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INTRODUCTION

Let X(t), t 0, be the Ornstein-Uhlenbeck process: the

stationary, mean-zero Gaussian Markov process with covariance

Cov(X(t),X(s)) = ( -)exp(-It-sI). Let

Z(T) = T (t)dt.(1)

In this paper we calculate the Laplace transform of the

probability density function of Z(T) using functional integral

methods, invert this transform by expanding it in an infinite

series, and study the asymptotic behavior of the density and

distribution functions as T -o w. The functional integral approach

makes possible a parallel analysis of the density and distribution

functions of Z(T) conditioned on the event X(T) = 0, which are of

interest in certain applications (Dankel, to appear). The asymp-

totic limits are all closely related to the inverse Gaussian

distribution with parameters (T/2,T/2) (Johnson and Kotz, 1970a),

whose density function is, to within a constant factor, the

asymptotic form of the conditional density of Z(T), but not of its

unconditional density (see Theorem 3 below).

Z(T) is an example of a quadratic form in normal variables, a

subject that has been widely studied; see (Johnson and Kotz,

1970b) for a comprehensive survey of work up to 1970. The usual

method of analysis expresses the characteristic function of the
W

distribution as an infinite product involving the eigenvalues of LI
El

the covariance operator. Using this method to study a process very

similar to our Z(T), Stepian (1958) recognized the infinite

product as an entire function expressible in terms of elementary

functions, and inverted the Fourier transform via contour /or
e Gk LU"
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integration and numerical integration. By contrast, our functional

integral method bypasses calculation of eigenvalues and infinite

products, yielding explicit finite formulas for transforms

directly; moreover, the terms in our series for the inverse

transforms (i.e., the conditional and unconditional probability

distribution functions of Z(T)) are given as explicit expressions

involving standard higher transcendental functions. The explicit

form of these terms makes asymptotic analysis feasible.

The approximation of the probability density function of Z(T)

by an inverse Gaussian density was heuristically introduced by

Grenander, Pollak, and Slepian (1959); however, they gave no

definite conditions for the validity of this approximation. In

Theorem 3 below, we show that the approximation is asymptotically

exact to within a constant factor, but only if one conditions on

the event X(T) = 0. As far as we are aware, the study of such

conditional distributions of quadratic forms in normal variables

has been a field of research largely unexplored.

We shall require a number of formulas for Laplace transforms

and special functions; these are given, along with references, in

the appendices.
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TRANSFORMS

In the sequel FT(t) will denote the probability distribution

function of Z(T), and fT(t) the corresponding probability density

function. We shall use the superscript "c" to denote quantities

conditional on the event X(T) = 0; thus, FT(t) and fc(t) will

denote the conditional distribution and density functions of Z(T),

respectively. We shall denote the Laplace transform of a function

f(t), t C [0,,), by e(f(t)) (s).

Theorem 1:

(A) V(fT(t))(s)

= eT/2[ [(l+2s)-+(l+2s) - ]sinh [ T(l+2s)] + cosh[T(l+2s)2]]2

(B) 2e(fc(t))(s) = e/ [(1+2s)4tsinh[T(l+2s)L3 + cosh T(1+2s)2}2

for all complex s such that Re(s) _ (-i).

Proof: Define w(t) by

w(t) = -V-2 [c0t+1 2 X(-- log(t+l)) - X(0)] t 0.

Then (Doob, 1942) w(t) is distributed as standard Brownian motion.

Solving this equation for X( - log(t+l)), substituting into the

integral in the equation

1 (fTt (s) = E[exp(-s JTx 2 (r)dr)]

= E exp(- S0X 2 (2 log(t+l)) )) ,

where S = e - , we find

2
2(fT(t))(s) = E exp- S [w(t) + / X(0)17 dtJ, (2)

T 4 2(t+T1)

S = e 2T_1 .
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We now make use of the following theorem of Cameron and Martin

(1945): let y be a real number, and let p(t) be a positive,

continuous function on [0,1]. Let X0 be the least characteristic

value of the Sturm-Lionville problem

f''(t) + Np(t)f(t) = 0 (3)

f(O) = f' (1) = 0. (4)

Suppose X < X0 , and fX is any solution to (3) satisfying

f (l) = 0. (5)

Then

exp p(t)(wt + /2y)d]]Jexp (6))y21 X2 0()) .(o)

(The factor of 2 arises from the now non-standard normalization

E(w 2(t)) = t/2 used by Cameron and Martin. Also, the argument of

the exponential on the right-hand side of (6) is given by them as

y2 [jlp(t)dt + X2fl[ 1 fktp()f,(s)d]2dt]

However, using (3) and (5) it is not hard to show that this

expression is just y2 f(0)/f,(0), as claimed in (6).)

