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FOREWORD

The first paragraph of a letter dated 13 July 1987 from Professor Jerry
Bebernes to Dr. Jagdish Chandra stated, "The University of Colorado would
like to host the 1988 Annual Army Conference on Applied Mathematics and
Computing. Dave Kassoy and I would assist with the local arrangements and
other details if requested." These yearly conferences are sponsored by the
Army Mathematics Steering Committee (AMSC). On behalf of this Committee,
its Chairman, Dr. Chandra, was pleased to accept this invitation to host
the sixth meeting in this series, which was held on 31 May - 3 June 1988 in
Boulder, Colorado. The Local Chairpersons, Drs. Bebernes and Kassoy, are
to be commended on the very fine job they did, not only for the excellent
visitor arrangements, but also for their help in selecting speakers and
organizing special sessions.

This year the planned program of the conference consisted of three parts,
namely: (a) Seven one hour invited addresses; (b) Thirty-two half hour
solicited talks covering the following topics: Computational Solid and
Structural Mechanics, Reactive and Compressible Flows, Symbolic Computing
and Applications, and Parallel Computing; and (c) Thirty-two contributed
papers. Most of the latter were presented by Army scientists and covered
topics directly related to problems they face in their laboratories.
During the course of the conference, these Army scientists had an
opportunity to discuss problems with nationally known scientists. Some of
these were the invited speakers who are listed below, together with the
titles of their talks, but also, many others that appeared on the program
or were members of the audience.

SPEAKER AND AFFILIATION TITLE OF ADDRESS

Professor Thomas Kailath Some New Applications of Matrix
Stanford University Displacement Structures

Professor Ted Belytschko Nonmonotonic Stress-Strain Laws:
Northwestern University Bizarre Behavior and Its Repercus-

sions on Numerical Solutions

Professor A. R. Kapila Recent Developments in the Theory
Rensselaer Polytechnic of Compressible Reactive Flows
Institute

Professor Moss Sweedler Applicable Algebraic Methods
Cornell University
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Professor Oliver A. McBryan Promise vs. Performance for
University of Colorado Massively Parallel Computers

Professor Robert B. Schnabel New Sequential and Parallel Methods
University of Colorado for Unconstrained Optimization

Professor Luc Tartar How to Describe Oscillations of
Carnegie-Mellon University Solutions of Nonlinear Partial

Differential Equations

The members of the AMSC would like to express their thanks to the speakers
and research scientists who participated in this meeting, and to all the
attendees for supporting it with many stimulating questions. The AMSC is
pleased to be able to publish in these Transactions many of the conference
papers and thus to make available to the scientific community some of the
research results presented at this meeting.
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SIXTH ARMY CONFERENCE ON APPLIED MATHEMATICS AND COMPUTING

University of Colorado, at Boulder, Colorado

31 May-3 June 1988

AGENDA

Tuesday, 31 May 1988

0745 - 1600 Registration - Hallway Outside ECCR 2-06

0815 - 0830 Opening Remarks - CR 2-06

0830 - 0930 General Session I - CR 2-06

Chairperson: Benjamin E. Cummings, U.S. Army Human
Engineering Laboratory, Aberdeen Proving Ground,
Maryland

Some New Applications of Matrix Displacement Structure

Thomas Kailath, Stanford University
Stanford, California

0930 - 1000 BREAK

1000 - 1200 Special Session 1 - Computational Solid and Structural
Mechanics, Part 1. Part 2 will be held on Friday morning.
CR 1-40

Chairperson and Organizer: Alexander Tessler, U.S. Army
Materials Technology Laboratory,
Watertown, Massachusetts

Recent Development in High Performance of Plate and Shell
Elements Based on the Free Formulation

C. A. Felippa, University of Colorado

Boulder, Colorado

Large Elasto-Plastic Deformations of Shells of Revolution

I. Fried, Boston University, Boston, Massachusetts, and
A. R. Johnson, and A. Tessler U.S. Army Materials
Technology Laboratory, Watertown, Massachusetts

Aspects of Edge Constraints in Shear-Deformable Plate and Shell
Elements

A. Tessler, U.S. Army Materials Technology Laboratory
Watertown, Massachusetts

Finite Element Solution of Planar Elasto-Plastic and
Viscoelastic Fracture Problems

A. E. Beagles, J. R. Walton, M. K. Warby, and J. R.
Whiteman, Brunel University, Uxbridge, England

ix
m~mmmnmmm m m I mNNW



Tuesday (Continued)

1000 - 1200 Technical Session 1 - Fluid Mechanics - Part 1. Part 2 will be
held in Technical Session 6. CR 1-46
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Redstone Arsenal, Alabama
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Rensselaer Polytechnic Institute, Troy, New York
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Raymond Sedney and Nathan Gerber, U.S. Army Ballistic
Research Laboratory, Aberdeen Proving Ground, MD and
Philip Hall, Exeter University, Exeter, England

Shearing Flows for Non-Newtonian Fluids

0. S. Malkus, J. A. Nohel, and B. J. Plohr, University of
Wisconsin, Madison, Wisconsin

Turbulent Behavior in Channel Flows

Kurt D. Fickie and John 0. Kuzan, U.S. Army Ballistic
Research Laboratory, Aberdeen Proving Ground, MD

1200 - 1330 LUNCH

1330 - 1530 Technical Session 2 - Mathematical Physics and Numerical
Methods. CR 1-40

Chairperson: Miles Miller, Chemical R&D Center,
Aberdeen Proving Ground, MD

Numerical Analysis of a Particular Set of Polynomial Equations

William F. Donovan, Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland
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Elimination Method

A. R. Johnson and C. J. Quigley, U.S. Army Materials
Technology Laboratory, Watertown, Massachusetts

Stress Distributions Near Microstructural Inhomogeneities

Dennis Tracey and Paul J. Perrone, U.S. Army Materials
Technology Laboratory, Watertown, Massachusetts

Finite Element Analysis of Swage Autofrettage Process

Peter C. T. Chen, Benet Laboratories
Watervliet, NY 12189-4050

1530 - 1600 BREAK

1600 - 1700 General Session II - CR 2-06

Chairperson: Dennis M. Tracey, U.S. Army Materials Technology
Laboratory, Watertown, MA

Nonmonotonic Stress-Strain Laws: Bizarre Behavior and Its
Repercussions on Numerical Solutions

Ted Belytschko, Northwestern University
Evanston, Illinois

Wednesday, 1 June 1988

0745 - 1600 Registration - Hallway Outside CR 2-06

0830 - 1030 Special Session 2 - Reactive and Compressible Flows - Part 1.
Part 2 is in Special Session 4. CR 1-46
Chairperson and Organizer: Jerrold Bebernes, University of

Colorado, Boulder, Colorado

Detonation Shock Dynamics

J. B. Bdzil and D. S. Stewart, Los Alamos National
Laboratory, Los Alamos, New Mexico
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J. Bebernes, University of Colorado
Boulder, Colorado

Steady State Solutions of the Karamoto-Sivashinsky Equation

William C. Troy, University of Pittsburgh
Pittsburgh, Pennsylvania

Counting the Number of Solutions in Reactive Flow Problems

E. Ash and K. Gustafson, University of Colorado
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0830 - 1030 Special Session 3 - Symbolic Computation and Applications -
Part 1. See Special Session 5 for Part 2. CR 2-06

Chairpersons and Organizers: M. A. Hussain, General Electric
Corporate R & D Center,
Schnectady, NY and Julian Wu
Research Office, Research
Triangle Park, NC

Decision Procedures for Solving Differential Equations in
Closed Form

B. F. Caviness, National Science Foundation

Washington, DC - On Leave from the University of Delaware

An Integrated Approach of Scientific Computing

Paul S. Wang, Kent State University
Kent, Ohio

A Study of Symbolic Processing and Computational Aspects in
Helicopter Dynamics

S. Ravichandran and G. Gaonkar, Florida Atlantic
University, Boca Raton, FL, J. Nagbhushana, Indian
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Symbolic Computation - Hope, Reality, Serendipity

Clarence J. Maday, North Carolina State University
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Wednesday (Continued)

1030 - 1100 BREAK

1100 - 1200 General Session Ill - CR 2-06

Chairperson:

Recent Developments in the Theory of Compressible Reactive
Flows

A. R. Kapila, Rensselaer Polytechnic Institute
Troy, New York

1200 - 1330 LUNCH

1330 - 1550 Special Session 4 - Reactive and Compressible Flows - Part 2.
CR 1-46

Chairperson and Organizer: Jerrold Bebernes, University of
Colorado, Boulder, Colorado

Nonlinear Geometrical Acoustics

John K. Hunter, Colorado State University
Fort Collins, Colorado

Mass-Conserving Treatment of Accumulation Terms in Flows
Through Unsaturated Soils

Myron B. Allen, University of Wyoming

Laramie, Wyoming

Phase-Change Problem for Hyperbolic Heat Transfer Model

Dening Li, University of Colorado
Boulder, Colorado

Improvements in the Calculation of Fire Spread in Large
Compartments

K. C. Heaton, Defence Research Establishment Valcartier
Courcelette, P.Q., Canada

On the Numerical Solution of a System of Partial Differential
Equations to Obtain the Wind from the Geopotential for
Numerical Weather Prediction and on Related Mathematical
Aspects

H. Baussus von Luetzow, U.S. Army Engineer Topographic
Laboratories, Fort. Belvoir, Virginia
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1330 - 1550 Special Session 5 - Symbolic Computing and Application
Part 2. CR 2-06

Chairpersons and Organizers: M. A. Hussian, General Electric,
Corporate R&D Center,
Schenectady, NY and Julian Wu,
U.S. Army Research Office,
Research Triangle Park, NC

Computer Algebra Implementation of Lie Transforms for
Hamiltonian Systems: Application to the Nonlinear Stability of
L4 •

Vincent T. Coppola and Richard H. Rand, Cornell University
Ithaca, New York

Symbolic Computation and Perturbation Methods Using Elliptic
Functions

Vincent T. Coppola and Richard H. Rand, Cornell Univeristy

Ithaca, New York

The Effective Use of Computer Algebra Systems

Joel S. Cohen, University of Denver
Denver, Colorado

Using Macsyma in a Generalized Harmonic Balance Method for a
Problem of Forced Nonlinear Oscillations

M. A. Hussain, General Electric R & D Center, Schenectady,
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Expression Swell Analysis of the Computation of Matrix
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Michael Wester, University of New Mexico
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1550 - 1610 BREAK

1610 - 1710 General Session IV - CR 2-06

Chairperson: William Jackson, U.S. Army Tank-Automotive
Command, Warren, Michigan

Applicable Algebraic Methods

Moss Sweedler, Cornell University
Ithaca, New York
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0800 - 1600 Registration - Hallway Outside CR 2-06

0830 - 1030 Special Session 6 - Parallel Computing - Part 1. Part 2 is in
Special Session 7. CR 2-06

Chairpersons and Organizers: Robert Schnabel, University of
Colorado, Boulder, CO and
Arthur Wouk, U.S. Army Research
Office, Research Triangle Park,
NC

Multiprocessor FFTs

William L. Biggs, University of Colorado
Denver, Colorado

State of the Art in Current Finite Elements Computations
Charbel Farhat, University of Colorado

Boulder, Colorado

Parallel Methods for Block Bordered Nonlinear Problems

Xiadog Zhang, Richard H. Byrd, and Robert 9. Schnabel
University of Colorado, Boulder, Colorado

The HK Singular Value Decomposition

L. Magnus Ewerbring and Franklin T. Luk, Cornell University
Ithaca, New York

0830 - 1030 Technical Session 4 - Control. CR 1-46

Chairperson: Herbert Cohen, U.S. Army Material Systems
Analysis Activity, Aberdeen Proving Ground,
Maryland

Determining Confidence Factors for Expert Systems

Albert Nigrin, Duke University
Durham, North Carolina

The Use of Tomek Links in the Design of Piecewise Linear
Classifiers

Jack Sklansky and Youngtae Park, University of California
Irvine, California
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of a Complex Matrix and Their Applications to Mathematical
Science and Control Systems

L. S. Shieh, University of Houston, Houston, Texas, R. E.
Yates, U.S. Army Missile R&D Command, Redstone Arsenal,
Alabama, and N. P. Coleman, U.S. Army Armament Center,
Dover, New Jersey

Example of A Pursuit-Evasion Game with M Pursuers

Leszek S. Zaremba, Mathematical Reviews
Ann Arbor, Michigan

On the Dynamics of Feedback Systems with Quantized Outputs

David Delchamps, Cornell University
Ithaca, New York

AG: A Heuristic Search Algorithm for OR Graphs

James W. Lark, I1, and Chelsea C. White, I1, University
of Virginia, Charlottesville, Virginia

1030 - 1100 BREAK

1100 - 1200 General Session V - CR 2-06

Chairperson: Michael John Muuss, U.S. Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland

Promise vs Performance for Massively Parallel Computers

Oliver A. McBryan, University of Colorado
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1200 - 1330 LUNCH

1330 - 1530 Special Session 7 - Parallel Computing - Part 2. CR 2-06

Chairpersons and Organizers: Robert Schnabel, University of
Colorada, Boulder, CO and
Arthur Wouk, U.S. Army Research
Office, Research Triangle Park,
North Carolina

A QR Factorization Algorithmi with Control Local Pivoting

Christian H. Bischof, Cornell University
Ithaca, New York
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Michael J. Muuss and Phillip C. Dykstra, U.S. Army
Ballistic Research Laboratory, Aberdeen Proving Ground, MD
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Deconvolution of Multidetector Systems

Carlos A. Berenstein and B. A. Taylor, University of
Maryland, Greenbelt, Maryland

The Modeling of Weapon Dynamics Using Stochastic Mathematical
Techniques

Anthony Baran and John Groff, U.S. Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland, James

Cantor, Steve Carchedi, and Bruce Gibbs, Business
Technological Systems, Inc., Seabrook, Maryland, and
Herbert Cohen, Army Materiel Systems Analysis Activity,
Aberdeen Proving Ground, Maryland

Parallel Algorithms for Stochastic Simulations

Peter W. Glynn, Stanford University
Stanford, California

Covariance Analysis for Split Plot and Split Block Designs and
Computer Packages

Walter T. Federer, Cornell University
Ithaca, New York

Comparison of Mean Statistics and Decision Making Using Maximum
Likelihood Estimates as an Alternative to Hypothesis Testing

Nathanael Roman, U.S. Army Materiel Test and Evaluation
Directorate, White Sands Missile Range, New Mexico
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Numerical Solution of Stochastic Differential Equations

M. Sambandham, Atlanta University
Atlanta, Georgia

1530 - 1600 General Session VI - CR 2-06

Chairperson: Norman Coleman, U.S. Army Armament RD&E Center,
Dover, New Jersey

New Sequential and Parallel Methods for Unconstrained
Optimization

Robert B. Schnabel, Univerrsity of Colorado
Boulder, Colorado

Friday, 3 June 1988

0745 - 1100 Registration - Hallway Outside CR 2-06

0830 - 1030 Technical Session 6 - Fluid Mechanics - Part 2. CR 1-46

Chairperson: Raymond Sedney, Ballistic Research Laboratory,
Aberdeen Proving Ground, Maryland

Helicopter Sound Scattering from Shear Layers Using Generalized
Functions

A. Unal and C. Tung, U.S. Army Aviation Research and
Technology Activity, Moffett Field, California

Inverse Source Modeling in Helicopter Acoustics

A. Unal and C. Tung, U.S. Army Aviation Research and
Technology Activity, Moffett Field, California

Diagonal Implicit Multigrid Solution of the Three-Dimensional
Euler Equations

David A. Caughey, Cornell University
Ithaca, New York

Adaptive Mesh Experiements for Time-Dependent Partial
Differential Equations

Oavid C. Arney, U.S. Military Academy, West Point, NY,
Joseph E. Flaherty, Benet Laboratories, Watervliet, NY and
Rupak Biswas, Rensselaer Polytechnic Institute, Troy, NY
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An Adaptive Mesh Method for Solving Blast Problems Using the
Euler Equations

David C. Arney and Erin Misner, U.S. Military Academy, West
Point, NY, and Garry Carofano, Benet Laboratories,
Watervliet, NY

Computations of Transonic Flow Over a Projectile at Angle of
Attack

Jubaraj Sahu, U.S. Army Ballistic Research Laboratory,
Aberdeen Proving Ground, Maryland

0830 - 1030 Special Session 8 - Computational Solid and Structural
Mechanics - Part 2. CR 2-06

Chairperson and Organizer: Alexander Tessler, U.S. Army
Materials Technology Laboratory,
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Recent Developments in Assumed Strain Shell Elements

K. C. Park, University of Colorado
Boulder, Colorado
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Aaron D. Gupta, U.S. Army Ballistic Laboratory
Aberdeen Proving Ground, Maryland
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Luc Tartar, Carnegie Mellon University
Pittsburgh, Pennsylvania

1200 - 1215 ADJOURNMENT
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Divide-and-Conquer Solutions of Least-Squares Problems
for Matrices with Displacement Structure

J. Chun and T. Kailath t

Information Systems Laboratory
Stanford University
Stanford, CA 94305

ABSTRACT. A divide-and-conquer implementation of a generalized Schur algorithm enables us to
solve various (exact and) least squares block-Toeplitz or Toeplitz-block systems of equations with
0 (x3nlog 2n) operations, where the displacement rank cx is a small constant (typically between 2 to 4
for scalar near-Toeplitz matrices) independent of the size of matrices.

1. Introduction.

In recent years, there has been considerable research on fast algorithms for the solution of linear
systems of equations with Toeplitz matrices. The Levinson and Schur algorithms allow (recursive)
solutions with 0 (n2) floating point operations (flops) for systems with n x n Toeplitz matrices.

In 1980. Brent et al [5] described a (nonrecursive) scheme for obtaining a solution with
0 (n log2n) flops. This was based on two ideas - the use of the Gohberg-Semencul formula [10], [11],
[15] for the inverse of a Toeplitz matrix, and the use of divide-and-conquer (or doubling) techniques
for computing (generators of) the Gohberg-Semencul formula.

Let x and y denote the first and last columns of T-1 e Rnm). Then if the first component of x,
say x 1, is nonzero, Gohberg and Semencul [11] showed that we could write

T - = I [L(x)LT(Iy) - L(Zy)LT(Z.7x)] (1)

where 7, is the reverse-identity matrix, Z, is the shift matrix,

7,"/  1, z,- 1 0

1 I, 0

and

L (v) = a lower-triangular Toeplitz matrix with first column v.

The significance of (1) in the present application is that the product of a vector and a lower- or upper-

t This wort was supported in part by the U.S. Army Research Office wnder Contract DAALO3-86-K-0045. the SDIO/ST, managed by the
Army Research Office wnder Contract DAAL03-S7-K-0033, and the National Science Foundation under Grant MIP21315-AZ.
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triangular Toeplitz matrix is equivalent to the convolution of two vectors, which can be done in a fast
way using 0 (nlogn) flops (see, e.g. [4]). This compares with the 0(n 2) operations required with the

non-Toeplitz triangular matrix factor of T-1 (obtainable in 0 (n 2) flops via the Levinson algorithm).
Brent et al showed how to use divide-and-conquer techniques combined with a fast Euclidean
algorithm (faster than the one in [1]) to obtain the vectors {x, y) of the Gohberg-Semencul formula
with 0 (n log2n) flops. Later Bitmead and Anderson [3] and Morf [19] used another approach, based
on the displacement-rank properties of matrix Schur complements, to obtain similar results; while this
approach allows for generalization to non-Toeplitz matrices (further discussed below), the hidden
coefficient in their proposed 0 (n log2n) constructions turned out to be extremely large (see Sexton
[23]). Later Musicus [20], Bruckstein and Kailath [6], de Hoog [91, Ammar and Gragg [2] used an
approach based on the Schur (rather than Levinson) algorithm to obtain better coefficients; in
particular, Ammar and Gragg made a detailed study and claimed an operation count of 8n log2n flops.
With this count, the new (called superfast in [2]) method for solving Toeplitz systems is better than the
one based on the Levinson algorithm whenever n > 256. We should mention here that Schur-
algorithm-based methods are natural in the context of transmission-line and layered-earth models, so it
is not a surprise that similar techniques were also conceived in those fields - see Choate [7], McClary
[18] and Bruckstein and Kailath [6]. A good source for background on the Levinson and Schur
algorithms, transmission line models, displacement representations as mentioned and used in the
present paper may be [12].

Our paper is in the spirit of the methods based on the Schur algorithm, but is more general
without the drawback of large coefficient of the methods by Bitmead and Anderson or Morf. We can
handle matrices such as (TTT) - 1 and (TTT)-TT, where T may be a near-Toeplitz matrix including
rectangular block-Toeplitz matrices and Toeplitz-block matrices; in particular, therefore, we can also
obtain the least-squares solutions of over-determined Toeplitz and near-Toeplitz systems with
O (n log2n) flops.

An outline of our approach is the following. For a matrix E,

E = E 1 1 , nonsingular,E2,1 E2,2 11

the Schur complement of E 1.1 in E is

S a E , ! - E2 ,1 Ej-E 1 ,2.

Notice that matrices such as

S, a T - ', S2 = (T T) - , S3  (TT)-tT (2)

can be identified as the Schur complements of the following extended matrices,

E I= [ 1, E2 = -[O E3 =  -[ O "(3)

Now the matrices E in (3) have the following (generalized) displacement representation, for suitably
chosen matrices {Ff, Fbi}.

a
E = IK(xi, F1 )KT(y,, Fb),

2



where K (x i , Ff ) and K(yi, Fb) are lower triangular matrices whose j columns are (Ff)('-)xi and
(Fb)(j-t)y,, respectively. The smallest possible number a is called the displacement rank of E with

respect to [Fr, F b ). For an example, let T be an m x n scalar Toeplitz matrix, with m _ n. Then

the matrix E2 has the displacement rank 4 with respect to (F, F), where F = Z,' and has a

displacement representation [13],

-TT_ 0 = FK(yi, F)K T (xi, F)- YK(yi,F)K (xLF), y 0 -I xi (4a)
i= i-3

If we define xf = [wT, v7r, note that the matrix K(xi, F) in (4a) has the form

(i) O e RA x2 , 0 Rn xn, 
(4b)

where L (wi) and L (vi) are lower triangular Toeplitz matrices with first columns wi and vi.

Given a displacement representation of E, we use a certain generalized Schur algorithm [8], [13]
to successively compute displacement representations of the Schur complements of all the leading
principal submatrices in E. For the above example, n steps of the generalized Schur algorithm will
yield

0 (TTT)-]= jK(u, F)KT(u, F) - _K(u i , F)KT(u, F),O TT) I  i=1 i=3

where the top n elements of ui are zero. Therefore, if we denote the bottom n elements of ui as u2j,
we can re-write

2 4
(TTTI)- = ,L (u2, )L T(u 2.) - FL (u2, )L T(u2 ,i).

i=- i=3

Now, the generalized Schur algorithm, which is a two-term polynomial recursion, can be
implemented in a divide-and-conquer fashion with 0 (cz3f (n)logn) flops, where f (n) denotes the
number of operations for the multiplication of two polynomials. Therefore, if the multiplication of two
polynomials is done again by divide-and-conquer, i.e., by using fast convolution algorithms, then the

overall computation requires 0 (at3n log2n) flops. We remark that the factor a 3 can be reduced to (x if
several convolutions can be performed in parallel. Once we have a displacement of the desired Schur
complement S, the matrix-vector multiplication, Sb can be done with 0 (an logn) flops using fast
convolutions. As an example, we can obtain the least squares solution for

Tx=b, TE RxI, m >n

by

(i) Multiply Tlb using a fast convolution algorithm,

(ii) Obtain a displacement representation of (TTT) - using the divide-and-conquer version of
generalized Schur algorithm,

(iii) Multiply (TTT)-l(TTb) using a fast convolution algorithm.

3



If we obtain displacement representation of (TTT)-TT directly using E 3, then the step (i) would not

be needed.

2. Generalized Schur Algorithm.

After a brief review of basic concepts and definitions, we shall present the generalized Schur

algorithm in polynomial form.

Generators of Matrices.

Let F f and Fb be nilpotent matrices. The matrix

V (Ft y4A = A - Ff AFbT

is called the displacement of A with respect to the displacement operators {F t , Fb ). Define the
(Ff, Fb )-displacement rank of A as rank[V(F.Fb)A 1. Any matrix pair [X, Y) such that

V(FfJA r ,6 X = [x1, x 2 ... x11, y [ Y1, Y2 ... Y ] (5)

is called a (vector form) generator of A with respect to {F t , Fb). The generator will be said to have
length a. If the length ax is equal to the displacement rank of A, we say that the generator is minimal.
A generator such as Y = X1, where Z is a diagonal matrix with I or -1 along the diagonal, is called a

symmetric generator.

The following Lemma [13), [14] establishes the connection between generators and displacement
representations.

M
Lemma. Let E be an m x n matrix. If Ff and F b are nilpotent, then V(FfFb)E = ZxiyiT has the

unique solution E = K(xi,Ff )KT(y,,Fb), where K(xi, Ff) - [xi, Ff xi, ,Ff(A-0X,
I

K(y i , Fb) = [yi, Fbyi, ,b(-lyi

Choice of Displacement Operators.

The generalized Schur algorithm operates with generators, and needs 0 (amn) flops for sequential
implementation and O(ao3nlog2n) for divide-and-conquer implementation. Therefore, for a given
matrix A, we should try to choose the displacement operators that give the smallest a. If the matrix A
is an n x n Toeplitz matrix, the appropriate displacement operator F is Z,,, an n x n shift matrix. If
A has some near-Toeplitz structure, then F would have forms such as

n

i=1

where e denotes the direct sum, Z, eZ, a , and denotes the concatenated direct sum.

Example 1. Let T = (ti.j) be an m x n pre- and post-windowed scalar Toeplitz matrix, i.e., tj = 0 if
j>i ori >m-n+j withm >n. Then it is easy to check that the matrix C = (ci-j) a TT T is
also a (unwindowed) Toeplitz matrix, and with respect to {Z, eZ,, Z, eZ,. ), E3 in (3) has a

4



generator {X, Y I of length 2, where

X2 = [c0 , C 1 , cn, -1, 0, •, OIT/cdI,

x2 = [0, C, "", , -1, 0, , O]Tic1y2,

Y- [Co, c, " "C, t 1, tm.M , 0-, 0 Ir/Coa,

Y2 = -0, C1, •,C , to, t1, t•t._., 0, ]/cd2 .

Example 2. If T is a Toeplitz-block matrix, i.e.,

T 1,1 T 1.2 Tiy

T 2,1 T 2,2  T 2,N
T = e R", Tij = scalar mi x nj Toeplitz matrix, (6)

TM.I TM 2  TMN j

then for the matrices E in (3), we choose [8], [13] the following displacement operators

M N
E : Ff = [OZm.]eF, Fb [eZ,,.eFl, m =n, (7a)

i=1 i ,1

N N
E2: F1 = [eZ.]eFl, Fb [eZ,,j]0F1 , m =n, (7b)

i=1 = il
N N M

E 3: F1 =[ieZ,]eFl, F= [eZbj,]([Zrj, (7c)

N
where F 1 can be eithert Z,, or OZ,,.

i=I

Example 3. On the other hand, if the matrix T in (3) is a block-Toeplitz matrix with 13 x 13 blocks,

B 0  B- 1  B-N.+ 1
B 1 BO B-.N+2

TBe R' i ' , Bk e R04, m a-M13, n SN13. (8)

BM- BM-2 B-N+M]

then for the extended matrices E, we should choose [81 the displacement operators

Ff = z,.0, = Z!e , (9)

where, for El we assumed that T is a square n x n matrix.

Generators of the above and other extended block-Toeplitz or Toeplitz-block matrices can be

found in [8] and [13].

Polynomial Form of Generators.

N
t For the divide-and-conquer implementaon, we prefer to choose eZ,.; see the Remark in Sec 4.

i5i
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In general, the displacement operators Ff and Fb for both extended block-Toeplitz matrices and

extended Toeplitz-block matrices have the form,

N N
F = , -- Fni. (10)

i=1 M- i=I

We shall say that the displacement operator F in (10) has N sections. One of the key operations in
generalized Schur algorithms is matrix-vector multiplication, F v, i.e, a sectioned shift operation. With
the polynomial representation of vectors, the shift operation has a nice algebraic expression. For a
given vector v, let v(z) denote the polynomial whose coefficient for the term zi is the i+lst
component of the vector, i.e.,

v = [vo, vI, v 2 ,.., V,_]T --) v(z) = Vo + vZ + v 2z 2 + (11)

Then,

Zn v v'= 0, v0, vI,,v. 2]T . v(z)z mod z".

In general, for the matrix whose displacement operator is the F in (10), let us define integers

{f5i by

Si= nk, 81 < 2<"<8N.
k=1

Let v(z) and O(z) be polynomials of degree less than or equal to n-1, and define the degree at most

(ni-l) polynomial, vj(z), by

v(z) = v 1 (z) + z v2(z) + zv 3(z) + + Z vNVN(Z). (12a)

Now the (polynomial form) displacement operator OF is defined by the following operation,
v(z)@FO(z) a r(z) a r1 (z) + z81r2(z) + r( •+ Z8N1- r.(Z), (I2b)

where

r1(z) a Vi(z)O(z) mod z"', (12c)

i.e., ri(z) is the polynomial vi(z)O(z P) after chopping off the higher degree terms, so that ri(z) has the

degree at most (ni - 1).

Let

X =[xI,x 2, . ,xJ, Y =[YI, YZ,y',

be a generator of a matrix A with respect to certain (Ff, Fb 1, and let

xi --- xi (Z ), Yi -4 Yi (w ).

Then we call the pair of polynomial vectors, {X(z), Y(w)}, where

X(z) R I x1(z), x2(z), • • , xa(z) 1, Y(w) a I y1(w), y 2(w), • , ya(w) 1,

a (polynomial form) generator of A, with respect to (polynomial from) displacement operator

(OF19 (DFb}.
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Example 1 (Continued). The matrix E 3 in (3) has a generator {X(z), Y(w)) with respect to
(OFfFh, where Ff = Z. EZ., Fb = Z. (DZz and

x(z) = (co + c1z + +c,z" - z +lN]CO1,

x 2(z) = [c z + cz2 + + cnzR - z +1 co 1
,

y(w) = [co + cjw + •+ cw" + t0w" + + t 1w n +2 + + tm..nWMlc, 1/2

y 2(w) =-[CIW + + CnW" + town +  + t 1w n 2 +• + trn_,wn+t]cO 1/2.

Also notice that

xl(z)@Ffz = [C OZ + C 1Z
2 + + c_ 1z - zn+2 1CO-1 ' ,

YI(W)0FbW = [CoW + CIW 2 +.. + cn_1wA + tow,+2 + t 1w x + + tm 4nlWm+l]co01 2 . C3

Next we note that for given vectors a and b such that aTb * 0, we can always find [8] matrices
E and 'F such that

aTE = [a1', 0,0, .,01, br tF = [b 1 , 0,0, ,01, 8.11T-1, (13)

and therefore, aTb = a 'b 1'. We define polynomial matrices 8(z) and '(w) by

z w

8(z ) a 19 , (w) - T (14)

1 1

We remark also that if a= b, then f(w)= @(w), and if b = Ia, where 7- IP (-4 q, then
T(w) = @(w )E, so that we only need to find, and post-multiply by, 8(z).

Generalized Schur Algorithm

Let a matrix E have a generator {Xo(z), Yo(w)) with respect to {@FI O-P). and define Ei,,

by

[ E1.1 EI2 1
E [ E2.1 E2.2  E

where E1,1 is a k x k strongly nonsingular matrix, i.e., the one with all nonsingular leading
submatrices. The k-step of the generalized Schur algorithm [8], [131 presented below in polynomial
form gives a generator of the matrix,

O S E 2.2 - E 2 ,1Ej-E 1 2 r R(m -k)x(n -k),

with respect to I @F, @' ", or equivalently, a generator of S with respect to { ®,,}, where Ff

and F, denote the trailing square submatrices of size (m - k) and (n - k) of F/ and F b,

respectively.

