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Summary

Information capacity is determined for the matched Gaussian channel when

jamming is added to the ambient noise. The problem is modeled as a zero-sum

two-person game, with mutual information as the payoff function. The saddle

value, a saddle point, and an optimum jammer strategy are given for both the

finite-dimensional and the infinite-dimensional channel.

Introduction

A game theoretic approach to information capacity of a channel subject to

jamming dates back to (at least) Blachman's 1957 paper [1]. Apparently, no

significant work was done on this problem until the 1980's. In recent years.

some work has been accomplished. McEliece and Stark [2] gave a treatment of

the one-dimensional problem. Conference papers have also been presented [3].

[43.

Some of the previous work assumes that the jammer has control over all

the significant noise in the channel. In practice, this is not always the

case; the most challenging (to the coder) situations arise when the signal-to-

ambient-noise ratio is already low. The jammer's objective should be or'.imal

use of his available energy in combination with the ambient noise. The actual

channel in this case has the output

Y=X+W+J

where W is the ambient Gaussian noise, X the transmitted signal, and J the n For

jamming noise. These processes are described by probability measures Py.. PX. o
0

Aw' and p., defined on an appropriate space containing the sample functions.

The mutual information of interest is I(XY) = I(pXy). where pXy(C) =

pXIpWi j{(x.w,v): (xx+w+v) C C), and 6 denotes product measure. Permitting Lit y Codes
Sand/or

:,Poclal

Oi11
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the jammer to have control on only part of the interference substantially

changes both the nature of the problem and the solution.

We will summarize recent results on this problem under the following

assumptions. First, all the processes are zero mean with sample paths that

belong to a real separable Hilbert space, H, with inner product <*,*> and

associated norm 11-11. It will be assumed. WLOG, that the support of the W

probability PW is all of H; equivalently, that the range of the W covariance

operator. RW. is dense in H. The class of admissible signal processes X

consists of all those such that p[r4e)] = I and E11'1N2A KP. The

jamnmer's input to the channel is described by the probility Pj. and is

required to satisfy E A 11x2 K P. Jamning noise, ambient noise, and signal are

utual ly independent.

By a result of Ihara [5]. the capacity of this channel (for a fixed

janmer covariance R ) is minimized when J + W is Gaussian. Thus. the jammer

should always choose Gaussian Jamming, and this assumption is nmde throughout.

From the coder's viewpoint, a Gaussian Jamming signal produces a mismatched

Gaussian channel. Capacity of such channels was determined in [6]; the

application to jamming channels was a principal motivation for that work.

We are assuming here that the channel noise probability, p1 . is countably

additive; equivalently, that RW is trace-class. Thus. RW = I nNlAnenOe n. where

Xn > 0 for n 1, (Xn) is non-increasing, InlXn ( 0, and (en en)u S <en .u>en

for u in H. The jaumer's constraint requires that the Jamming covariance be

trace-class. Moreover, from the results of [6], the janmmer's signal mist be

such that R! = RX, where S is a self-adjoint operator whose domain S(S)

contains range(R), and is such that (I+S)-1 exists and is bounded. In the

present case, (I+S)- necessarily exists and is bounded, since S is
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non-negative. Since the constraint on the Jammer is of the form EPI 1xll2  P2'

one has the equivalent constraint Trace RJ= Trace R:4 P2"

Thus, we have the jammer constraint,

I < en ,% e n> = .7 A <Se n e n> P 29

n nln nn

and the coder's constraint

Trace RW W = I <Rye ne n P.

n~l n n n n

The Janmer's strategy lies in the choice of the operator S. The coder's

strategy lies in the choice of the operator RX. A partial characterization of

the optimum S is given by the following key result.

Prop. 1. The Jammer's utntmax strategU can be achteved by taking

S = 1.tleiOet, where IL tIt /2' IT L 0 for ti , wtth (7t) non-

decreastng.

In the following two sections. we summarize our results for the finite-

dimensional channel and the Infinite-dimensional channel.

It should perhaps be emphasized that we are limiting consideration to the

game-theoretic problem where mutual information is used as the payoff

function.

Finite-Dimensional Channel

Here we suppose that all sample paths are in RN. If the Jammer has

selected the strategy given by S - ~eie . r I -2' then it is

well-known that the capacity of the channel is given by
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4:P) = K I log1=1 L +i )

where K is the largest integer such that P + ly K-rK. and the coder's

optimum strategy is to select his covariance matrix Rx to be given by

RX = IN 1T [(R,+R)"e @ (R,+Rj)"e~]

K 11
where Tn = ( I Pli+P-K n )(l+ n -) K for n K K

-0 n > K.

The coder's strategy can be rewritten as

P1 + -l i i KK
z= -K

=0 > K
K

where Rx = zi(l+-i)[(RW+Rj) ei 0 (Rw+Rj)Iei].

i=1

Inserting this into the preceding expression for the capacity, one obtains

:(P) = K log + zi(1F)-1 M F(z.7)

i=l

where z C U, 7 C V.

