuration and

weights as shown in Figure 3:
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Figure 3. Pictorial Example of a Translation Invariant Template

Th. .hadd *.1l in the piotorial ropr.,ntation of t indiioat. the location of the t"rgt point

y.

Templates are used to define those image transformations which make use of all image
values within some predescribed configuration of the source or input image. For example,

given an image a on X and t a template from Y to X, where Y may be of an entirely

different shape, size or dimension than X, then an operation between a and t will transform

a into an image b on Y where each new pixel value b(y) is computed in terms of some arith-

metic and/or logic combination of the values a(x) and t7 (x), where x ranges over S(ty) or

St,,t). Initially it may be convenient to view templates as masks such as the edge masks
used in the Sobel or Kirsch edge detection schemes. It is important to realize, however, that

the notion of a template is not the same as that of a mask. The magnification template
presented in this report and Fourier templates presented in References 4 and 5 are examples

of templates which are not masks. In the former, the target pixels are not even members of

their respective configurations, while in the latter the weights and configurations change as a

function of the position of the target pixel.

5. OPERATIONS BETWEEN IMAGES AND TEMPLATES

There are three basic template operations that are used to transform a real valued

image. They are denoted E, 12, and 0, and called generalized convolution, additive
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aximum, and multiplicative maximum, respectively. For complex valued images only one

image-template operation is defined, namely (D.

The template operations compute a pixel value c(y) by performing the basic operation

of addition or maximum on a weighted collection of pixel values a(x), with coordinates x in

some subset of X. Let X C R" be finite and Y C Rm. Suppose a E RX and t E (RX)Y,

then we define

a t {(y,c(y)): c(y) = a(x)'t(x), y E Y}

and

a t -{(y,c(y)): c(y) =V a(x)+t,,(x), y E Y},a Mt {YCY)) C() =XEX

where V a(x) +t,(x) = max{ a(x) +t,(x) : x E X }.
xEX

Several important comments are now in order. First note that since ty(x) = 0 whenever

x 0 S(ty), we have that x a(x).ty(x) = E a(x).ty(x). Here we use the convention
xEX xES(t,)

Fja(x).t,(x) = 0 whenever S(t,) = 0. Thus, the new pixel value c(y) depends only on the

values of &(x) and t,(x) for x E S(ty).

Similarly, if t E (R.)Y and t.,(x) = -oo whenever x * S(ty), then V A(x) +ty(x) =
xX

E V a(x) +ty(x). Here we define V a(x) +ty(x) = -oo whenever S,(ty) = ( Hence,

the action for computing the new pixel value c(y) generally takes place over the set S(ty) or

S.(tY).

It may be apparent by now that the sets S(t.) and SJty) generalize the notion of a con-

volution window or mask and a morphological structuring element, respectively. The appli-

cation examples provided in this paper should clarify the analogy.

The operation of multiplicative maximum is analogous to that of the additive maximum.

In particular, for a E RX and t E (RX)Y with t,(x) = -oo whenever x $So(t.), we define

at _{(y,c(y)): c(y) = V a(x).ty(x), y E Y)

where V a(x)-t,(x) = -oo whenever S,(ty) = 0.
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There is an easy generalization of the above defined operations between images and tem-

plates that proves useful when expressing algorithms in image algebra code. Suppose

XCR', WCRQ, YCRm , aERX, and t E(RW)Y with S(ty) finite for each y E Y. Then we

define

aft {(y,c(y)): c(y) = Z a(x)-t,(x), y E Y},
xEXlS(t,)

where c(y) =0 whenever X nl s(t,)= (A

The operations IM and @ are defined in a similar fashion. For example, for [] we

define the new pixel value c(y) - V a(x) +ty(x).
xEXfrlSt,)

The complementary operations of multiplicative minimum and additive minimum are

defined in terms of @ and [] as follows:

a t -(a -t)

In the above definitions we assume that S(ty ) and $4(ty) are finite for each y E Y.

However, the definitions extend to continuous functions a(x) and ty on compact sets S(t,,)

and $.(ty), with the exception that in the formulation of aft the sum is replaced by an

integral. That is,

c(y) = sk)a(x).ty(x)dx

Thus, image algebra operations can be used for expressing both continuous and discrete

image transformations.

