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I

CAPACITY OF THE STATIONARY GAUSSIAN CHANNEL

Abstract

Information capacity of the stationary Gaussian channel is determined
under the assumption that both the channel noise and the constraint are
defined by rational spectral densities. The results complement a well-known
result due to Holsinger and Gallager.

Introduction

The information capacity per unit time of the stationary Gaussian channel
is a problem having solutions that date back roughly 30 years. Fano's 1961
book [1] contains a solution based on his ingenious "waterfilling" approach.
However. Fano's approach was somewhat heuristic, and incomplete. Although he
discussed the necessity to impose frequency constraints on the transmitted
signal, appropriate constraints were not incorporated into his analysis. Thus,
his result does not give a solution for physically realizable noise processes
(e.g.. rational spectral density).

A careful solution to the capacity problem is given in Gallager's book
[2], with the basic approach attributed to Holsinger. In that work, the
message process is passed through a linear filter before being transmitted:
the filter's properties are such that the transmitted signal is constrained
both in its total energy and the distribution of the energy over frequency.
The Holsinger-Gallager solution can be formally obtained from Fano's result by
replacing the noise spectral density 4N (in Fano's result) with the function

tNl l2 .- where H is the Fourier transform of the filter.

However, the Holsinger-Gallager solution does not completely solve the
capacity problem. In this paper we complete the solution. It will be seen
(under mild assumptions) that the new results to be given here are complemen-
tary to those of Holsinger-Gallager (H-G); that these results and the H-G
result taken together exhaust all possible situations, including infinite
capacity; and that the new results enable one to transmit signals that occupy
a larger portion of the effective noise bandwidth. This can lead to a larger
value of capacity (for fixed signal total energy) than can be obtained under
the H-G assumptions, provided that there is sufficient freedom in the selec-
tion of the constraint on the signal.

Problem Formulation

The channel is Y = X + N. where N represents stationary Gaussian noise, X
is the transmitted signal process (independent of N), and Y is the channel
output. It will be assumed that N has a rational spectral density, t N" The

T2
constraint to be placed on the signal process is given by EIIX T w1T PT, where

T.
P ) 0 is fixed, T > 0, X is the signal process X restricted to the parameter
set [OT], and 11*l1WT denotes a reproducing kernel Hilbert space (RKHS) norm

with parameter set [OT]. 11-11WT will be defined by a covariance function rW
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corresponding to a rational spectral density function 4w. Hw will denote the

REHS of rw with parameter set tO,m); HWT will be the RKHS of rW with

parameter set [O,T]. The quantity sought is CW{P ) , defined by

CI(P) = -im4rC YPT). where (PT) is the supremum of I[xTyT] over all signal
W T-'wc(1r

processes XT that have sample paths a.s. in HWT and satisfy EIIXTIIT PT.

T
The capacity Cj(PT) for T > 0 is determined in [3].

To realize the constraint, one may proceed as follows. Let h be the L2

Fourier transform of V5" Let M be the message process. Setw.

ES0 ?(t)dt T (constraint on M),
T 2v

and define XT and X. by

xT(t) - JTh(t-s)M(s)ds t C [OT]

xT TX (t) S J~h(t-s)M(s~ds t 0.

Since the integral operator in L2[O.T] with h as kernel is strictly positive,

I[XTYTJ = I[M.YT).
ITI2

This~ gie IXI 2  EIX'TII 2 
- * E

Thi gve EIX11W,T lW -. 11W - X)dX. where x is the L
Fourier transform of x. Thus, j 2j

1 EIIXTiI 2  El T. EIXI 2 
- % ,X)

T WT T T

2

T "ES WTF 1 I(X)I d, (since hi )

= 2 E1(t)dt 2zTM2 (t)dt K P.
T -wM T P.

Moreover, lim I EHXT 11 T exists and equals P.
T- ,T

The basic approach here is to compute CW by using the results on C(PT)

and letting T -. . This procedure is very complicated; the results given in
T[3] for CW(PT) are stated in terms of the spectrum of a self-adjoint operator
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STin L2 [O.T], satisfying RNJ = R&,T(It+ST)RW.T. Here, RN'T and RWT denote
the integral operators in L2[O,T] whose kernels are the covariance function of

TN and rW, respectively. y(PT) then depends on 'T. the smallest limit point of

the spectrum of ST; the eigenvalues (if any) of ST that are strictly less than
oT; and the value of PT. The expression for yPT) takes several forms,

depending on these quantities.

We also identify two other capacities. Let %(P) be the set of all X

(defined on [O,-)) such that for every T > 0, XT C HWT with probability one.

lim T WEIIx " T P. Next, let Vf wP) be the set of all wide sense

(w.s.) stationary processes X with a SDF (spectral density function), denoted

by tx, such that I/Ow is bounded and f A -{X)d& 2rP. The corresponding
W

capacities are then
- 1 TT

YP, ) = sup{lim T I(X Y X E C.
T- O

-- 1 IcT yT):X Sw P } &48sECrt
C'WP;! ) = sup{lim I(X -Y )X £ VW(P)}4

Lemma 1. Vw(P) C Syn.

Applying Lemma 1, it is clear that CW(P;g) CW(P;V ) . The differences

between the classes of signal processes leading to Qw(P) , CW(P;51), and CW(P;V)

can be summarized as follows. Cw(P) - lim F (PT), where CT(PT) is computed
T--T

(separately for each T) by maximizing I(xT,y T ) over all admissible XT . Thus,
ifT = T T Ton To Tofor example, if C(PT) = I(XY ) and C(Fr') = I(X ,Y ). for T' > T, then

it is not necessary that XT(t) = XT(t) for t in [0,T]. However, in computing

YP;50, the signal process X is fixed; one computes I(xTY T ) for this fixed

process, all T > 0; and Cw(P,9 ) is the supremum over all X C A of
lTm 1 I(xT.yT). This also applies to CW(P;V). with the further restriction ----

T--y T

that the signal process is w.s. stationary. However, it is not necessary that )ni

ity Codes

and/or
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X in % satisfy EIIXT T PT for any finite T.