N
U=z in '; zi 0for IKN. Ilz Iz Pl)

V = (7 in N; ri O for i N. IX- 2
i1

In this form, F is a real-valued function on UxV, where U and V are bounded.

closed, and convex. F(x.-) is continuous and strictly concave on V (every x
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in U). while F(,,y) is continuous and strictly convex on U (every y in V).

Thus, by the von Neumann minimax theorem [7]. the zero-sum two-person game

with F as payoff function has a unique saddle point: a point (z ,r) such that

max min F(z.r) = min max F(z.,) = F(z , -Y
zCU IEV -CV zCU

Using the above results for the coder's optimum strategy when S

(equivalently, -Y) is given, one can write F(z,) as a function only of 7. in

the form

M _ + Xl N1=N(l+ i) •
i= l

This function, FO , is the expression that the jammer must seek to minimize.

From the above, minimization over V of this funution by -Y = -* will give the

jammer's minimax strategy and the coder's maximin strategy.

This problem can be solved, after some rearrangement, by constrained

minimization. Thus, define, for 0 K N,

AK = ((z, ): 0 = 1 -2 NK ( 7K+l NV+ 2  "'

N N

I Xiwi I P2. z1 k z2  N "'" z 0. 1 zi P11.
i=l j=l

The objective function F0 is strictly convex, with convex constraint set.

Thus, a unique minimum exists. The sets AiV 0 i K N-1, are disjoint. The

procedure is to sequentially search these sets, beginning with A0. until a

solution to the minimization problem is obtained. The solution is given by

the following theorem.

Theorem 1. Let K be the smallest integer such that
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N X~r~l)(K)P+K) - KN]X/
nP2 +1 P2  Z 1 \+[(N-K) N

Then the saddle potnt (z .v ) ts gtven by
w

St =0 t K

and for t ) K.

P2 + J--K+1 1 N

T 2N(P + .) + [(N K)(P +) +Ku ITt

N N I +  Kl~t

z P 1 --K+ i
N N N

z t =z1 -I t  t > K

ihere WiN ts deftned by

x

N

F~N itE N-)(P+KN) KJ =/
Thts gtves the saddle value

F(z*.,r ) t og(1+z1 ) I log(1+ *).t--K+1

Remark: It is known (see, e.g., [6]) that the capacity of this channel without
N

jamming is M log(1 + P1/A). For a sense of the degradation that can be caused

by an intelligent jammer, suppose that the saddle point lies in A0 . Then the

saddle value, or the capacity when the jammer chooses his minimax strategy, is
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P N (P2+TrRW)+P*),

Pl 2 wl{} + P 1  ] P i
-I log(l + 2) - Ilog1  ]

1=1 (P2+TrRW+PI~i )M

N N r N+P 1[=i1 + IP 1

An immediate consequence of Theorem 1 follows.

Corollaru 1: Suppose that one uses the constraint E 11A 2 K P2 for the Jammer.

The saddle point solution is then given by Theorem 1, setting

X 1 = X2 = = X 1. The saddle point solution (z*,'r) is contained in AO,

and has the form:

P2
t = I-v- t 1,2.....,N

i 1 P2 P2 P1zt  i x W - t = ,W...X

Thus, the saddle value of F is

'P [2 + P + N P]
F(z*, 1 W) =~log [ 2 N]= Log[1 + -2 L P2+.

Infinite-Dimensional Channel

For the infinite-dimensional channel, let R+ be the set of all real-

valued sequences x = (xx 2 ..... ) such that x, 1 0 for i 1. The admissible

strategies for the coder and for the Jammer are then defined by U and V. where

U = (z in R"+: I z n PI)

n 1

V ={(7inR : I x+ l nnn l 1
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We obtain a solution by showing that for a specific choice of (Z*,-Y),

inferred in part from the finite-dimensional result.

sup inf F(z.r) F(zWvr) inf sup F(z.'r).
zU rEV -vY zeu

Since it always holds that sup inf Inf sup F. this shows that (z*,v) is a
U V V U

saddle point, with the definition as In the following theorem.

Theorem 2. A saddle point (z *.rW) is given as follows.

In =0 n K
n

1+4 = "2 + 't=x+it (l+0) n> K

P2 + lj--K+?Xj + (P1-K9);k

z =6 n K

z =0- - n > K.n n

K is the smallest integer 0 such that

(PI-KO)AK+ -1 a X=KI
1 ~iK+1 i--~P2 >  -

0 is defined by

CO x
(1+6) = a

n-K+ 1P2 + l1__K+Z I, + (P 1 -Ke)x

The saddle value is then given by

F(z*.*) = K Log(1+6) + 5 ; tog I + P 1
2 n=K+l 2 4-+ ix
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P1
Remark. I P2 = 0 (no Jamming), then the capacity is -

lir "- log l + L if P2 > 0. then for the value of K giving the saddle

value in the above theorem, the saddle value is K log 1 + . The

jammer wishes to choose K as small as possible.
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