Since we desire to use (6) to evaluate the integral in (2),

which has upper limit S, we also need the following scaling

result: let X,y be real numbers, let S,a be positive real numbers,

and let p(t) be a positive, continuous function of t E [0,-). Put

I(a,X,S,y) = E exp( LJ' Sp(at)(w(t) + v52_ y) 2d]] (7)

Then

I(a,X,S,y) = I(aS,XS 2 ,l,y/V§). (8)
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To see this, make the change of variables t = rS on the right-hand

side of (7) to get

I(a,XS,y) = E exp f1p(aSr)[wrS) + V2dr.

since w(rS)/vf/ is distributed as w(r), (8) follows.

Returning now to (2), we see that putting p(at) = (at+l)-2

enables us to write it as

rr S [w(t)+y]2 dtll 1 e-y2/2dy

T 4 0 (tex2 1 -t/l2

= 2_G I(l,-s/2,S,y/vr) - 2

=~ f *I('ss 2  1 e-y 2/2dy
III dy,-,,1- (9)

2i

the last equality arising from (8). But, according to (6),

assuming s is real and nonnegative,

I s,--_ S2,1 ] 2 exp= Y_ (10)
22 g(0) Lg(0) 2S)'

where g(t) is any solution to

g' (t) - (S )(St+l) g(t) = 0, t E [0,1] (11)

satisfying

g' (1) = 0. (12)

The general solution to (11) is

g(t) = cl(tS+l)2+u + c2 (tS+l)-u, (13)

where

u - / l+2s . (14)
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Since no function of the form (13) satisfies the boundary

conditions (4) (because doing so would imply (S+1)2u =

(l-2u)/(1+2u), for u -), the hypothesis X < X of the Cameron-2 0

Martin theorem is satisfied. The boundary condition (5) requires

c1
=  (S+1)-2U (15)

2 U+2

Referring to the right-hand side of (10), define A and B by

A = g(L) B + J ='(0) 1 (16)g(0) ' g(0) 2S

Then (15), together with S = e2T - 1, yields

A 2u T[(u+2)e2UT + (u7)e-2UT]()

and

u (u--)e 2 uT - (u+ u)e2u T (

B 2UT2UT (18)
2~ ~ ~ Lu~ eu-l)uTuTI

Now (9) and (10), together with (16), say that

V~~~f2 T t)(_= . v'A exp I(B-)y 2] dy,

or

V(fT (t))(s)  2 Ai=i A_

T~2 12

Using (14), (17), and (18) in this formula, together with some

straightforward algebraic manipulation, yields part (A) of the

theorem.

For the proof of part (B), we note that the time-reversed

process X(T-t) is again an Ornstein-Uhlenbeck process, and that

Z(T) = f x2 (t)dt = TX2 (T-t)dt.
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These observations imply that

E~exp(-s fTX2 (t)dt)IX(T)=y] = E[exp(-s TX 2 (t)dt)IX(0)=y]

so, by (2), (8), (10) and (16)

T(fT(tIX(T)=y))(s) = A2 exp(2(B+*)Y 2).

Putting y = 0 yields

I(fT(t)) = A2

and (17), (14), and simple algebra lead to part (B) of the

theorem.

While the above argument shows the equalities (A) and (B)

only for s 0, the analyticity of both sides of these equations

establishes their equality for Res (-3), completing the proof.

INVERS ION

We invert the Laplace transforms of theorem 1; our results

are stated in terms of distribution functions, rather than

densities.