Algorithm (k-step Generalized Schur Algorithm)

7



Input: Generator of E, {Xo(z), Yo(w)}; displacement operator IOFf' @Fl; Number of steps k.

Output: Generator of S {Xk (z), Yk (w))

Procedure GeneralizedSchur
begin

for i :=0 to k - 1 do begin
aT [z-iXi(z)]'-0;

bT [z-iy,(Z)],,6

Find ej(z) and 'V(w) to transform aT and b such as (13);
Xi. 1(z) = Xi(z; Yll(W Yi(W))F6=i(W);

end
return {Xk(z), Yk(w)l;

end

Remark. The polynomial vectors, Xj(z) and Yi(w), have degrees m-I and n-1 respectively, for all i.
Each step eliminates the non-zero lowest degree term, and therefore the terms of Xi(z) and Yi(w)
whose degrees are less than z' and w' are zeros.

By applying the generalized Schur algorithm, one can obtain generators, or equivalently
displacement representations for various interesting Schur complements.

3. Divide-and-Conquer Implementation.

The (sequential) k-step generalized Schur algorithm in Sec 2 can also be implemented efficiently
using divide-and-conquer approach. We shall only explain how to find Xk(z); essentially the same
argument applies for Yk(w).

Let us define ep:q (z) and Xp:, (z) by

O9p:q(z) - OVz)OP'1(Z) " 8qWz,

Xp~q(Z) U Xo:q(z) vfeo:p1(z), Xo:q(Z) a Xo(z) mod z"",

where 0 5p < q. The polynomial matrix EOp:q (z) has a degree q -p +1. The polynomial vector
Xp:q(z) has degree q, and is obtained by dropping from X,(z) all terms of degree higher than zq .

Also note the useful properties,

I-X(Z) -01(z) F 02(z) = X(z)0F[Ol(z)O2(zA,

[x 1(z) + x2(z)I0pO(z) = [x(z)6FO(z)] + [x2(Z)0FO(Z)I.

These properties and the fact that e) :q(z) is completely determined by Xp:q (z) allow a divide-and-
conquer implementation of the generalized Schur algorithm.

Given Xp:q (z), we can compute ep:q(z) as follows. If p = q, then we are successful, and
compute e9p.,(z) = 19p(z). Otherwise, we choose an appropriatet division point r such that

p < r < q, and try to solve the smaller sub-problem of finding e,:,_.(z), given Xp:,_t). Once we
know Op:ril(z), we can compute X,:q(z) by

See Sc 4.
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Xr:q (z) = XOq(Z)OF EO-r1(z) = [Xo.q(Z) Ffeo'P-(z )I@Fep :r-1(z) (15a)

= XP :q (Z) eDf oP ._l(z ). (15)

Now we again try to find ,,:q(z) given X,:q(z). After we obtain e,:q (z), we can combine the two

results, Op:,r.(z) and e,:,(z), by multiplication,

) = ep:, 1(z)r:q(Z). (16)

Programming details of the above recursive generalized Schur algorithm are shown in the Appendix.

The previous recursive description can be visualized nonrecursively using trees (see Fig 1 and 2).
Each node in the tree is annotated with the rules: "find", "apply" and "combine",

fp:p : Find ep:p(z),

ap:q : Xr:q(Z) :=Xp:q(Z)GFOP?._1(Z),

Cp:q : ep:(z)=p._(z),q(Z).

We traverse the tree in post-order (i.e., follow the order labeled on each node of the tree), and evaluate

the rules.

Now, we shall consider two examples in detail.

Example 4. Pseudo-Inverse of pre and post windowed Toeplitz Matrices.

Consider the matrix E 3 in Example 1, where

16 8 41 32 1 1-1 00 0

81684 .03211-100
TT=4 8 1 6  0 0 3 2 1  1 -1 0

L1 4 8 16 0 0 0 3 2 1 1 -1

It is desired to find a displacement representation of (TTT)-'TT. This can be done by the 4-step
recursive generalized Schur algorithm. The input to the algorithm is a generator {Xo(z), Yo(w)) of

E 3 = -  T oi]

with respect to {F IGF' 1, where Ff =Z, eZ,, Fb =Z, Z. The output, (X4(z), Y4(w)} is a

generator of (TTT)-TT, with respect to {z., oz. }. The computational sequence is illustrated in

Fig 1, where it was assumed that the division points were chosen successively by 2, 1 and 3.1
(1). fo:o: 8o:0(z) = 0 - because X.(z) = [4, 01

(2). a0:1: Xl:j(z) = Xo:1(z)oF 8o.0(z) = [4 + 2z, 2z]OFfOO:O(z) = [4z, -2z]

(3). fl0: ei:1(z)="'"-I/2  -1] .

(4). C0 :1: eo:j(z) = E)Oo(z)EO 1(z) = .- z2 z/2]1

9



(5). ao:3 : X 2.3 (z) = XO.3(Z)@F/O.I(7Z) = - .- 3z2 + 3z 3/2, -z 3/41

(6y. f 22: e 2:2(z) = 0 z because X,.,.(z) --. 3z2, 01

(7). a 2:3: X3:3(z) X 2:3(Z)@f 8 2:2(Z) = -- [3 z3/4]

(8 ). f 3:3: e 3 :3(z ) -- 1 2 1/12 [ ]
S12 z 2J~ 1

(9). C2:3 : 8 2 .3(Z) E-2:2(Z)E13:3(Z) 2 /4

(10). C0 :3 : E0:3(Z) = E0:(Z)E 2:3(Z) = 24 .[ _Z4 12 /24 Z 3/12-z412

NI - 3 _3/12+z/12 -z2/24+1
(11). a0:7: X 4 :7(z) = [4+2z +z 2+z 3/4-z 4/4, 2z +Z 2+Z 3/4-Z 4/41 FeoO:3(Z)

= [(4+2z +z 2+Z 3/4, 2z +Z 2+Z 3/4) - Z 4(1/4, l/ 4 )1]Of E0:3(Z)

= -z4[(1/4, 1/4)8 0:3(Z) mod z4]

6z4 2
- - [z/12-z 2 /24-z3 /2, l-z/2-z 2/24+z3/12]

Because TT T is symmetric, 'Po:3(W) = E).3(w)Z, where 1 = 1 ®-1, and therefore,

Y4 :13(W) " [(4+2z +z 2+z 3/4)+z 4(3/4+z /2+z 2/4-z 4/4),

(2z +z 2+z 3 /4)+z 4 (3/4+z /2+z 2/4+z 3 /4-z 4/4)] 1F E0 :3(W )-

Z6 [ 1/4z +z 2/24-3Z 3/2+49Z4 /24+1 Iz 5/8+13z 6/24+3Z7 /2,-F34143

-3-z /2+z 2/8-2z 3/3+11 z 4/8-13/24z 5-z 6/8-z 7/121.

Therefore,
_ 6

(TTT)-T T -y[L(xi)LT(yl) + L(x 2)Lr(y 2)], y=

where L(xi) and L(yi) are the lower triangular Toeplitz matrices whose first columns are xi and yi,
respectively, and

x, = [0, -1/12, 1/24, 1/2]T

x2 = [-1, 1/2, 1/24, -1/12 1T

yj = [0, 1/4, 1/24, -3/2, 49/24, 11/8, 13/24, 3/21T,

Y2 = [-3, -1/2, 1/8, -2/3, 11/8, -13/24, -1/8, 1/ 12 1T .  0
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Remark 1. For a symmetric generator of length 2 with = 1, the 2 x 2 polynomial matrix O(z) in
(14) can have the form (hyperbolic reflection)

Oi(z) C L$hi Z .hi , chi2 - shi 2 
- 1.

Let

[ 9 1 ,(Z) 01.2(z) 1
O,,4 (z) e O,(z)eO 1(z) . e q(z) * [ 21 (z) 12,2(z) J

Then, by induction, one can easily prove that

Zq-p+lgl.l (Z-1) = (- 1 )q-p+1928 (Z), zq-p+1@1.(z- 1 ) = (-1)q-+1O),1fz).

Therefore, we need to compute and store only two entries of 8,P:q (z).

Remark 2. For an unwindowed scalar Toeplitz matrix, the matrix E2 in (3) has a displacement rank 4,
whereas the matrix E 3 has a displacement rank 5. Therefore, it is more efficient to find a displacement

representation of (TTT) - rather than of (TTT)-ITT when we solve Toeplitz least squares problems.
With the notation in (4), the matrix E 2 for an unwindowed scalar Toeplitz matrix T = (ti-j) r R"'

(m __ n) has a generator (131,

w, TTt 1/IItl1, W2--t2, W3- Z.ZTW1, W4 =Z,

t, [to, tl', " ", trn-l]T,  t2 =  [0, t_19 I tl-n ]T ,  I t.-~,.••,ti~ ]

vj=v 3 =e/IItj1I, v2 =v 4 =0,

where 11.11 denotes the Euclidean norm, and el is the vector with I at the first position, and zeros

elsewhere.

Example 5. Displacement Representation for the inverse of a Sylvester Matrix.

Let T denote the following Sylvester matrix,

20010

12021

Tm 31212 (17)
03111

0 0 3 0 1

and suppose that it is desired to obtain a displacement representation of T- 1. Then the appropriate
extended matrix is

El = _ ], (18)

and it is easy to see that the following (X0(z), Yo(w)) is a generator of E l with respect to

(f., O@F}' where Ff = ZS(Zs, Fb = Z 3 eZ 2 ( Z 5 ;

XO(Z) * [X1(z), X2 (Z), X 3 (Z)], Y 0 (W) U [y1(w), y 2(w), y 3(w)]
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x1 (z) = 2 + z + 3z 2 - z5, x 2(z) = 1 + 2z + z + Z- z, x 3(z) = 1, (19a)

y(w)= 1, Y2 (w) =w 3, y 3(w) =w 5  (19b)

Now the 5-step recursive generalized Schur algorithm gives a desired generator of T- 1, with respect to
(Z5, Z5}, and a possible computational sequence is shown in Fig 2, where the division points are
chosen successively as 2, 1, 3 and 4.

Fz -1/2 -1121 [W 0 0]
(1). fo:o: E0:0 (z) = 0 1 0 O:o(w) = w/2 1 0

0 0 1w/2 0 1

(2). a0 :.: Xl.:(z) = [2z, 3z/2, -z/2], Yl:j(w) = [w, 0, 01

(z-3/4-/4 [ w 00
(3). f 1:1: E)1:1(z) =  0 1, Pl:I(w) = 3w/4 10

0 0 1-w14 01

z2 -3z/4-112 z/4-1/w21 0 0

(4). Co:l: eo:i(z) = 0 1 0 O.I(w)= w2/2+3w/4 1 0

0 0 1 w2/2-w/4 0 1

(5). a0 :4: X 2:4(z) = [2z 2+z 3+3z 4, _5z 2/4_5z 3/4, -5z 2/4+3z 3/4]

Y2:4(w) = YO:4(W)GFb'PO:I(W)

= [(1, 0, 0)f 0:I(W) mod w 3] + w3[(0, w, 0)To:P(w) Mod w21

= [w2+3w4/4, w 3, 0]

Fz 5/8 5/81 [ 0 0
(6). f2-2: e2,2(z) = 0 1 0 3 2:2(w) = -5w/8 1 0

0 0 1I -5w/8 01

(7). a2:4: X3:4(z) = [2z 3+z4, -5z3/8+15z4/8, 1lz3/8+15z4/8],

Y3 :4(w) = Y 2 :4(W)OFbf.: 2(w)

= [(w 2 0, O0)' 2,2(w) mod w3] + w3[(3w/4, 1, O)T2:2 (w) mod w 2]

= [-5w4/8, w 3, 01

(8). f3:3: E3:3(z) = z 16/5 11/5 , 0P3 :3(W) = 0 0

0 0 1 -lw/5 0 1

(9). a3:4: X 4:4(z) = [-5z4/8, 7z 4, 6z 4], Y4:4(w) = [w4, -5w 418, 0]

z /(242) 28/(5,1f) 6/5 w /(2,2) 5/(16 2) 0
(10). C4:4: 4:4(z) = -5z/(1642) 1/(2,'2) -3/4 P4:4(w) -28w/(5 42) 1/(242) 0

0 0 1 -12 '2w/5 0 1

12



After evaluating, C3 4, C2:4 and C0 :4, we obtain e0:4(z) and 'I 0 :4(w), and finally

(14). ao.9: Xo. 9(z) = [x 1(z), x2(z), x3(z)](Ffeo:4(z)

=z 5I(_l, -z , O) D-/ eO0:4(z)]

= z5[(-1, Z3 , O)E0 :4(z) mod z51 = z 5[u1(z), u2(z), U3(Z)],

where

u 1(z) = -z 1(242)-z 2/(2s2)+z 3/4F2 + z4/_F2

u2(z) = 4/(5422) + 4z/N2 + 16z 2/(542-) - 28z3/(5'2) - 28z 4/(5,2)

u3(z) = 2/5 + z15 + 2z 2/5 + z 315 - 6z 4/5.

Yo.9(w) = (y I(W), y2(w), Y3(W)I@Fb'FO:4(W)

= wS[(0, 0, l)0Fb"P0:4(W)] = w 5 [vI(W), V2 (W), V3 (W)],

where

v 1(w) = -1242w/5 + 12w 2/(542) + 12w 3/(52) - 12w 4/(542),

v 2(w) = -w/, + w 2/(2,2) + w 3/(2"F) - W4/(24),

v3(w) = .

Therefore,

7-1 = L (u )L T(v 1 ) + L (u2)L T(v2) + L (u3)LT(v 3),

where ui and vi are the vectors whose jth component is the coefficient of zi - 1 and w' -1 of uj(z) and

vi (w), respectively.

Remark 1. If we had chosen the displacement operator F1 = Z 5 eZ 3@Z 2 , Fb = Z 3 e)Z 2e)Z 5 for the

matrix T in (17) we would have the same generator (19) for El, but the obtained generator of T-1
would be the one with respect to {Z3 eZ 2 , Z51 rather than {Z5 , Z5 ). The displacement ranks of T-1

with respect to both of the displacement operators are 2, and the above procedure gives non-minimal

generators of length 3.

Remark 2, The following extended matrix

[' ,] T = Sylvesternmatrix (20)

also has a displacement rank 3. One could as well obtain the solution T-b directly by applying
recursive generalized Schur algorithm to (20); the last column of X, where [X, y) is the computed

generator of T-lb with respect to {Z,, 11, will be T-'b.

4. Polynomial Products with Fast Convolutions.

13



The product of two polynomials of degree d I and d 2 can be performed efficiently using
d a d1+d2+1 point fast cyclic convolution algorithms [4]. If d is a power of two, then a d-point fast
cyclic convolution needs 0 (dlogd) flops. If d is not a power of two, but a highly composite number,
then the number of computations is close to 0 (dlogd). Among others, fast Fourier transformations
(FFT's) can be used for convolutions; Ammar and Gragg [2] carefully examined the use of FFT's for a

doubling algorithm for square Toeplitz systems of equations. We shall only consider the subtle
complications that arise in the recursive generalized Schur algorithm in this paper.

The polynomial matrix-matrix product of (16) needs ct3 of q-p point cyclic convolutions. The

polynomial vector-matrix product of (15b) has t2 of scalar polynomial products of the form,

X(Z)@FIO(z), where x(z) is a polynomial with nonzero terms ofz P , zP+', • •, zq . Let us assume that

0 < 81 < ""< 51 5.p  < 81,1 < ""< 8, :5 r < 8,, I, < - < q < 8t11 < ""< 8N .

Then

x'(z) = XW FO(z) (21a)

= [Z x1+1(z) + z '11X 2(z) + - + z 'x'+1(z) + + z 8x,+(z)]®FfO(z) (21b)

= [z 8x+(z) +-. + z 8-1x1(z)]®fO(z) (22a)

+ z8'[x,+1(z)&(z 1') mod z"'j + ] (22b)

+ z8 *'[x3 +2(z)O(z 0) mod zflI ]  (22c)

+ z8' [x,+ 1(z)O(zO) mod z'']. (22d)

The terms in (22a) do not need to be computed because these terms will be summed to zeros after
adding all the partial sums in the vector-matrix multiplication of (15b). Recall that xi(z) has degree ni,
and O(zO) has degree 1(q'+ . Therefore, the product xi(z)G(z f ) from (22b) to (22d) can be performed
by

2ni+l point cyclic convolutionst if degree[O(zO)] > degree[xi(z)] ,
ni +(q-P+,)+l point cyclic convolutions if degree[O(zO)] < degree[xi(z)] .

Remark. Notice two d/2 point convolutions take cdlog(d/2) flops if one d point convolution takes
cdlogd flops. Therefore, the polynomial product (21) is more efficient for the displacement operator
Ff with more sections, because such displacement operators break a long convolution into many
smaller convolutions. Therefore, for a given matrix we prefer to choose a displacement operator with
as many sections as possible, while keeping the displacement rank minimal.

If the dimensions of the matrix are powers of 2, then we can always choose the center division
point, r = f(p+q)/2]. This balanced division (or doubling) gives the least number of computations, in
general. For this case, let "1 a p -q, and T (11) denote the number of computations for one recursion.

t The first and last terms (22b) and (22d) need smaller point convolutions.
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Then

T(ij) 2T(112) + W(1), W(r1) - O (a3 ilogq),

and therefore, one can show [1] that the k-step recursion takes

T(k) O(a&klog2 k).

However, in most cases the doubling is not possible, and for such circumstances, the desirable
choice of r is such that r-p and q-r+l are highly composite numbers (so that fast convolution
algorithms can be applied efficiently), as well as r is close to (q-p)/2 (so as to achieve balancing).

Matrix-Vector Products using Displacement Representation.

The final step of finding solutions for linear equations is the matrix-vector multiplication S b,
given a displacement representation of S e R"',

S = ,K(x i , Ff)Kr(yi, Fb), (23)
i=1

where the length a is a multiple of the block size 13; a = 138, and

M NFf = (D0 Fb=ei
1=1 M 9i=

The expression in (23) can be re-written as the block displacement representation

8
S = ZKp(Xi, Ff)K(Yi, Fb), Xi E Rmx× , Yj E Rnx×, (24)

i-l

where
Kp(X i , Ff) = [Xi, FX1 , Ff2Xi, . . Ff * (m/*-IXil,

Kp(Yi, Fb ) = [Yi, FY, p "2yi F F -1]yi].

Furthermore, because Ff and Fb have M and N sections, respectively, we can write

L0(X,i,Z0) 0 L (Y1 1 ,ZO) O

Lp(X 2 , Z21 ) 0 L (Y2 , Z) 0
K p(Xi. Ff ) = ., Kp(ri, F b )  n2i

L (XMi,Z2) 0 Lp(Y i, Z) 0

where Lp(X, ZP) is the block lower triangular Toeplitz matrix with the first column block X. The
matrix 0 denotes the null matrix with appropriate size such that Kp(Xi, F') and Kp(Yi, Fb) ar

m x n and n x n matrices, respectively. The product Lp(X, Z )b can be expressed as sum of 13
products of scalar lower triangular Toeplitz matrix and vectors. As an example,
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ao co b a0 b C0  b

a1 c1  1 a, a0  0 C1 CO

a2 c2 ao co b2  a 2 a, ao + c2 c CO b3  (25)

a3 c3 a, cl b3 a 3 a 2 a, a0  0 c3 c2 cI CO 0

Now the multiplications in the right sides of (25) can be done by fast convolutions, and therefore, so
does the multiplication S b.

S. Concluding Remarks.

We have presented O(a 3 nlog2n) algorithms for the determination of exact and least squares
solutions of linear systems with matrices having (generalized) displacement rank c. Such algorithms
for exact solutions have been studied by several authors, most recently by Ammar and Gragg [2] for
Toeplitz systems. They also made a very close study of the implementation of the convolution
operation in an attempt to obtain the smallest coefficient; we have not attempted so close an analysis
for the more general algorithm in our paper. Nor have we attempted a numerical error analysis of the
algorithm; nevertheless one might hope that numerical refinements devised tor the Schur algorithm (see
e.g., Koltracht and Lancaster [16]) may be carried over to the divide-and-conquer framework as well.
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APPENDIX

We shall summarize the explanation in Sec 3 using a recursive procedure. First, note that the

polynomial Op :q (z) (and ,,, : (z)) has q-p +2 terms. The first column of ep :q (z) has terms ranging

from degree z to zq-Pl, and the other columns have terms from 1 to zq-P. Hence, by shifting the first

column by one position, we can store ep:q(z) and Tp:,(z) in the array "Poly" from p to q slots

inclusive:

Poly: array [1..a, 1..ct, 0..MAX-I] of record

0: coefficients;
,#: coefficients

end;

The computation of ep:q(z) is sequential, i.e., once we compute 8p:q(z), we do not need to keep

p:r_l(z), and therefore, the array "Poly" can be kept as a single global variable.

The polynomial vector Xp:q(z) has q-p+l terms, and therefore, can be stored in an array type

GENERATORS:

type
GENERATORS = array [L..a, O..MAX-1] of record

x: coefficient
y: coefficient

end;

However, X, .(z) cannot be kept as a global variable, and local copies should be maintained during

each recursive call.

Now we can describe the recursive generalized Schur algorithm as follows.

Algorithm (Recursive k-step Generalized Schur Algorithm).

Input: Generator of E, {Xo(z), Yo(w)}; displacement operator SF' 0Fj }; Number of steps, k.

Output: Generator of S, {Xk(z), Yk(w)l;
procedure RecursiveSchur

var
G, LowerG: GENERATORS;

begin
Find(0, k-1, G);
Apply(O, k, n, G, LowerG);
return (LowerG)

end

The procedure Find(p, q, G) computes ep:q(z), and Pp:q(w) given {Xp:q(Z), Yp:q(w)1, and the

procedure Apply(p, r, q, G, LowerG) returns LowerG = (X,:q(z), Y,:q(w)} given G =

(Xp:q(Z), Yp:q(W)1

17



procedure Fred(p, q: index; G: GENERATORS);
var

r : index;
G, LowerG: GENERATORS;

begin
if p =q then begin

Compute .p (z) and 'p :p (w);

return
end
r := appropriate integer close to F(p +q )/I;
Find(p. r-1, G);
Apply(p, r, q, G, LowerG);
Find(r, q, LowerO);
(* Use fast convolution for polynomial products *)
Op:q(z) := p.,_i(z)O,,q(z);

'p..(w) :=Tp. _l(w)'ty,.(w)
end

procedure Apply(p, r, q: index; G: GENERATORS; var LowerG: GENERATORS);
begin

(* Use fast convolution for polynomial products *)
X,: (Z) :=xp:, (Z) )OF, IBP._l(z );
Y,.q(W) := Yp:(w)Opb'p:,_l(w);

LowerG (X,:q(z), Y,:q(w)}

return (LowerG);
end

18
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RECENT DEVELOPMENTS IN HIGH-PERFORMANCE

ELEMENTS BASED ON THE FREE FORMULATION

CARLOS A. FELIPPA

Department of Aerospace Engineering Sciences
and Center for Space Structures and Controls

University of Colorado
Boulder, Colorado 80309-0429, USA

ABSTRACT. The free formulation of Bergan and Nyg&rd (1984) has enjoyed
considerable success in the construction of high-performance finite elements for linear and
nonlinear structural analysis. In its original form the formulation combines nonconforming
internal displacement assumptions with a specialized version of the patch test. Recent
developments in fitting this formulation within a variational framework are described, and
extensions opened up by these developments discussed.

INTRODUCTION. The term high-performance finite element is used here to
collectively identify elements that are developed to attain the following goal:

To deliver engineering accuracy with coarse,
arbitrary meshes of simple elements

The fulfillment of this goal gives rise to a myriad of requirements, which are to be
addressed in higher or lesser degree during element development. Such requirements are
listed in Table 1.

Some of these requirements are obvious. For example, low distortion sensitivity is an
immediate consequence of trying to achieve satisfactory accuracy with arbitrary meshes.
But other items in Table 1 require some explanation.

A key requirement is that the element be as simple as possible. It should be observed
that this is in sharp contrast to trends of the late 1960s and 1970s that lauded higher
order elements and culminated with the development of very complex models, including
elements with nonphysical degrees of freedom. One primary source of this "backlash" is
feedback from users of general-purpose finite element programs. As use of these programs
expands to more engineers without deep knowledge of "what's inside the black box" the
overwhelming preference in model construction is to select the "simplest elements that will
do the job" that is available in the program.
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Table 1. Target Requirements for High-Performance Elements

* Simple: few freedoms, all physical

* Frame invariant

* No locking

• Rank sufficient: no spurious modes

* Balanced stiffness: not too rigid, not too flexible

* Stresses as accurate as displacements

* Low distortion sensitivity

* Mixable with other elements

* Economical to form

* Easily extendible to nonlinear analysis

The balanced stiffness demand also deserves some comment. It follows from the goal
of attaining reasonable accuracy with coarse meshes. This is illustrated in Figure 1, which
shows a convergence study of a classical model problem: the bending of a simply-supported
square plate under a concentrated central load. The mesh contains N x N elements
over a plate quadrant. An "accuracy band" of ±1% is taken, somewhat arbitrarily, as
representative of engineering accuracy for this rather simple problem. The convergence
characteristics of several triangular elements are taken from the extensive study of Batoz,
Bathe and Ho (1980). Although most elements converge, some are too stiff while others are
too flexible, and generally do not enter the accuracy band until the mesh is fairly refined
(N > 8). On the other hand, the results labelled 'FF', obtained with a plate element based
on the free formulation (FF) discussed later, lie within the band for all meshes.

The balanced-stiffness requirement should not be misconstrued for fast asymptotic
convergence for fine meshes. Simple elements cannot compete with higher-order elements
in this regard. What is important is how good are the results for coarse meshes.

THEME AND TOOLS. Many researchers are presenly working to develop such
elements. The common theme of the investigations is

Abandon the conventional displacement formulation
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Figure 1. Convergence study of several plate bending finite elements as reported in
Batos et.al. (1980). The FF results are from Felippa and Bergan (1987).

Various tools used by these researchers in their quest for high-performance elements
are listed in Table 2. It can be observed that many of these were introduced over 20 years
ago. But it is only now that a concerted effort is made to combine several tools to forge
superior products.

The present paper focuses on one of the possible approaches to the construction of
high-performance elements. This approach is based on the free formulation (FF).
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Table 2. Tools of the Trade

Technique Year introduced

" Incompatible shape functions 1964

" Patch test 1965

* Mixed and hybrid variational principles 1965

* Projectors 1967

* Reduced and selective integration 1969

* Assumed strains 1970

* Energy balancing 1974

* Limit differential equations 1982

THE FREE FORMULATION. In the early 1980s Bergan and Nygird developed
the free formulation (FF) for the construction of displacement-based, incompatible finite
elements. This work, published in Bergan and Nygfrd (1984), consolidated a decade of
research of Bergan and coworkers at Trondheim, milestones of which may be found in
Bergan and Hanssen (1976), Hanssen et.al. (1979) and Bergan (1980). The products of
this research have been finite elements of high performance, especially for plates and shells.
Linear applications are reported in the aforementioned papers as well as in Bergan and
Wang (1984), Bergan and Felippa (1985) and Felippa and Bergan (1987); whereas nonlinear
applications are presented in Bergan and Nygird (1985, 1988) and Nygird (1986).

The basic concept is that the element stiffness matrix can be decomposed into two
parts:

(1) K = Kb+Kh

where

Kb the basic stiffness matrix, which is constructed for convergence.

Kh the higher-order stiffness matrix, which is constructed for stability and accuracy.

The decomposition (1) may be interpreted at the assembled or master-stiffness equa-
tion level as the force decomposition

(2) KA=(Kb+Kb)v=f+f=fA

where v and fA are the vectors of nodal displacements and assembled nodal forces, respec-
tively. A FF postulate is that as the mesh size decreases and the solution converges, Kbv
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dominates.

The original FF was based on nonconforming displacement assumptions, the principle
of virtual work and a specialized form of Irons' patch test that Bergan and Hansien (1976)
called the individual element test. The basic and higher order stiffness are constructed in
largely independent fashion by following the procedures outlined below.

CONSTRUCTION OF BASIC STIFFNESS MATRIX. The main steps are
outlined below in "recipe" form; for justification the reader is referred to the references
listed above.

Step 1. Assume a constant stress, a, inside the element.

Step 2. Assume boundary displacements, d, over the element boundary B.
This field is described in terms of element node displacements v as

(3) d = Vv

where V is an array of boundary shape functions. The boundary motion must
satisfy interelement continuity, and contain rigid-body and constant-strain mo-
tions exactly.

Step S. Construct the "lumping" matrix

(4) L =B V.n dB

that consistently "lumps" the boundary tractions a.n associated with a, into
element node forces, f, conjugate to v. That is, f = La.

Step 4. The basic stiffness matrix is

(5) Kb = 1LELT
V

where E is the stress-strain constitutive matrix, assumed to be constant over the
element, and v = fV dV denotes the element volume.

CONSTRUCTION OF HIGHER-ORDER STIFFNESS MATRIX. Again
the key steps are outlined below in "how to do it" form.
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Step 1. The same compatible boundary displacements used in constructing Kb
are assumed:

(6) d = Vv

Step 2. Assume an internal displacement field over the element volume V:

u = Nq = Nq, + Nqr + Nhqh
(7) rigid motion constant-strain higher-order

where array N collects shape functions and q collects generalized coordinates.
This assumption satisfies the following conditions:

(a) linear independence with respect to v,

(b) the dimension of vectors q and v are the same,

(c) the rigid motions and constant-strain fields are complete,

(d) (optional but recommended) the higher-order displacements are energy or-
thogonal to the constant-strain displacements.

The associated internal strains are:

(8) e = Bu = e. + eh = Bcq, + Bhqh

since the rigid-body strains, Brq , must vanish.

Step S. Construct the square nonsingular transformation

(9) v = Gq

which inverted gives:

(10) q = H v
qh Hh

Step 4. The higher-order stiffness matrix is

(11) Kh = H]KqhHh, where Kqh =/f BTCBh dV

Kqh is the generalized stiffness in terms of the q coordinates.
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Table 3. Elements Developed with FF

Type Shape Do!8

Kirchhoff plates Triangles (several) 9
Quadrilaterals 12

Membrane with drilling freedoms Triangle 9
Quadrilateral 12

Shells Triangle 18
Quadrilateral 24

SCALING THE HIGHER-ORDER STIFFNESS. In more recent work (see
Bergan and Felippa (1985) and following papers) the concept of scaling the higher order
stiffness was introduced. A one parameter scaling generalizes (1) to

(12) K =Kb + (I - -)KA

where -y < 1 is a scalar. If -y = 0 one recovers (1), but higher accuracy for coarse meshes
may be obtained by adjusting the value of -y. (This value may vary from element to
element.) Multiparameter scaling is discussed in Felippa and Bergan (1987) for a specific
plate bending element.

APPLICATIONS. Table 3 lists elements that have been developed using the
FF as of this writing. The major code in which these elements have been implemented is
FENRIS, developed in collaboration between the Norwegian Institute of Technology (NIT)
at Trondheim, SINTEC and Der Norske Veritas; see Bergan et. al. (1984). FENRIS has
been primarily used in the analysis of nonlinear marine structures such as offshore drilling
platforms. Table 4 lists the major application problems to which these elements have been
applied.