As a final comment we note that while a E RX, a()t, a M t, and at)t are all elements

of Y (or RoY.). Thus, template operations may be used for changing the dimensionality or

size and shape of images. In particular, in addition to the usual local or global convolutions -

as occur in edge enhancement, local smoothing, morphological operations and Fourier like

transformations - template operations also provide a tool for image rotation, zooming, image

reduction, masked extraction, and matrix multiplication.

At first glance, these operations may appear somewhat mysterious. However, the exam-

ples provided below and those given in References 6,7,8, and 9 illustrate the inherent
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simplicity and power of these operations.

Example 1. Local Averaging. Let a be an image on a rectangular array X C Z2. Let

Y = Z2 and t E (RY)Y be the 3x3 neighborhood template defined as follows:

1 1 1

tf 1 1 1

1 1 1

1

Then -aet represents the image obtained from a by local averaging since the new
9

pixel value is given by c(y)= 1  E a(x).
9 xES(t ,)flX

As an important remark, we note that the image aE)t is an image on all of Z2 with zero

values outside of the array XC Z 2. Obviously, computers are not capable of storing images

defined on infinite arrays. Furthermore, in practice one is only interested in the image

-(a()t) restricted to the array X, that is 1!(aEgt)1X, where Ix denotes the restriction
99

This problem could be solved as follows: Let a E (RX)x be defined by y =- (tY)[x for

each y E X, where t is the template defined in Example 1. Then -La(Da provides the
9

desired finite image, since (aet)x = a(Ds. Thus, the question arises: "Why not simply

define t as a template from X to X instead from Z2 to Z2 ?"

The rationale for defining the template as we did is that this template can be used for

smoothing any 2-dimensional image independent of its array size X The reason for this is

that when defining an image b in a program one is usually forced to declare its dimensions,

i.e. the size of its underlying array X In particular, an image algebra "program" statement

of form b = aet means to replace b pointwise by a(et so that the value of b at location y

is the value of a&Et at location y. That is, the array on the left side of the equality sign

induces a restriction on the right side image array. In short, we make the convention that
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the image algebra equation b = (a® t)I x , where X is the domain of b, corresponds to the

image algebra program statement b = a.&t. Thus, a programmer is not faced with the task

of redefining t for a different sized image, as would be the case if he had defined t E (RX)x

for a given X. In fact, this is the way we have embedded image algebra into image algebra

FORTRAN, Reference 10.

Of course, the program statement b = -l(a~t) will produce a boundary effect. In par-

ticular, if a and b are mX n images with underlying coordinate set

X = (ij) :1 <i< m, 1 j n ), then

b(11) = 1(a(1,1) + a(1,2) + a(2,1) + a(2,2))

which is not the average of four points. One may either ignore this boundary effect or use

one of several schemes to prevent it. For instance, one may simply avoid the boundary pix-

els by defining an array Y - ( (ij) E X : i* {1,m }, and j 0 {1,n} } and the template

t E (RX)Y with ty having configuration and weights as shown in Example 1. Then l(aet)

represents the desired (m-2)X (n-2) output image. Letting m and n be variables again

allows the application of t to any size images.

Example 2. Sobel Edge Detection. Let a be an image on a rectangular array X C Z2, and

a, t the templates shown below defined on all of Z2. The image algebra expression

[(a s)2 + (ae t)91 2 ,

where

-1 1 -1 -2 -1

s= -2 2 t

-1 1 1 2 1

represents the Sobel edge enhanced image. The simplicity and translucency of image algebra

expressions is apparent. Local averaging and Sobel edge detection expressed in the image

algebra "look like" their corresponding textbook formulations, References 11 and 12. There

is no lengthy code or obscure symbology involved in these expressions.
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Example 3. Geometric Edge Filtering. This technique employs the operators 9 and .

Let tI, t2 j, t 3, and t 4 be the templates defined as follows:

2 1

t3  1 t4 = 2

2 1

Then the image algebra expression

b ={a(t 1 - at 2]2 + [a@t 3 -a~t 4 12} 2

is an edge enhancement technique which enhances edges while smoothing regions without

sharp edge contrast. An example is shown in the figure below.
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Figure 4. (a) Input Image (b) Edge Enhanced Image

Example 4. Dilations and Erosions. We present this example for readers familiar with the

basic notions of dilation, erosion and structuring elements that define a image processing

schemes based on mathematical morphology. More details of the relationship between image

algebra and mathematical morphology can be found in Reference 3.