Theorem 2: For all t,T > 0,

(A) FT(t) = (2/ 2  3/2e(Tt) a nJn (T,t), (19)

n=0

where a (2n-l)!!(2n)! (20)
2 nn!
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O12Jn(T,t) = [v + T(2n+ -)] exp(- (v + T(2n+))2 )Gn (v)dv, (21)

n 0=t

and v 2 2
G (v) = i f cosh(r) D2n(iV2(v-r)) - D2 dr, (22)r=O

D_2n-1 being a parabolic cylinder function.

(B) Ft t t e2 I bnJc(T,t), (23)
T(t) = - 3t n=0 n

where bn = 1i/2 nn , (24)n1

~c COt +A- 1 2cjC(T,t) = fo[v + T(2n+2)] exp(- !(v + T(2n+ -)) )GC(v)dv, (25)

and

Gc (v) = (26)
n

v v-r 1 }
f cosh(r) f D (21v-r-u) + Dn ____

r=O u=O rvu(v-r-u) 2n

Proof: We begin with the proof of (A). Let fl(T,t) be a

function such that

i(f1 (Tt))(s) = eT/2[ --±--s sinh(Ts) + cosh(Ts)]2 (27)

and let FI(T,t) t ff(T,r)dr, so that

01
$e(F (T,t)) (s) s12f(Tt)

Then, by algebraic manipulation,

I(F1 (Tt))(s) = 2eT/ 2 eTs/2  1 Ts 2
v'iS(s+1) 1-[[ -
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Since (s-l) < 1 for s > 0, for such s we may expand the

quantity in curly brackets in a power series to obtain

CO an 1()2n
2(FI(T,t))(s) = eT/2  an [-Ts(2n) 2s-(28

0 s2(s-l) 2nl (28)

= (2n)!V(S+I)

with the a n's given by (20) (we use the convention (-1)!! = 1).

Taking the inverse Laplace transform term-by-term and using (Al)

and (A2), we have formally that

F(T,t )  T/2 2 a D2  (i/2t-T(4n+l)

n=0 [T (2n+2),w)

- D22n-1 (-il2t-T(4n+l))}. (29)

To justify (29) rigorously, let z = iy, y real, in (A3), obtaining

ey2/4 y 222

D 2  (iY) (2n)! f -iyxe-X / 2 x2 ndx,

so that

eDf 4 e-x2/2x2ndx,
ID_2nlk i y ) l  (2n)! f0

or
2ID_. 2n..l(iY) I ey2 /4 (2n-l) yel.(0

(2n)! (,/2)2, y real. (30)

Hence, the absolute value of the nth term of the series in

(29) is bounded by

rn [(2n-l) ! )I 2a n - ! (2n) 2 exp (t-T(2n+)) ,

which is easily seen to be et times the nth term of a convergent

series (e.g., by the ratio test). Thus, by dominated convergence,

for s > 1 we may take the Laplace transform of the series in (29)

term-by-term, arriving at the right side of (28). Since, by (28),
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F (T,t) and the series in (29) have the same Laplace transform for
1

s > 1, they are the same function, as asserted in (29).

By Theorem 1 and (27),

V(FT(t))(s) s (fT s2_l

S[[ 2s] V(F l (T,t))(s)]s-w2-s 1

where the notation "s - 12s+l" indicates that s is to be replaced

by V2s+l. Using (A4) and (A5), this becomes

t

T(FT(t)) (s) = T(2 f0 cosh(u)F1 (T,t-u)du) (V2s+).

Applying (A6) and (A7) to the right-hand side, we get

I(F T(t) )(s)

T[ -- -3/2e-t/2 2 -v/2tv
= M (2/7r) 2t e 0 vev tvcosh(u)F (T,v-u)dudv (s).

Using (29), and integrating term-by-term (which may be justified

by an argument similar to the one justifying (29)), we see that

the inner integral in the above formula is

ieT/2 0 v-T (2n+-) 2
ie(v) cosh(u) D,2n(iV2(v-u)-T(4n+1))

n=0 T(2n 2.) 0

- D2 2n- (-i12(v-u)-T(4n+l)) du,

so that
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3 - -2 f ve - 2 /2t
2(FT(t)) (s) = V[1 e(2/ )2t- e (T  a n(Sn+n=0 T T(2n+-21)

v-T (2n+-t) 2

xi f cosh(u) D 2  (iv2(v-u)-T(4n+l))
0

- D2
2 n_ 1 (-i12 (v-u)-T(4n+l))}dudv],

the termwise integration justified, as usual, by (30). Replacing v

by v+T(2n+ -) in the integral, and invoking the uniqueness theorem

for Laplace transforms, we complete the proof of part (A) of the

theorem.