Table 4. Application Problems

0 Linear plate/shell analysis

0 Geometrically nonlinear plate/shell analysis
(corotational formulation)

* Materially nonlinear plates and shells
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VARIATIONAL FORMULATION. An intriguing question has been: does the
FF fit in a variational framework? This was partly answered by Bergan and Felippa (1985),
who showed that the basic stiffness part was equivalent to a constant-stress hybrid element.
But persistent efforts by the author to encompass the higher order stiffness within a hybrid
variational principle were unsuccessful until the development of parametrized mixed-hybrid
functionals in Felippa (1988a, 1988b). With the help of these more general functionals it
is possible to show that the FF is a very special type of mixed-hybrid element which does
not fit within the classical Hellinger-Reissner principle. In retrospect the classification
of FF elements as hybrids is not surprising. Under mild conditions studied in Felippa
(1988c), hybrid elements satisfy Irons' patch test a priori, and the FF development has
been founded on that premise.

To encompass the FF within the hybrid framework, the following assumptions must
be invoked.

Assumption 1. A non-standard hybrid functional, identified as I1 in Felippa
(1988b), is constructed. This functional depends linearly on a parameter -y. This
parameter "interpolates" between the minimum potential energy functional and
the Hellinger-Reissner functional, which are obtained for y - 0 and -f = 1,
respectively.

Assumption 2. Three fields are assumed over each element:

(a) a constant stress field,
(b) an internal displacement field u defined by nq generalized coordinates col-

lected in vector q, and
(c) a boundary displacement field d defined by n, nodal displacements collected

in vector v. Both d and u must represent rigid body motions and constant
strain states exactly.

Assumption S. The number of generalized coordinates, nq, equals the number
of nodal displacements, n,, and the square transformation matrix G relating
v = Gq is nonsingular.

The last two assumptions are precisely those invoked in the construction of Kh as
discussed previously. The first one defines the variational principle and accounts for the
higher-order stiffness scaling.

In Felippa (1988b) it is shown that substituting the finite element expansions into 114,
rendering the functional stationary with respect to the degrees of freedom, and eliminating
both internal fields by a combination of static condensation and kinematic constraints,
leads to the scaled FF stiffness equations (12) in terms of the nodal displacements v. The
parameter I7 appears as a coefficient of the higher order stiffness. These stiffness equations
can be readily implemented into any displacement-based finite element code.
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CONCLUDING REMARKS. Why is the FF variational formulation deemed
useful? There are several reasons:

1. It explains the behavior of FF elements as regards convergence, stability and accuracy.

2. It opens up the door to extensions that are not obvious from a physical standpoint.
Two such extensions involve: retaining higher order stress fields, and allowing more
internal displacement modes that nodal displacements, that is, the dimension of vector
q in (7) exceeds that of v in (6). These extensions are studied in Felippa (1988c).

3. Supplies foundations for local error estimation and adaptive mesh refinement.

4. Facilitates the construction of "designer elements" needed for applications such as
stress, stability and vibrations of advanced laminate-composite structures. Such ele-
ments may combine the three ingredients of internal statics, internal kinematics and
boundary kinematics in harmonious synergy to satisfy special behavior requirements.
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Nonlinear Elasto-Plastic Finite Element Analysis
of the Thin Shell of Revolution

Isaac Fried

Boston University
Department of Mathematics

Boston, Mass. 02215

Abstract

Reversible plasticity is modeled with a stress strain law having a distinct yield point.
Expressions are derived for the element tangent stiffness matrix and load vector of a largely
deformed cubic-cubic shell element by discrete integration. Numerical experiments are car-
ried out using the orthogonal trajectory technique to trace sequences of equilibrium config-
urations for high loads.
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1. Introduction

Very thin shells share a numerical troublesome property with nearly incompressible elas-
ticity [1,21 that their stiffness matrix seriously decline in condition as the thickness is reduced.
Enforcement of the emerging condition of C1 continuity (incompressib'lity in elastomers) cre-
ates an imbalanced elastic energy expression consisting of two out of proportion terms. The
corresponding stiffness matrix consists in such cases of the linear combination of two matrices
with widely separated coefficients, and consequently with an eigenvalue spectrum consisting
of two groups largely shifted. The lowest eigenvalue of the global stiffness matrix is related
to the fundamental frequency of the elastic system and is therefore only slightly affected by
the large parameter, but the largest eigenvalue of the global stiffness matrix grows without
bound causing the decline in conditioning.

Direct solution methods for the linear, or linearized, stiffness equation are operationally
unaffected by ill condition but the convergence of the Newton-Raphson method, the fun-
damental solution procedure for all nonlinear finite element equilibrium problems, is mea-
surably influenced by out of balance elastic energy expressions. Also, the mere storage of
such ill conditioned algebraic systems is an immediate cause for round-off errors and loss of
numerical significance.

Iterative methods for the solution of the linearized stiffness equation such as conjugate
gradients are most attractive for the solution of the very large discrete systems set up by
finite elements, but unlike direct methods they do show great operational sensitivity to the
spectrum span of the global stiffness matrix and may very well lose all convergence properties
in the presence of ill conditioning, rendering them useless.

A possible way out of the numerical instability of the imbalanced energy of nearly in-
compressible elasticity and thin shells is to use a multiparameter technique whereby a well
conditioned system is set up for a shell of not excessive thickness and is comfortably and
accurately solved to provide an initial guess for a next, less well conditioned system. Ex-
trapolation to the limit over the disturbing parameter may be carried out to accomplish the
computations to the needed accuracy. This technique is important but we shall not deal
with it in the present paper. It deserves a separate discussion.

The issue of plasticity is more central to our present discussion. Irreversible plasticity
is extremely expensive and computationally complicated in being dissipating and incremen-
tal. Such plastic formulation should be reserved in our opinion only to such elasto-plastic
problems where a clear phenomenological merit is established for irreversibility. Otherwise,
reversible plasticity, namely an analytic nonlinear constitutive law with a distinct yield point
[3], and drastically reduced (even to zero) elastic modulus, should be amply adequate and
sufficiently revealing, both physically and mathematically.

The paper is devoted to the incorporation of these three computational elements to cre-
ate a computational procedure [4] for the large elasto-plastic deformation of thin shells of
revolution: (1) The creation by discrete numerical integration of a cubic-cubic element stiff-
ness matrix and load vector for a largely displaced and highly strained shell of revolution.
(2) The incorporation into the shell element program of reversible plasticity. (3) The adap-
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tation of the orthogonal trajectory technique to trace load displacement branches; and (4)
The performance of numerical computation to validate the theory and show its practicality.

2. Load-displacement tracking

It is an integral part of any nonlinear finite element program. Newton-Raphson tech-
niques are the most widely used solution procedures for the nonlinear stiffness equation.
They are fast and usually reliable as long as the sought equilibrium configuration is far from
being a critical, or turning point. To account for such singularities we need modify the
Newton-Raphson iterations to include variation of both displacement and load.

To fix ideas we shall first present the orthogonal trajectory method for nonlinear contin-
uation for the single, implicit equilibrium curve

r(xA) = 0 (1)

in which x is displacement and A load. To trace A vs. x we need to compute close pairs z, A
that satisfy eq. (1).

Tracing the z, A curve consists of the two distinct stages of prediction and correction.
Predictor is the stage in which we move from a previously established equilibrium point A
to a new guess at point B, usually a distance s on the tangent line at A as in Fig. 1(a).

If A(zo, AO) is an equilibrium point and B(zl, A1 ) is on the tangent so that AB = s, then
linearization of r(xo + 6,, A0 + 6) = 0, 6z x1 - xO, 6A = A1 - Ao produces

r0 + ro6x + 0 =0, bX2 + bA2 = s 2  (2)

where r is dr/dz at A and i0 is dr/dA at A. Hence

Al=AO± sri , =
(i2 + r2)1/2' (7.2 + r')h/2 (3)

where the choice of sign determines the direction, and where the subscript zero is omitted
for typographical brevity.

In vector form we write the total potential energy as 7r(X, A) and have the system of
stiffness equations as r(z, A) = 9r/9x, the gradient of r. Linearization is here of the form

a=0 
(4)

where K = ir/iz is the global stiffness matriz, and where p = cr/,9A is the load vector.
Equation (4) is a vector equation. With the constraint on the traveled distance

(z1 - x0)T(xl - xo) + (A - A0)2 = S2 (5)

linearization leads to

A1 = A0  0 1) i = Z o - 6AoKo'Po (6)
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that completes the prediction.

Starting with the predicted initial guess (zo, Ao) we set out to approach the equilibrium
curve. This can be done with a Newton-Raphson iterative method in which: (1) The load A
is constant as in Fig. 1(b). The failing of such iterative scheme near a limit point is clear.
(2) The load A is linearly related to the displacement z, as in Fig. 1(c). In case the linear
constraint misses the equilibrium curve convergence is not achieved by this technique neither.
(3) The load A is related to the displacement z by the condition that the the iterated points
lie on a circle of radius s having its center at the previous equilibrium point, as in Fig. 1(d).
(4) The load A and displacement z are constrained to be an orthogonal trajectory to the
equilibrium curve, as in Fig. 2.

In the orthogonal trajectory accession technique [5] the ultimate correction step is orthog-
onal to the equilibrium curve. Load and displacement enter symmetrically in this algorithm
which is therefore indifferent to critical points and turning points.

Analytically we add to the linearized equation r + r'6z + 6A = 0 the orthogonality
condition

dA = (r') - ldz (7)

and obtain the corrections

6A= rr 6X 8- =is2 r+i2(8)11,0 + / ' r12 + -

in which the right hand sides include computed values only, and where SA = Al - A0 and
bX = X - zO.

In the multidimensional case z stands for the displacement vector so that r(z, A) = 0 is
a set of nonlinear stiffness equations. Here r' = K is the global tangent, displacement de-
pendent, global stiffness matrix, and = p is the global nonlinear load vector. Linearization
is here of the form r + K6z + p6A = 0, or r + Kdx + pdA = 0, since we are dealing with dif-
ferentials rather than differences, and the orthogonality conditions assume the matrix vector
form

dA = (r') - 1dz = pTK-1dz (9)

dz = -K-(r + dAp)

producing finally the corrections

PK-'K-lr dx = -K-1(r + dAp) (10)
1 + pTK-IK-lp'

Figures 3 shows the orthogonal accession algorithm applied to the equilibrium equation
r = 8x(1 - z) - A = 0 with a variety of starting points of the form (0, A). Never does the
algorithm fail, and it shows a penchant to hit the limit point of the curve. The limit point
is a special attractor for the method. Notice that if the initial guess lies on a normal to the
equilibrium point, then convergence is in one step. Otherwise, it is not easy to find an initial
guess requiring more than six steps to convergence.
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Nonlinear elastic equilibrium problems are replete with critical points and a modified
Newton-Raphson method must be used on these problems to successfully pass limit and
turning points. All the present computations were done with this algorithm.

3. Reversible plasticity

All we need to model reversible plasticity is a stress-strain law that exhibits a bilinear
behavior with a clearly defined yield point. It should also include a parameter to adjust the
slope in the plastic range. We suggest to relate the stress o to the strain e by

= (C/,3)41 (11)

in which a,,3 and p are parameters. To obtain the modulus of elasticity for the law in eq.
(11) we differentiate o, with respect to e, d/de = E. Figures 4 and 5 show o" = o'(c) and
a = o'(e) as a function of the parameter p. As p increases law (11) approaches describing
perfect plasticity. Notice in Fig. 5 the existence of an accurate yield point at a/3 = 1.

4. Cubic-Cubic shell of revolution element

As for the plastica, also here [6,7] we may write the stiffness matrix as for the elastic
shell, except that we have to bear in mind that the elastic modulus E is strain dependent.

Let r = r(i7) and z = z(7) be the parametric equations of the generating curve for the
deformed sell. Referred to the Cartesian coordinate system oxyz

x = r(,q) cos 0, y = rq) sin0, z = z(7) (12)

where, obviously, z 2 + y 2 = r 2 . It is helpful to introduce the angle 0 measured between the
positive r-axis and the tangent to the generating middle curve. The position vector p and
unit normal vector n1 to a point on the middle surface becomes with 0

p = (r cos 0, r sin 0, z)T, n = (sin 0 cos 0, sin 0 sin 0, _ cos O)T (13)

In the same way the position vector to a material point on n at a distance C from the middle
surface is

q=r+(n, dq=dr+dCn+Cdn (14)

since dr is on the tangent plane, and nTn = 1, we have that nTdr - 0, nTdn - 0, and an
arc element ds2 = dqTdq becomes

ds2 = drTdr + C2dnT dn + dC2 + 2(drT dn (15)

in which

r r n n(16)

Because the q =const. and 0 =const. curves are orthogonal

ar YT( cOr 0' ( i n9 0

0 ''0 -0
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(17)

(r )T( On) nT 0
( ) 0 190

and we are left with
drTdr = a2 d12 + r

2d82

dnTdn = 012di12 + sin2 4492 (18)

drTdn = a'di1
2 + r sin qdO2

where prime denotes differentiation with respect to q, and where

sin 0 = -, cos -

z i t ra z " = ( + z ) 1l9

(19)

Finally
ds2 = (a + (CS)2d12 + (r + C sin 0) 2d82 + d(2  (20)

written for the undeformed shell as

d30 - (ao + C4,o)drl2 + (ro + C sin 4o)2 + dQ (21)

under the simplification C = Co.

Strain is obtained from the ration of the two quadratic forms ds2 and dso as

ei(C) = (a - ao) + C((4 - 00) E2(() = (r - rO) + C(sin , - sin 40) (22)
ao+ C, + C sin Oo

Integration of the elastic energy with respect to C yields, after some obvious simplifications

127rE(e, v)c[t(d + 2vel I2 + I) + I- + 3(r,, + 2vlr.,2 + r2)aorodnl (23)

in which v is the Poisson ratio, that is left independent of the strain, and where t is the shell
thickness. Also

a r
C1= - - 1, C2 = - - Ia O r 0 

2 4

' -0 K- sin 0 - sin,o (24)
CIO ro

Equations (11) and (23) form the basis for the derivation of the element data for the shell.
But before getting on with the matrix and vector derivation of the sell element we need
briefly consider some conventions for differentiation with respect to a vector.
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Let f(z) = f(Z1, Z2,... , z,.) be a scalar function of the vector argument z. We define
the differentiation of f with respect to the vector z as

8f I 49 f 82! 8tC2!f
8f = f =: , & (25)

Notice that f' is a vector and f" is a symmetric matrix.

Obviously,
(f + g)' = ' + g', (f)' - cf', (fg)' = gf' + fg', (26)

but

(gf,), = gf" + fig,T

where
I f8gi z (27)

is a nonsymmetric matrix. The matrix

(fg).,= gf,, + fg,, + fg/ +g fIT (28)

is symmetric. Now we have all that is needed for the discrete integration of the total potential
energy and the formation of the element data.

Recall that the parametric equation of the generating curve for the shell is r = r(q),
z = z(q). Let C measure arc length along the generator so that ao - 1 and d77 = dS. The
finite element extends between s, and s, + h so that we may write s = s, + ha, 0 < 0' < 1,
and ds = h do-. If prime denotes differentiation with respect to a and dot differentiation
with respect to o- then ( )' = h-'( )" and ( )" = h-2( )".

To have a cubic-cubic C' element we choose the nodal values vector

Ue = (r 1 ,h,z 1 ,,,r 2 , 2 ,z 2 ,i 2 )T (29)

and interpolate r and z with
= , z = U , (30)

where 40 and 0b are the shape function vectors

--" (01, 02, 0, 0,03, 04, 0,0)T , 0- (0,01,01,02,10003, 4 )T ,

with
Ib -1-342 -+ 243, 02 = - 242 + 3, 03 = 342 - 24s, 04 =-2 +3. (31)

We integrate the total potential energy by sampling it at the three Gauss points

1 1 1
= 1(5-Vlh), 2 1 (5 + Vri, (32)

39



and weights

= , = "8 (33)

where Oi and i shortly stand for 0( i) and O(ti) and

= -(50 ± 12V1, 5 ± v ,0,0,50 F 12 V ,-5 - /-0O)T
100
1402=1(4 ,1, 0, 0, 4, - 1, 0, 0) T ,

k3 - 1(-6,2 ± Vig,0,0,6,2 :F V , 0,0O)T ,

10

10

2= (-6,-1,0,0,6,-1,0,0),4

4 1,3 1 (pF6vi7l, -5 T- 3V-15,, o0,::6vjg1,5 :F 3Vi75, 0,0)T,
5

10

01,3 = -(0,0, 50 ± 1v,0 5 ± V'50, 5 F 3 12vfT,-5 .100

, =-- (0,0,0,-1,0,0,0,1)

=1, -(0, 0, - 6, 2 '5, 0, 0,6, 2 V T
10

4

=1, -( 0, 0, T-6 v r15, 5 T 3 vfY5, 0 , 0, ±6 v -5, 5 3 1-

'? 2 (0, 0,0, -1, 0,0, 0, 1).

The upper sign of V/1 is for Gauss point 1 and the lower for Gauss point 3.

We derive the element data from the energy expression and write for the eth element

= h w ioj[c(,lj + 2vcj1 ,2 + C ) + (,ic + 2vr1,jK2,+ ij)], (35)
j=

where j refers to the jth Gauss point, and

c= 12, E* -- 3 E(c). (36)

From the definitions for the element gradient and matrix

i9E!* . a 2Ee
= - ke (37)

we have that
3

.= h E tviroij{~cji4 + V(Cif' - + C 1C23') + CjC21 ] + r-3 K,1 + V(rK2'j + PC2jK!j) + X2jK- 1}
1=1

(38)
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and
3.,5 I T  I T to

eh 2wroj{c4e1 j + e61li + v(e1 1 62, + 61,621

i=j T (39)
+ +2ji3 - 2j 6

3ij + KljISlj + nlirci. + n 2. 2j + K2it2j
t 

T  tot 
T

+~r- + Xs i

j+ K1)j'2j + Iil

where ( ) - t/9Oue.

To shorten the notation we introduce

f = ii" = i-, g --i2 + i2, (40)

so that
El h- 9g/ - 1, x, = h-'g-'f (41)

62 =ro - - 1, 12 ro 1 g - 1 / 2 i,

and f= i + 4, -F4)- ,, g' =2(. 1,4)

f" = W + _ T _ - T , = 2(4 .T + p T ). (42)

Next we write
= h-19-1/2 , = -'(g-f'-_--fgl),

(43)=,.o, , =,.o(g-,/2, _9-3/2,g,),
2 g ) 1

and 1I  h - g -1 1 g 9 - 3 / 2 g g 'r T) , I = O

2 2 2 =0,

x= I1[2g_3fg g g, + g_ f" _ g_2fg" _ g_2(fg,T + gf,T()],

X2  rg1[ 9-/ig9'9"  1 9-3/ (g2&1T + g])  - , (44)

which is all we need to program the element gradient and stiffness matrix.

To account for pressure p and point force F we add their potential 7r*,

r= p - r 2 z'd - F*z (45)

where 6 66* 6-tP " rfF (46)

and have Fthat

ge = p j w ,,,(2riio + rk,) (47)
j=1
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and

ke =2pte = Ep_ * wi[i boiy + ri(OMiT + OI~b)'  (48)

tj=1

5. Numerical computations

An extensive number of numerical tests were carried out to test the working of the
element formulation, material modeling, and tracking routine. Some representative examples
will be discussed here. Apart from the most obvious conclusion that our program worked
correctly under the most adverse numerical circumstances, we also observe that with the thin
shell of revolution plasticity is not as interesting as elasticity. The clearest manifestation of
yield happened to be the creation of a plastic hinge at a latitude of excessive bending. Most
examples shown here are, therefore, of nearly pure elastic nature.

The nonlinear behavior of the highly deformed thin spherical cap is highly complex,
and its finite element computation should be considered a significant numerical feat. In the
following examples a denotes the step size in the tracking predictor, t the shell thickness (its
radius being 1), Ne the number of elements, and 00 the angle between the r axis and the
tangent to the generator at z = 0 (GA = 900 means a complete sphere while o = 1800 means
a fiat plate.) All discretizations are done with Ne = 7.

Figure 6 shows the inversion of a spherical cap (t = 0.002, 00 = 37r/8) by an apex force for
a step size of a = 0.5. At first the shell exhibits considerable stiffness observed by the close
equilibrium configuration, but a point is reached at which the dent becomes nonstable and
snaps through to the inverted form through a wavy pattern. It is remarkable that orthogonal
tracking handled this transition smoothly.

Figure 7 refers to the same cap, except for a different edge condition. We observe that
the fixed rim condition has a considerable stiffening effect on the shell near the transition
point.

Figure 8 represents a thinner, and hence more flexible, shell. Transition occurs here
earlier and the relatively large . = 0.5 caused the program to jump between far apart
equilibrium states.

A larger step size causes earlier inversion as seen in Fig. 9. We repeat showing these
examples (Fig. 10) to demonstrate the robustness of the algorithm that takes a distant initial
guess for the equilibrium configuration to successful convergence.

The interest of Fig. 11 lies in the fact that the tracking algorithm landed on an equi-
librium configuration that is mathematically correct but physically impossible. There is no
provision in the algorithm to tell it that the shell may not loop. In any event, the shell
became so stiff by the loop that the algorithm could not get out of it and the program was
aborted.

To discern in Fig. 12 which of the equilibrium configurations is fictitious and which is not
requires some discrimination and more numerical evidence. What is interesting is that the
program actually inverted the cap. Loading started at the lower half and ends in the upper
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half of the shell. Some of the bending modes appear to be accompanied by considerable
stretching but in the presence of such large displacements and high strains it might be well
possible that the shell prefers to stretch than to bend.
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predictor

Figure l.a Tangent line predictor.
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constont lood (NR)

Figure l.b Constant load corrector.
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FRiks - Wempner

Figure 1. c Linear corrector.
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Cris field

Figure 1. d Circular corrector.
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orthogonal trjectory

Figure 2. Orthogonal trajectory corrector.
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Figure 3.a Orthogonal accession.
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Figure 3.b Orthogonal accession.
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Figure 3. c orthogonal accession.
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Figure 3.d Orthogonal accession.
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Figure 3.e Orthogonal accession.
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Figure 3.f Orthogonal accession.
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Figure 3.g orthogonal accession.
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Figure 3.h Orthogonal accession.
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3.i Orthogonal accession.
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Figure 3.j Orthogonal accession.
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ASPECTS OF EDGE CONSTRAINTS IN SHEAR-DEFORMABLE
PLATE AND SHELL ELEMENTS

Alexander TESSLER
Mechanics and Structures Branch

U.S. Army Materials Technology Laboratory
Watertown, Massachusetts 02172, U.S.A.

ABSTRACT. The method of explicit edge constraints for generating
simple, consistent and efficient shear-deformable displacement bending
elements is discussed. Particular attention is focused on the deriva-
tion of a highly desirable three-node shallowly curved shell element.
Shell theory and finite element approximation issues are discussed in
detail. Several numerical studies are carried out which demonstrate the
effectiveness of the constraint methodology.

I. INTRODUCTION. The search for "optimal" shell finite elements

has been underway for nearly two decades. In recent years it has

further accelerated in light of significant progress in the technology

of shear-deformable CO bending elements (e.g., [1-19]). Although the

main obstacles for these developments, known as shear and membrane

locking phenomena, have been addressed extensively and several remedial

schemes have been proposed, a viable three-node doubly curved

shear-deformable element, which is the most desirable element for

general shell analysis, has not yet been developed. The purpose of this

effort is to derive such an element.

We base our finite element derivation upon Reissner-Mindlin plate

theory which will constitute the bending part of the element. To

account for the membrane deformations and the membrane-bending coupling

associated with the shell-element curvatures, we shall resort to

Marguerre's shallow shell equations. Shallow shell elements of this

type specialized to the axisymmetric response proved effective in

discretizing shallow as well as deep shell structures [12]. The major

advantage of this analytic approach over general shell formulations

(e.g., [5,18]) is its inherent simplicity. Herein, the displacements

and stress resultants are attributed to the element reference plane.

Consequently, integrations are carried out across the reference plane

rather than the curved surface as in the general shell elements.

According to Reissner-Mindlin theory [21-23], the strain-displace-

ment relations can be expressed as:
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= xK y} = L (1)

= {Yxz' Yyz }T  = L2 w + 18 (2)

where K and y are respectively the curvature and transverse shear strain

vectors, 0 is the bending rotation vector

8T = {8 ,8 x } (3)

with 6 and 6 denoting the bending rotations about the x and y axes,x y
respectively, w is the transverse displacement (refer to Fig. 1), and

the superscript T denotes transpose; L, and L2 denote the linear strain-

displacement operators, and I is an identity matrix:

0
a 1 [1 a ol

L, 0 L 2  x , I= [ 1 (4)
a a La

y x y

The Marguerre membrane strain-displacement relations for a thin shallow

shell have the form (24]:

= Liu + LI(E)L 2w (5)

with
T
u = {u,v} (6)

where u and v are the membrane displacements in the x and y coordinate

directions, respectively; and &=E(x,y) is the initial height of the

shallow shell.

One important aspect, which in previous attempts to merge the two

theories has not been addressed [9-12], is the conceptual difference in

the transverse displacement variables appearing in (2) and (5). In (2),

w is a weighted average transverse displacement across the thickness,

whereas in (5) w represents the midsurface transverse displacement. The

former variable comes into play due to the inclusion of shear
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deformation in Reissner-Mindlin theory; the latter one is a consequence

of the Kirchhoff thin-regime assumption, which neglects shear deforma-

tion. Utilizing (2), the Kirchhoff thinness constraint reads:

L2w = - 18 (7)

Replacing (7) into (5) yields the Marguerre membrane strains consistent

with the Reissner-Mindlin strains:

= Lju - Ll(&)B (8)

The stress resultants, which are attributed to the reference plane

of the shell, are related to the strains through the constitutive law:

N = {Nxx, Nyy, N xyT = Ac (9)

M = {Mxx, Myy, M xy} = Dc (10)

Q = {Qx' Qy}T Gy (11)

where A, D and G are respectively the membrane, bending and transverse

shear constitutive matrices. The principle of virtual work can then be

employed to derive the finite element stiffness equilibrium equations:

ff (NT6c + M T6K + Q T6y - qw) dA = 0 (12)

A

where q is the distributed transverse loading, A is the reference plane

area, and 6 denotes the variational operator.

II. FINITE ELEMENT ISSUES. The development of effective curved

shear-deformable shell elements is severely hampered by the "locking

phenomena" (extreme stiffening), reflecting the inability of the shell

to bend without stretching ("membrane locking") and transverse shearing

("shear locking"). The two phenomena are directly link to the penalized

strain energy which, in its nondimensional form, can be expressed as:
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U(iyE) = Ub(K) + asU(Y) + aU m(e) (13)

in which Ub(c), Us(y), and UC(E) denote the nondimensional bend-

ing, transverse shear, and membrane energy integrals; and a and a are

the nondimensional shear and membrane penalty parameters, respectively.

Note that a =O(X 2/t2 ) and a =O((0X) 2/t 2 ), where X and are respectivelys m

some characteristic span and slope of the shallow shell [11,12]. As the

shell thickness, t, diminishes to zero, both a and a approach infini-

ty, thereby enforcing the vanishing shear and membrane strains:

L2w - -18 (Kirchhoff constraints) (a)

(14)

L1u - Ll(E)O (Membrane inextensibility constraints) (b)

The particular appeal of this theory is that the variational

statement (12) requires a class of Co continuous approximations for the

w, u, and 9 fields (since their highest spatial derivative in (12) is of

order one) and, therefore, simple shape functions can be used. On the

other hand, constraints (14), when imposed at the element level, pose

severe limitations on the kinematic freedom attainable by each element.

A consistent resolution of this deficiency for a successful

discretization of the theory is twofold: (i) redefine the penalty

parameters to allow relaxation of (14) at the element level; (ii)

implement appropriate interpolation schemes to best accommodate (14).

The two complementary approaches have shown to be effective and produced

a series of efficient and reliable bending elements [6-8,11-14].

(i) REVIEW OF PENALTY RELAXATION CONCEPT. The first approach deals with

an introduction of a parametric device in the variational statement for

the purpose of relaxing enforcement of penalty constraints at the

element level.

Concurrently with the element displacement approximations defined
h h h

as w , u , and 8 , we also approximate the constitutive matrices A and

G, incorporating appropriate "penalty relaxation" parameters for the

element:
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Nh = 2 Ah, Qh =2 Gyh Mh= D h (15)

s h (5

where the element strains are

Eh= LIh_ L h()O h= Lwh+ 18 1h= L h (16)

and the penalty relaxation parameters are nondimensional positive

quantities of the form:

= )-1
? (1 + C.a.) (i= m,s) (17)

where C. are positive element constants, and a. are element analytic1 1

penalty parameters of the order a =O(h 2 /t2 ) and a =O((Rhh)2/t2), where h

and ph are respectively some characteristic span and slope of the

element. The corresponding principle of virtual work for a single

element approximation takes the form:

ffe[(Nh)T6ch + (Mh)T h+ (Qh)T 6yh- q 6wh] dA = 0 (18)

A

where integration extends over the element reference plane with Ae

denoting the element reference area. The resulting element strain

energy appears in the basic form of (13), except that all quantities are

superscribed with h (i.e., element approximations); however, the element

penalty parameters take a fundamentally different form:

ha. = a /(1 + a.) (i= m,s) (19)

These ah penalties relax enforcement of (14) as t-0 and thus alleviate

possible spurious constraining. Note, however, as the kinematic approx-
h

imations improve with the h-refinement, a i approach their analytic

values ai' thus ensuring convergence to the "true" solution both in the

constitutive and kinematic sense [4,8,12].

(ii) ANISOPARAMETRIC INTERPOLATION SCHEME. The other fundamental means

for improving element behavior is to devise appropriate interpolation

schemes which best accommodate the requirements of (14). Such interpo-
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lations, termed anisoparametric [13], employ distinctly different degree

polynomials for w, 8, and u to reflect the differences in the order of

the differential operators L 2 and I in (14a) and, likewise, L, and

L1 (E) in (14b). The specific aim is to design out the unwanted "spuri-

ous" constraint equations arising from (14) [14].

To represent the bending part of the shell element, we adopt the

3-node anisoparametric plate element [13-14), in which e and 6 arex y

interpolated linearly, while w is represented by a complete quadratic

polynomial; throughout the formulation, area-parametric coordinates

C=(ClI,2,C) are used as a basis for all interpolations (refer to Fig.

2):

eh= N(1)h (I=xy), w h= N(2)Wh (20)

where NM and N(2 ) are the row vectors of linear and quadratic shape

functions, respectively, and

(8) r = {8ej}, ) {w k (I=x,y; j=1,2,3; k=l,...,6) (21)

are the vectors of nodal dof.

Adopting the shell element of constant curvature (i.e., interpolat-

ing Eh (C) parabolically), constraints (14b) necessitate a complete

10-term cubic polynomial for the u and v displacements:

h N(3)uh, h N(3) h
u = u, v = N (22)

where N( 3 ) is a row vector of cubic shape functions, and

(uh) r  {uh k , (vh)T = {vh (k=1,...,10) (23)

are the vectors of nodal dof.

Evidently, the anisoparametric interpolations produce the same

polynomial representation for the left- and right-hand sides of the

constraint equa+ions (14) - the condition that is paramount to enhanc-

ing element behavior in the vanishing thickness regime.

(a) Edge Shear Constraints. Although the initial wh rests on six
h
w dof (i.e., three corner and three mid-edge dof), a kinematically
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consistent elimination of the mid-edge dof is possible a priori to theh
element stiffness derivation. To obtain a 3-node pattern, w can be

constrained by the one-dimensional edge constraints:

(k)
F( k )  w h h(s), + eh(S) 0 (k=1,2,3) (24)

SZ,s S s n I

where s denotes a coordinate running along the kth edge of the triangu-

lar element reference plane; and 8h (s) is the tangential edge rotation

which is related to hx (s) and hy(s) via an orthogonal transformation.