The image algebra convolution operators 10 and IN can be used to express the mor-

phological operations of dilation and erosion, respectively, for both boolean and gray valued

images. In particular, if B denotes the structuring element used in a dilation or an erosion,

then we define a template t corresponding to B by setting S,,Jt.,) = B.', where By' denotes

the reflection of B., and B. the translation of B by the vector y. The template weights ty(x)

are defined to be the values assigned to B.' at location x and t,(x) = -oo if x B7' Then

I a M t is equivalent to the dilation of a by B, and

HI a 19 -t is equivalent to the erosion of a by B.

Statements I and HI are true for both boolean and gray level dilation and erosions.
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Figure 5(b) represents the dilation a 10 t of the boolean image a shown in Figure 5(a),

while Figure 5(c) represents the erosion of the image a 10 t, namely, (a 13 t) I t since in the

boolean case ty(x)- 0 if x E $(t 7 ) and, hence, b []-t b 13 t. The template t used in

this example is defined as follows:

0

0

(a) The Input Image a (b) The Dilated Image b=a [] t (c) The Eroded Image b 21 t

Figure 5. Example of Dilation and Erosion

Note that the operation a l t simply replaces each pixel value of a by the maximum pixel

value in the configuration of t; i.e. each pixel value a(x) is compared with the values of its

directly adjacent horizontal and vertical neighbors and the maximum value of these five pos-

sible pixel values replaces a(x). Similarly, for (al gt)[ t each pixel value of al ot is

replaced by the minimum pixel value in the configuration of t.

It is important to note that a template may vary at different locations in both shape and

weights. Thus the expression a 10 t may represent a far more complex algorithm than a

simple dilation. In short, mathematical morphology, as used in actual image processing, is a
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special substructure of the mathematical structure represented by the image algebra, Refer-

ence 3.

Before discussing parameterized templates, we introduce two special but very important

image algebra operations. These are the sum and the maximum of an image. The sum of an

image a on X is defined as

E - Ea(x)
xEX

and the maximum of a as

Va - max{a(x):x EX}.

Of course, the sum and maximum can be expressed in terms of more elementary operations.

Namely,

Ea - &*I and Va =- E(&Ot),

where t is a template from Y = {} to X defined by t0(x) = 1 for each x E X. Note that

E& = E a(x) is a real number, att is an image consisting of a single point, and Eaot is
xX

the pixel value of the single point image.

Particularly nice examples that exhibit the brevity and translucency of image algebra

code and involves image summation are order statistics of an image.

Example 5. Moments as Descriptors of Regions, Reference 13. For any image

a = {(x, a(x)) x EX), with XC Z2, moments of order pq are defined as follows:

mpq iPjq a(ij)i j

and central moments as Apq = . (i-i)P(j-j') a(i,j) where 7 iT= - m°---=
i JMoo Moo

The image algebra translation of the moments is simply

mpq M E(i p *jq*a)

where i-{(x,y,i(x,y)): i(x,y) = x , (x,y)EX} and j -{(x,yj(x,y)): j(x,y) y , (x,y)EX}.

Thus

moo Ea, -= E , and - *
27
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Defining the mean images i and j by

T= - and j *=Ea Ea.

the nonzero central moments are then given by the following translation:

Apq -= E[i-~ Iq*a

6. PARAMETERIZED TEMPLATES

Let X, Y be coordinate sets and P a non-empty set. A parameterized F valued tem-

plate from Y to X with parameters in P is a function of form

t: P -* (FX)Y

Here we define t., - t(p). Thus for each p E P, tp is an F valued template from Y to X

Again, in order to simplify notation, we define tpy -(tp.

The set P is called the set of parameters and each p E P is called a parameter for t.

Thus, a parameterized F valued template from Y to X gives rise to a family of regular

F valued templates from Y to , namely { tp : pEP }. The following two examples should

help clarify these notions.

Example 6. The Kirsch Edge Detector, References 14 and 11. The standard formulation

of the Kirsch edge detection algorithm is to replace each pixel a(y) of the input image a by

e(y) = max(l, max{ 1 5(a 1 a + a+ 2) - 3(a1 +3 + ... + ai 7) I: i = 1,2, ..., 8 }}, where the

addition of subscripts is mod 8 and the aj's denote the following eight neighbors of a(y):

a4 a

a. a(y) a1

a6 a7 a.