The proof of (B) proceeds, mutatis mutandis, as above. Let

flC(Tt) be a function such that

E(f(T,t)) = eT/2 sinh(Ts) + cosh(Ts) ,

and let FI(T,t) = ff(Tr)dr.

Then, arguing as before (28), we find

aT/2 n (_)n Ts (2n+) (s-l) n
e(Fl(T,t))(s) = 2e T/2s e 2 (31)

n=0 (2n)! (,/s(+1 )n+2  (

Then we have formally

c L.an (_l)n 1i[, - T s ( 2 n + --)  (s-l)n

F (T,t) = 22 e T/ 2  n _ L- . (32)
n=O (2n)! v's-(s+l) n+

But by (A5) and (A8)-(AlO),

s-1 + -I(t) = f 1 D2 n(2Vth-r) + D2 n(-2/t-r)]drI 1 (s+) 0 Vr (t-r) (2n 2

x (-l) n/((2n-l) !! 2r 2 ) ,
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so, using (A2), we see that (32) is

F(T,t) (33)

2 T/2 ({t-T(2n+ ) E2 n (t-T(2n+2)-r) d=(2r)- e T / 2  b n (t ) dri

n=0 [T (2 n+'),0)r0r r(t-T (2n+ -

where, for brevity, we have introduced the notation

E2 n (x) = D2 n (2 /) + D2 n(-2/x). (34)

To justify (33) rigorously, we have from (All) that, for z real,

- 2 +-L ez2 /42nGox2
ID2n(Z)I 2 2 2  e/4 -_O x 2ne- 2xdx

S 2 2n+ eZ2 /4 2- y2ne-ydy,

which is simply

ID 2 n (z)l (2n-l)!! ez /4, z real. (35)

Using this estimate, and the elementary result

L 1 dr = r, L > 0, (36)
/r(L-r)

we see that the absolute value of the nth term of the series on

the right side of (33) is bounded above by

b • s1r - 2 - (2n-l)!! exp(t-T(2n+ )),n 2

which is et times the general term of a positive convergent

series. Hence, for s > 1, we may take the Laplace transform of the

right side of (33) termwise, so (33) may be proved as was (29).

Using (35) to justify further termwise integrations, we complete

the proof of part (B) of the theorem as in the proof of part (A).
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ASYMPTOTICS

In this section we study the asymptotic behavior as T - m of

the conditional and unconditional distribution and density func-

tions of Z(T). Our main tool is the following special case of the

extended Laplace method (briefly, ELM below) for the asymptotic

evaluation of Laplace integrals (Erdelyi, 1956, p. 37). Let g(v)

be a function defined on (0,w) such that g(v) - bvX- I as v - 0,

X > 0, and such that, for k > 0

f g(v)e-kTV dv
0

exists for sufficiently large positive T. Then

0

f g(v)e-kTV dv - bF(X) (kT)- x 0 T
0

Theorem _: Let f0 (T,t) be the probability density function of

an inverse Gaussian distribution with parameters T/2, T/2:

f0 (T,t) = (8w)- Tt - 3/2 exp g + t > 0, (37)

and let F0 (T,t) be the corresponding probability distribution

function:

F0 (T,t) (38)

=(A-) (ErfctI-(t/2)2 + T/(2(2t)2) + eTErfc I(t/2)~ + T/(2(2t)2)]

-A!eo 2
where Erfc(x) = 1 - Erf(x) = 2- 2f et dt.

x

Then, for fixed t > 0, as T -+ -,

(A) FT(t) - (8t/T)2 F0 (T,t) _ 8(7) 2tT 3 / 2 exp 2 + 2 , (39)
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(B) fT(t) ~ (8t/T)2 f0 (T,t) (40)

c F0(Tt_ t T T2 ]

(C) FT(t) - 2F(Tt) 4-t Texp 2 + 2 (41)

(D) fc (t) 2 2-f0(T't)" (42)

