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Summary

Information capacity is determined for the matched Gaussian channel when
jamming is added to the ambient noise. The problem is modeled as a zero-sum
two-person game, with mutual information as the payoff function. The saddle
value, a saddle point, and an optimum jammer strategy are given for both the

finite-dimensional and the infinite-dimensional channel.

Introduction

A game theoretic approach to information capacity of a channel subject to
jamming dates back to (at least) Blachman's 1957 paper [1]. Apparently, no
significant work was done on this problem until the 1980°'s. In recent years,
some work has been accomplished. McEliece and Stark [2] gave a treatment of
the one-dimensional problem. Conference papers have also been presented [3],
f41.

Some of the previous work assumes that the jammer has control over all
the significant noise in the channel. In practice, this is not always the
case; the most challenging (to the coder) situations arise when the signal-to-
ambient-noise ratio is already low. The jammer's objective should be or:imal
use of his available energy in combination with the ambient noise. The actual

channel in this case has the output

Y=X+W+]

where W is the ambient Gaussian noise, X the transmitted signal, and J the 7 For I
“&I
a

Jamming noise. These processes are described by probability measures Hy: Hy.

Py and uJ. defined on an appropriate space containing the sample functions.  ‘an
The mutual information of interest is I(X.Y) = I(uXY). where “XY(C) =
: *;““““‘
.on
W, v): (x,x+w+v) € C}, and ® denot oduct . Permitti e
uxﬁquuJ{(x w,v): (X.x+w+v) }. an enotes product measure erm ng Lty Codeg—d

1 and/or
«+ww o opecial




the jammer to have control on only part of the interference substantially
changes both the nature of the problem and the solution.

We will summarize recent results on this problem under the following
assumptions. First, all the processes are zero mean with sample paths that
belong to a real separable Hilbert space, H, with inner product <-,*> and
associated norm [i<ll. It will be assumed, WLOG, that the support of the W
probability My is all of H: equivalently, that the range of the W covariance
operator, R' is dense in H. The class of admissible signal processes X
consists of all those such that ux[range(Rg)] =1 and l-:l‘xllllv—,%xll2 < P. The

jammer’s input to the channel is described by the probility "J' ard is

required to satisfy Eu lell2 € P. Jamming noise, ambient noise. and signal are
J

mutually independent.

By a result of Ihara [5], the capacity of this channel (for a fixed
jammer covariance RJ) i§ minimized when J + W is Gaussian. Thus, the jammer
should always choose Gaussian jamming, and this assumption is made thkroughout.
From the coder’s viewpoint, a Gaussian jamming signal produces a mismatched
Gaussian channel. Capacity of such channels was determined in [6];: the
application to jamming channels was a principal motivation for that work.

We are assuming here that the channel noise probability, My is countably
additive; equivalently, that R' is trace-class. Thus, R' =3 \,A e Oen. where

n2l nn

A <o and (e ®e )u = <e_,ude
n n n n

J\n >0 forn21, ()\n) is non-increasing, En n

21
for u in H. The jammer's constraint requires that the jamming covariance be
trace-class. Moreover, from the results of [6], the jammer's signal must be
such that RJ = R:SR?". where S is a self-adjoint operator whose domain %(S)

contains range(Rg). and is such that (I+S)-1 exists and is bounded. In the

present case, (I+S).l necessarily exists and is bounded, since S is
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non-negative. Since the constraint on the jammer is of the form Eu lell2 4 P2.
J

one has the equivalent constraint Trace RJ = Trace R’"SR’: < P2.

Thus, we have the jammer constraint,

3 CRiSRje . e > = I <Se .e> P,

n2l n2l

and the coder’s constraint

%
Trace RyRAY" = 3 Mye e/, <Py

n2l
The jammer's strategy lies in the choice of the operator S. The coder's
strategy lies in the choice of the operator Rx A partial characterization of

the optimum S is given by the following key result.

Prop. 1. The jammer’s minimax strategy can be achieved by taking
S = EQI‘vtetOet. where 21.21)‘1."1. 4 P2. 7 20 forti 21, with (‘vt) non-
decreasing.

In the following two sections, we summarize our results for the finite-
dimensional channel and the infinite-dimensional channel.

It should perhaps be emphasized that we are limiting consideration to the

game-theoretic problem where mutual information is used as the payoff

function.

Finite-Dimensional Channel
Here we suppose that all sample paths are in It,l If the jammer has

selected the strategy given by S = Zi':l'vieiﬂei. 7 £ Ty € ... ¢ " then it is

well-known that the capacity of the channel i{s given by




K P1 + EK=1-1J + K]

P) =% 31 J=
(#( ) o1 g K(1+))

where K is the largest integer such that P, + 2?—111 2 KvK. and the coder's

1
optimum strategy is to select his covariance matrix Rx to be given by

% %
R, = 2:=1*n[(nw+kj) en ® (Ry*R)) en].

K
-1.,-1
where T, = (12131+P-Kﬁn)(1+ﬂn) K" forn K

=0 n > K.