The image algebra expression representing Kirsch algorithm is given by
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iV I

where I denotes the unit image and t i is defined as follows. For i - 1,2, ..., 8 define the

parameterized template t i by

ti, = {(x,ti.(x)):tti,(x)= 5 if x x fi , xi+1 , xi 2, ti(x)=3 if x =X , ... , x+7 , else ti,(x)=0,

where the xi's denote the elements of S(t,,) as shown:

x4  x3 x2

=~ix X5  Y xi

x6 x7 x8

Example 7. Image Magnification. Suppose X C R2 is an m X n array, Y - Z2, P = { p:

pfix0,k), where x0 E X, k a positive integer }, and a an image on X Given a pair of real

numbers r - (r11r2), define [r] -([rj,[r 2]), where [ri] denotes truncation of ri to the nearest

integer. For each y E Y and p =(x0 ,k), define tp,(x) = 1 if x - [(y -xo)/k + x0j, and tp,(X)

= 0 otherwise. Then b = a 0 tp represents the magnification of a by the factor k about the

point x0. Thus, once this parameterized template has been defined, all a potential user of

this template needs to supply is the magnification factor k, the point about which to magnify

the image, and - in order to retain all the information - declare b to be of at least dimension

km X kn. This example also shows how a template transformation is capable of changing the

size of an image. Furthermore, note that from the definition of the template it follows that

S(tpj) = { x : x = [(y - x0)/k + xco }. In Figure 6 below, the image on the right represents

the magnification of the image on the left by a factor of 2.
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Figure 6. An Example of Image Magnification by a Factor of 2

7. OPERATIONS BETWEEN GENERALIZED TEMPLATES

The basic binary operations of addition, multiplication, and maximum between real

valued images also constitute the basic binary operations between templates. In particular, if

a and t are real valued templates from Y to X, then addition, multiplication, and maximum

between a and t are defined pointwise as follows:

a + t by (s + t)f a,+t.
a * t by (a * ty sr* tyr

and a V t by (a V t) = sy V ty

Obviously, addition and multiplication are also defined for complex valued templates, while

the maximum of two templates is defined for extended real valued templates as well.

Example 8. Template Arithmetic. Suppose X = Z2 and sE(RX) x and tE(fRx)x are the

following translation invariant templates:

1

8--- 1 2 1T] t= 7 3

-1
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then

-1

Subtraction, division, minimum, scalar multiplication, etc., can be defined from these basic

operations in a straightforward manner. Thus, for example, t-s is defined by (t-s) -

ty -sy.

The operations (D, E, and @ between images and templates generalize to operations

between templates. In particular, if t is a real or complex valued template from Y to X and

s is a real or complex valued template from X to W, then we define the template r - a@ E t
from Y to W by defining the image function ry by

ry(w) = E t(x).s x(w), where w E W.
xEX

In order to compute the weights r.,(w) it is usually not necessary to sum over all of X

but only a certain subset of X In particular, given y, then for each w E W we define the

set S(w) = (x EX: x E S(t.) and w E S(sx) }. Then, since ty(x)'sx(w) = 0 if x * S(w), we have

that

r,(w) E (w)

where we define E ty(x).s.(w) = 0 whenever S(w) = .

xES(w)

The operations a 10 t and s@ t are defined in a similar fashion. Here we suppose that

t E (RX)Y and a E (RW)X and define Sj(w) = {xEX: xE S,,(ty)andwE $(sx)}. Then

r =s f t E (RW)Y is defined by

ry(w) -- V ty(x) +sx(w),
xESOJW)

where we define V ty(x) +sx(w) = -oo whenever So,(w) 0.
zESjw)
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Similarly, r =a @ t E (RW)Y is defined by

r,(w)= V ,,(x)-s(w),
xES~,w)

where we define V ty(x)" S(w) = -oo whenever Soo(w) - .
XES4(W)

It follows from these definitions that S(ry) = {w EW: S(w) # )}, and

S(r.) = {w EW: SoC(w) 0}.

The complementary operations 1 and ( are defined by

a 13 t =-(-s [-t)

and

SO t -(s0-t),

respectively.

Initially, these definitions seem to be fairly complex. The following examples serve to

clarify these definitions and should provide a better understanding as to how composition of

templates is accomplished.