From (24), there result three decoupled equations in terms of the

mid-edge wh dof, which give rise to the constraints:

h + W h + W (25)
c x x y y

where W are 3x3 transformation matrices, andq

hT = {wh }, (wh)T = {w } (j=1,2,3) (26)
(c) j+3' j

Upon substituting (25) into (20), we obtain a 3-node interpolation for

the transverse displacement.

(b) Edge Membrane constraints. In the manner analogous to theh
above dof reduction for w , one-dimensional edge constraints can be

devised to condense out the intra-edge uh and vh dof. The following

constraint equations provide four edge-compatible relations for each

edge:

(k) h(k)
F[[]) ap  -u - hh, & h -

a l as=s  s s n 0 (k=1,2,3; p=l,2)

as sn (S) asp  h - ahh h J (27)
h h h

's- n n s s (7

where u h(s) and v h(s) are cubic displacement fields along and normal to

the k-th edge, respectively, and
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h h q (q= s,n; k=I1,2,3) (28)

CO = 0

are the k-th edge slopes.

By the use of appropriate orthogonal transformations, (27) are

expressed in terms of the shell element variables of interest, namely,
h h 8h 8h h
u , v , 8 and e dof, and algebraically solved for the intra-edge u

and vh dof:

Uh UUh +U0h +U0h
u - uh+u +UB

c xx yy
(29)

Vh V h +V0h + V 0hVvh+V +

c xx yy
where

(UhT={ h ( {v h (i=4,.. .,9) (30)

and U and V are 6x3 transformation matrices. Equations (29) areq q

substituted into the initial interpolations (22) to give the constrained

fields for the membrane displacements in terms of the corner-node dof

and two centroidal dof. The latter dof are condensed-out statically

after the formation of the element stiffness matrix and consistent load

vector. Consequently, a 3-node, 15 dof element pattern is achieved.

Note that the edge constraint procedures just described preserve
h h

the original polynomial order of the constrained variables (w , u and

v h); moreover, one can show that the constrained fields are fully

compatible across element edges, and they allow for rigid-body motion

without straining. For further details on this procedure and for the

explicit form of the shape functions, the interested reader is referred

to [13,14,20).

The remainder of the formulation follows standard finite element

procedures. Application of the virtual work statement (18), while

performing exact integration throughout, yields the element stiffness

equations. The issue of the rotational variable normal to the reference

plane, 8 h  needed to avoid mathematical singularities in the global

coordinates, produces three additional dof for the element (e.g., see

[10)).
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III. NUMERICAL EXAMPLES. An important step in completing the

relaxation methodology of Section II is to obtain appropriate a. parame-

ters and the values for C. (i=m,s). Herein, we adopt the approach1

developed in [131, where a. are defined as:1

a. = Z k./ Z k (i=s,m; b - bending) (31)
1 1 b

in which k . and k denote the element diagonal stiffness coefficientse h d e h1
associated with h and dof for the unrelaxed case, i.e., O2* =1.

As far as the "optimal" values for C and Cm , these are determined from5

numerical testing. The shear relaxation constant, C =2, has already

been established to ensure free of locking plate-element behavior [13];

C =1 was chosen from the numerical results of the present study.m

The present element was critically tested on four challenging shell

problems, where two of its versions were employed: (a) the element with

both the shear and membrane relaxations (Cs=2, Cm=l), labeled "MIN3sm",

(b) the element with the shear relaxation only (Cs=2, Cm=0), labeled

"MIN3s". Our findings are summarized as follows.

(i) Test of Rigid-Body Motion. A spectral analysis was performed on the

element stiffness matrix for the flat, singly curved, and doubly curved

element geometry, to check MIN3's ability to move as a rigid body

without incurring any straining. Under all conditions tested, there

resulted six requisite zero eigenvalues associated with rigid body

motion.

(ii) Clamped Circular Arch. A simple test of both membrane

inextensibility and shearless deformation is a clamped, thin circular

arch under a tip bending moment (Fig.3). An additional modeling diffi-

culty is that the arch is rather narrow, hence the element aspect ratios

are large. At all discretization levels, exact values for the stress

resultants are obtained in each element (i.e., M =M, with all forces

vanishing). Figure 3 depicts a convergence study of the tip bending

rotation, which is also a direct measure of the strain energy for this

problem. Note that MIN3s exhibits considerable membrane stiffening.

Clearly, MIN3sm is a superior performer, yielding highly accurate

results even under coarse discretizations.
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(iii) Pinched Cylinder with Free Ends. The free-ended cylindrical shell

subjected to two radial forces 180 degrees apart (Fig. 4) is a widely

used test problem to establish how well a singly curved shell element

can represent inextensinal bending. As t/R-0, pure inextensional state

of deformation is attained in the cylinder.

Figure 4 shows convergence studies of the deflection under the load

for the moderately thin (R/t=50) and very thin (R/t=2000) cylinders.

The present results are compared with the exact solution and those of

four reduced integration quadrilateral elements (for details on these

quadrilaterals, refer to [1]). Both MIN3s and MIN3sm exhibit

excellent behavior, with MIN3s being somewhat stiffer than MIN3sm.

(iv) Pinched Hemisphere. A thin hemispherical shell under

self-equilibrating radial forces (Fig. 5) is in the state of near

extensional bending, having large rigid-body rotations in the deformed

configuration. This problem is a challenging test for doubly curved

elements (e.g., see [25]).

The convergence study for the deflection under the load is depicted

in Fig. 5, where the results of nine quadrilateral elements, examined in

[5], were included for comparison. Here again, MIN3sm evolved among the

best performing elements, while MIN3s exhibited some excessive membrane

stiffening.

In summary, we conclude that our three-node shallow shell element

(MIN3sm) is an excellent candidate for general shell analysis - it is

theoretically sound, has the simplest nodal/dof pattern, possesses six

rigid-body modes, and is devoid of both membrane and shear locking.
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ABSTRACT

Finite element methods are used to approximate parameters which
characterise fracture properties of solids containing stationary cracks
under conditions of (a) elasto-plastic and (b) viscoelastic deformation.

1. FINITE ELEMENT METHODS FOR P1LICITY AND VISCDELASTICITY

1.1 Introduction

In this paper we are concerned with the finite element approximation of.
parameters which characterise fracture properties (a) for stationary cracks
in materials which exhibit elasto-plastic deformation and (b) for station-
ary cracks in materials which exhibit viscoelastic deformation. For these
problems the first task is to define satisfactory mathematical models of
the deformation and of a fracture parameter, after which the finite element
method can be applied so that the deformation and the fracture parameters
can be approximated. This field is currently the subject of intensive
research, as is evident from the succession of conference proceedings on
nonlinear computational solid mechanics and fracture mechanics which are
appearing, and the work reported on here is as yet only at a preliminary
stage.

Only planar problems are considered here and the approach to the
discretisation of both the elasto-plastic and viscoelastic problems is via
the stress equilibrium equation of continuum mechanics and the constitutive
relations relevant to each context. The Galerkin method is applied in each
case.

A J-type path integral is employed for the case of fracture in the
elasto-plastic case. This is introduced and approximated in Section 2,
after which results of some numerical experiments for an elastic perfectly
plastic problem are presented. The limitations of this approach to non-
linear fracture are discussed. A similar approach, but also involving
crack opening displacement (COD), is taken in Section 3 for viscoelastic
fracture, where the concept of a failure zone is discussed and an algorithm
for the finite element analysis of a fracture problem involving such a zone
at the tip of a stationary crack is described. Again some results are
presented.

1.2 Equilibrium Problem and Galerkin Approximation

We consider a two-dimensional solid defined in a region 0 c R2 with
boundary an aC U a2T- The displacement at any point x s (xl,x 2 )T of U
(the reference configuration) is denoted by u (UlU 2)T, whilst the stress
and strain tensor components are denoted respectively by aij and £ij. The
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deformation of the body under the action of external forces f - (fl,f 2 )T
and boundary tractions g - (g1 g2)T satisfies the equilibrium equation

2 3 i .(x)

(1.1) 1 a+ f (x) = 0 , iE 9 , i = 1,2(11 x. i 1

j=1 I

together with boundary conditions

(1.2) u(x) = 0, x E 3

2

(1.3) 2 a ij(x).n. = gi(x) , x E agT r i = 1,2

j=1

The finite element method is applied to problem (1.1)-(1.3) via a weak
formulation and the Galerkin technique. This is obtained by first taking
the scalar product of (1.1) with a test vector function v E V, where

V =v : v E (H1 (a))2 v i , = 0 , i = 1,2}
c

is the space of admissible vectors, and then integrating by parts. Thus in
the weak problem we seek u E V such that

(1.4) Ja a .(v)dx - if .v x ta T .v ds = 0 , V v E V

where in (1.4) the strain tensor components Eij are defined by

-a v + av i ,j = 1 ,2

ij 2 1ax. ax.

the vectors E and a are given by E = (c11 ,E2 2 ,2E12)T, 0 = (a11,G22,G12)T ,

and the displacement u is involved in (1.4) through a via an appropriate
constitutive relation.

For the application of the finite element method the region 9 is part-
itioned into elements 9 = U Qe. A finite dimensional space Sh c V consist-

e
ing of piecewise polynomial functions defined over the partition is set u
and the Galerkin problem approximating (1.4) is that of finding uh E S
such that

fT T T h
(1.6) I oh.E(vh)dx - la . vh  fagT g ds = 0 W Vh E S

where, in a similar manner to (1.4), the approximation uh to the displace-
ment u is involved in (1.6) through oh via an approximation to an appro-
priate constitutive relation.

Each component of the approximating vector uh(x) is defined in terms of
basis functions Nk(x) for the n nodes of 0 so that, in terms of point
evaluations Uk of uh(x) at the nodes k = 1,2,...,n,
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(1.7) uh(X) = N(x)J

where N(x) = [Nl(X),N 2(x), .. ,Nn (x)] with Nk(X) = Nk(X)12 and 12 is the
2 x 2 unit matrix. If we define the approximate strain

(.8) h (Uh(x)) B B U

in the usual way, see e.g. Zienkiewicz [13], we now require a constitutive
relation between a and e.

For the case of an isotropic material and linear elasticity this is

(1.9) o(u(x)) = D £(u(x))

where D is the 3 x 3 matrix arising from Hooke's law. The matrix D depends
on the Lami coefficients X and I of the material. Using (1.9) with (1.6),
and having taken vh in turn to be each column of N, we obtain the linear
equation system

(1.10) [Q (BT D B dx) U f [ NT1 dx g [ TN ds = 0

which when solved produces U and hence uh(x).

2. EIAST-PLASTIC PROBLEM AND NONLINAR FRACTURE

2.1 Elasto-plastic Mathematical Model

In order to provide a mathematical model for the case where the
material of the solid exhibits an elasto-plastic response, we have to set
up a model of the constitutive relationship between stress and strain
appropriate to the nonlinear post-yield plastic case.

We adopt here the incremental (flow theory) of plasticity and apply the
loading incrementally. Thus in (1.1)-(1.3) we consider increments do, dc,
du, respectively of stress, strain and displacement, which result from
increments of loading df and dg. The displacement u is now a function not
only of space but also of the current load. We therefore introduce a load
factor t (fraction of total load), so that u = u(x,t). In the usual
manner, see e.g. Owen and Hinton [7], Harrison, Ward and Whiteman [2], the
level of stress at which plastic deformation takes place is determined by a
yield criterion, based on a yield function F,

(2.1) F(o,k) = f(o) - k S 0 ,

where f is the equivalent stress function and k varies during plastic
deformation so that k = f(o) and F(o,k) = 0. For any load increment, after
initial yielding, it is assumed that the increment of strain can be written
as the sum of elastic and plastic components so that

(2.2) dE = dEe + dEp ,

where dee is related to do by the D matrix of (1.9). The plastic flow of
the material is governed by a flow rule which, for associative plasticity,
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relates the increment of plastic strain to the gradient of the yield
function, so that

(2.3) dE = dX BF
p D

where dX is the plastic multiplier. It is related to the k of (2.2)
through a hardening rule, dX = Adk. When a state of plastic flow exists
stresses must remain on the yield surface so that

dF = [LF + dk 0

and hence

(2.4) a Tdo - AdX = 0

where the flow vector a is defined by

3F
a

We thus obtain from (2.1)-(2.4) the relation

T
d= (D- + aa )do

from which we obtain

(2.5) do = (D -~a T 3dEA+aTDal

D dc
ep

where Deg = Dep(opk) is the elasto-plastic constitutive matrix. Thus, for
the load increment in the post yield state, we have a nonlinear
constitutive relation.

If the Galerkin technique is applied to the elasto-plastic problem in a
specific incremental load step, the resulting (nonlinear) global equation
system corresponding to (1.10) is

(2.6) f (BTDP B dx) dU - J df T. dx f dgT.N ds = 0

where - Dep during yielding and DP D otherwise. When yield takes
place tesystem (2.6) is nonlinear and is solved iteratively within the
load step; the two most used methods for this are the initial stiffness
and the tangent stiffness methods. If we define

(2.7) K(o,k) f BT D B dx
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then the iteration for solving (2.6), with general iteration step i, is as
follows:

Step 1 Set i = 1, dU1 = 0, and take a1 and k, to be their final values
from the previous load step. Define

RT 1 dfT'N dx + TdgN ds

Step 2 Set dUi+ 1 = dUi + H-IRi .

Calculate a.l, k A and R R- K(a , k )dU
i+,i+1,i i+1 +1 Iii i+1

Step 3 For some tolerance e if IR i+i > EIR 1 1 then set i := i+1 and

repeat 2. Otherwise set dU := dUi+ 1 and stop the iteration.

In Step 2 the matrix H can be taken as K(O,0) giving the initial stiff-
ness method, or as the matrix K(ai,ki) from the previous iteration step
giving the tangent stiffness method. The values of oi+ 1 and ki+ 1 are cal-
culated using (2.5), (1.5) and the hardening rule. Currently this initial
value problem is integrated using the explicit forward Euler scheme. The
value obtained is then scaled to lie on the yield surface F(o,k) = 0.

2.2 J-Integral for Elasto-Plastic Fracture

The path independent J-integral of Rice [8] can be used in linear
elastic fracture to obtain the stress intensity factor. For a Mode I
problem with a crack having faces parallel to the x1-axis, J is defined as,
see [8),

r r 2 3u.
(2.8) J W dx - [ T a-ds,L i=l~

where r is a contour running anticlockwise from the lower to the upper
crack faces enclosing the crack tip, W is the strain energy density, the Ti
are tractions in the outward normal direction to r and ds is the increment
of arc length.

The application of a similar Jp-integral in elasto-plastic fracture is
motivated by the work of Huchinson 13], Rice and Rosengren [9] on the forms
of near tip HRR stress and strain fields in power-law hardening materials
based on the deformation theory of plasticity. These forms indicate that
J, plays in elasto-plastic fracture the same role as that of J in linear
e astic fracture. However, as the mathematical theory of plasticity
developed above is for incremental plasticity, our use of Jp in this
context needs some justification. The basis for this is that under mono-
tonic loading conditions incremental plasticity and deformation plasticity
produce similar results, so that a secondary quantity Jp derived from
either model will also be similai.

The Jp integral is calculated using (2.8) and noting that W now has
both elastic and plastic components We and Wp so that

(2.9) W We + Wp

with
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1 T
We S Ce,

and

W p f(a)d;

note that with the von Mises yield criterion (f(o) = :3 - .i
7'ij'i 2 - ii 3

wp = JP dp , where a and e are respectively the effective stress and

effective plastic strain, see [6].

The method of approximating (Jp)(k) in the kth load step of the deform-
ation, with (Jp) -k) calculated from finite element approximations Uh(X),
ah(x) and Eh(x), derived as in Section 1.2, is a straightforward discretis-
ation of (2.8) using calculated values at the Gauss quadrature points in
the numerical integration and the splitting (2.9).

2.3 Mode I Elasto-Plastic Fracture Prablm

A two-dimensional plane stress Mode I elasto-plastic fracture problem
with centre crack, see Fig. 1, has been modelled using the techniques of
Sections 1.2 and 1.3, assuming a von Mises yield condition.

xl

Fig. 1

This model problem has been treated by Owen and Fawkes [6]. An elastic
perfectly plastic material has been assumed so that in (2.4), and sub-
sequently, A = 0. The width of the region is 2/5ths of the length and the
crack length is 2/Sths of the width, there is a normal tensile load of 100
units on each end, the Young's modulus E = 10,000, Poisson's ratio v = 0.3
and the uniaxial yield stress O = 100.

A basic finite element mesh based on 8-node quadrilateral elements is
put over the quarter region as shown in Fig. 2; this mesh is refined
locally around the crack trip to investigate the effect that this has on
near crack tip (Jp)h values. Contours r surrounding the crack tip are then
defined, the top half of some of these is shown in Fig. 3 and they pass
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Fig. 2

Fig. 3
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through the 2 x 2 Gauss points for each element.

It is found that the calculated values (Jp) k) of the 4Jk) integral are
the same, within each load step, irrespective of whether the contours pass
through zones of elastic or plastic deformation. The only exceptions for
any attempted level of refinement are those calculated on contours passing
through elements which have the crack tip as a node.

We conjecture that this effect is due to the poor accuracy of the
approximating uh in these elements at the crack tip; it should be
emphasised that in these elements no effort has been made to model the form
of the singularity. In this near-tip "failure zone" it is believed that
constitutive laws of the above type break down, so that further modelling
is necessary to represent the behaviour in this zone. We consider that
outside the failure zone the calculated (Jp)h being virtually constant, are
good values and thus can be used in a fracture criterion.

3. VISCOELASTIC FRACTURE WITH A FAILURE ZONE

3.1 Viscoelastic Model and Finite Element Discretization

We consider now viscoelastic materials which have the property that the
displacement u = u(x,t) at point x E Q and time t depends on the previous
history at that point; i.e. u(x,T), T < t. The weak problem at each time
t relating to equilibrium equations (1.1)-(1.3) for a general viscoelastic
material is then

(3.1) to (U(x, )P; t) T c(v)dx - JQ f(t)Tvdx - fai g~t) Tvds =0 , V v E v
J T

where the test space V remains as in Section 1.2, i.e. v E V does not
involve time. We limit discussion here to linear viscoelastic materials in
which the constitutive equation has the form

(3.2) G(x,t) = D(t-T)(x,T)dT

where D is the stress relaxation matrix. We further restrict discussion to
problems for which there is no deformation for time r < 0, i.e. u(x,T) = 0,
T< 0 which implies that c(x,T) = 0, T < 0 and thus the lower limit of the
time integral in (3.2) can be replaced by 0.

In discretising (3.1)-(3.2) using the Galerkin technique at time t we
approximate u(x,t) by uh(x,t) where

(3.3) Uh(X,t) = N(x)U(t)

with U(t) denoting the vector of displacement nodal variables at time t.
Thus the approximate stress is given by

(3.4) ah(xt) = fo D(t-T)B U(T)d,

and the discrete form of (3.1) is, at time t, the linear integro-
differential equation system
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(3.5) f ( LB BD(t-)Bdx](T)d - fa f(t)7Ndx - g(t)T ds =0.

We discretise (3.5) in time by taking time levels t., j = 0,1,2,... and forJ

tj_ 1 < T < t approximating U(T) by (U(tj)-U(tjl))/(tj-tjl). This gives

(3.6) (JgBTD B dx) (U(t.i)-U(t. j-1) f f(t)T N dx + fa g(t) TNds + P(t)

where

D = (j-fTit)d)/(tj-t j)

and

P(t.) = L Dlt j-T)dT/tq-tql)]B dx(U(tq)-Ult,l))

q=1 q-1

For a general form of D the computation of P(tj) involves the solution
at all previous time steps. We however restrict attention to materials
with constant Poisson's ratio and matrices D which can be expressed. in
terms of decaying exponentials, i.e.

M -aks

(3.7) D(s) = T(s)D(0) , T(s) = M Ce , ak  0

1

where p is the stress relaxation function. In this way, at each time
level t?, P(tj) can be computed from the M vectors Y(ak,tj-1), k = 1(1)M
where y(.,.) is defined by

t q C( t q T) .(

(3.8) Y(a'tq) f e U(T)dT

This greatly simplifies the numerical algorithm. Also, because of the
assumption of constant Poisson's ratio, the problem is in a form where
correspondence principles can be used, see e.g. Schapery [11].

3.2 Viscoelastic Fracture

For a cracked viscoelastic body we now consider the choice of realistic
fracture criteria for the onset of crack propagation and the approximation
of such criteria using the numerical scheme outlined in Section 3.1. For
viscoelastic materials this involves the introduction of a Barenblatt type
failure zone about the crack tip, see Barenblatt [1], as was first
considered by Knauss [5] and Schapery [101. This arises in order to
attempt to describe the physics of the process about the crack tip, i.e. to
model the cohesive forces and the region of localised damage which occurs
about the tip, and because criteria which are not based on such a failure
zone are found, in the quasi static viscoelastic case, to give crack growth
predictions which are greatly at variance with experimental observation.

In our model the Barenblatt failure zone is mathematically a small
interval of length af behind the crack tip on which cohesive stresses of
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act in order to cancel the stress singularity produced at the crack tip by
the external loads on the body. We assume that these cohesive stresses are
constant on each crack face as indicated in Fig. 4. A physically motivated

- a f0 x I

-ie failure zone

Fig. 4

fracture criterion that we consider is then based upon a critical value for
the work input to the failure zone, i.e. when the work done by the cohesive
stresses in this zone exceeds the critical value we predict that the crack
will propagate. Since this work is given by 2Lfu2(-af,O+,t) for the
problem indicated in Fig. 4, the criterion can equivalently be expressed in
terms of a critical crack opening displacement (COD). In the case of an
elastic material this criterion is equivalent to the traditional stress
intensity factory based criterion, see e.g. Kanninen and Popelar [4,p631,
but is qualitatively and quantitatively a different criterion in the
viscoelastic case.

There are several numerical difficulties arising from the inclusion of
the failure zone. Firstly, because the zone is small relative to the rest
of the domain, local refinement of the finite element mesh is required
about the tip. Also, the equation required to determine af in order to
cancel the stress singularity is non-linear and thus an iterative scheme
must be developed. The algorithm for doing this will be described fully in
Walton, Warby and Whiteman [12]. We give here only a brief description of
the method in the context of a Mode I fracture problem in a region and with
external loading as in Fig. 1, the load Le(t) now being time dependent.
The constraint boundary conditions are not time dependent. As indicated in
the previous discussion we also assume that loads of magnitude Lf act
normal to the crack faces in the failure zone as in Fig. 4.

In order to calculate af we make use of the linearity of the model in
terms of displacement and consider two Mode I problems of the form as
above, (i) with only the external loading Le(t), (ii) with only the
failure zone loading Lf. If K% = Ke(t) and Kf = Kf(af(t)) denote
respectively the stress intensity factors of these problems then an
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equation that we can use to determine af = af(t) is given by

(3.9) Ke(t) + Kf(af(t)) = 0

To determine Ke and Kf we use a correspondence principle of Schapery [11]
which relates the solution of the viscoelastic problem to the solution of
reference elastic problems with the same geometry, loadings and boundary
conditions. More specifically it proves that the stress in the
viscoelastic case is the same as the stress in the reference elastic
problem at t. Hence, since a J-integral of the form (1.18) is related to
the square of the stress intensity factor in the elastic case, we can
replace (3.9) by

(3.10) J (t) - JR(afft) = 0

R R

where J and J denote respectively the J-integrals due to loads L and L
appliede separaely. To approximate (3.10) numerically, there eare two
roughly equivalent approaches, either we solve the reference elastic
problem at each time step and calculate the viscoelastic displacement, when
required, by a time convolution with the creep function, or we solve the
viscoelastic problem as in Section 3.1 and calculate the reference elastic
displacement required in (3.10) by a time convolution with the relaxation
function. We adopt the latter approach here. Our numerical algorithm then
involves the following: For t = tj, j = 1,2,... solve (3.10) for
af = af(t.) by Newton's method, where each step of Newton's method involves
the solution of the finite element equations. Then evaluate the crack
opening displacement (COD) given by u2(-af,0+,tj) and compare with the
critical value. If the COD exceeds the critical value then determine af
and tcr, tj_ 1 < tcr < tj by Newton's method so that (3.10) and

(3.11) u2(-af,O+,tcr) = critical COD

are satisfied. Our value of tcr is then our prediction for the time at
which the crack will propagate.

The above problem is solved with a normalised relaxation function
(p(t) = (1 9e-t)/10 which corresponds to the normalised creep function
(t) = 10 - 9e0 -1 t. We now non-dimensionalise the Lame parameters X0 and
p0 relating to D(0) of (3.7) by setting p0 = 1 and taking Poisson's ratio
v = 0.49 so that Young's modulus E = 2.98 and A0 = vE/(1+v)(1-2v) = 49.
The failure load Lf = 10-1 and the external load Le is applied at the three
different rates

Le(t) = 10-3t, 10- 2t and 10-1t

We assume that Q is a square of size 2 and consider a selection of crack
lengths between 0.25 and 1.50. A typical mesh consisting of 8 noded
quadrilaterals is shown in Fig. 5. The values of af, tcr and Le(tcr) are
given in Table 1. These show the dependence on loading rate. If a stress
intensity factor criterion is instead used then this would give a crack
propagation criterion independent of loading rate, since KR depends only on

e
Le, and thus would ignore creep effects. Hence it is clear that there can
be considerable differences between J-based and COD-based fracture
criteria.
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(-a,0) <- crack surface - 0 (2-a,0)

(-a, -1) (2-a, 1)

Fig. 5 Finite element mesh

Table 1

a = crack length, af = failure zone length
tcr = time of critical COD (for the different loading rates)
Le(tcr) = 10-3tcr, 10- 2tcr or 10-1tcr is the critical load
0.05 is the critical COD

a af tcr Le(tcr)

0.138 6.245(-1) 6.245(-2)
0.25 0.052 3.442 3.442(-2)

0.022 2.044(1) 2.044(-2)

0.129 3.269(-1) 3.269(-2)
0.5 0.065 2.131 2.131(-2)

0.024 1.216(1) 1.216(-2)

0.127 1.309(-1) 1.309(-2)
1.0 0.086 9.962(-1) 9.962(-3)

0.035 5.860 5.860(-3)

0.120 4.293(-2) 4.293(-3)
1.5 0.101 3.758(-1) 3.758(-3)

0.055 2.408 2.408(-3)
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Future Work

The next phase of this work is to simulate, using finite elements, the
problem of a moving crack in a viscoelastic body. The aim of such work
being to determine the conditions under which the crack will propagate
stably or unstably. Details of this work are to be contained in [12].
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Anomalous Waves in Shock Wave-Fluid Interface Interactions
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ABSTRACT

The interaction of a planar shock wave with a small amplitude
fluid interface is characterized by the production of diffracted wave
patterns that correspond to Galilean transforms of slowly varying per-
turbations of stationary waves. These waves are described by solutions
to Riemann problems for the steady state Euler equations. When the
amplitude of the interface is not small or the geometry of the two
waves is changing, bifurcations in the solution occur. This article will
analyze such a bifurcation for a shock wave in a dense material dif-
fracting into a lighter material. The small amplitude case produces
reflected Prandtl-Meyer rarefaction waves, and the bifurcations that
occur at larger amplitudes can be interpreted as a two dimensional
analogue of a rarefaction wave overtaking a shock. This analysis is
incorporated into a front tracking code and provides a high quality
description of the interacting waves.

1. Introduction

The interaction of a shock wave with a fluid interface can be subdivided into
three regimes. These are a period of collision, a small amplitude linear growth
regime, and the long time non-linear growth of instabilities in the interface.

The collision stage is characterized by the production of complicated diffracted
wave patterns (Jahn, 1956; Abd-El-Fattah et. al., 1976; Abd-El-Fattah & Henderson,
1978a; Abd-El-Fattah & Henderson, 1978b; Grove, 1989], and is extremely non-
linear. In what is called the case of regular diffraction, these waves are perturbations
of Galilean transforms of solutions to a Riemann problem for a steady flow with
supersonic data. An asymptotic analysis [Grove, 1989] of the wave curves for the
stationary Euler equations shows that the regular case occurs provided the angle
between the two incoming waves is small. This observation means that the irregular
wave patterns observed for larger amplitude interactions can be studied as two
dimensional bifurcations of regular solutions.

1. Supported in part by the Army Research Office, grant DAAG29-85-0188.
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The second period of the interaction [Richtmyer, 1960] corresponds to the
growth of unstable modes in an impulsively loaded material. interface that is a small
amplitude perturbation of a planar interface. During this regime the flow is an
approximate solution for the linearized Euler equations and the interface instabilities
grow at an exponential rate.

The third stage concerns the long term growth of the unstable interface [Youngs,
1984; Mikaelian, 1986; Grove, 1989]. The flow here is characterized by the competi-
tion and mixing of unstable modes and leads to an eventual chaotic behavior of the
material surface.

The main thrust of this article is to study the bifurcation behavior of a regular
shock-contact diffraction pattern where the reflected wave is a Prandtl-Meyer rarefac-
tion. Such waves occur in shock-fluid interface interactions where the shock is
incident in the denser fluid. The bifurcation occurs when changes in the incident
shock strength or in the geometries of the interacting curves cause the state behind
the incident shock to become subsonic. When this happens the reflected Prandtl-
Meyer wave overtakes the incident shock from behind. The overtaking of the
incident shock by the Prandtl-Meyer wave both dampens and bends the incident
shock, with corresponding effects in the transmitted shock wave. Two classes of
examples of such interactions will be described; a planar shock wave in water dif-
fracting through an air bubble, and a cylindrically expanding shock wave diffracting
through a p!anar air-water interface. Previous work [Grove, 1989], considered the
modeling using the method of front tracking of regular diffraction cases, and a major
goal of this present work is to be able to track these waves beyond the "regular"
regime. A first order analysis of this wave bifurcation is incorporated into the front
tracking algorithm and gives an accurate description of the colliding waves
throughout their interaction.

2. The Supersonic Steady State Riemann Problem

The equations of motion for an inviscid, non-heat conducting fluid are given by
the well known Euler equations:

r#p + V.(pq) = 0, (2.1.1)

at(pA) + V-(p4®) + VP = P9, (2.1.2)

a,(p6)+V.((pe + P)4) = p-. (2.1.3)

Here 4j is the particle velocity, p is the mass density, P is the thermodynamic pres-

sure, g is the constant gravitational acceleration vector, C-- + E is the specific2
total energy, and E is the specific internal energy. These equations express the con-
servation of mass, momentum, and energy respectively. Assuming non-reactive
equilibrium thermodynamics, this system is closed by a thermodynamic equation of
state

E = E(V, S) (2.2)

100



where E(V, S) is a convex function of the specific volume V = 1/p and the specific
entropy S. E(V, S) satisfies the first law of thermodynamics:

TdS = dE + PdV, (2.3)

where T is the absolute temperature. Equation (2.3) implies that

P - 8 (2.4)
av,

In practice S is eliminated from equations (2.2) and (2.4), and thermodynamics of
the fluid is described by an incomplete equation of state

P = P(E, V). (2.5)

The key to modeling shock-wave fluid interface interactions using a front track-
ing method is the notion of a two dimensional elementary wave [Glimm et. al.,
1985]. Elementary waves describe the downstream scattering of a pair of interacting
waves, and are calculated by the solution of a Riemann problem for the steady state
Euler equations, where the stream direction serves as a time like axis. Briefly, for a
shock-contact interaction, the state behind the incoming shock wave and the state on
the side of the material interface opposite to the incoming shock serve as data for a
downstream directed Riemann problem. Since the actual collision of the two waves
occurs over a short interval in time, gravity can be neglected in the analysis.