Note that the final asymptotic equivalences in (A) and (C) follow

from

F0(T't) ~ (8/7) tT-Iexp [- 2 2 8t), (43)

which is a consequence of (A13). The plan of the proof of Theorem

3 is to study via ELM the asymptotic behavior of Jn (T,t),

d/dt(Jn (Tt)), J C(Tt), and d/dt(Jn (T,t)) as T (see Lemma 2

below), which is turn depends on the asymptotic behavior of G n(v)

and Gn (v) as v -+ 0, established in Lemma 1 below. Then, using the

uniformity estimates of Lemma 3, we see that the series from

Theorem 2 for FT(t), fT(t), F (t), and fT(t) are all asymptotic to

their first terms, and the proof is completed by another

application of the n = 0 case of Lemma 2.

Lemma 1: For all n 0,

(A) Gn(V) - cn v 3 / 2 v 0, (44)

where cn = 2 n+3 ( 2 n-l)!!n!/ 3 (( 2n)!)2. (45)

(B) Gn (v) _ dnv, v -+ 0, (46)

n dn
where d n = 2w 2 (l) n(2n-1)!! .(47)
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Proof:
(A) Since i d/dy[D2 2n(iy) - D 2 2n.(-iy)] - 4 D_2 n (O)D'2 nl(0)

as y -i 0, it follows from (22) that

Gn(v ) _ (-2 7/2 /3)D_2n1 (0)D' 2 n 1 ()v 3 / 2 , v -+ 0. (48)

But it is an easy consequence of (A3) that

D_2n-1 (0) = (w/2) 2 (2n-l)!!/(2n)!,

and from (A3) and (A12) it follows that

D' 2 n_1 ( 0 ) = -2nn!/(2n)! ,

so that (44) and (45) follow from (48).

(B) By (36), as v-r - 0,

r 1 D2 n(2Vv-r-u) + D2n(-2vv--u) du

u=O u (v-r-u)

T 2 -2D2n (0) = 2 2( - l)n( 2 n - l)!,

the last equality resulting from (All). Equations (46)-(47)

then follow from (26).
03

Lemma 2: For fixed t > 0 and for all n 0, as T -,

(A) Jn(T,t) ~c n(5/2)t5/2e-T 2(2n+-)2/2t(T(2n+))-3/2 (49))T 2 (2n+ 2 (

(B) d/dt(J n(T,t)) _ 2-cnI(5/2)t 2e (T(2n+)) (50)

c 2 -T (n2 2(C) J (Tt) dnt e 2 (2n+ ) 2 /2t(T(2n+£)) (51)

(D) d/dt(Jc(Tt)) 2-1d e - T 2 ( 2 n+- ) 2 / 2 t(T(2n+L)) (52)

where cn and dn are as in Lemma 1.

Proof: From (21) we have

Jn (T,t) = eT 2 (2n+i2 /2t(1 +1 )
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where

CO T(2n+v/tv 2/2t1= e- 2 e- vG (v)dv0 n

and

I = T(2n+2-) fOe - T (2 n+2)v/te-V2 /2tG (v) dv.

By ELM and Lemma 1(A), as T .o,

12 - Cnr(5/2)t 5/2 (T(2n+L-))- 3/2

and I, = O(T - 7 / 2 );

thus I1 + 12 1 12, and part (A) follows.

To prove (B), differentiate (21) with respect to t to obtain

d/dt(J (T,t)) = (2t2 )-Io[V+T(2n+-)] 3exp(-(v+T(2n+L-)) 2/2t)G (v)dv,

the differentiation under the integral sign being justified by the

uniform convergence of the above integral for t in any compact

subset of (O,w). Rewriting the above expression, we have

d/dt(Jn (T,t))

(2t 1 e (2n+)2 /2t0 3 -T(2n+#t)v/t v2/2t(2t ) e- (2 0 [v+T(2n+2 )] e- 2 e- G (v)dv.0 2 n
Expanding the cube under the integral sign and investigating the

asymptotic behavior of the four terms as T -+ by ELM, we see, as

in the proof of (A) above, that the term of the cube with the

highest power of T dominates the others. Hence,

d/dt(Jn (T,t))