Example 9. Template Convolution. Let s and t be the translation invariant templates

defined in the previous example. Then

1 2 1

sa t= 3 6 3

-1 -2 -1

and if s, t E (R )X, then

1 2 1 2 3 2

89 t- 3 6 3 a n t= 4 5 4

-1 -2 -1 0 1 0
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Template composition and decomposition are the primary reason for introducing opera-
tions between generalized templates. Composition and decomposition of templates provides
a tool for algorithm optimization. For instance, if a and t are as in the example above and r
= a $ t, then computation of a & r = a & (a ®) t) by (a ®) s) ( t uses 6 local multiplica-.

tions instead of 9.

In general, if r is an nxn template, and a and t are decompositions of r into 1X n and
nX 1 templates, respectively, then the computation of a 5 r by (a ( 9) (B t uses 2n multi-
plications instead of n2. General methods for template decomposition and applications of
decompositions to algorithm optimization can be found in Reference 7.

33



SECTION IV

MULTIVALUE OR MULTIDATA IMAGE ALGEBRA

1. HETEROGENEOUS ALGEBRAS AND HETEROGENEOUS VALUE SETS

Intuitively, an algebra is simply a collection of non-empty sets together with a finite

number of operations (rules) for transforming one or more elements of the sets into another

element of one of the sets. In this sense, the mathematics of image processing forms an alge-

bra as it involves operations on and between elements of different sets such as operations on

and between images, operations between images and templates, operations between tem-

plates, etc.

One of the main tools of algebra are isomorphisms. If two algebraic structures are iso-

morphic, that is, if there exists a one-to-one, operation preserving mapping of one onto the

other, then they provide two different viewpoints of the same situation. The idea is that the

more ways one has to look at a problem the better chance there is of solving it.

To make the notion of an algebra mathematically precise, we define an algebra as pair

(A, O) in which

I. A - {A 1 ) is a family of non-empty sets of different types of elements and the sub-

scripts j are members of some common indexing set J, and

2. 0 { } is a set of finitary operations, where each operation ok E 0 is a mapping

nOk: i I -i, -- m
U

with each AJE A and HI'A- denotes the cartesian product

I~ .'~~il -= lt ,2X... XAuk (-(all ... ,an-) " : k E Aik }

The operation ok is unary if n = 1, binary if n = 2, ternary if n = 3, etc. The elements

Al of A are called the sets of operands of A. Also, whenever the set of operations 0 is

tacitly understood, it is customary to let A denote the algebra (A,0).

Suppose (A,0) and (B,Q) are two algebras with A = (Aj} and B = {B}. Then (B,Q)

is called a subalgebra of the algebra (A,0) if Q C 0 and for each BEB there exist AjE A

such that BIC Aj.
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An algebra which has only one set of operands is called a homogeneous algebra, while an

algebra with more than one set of operands is called a heterogeneous algebra. For example,

the real numbers R together with the operations of addition, multiplication, and maximum

constitutes a homogeneous algebra that falls under the general class of algebras known as

"lattice-ordered rings," Reference 15. On the other hand, the algebra A defined by A =

{R,RX,(RX)x } and 0 = { +,*,o,( } constitutes a heterogeneous algebra which is a

subalgebra of the image algebra defined in this paper. Various subalgebras of the image alge-

bra axe related in terms of isomorphisms to well-known algebraic structures such as linear

algebra and mathematical morphology, References 7 and 3. It is these relationships of

subalgebras of the image algebra to other well established mathematical structures or con-

cisely defined areas of image processing which endow the image algebra with its versatility

and power. All theorems, relationships, and "tricks-of-the-trade" associated with these struc-

tures can be interpreted and exploited within the language of the image algebra via these

relationships. For example, in Reference 7 we demonstrated how several of these relation-

ships can be applied to the problem of developing systematic techniques for the optimization

and derivation of parallel algorithms. The main purpose of this section, however, is to

extend the image algebra's capability to include operations for the manipulation of mul-

tivalued images.

n
Suppose F - HFi, where each F i is a value set whose set of finitary operations is 0i.i-I

The set of naturally induced operations, 0, on F is defined as:
n

0= { oE n1 0, : the coordinates of o have the same arity }.

Thus, if o=(ol ...... ,,) and o, is a binary operation on F i for some i between 1 and n, then

o E 0 only if each of the remaining coordinates oj is a binary operation. The operation o is

unary if its coordinates are unary operations, binary if its coordinates are binary operations,

etc.