Restricting (2.1) to time independent planar flow with g = 0, we obtain a sys-
tem of four conservation laws. This system is hyperbolic for supersonic flow. For
most single phase flows [Thompson, 1971], and certainly for the simple analytic
equations of state used in the numerical simulations below, this system has two
genuinely non-linear eigenvalues that correspond to the propagation of sound waves,
and two linearly degenerate modes that travel with particle velocity.

Both the pressure and the polar velocity angle are partial Riemann invariants for
the linearly degenerate fields, so the Riemann problem for this system can be solved
by finding the intersection of the wave curves for the two genuinely non-linear fields
in the pressure-flow angle phase plane. This is analogous to the solution to the
Riemann problem for time dependent one dimensional flow [Menikoff, 1988], with
some important differences. The Hugoniot locus portion of these wave curves are
the well known shock polars [Courant & Friedrichs, 1948], and extend into the sub-
sonic region where the flow ceases to be hyperbolic. The shock polars also form
closed and bounded loops. These two facts lead to a loss of existence or uniqueness
for the solution to the general steady state Riemann problem with supersonic data.
The non-uniqueness is addressed by choosing the supersonic solution whenever it
exists [Henderson, 1966]. It can be shown that under suitable conditions on the equa-
tion of state, at most one such solution is possible. Also a linear stability analysis
[Henderson & Atkinson, 1976] shows that when both a supersonic and subsonic solu-
tion exist, only the supersonic solution is stable. The non-existence of the solution
must be resolved by allowing it to become time dependent. This leads to the
development of many irregular diffraction patterns [Jahn, 1956; Abd-EI-Fattah &
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Henderson, 1978a; Abd-El-Fattah & Henderson, 1978b]. The next section will
describe one such irregular wave whose structure corresponds to the overtaking of an
oblique shock wave by a Prandtl-Meyer wave.

3. The Anomalous Reflection Wave

Figure 3.1 illustrates the collision of a planar shock in water with an air bubble.
When the shock first reaches the bubble, the two waves are tangent and regular dif-
fraction patterns (called diffraction nodes) are produced at the points of collision
between the two waves. To leading order, the flow near a point of diffraction is
described by the solution to a supersonic steady state Riemann problem as mentioned
above. Here, the interaction produces a reflected Prandtl-Meyer wave. Figure 3.2
shows the set of wave curves used for the solution shown in figure 3.2.b. It is
important to note that the existence of such a solution depends on the flow being
supersonic behind the incident shock wave in a reference frame where the node is at
rest. Because of the large difference in the compressibility of the two fluids (for this
model at constant temperature air is about 15,000 times as compressible as water) as
long as the flow behind the incident shock remains supersonic, the waves produced
by this interaction are prevented from interacting with the incident waves and the
flow downstream from this point remains neaily self similar in a neighborhood of the
node.

If 03 denotes the instantaneous angle between the incident shock and the bubble,
then the Mach number behind the incident shock is given by

_ = -+ -cot2p I , (3.1)
pici JT

where the subscripts 0 and 1 refer to the states ahead and behind the incident shock
respectively, and m 2 = - V0 is the mass flux across the shock. For most equa-

V0 - V1

tions of state [Menikoff & Plohr, 1989], m < p1cl, so the flow behind the shock will

be subsonic if P is sufficiently close to -!-. Thus a transition into an irregular wave

pattern occurs before the shock reaches the equator of the bubble.

When the flow behind the incident shock becomes subsonic, the leading edge of
the reflected Prandtl-Meyer wave begins to overtake the incident shock wave from
behind. This process will dampen the incident shock producing additional curvature
in the incident shock wave. These effects will be transmitted into the outgoing waves
as well. The portion of the reflected rarefaction that overtakes the shock in a given
period of time is the amount that is enough to restore the flow immediately behind
the point of collision of the two waves to a sonic flow. Since the sound speed in
water is much higher than the sound speed in air, the flow in the air inside the bubble
remains supersonic, and the transmitted wave continues to propagate downstream
from the node. This prevents the formation of precursor type waves such as those
described in [Abd-E1-Fattah & Henderson, 1978b].
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As the interaction proceeds and the bubble interface continues to diverge away
from the incident shock, more and more of the rarefaction fan spreads out onto the
incident shock wave, leading to the formation of a structure that is analogous to a
Mach reflection with a non-centered reflected Prandtl-Meyer wave, see figure 3.3.
Eventually, enough of the rarefaction overtakes the incident shock so that the flow
near the trailing edge of the Prandtl-Meyer wave becomes nearly sonic. When this
happens, the trailing edge of the rarefaction wave is almost parallel to the incident
shock and to leading order the flow near the point of shock diffraction is a one
dimensional unsteady flow with a rarefaction wave overtaking a shock wave from
behind. Thus in finite time, the entire reflected rarefaction wave overtakes the
incident shock. The Mach node corresponds to the spread out wave where the non-
centered rarefaction meets the incident shock, and the Mach stem corresponds to the
portion of the incident shock from the trailing edge of the rarefaction wave to the
fluid interface. For weak incident shocks the reflected rarefaction is of about the
same strength as the incident wave, and this "anomalous reflection stem" is a sound
wave.

There is experimental evidence of these anomalous waves. In particular Jahn
[Jahn, 1956] figure 14g shows such a wave for the oblique diffraction of a planar
shock through a thin membrane separating two gases.

The structure of this anomalous wave will be described in more detail in a com-
ing paper [Grove & Menikoff, 1988].

4. The Tracking of the Anomalous Reflection Wave

The qualitative discussion of the anomalous reflection in the previous section can
be incorporated into a front tracking code to give an enhanced resolution of the
interaction.

Previous work [Grove, 19891 described the tracking of a regular shock-contact
diffraction node. When a shock-contact diffraction node is identified at a given time
step with time increment dt, the pair of incoming interacting waves (the incident
shock and material interface) are first propagated independently ignoring their
interaction. The intersection between the two propagated waves is found and gives
the time updated position Po of the diffraction node. The displacement of the node
position divided by dt provides the node velocity and the Galilean transformation for
the flow near the node into a frame where the node is stationary. If the state behind
the incident shock is supersonic, it together with the state on the opposite side of the
material interface provide data for a supersonic steady state Riemann problem,
whose solution determines the outgoing waves. The outgoing tracked waves are then
modified to incorporate this solution.

A bifurcation to an anomalous reflection is detected when the state behind the
incident shock is subsonic in the frame of the node and the reflected wave from the
previous time step is a Prandtl-Meyer wave. The first step in modeling this bifurca-
tion is to propagate the leading edge of the reflected wave onto the incident shock.
This is done as before, by finding the point of intersection P, between the two
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propagated curves. If (as is often the case) the reflected wave is untracked, it is
recovered by calculating the characteristic through the old node position correspond-
ing to the state behind the incident shock. This characteristic makes the Mach angle
A1 = arcsin l/M 1 with the stream line through the node. It is assumed that the bifur-
cation occurs during the time step so the Mach number M 1 at the beginning of the
time step is greater than or equal to one, and A is real. The leading edge of the
reflected rarefaction moves with sound speed in the direction normal to the charac-
teristic. If the leading edge of the Prandtl-Meyer wave is tracked, it is disconnected
from the original diffraction node and a new node (called a cross node [Glimm et.
al., 1985]) corresponding to the oblique overtaking of a characteristic (zero strength
shock wave) with a shock wave of the same family is installed at p 1.

The next step is to determine the states and position of the point of shock dif-
fraction after the bifurcation. As the rarefaction expands onto the incident wave, the
incident shock near the material interface is weakened and curves into the contact.
The interaction slows down the node until the flow behind the incident shock at the
node is sonic. Thus it suffices to compute a corrected node velocity or equivalently a
corrected propagated node position that takes into account the shock-rarefaction
interaction. Once this corrected position is determined, the flow downstream from
the node is computed as for a regular diffraction.

For each number s, let p(s) be the point on the propagated material interface
that is located a distance s from P0 when measured along the curve, the positive
direction being oriented away from the node into the region ahead of the incident
shock. Let 3(s) be the angle between the tangent vector to the material interface at
p(s) and the directed line segment between the points p(s) and Pl. See figure 4.1.
Let V(s) be the node velocity found by moving the diffraction node to position p(s),
and let 4(s) be the velocity of the flow ahead of the incident shock in the frame that
moves with velocity V(s) with respect to the computational lab frame. The mass flux
across the incident shock that makes an angle 3(s) with the upstream material inter-
face is given by

m(s) = p0I(s)Isinp3(s). (4.1)

Given m(s) and the state ahead of the incident shock, the state behind the shock and
hence its Mach number M(s) can be found. The new node position is given by p(s*),
where

M(s*) 1. (4.2)

Finally, the state behind the incident shock with mass flux m(s*) together with the
state on the opposite side of the contact are used as data for a steady state Riemann
problem whose solution supplies the states and angles of the transmitted shock, the
trailing edge of the reflected rarefaction, and the downstream material interface.

The subsequent propagation of the anomalous reflection node is performed in
the same way. The bifurcation simply repeats itself as more of the reflected rarefac-
tion propagates up the incident shock. The leading edge of the reflected rarefaction
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wave that connects to the diffraction node is not tracked after the first bifurcation.

The secondary bifurcations that occur when the trailing edge of the rarefaction
overtakes the incident shock are detected in a couple of ways. If the incident shock is
sufficiently weak, ie the normal shock Mach number is close to 1, then it is possible
for the numerically calculated upstream Mach number to be less than one. Physically
of course the state ahead of the incident shock is always supersonic, but if it is nearly
sonic, such numerical undershoot may occur. When this happens, the construction
described above must be modified. The tracked trailing rarefaction edge is disen-
gaged from the diffraction node and installed in a new overtake node found by inter-
secting the propagated characteristic with the ahead shock. The residual shock
strength for the portion of the incident shock behind the rarefaction wave is small.
The diffraction node at the material interface reduces to the degenerate case of a
sonic signal diffracting through a material interface, and the induced downstream
waves are also sound waves. The second way in which the secondary bifurcation is
detected occurs when the trailing edge of the rarefaction overtakes the shock. Here a
new intersection between the incident shock and the trailing edge characteristic is pro-
duced. Again the tracked characteristic is disengaged from the diffraction node and a
new overtake node is installed at the point of intersection. Here, the residual shock
strength behind the rarefaction is positive. The diffraction at the material interface is
non-trivial and will produce an additional expansion wave behind the original one.
Most often this new expansion wave is not tracked.

Some remarks about the amount to tracking of these diffraction nodes seems to
be pertinent at this point. The secondary bifurcations described in the previous para-
graph need only be explicitly dealt with when the edges of the reflected Prandtl-
Meyer wave are tracked. The current algorithm assumes that at a minimum the two
interacting incoming waves are tracked. At this extreme none of the outgoing waves
are tracked but are captured by the interior solver that is coupled to the front tracking
method. In such a case the bifurcations occur automatically and the algorithm is
much simpler. More commonly, the material interface separates different fluids so
that 1the change in equation of state across this interface requires the tracking of the
downstream portion of the material interface as well. Furthermore any capturing
method will spread the captured wave over several grid zones thus reducing the reso-
lution of the two dimensional wave. This spreading will be particularly pronounced
at expansive waves such as Prandtl-Meyer waves [Glimm et. al., 1987]. Also, unless
the capturing algorithm is carefully designed, instabilities in the finite difference
approximation can destroy the accuracy of the solution near the node. This is espe-
cially the case for stiff materials such as water. Tracking these waves seems to con-
siderably reduce these problems. It also allows the use of much coarser grid, which
is important when the diffraction occurs in a small but important zone of a larger
simulation and the entire region of diffraction extends over only a fraction of a grid
block. The point of these remarks is that the amount of tracking is problem depen-
dent, and a compromise can be made between the increased accuracy and stability of
front tracking, and the simplicity of a capturing algorithm.
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5. Numerical Examples

Figure 5.1 shows a series of frames documenting the collision of a 10 Kbar
shock wave with a bubble of air in water. The states ahead of the incident shock are
at one atmosphere pressure and standard temperature. Under these conditions, water
is about 1000 times as dense as air. During the initial stage of the interaction regular
diffraction patterns are produced. By real time 4.5 psec an anomalous reflection has
formed, and by 10 lsec the trailing edge of the rarefaction has also overtaken the
incident shock. It is interesting to note that this interaction causes the bubble to col-
lapse into itself. Longer simulations (not available at the time of this writing) show
the bubble splitting in two (in three dimensions it forms a torus) with the resulting
production of vorticity. Very long time simulations are expected to show the bubbles
going into oscillation as they are overcompressed and then expand. This over
compression and expansion is important in the transfer of energy as a shock passes
through a bubbly fluid. The first diffraction considerably dampens the shock, and
some of the energy will eventually be returned to the shock wave in the form of
compression waves generated by the expanding bubble. One goal of this research is
to be able to perform simulations of such long term behavior that develop on time
scales orders of magnitude greater than the shock diffraction itself.

Figure 5.2 shows the diffraction of an expanding underwater shock wave
through the water's surface. The problem is initialized by placing at 2 meters below
the water's surface the center of a 10 Kbar cylindrically expanding shock wave of
radius 1 meter. Inside the cylindrical shock is a bubble of hot dense air. The initial
conditions outside the expanding shock are ambient at one atmosphere pressure and
normal temperature. In this simulation, the fluids are subject to a gravitational
acceleration of 1g. The reflected Prandtl-Meyer wave is untracked. The pressure
contour plots show that by 6 msec an anomalous reflection has developed. Another
interesting feature of this problem is the acceleration of the bubble inside the shock
wave by the reflected rarefaction wave. This causes the bubble to rise much faster
than it would under just gravity. As the bubble reaches the surface it begins to
expand into the atmosphere. The expansion leads to the formation of a kink in the
transmitted shock wave between the region ahead of the surfacing bubble, and the
rest of the wave. This kink is aai untracked version of another elementary wave
(cross node) where two oblique shccks collide.

The two fluids in the -imnuiations described above are modeled by what is called
a stiffened polytropic equation of state [Harlow & Amsden, 1971; Plohr, 1988],
where the pressure is given by

P = (,y - 1)pE-yjP.. (5.1)

If P. = 0 this reduces to the more common polytropic equation of state. The values
used for the EQS parameters are ya r = 1.4, P. 0, 'Ywatar = 7.0,

= 3000 atm.
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6. Conclusion and Open Questions

The diffraction of a shock wave in water through an air-water interface produces
an interesting wave that is an analogue of a Mach reflection with a non-centered rare-
faction. A first order description of this wave can be incorporated into a front track-
ing algorithm to provide a high quality resolution of the wave on a given grid. This
allows an accurate initialization of the shocked interface whose long term unstable
structure can then be studied.

There are several interesting mathematical questions associated with the
anomalous reflection wave discussed in this paper. One would be to provide an
analytical asymptotic description of the interaction between the two waves. This
would include decay estimates for the incident shock strength as it is overtaken by the
Prandtl-Meyer wave. A related question would be to provide a higher order descrip-
tion of the interaction by taking into account the reflected waves produced when the
rarefaction overtakes the shock. This would include an attempt to give a detailed
description of the flow in the immediate wake of the anomalous reflection. This
wake region bounded by the leading edge reflected sound wave behind the overtake
node where the Prandtl-Meyer fan overtakes the shock, the anomalous "Mach" stem,
and the material interface is analogous to the Mach bubble produced in ordinary
Mach reflection.

The author would like to thank Dr. Ralph Menikoff for many helpful discus-
sions of this work, and Prof. James Glimm for his encouragement and physical
insight into these problems.
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(a) time 0.0 iLsec (b) time 0.15 sec

incident shock wave

air bubble

(c) time 0.6 tsec (d) time 1.0 pLsec

reflection

10 Ax = 10 Ay

Figure 3.1. The collision of a shock wave in water with an air bubble. The
fluids ahead of the shock are at normal conditions of 1 atm. pressure, with
the density of water 1 g/cc and air 0.0012 g/cc. The pressure behind the in-
cident shock is 10 Kbar with a shocked water density of 1.195 g/cc. The grid
is 6Ox6O.
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(a) (b)

incident water incident water
shock polar shock polar

shockppola

reflected water
rarefaction polar

transmitted air

shock polar solution

Figure 3.2. The wave curves (shock polars) used in the solution of the
steady state Riemann problem in figure 3.1.b. Note that the shock polar for
the transmitted shock in air is much lower and wider than the corresponding
incident shock polar for water. Figure 3.2.b contains a detail from the lower
section of figure 3.2.a that shows the air shock polar clearly. The Mach
numbers for the incident and transmitted shocks are 2.7 and 11.4 respective-
ly. The pressure at the midstate solution is 8.8 bars.
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(a) time 0.0 Lsec (b) time 0.45 LSec

reflected Prandtl-Meyer wave

incident shock wave

diffractioa
air bubble

(c) time 1.05 psec (d) time 1.55 p.sec

anomalous
"Mach"

reflection

10 Ax = 10 Ay

Figure 3.3. The production of an anomalous "Mach" reflection. A shock
wave with behind pressure of 100 bars (Mach number 1.09) in water is in-
cident on a bubble of air. The upstream states are ambient at 1 atm. and
standard densities. By time 1 ptsec the trailing edge of the reflected Prandtl-
Meyer wave has overtaken the incident shock producing an analogue to an
ordinary Mach reflection where the reflected wave is a non-centered rarefac-
tion. The grid is 60x60.
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(a) (b)

incident shock

POO POO

bubble
water interface

air P

(c) (d)

non-centered
raref action

POO

aS)
p(s)

Pi PO

0.5Ax = 0.5Ay

Figure 4.1. A diffraction node initially at p00 bifurcates into an anomalous
reflection. The predicted new node position at P0 yields a Mach number of
0.984 behind the incident shock. The leading edge of the reflected Prandtl-
Meyer wave breaks away from the diffraction node to form an overtake node
at pi. The propagated position of the diffraction node is adjusted by a dis-
tance Y" = 3.59 x 10- 5 to return the flow to sonic behind the node.
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(a) time 0.0 psec (b) time 0.1.5 pLsec

incident ;hock wave

air bubble

(c) time 0.6 ,sec (d) time 1.3 psec

10 Ax = 10 Ay

Figure 5.1. Log(1 + pressure) contours for the collision of a shock wave in
water with an air bubble. The fluids ahead of the shock are at normal condi-
tions of I atm. pressure, with the density of water 1 g/cc and air 0.0012 g/cc.
The pressure behind the incident shock is 10 Kbar with a shocked water den-
sity of 1.195 g/cc. The grid is 60x60.
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(a) time 0.0 msec (b) time 6.0 msec

0

(c) time 20.0 msec (d) time 40.0 msec

25Ax =25Ay

Figure 5.2. An underwater expanding shock wave diffracting through the
water's surface. An expanding shock wave with an internal pressure of 10
Kbars and initial radius of 1 meter is installed at a depth of 2 meters below
the water's surface. The external conditions are ambient at one atmosphere
pressure and normal densities for the air and water. The boundary condi-
tions are constant Dirichlet at the initial ambient values. The grid is 150x150.
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Abstract

The Riemann problem plays an important role in understanding the wave struc-
ture of fluid flow. It is also a crucial step in some numerical algorithms for
accurately and efficiently computing fluid flow; Godunov method, random choice
method, and front tracking method. The standard wave structure consists of
shock and rarefaction waves. Due to physical effects such as phase transitions,
which often are indistinguishable from numerical errors in an equation of state,
anomalous waves may occur; "rarefaction shocks", split waves, and composites.
The anomalous waves may appear in numerical calculations as waves smeared out
by either too much artificial viscosity or insufficient resolution. In addition, the
equation of state may lead to instabilities of fluid flow. Since these anomalous
effects due to the equation of state occur for the continuum equations, they can
be expected to occur for all computational algorithms. The equation of state
may be characterized by three dimensionless variables: the adiabatic exponent
-y, the Griineisen coefficient F, and the fundamental derivative g. The fluid flow
anomalies occur when inequalities relating these variables are violated.

1. Introduction

Fluid dynamics is governed by a first-order hyperbolic system of conservation laws
[Courant & Friedrichs, 1948]. The wave structure in 1-D is determined by the Riemann
problem; initial value problem with two piecewise constant states. In addition to qualita-
tively understanding fluid flow, the Riemann problem is crucial to achieving high accuracy
in several numerical algorithms for the computation of fluid flow; Godunov method [Go-
dunov, 1959] and its descendants [Leer, 1979; Colella & Woodward, 1984], random choice
method [Glimm, 1965; Chorin, 1976], and front tracking method [Chern, et al., 1985].

The flux function for the fluid dynamic PDEs depends on the equation of state (EOS).
This in turn determines the wave curve used to solve the Riemann problem. For the
standard case, in which the isentropes are convex, the wave curve consists of the usual
shock and rarefaction waves. Near phase transitions the isentropes may not be convex and
anomalous waves occur; "rarefaction shocks", split waves and composites. Furthermore,
the constraints of thermodynamics on the EOS are not sufficient to obtain reasonable fluid
flow; uniqueness and stability.

• Supported by the U. S. Department of Energy
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For numerical calculations the EOS should be regarded as input data. Simulations of
fluid flow with any numerical algorithm should approximate the continuum solution to the
PDEs for fluid dynamics. Many numerical algorithms tacitly assume the EOS has the stan-
dard wave structure and may have difficulties for applications in which phase transitions
are important and anomalous waves occur. In addition, numerical errors in calculating
equations of state and the use of equations of state outside their range of validity may lead
to anomalous behavior in situations when they should not occur. Therefore, numerical
simulations may have qualitatively or physically incorrect solutions as a consequence of
the EOS. Some numerical difficulties may be avoided by preprocessing equations of state
to determine the regions in state space for which unphysical flow occurs. Then for applica-
tions in which the flow enters these abnormal regions the EOS should be corrected rather
then artificially modifying the numerical algorithm to compensate for deficiencies in the
EOS.

We begin in §2 by defining notation and stating the fluid equations. The important
variable for characterizing the EOS are defined. In §3 the theory described in [Menikoff &
Plohr, 1989] on the effect of the EOS on the wave structure for the PDEs is briefly summa-
rized. The numerical implications of the wave structure are described in §4. Conclusions
are stated in §5.

2. Mathematical Formulation

2.1 Fluid Equations

We consider an ideal fluid in which viscosity and heat conduction may be neglected.
The fluid motion is governed by the equation for the conservation of mass, momentum and
energy. In conservation form the fluid dynamic equations are [Courant & Friedrichs, 1948;
Landau & Liftshitz, 1959]

Otqj + c, Fjj = 0

where

q= ( ) , F ITI+ PI
PE PEUT + PU-

and

p = Density,

1 = Particle Velocity,

2 u' = Total Specific Energy,

E = Specific Internal Energy,

P = Pressure.

The material properties enter the dynamic equations through an incomplete equation of
state P(V, E), where V = 1ip is the specific volume. The flux function depends on the
EOS. Consequently. the EOS determines the wave structure of fluid flow.
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2.2 Equation of State

The equation of state may be characterized by the behavior of its isentropes in the
P-V plane. Even though the entropy, S, and temperature, T, may not be uniquely defined
for an incomplete EOS an isentrope (constant S) is determined by the ODE, dE = -PdV.
Three variable play an important role in determining the wave structure.

1. The adiabatic exponent
O1n P

-= OlnV s

is the negative slope of the isentrope in the In P-ln V plane. It is a dimensionless
sound speed, c2 = 'yPV.

2. The Griineisen coefficient
r=V-aiv

aE

is a measure of the spacing of the isentropes in the In P-ln V plane.
3. The Fundamental Derivative

_i 92 P/OlV 21s
2 aPI&VIs

is a measure of the convexity of the isentropes in the In P-In V plane.

Thermodynamic stability requires that -y - 0. This implies the fluid equations are
hyperbolic. The standard case assumes the isentropes are convex, Q > 0. When F > 0 the
isentropes do not intersect.

3. Wave Curve

The wave curve is the locus of states that may be joined to a fixed initial state by a
scale-invariant solution of the PDEs. For fluid dynamics the wave curve consists of two
connected branches corresponding to left and right facing (sound) waves. There is also a
linear degenerate contact wave which follows the particle trajectories. The solution to the
Riemann problem in 1-D is determined by the intersection in the P-u plane of the left
wave curve from the left state and the right wave curve from the right state.

In general, scale-invariant solutions are composites of two types of elementary wave;
continuous solutions called rarefactions or simple waves, and discontinuous solutions called
shock waves. Shocks are determined by algebraic equations, the Hugoniot jump conditions.
Simple waves correspond to isentropes and are determined by integrating an ODE along
a characteristic. For consistency it is important that the characteristic velocity, u ± c, be
monotonic. The variation of the Lagrangian wave speed pc is given by

9pc

cop s

When L > 0 the sound modes are linearly non-degenerate. Compressive waves steepen to
form shocks and expansive waves spread out to form rarefactions. Wlwa G < 0 the nature
of the waves reverses; shock waves are expansive and "rarefaction waves" are compressive.
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Finally, when G changes sign, scale-invariant solutions include composite waves consisting
of rarefactions and sonic shocks propagating as a single entity.

3.1 Standard Case

The standard case assumes Q > 0 and

PVPV> r.
2E

Here we assume the origin of energy is chosen such that E - 0 as V -- oo. The wave
curve satisfying the entropy condition consists of rarefactions in expansion and shocks in
compression. The second condition implies the wave curve in the P-u plane is monotonic.
It is needed to ensure the Riemann problem has a unique solution (Smith, 19791.

3.2 Anomalous Waves

When a material undergoes a phase transition there is a jump in the sound speed,
Cmixed < Cpure. As a result when an isentrope in the P-V plane passes through the satu-
ration boundary it suffers a kink, a discontinuity in the slope. Consequently, Q contains
a 6-function singularity. Depending on the sign of the kink the isentrope may become
non-convex. When the isentrope is non-convex, some single shocks are unstable and split
into 2 shocks of the same family. Similarly, a convex kink results in split rarefactions.

For some materials, near a phase transition 9 < 0 and smooth. In this case the wave
speed is not monotonic and some single shocks and rarefactions are unstable resulting
in composite waves. Replacing unstable shocks and rarefactions with split waves and
composites results in a unique continuous wave curve [Wendroff, 1972]. This corresponds
to the extended entropy condition of Liu [1975] and Olelnik [1959]. The wave curve of
stable scale-invariant states may then be used with the standard construction to solve the
Riemann problem.

3.3 Shock Instability

In 2-D a new mode of instability is possible [Fowles, 1981; Kontorovich, 1957; Majda
& Rosales, 1983]. When the condition

is violated some shocks are unstable to the development of transverse waves. This is
qualitatively similar to what is observed experimentally for detonations [Fickett & Davis,
1979]. Another result is that on the shock polar, P at the sonic point is greater than P
at the maximum turning angle. As a consequence an unusual wave pattern is possible, a
Mach configuration with a reflected rarefaction. On the other hand when shocks are 2-D
stable the 1-D Riemann problem has a unique solution.

4. Numerical Implications

The equation of state is input data for numerical calculations. It is not surprising that
an incorrect EOS will result in an unphysical simulation of the fluid flow. Two important
question are: 1. Given an EOS how to determine if it is physically reasonable; and 2. What
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are the symptoms in a numerical simulation of an unphysical EOS. One of the interesting
aspects of these problems is that in a simulation the fluid flow samples only a region of state
space. Thus an EOS may be adequate for one application and unacceptable for another.
In general it is important to determine the domain of validity of an EOS.

For applications with real materials the correct EOS may be experimentally deter-
mined. However, accurate EOS experiments are difficult to perform and expensive. Data
is available in only a limited range of state space. As a consequence for an EOS one resorts
to extrapolating data, semi-empirical fits, and theoretical models. A minimal requirement
on any EOS is thermodynamic consistency and stability. This is difficult to check for only
the incomplete part of the equations of state needed to simulate ideal fluid flow. It is
also insufficient to guarantee the behavior of fluid flow observed experimentally. Simple
conditions on the incomplete EOS are based on obtaining the correct wave structure and
shock stability. This at least is sufficient to obtain qualitatively correct fluid flow, though
the simulation may still be quantitatively inaccurate.

Similar difficulties may occur when the domain of an equation of state is extended by
extrapolating empirical fits outside their range of validity or patching together theoretical
models. Several conditions on the EOS should be checked. Consider the isentropes in the
P-V plane. (1) If the slope of an isentrope becomes positive then c2 < 0 and the fluid
equations are no longer hyperbolic. This implies the adiabatic compressibility is negative
and results in numerical instabilities; compressing a fluid element lowers its pressure which
causes the fluid element to further compress until either the flow leaves the elliptic region
(,i state space or catastrophic failure occurs. (2) If the slopes of the isentropes have
kinks, which axe physically indistinguishable from a phase transition, then split shocks and
rarefactions may develop. (3) If the isentropes are not convex then the extended entropy
needs to be imposed. Because of the non-uniqueness different numerical algorithms may
give different solution depending for example on the form of artificial viscosity used to
impose the entropy condition. In addition, "rarefaction shocks" are possible. Algorithms
which rely on artificial viscosity to smear out shocks but only use it in compression will be
unstable. Composites consisting of sonic shocks followed by compression waves which do
not steepen because 9 < 0 may have the appearance of shocks smeared out by too much
artificial viscosity or too little mesh resolution. (4) If c2 > 0 and Q > 0 but -y + Pv > r is
violated then 1-D fluid dynamics does not have a unique solution. Numerical calculations
may not converge under mesh refinement or be unusually sensitive to initial data. (5) If
-f > F + 1 is violated then shocks are 2-D unstable. In numerical calculations transverse
waves would develop along shock waves. In extreme cases diverging shocks speed up and
converging shocks slow down resulting in a ripple instability of shock waves. (6) If 2y' > F
is violated then the shock Hugoniot may have disconnected branches giving rise to further
non-uniqueness of fluid flow.

It should be emphasised that even simple analytic seemingly reasonable EOS can give
rise to anomalous and unphysical fluid flow. One example is analyzed in detail by [Menikoff
& Plohr, 1989]. This consists of a Griineisen EOS with constant F and a linear u,-up fit
for the principle shock Hugoniot.

Even when anomalous waves do not occur other aspects of the EOS may be important.
Some numerical algorithms use approximate Riemann solvers for efficiency. Typically ap-

121



Numerical Implication of RP Menikoff

proximate Riemann solvers tacitly assume the isentropes are convex and 7 is slowly varying,
or the wave curve in the P-u plane is convex. Conditions on the EOS for monotonicity
of thermodynamic variables along the wave curve have been worked out in [Menikoff &
Plohr, 1989].

5. Conclusions

Equations of state have the potential for causing difficulties in numerical simulations of
fluid flow. This may take the form of qualitatively incorrect wave structure or instabilities
of shock waves. When non-convexity of an isentrope 9 < 0 is physical, such as may occur
near a phase transition, the numerical algorithm must be capable of producing "rarefaction
shocks", and the stable split or composite waves rather than the unstable elementary waves.
Problems due to physically inadequate EOS or numerical errors in EOS can be avoided by
preprocessing the equation of state to determine the regions of state space with anomalous
properties. This entails checking when one of the inequalities c2 > 0, g > 0, or 7 > r + 1
is violated. If in a simulation the flow enters an anomalous region of state space then the
EOS needs to be corrected.