The coder’s strategy can be rewritten as

P, + EK v
i~ K b |
=0 i>K

K
% %
where Rx = izlzi(l-!-‘vi)[(Rwi-RJ) e 9 (R'+RJ) ei].
Inserting this into the preceding expression for the capacity, one obtains

C:(P) = Kifllog[l + zi(l'l-’vi)_I] = F(z.7)

where z € U, v €V,

X
U= {z in K% z 20 for 1 M Iz P)
i=1

M
V={vin®i v 20fr 1 (M 3

1 A7y € Pyl

1
In this form, F is a real-valued function on UxV, where U and V are bounded,

closed, and convex. F(x,*) is continuous and strictly concave on V (every x



in U), while F(°*,y) is continuous and strictly convex on U (every y in V).
Thus, by the von Neumann minimax theorem [7], the zero-sum two-person game

with F as payoff function has a unique saddle point: a point (z*.w*) such that

max min F(z,~v) = min max F(z,v) = F(z*.1*).
z€U ~€V Y€V z€U

Using the above results for the coder’s optimum strategy when S
(equivalently, v) is given, one can write F(z,7v) as a function only of v, in

the form

M Pl
Fo("l) =% 3 log[
=1

EHJ=11L+ H] .
i

+
M(1 i)
This function, FO' is the expression that the jammer must seek to minimize.
From the above, minimization over V of this function by v = 1* will give the
jammer’s minimax strategy and the coder’s maximin strategy.

This problem can be solved, after some rearrangement, by constrained

minimization. Thus, define, for O { K { M,

AK = {(z.,7): 0 = T =g = .. =Y < ka1 < TK+2 ... ¢ "

M
lkiwi 4 P2. z, 2 Zy 2 .. 2 zy 2 0, Jilzi < Pl}.

n M=

i

The objective function Fo is strictly convex, with convex constraint set.
Thus, a unique minimum exists. The sets Ai' 0 (1 { M-1, are disjoint. The
procedure is to sequentially search these sets, beginning with A, until a
solution to the minimization problem is obtained. The solution is given by

the following theorem.

Theorem 1. Let K be the smallest integer such that




1 Oy AR (Py) - Ky:]k /"

nekel Pye3y_p. A +[(N- K) (P +K- xyK]A /N

P

2)

Then the saddle point (z*.v*) its glven by

": =0 t <K
and for t ) K,

[P+ A J(k+P,+0)
% 2% 1K+t 119
1" = N -1

H(P2+z:=1(+1)‘h) + [(N-K)(P,+K) - KugI\,
*

U S T 2ll_'=x+1"t.
1= =% = N
»* ] »
zt = 21 - 1" i>K

where ylx( is defined by

[K+P1+yx] -1 g An
—N
n=K+1 P2+z’: koM LK) (P +K)—KyK]7\ /M

This gives the saddle value
M

F(z Y ) = log(1+z ) - % 14}(2 Ilog(lﬂ ).
+

Remark: It is known (see, e.g., [6]) that the capacity of this channel without
Jamming is g- log(1l + PIIH). For a sense of the degradation that can be caused
by an intelligent jammer, suppose that the saddle point lies in Ao. Then the

saddle value, or the capacity when the jammer chooses his minimax strategy, is




P M (P+TrR, ) (M+P. )
F(z.'r)=-2-log(1+u—1)—§zlog[ 2T
i=1 (P2+TrR'+P1Ai)H-
P N N+P
=B og(1 + ¢ - 53 10e — |
i=1 [1+ 1 ‘]u
P2+TrR' .

An immediate consequence of Theorem 1 follows.

Corollary 1: Suppose that one uses the constraint Eu lellg < P2 for the jammer.
]

The saddle point solution is then gtven by Theorem 1, setting

A, = Rz E ... = XH = 1. The saddle point solution (z*,w*) is contained in Ao,

P
* 2
LA o t=1,2,....M
z*_ﬁf_P_z.-Pl-P_l it=1,2,..,M
| N N X T TSy

Thus, the saddle value of F is

P

P. +P, + N
L] N 2 1 N 1
F(z ,v) = 3 log[w] =3 log[l + m]
2 2
Infinite-Dimensional e

For the infinite-dimensional channel, let R: be the set of all real-
valued sequences x = (xl.xz.....) such that X 20 for 1 2 1. The admissible

strategies for the coder and for the jammer are then defined by U and V, where

L4
U={zinR,: 2z <P}
+ 1 n 1

L}
V={r1in R+- nglknwn 4 Pz}.




Ve obtain a solution by showing that for a specific choice of (z“.w”).

inferred in part from the finite-dimensional result,

sup inf F(z.v) 2 F(z*.w*) 2 inf sup F(z.v).
z€U €V 7€V z€U

Since it always holds that sup inf ¢ inf sup F, this shows that (z*.v*) is a

Uu v vV U
saddle point, with the definition as in the following theorem.

Theorem 2. A saddle point (z*,v*) its glven as follows.

*

‘7n=0 n <K
-]
P, +2 A
1447 = 2 t=kel t (1+6) n>K
P2 + 21=K+1Aj + (PI-KG)An
z: =9 n ¢ K
z* =0 - 1* n > K.
n n

K is the smallest integer 2 0 such that

(P K@) )3 A

K+l — “Ci=K+1t
P2 > 5 .
0 is defined by
-1 @ A
(1+46) © = 3 = .
n=K+1 P2 + EJ=K+1AJ + (Pl-xa)xn
The saddle value is then given by
@ (P,-K6)A
F(Z*.W*) = g-log(1+9) +% 3 log[I + -——lz———ll- .
n=K+1 P, +2 A

2 “i=K+1't
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P
Remark. If P2 = 0 (no jamming), then the capacity is < =
K+* l:.1
lim 5~ log|l + f+_] If P2 > 0, then for the value of K giving the saddle

K-

P
value in the above theorem, the saddle value is ¢ K—;l- log[l + ﬁ . The

Jjammer wishes to choose K as small as possible.
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