If f=(f1, ...... ,fn)EF and g=(g ...... ,gn)EF and o=(ol ...... ,o,)E 0 is binary, then we

define

fog-(f, 1Og, ....... ,f On gn)

n
We now extend the notion of a value set to include sets of form F = n, Fj where each F is a

i-3
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value set and the operations on F are the naturally induced operations. It follows that every

value set is an algebra.
U

If F - H Fj and F i =F for all i,j = 1,2 ..... ,n, then F is called a homogeneous value set,i-I '

otherwise F is called a heterogeneous value set. If F is homogeneous and o=(ol ...... o) is

an operation on F with o, -oj for all i,j = 1,2,.,n, then o is called a homogeneous opera-

tion, otherwise o is called a heterogeneous operation. Whenever o is homogeneous, then it

is customary to use a, to denote the operation o. For instance, if F = Fx F 2x F 3 and

F i = R for i = 1,2, and 3, then F - RP and F is homogeneous. Furthermore, if Oj ={+,*,V},

then +=(+,+,+) and V=(VV,V) are homogeneous operations while o=(+,*,V) is a hetero-

geneous operation. Applying these operations to the elements a=(a,a 2 ,a3) and b=(bl,b2,b3)

of W? yields

a+b=(al -+ b l ,a2 +b 2,a -+b 3), aVb=(a1 Vb 1,a2Vb 2,a3Vb 3), and

a ob =(a +bl,a. 2 * b2,a,3Vb 3).

2. OPERATIONS ON MULTIVALUED IMAGES

n
Let abe an F valued image on X IfF=HF i and n > 1, then aiscalled amul-i-I

tivalued or multidata image. We distinguish between two types of multivalued images. If

aEFX and F is heterogeneous, then a is called a heterogeneous multivalued image, and if F

is homogeneous, then a is called a homogeneous multivalued image.

n
Given n sets S,.. ,S., then the function pj:i I S --o- Sp where 1 < j n, defined by

p(s, • .• , sj, * , sn) = si, is called the projection onto the jth coordinate or the jth coordi-

nate projection. Projection functions play an important role in the manipulation of mul-

tivalued images. This is due to the fact that if a E Fx is a multivalued image with
n n

F =T Fi, then - since FX =(fl Fi)x - the image a can always be viewed as a "stack" of ni-I i-

single-valued images a-(a,a2,... ,a) where the ith coordinate image a, of the stack is

defined as

ai =pi(a) ={(xa(x)): a1(x) =p((X)) }.
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Thus, aj E(FjX.

A typical LANDSAT image a of n-spectral bands provides a simple example of a mul-
n

tivalue image that can be viewed as a stack of single valued images. Here F -- I F i =R'
Ii

and a(x)=(a(x) ...... , N(x)), with each a(x)ER.

The unary and binary operations on multivalued images are the operations induced by
n

the set 0 of operations of the underlying value set F. For instance, if F = H Fi, a -
i-i

{(x,a(x)) : a(x) = (a(x) ..... ,a.(x)) } and b = {(x,b(x)): b(x) =(bl(x) ..... ,b.(x)) } are F valued

images on X, and af=(oi ...... ,o.)E 0 a binary operation on F, then

a o b { ((x,c(x))" c(x) =(a1 (x) 01 bl(x) .... ,.n(x) o. bn(x)) }

or, equivalently,

aob-(a o1 b, ........ an on b).

If o is unary, then

o() f{(x,C(x))W(x)=(o.(4(x)) ..... (())

or, equivalently,

O() _(oi(al) ...... on( ))-

For example, if F =R" and o is a binary homogeneous operation with a = +, then

a +b =(a1 +b ....... , +b) = {(xc(x)): c(x) =( 1,(x) +b() ...... 26.(x) +b.(x)) }

Similarly, if o is a unary homogeneous operation with o-, = sin, then

sin(a) =(sin(a1) ....... ,sin(%)) ={(x,c(x): c(x)) =(sin(a(x)) ....... ,sin(a(x)))}.

and if o , then

X-.b(a) = {(x,c(x)): ci(x) = 1 if a1(x) bi(x), otherwise ci(x) =0, x E X}

It readily follows from these examples that if F=Rn, then the operations defined for R

valued images extend in a natural way to R' valued (vector valued) images. For example, if

a and b are R n valued images on X, then the dot product is defined as
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aob = a(x)bt(x)

where b'(x) denotes the transpose of b(x). The notion of scalar multiplication and addition

are extended to vector multiplication and vector addition in a similar fashion. In particular,

if b={(x,b(x)):bi(x)=k i VxEX}, and k is the vector k =(k1, . . . , k.) E R', then we

define

ka = b*af {(x,c(x)): ci(x) = ki a(x), x E X}.

and

-k + a = b+& = {(x,c(x)): ci(x) = ki-f+-(x), x E X}

In the particular case where b is the constant vector valued image b =

{(x,b(x)):b1(x)-k VxEX and 1<i <n}, we have that k =(k,...,k), and we define

ka a ka m b*a and

k+a-k+a=b+a.