There are several important open questions. Analysis of numerical algorithms have
assumed the fluid equations are genuinely non-linear with a unique solution determined by
an entropy condition, see e.g., [Harten, et al., 1983]. The analysis needs to be generalized to
the non-convex case. Some algorithms (for example typical Godunov method) for efficiency
use approximate Riemann solvers. This is reasonable when the method averages over
a cell and does not use the full detail of the Riemann solution. The properties of an
approximate Riemann solver and the artificial viscosity required to obtain the correct
wave structure for general EOS needs further study. For other algorithms, such as the
front tracking method, which requires a good Riemann solver either better equations of
state with accurate derivatives or robust methods of utilizing the EOS are needed.
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ABSTRACT. There is a significant level of interest in the analytical and numerical mod-
eling of lower-frequency atmospheric acoustic propagation in battlefield environments. Ray-
based models, because of their frequency limitations, do not always give an adequate pre-
diction of quantities such as sound pressure or intensity levels. However, the parabolic
approximation method, widely used in ocean acoustics, and often more accurate than ray
models for frequencies of interest, can be applied to acoustic propagation in the atmosphere.
We discuss appropriate physical and asymptotic conditions under which this model is valid.
Modifications of an existing implicit finite-difference implementation for computing solutions
to the parabolic approximation are discussed. In addition, we present calculations of acoustic
intensity levels in a windy atmosphere and contrast the results with those of ray theory.

1. INTRODUCTION. The propagation of low frequency sound through the earth's at-
mosphere over long distances is a problem with numerous applications. In many instances,
acoustic propagation occurs in environments which may be characterized by winds, atmo-
spheric turbulence, extremes of weather, and other natural and man-made atmospheric vari-
ations, as well as irregular topography and terrain structure. These environmental variations
are typically range- as well as height-dependent, and can profoundly affect the behavior of
sound waves. Geometrical acoustics, or classical ray theory, is one approach that has been
commonly used to study atmospheric acoustics. Unfortunately, the approximations under
which the ray equations hold are valid only for sufficiently high source frequencies. At lower
frequencies where diffraction effects are especially important, the use of other mathematical
models can provide more accurate and useful results.

2. PARABOLIC APPROXIMATION METHOD. An alternative approach to low-
frequency propagation modeling is known as the parabolic approximation method (PAM).
This method, originally developed for studies of tropospheric radio wave propagation, I ex-
ploits characteristic features of the propagation medium associated with the formation of a
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waveguide. Atmospheric acoustic waveguides can be formed by certain meteorological con-
ditions either with or without boundary interaction. Within such a waveguide, sound waves
may propagate to relatively large distances with significant amplitudes. The parabolic ap-
proximation has been successfully applied to a broad variety of problems in ocean acoustics, 2

where many features occur that are analogous to those in atmospheric acoustics.
Let p(r, z) be the acoustic pressure caused by the presence of a point source in a stratified,

moving atmosphere, where r and z denote the range and height in cylindrical coordinates.
We will confine our attention to a vertical plane containing the source, and parallel to the
wind motion. In addition, we assume that the the sound speed is independent of azimuth.
We consequently deal with two-dimensional sound propagation. The time-independent wave
field, denoted as A, is obtained by assuming that the source is harmonic with frequency f,
so that p = A exp(27rift). It can be shown that A satisfies the reduced wave equation

VA + ±n2 2ik 2n 2UO ,-2 ko duo
k0 2  0 A - ZA~ = 0, 1CO CO dz

where cO is a reference sound speed, ko = 2,rf/co is a reference wave number, c(r, z) is the
sound speed, n(r,z) = co/c(r,z) is the index of refraction, and uo(z) is the wind speed.
Furthermore, it can be shown that away from the source, the quantity A takes on the
asymptotic form

eikn?

A =O I---. *(2)

Equation (2) is an essential feature of the parabolic approximation when the quantity 0 is
related to the slow-scale (i.e. many wavelengths) variation in the acoustic pressure. Fur-
thermore, through careful scaling and asymptotic arguments, it can also be shown that 0b
satisfies a family of parabolic equations (PEs). Details of the complete derivation of this
family of PEs in an inhomogeneous moving medium can be found in Refs. 3 and 4. For the
numerical examples considered in the next section, the appropriate member of this family is
given by

2iko¢,o + ib + ko( h 2 - 1) = O, (3)

where
i = co/a, (4)

with
= c + u0. (5)

The quantity j is is called the effective sound speed profile (ESSP).
Several numerical algorithms for solving Eq. 3 have been found useful and are widely

implemented. One employs implicit finite differences,5 using a Crank-Nicolson scheme to
march the solution forward in range. This method is well-suited for many propagation
situations, for example, those involving irregularly-shaped boundaries. From this algorithm,

eik rr

we determine 0, then p(r, z) = 0(r, z)-- is the complex-valued pressure field, and finally

relative intensity 1, defined as
I 20ogio p ( r , z ) I

I = , (6)
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Figure 1: An atmospheric sound channel.

where p,j is the pressure at 1 m from the source. The quantity I will be computed and
discussed in the next section.

3. NUMERICAL EXAMPLES Figure 1 depicts an idealized atmospheric acoustic
waveguide. We note here that this waveguide is similar to one used as a model in Ref. 6,
a study of the downwind propagation of low frequency noise from a wind turbine at a test
site in Wyoming. A cw sound source is located 40 m above a horizontal, perfectly-reflecting
ground surface. The air is assumed to be isospeed with co = 330 ms -1 . The atmosphere
moves within the indicated plane with a logarithmic velocity profile, a modeling assumption
often used for the vertical structure of winds:

Uo = Kv In 1 + $, (7)

where K = 2.5, v1 = 0.64 ms- , and zo = 0.1 m. As shown, the channel is bounded above
by a horizontal, artificial, pressure-release surface of height h, beneath which is an artificial
absorbing layer. This absorbing layer is designed to eliminate reflections that would otherwise
occur from the pressure-release surface at the top of the waveguide. This combination
boundary model is widely used to simulate bottom boundaries in ocean acoustics, and,
modified by us to function as a surface model, is a feature of the numerical implementation
which we use for our calculations.

A detailed picture of the sound field from a source with frequency 10 Hz when no wind
is present can be seen in Fig. 2. Relative intensity is displayed as level curves between a
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Figure 2: Level curves of relative intensity in the r-z plane. No wind is present.

rigid ground and an artificial surface at height 1000 m. The maximum range shown is 10
km, The artificial absorbing layer is 500 m thick, beginning at height 500 m and extending
vertically to the artificial surface. The intensity within the artificial absorbing layer is shown
for completeness, but we emphasize that the significant portion of the solution is located
near the vicinity of the ground surface. Note the regular way in which intensity decreases for
increasing range. It can be shown that this corresponds to spherical spreading of the sound,
which is entirely expected from a point source in a homogeneous motionless atmosphere.

In the next illustration, a logarithmic wind profile is present with a maximum wind speed
of 14 ms - '. The level curves of intensity downwind from the source are shown in Fig. 3. The
boundary locations and layer thickness is as in Fig. 2. Note that a substantial change in the
intensity pattern has occurred near the ground surface. Intensity is seen to decrease much
more slowly with increasing range. In fact, this intensity pattern can be shown to correspond
roughly to cylindrical spreading of the sound. This effect is caused by the direction (and
magnitude) of the wind. For sufficiently high frequencies, geometrical acoustics predicts
that ray paths would be curved toward the ground, with many rays repeatedly striking the
ground. At the source frequency of 10 Hz used here, ray theory is no longer applicable.
Nonetheless, the wind still serves to focus the sound near the ground, so that the intensity
there is substantially larger than that in the no-wind case discussed above.

When the wind direction is reversed, an entirely different result is encountered. Figure 4
depicts level curves of intensity for the channel region upwind from the source. Note that the
intensity decreases more rapidly near the ground surface for increasing range when compared
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Figure 3: Level curves of relative intensity in the r-z plane downwind from the source.
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Figure 4: Level curves of relative intensity in the r-z plane upwind from the source.
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Figure 5: Relative intensity I versus range r at a receiver on the ground. No wind is present.

to the no-wind case shown in Fig. 2. This decrease is stronger than spherical spreading. In

fact, geometrical acoustics predicts the existence of a shadow zone (a "zone of silence")

beginning immediately upwind from the source. As we noted before, the ray model is not

applicable at our source frequency. In fact, sound energy can diffract into the shadow zone, so
that some sound can be detected at the ground. Naturally, the intensity tends to be reduced
when compared to the no-wind channel. We also note that this effect at low frequencies has

been detected experimentally, 6 suggesting that a low-frequency propagation model such as
the parabolic approximation can be used to interpret experimental data.

Next, we compare calculations done at two frequencies and two wind conditions. Figure 5

displays relative intensity versus range for four different cases. The receiver is located on

the ground surface. First, note the calculation for the 10 Hz no-wind case and the 10 Hz
downwind case. These two curves illustrate dearly the differences than can occur in the

presence of a wind. Even more striking is a comparison between calculations performed
with and without wind but at a source frequency of 100 Hz. At this higher frequency,

relative intensity would be expected to exhibit more "ray-like" behavior. In the absence of
a wind, the high frequency curve is very nearly identical to the low frequency curve. At 100

Hz, the downwind curve is seen to exhibit a strong oscillatory behavior, a consequence of

interference effects resulting from multi-mode propagation. This does not occur in the low

frequency case, which exhibits no interference pattern at all, again suggesting the predictive

power of a low-frequency propagation model such as the parabolic approximation.
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4. SUMMARY. We have briefly described the utility of the parabolic approximation for
predicting the relative intensity of sound propagating in a moving atmosphere. After sketch-
ing the development of this model, we applied it to an idealized atmospheric waveguide
containing a steady height-dependent wind. We found that the parabolic approximation
yields computed acoustic fields for low-frequency sources which qualitatively differ from
those predicted by ray theory. We emphasize that significantly more complicated environ-
ments, which might include irregular ground topography, penetrable ground surfaces, and
range-dependent sound speed conditions in the medium, can be handled by this numerical
implementation.
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Abstract

Viscoelastic materials with fading memory, e.g., polymers, suspensions, and emul-
sions, exhibit behavior that is intermediate between the nonlinear hyperbolic re-
sponse of purely elastic materials and the strongly diffusive, parabolic response of
viscous fluids. Many popular numerical methods used in the computation of (sup-
posedly steady) viscoelastic fluid flows appear to fail in physically relevant regions
of parameter space and thus do not capture important phenomena. It is found
that a key to a satisfactory explanation of significant non-Newtonian phenomena
is to study the fully dynamic governing system of equations. We present results
obtained using three classes of numerical methods that accurately represent the
dynamics, and we discuss analytical results for related models. We reproduce
experimental results on non-Newtonian "spurt" for shearing flow through a slit
die and other related phenomena associated with the non-monotone constitlitive
relation of the shear-stress vs. shear strain-rate. VVe conclude that c -r results
provide a physically reasonable explanation of spurt, hysteresis, and shape mem-
ory. -Moreover, experiments are suggested to verify our approach.

1. Introduction

Viscoelastic materials with fading memory, e.g., polymers, suspensions, and emulsions,
exhibit behavior that is intermediate between the nonlinear hyperbolic response of purely
elastic materials and the strongly diffusive, parabolic response of viscous fluids. They
incorporate a subtle dissipative mechanism induced by effects of the fading memory. The
understanding of the equations of motion coupled with various constitutive assumptions
at the mathematical level is crucial for modeling, design of algorithms and computation
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of paxticular problems. Shear flows of viscoelastic fluids exhibit a variety of interesting
physical phenomena of importance, for example, in polymer processing. We have been
intrigued by the fact that many numerical methods used in the computation of (supposedly
steady) viscoelastic fluid flows appear to fail in physically relevant regions of parameter
space and thus do not capture important phenomena. One such phenomenon is "spurt,"
the occurrence of which in shear flows of non-Newtonian fluids through a capillary has
been confirmed by careful experiments (Vinogradov, et al. [18]). The understanding of
this and related phenomena has proved to be of surprising physical, mathematical, and
computational interest.

Our goals in this study are:

1. To understand the physical model: How do the computed solutions correspond to the
molecular or continuum model on which they are based? Can the character of these
solutions serve to validate the physical model or suggest improvements in it?

2. To understand the physical consequences of the model: Do the solutions obtained
make physical sense? Do solutions that have mathematically interesting character
correspond to observed phenomena? Do they predict behavior that should be studied
in the laboratory? What solutions to the problem are relevant to processing and
design?

3. To understand qualitative properties of the mathematical model: the global existence
and uniqueness of solutions, dependence on data, regularity and asymptotic behavior
of solutions for large time, approach to steady states, etc.

4. To design numerical methods that account for the mathematics and reproduce the
physics.
The outline of this paper is as follows: In §2, we discuss the modelling of spurt and

related physical phenomena in capillary flow as a fully time-dependent one-dimensional
flow through a slit die, using the Johnson-Segalman differential constitutive relation. In

3, we derive a one-dimensional initial boundary-value problem for shearing flows through
a slit die, starting with the 3-D equations. In §4, we present mathematical results for the
governing system and for related model problems that capture some of the key phenomena.
In §5, we describe three numerical methods and present a variety of results of physical
interest obtained using them, including a comparison with experimental data for the spurt
phenomenon. In §6. we discuss our conclusions.

2. Physical Phenomena

Interesting phenomena have been observed by Vinogradov, et al. [18] in the flow of
viscoelastic fluids (monodisperse polyisoprenes) through capillaries. They found that the
volumetric flow rate increased dramatically at a critical stress that was independent of
molecular weight. This phenomenon. which is called "spurt", had been overlooked or
dismissed by rheologists because no plausible mechanism to explain it in the context of
steady flows was known. Spurt was lumped together with instabilities such as "slip."
"apparent slip." and "melt fracture." which are poorly understood. While regarded as
anomalous, these instabilities can severely disrupt polymer processes; they can be avoided
in practice only with ad hoc engineering expedients. The mechanisms of such phenomena
are not understood primarily because the governing equations are analytically intractable
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and because popular numerical methods for steady flows fail to capture these dramatic
non-Newtonian effects.

Several explanations have been offered for the spurt phenomenon [2, 4, 9, 12]. Their
common feature is that the shear stress in steady flow does not vary monotonically with
shear strain rate, (as illustrated in Fig. 2, below). These explanations have been rejected
by many rheologists as being somehow unphysical. We believe that this criticism is un-
founded because it is based on intuition derived from generalized Newtonian models of
non-Newtonian fluids.

A key to satisfactory explanation of the spurt phenomenon is the dynamical behav-
ior of the governing equations. While there is a great variety of constitutive models for
viscoelastic fluids, the dynamical behavior for many is inaccessible. In this paper, we
model the spurt phenomenon using the Johnson-Segalman model [7] as constitutive rela-
tion. The latter correctly models the spurt phenomenon, and yet is sufficiently simple to
be understood through a combination of analysis, asymptotics, and numerical simulation.

We study idealized flow through a narrow slit die. Assuming that the driving pressure
is transmitted instantaneously, the three-dimensional flow may be approximated by a one-
dimensional problem. Our analytical and numerical results show that flow in a slit die
reflects the essential features observed for capillaries. We believe that this is because
the spurt phenomenon depends solely on material properties and the smallest physical
dimension of the problem.

A non-monotone stress-strain-rate relation of the kind that causes the spurt phe-
nomenon arises when the fluid behavior is characterized by multiple relaxation times.
Interpretation of small-amplitude oscillatory shear data [18] indicates that the relaxation
times are widely spaced. Formal asymptotic analysis [10] of the dynamics shows that the
effects of the smallest relaxation time are mimicked by a Newtonian viscosity term. For
simplicity, we study the Johnson-Segalman model with a single relaxation time and added
Newtonian viscosity.

3. Mathematical Formulation

The motion of a fluid under incompressible and isothermal conditions is governed by
the balance of linear momentum

p + V =V-S. (3.1)

Here. p is the fluid density, v is the particle velocity, and S is the stress tensor. The
response characteristics of the fluid are embodied in the constitutive relation for the stress.
For viscoelastic fluids with fading memory. these relations specify the stress as a functional
of the deformation history of the fluid. Many sophisticated constitutive models have been
devised: see Ref. [1] for a survey. In the present work, we focus on the Johnson-Segalman
model [7] as a prototype for general constitutive models. This model accounts for non-
affine deformation of Gaussian networks by introducing a slip parameter a. -1 < a < 1.
leading to a nonlinear generalization of the classical Maxwell model.

To specify this constitutive relation, we decompose the stress as

S = -pI + 2r7D + E . (3.2)
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In this equation, p is an isotropic pressure (which is determined from the incompressibility
constraint), 7 is the coefficient of Newtonian viscosity, and E is the non-Newtonian extra
stress. Also, we let D := [Vv + (Vv )T] and 1 := [ Vv - (Vv )T] be the symmetric
and antisymmetric parts of the velocity gradient Vv, which has components (Vv)'j
Ou'/0x. The extra stress is specified by the differential constitutive law

=2- D- A , (3.3)

where
"- c--- + v VE+ E~ -aDJ [ - aJTE(3.4)

at
is the objective time derivative of E with parameter a. The parameter p is an elastic shear
modulus, and A is a relaxation rate.

Constitutive relations :uch as Eq. 3.3 exhibit a mixture of elastic and viscous beha-. ior.
This may be seen heuristically as follows. In the long relaxation-time Emit, A --- 0, Eq. 3.3
shows that an objective time derivative of Z is proportional to the deformation rate:

S -- 2pD. This is characteristic of elastic behavior, and leads to the interpretation of p
as a shear modulus. By contrast, when A, p --+ o with M/A fixed, E - 2(p/A)D: thus, the
model displays viscous behavior with p/A being the Newtonian shear viscosity coefficient.

Essential properties of the constitutive relation are exhibited in simple planar shear
flow. With the flow aligned along the y-axis (see Fig. 1), the flow variables are independent
of y. Therefore, the velocity field is v = (0, v(x, t)), and the balance of mass is automati-
cally satisfiec. Furthermore, the components of the extra stress tensor E may be written
71z; = 7(xt, E' = Ey = a(x, t), and EYY = r(x, t), while the pressure takes the form
p = po(x, t)- f(t)y, f being the pressure gradient driving the flow. In these terms, Eqs. 3.3
become

t+ (1 - a)ov',. = -A-, , (3.5a)

- [1(1 + a)- - 1(1 - a)7 + /1] V. = -Aa, (3.5b)

rt - (1 + a)orcv = -A7 . (3.5c)

Introducing the variables Z := 2 (14a)-y- (1-a)r and TV := -21(1+a)7- 1-a)r,
Eqs. 3.5 simplify to

at - (Z + P)VZ = -Ac , (3.6a)

Zt + (1 - a 2 )ov 1 = -AZ (3.6b)

TVt = - AV . (3.6c)

Because IV must remain finite as t -- -:c, IT- 0. and the last equation may be omitted.
As a result. Z = - (1 - a2 )(r - ,,), where r"J -E = r - y is the principal normal stress
difference.

Combining the constitutive law 3.6 with the balance of linear momentum 3.1, we are
led to the system of equations

pvt - o', rl7vzx + f ,(3.7a)

at - (Z + [)Vz = -AO , (3.7b)

Zt + (1 - a2 )at' = -AZ . (3.7c)
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Fig. 1: Shear flow through a slit-die.

In this paper, we study shear flow between two parallel plates, located at x =±h/2. By
symmetry, we need only consider the flow on the interval [-h/2, 0]. The no-slip condition
at the plate implies the boundary condition v(-h/2, t) = 0, while symmetry imposes that
v,(0. t) = 0. We also prescribe initial values for v, a, and Z, which must be compatible
with the boundary conditions. To conform with the symmetry, we require that a(0, 0) = 0;
then, according to Eq. 3.7b. o(0. t) = 0 for all time.

To eliminate unnecessary parameters, we scale distance by h, time by A-', and stresses
a and Z by Mt. Furthermore. if we replace a, v, and f by & :=(1-a 2 )1/ 2 'a, t := (1-a 2 )1/ 2 V,

and f : (1 - a 2 )1/ 2 f respectively, then the parameter a disappears from Eqs. 3.7. Since
no confusion will arise, we omit the caret. The dimensionless parameters are a := ph 2 A2
and 6 := 7A/ji. Consequently, we study the i nit ial-boundary- value problem for the system

Q Vt - 0"= e v" + f
at- (Z + 1)V., = -a, (Js)

zt + oav, = -Z

on the interval [-1/2, 0], with boundary conditions

v(-1/2.t) = 0 and v,(0, t) =0 (BC)
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and initial conditions

v(x.0) = vo(x) , o(x,0) = ao(x), and Z(x,0) = Zo(x) , (IC)

where vo(-1/2) = 0, v'(0) = 0 and o0(0) = 0.

The steady-state solutions of (JS), %;Len the forcing term f is a constant 7, play an
important role in our discussion. Such a solution, denoted by F, F, and Z, is given as
follows. The stress components IF and Z are related to the velocity gradient F. (which, in
dimensionless units, is the Deborah number) through

= V (3.8)
1 +v

and

-- 1 = 1 . (3.9)

Therefore, the total steady shear stress, which is defined by T o + ev,', takes the form

--TAV + F" . (3.10)

In this manner, a non-monotone relation between shear stress and strain rate, shown in
Fig. 2, derives naturally in the Johnson-Segalman model.

The total steady shear stress satisfies

T(- )+x=O for xE [-!,0] (3.11)

so that the velocity gradient may be expressed in terms of x. However, because the function
T of Eq. 3.10 is not monotone, Tx may take up to three distinct values for any given x.
The steady velocity profile, shown in Fig. 3, is obtained by integrating F' and using the
boundary condition -U(-1/2) = 0. Notice that = may suffer jump discontinuities, resulting
in kinks in the velocity profile (as at the point x. in Fig. 3).

Traditionally, a non-monotone relation between stress and strain rate is regarded as
a defect of the constitutive law. This conclusion is based on intuition appropriate for
generalized Newtonian models of non-Newtonian fluids. Shear flow for such a fluid is
governed by the single equation

pvt - [r(v-)vI, = f, (3.12)

corresponding to having a viscosity coefficient r that depends on strain-rate. In a flow
regime where ?7(vx)V, decreases with strain rate v, however, Eq. 3.12 has the character
of a backward heat equation, which suffers from the Hadamard instability. Therefore, for
generalized Newtonian fluids, r(vz,)v must increase with v, in a physically stable steady
solution.

The system (JS) has the same steady solutions as a generalized Newtonian fluid with
_, = T(v,). so one might think that it exhibits the same instability in regions where

T decreases. This conclusion is not warranted, however, because the system (JS) maintains
its evolutionary character when e > 0.

4. Mathematical Results

Several mathematical results are known for the system (JS), we refer to Refs. [6. 17.
3. 16, 14. 4] for further discussions and additional references.
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Fig. 2: Total steady shear stress T vs. shear strain rate F. for
steady flow.

(1) When the viscosity parameter e = 0, the quasi-linear system (JS) is strictly hyperbolic
provided that Z + 1 > 0. In this case, the wave speeds are ± [(Z + 1)/a]1/2 and zero. If,
on the other hand, Z + 1 becomes negative, then (JS) with e = 0 undergoes a change of
type and loses its evolutionary character. Joseph, Renardy, and Saut [6] have associated
this change of type with certain fluid instabilities.

(2) Let e = 0 and f = 0; assume that the initial data are smooth and lie in the hyperbolic
region. If the data have sufficiently small variation, then a unique classical solution of
(JS) exists globally in time. 'Moreover, the solution decays to zero as t -cC. This can be
proved using the energy methods discussed in Ref. [17].

On the other hand. if the data have sufficiently large variation, then the classical
solution blows up within finite time: Ivj, laW, and Iz l approach infinity as t approaches
a finite critical time. This is proved in Ref. [17] using the method of characteristics.

Thus, the fading memory acts as a weak dissipative mechanism: the source terms in
the equations serve to counteract the formation of singularities from sufficiently smooth
data. When discontinuities do form, system (JS) is no longer valid: the products of
distributions Zv. and arv, are ill-defined. (See the discussion under (4), below.)
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Fig. 3: Velocity profile for steady flow.

(3) If e > 0, the system (JS) is evolutionary, but it cannot be classified according to
type. Recently, Guillop6 and Saut [3] established the global existence of solutions of (JS)
for planar Couette and Poiseuille flow with data of arbitrary size. They also studied the
asymptotic (Lyapunov) stability of steady states in the Couette case.

(4) It is important to observe that (JS) is not in conservation form. The evolution
of a Johnson-Segalman fluid is, in fact, governed by physical conservation laws [7]. A
conservative formulation of (JS) must be used when solutions are discontinuous.

Following Plohr [16], we introduce the "elastic part" r of the shear strain and the
"entropy" variable z through the relations

a z sin r , (4.1a)

Z +1= zcosr . (4.1b)

Then system (JS) is transformed into the equivalent system

r7t - v =-z - 1 sinr ,

aV - [,7(7, z) + 6 v ] f , (C)

.= -(Z - Cos -r)
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which is in conservative (i.e., divergence) form. Furthermore, if the internal energy £ is
defined by

a 1 - z cosr , (4.2)

the energy is dissipated according to the equation

a [Iv2 + E(r,z)], - {[a(r,z) + e v]v} =vf -a(r,z) -- e(v,) 2  (4.3)

The conservative formulation (C) of (JS) is used in one of the numerical methods discussed
in §5.

(5) More detailed analytical results are obtained by simplifying the system (JS). A model
system that incorporates several qualitative features of (JS) is obtained by freezing Z at
its equilibrium value: Z + 1 = 1/(1 + v,). Defining g(vz) := v./(1 + v.), system (JS)
becomes

a Vt - ax = f VVz + f

at - g(V = . (l)

More generally, g may be any smooth, odd function. The boundary and initial conditions
for v and a"are the same as in (BC) and (IC). We assume that e > 0 and that f is the
constant f. The function g is related to the steady stress-strain-rate relation through
T(F,) = g(!U7) + eF. A steady solution of (M) satisfies F = g(FU) and T(F.) +fx = 0,
just as for the system (pS).

Nohel, Pego, and Tzavaras [14] have shown that the global classical solution v, a of
(M), (BC), (IC) has the following properties.
(a) With S :=a +e v, +fx, S(x,t) -- 0 as t -* co, uniformly for x E [-1/2,0].
(b) There exists a steady state V, 7 such that for each x E [-1/2,0], v(x,t) -+ (x),

v'(xt) -, !(x), and a(x,t) -* F(x) as t -- oo. We emphasize that the steady
velocity gradient F and stress T may be discontinuous (as in Fig. 2).

(c) Let F, F be a steady state such that

= g'(U.) + e > const. > 0 . (4.4)

(Referring to Fig. 2, inequality 4.4 precludes top and bottom jumping and excludes the
region where T('5 ) decreases.) Consider a union U of small subintervals of - < x < 0
that are centered at points where F, and " are discontinuous. Let smooth initial data
be chosen such that IS(x, 0)1 is sufficiently small except in U. Then the solution of (M)
converges to the steady state V, T on the complement of U. Moreover, the measure
of U can be made arbitrarily small by choosing IS(x, 0)1 small enough. In this sense,
steady states are stable.(even if Th and F are discontinuous).

The numerical results discussed in §5 suggest that similar results hold for the system (JS).
Proofs for (JS) are under investigation.
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(6) The model problem (M) was studied also by Hunter and Slemrod (4]. In their con-
struction of the model, the steady-state relation 7 = g(UV,) between the stress and strain
rate is chosen to be gHs(vx) :- alHS(V,) - evs, where the graph of the function 0 HS re-
sembles Fig. 2 (but is independent of e). Hunter and Slemrod base their analysis on the
conservation laws

Wt - uz=0, 4.5a
aUt - COHS(w). = eu - au 4.5b

for the acceleration u = vt and the strain rate w = v.. Therefore, jumps in the strain
rate v, are seen to correspond to steady shock waves for the system 4.5 with e = 0. Based
on a local dynamical analysis of shock structure for small e, the centerline velocity is
shown to exhibit hysteresis under quasi-static cycling of the pressure gradient. (This same
behavior is observed in the numerical simulation of the system (JS); see §5.) We emphasize,
however, that this analysis cannot be applied to the model problem (M) as derived from
the Johnson-Segalman system (JS) because the function gjs(vz) = v,/(1 + v2) decays to
zero at high strain-rate.

5. Numerical Results

To study the dynamics of system (JS), we developed several different numerical meth-
ods; each has its advantages for certain ranges of physical parameters. Calculations with
these methods produce similar qualitative and quantitative results.

(1) Solid Mechanics Formulation: In this approach, the system (JS) is regarded as gov-
erning the extensional motion of an elastic-plastic bar. The first equation is momentum
balance, in which the parabolic term adds viscous "stiffness damping." The remaining
equations are incremental constitutive relations for the stress. The stiffness of the material
is reflected in the wave speed [(Z + 1)/] 1 / 2 . We have observed that the wave speed is di-
minished under loading, so that the material exhibits plastic softening. (See also Ref. [16]
for an interpretation of (JS) as governing a viscoplastic material.)

We have solved the system (JS) numerically using a method motivated by solid me-
chanics. The momentum equation is cast in Galerkin weak form, with the velocity approx-
imated as piecewise linear and the stress components as piecewise constant. With the time
derivative discretized using a trapezoidal approximation, and the shear stress determined
through a semi-implicit treatment of its evolution equation, the Galerkin equation is solved
for the velocity. Then the stress components are updated using an implicit form of the
constitutive equations; further details can be found in Ref. [8]. The stability of this method
has been analyzed for the system (JS) with Z frozen [11]: the method is stable provided
that Z + 1 > -E and the time step is restricted by At < 2/A in Eq. 3.7 i.e., At < 2 in (JS).
For Z + 1 < -e, the linearized equations and the method are unstable.

(2) Parabolic Formulation: Recall that the total stress is defined to be T = ar + ev,.
Introducing T as an independent variable for e > 0, the system (JS) is replaced by:

Tt=, 5.1a
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at =(Z.7+l)T )- 5.iLb

Zt = -a T ) Z. 5.1c

The boundary conditions are T,(-1/2, t) = -f and T(O, t) = 0. The velocity profile may
be reconstructed by integrating (T - )/e.

The system 5.1 has the form of a linear heat equation forced by a nonlinear heat
source that is governed by two auxiliary ordinary differential equations. To solve this
system numerically, we discretize the parabolic term in 5.1a implicitly while treating the
remaining forcing terms explicitly. Time integration is performed using a stiff ODE solver.

We remark that system 5.1 is convenient also for studying existence and regularity of
solutions of (JS).

(3) Conservative Formulation: The system (JS) is equivalent to the system (C); therefore,
it may be studied from the viewpoint of conservation laws. In Ref. [16], we have determined
completely the structure of scale-invariant nonlinear waves for (C) when c = 0. Such a wave
consists of a sequence of elementary scale-invariant waves, either centered discontinuities
or rarefaction waves, connecting constant states on the left and right. Discontinuities are
required to satisfy Liu's generalization of Olernik's entropy condition, which guarantees
that energy is dissipated (cf Eq. 4.3). This admissibility condition is equivalent to requiring
shock waves to have viscous profiles: admissible shock waves arise as limits of traveling-
wave solutions of (C) as e -4 0. Our analysis follows the techniques for general systems of
conservation laws discussed in Refs. [131 and [5].

With the structure of scale-invariant waves known, Riemann initial-value problems
may be solved. We have written a computer program that solves Riemann problems,
and have incorporated it into the Glimm-Chorin random choice method. This method
solves the Cauchy problem without introducing artificial Newtonian viscosity. We refer to
Ref. [15] for a detailed discussion.

As our first numerical experiment, we simulated system (C) with e = 0 using the
random choice method. The channel width was chosen so that a = 1. The flow was initially
in the classical steady state corresponding to the critical pressure gradient fcrit = f; then
the pressure gradient is increased abruptly to the super-critical value 1.2 fcrit.