3 2 1 T2 (2n+-'-)2 /2t 0 (n--vt- 2/2
- (T(2n+')) 3 (2t 2 ) le-T ( 2  2teT (2n+) V/tev / 2 tG (v)dv

2 0 n(T(2n+-')) 3(2t 2) -1 eT2 (2n+-L) 2 /2t CnF(5/2 ) (T(2n+-L)/t) - 5 / 2

2 -n -T2 (2n+#) 2/2t
= 2 ncr(5/2)te (T(2n+2)) I

which is (B). The proofs of (C) and (D) are similar to those of

(A) and (B), using (25) in place of (21) and Lemma 1(B) instead of

Lemma 1(A).
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Lemma 3: There exist positive sequences {kin , i = 1,2, such
n

that I k1an converges, (53)
n=0

Ikb converges, (54)
n=0 n n

and such that for fixed t > 0, for sufficiently large positive T,

we have for all n 0:

(A) n k' (55)
Id(J l (T't) ) k1

(B) d/dt(J0(T,t ) )  k' (56)
1d(JC (T, t)n

C) (T,t) 2

(C) n k 2 (57)
J0c(T,t) n

0
d/dt(Jn(T't)) 2

(D) J n j k 2 (58)D) d/dt (J O ( T , t ) )  (8

Proof: To prove (A), we may begin with (21), square the

binomial in the argument of the exponential, and drop the cross

term to get

Jn(Tit) I ~ o[v + T(2n+ -)]exp(-(v2 + T(2n+1 ) 2 )/2t)IGn(v)Idv.

But from (22) and (30) it follows that

n(V) < (2n-1)!!2veV= evev((2n)! e n

so we have

IJn(Tt)l K ee-T2 (2n+-)2/2t[Ii + T(2n+L)I2],

with

I1 =f wv2eve-v2/ 2tdv, 12 = foveve-v 2/2tdv.
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By Lemma 2(A), for sufficiently large T, we have

1 J 0 ( T , t )  
>  KT-3/2e-T2/8tII

where here, as we will do for the remainder of the proof of Lemma

3, we denote by K any expression which may depend on t, but not on

T or n. Hence, for such T, we have, for all n 0,

n T,t) Ke T3/2e-T2/ 2t(4n 2+2n) + T(2n+--))
J0 (T,t) I n 1  2

Provided T2/2t > 1, this yields

S(T,t) -4n 2 T3/2e-T2 n/t(I + T(2n+'-)I2 )]•
1I0 (T,t) I ene 1 T 1( +

But, if T/2t > 5/4, T/2t > 1 + 1/4n, n 1, so T 2n/t > T(2n+--),

n 1 1. Thus

J (Tt) Kene -4n2  (Ii + T(2n+2)In2), n 1.
J0T,t Kn T3 / 2 e- (2)(I (n~ ,n 1

For sufficiently large x, the function xe-x is decreasing, so for

sufficiently large T, we have for all n 2 1

Jn(T't) Kene - n  +J0(T,t) I [ ene4 T 3/2 e-T/2 (1I + (T/2)I 2) .

Since the last factor above is < 1 for sufficiently large T, part

(A) of the Lemma is proved: putting

= 1 and k = Ke e-4n 2  n 1,
0 n n

we easily see that 7. k~IanI converges. The proof of part (B) is
n=0

very similar. To prove (C) and (D), use (26), (35), and (36) to

derive the estimate IGC(v) I 2vA(2n-l)!!ve e vev to replacenG() 2l22~)!e n
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(59) and argue as above, putting

2  K-n-4n
2

kn = , n ,
0

and checking that I k2 lbnI converges. The proof of Lemma 3 is
n=0

complete. C

Turning now to the proof of Theorem 3, part (A), we have from

Theorem 2(A) that
eT/2F 3)t -/ Jn(T,t)

lira e F(t)/J0(T,t) = (2/v t- 3 / 2 e - t/ 2 lim I aT-) T-) n= 0 n0(Ttrnw Jn(T,t)

= 3~ -2' -3/2 -t/2 CO an rn (T,t)=(2/v3) t-3/e - /  I a n lim
n=0 T-)W J 0 (Tt)

the interchange of the order of limit and summation being allowed

by dominated convergence and Lemma 3(A). But, by Lemma 2(A),

J (T,t)
lir t) = 0, n 1,
T- J0 (T,t

so, since a0 = 1, we have

FT(t) _ (2/w3) t- 3 / 2 e-t/ 2 eT/ 2 J0(Tt).