Obviously, these notions extend to F = C' valued images and vector valued images in

general. In comparison to the next set of operations, the operations just discussed are not
"new" operations but, as in the case of single valued images, the naturally induced operations

of (F,0).

U k
Let F-I] F i and F-- =' F1 be two value sets. If n < k, then any function g:F--*F isi-Iil

called a data splitting function. If n > k, then g is called a data fusion function. In either

case, g is of the form g =(gl,g 2, . .. , gk) where g p =, pg. Thus, the function g: R -+ R2 is

defined by g(r) = (cos r, sin r) is a value splitting function, while the function f: R 2 -. R

defined by f(r,r 2) = rl+r 2 provides an example of a data fusion function.

Two elementary fusion/splitting functions of prime importance are the (generalized)
n kt

projection and injection functions. Let F = 1' F i and F'= f1 F. where Fj. denotes the

jm th factor of F. Then the projection pj1,j..: F -- F', which deletes n -k components

from 11 Fi, is defined by
i-I

Pij....j (fif2, ,fn) = (fj,f, . ,k) where fjmEFj.

For F a homogeneous value set we define the injection function
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q :Fk --- F, by q(r) = (r, r,..., r)

The ith-coordinate injection q : F -+ F is defined as oa =_ qpi. Thus oa replaces all the

coordinate values of a point by the value of the ith-coordinate, namely

qi(rl, r2,... , r i , . , r) = (ri, ri,... , r i)

The basic operations on single and multivalued images together with the injection and

projection functions can be combined to form useful image procesing operations of arbitrary

complexity. Projection functions, for example, can be used to reduce a multivalued image of

n stacks to a single valued image or a multivalued image of k stacks, where k < n. For

instance, if a EFX with F = R , then we define

a

EJ 2 1 (a)= al + a2 +.... +an

and
n

V& =- iVpi(a) = a, V a,2 V .... V .
i I

As another example of obtaining new operations by combining previously defined opera-
a

tions with projections and injections, consider the case where F i F. and Fj - R. Then
i-

we define the jth-coordinate maximum and minimum of two F valued images as

aVljb - {(x,c(x)): c(x) = a(x) if aj(x) > b(x), otherwise c(x) = b(x) }

and

aAljb { (x,c(x)): c(x) a(x) if aj(x) b hi(x), otherwise c(x) = b(x) },

respectively. Using injections and projections, these operations can be derived from the pre-

viously defined operations. In particular,

aVljb = a*q%[X.>b(a)] + b*qj[X _(a)]

and

aAljb = a*q[x<jb(a)] + b*qj[X_<(a)].

In order to illustrate the use of multivalued image operations, we present a typical appli-

cation example.
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Example 10. Directional Edge Detection. The output of this directional edge detection

scheme is a two-valued "edge" image in which each pixel has an intensity value as well as

one of eight possible directional values. In this particular scheme, a grey scale image is con-

volved with the following four 3x3 edge masks (templates), with each mask corresponding to

two possible direction.

m0 =f m1 --- 1 1

0* or 1800 450 or 225

11

-1= I!1 -1 -

90 or 2700 135 ° or 315 °

Figure 7. The Four Directional Edge Detection Masks

The resulting four images are then fused to form a single 2-valued image b. Data fusion is

accomplished by assigning to the resultant pixel the value of the largest magnitude of the

corresponding pixels in the four images and either assigning the direction 0 associated with

the mask of the convolved image if the specific pixel value of the convolved image is positive,

or 0 + 1800 mod 3600 if the value is negative. Thus, each pixel of b has both a magnitude

and a direction associated with it. It is customary to use the integers 0 through 7 to

represent the eight directions 0 through 3150, respectively. The addition

"0 + 1800 mod 3600" then becomes addition modulo eight, namely "i + 4 mod 8".

The image algebra translation of this algorithm is as follows. Let f: R --- Rx Zg be

defined by f(r) = ( r1,4X<O(r)), then

i. a = (O,i) + f(a(mi), i=0,...,4 and
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The next three figures provide a pictorial example of this algorithm.