The result is shown in Fig. 4. The fluid velocity v is plotted vs. position x at successive
time intervals; generally the velocity increases with time. During the early stages of the
experiment, the flow settled into a quasi-steady state. This latency effect is especially
evident in a plot of the centerline velocity as a function of time, and it is more pronounced
when the channel width (i.e., h - hence also a) is smaller. Eventually, however, a thin layer
develops at the plate in which the velocity rises to a value that is nearly constant across the
channel. For practical purposes, the fluid has broken free from the plate and is accelerating
uniformly under the applied pressure gradient; thus the fluid "slips." We do not claim to
have developed a new theory of wall slip at this point, though this phenomenon has been
associated with non-monotone constitutive relations by others [2, 9]. If this connection
is to be explored more deeply in the future, it is worth noting the success of the random

143



5

4

2

0
-0.5 -0,4 -0.3 -0.2 -0.1 0x

Fig. 4: Onset of slip for a fluid without Newtonian viscosity.

choice method in the post-critical, or = 0 regime; it is the only one of our methods that can
compute in this range.

The same experiment was performed for system (C) with a small, but nonzero, New-
tonian viscosity coefficient E. Fig. 5 shows the results for e = 0.01, as calculated using the
Lax-Wendroff method with Tyler artificial viscosity. What results is evidently a different
phenomenon, in which the shorter relaxation response (here modelled by Newtonian vis-
cosity) of the fluid arrests the acceleration in a layer near the wall. Now the layer is much
thicker, with its outer boundary corresponding to a discontinuity in the strain rate vz.
The solution approaches a steady state in which v, is discontinuous but the total stress
T = a(v,) + ev, is continuous. The steady state has the same laver thickness as predicted
analytically, but the centerline velocity is 20% too high; this is because the centerline ve-
locity is extremely sensitive to the slope of the velocity profile in the layer, which is affected
by the artificial viscosity in the numerical method. the layer formation is the key to our
interpretation of the spurt phenomenon.

More extensive experiments were performed using the solid mechanics algorithm. For
example, the calculation of Fig. 5 was repeated using this method and a graded mesh of 160
elements; the same layer thickness as shown in Fig. 5 was obtained, and the centerline ve-
locity of the long-time solution differed from the analytic prediction by about only 1%. We
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Fig. 5: Onset of spurt for a fluid with Newtonian viscosity.

also used this method to simulate experiments of Vinogradov, et al.with Polyisoprene [18].For these calculations, a and e were chosen to correspond to the measurements of Ref. [18].The dimensionless number a reflects the relative importance of inertial effects comparedto elastic effects, and e reflects the relative importance of the dominant relaxation timecompared to the secondary relaxation time. As discussed in §2, we use a zero relaxationtime to model the effect of a second relaxation time very much shorter than A- '. Whenthis is done, e is the ratio of viscosities given in §3. We emphasize that, although the e-termin system'(JS) appears formally as a Newtonian or solvent viscosity [1], there is no solventinvolved in Vinogradov's materials. The samples are labelled PI-1 through PI-8, oderedby increasing molecular weight, M. The following features of Vinogradov's polYisoprenesamples were used to determine the physical constants:
1. The elastic modulus, P, is independent of the molecular weight, AL.2. The contribution to the zero shear viscosity from the dominant relaxation time, go/M/A varies over nearly two orders of magnitude, due to variation in relaxation time,

A- ', with M.3. PI-1 and PI-2 do not exhibit spurt; there is a critical M below which the material will
not spurt.

4. For samples PI-3-8, the observed critical stress is not a function of 1I.
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Fig. 6: Centerline velocity vs. time.

These observations and the presumption that the secondary relaxation time and its associ-
ated viscosity are independent of Al, lead to a set of values of a and e that decreases with
.l. These values are readily obtainable from our definitions in §3 and the dimensional
information given in Ref. [8], where further details on parameter estimation may be found.
The results are shown in Figs. 6-8.

Fig. 6 shows the evolution of the spurt process in time; centerline velocity is plotted vs.
time for values of a and e of sample PI-7 with f = 1.2. The simulations were carried out
using zero initial data. The spatial discretization was a graded mesh with smaller elements
near the wall, consisting of 640 elements. The maximum velocity in Fig. 6 is scaled by a
Newtonian viscous response with viscosity e that happens on such a short time-scale as not
to be distinguishable from the t = 0 axis. The period of time from start-up to the onset
of spurt at t = 2.17 in nondimensional units is the latency period in which a quasi-steady
flow exists. Rescaling with appropriate dimensions gives the prediction of a latency time
of 346 sec. for sample PI-7. The spurt process in Fig. 6 has not been carried out for a long
enough time to achieve a very nearly steady state; numerical simulations which run for
about 5 more nondimensional time units would be required. Thus we predict that the whole
dynamic process takes on the order of forty minutes to unfold for this sample. We have run
a sequence of such simulations for each of the eight samples, allowing a sufficiently long
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Fig. 7: Volumetric flow rate vs. effective shear stress: (a) experi-
ment [18]; (b) numerical calculation [8]. Note that the horizontal
scale of this panel matches that of panel (a), but the vertical scale
does not.

time to obtain essentially steady solutions. Fig. 7 shows the results of these simulations
compared to the data reported in Ref. [1$]; volumetric flow rate, normalized in such a way
that it has units comparable to shear rate [81, is plotted vs. T at the die or capillary wall.
The value of T can be deduced by knowing the pressure drop and using the relation of

Eq. 3.11.
Fig. 8 shows the result of simulating a loading sequence in which the pressure gradient

f is increased in small steps, allowing sufficient time between steps to achieve steady
flow [81. The loading sequence is followed by a similar unloading sequence, in which the
driving gradient is decreased in steps. The initial step used zero initial data, and succeeding
steps used the results of the previous steps as initial data. The resulting hysteresis loop
exhibits features similar to those observed by Hunter and Slemrod in their model [4] (see
system 4.5 above), which they called "shape memory." The width of the hysteresis loop
at the bottom can be related directly to the molecular weight of the sample [8].

We have performed careful numerical experiments to test the validity of the results
we report here. One of the questions we sought to resolve involves the oscillations evident
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Fig. 8: Hysteresis under cyclic loading.

in Fig. 6 during the spurt process. In Ref. [8], results were reported on meshes much
cruder than the one used to compute the results of Fig. 6; the oscillations were larger
in amplitude which did not diminish with refinement of time step. Fig. 6 shows that
these oscillations diminish with refinement of the grid size, and we are led to conclude
that the oscillations reported in Ref. [8] are induced by spatial discretization error. This

* conclusion is reinforced by inspection of Fig. 6; the larger oscillations occur at later times,
when the layer boundary moves toward the interior of the die where the elements of the
graded mesh are larger. Eventually, these larger oscillations are damped, as they are using
meshes consisting entirely of larger elements. Our mesh refinement studies lead us to
infer that crude spatial resolution can lead to spurious oscillations in spurt dynamics that
oscillate about the correct mean value and lead to accurately represented steady states.
These conclusions have been confirmed by reproducing the results just described using the
parabolic formulation (system 5.1). The mesh was refined to 3072 equal-sized cells; it was
found that there is a weak stability condition relating time step to cell size. If this condition
is violated, the spurt appears to occur prematurely with the parabolic method on fine grids;
however, when the time step is refined on the finest grid, the results obtained with the
solid mechanics method and parabolic method agree to at least graphical accuracy, and
both give virtually the same estimate of latency time.
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In the region of parameter space characteristic of Vinogradov's data, much can be
deduced about the features of system (JS) without recourse to computed results. The de-
ductions which follow were, however, guided by detailed study of the results of numerical
simulation. First, since a is so small (of order 10-12), Eq. 3.11 holds virtually instanta-
neously and for all time. Thus in system 5.1, the first equation may be eliminated, and T
becomes a parameter whose value at any point in the die is given by Eq.(3.11). The result-
ing system of two ODEs can be analyzed completely by a phase-plane analysis [101 that
shows a single attractor for 0 < T < -l, giving pre-critical solutions not involving spurt.
If 1 < T < l and e < -, there are two stable attractors: one not involving spurt and one28
in which spurt has taken place. Latency can be interpreted as the time during which the
system stays near the first attractor, which we call the "latent attractor." When T > 1 and
e < there is no latent attractor; this result can be confirmed numerically. Furthermore,
for all fluids PI-3-8 that exhibit spurt, e < 1. An asymptotic expansion of the solution of
the two ODEs in system 5.1 for small e gives quantitative estimates of dynamic behavior
during latency and of the resulting asymptotic steady states [101. This asymptotic analysis
can also predict flow rates in steady states (and thus reproduce Fig. 7(b)) and predict the
shape memory in hysteresis. It is easy to see that Z satisfies the ODE

Z 2 +Z+T 2 (5)
zt = + Z + T (5.2)

at zero order in e (i.e., to O(e) accuracy) near the latent attractor. The latency time is the
time during which a retains.a relatively constant value of approximately T and grows only
at first order in e, while Z grows at zero order, goverened by Eq. 5.2. An initial value of
Z = 0 at t = 0 for Eq. 5.2 is not appropriate because the asymptotic expansion leading ,
that equation is only valid near the latent attractor; however, an early-time expansion can
be developed that is valid during the initial Newtonian response alluded to in connection
with Fig. 6 [10]. On this time scale (which is of order e) at and Zt are O(e - 1) while a and
Z are 0(1). This leads to

Z (1-T2)1-1 at t 0 (5.3)

When Eq. .5.3 is used as an initial condition for Eq. 5.2 at t = 0, the latency time is
estimated as the time at which Z = -1. This may be calculated directly by solving
Eq. 5.2 for t = t(Z), see [10]. The result for the case of Fig. 6, where iTI = f/2 = 0.6. is
a prediction of a latency time of 366 sec., which compares very favorably to the value of
346 sec. obtained from the full simulation.

In Ref. [8], several possible experiments are suggested that could verify the interpre-
tation of spurt put forward here; the key experiment suggested is the verification of the
molecular-weight dependence of the widest point of the hysteresis loop of Fig. S. We re-
mark that the shape of this loop is a key feature of "shape memory" in that the loop
always opens from the point at which unloading begins. This occurs as the solutions pro-
ceed from "top-jumping" in Fig. 2 through intermediate convexifications of the curve to
"bottom-jumping" at the point where a discontinuity in slope can be seen in the back part
of the loop in Fig. 8; this is in distinct contrast to the interpretation of Ref. [12], where
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bottom-jumping is always the rule for steady spurt solutions, and portions of the hysteresis
loop are retraced during unloading. To these experimentally verifiable signatures of our
model, the current analysis allows us to add more: When a and e are sufficiently small,
as they are with PI-3-8, latency time should be rather easy to measure, since a very slow
flow with comparatively little throughput can persist for many minutes before dramatic
growth occurs. We predict that latency can only occur for samples with e sufficiently small

or less for J-S, but the precise number may be model-sensitive). For J-S, it can only
81

occur for stresses in the range 1 < T < 1. It should scale with A at fixed T and obey
Eqs. (5.2) and (5.3) approximately.

6. Conclusions

ell-posed dynamical problems based on non-monotone constitutive relations need
not be unphysical. In fact, our Johnson-Segalman model provides a relatively simple
example which accurately describes spurt. Other models, based on more sophisticated
molecular theory, appear to have similar features [8] which require further investigation.
In addition to reproducing spurt, our approach leads to results which suggest new experi-
ments, as discussed in §5. Our numerical approaches to the fully time-dependent problem
for a J-S fluid at a high Deborah number avoid the "high Weissenberg/Deborah number
problem" at least in 1-D. We are currently investigating generalizations of our approaches
to multi-D problems of physical interest.
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POLYNOMINAL DEFINITION OF DISCRETE FIELD
POINT OF MAP OF DIFFUSION EQUATION - PART II

William F. Donovan
Mechanics and Structures Branch
Interior Ballistics Division

Ballistics Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ABSTRACT

The one-dimensional diffusion equation, IT. a 2Ts transposed into
algebraic expression (Part 1) as • 3 32

T(N,P) - 2 h 421 (A-az + Ca 2 + -g-e* ak )

where h,B,C, et. are whole numbers. It is developed that correlations in
sequenced A, ,C, etc. coefcients are Pascal Trianle and/or arithematic
square terms. Furthermore, these terms are epressible s Pokhamer
relations.
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iTRODU CrION

Part I of this report indicated a novel solution to the basic diffusion
equation of Phsics where the field boundary extends from zero to positive
infinity. The nodal points of the field net are identified as terminating
polynomials with the numerators of the coefficients found first by deduction -

for the lower orders - and then by extrapolation. Part II considers the
numerical analysis employed to complete the entire set of tables.

P RO CEDU RE

A. Direct Differences

Formulation of the polynomial form of the discrete solutions, Eq. (1), of
the diffusion equation from the Schmidt plot geometry is described in
References (1) and (2) and reflects a progressive trigonometric construction
where the degree and term extension increases witU time and decreases with
distance, time and distance referring to the unsteady heat flow application.

T (,h,P) - 0 ( A - A a + Am 22 _ A 3

2 f1 2 3 m AA ..... (

where m is tne independent variable,

N is a distance index,

P is a time index,

(P+N)-2- sin (P+N)I/2 I

j (k - term exponent of m), the individual term denominator exponent,
and * = a (T O - TiO), with

A, At, ,A2  ....... Ak the numerical coefficients of tne interior terms of
the equation.

The numerators of each term of the "nodal" equations, are uniquely related to
adjacent time and distance term coefficients of the same degrees. This relation,
originally found accidentally, is correlated by the table of differences shown in
Table I & 1-A where the boxed vertical sequence; 17548, 25147, 35401, 49024 and
66868, is established by tae reduction of the Scnaidt plot through the
trigonometric analysis. Step-wise right moving subtraction generates a column of
residual zeroes, an adjoining column of ones, and a digital sequence identified as
"IV" in Table I. Reducing tliis column "IV" to zero vertically then allows a
corresponding determination of tne particular values of the entire matrix from
inspection of the biased rows 1, 1I and III.

1. William F. Donovan, "Determiaation of Heat Transfer Goefficient in a Gun
Barrel from Experimental Data," "Ieznorandum Report tXL-.- -3428, January 1985
(AD# AISdS)

2. William F. Donovan, "Poloynomial Definition of Discrete leid Points of
%lap of Diffusion Equation, Part i," Aemoranaum eport MRL-A{-3649.
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Table 1. Difference Progression for Degree Zero Numerators

"n" EXPONENT 0

6

6 0
6 5__

12 5 0

11 5 _4

10 4 0

9 4 3

8 3 10H
7 3 2

1 6 2 10

5 2 1

4 1 0

3 1i7 2 o

121 13 10

S14

32 125

49 )

10
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Table 1-a (continuation of Table 1)

630 5 7

(1.9) 6.8)

1661 6 I13.9) 181.5,

5282 67A I
(21(5J4 .91 18.3)

13866 277 312 12 0

(1, 1 i) (4,101 (7,9)

8054 1186 s0
(3.111 (6.101 (9.91

21920 3958 392 13 0
(2.12) 1 (5.11) (8.101

12012 1578 93
(1.13) A, 121 17,111 (10.101I33932 5536 J8 A 0

1 (3.131 (6 .121 19111 1

90683 17548 2063 107

232009 5|80 7S99 592 ' 0

- j - (I,15) - (A. , 1 ( 7. 1 -2 10,121 .

572312 
.2163 251 7 26 5 1 12.1

37 76627 1025616

7 17 2 1 1 ( . ) ( 12

37677(2 -'Soto 1) -36 (8 13 .3

;A6681 2137"0 251369 13,

'71 16 161 1(7. 3) (10,141 (13 31

~992112028 13623 852 17

.f7f(3.177 (6 161 19.15) 112.141 -

S94633088 902 I 4221 I5
81"(5.171 S. 61 (16 .

9187) '868( 5 3

2463226 LQ1870 5228 1 173 -
S181 J977 1(126))

1130 1 90
10|. 77 192 6( 1

(13.171
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B. Summing Progression

Rewritifj Table I as Table 2, where the biased rows are horizontal and the
zero column is left-justified instead of right-justified, shows that the sun of
any two adjacent column values of any row gives the value of the next row entry
directly under the right-wise addendum. The sequence of Rtow I, regardless of
the degree of the term represented by the matrix, always starts with zero and
then maintains alternate zeroes to infinity. Each of the difference tables
corresponding to a given "m" exponent (Eq. (1)) can be resolved similarly,
except that each first row is carried in a unique progression. This progression
is repeated without the interspersed zeroes withiin the matrix.

C. Pascal Triangles

The classical Pascal triangle, Table 3, can be formed by simple
addition where each term is the sun of the two previous superior
terms and individual entries are represented by the binomial coefficient,Z Z!

z w (= where z and w represent tne row and column of a particular

coefficient o binomial expansion. A modification of the Pascal triangle is
found by writing the diagonals as rows whipn then generates the "arithmetic
square", Table 4, also known historically.

It is precisely these progressions alternating witn zeroes, which comprise
tne first rows of the individual "summing progressions" shown as Table 2. In
this case the digital enumeration of the rows indicates the degree of the "m"
term.

D. Pockhammer' s SymDol

Each row of Table 4 can be examined by finite differencing to establish,
via Gregory-Newton, a definitive polynomial expansion extending to infinity.
Furthermore, the algebraic equation can be simplified to a factorial form known
as Pockhammer's Symbol or as a r factorial. Appendix A presents an example of
such a development for "m" degrees zero through three. The complete arithmetic
square, Taole 2, can then be written as

f(v) N (2

where

r degree of a,
v column value

and f(v) = row value of Table 2. From Table 2, a complete construction of
Table I follows.

N.Ya. Vilenkin, Combinatorics, Academic Press, New York & London,
4971, pp 90-94.

Spiegel, A. K., Theory and Problems of Finite Jifferences and Finite
Difference Equations, Schaum's Outline Series in Aatnematics, McGraw-Hill Book
Company, New York, etc. 1971, p.p. 36-44.
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Table 3.* Pascal Triangle

9~~~~~~ 36 8 _2 4 36_

10 45 20 105 0 20 451 6\ 10
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Summary

A straight-forward method (arithmetic squares) is described to permit the

numerical construction of the differencing tables of Part I of this report.

The derivation through the Pascal triangle and correspondence to Pockhammer's

Symbol notation is demonstrated.
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APPENDIX A

Determination of Pockhaamer's Notation

A discussion of the Gregory-Newton analysis is presented in Reference 4. It
consists of determining a polynomial expression to represent a progressive
sequence of numbers. In the present application, it is used to examine the

base row development of Table 4.

Given a unit stepping difference in a counting reference, v, and a matched
sequence f(y);

f(y)= f(v) + Af(v) y(1) + a2f(v) (2)
I! 2!

+ 31 Y.

where

v is the step level,

f(y) is the dependent variable,

Amf(v) are the diagonal values of the difference table, and

y(0) =

y() y

Y(2) y(y-1)

y(3) y Y(y-1) (y-2)

etc.

For the case of "m" degree zero where f(y) is from Table 4:
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v f(y) f(v) &f(v)

0 1 1

1 2 0
1

2 3 01

3 4 01

4 5 01

5 6 01

6 7 01

7 8 0
1

8 9 0
1

9 10 0
1

10 11 0
1

1U 12 0

f(y) - f(v) + A(v) () .....

=1+v+O

(v + 1)

For m degree 1:

v f(y) f(v) Af(v) A2f(v)

0 1
2

1 3 1
3 0

2 6 1
4 0

3 10 1
5 0

4 15 1

f(y) - f(v) + Af(v) (1) + C (2)

1!+ 2!
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I
1 + 2v + v(v-l) + 0 + .....

22
1 2.(v-P3v +2)

=! (v + 1) (v + 2)

For m degree 2

v f(y) f(v) Af(v) A2 f(v) A 3f(v)

0 1
3

1 4 3
6 1

2 10 4 0
10 1

3 20 5 0
15 1

4 35 6
21

5 56

3

3v + - (v)(v-1) + (v) (v-I) (v-2) + 0

I= 3 3(v2 _ )+ (v2 -3v +2)
1 2 -

1 (v 3 + 6v 2 + llv + 6)

(v + 1) (v + 2) (v + 3)

The pattern continues so that:

Degree of "m"

= r f(y)

0 (v + 1)

1 1 (v + 1) (v + 2)

T

2 1 (v + 1) (v + 2) (v + 3)
T

3 1 (v + 1) (v + 2) (v + 3) (v + 4)
24

4 1 (v + 1) (v + 2) (v + 3) (v + 4) (v + 5)
120
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5 (v + 1) (v + 2) (v + 3) (v + 4) (v + 5) (v + 6)

720

and the geneiaTl expression is

1
f(y) = - -(v)

(r+ 1)' r+ 1

where (v) (v + 1) (v + 2) (v + 3) .. . .. (v + r + I

r + I

With respect to the original time index, P, of the diffusion equation polynomial;
v - P-i by Table 3, and

(v) r (P - 1 + 1) (P - 1 + 2) . . . . (P + r)
r+ 1.

= P (P + 1) (P + 2) (P + 3) . . . .(P + r)

so that

1

f (y) ------- (P)
(r + 1) ! r

wnich is known as Pockhammer's Symbol.

Gravio A. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-

Hill 3ook Co., Inc., New York, etc., 1961.
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List of Symbols

h exponent of 2 in external denominator

j exponent of 2 in each term denominator

k exponent of "' in final term

m independent variable

r degree of "m"

v column value of stepping sequence

f(v) row value of stepping sequence

w inferior component of binomial coefficient

z superior component of binomial coefficient

Al, A2, A3 , .... numerical coefficients

N distance index

P time index

T dependent variable

external numerator
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Annulus-based Inclusion Testing for Multiply-Connected Sets

Terence M. Cronin
US Army CECOM Center for Signals Warfare

Vint Hill Farms Station
Warrenton VA 22186

Abstract: A new data structure is introduced, as a vehicle to test for metrical inclusion of an arbitrary
point within a potentially multiply-connected closed curve. From graph theory and topology, we know
that if a line drawn from a point through a simply-connected closed contour non-tangentially intersects
the contour an even number of times, then the point is on the exterior; otherwise it lies within the
interior (the parity algorithm). This theoretical result is powerful, but fails for multiply-connected
curves. It also does not provide information about either the distance or direction from a point to a
contour. A proposed solution incorporates a new structure called the inner annulus, which is computed
with a corresponding generator function, using as input the digital representation of a closed Jordan
curve. The annulus can be viewed as the set of points which are 4-connected to the inside edge of the
contour. It is algorithmically generated by traversing the inside edge of the contour in a
counterclockwise fashion, and collecting the pixels visited, until the start point is seen again. During
this process, the interior of the contour is always to the left. Once the annulus is constructed, a test is
made to determine if an arbitrary coordinate is nearer the original contour or its inner annulus, which
determines respectively whether the point is exterior or interior to the contour. The same technique
may be applied to any holes contained in the contour, so that multiply-connected sets are
accommodated. The computational complexity of the algorithm is analyzed in terms of time, space, and
preprocessing requirements. A conjecture is posed, asserting the length of the inner annulus in terms of
the length and shape of the original contour. An attempt to prove the conjecture has yielded a formal
characterization of the shape of a contour, in terms of the convexities and concavities exhibited by the
boundary of the contour.

Introduction: High lev_1 map reasoning is a problem area which lacks a complete mathematical
formalization. This paper describes a new tool, termed annulus-based inclusion testing, built upon a
foundation of topology and geometry. The tool addresses only one smail portion of the spatial
reasoning problem: that of metrical interior/exterior region discrimination for multiply-connected
contours. Any holes contained in the parent contour are cross-referenced by a graph-theoretic structure
called a feature orientation lattice. Another tool under development, called equidistance
loci-reduction, is designed to rapidly render the contour nearest an arbitrary map coordinate, as well as
the relative direction and distance to the coordinate [Cl]. The flow of logic is as follows. Loci-reduction
serves as a filter to rapidly pinpoint the nearest topological feature to an arbitrary point. If the feature
is a closed contour, annulus-based inclusion testing decides whether the point lies within the boundary
of the feature, and if so, where inside. The feature orientation lattice provides subordination and
orientation relationships among the parent contour and any contours which it may contain. Figure 1
illustrates the way in which the tools are used as feeder technologies for automated map reasoning.

1.0 Problem Definition: Metrical Inclusion.

Given a digitized representation of a possibly multiply-connected closed Jordan curve and an arbitrary
point, develop a reliable, computationally efficient technique to decide whether the point is interior or
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exterior to the curve, while at the same time providing the respective distance and direction from the
curve and any contours which it may contain.

Ci 
- -

OP- 1W

Topologkal Level Geaph-theotetr. Level

C , ,
- Utah'

metcLvlSpatial Reasoning

Pi *3/iSL OW i-

Figure 1. Mathematical Tools to Support Automated Map Understanding

1. 1 Distance Calculations on a Binary Map.

There are several distance metrics discussed in the digital image processing literature. A good
compendium of these is contained in [G4]. The distance used here is the city-block distance, also
referred to as the d4 distance [R2]. This metric is used for point-to-point, point-to-contour, and
contour-to-contour distance measurements. The discussion which follows refers to trace contours; a
trace contour is the boundary of a spatial feature represented on a binary map.

Definition 1.1.1. Distance Between Two Points.

Let pl = (xl,yl) and P2 = (x2,Y2) be arbitrary points. Then the d4 distance between Pl and P2 is
defined:

d4[Pl,P2] = Ix1-x21 + lyl-y21.

Definition 1.1.2. Distance from a Point to a Contour.

Let Tj be a trace contour, and (x,y) an arbitrary coordinate. Then the distance from (x,y) to Tj is defined:

d4[(x,y), T] = min ( Ixi - xl -. lyi -yl), V points (xi,yi) ETj.

Definition 1.1.3. Distance Between Two Contours.
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Let Ti and Tj be trace contours. Then the distance from Ti to Tj is defined:

d4[Ti , Tj] = min (d4[(x,y), Tj]1 V points (x,y) (Ti.

1.2 Computing the Relative Direction of an Arbitrary Point From a Contour.

Let (xl,yl) and (x2,Y2) be arbitrary points. Let Ax = x1 - x2 and Ay = Y1 - Y2. Then the relative

direction of (xl,yl) from (x2,Y2), denoted dir[(xl,Yl),(x2,Y2)], is defined piecemeal by the following

function:

Conditions dir[(x 1,y 1), (x2,Y2)]

Ax >0 and Ay >0 NE

Ax >0 and Ay = 0 E

Ax > 0 and Ay < 0 SE

Ax = 0 and Ay <0 S

Ax < 0 and Ay < 0 SW

Ax<0andAy = 0 W

Ax < 0 and Ay > 0 NW

Ax = 0andAy>0 N

Definition 1.2. The relative direction of a point (x,y) from a contour T, denoted dir[(x,y),T, is defined:

dir((x,y),T] = dir [(x,y), (xc,yc) I (xc,yc) E T; D4[(x,y),T] = D4[(x,y),(xc,Yc)]]

2.0 Automated Discrimination of the Interior and Exterior of a Closed Contour.

2.1 OtherApproaches to the Problem.

Deciding if a point lies inside or outside a closed contour is a problem for which implementation is

non-trivial, especially when the caveat is added that the contour may be multiply-connected. There are

other techniques which address elements of Problem Definition 1.0. However, these approaches are of

limited utility. One such technique is the odd-even count contour-crossing technique, also known as the

parity algorithm (S1]. A potentially powerful approach to the problem, this technique "draws a line"

from the coordinate in question "through" a contour, and counts the number of times the contour is

crossed. The technique answers in the affirmative if the number of crossings is odd, and in the negative

otherwise. This is an example of a technique which avails itself of elegant theoretical results from graph

theory and topology, but for which implementation is fraught with error. The problems with the

technique are evident from the words which are double-quoted. First, an implementation must

accommodate drawing a line in the appropriate direction to "appropriately" intersect the contour.

Digitized contours of general complexity are frequently convoluted in such a way that a true crossing is

not detected, or a false crossing is counted as a valid one. Secondly, if a contour is multiply-connected, it

is possible for a point lying within one of the "holes" to be considered outside the parent contour,

which is a theoretically correct response, but is a failure from a pragmatic stance. This can have serious

ramifications in practice - for example, a boat on Great Salt Lake would not be contained within the

state of Utah. Another shor'.coming is that the decision relies upon a simplistic count, and returns no

metrical information about distance or direction from contours.
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2.2 The Common Sense Logic Behind the Inner Annulus Discriminator Technique.

Intuitively, the inner annulus of a closed contour is a set of points adjoining the inner edge of the
contour. The annulus is chosen to lie inside the contour because it is more computationally efficient
than constructing it outside (an inner track is shorter). The sole purpose of generating the inner annulus
is to create a memory-efficient computing technique to differentiate between the interior and exterior
of the contour. Simply stated, a check is made to determine if the point is nearer the contour or its inner
annulus. If it is nearer the annulus, it is decided that the point is inside the contour; otherwise, it is
outside (Figure 2).

8 7 6 5

S4 

10

P1, 112
P2

12 1

13 14 1- 18

7] = Original Contour

-' = Inner Annulus

Figure 2. A graphic to illustrate the utility of the inner annulus of a closed contour.
Point P2 is nearer the annulus and therefore inside; conversely. P1 is outside.

2.3 How Multiply-Connected Contours are Accommodated by the Inner Annulus Technique.

A hole contained in a closed contour is itself a closed contour; therefore it possesses an inner annulus.
Equidistance loci reduction (see discussion at 1.0) tells us if a point is nearer a multiply-connected parent
contour or one of the holes it contains. If the point is nearer the parent contour, a test is made to
determine if the point is nearer the contour or its inner annulus, to assert exterior, or interior
respectively. If the point is nearer a hole, the test is performed on the hole and its inner annulus, to
assert exterior or interior to the hole, respectively. But interior to the hole means exterior to the parent
contour, from the definition of multiply-connected set. In practice, this paradox is circumvented by
resorting to the feature orientation lattice, within which the topology of a multiply-connected set is
embedded.

2.4 Automated Generation of the Inner Annulus of a Closed Contour.

Definition 2.4a. An inner annulus generator function Ig is a function with domain the closed contour Tj,

and range lI defined as follows:
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a) Starting at an arbitrary point, order Tj in a counterclockwise direction and call the result Tj(n),
where n is the length of Tj.

b) For i from 2 to n + 1, let Ti(i) = (xi, yi), Tj(i + 1) = (xj + 1. yi + 1), and Tj(i-1) = (xi-1, yi-1O,
Tj(n + 1) = Tj(1). Furthermore, let Ax = xj - xi-1 and Ay = yi - yi-1; Axnew =xi + 1 -xi and
Aynew =Yi + 1 -yi.

Conditions Element of lj Produced

Fl. Ax > 0 and Ay > 0 Insert (xi1, yi-1 + 1)

SCI. (and Ay= 0, Axnew>0, Aynew<0] [Insert (xj.1 + 1, yi-1 +1)]

Sc2 . [and Ay>0, Axnew>O, Aynew<0] (Insert (xi..1 + 1, yi-1 +2)1

ST-. [and Ay = 0, Axnew = 0, Aynew >01 [Remove (xi-l1,yi-1)]

F2. Ax > 0 and Ay < 0 Insert (xi-1 + 1, yi-1)

SCI. [and Ax =0, Axnew<0, Aynew<o] (Insert (x,..i + 1, yi-1 -1)]

SC2 . [and Ax>0,Axnew<0,Aynew<o] (Insert (xi-t I + 2, yi- - 1)]

ST*. (and Ax = 0, Axnew>0, Aynew = 0] (Remove (xi- ,yi- 1)]

F3. Ax < 0 and Ay > 0 Insert (xi- - 1, yi- 1)

SCI. [and Ax= 0, Axnew>0, Aynew>01 (lnsert(xi-1 - 1,y- + 1))

SC2. [and Ax<0, Axnew>0, Aynew>0] (Insert (xi1i -2, yi-1 + 1)]

ST*. [and Ax = 0, Axnew<0, Aynew = 0] [Remove (xi..1,yi..1)]

F4, Ax < 0 and Ay < 0 Insert (xi1, yi-i -1)

SCI. (and Ay=0, Axnew<0, Aynew>0] [lnsert(xii1 - l,yi-1 -1)]

SC2. (and Ay<0, Axnew<0, Aynew>0] [Insert (xi-l - 1, yi-1 -2)]

ST*. (and Ay = 0, Axnew = 0, Aynew<01 (Remove (x1..i,yi..i)]

F1-F4 are first order operators.
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SC1 , SC2 , and ST* are second order operators.