Applying Lemma 2(A) again for n = 0 proves part (A) of Theorem 3.

To prove part (B), we see from Theorem 2(A) that

d (/ 3)-- t3/ ( - d. ( (T,t)),
) t3/2/ve-(T-)FT ( t ) = I an t (JnT 'a~ [21w)T''J n=0

the termwise differentiation justified by Lemma 3(B). Then

1im ((2/v 3 2 t3/2e-t/2(T-t) FT(t)]/ 1 q P(T, t)Tira dt 2/ 3  d (0(')

d d
im a(T,t))/ (T,t))

T-4 n--0
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= a lim - (J (T,t))/= (J0(T,t)) a 0 = 1,
n=O T-W (Jt(n t 0

where we have used part (B) of Lemma 2 and Lemma 3. Hence

321) .L eA f/ t/e/2t2T/ 2  d
(2/w3- d2]eT2t (t3/et/)F T(t) + t /et/f T(t) ]- e d- (J0 ( T ' t ) ) "

But, by part (A)of the theorem and Lemma 2(B) for n = 0,

FT(t) = [eT/2 d (J 0 (Tt))

so we have

(2/-3 ) t3 / 2et/2 fT(t) _ eT/2 d (J0 (Tt)),

which, by another application of Lemma 2(B) for n = 0, is just

part (B) of the theorem. The proof of part (C) is exactly parallel

to that of part (A), and the proof of part (D) is exactly parallel

to that of part (B); we omit the details.
E
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APPENDIX

In this section we list the formulas for Laplace transforms

and special functions employed in the text and give references to

standard works where they may be found, using, in the style of

Gradshteyn and Ryzhik (1980), the following abbreviations:

GR Gradshteyn and Ryzhik (1980)

OB Oberhettinger and Badii (1973)

Thus, "OB 234 (3.65)" refers to formula number 3.65 on page 234 of

Oberhettinger and Badii (1973). The formulas are listed in the

order in which they are needed in the text. Always in this

appendix, g(s) denotes the Laplace transform of f(t):

g(s) = !f(f(t))(s) =- 0 e-St f(t)dt.
0

(Al) [i(2n)! D2  ( D2  2s-) =2n
( T -2n-l' - 2n-i ''JJ = ,(s+l) 2n+l "

OB 234 (3.65)

(A2) 1([b/a.) (t) f(at-b)] = a-le-bs/ag(s/a), a,b > 0,

where '([c,)(t) denotes the characteristic function of the

interval [c,-): )((t) = {, t < c

OB 3 (1.7)

(3) Dp (-p) 0O e-ZX-X2/2 X-P- dx, p < 0.

GR 1064 (9.241(2))

(A4) V(cosh(t))(s) = s(s 2-1) - 1, Re(s) > 1

OB 84 (9.2)
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(A5) g(s)g 2 (s) - t f(u)f 2 (t-u)du (s)

OB 7 (1.31)

(A6) g(as+b) = V4a-le-bt/af(t/a)](s), a > 0

OB 207 (1.3)

[ -' -32v 2/4tfv)d s(A7) g(v'i) = V JT- t 3 / 2  /ve t

OB 210 (1.27)

( s a n[ (D (2 (a t ) ) + D ( 2 (a t ) )(M8) (sa +2- r (L-n) w 2 1 Ijt[( 2 n(2(at)

OB 182 (17.76) Re(s) > -Re(a)

(A9) r (---n) = (-1) 2 n /(2n-l)!!

GR 938 (8.399(3))

(AlO) s -
2 = V (Tt)J, Re(s) > 0

OB 16 (2.27)

(All) Dp(z) = e 2P+"(-i) p e z 2/ 4 fo px-2X2 1xz dx, p >-i

GR 1064 (9.241(1))

(A12) Dp(z) = pDpl(Z) - 2ZDp(z)

p _z)-'zp~z

GR 1066 (9.247(2))

(A13) Erfc(x) _ -2 e-X /X, x+

GR 931 (8.254)
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