Let I + 6 = lim 0N(X)/W(), with 6 - if the limit does not exist;

-1 6 m. 6 is an important parameter for the capacity problem.

Main Results

Theorem 1. Cw(P) = CWP;I) = Cw(P:;P).

This result has the following implications for determining the capacity

CW(P). First, it is sufficient to consider only all signal processes

XT C HW,T a.s. for all T > 0. and lir IEIIXT2

T 1W P) rather

than all families of signal processes {XT: T > 0} = {XT(t), t 6 [0,T]:

XT ,a.s. and EIIXTIl2 , PT, all T > 0}. Second, these processes can be

taken as w.s. stationary.

We now give the value of CW(P ) . The results will be separated according

to the value of the parameter 6.

-TTheorem 2. If 6 = -1. then Cw(P) C(PT) = w can be achieved for every

T > 0. using a signal process with finite-dimensional support.

Theorem 3. If -1 < 6 < m, let A = {X: 0N(X) < (1+0)1 W(X)}.11N
I. If P A 1 + 0 N X) dX, then

-- 1 0 + P 1 -f() -(+e)ldx.CW(P) -- 'Ag (1+0) () dX + 2(1+0) + 4Y(1+0) fA
C.(P = I % I~j - + 1 AL~ W

i [ °N 1
II. IfP fA I + - N X) dX. then

CW(P) -w f log (I+0)A(P) M da

A1

where A1 = {X: N(X) (I+0)A(P)w(X)} and A(P) < 1 is uniquely defined by

P= h fA1 [(I+G)A(P) - N X)]a.
2-r fA 1 1W I

In Part I, CW(P) P/[2(1+0)]. In Part II, CW(P) P/[2(l+0)A(P)]

P/2(1+0).
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Theorem 4 (Holsinger-Gallager). If 6 = 0, then
1 @

CWP) _,v 2 LN

where A2 = {X: IN(X) K B(P)%w(X)) and B(P) is uniquely determined by

P i -tN XId

2w A2 [B(P) -

Theorem 5. In Part II of Theorem 3 and in Theorem 4. capacity can be attained

with a stationary Gaussian signal process X, having spectral density .X" For

Part II of Theorem 3. Il is defined by

tX(X) = (I+8)A(P) - [/AW](X) X in A1

= 0 otherwise.

For Theorem 4, tX is defined by

tX(N) = B(P) - [X/ W](x) X in A2

= 0 otherwise.

In considering Theorems 2-5, it can be seen that Part II of Theorem 3 is
quite similar to Theorem 4; in fact, Theorem 4 can be obtained by substituting
B(P) a (l+0)A(P) in Part II of Theorem 3. This results from the fact that as
9 -* w, A(P) must converge to zero (fix 'N and let tW vary). However, Part I of

Theorem 3 is quite different from Theorem 4. To gain insight into this, one
can compare these results with those contained in Theorem 3 and Corollary 4 of
[3]. Specifically, Part I of Theorem 3 above should be compared with Part (a)
of Theorem 3 in [3]; Part II of Theorem 3 above should be compared with Part
(b) of Theorem 3 in [3]; and Theorem 4 should be compared with Corollary 4 in
[3].

The question of attaining capacity (in particular, by a stationary
T

process) in Part I of Theorem 3 is still open. For any finite T. CW(PT) cannot

be attained when the conditions of Part I are satisfied (see Theorem 3(e) of

[3]).

To illustrate the difference in the effect of the constraints on the

properties of the transmitted signal, suppose that I N(N) = a 2/(X 2+a 2). Then

0 = w (Theorem 4 constraint) requires that §W (X) = PN(A)/PD(X) have numerator

polynomial PN of degree at least 4 less than the degree of the denominator

polynomial PD' However, the model of Theorem 3 permits §W to be given by PN/PD

such that the degree of PN is 2 less than that of PD . This means, in particu-

lar. that the sample paths of the transmitted signal for the constraint W
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satisfying Theorem 4 must be twice-differentiable, with L2 derivative. The

sample paths of the transmitted signal obeying a constraint 4W satisfying

Theorem 3 need only be once-differentiable with L2 derivative. Thus, the

transmitted signals using the constraint of Theorem 3 need not be as smooth as
those obeying a constraint satisfying Theorem 4, and consequently can utilize
more of the frequency spectrum.

Conclusions

The new results given here show that

(1) Attention can be restricted to w.s. stationary signals (Theorem 1);

(2) The new results for the value of the capacity (Theorem 2 and Theorem 3)
are complementary (under the assumptions used here) to the result of Holsinger
and Gallager; together, these results exhaust all possible values of the
capacity;

(3) 'The constraints permitted in obtaining Theorem 3 enable the signal pro-
cess to use more of the available noise bandwidth than signal processes
obeying the constraints of the Holsinger-Gallager model; if there is freedom
to choose the constraint, then the capacity can be increased by using a con-
straint as in Theorem 3. .-. , ,- -

All of the above results are obtained under a basic assumption: both the
noise and the constraint are defined by rational spectral densities. This
restriction is imposed in order to obtain resuits that can be directly
compared with the result of Holsinger and Gallager. More general results will
be given in [4].
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