Figure 8. The Input Image a
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Figure 0. The Magnitude Image p1(b)
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Figure 10. The Degree Image p2(b)

3. MULTIVALUE TEMPLATES AND MULTIVALUE TEMPLATE OPERATIONS

If F~f Fi and n >1, then t E(FX)Y is called a multivvdue or multilevel template from

Y to M~ Analogous to rnultivalued images, a multilevel template t can be thought of as a
stack of single valued templates t =(tl,t2 .. . ,It.), where each ith-coordinate t1 E(FiX)Y is
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defined by t - p-t. Here p- denotes the ith projection map p,: F -* Fi and the weights of t y

are given by pt ().

Operations between multivalued images and multilevel templates are natural extensions

of previously defined operations between single valued images and templates. Suppose

aEFX and tE(FW)Y, where W and X are subsets of the same euclidean space. Let

o (ol .......,o.), where each o, is an operation between Fi valued images on X and Fi valued

templates from Y to W. Then a ot is defined as

a ot-(& o 1 t ........,a. o t,).

To illustrate this concept, consider the case where F =R 3 and o =(E), 63 , 0 ). Then

ao0t---- (Dl()t! , 2 M~ t2, 1% t3)

Also, if o is homogeneous, say a -( , , ®), then - following our earlier convention - we

set o e and define

a)t (al e tl, a 2 e t 2 , a e t 3)

Thus, a multilevel template can have different configurations and can operate differently on

the different levels of a multivalue image. Particular application examples of operations on

multivalued images can be found in References 16 and 17.

As a final observation we note that if F and F' are two value sets with F 0 F' and

o: F X F' -- F a binary operation, then the operations between F valued images and F

valued templates can be generalized to operations between F valued images and F' valued

templates. For example, if F is a vector space over the field of scalars F' (e.g., F =R' and

F'=R), aEFX and tE(FW)Y, where W and X are subsets of the same euclidean space,

then we can define

c = aet by c(y) = Y. ty(x).a(x), where y E Y.
xEXNls(t 7 )

Thus c is a vector valued image with values in F.

Obviously, if F is a vector lattice over F', then we can ddfine a [ b and a b in a

similar fashion. In the case where a E FIX and t E (FW)Y, the operation
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c = a&t defined by c(y)= a(x).t,(x)
xEXnS(t.)

turns the scalar valued image a into a vector valued image c. Hence templates can be used

to change not only the dimensionality, shape and size of an image, but also its value type.
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SECTION V

DISCUSSION AND CONCLUSION

This document presents an analysis of the Singer-Kearfott algebra and an overview of

the AFATL Standard Image Algebra. As we consider this paper an introduction to the sub-

ject and in order to keep the length of this paper within reasonable limits, we have purposely

restricted application examples to a few simple and well-known image transforms. Proofs

that the algebra is capable of expressing all image-to-image transformations have been

presented elsewhere, References 6 and 9. In previous reports to AFATL we demonstrated

the full power of the image algebra. In particular, we have shown how the image algebra

encompasses such structures as linear algebra, polynomial algebra and the minimax algebra

of economics and operations research, Reference 18, and how these relationships can be

exploited for useful applications in image processing.

At first glance, it may seem that the image algebra lends itself well only to expressing

parallel type of image processing operations. However, it turns out that the algebra is quite

capable of expressing such sequential processes as chain encoding, Reference 19, in a more

compact and translucent fashion than is possible within current higher level languages, Refer-

ence 20. It has been our experience that image processing algorithms requiring a variety of

routines, including purely sequential ones, when coded in Image Algebra Fortran instead of

Fortran have always resulted in significant code reduction, Reference 21.

In conclusion, the image algebra in its present form provides a comprehensive and

unified algebraic structure for the representation of image to image operations. However,

although image algebra operations on images can be used to extract statistical and geometric

measures or image representations from images such as centroids, Euler number, and chain

codes, we have made no serious attempts to extend the algebra to the symbolic domain. In

particular, "high level" image operations which employ tools from such diverse areas as

knowledge representation, graph theory, and surface representation have not been con-

sidered. Furthermore, the mathematics associated with the image algebra and its implica,

tions to image processing is, in itself, largely unchartered territory. Thus, the image algebra

in its current state is not a finished product, but a continuously evolving mathematical

theory concerned with the unification of image processing tasks.
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