Definition 2.4b. The inner annulus Ij is the set of points produced by inner annulus generator function
ig operating on closed trace contour Ti.

2.5 The Interior-Exterior Discrimination Function.

Once the inner annulus of a closed curve is generated, the discrimination process is a simple comparison
of distance to the curve with distance to its annulus.

Definition 2.5. A point (x, y) is said to be on the exterior of closed contour Tj, with inner annulus Ij iff
d4[(x,y), Tj] < d4[(x,y), Ij). Otherwise, (x, y) is said to be on the interior of Tj.

NW 
M 

E 
lV6. O1I

SW SE

I I

First Order Interior Annulus Generator Function Outputs

Figure 3. The first-order inner annulus generator operators. In actuality, there are four
distinct outputs, since the following pairs of operators produce the same points: NE-E,
SE-S, SW-W, and NW-N.

2.6 Concave Points Require Forceful Introduction: the Set C.

There are situations when the first order inner annulus generator operators are not sufficient to
produce a continuous annulus - examples are the concavity situations in Figure 4 (a), (b), and (c). In such
cases, to insure continuity, it is necessary to invoke second-order concavity operators to add points to
the inner annulus. In case (4b), the discriminator commits an error unless the first order outputs are
supplemented: if point III is not added to the annulus, then it is closer by one pixel to the original
contour, resulting in the erroneous decision that it lies outside.

For a given trace contour, the set C is defined to be the set of all points introduced by the second order
concavity operators.
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fit 2 11-1t

(a) (b)

11 3 3

(c) (d)

Local Concavity

Figure 4. Sources of local concavity, three of which require special second order
operators to introduce additional pixels. To ensure a continuous inner annulus,
behaviors ab, and c require that a third element (111) be attached to the inner annulus
after generation of elements I and II.

2.7 Intersections with the Original Contour: the Set T*.

The possibility exists that extraneous elements belonging to the original closed contour may be
introduced by the first order operators of the inner annulus generator function. Just as concavities in a
closed contour mandate that second order operators be invoked to introduce points forsaken by the
first order operators, local convexities require second order treatment to remove misbegotten points
(Figure 5c). It will be shown that all such points are produced by the convex corner triplets of the
contour, but first it is necessary to formally define what is meant by a convex corner triplet.

(a) (b)

-7

2

(c) (d)

Local Convexity

Figure 5. Sources of local convexity, three of which require special second order
operators to remove misbegotten pixels. Three of the sources generate problematic
annulus elements: behaviors b and d generate the same element (**) twice, whereas
behavior c generates an element (1) on the original contour. Note that the figures are
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respective mirror images through the vertical axis of those shown for local concavity at
figure 3.

Definition 2.7.1. Let (xi-l,yi-1), (xi,yi) and (xi, + 1, yi + 1) be three consecutive elements of a
counterclockwise-ordered contour Tj. Let Ax = xi - xi-1 and Ay = yi - Yi-1, Axnew = xi + 1 - xi and Aynew
= yi + 1 - yi. If one of the following conditions is true, then {(xi-l,yi-1), (xi,yi), (xi + 1, yi + 1)} is said to be
a convex corner triplet of contour Tj.

Ax Ay Axnew Aynew

>0 =0 =0 >0
=0 >0 <0 =0
<0 =0 =0 <0
=0 <0 >0 =0

The set T* is the set of all convex corner triplets contained in a closed contour.

Theorem 2.7. An inner annulus generator function Ig produces a point on the original contour if and
only if the point is the first element of a convex corner triplet.

The proof consists of two parts:

i.) If a point generated by an inner annulus generator function Ig is on the original contour, then the
point must be the first element of a convex corner triplet.

Proof (by enumeration): from a given contour point (xs,ys), there are 8 possible directions in which to
proceed, 4 diagonal (to the D-connected pixels) and 4 non-diagonal (to the 4-connected pixels). Each of
these moves in turn may proceed to one of five points (without violating the condition that a contour
contains no loops). Thus, there are 4*5 + 4*5 = 40 possible triplets emanating from the start point.
The search space may be reduced by exploiting the fact that orthogonal rotations preserve triplet shape.
Since the 4 diagonal moves are rotational variants of each other, as are the 4 non-diagonal moves,
without loss of generality a move to the NE is selected as the first diagonal move, and a move to the N as
the first non-diagonal move, resulting in a reduction of the search space from 40 to 10. From the start
point (xs,ys), ,he diagonal (NE) move generates the point (xs + 1,ys + 1) and the non-diagonal (N) move
generates (xs,ys + 1). From each of these points in turn there are 5 possible moves, as enumerated in the
following table:

D-connected (NE move) 4-connected (N move)

Original ig-Generated Original Ig-Generated

I. (xs,ys) (xs,ys)

II. (Xs + 1,ys + 1) (xS,ys+ 1) (xs,ys + 1) (xs-lys)

Ill. a) (xs + 2,ys + 2) (xs + 1,ys + 2) (xs,ys + 2) (xs-1,ys + 1)
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b) (xs,ys + 2) (xsys + 1) (Xs- 1,ys + 2) (Xs- 1,Ys + 1)
c) (xs + 1 ,Ys + 2) (xsys + 1 ) (xs- 1,Ys + 1 ) (xs,ys)
d) (xs + 2,ys + 1) (xs + 1,ys + 2) (xs + 1,ys + 2) Fxgys+ 2)
e) (xs + 2,ys) (xs + 2,y s + 1) (xs + 1,Ys + 1) (xs ,ys + 2)

Backtracking reveals that the underscored point is the only point contained in the original contour.
Furthermore, it is the first element of the convex corner triplet {(xs,ys),(xs,ys + 1),(xs-l,ys + 1)). In similar
fashion, it can be shown that the 4-connected (non-diagonal) moves E, S and W produce generator
elements which are the first points of convex corner triplets lying on the original contour. This
completes part i) of the proof.

ii.) If a point is the first element of a convex corner triplet, then it is assigned by the inner annulus
generator function Ig to the original contour.

Proof.: Without loss of generality, let the convex corner triplet consist of the points (xs,ys), (xs,y s + 1),

and (xs-l,ys+ 1), which is a north move followed by a west move. Then, by definition of the inner
annulus generator function, the first pair of points generates the interior point (xs-l,ys), whereas the

second pair generates (xs,ys), which is the first point of the convex corner triplet we started with. In
similar fashion, it follows that the other three orientations of a convex corner triplet yield intersections
with the original contour. This completes the proof of Theorem 2.3.

2.8 Points Multiply Visited by the Inner Annulus Generator: the Duplicate Set D(k).

It is possible for a point to be produced more than once during the generation of the inner annulus.

Examples are shown in the local convexity illustration, Figure 5(b) and (d). Let D(k) denote the set of
points visited at least k times during the generation of the :iner annulus. When computing the length
of the inner annulus, it is necessary to subtract the number of points which are visited at least twice, at
least three times, and at least four times, since each such point need be counted only once in the length
calculation.

The set D(k) is the set of points produced multiple times after generating the inner annulus.

3.0 The Bottom Line: How Much Memory Does the Inner Annulus Consume?

The first order generator function Ig assigns points on a one-to-one basis from the original contour to
the inner annulus. There are n such mappings. The second order concavity operators add points missed
by the first order operators; there are ICI such points. The second order convexity operators remove
points which are elements of the original contour; there are IT*I of these. Finally, there are points which
are generated multiple times; there are ID(2)1 + ID( 3)l + ID(4 )l of these.

Conjecture 3.0. The general expression for the length of the inner annul us Ij of a closed contour Tj is:

4
I ji = n + ICI - IT*I E ID(k) I,

k=2
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where n = the length of contour Tj
C = the set of local concavities contained in Tj
T* = the set of convex corner triplets contained in Tj

D(k) = the set of points produced at least k times by generator Ig.

4.0 Examples of Automated Inner Annulus Generation.

This section provides several examples of the inner annulus generator function operating on contours
especially chosen to exhibit peculiar behavior. Also, Conjecture 3.0 is validated for the examples.

(a) 2(b) C 3)2 (€)

(d) (e) 5 !,4 3 ! (f) !10!* 8 6:,s
*4 i* *' *] :**

.6~ 2 * 1 1
* 5

1 1,8 112:., 2 7S 41

Contour? n + ICI- ITI- ID(2)I-ID(3)1-ID(4)1 = Ill

a) No
b) No
c) Yes 4 0 4 0 0 0 0
d) Yes 4 0 0 1 1 1 1
e) Yes 8 0 4 1 1 1 1
f) Yes 12 4 0 5 5 1 5

Figure 6. Diagrams (a) and (b) are not contours because each violates a condition of the
definition (the first has length less than 4, and the second contains a loop from point 1
to point 3). Figures (c) and (d) are the shortest contours possible. The inner annulus of
(c) is the null set; whereas that of (d) is a singleton set. Figure (e) is interesting because
the inner annulus generator produces four elements of the original contour, while it
also produces the same interior element four times. Figure (f) is presented to
demonstrate multiple local concave behavior.

176



17116 15 14 13 12

19 1 8 9 10
20 7
21 a 4 6

23 22 I r

24 a1 2

25 17 1 C a Local Conaiy

26 it, 2 38 37 36 T. LoI Convexity
27 is 22 It 24 35 Di a Dupliaed Element

2892* 31 212 34
[J1 Original Contour

A Inner Annulus

Figure 7. The generation of the inner annulus for a sample contour of length 38. The
annulus elements are numbered in the order they are produced by the generator
function. Pixels marked with a T are elements of the original contour produced by
convex corner triplets; there are 6 such cases. Pixels marked with a C are produced by
second-order local concavity operators; there are 5 such instances. Those marked with
a D are multiply assigned by the first order generator function; there are 9 assigned at
least twice, and one assigned at least three times. By Conjecture 3.0, the length of the
annulus is predicted to be 38 + 5 - 6 - 9 - 1 = 27, which is the result obtained in practice.

s.6 S 4

10 71 2 2

11 Z 17 18 19

13 la 11 16
14, 15

Figure 8. The generation of the inner annulus of a closed contour of length n u 19. In

this example, C a (2,6}, T* - {7}, D(2 ) - {1,3,6,9,101, D( 3) - (3}, and D(4 ) . ( 1.
Conjecture 3.0 predicts that the length of the inner annulus is n + ICl - IT*I - ID( 2 )I -

ID( 3)1l-D( 4)1 - 19 + 2-1-5-1-0 a 14.
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5.0 Complexity Considerations.

Recall that the inner annulus is the set of pixels 4-connected to the inner edge of a closed
contour, and that an inclusion decision is made by comparing the distance to the contour with the
distance to the annulus. For implementation purposes, it is important to note that the nearest contour
element is actually 4-connected to the nearest annulus element, which produces an efficient algorithm.
If the original contour is of length n pixels, it can be sorted in n* log n preprocessing time, and uses
space of order n. Once the sort is done, a run time distance calculation to the annulus can be performed
in time log n + c, where log n is the time required for binary search, and c is the constant time required
to compute the 4-connected annulus element.

When comparing the annulus technique to competitive techniques, recall that other techniques
do not succeeo for multiply-connected sets, nor do they return the distance and direction to the
contour. This latter information is important for many real-world applications; for example, temporal
reasoning with two-dimensional maps. Therefore, although other contour inclusion techniques may
seem to be competitive in time complexity, the annulus technique is actually rendering a richer source of
information in the same amount of time.

6.0 Conclusions.

A function which tests for metrical inclusion of an arbitrary point within a multiply-connected closed
contour has been introduced. Metrical inclusion means that the distance and direction to the nearest
point of the contour is rendered along with the inclusion decision. The technique exploits a new data
structure called the inner annulus, which is automatically computed with a corresponding generator
function, using as input the digital representation of a closed Jordan curve. It is shown that the annulus
technique provides a richer source of information than the technique for simply-connected sets based
on an even or odd count of contour crossings, since the latter technique does not return either distance
or direction along with the inclusion decision. A conjecture is posed concerning the length of the inner
annulus in terms of the length and shape of the original contour. An attempt to prove the conjecture
has yielded several results pertaining to the convex and concave behavior of the parent contour. The
complexity of the optimized inclusion algorithm is shown to be of order log n execution time, requires
order n space, and consumes n * log n preprocessing time.
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Abstract

It is being shown that, depending on the parameters A E R, B > 0, q <

-1, the equation (-Br 2 +A)lq(r) + r lq(r) = 0 has either one positive

simple root, or two positive simple roots, or one positive double root, or

no positive roots at all. The equation is related to the parabolic

generalized Feller equation and is of statistical significance.
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UNIFORM ERROR BOUND MESHES IN PIECEWISE LINEAR INTERPOLATION

Royce W. Soanes
U.S. Army Armament Research, Development, and Engineering Center

Close Combat Armaments Center
Benet Laboratories

Watervliet, NY 12189-4050

ABSTRACT. The classical bound on the error in linear interpolation of
function f on interval (a,b) is

1 (b-a)2llf"U1(a,b)

where

11f"1(a, b)  = Max I f"(x)l

We will show how to obtain a mesh x for which

(xi+1-xi)211f"ll(xi'xi+1 ) = constant (very nearly)
li<n

The solution of this problem is important for the purpose of providing accurate
functional data in tabular form for use in numerically controlled manufacturing
machines (CAM).

GOOD MESHES. deBoor [1] has supplied us with a simple method for
generating good meshes. His idea is to make the classical error bound roughly
constant:

1
(xi+1-xi)211f"ltxi,xi+ 1) = constantl~i<n

or

(xi+1-xi)Ilf"n(xi'xi+l) = constant

or
Xi+l
f x IIf"Il(xixi+l)dx = cfxi i +

As n becomes large while If"(x)I > 0, neighboring x's will get close
together. This partially justifies the following asymptotic approximation of
the norm of f":

llf"l(xixi+l) - I f"(x)I = g(x)
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So we solve the simpler problem

xi+1

fi g(x)dx = c
xi

If we define G(x) = f g(t)dt, we have
xi

xiG(xi) = f g(t)dt = (i-i)c

and

G(xn) = (n-1)c

Therefore

G(xi) i-1

G(xn) n-1

and we finally have deBoor's method for generating good meshes for piecewise
linear interpolation

i-i
x G-1 (--- G(xn))

n-

where
x

G(x) = f g(t)dt
xi

and

g(t) = I f"(t)l

In practice, we typically have only a positive, continuous, piecewise
linear estimate of g over some mesh u. We will denote this estimate of g by v.
G as defined by

x
G(x) f I v(t)dt u1 4 x ( um

U'

would then be piecewise quadratic and invertible in the following manner:

= x*= u, +2(G*-Gi)G-(G * )  = x* = ui  -+ - -- -
vi +r

where

G 1 = 0 , Gj+= Gj + (Uj+l-Uj)(vj+vj+l)/2 1 j < m
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Gi 4 G* 4 Gi+,

p = (G*-Gi)/(Gi+I-Gi)
and

2 2

0 = (I-p)vi + PVi 1

Unfortunately, good meshes are not always quite as good as we might like
them to be. Specifically, the lengths of the longer subintervals are always
overestimated because the asymptotic approximation to the norm of f" is least
valid for these longer subintervals. This, of course, leads to larger error
bounds on the longer subintervals. The error bounds on the shorter subintervals
are always pleasingly uniform because the asymptotic approximation is most valid
for these shorter subintervals. In addition, it is easy to prove that for
f(x) = xP (p > 2, 0 4 x 4 1), the largest error bound on a good mesh is exactly
equal to the largest error bound on a uniform mesh (xi+1-x i = const)!

BETTER MESHES. The following problem is correctly described in [1] as
being quite difficult to solve in general:

Find n-2 x's (xI and xn fixed) such that

(xi+1-xi)llf"I(xixi+1) = (xi+l-xi)llgll(xi,xi+ 1 ) = c for 1 4 i < n

Even if we knew what c was, solving

(xi+1-xi)%g%(xixi+l) = C

for xi+l given xi would still be quite difficult in general.

The interesting thing is that this problem is not difficult to solve if we
substitute v for g! In addition, if v is a very good approximation to g (with m
>> n), we will get a virtually constant error bound for the entire mesh. At any
rate, irrespective of the accuracy of v, we will be doing the best we can under
the circumstances to solve the original problem.

MESH FUNCTION ,.(c). For the correct value of c and for the correct mesh x,

(xi+1-xi)lvll(xi xi+1) = c

or
Xi+1

f IlvU (xi,xi+l)dx = c
xi

Defining the piecewise constant function y by

Y(x) = HvII(xixi+l) (xi 4 x 4 xi+ 1 )

we obviously have

y(x) ) v~x) for all x
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Now, since
Xi+i

i y(x)dx = c
xi

we have
xn

f y(x)dx = (n-I)c
xi

but y(x) ) v(x) 0 0, so
Xfl Urn

f y(x)dx ) I v(x)dx
xl u1

and

(n-1)c ) f v(x)dx
Ul

Therefore, a lower bound on the correct value of c is given by

-- um v(x)dx
n-i Ul

For an incorrect value of c(c), we define Y and X:

7(x) = llvI(xiXi+1 ) (xi 4 x 4 Xi+l)

where

w ei+ 1  y(x)dx = c
xi

Therefore

I v(x)dx = (v-l)c + I.. y(x)dxxl xl)

where p is the number of subintervals over which y is defined, x,+l = Um, and

V+ 1fx-~ I(x)dx 4

xv

We also have

Xl)
(l-1)c = x y(x)dx

x1
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therefore,

y(x)dx
C X1

Now since

f y(x)dx
xl

is bounded below by

f v(x)dx
Ul

and above by

(Um-ui)llvIi(ui,Um)

v is large for small c and small for large c. Now, for the correct value of c,
we want

f V(x)dx = I y(x)dxXl xl

or
um

(V-1)c + f_ y(x)dx = (n-1)c
X1)

We therefore define the mesh function p by

p(c) = (v-n)c + (Um-XV)Uvn((,um)

For small c, v will be large and W will be positive. For large c, V will be
small and ji will be negative. For the correct value of c, p will be zero. But
may there be more than one zero of W? For the correct value of c, we will have

(Um-X)IIVU( p,um) = c

and

V = n-1

For a slightly smaller value of c, xv will be very close to um and we will have
v = n. This means that the entire (nearly zero) contribution to A will be made
by

(Um-XV)IIvI(xv,um)

187



Now suppose that the original function f has a perfectly linear region on
the right and v is identically equal to zero over a finite interval. The norm
of v will therefore be zero and further slight changes of c will still not
change v and will still maintain a zero norm for v. We therefore conclude that
p can be identically equal to zero for some finite interval to the left of the
correct c. This is not really a problem, however, since we only need to be sure
to compute the riQhtmost zero of p.

We now show the algorithm for computing g(c). To compute w(c):

a:=ul , Xl:=U_ , V:=O

solve (b-a)Ilvll(a,b) = c for b (if possible, otherwise b:=um)

v:=v+l

v<n ? no
4yes

Xv+l:=b

b = um ? yes
,no

a:=b

g:=(4-n)c + (b-a)Ilvll(a,b)
Xn:=um

When p has been evaluated for the last time, near the correct value of c, we
shall have collected the correct mesh x.

SOLVING (b-a)llvll(ab) = c FOR b. This nonlinear equation turns out to be
quite easy to solve noniteratively due to the piecewise linearity of v.

Given a, i, and c such that ui 4 a < ui+ I , we want to find b such that

(b-a)llvI(a,b) = c. We set j = i+1 initially and increment j as necessary until

Mr(uj-a) > c

and

Mg(uj_1-a) 4 c

where

M1 = v(a) if j = i+1

Mi = Max{v(a),vi,...vj.1 1 if j > i+1
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and

Mr = Max(MiirVjI

Therefore

MR= flvi(a,uj..1)

Mr = IVI(auj

and b will lie somewhere between uj.1 and ujp

v~b) Mr

9, V.

1 1 ~) +1 Vj-1

2. a i+1 Uj-1 )

Figure 1. Diagrammatic reference for solving (b-a)fvH(ab) = c for b.

if Mr = N, we want

(b-a)Mf c

therefore b =a + c/Ml.
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If Mr > MI, we first need to compute the transition point t. Let

s = (vj-vj-l)/(uj-uj-1)

= (Mr-Mf)/(uj-t)

Therefore,

t = uj - (Mr-MJ)/s

If MI(t-a) ) c, b must lie to the left of t, so we want

(b-a)Mj = c

Again we have trivially that

b = a + c/M

Now if Mj(t-a) < c, then b must lie between t and uj. We therefore want

(b-a)v(b) = c

but

Mr - v(b)

uj - b

Therefore,

v(b) = Mr - s(uj-b)

and

(b-a)(Mr-s(uj-b)) = c

= (b-a)(Mr-s(uj-a+a-b))

- (b-a)(Mr-s(uj-a)+s(b-a))

We therefore have the following quadratic equation for b-a:

s(b-a) 2 + (Mr-s(uj-a))(b-a) - c = 0

Letting k = Mr-s(uj-a), we have

-k ± /ka+4sc
b- 2s

We need the plus sign in order to get b - a > 0 irrespective of the sign of k.
We therefore have
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b=a+ Vk2+4sc - k fork<O2s -

and for k > 0, we rationalize to get

b 2c
b=a+ 2

k + V~k2+4sc

Thus we see that the computational complexity of solving (b-a)U1vU(ab) = c for b
is nearly trivial indeed, making the "better mesh" algorithm quite efficient.

SOME COMPUTATIONAL RESULTS. All the following examples have been obtained
using a uniform preliminary mesh of size m and exact evaluation of f". The
first two figures (Figures 2 and 3) show a virtually constant error bound pat-

tern for the two functions x10 0 and (1-x}1 0 0 . These two functions have very
flat regions to the left and right, respectively, and their respective meshes
are naturally mirror images of each other. The mesh functions for these two
cases are quite different, however, as indicated by Figures 4 and 5. The

(1-x)' 00 mesh function behaves as it does due to the large flat section to the
right. Note the lack of monotonicity further to the left of the correct value
of c and the way W becomes and remains monotonic as c is approached from the
left. Also note that the correct values of c are the same for both cases, as
expected.

Figures 6 through 9 compare good and better meshes for the test function
xlo(1-x)20 . Note the larger error bounds for the longer subintervals in the

good mesh. Figures 10 and 11 indicate the effect of reducing m and the accuracy

of v.

Figures 12 through 15 compare good and better meshes for a larger value of
n. Figure 16 shows the effect of small m. Note that there is hardly any

discernible difference between the better meshes for large and small m. Figures

17 and 18 show the equality of the largest bounds on uniform and good meshes,

respectively. Figure 19 shows the better mesh bounds for this case.

The code contained in the Appendix, written in SALOME, computes better
meshes. Reference (2] may be consulted for interpretation of the code, but it
should be sufficient to know that IF and FI delimit conditional statements, DO
and OD delimit looping statements, comma in a conditional means "then," semico-
lon in a conditional means "else," and sharp signs (#) delimit loop exit con-
ditions.
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ERROR BOUND PATTERN FOR BETTER MESH
X**100

M=700 N=7xl-2
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ERROR BOUND PATTERN FOR BETTER MESH
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Figure 3
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MESH FUNCTION AND RIGHTMOST ZERO THEREOF

M=700 N=7
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Figure 4

MESH FUNCTION AND RIGHTMOST ZERO THEREOF
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Figure 5
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FUNCTION DEFINED ON GOOD MESH
X**8( 1-X)**20
M=1000 N=10
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ERROR BOUND PATTERN FOR GOOD MESH
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Figure 7
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FUNCTION DEFINED ON BETTER MESH
X**10( 1-X)**20
M=1000 N=10
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Figure 8

ERROR BOUND PATTERN FOR BETTER MESH
X**1( 1-X)**20
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Figure 9

195



ERROR BOUND PATTERN FOR BETTER MESH
X**10( 1-X)**20
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Figure 10

ERROR BOUND PATTERN FOR BETTER MESH
X**I0( 1-X)**20
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Figure 11
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FUNCTION DEFINED ON GOOD MESH
X**10( 1-X)**20
M--600 N=60
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Figure 12

ERROR SOUND PATTERN FOR GOOD MESH
X**10( 1-X)**20
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Figure 13
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FUNCTION DEFINED ON BETTER MESH
X**10( 1-X)**20
M=600 N=60
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Figure 14

ERROR BOUND PATTERN FOR BETTER MESH
X**10( 1-X)**20
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Figure 15
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ERROR BOUND PATTERN FOR BETTER MESH
X**10( I-X)**20
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Figure 16

ERROR BOUND PATTERN FOR UNIFORM MESH
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Figure 17
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ERROR BOUND PATTERN FOR GOOD MESH
X**S
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ERROR BOUND PATTERN FOR BETTER MESH
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Figure 19
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APPENDIX

SUB UEBMSH ( M U V N X RELERR ---------------- ----- UEBMSH
-- FOR UNIFORM ERROR BOUND MESH, SOLVE FMU(CJ=0 BY BISECTION

O----
M=NO. OF ABSCISSAS IN PRELIMINARY MESH
U=ABSCISSAS IN PRELIMINARY MESH
V=APPROXIMATION TO SQUARE ROOT OF ABSOLUTE VALUE OF

SECOND DERIVATIVE ON PRELIMINARY MESH
N:NO. OF POINTS IN FINAL MESH
X=ABSCISSAS IN FINAL MESH
RELERR=RELATIVE ERROR IN COMPUTING C
-- l
OP U 1 9 V I 9 X I t RELERR
00 CI 9 C2 , FMU , FCI , FC2 9 ABSERR , AE , C , FC v CC
1=0 CI=0.0DO
DO II1 # I >= M #

CI=C1'(U(I+I)-U(II)*(VII)+V(II')/2.0DO 00
CI=CI/(N-1)
FCI=FMU(Cl,M,U,VvNX)
a FCI > O.PO0 a
C2=1. 300*C 1
FC2=FMU(C2,M,U,VNX)
DO 9 FC2 ( O.ODO #

IF FC2 > 0.000 , Cl=C2 F,
C2=I.300*C2 FC2=FMU(C2,M,U,V,N,X) 00

A3SERR=RELERR*C1
AE=2.000*ABSERR
DO # AE < ABSERR #

C= (Cl+C2)/2.0DO
FC=FMU(CMU, VtN, X)
IF FC >= 0.000 , CI=C ; C2=C FI
AE=C2-CI OD

RET

-- > GETC ( CC I - "GETC
-- GET CONSTANT
CC=C
RET END
OPFUN FMU ( C M U V N X I---- -FMU
-- 4ESH FUNCTION OF C TO BE ZEROED TO GET UNIFORM ERROR BOUND MESH
OP FMU , C I U I V 1 X I.
OP A , VNORM , B .
[=1 A=U(IJ X(II=U(Ii NU=O
00 FINDB ( A I C M U V VNORM J B NU=NUIl

IF NU < N , X(NU Il=B FI
# B = U(M) #
A=B I=J-I 00

FMU= (NU-N) *C+ (B-A$*VNORM
XI NJ=U(M)
RET END
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SUB FINDS ( A I C M U V VNORM J 8 ) - ------ ---- FID
-- SOLVE (B-A)*SUPNORM(Y OVER INTERVAL (A,BU)=C FOR 8
OP A C U 1 9 V 1 VNORM 9 B v VNORt4L 9 VNORMR
OP S ,T *E 9 DSQRT
2 A >= ~U( a a A < U(I'1) @
J=I+1

VNOPMI=V([I)*S*(A-UII))
-- FIND ROUGH LOCATION OF 8
09 IF VNORML < V(JI 9 VNORMR=V(J) ; VNORMR=VNORML Fl

4 VNORMR*(U(J I-Al > C #
IF J = M t S=U(M) VNORM=VNORMR RET FI
J=J+l VNORML=VNORMR 00

-FIND PRECISE LOCATION OF B
-TAKE CARE OF TRIVIAL CASE

IF VNORML = VNORMR p B=A+C/VNORML VNORM=VNORML RET Fl
-- COMPUTE TRANSITION POINT
S=(V(J )-V(J-1) I/(U(JI-U(J-1) I
T=U(JJ-( VNDRMR-VNORML)/S
-- TAKE CARE OF OTHER TRIVIAL CASE
IF (T-A)*VNORML >= C 9 B=A+C/VNORML VNORM=VNORML RET F!
-- TAK(E CARE OF NONTRIVIAL CASE
E=VNOR'4R-S*(U( JI -A)
IF E >= 0.000 t B=A+2.ODO*C/(E+DSQRT(E**2+4.000*s*C)I

B=At(OSQRT(E**2+4.000*S*CI-EI/(2.ODO*S) F!
V4RM=V(J-1U+S*(B-U(J-1))
RET END

202



RELATIVISTIC THERMODYNAMICS OF REAL GASES
WITH BROKEN INTERNAL SYMMETRY

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. The relativistic state equation for real gases with broken in-
ternal symmetry is developed. This is done by solving the complex form of a
relativistic trace equation for the virial state equation of the real gases.
The resulting solution affects only the third and higher virial coefficients.
The complex relativistic third virial coefficient is given by a solution of
two coupled differential equations. An approximate solution is found which is
valid in the high temperature region, and an expression for the internal phase
angle for the third virial coefficient is obtained. From this it is possible
to develop expressions for the internal phase angles of the pressure, internal
energy, entropy, enthalpy, and free energy of real gases that exhibit broken
internal symmetries. Mixtures of interacting gases with broken internal sym-
metry are suggested to exhibit an interference phenomenon whereby the total
pressure and internal energy will oscillate slightly in magnitude as the den-
sity of the system is increased. Accurate high temperature state equations
of real gases are important for the description of the equilibrium configura-
tions of gaseous stars, and for the description of nuclear explosions in the
atmosphere.

1. INTRODUCTION. Spontaneously broken symmetry is a common phenomenon
in physics because it appears in such diverse situations as ferromagnetism,
superconductivity, weak interactions, and the vacuum screening currents that
produce the asymmetric vacuum.1 - 4 It is associated with a phase difference
between a free particle in a potential and a particle in a coherent state of
particles which forms due to some special system of forces. In superconduc-
tivity it is the Cooper pairs of electrons that form a self-coherent system
which violates gauge invariance. In a similar fashion the vacuum state is
thought to exhibit spontaneous symmetry breaking due to the presence of a
Higgs scalar field which has a nonzero value for a minimum potential energy.

In relativistic thermodynamics a similar broken symmetry has been suggest-
ed to exist in the renormalized state equations of solids and quantum 

liquids.5

This broken sy-mmetry is associated with intrinsic phase angles of the thermo-
dynamic state functions such as internal energy and pressure, and is due to the
interaction of spacetime with bulk matter and the vacuum. The internal phase
angles of the coherent state must be considered when applying the first and sec-
ond laws of thermodynamics because the differentials of the state functions,
such as the entropy and internal energy, must include a rotation in internal
space.5 This affects the measured state equation of thermodynamic systems such
as solids, liquids and gases. This paper considers the vacuum induced broken
symmetry of the state functions of the real gases. The broken symmetry appears
in the third and higher order virial coefficients of the state equation for
real gases.
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The effects of the Minkowski metric of spacetime on the equation of state
of bulk matter was originally described by the solutions of the scalar trace
equation 6

U + T 
d 

V = U+ T pav

where U = relativistic (renormalized) internal energy, P = relativistic pres-
sure, T = absolute temperature, V - volume of substance, and Ua and pa - cor-
responding nonrelativistic internal energy and pressure. Throughout this paper
the index "a" will refer to nonrelativistic (unrenormalized) calculations. It
has been suggested that the spacetime induced broken symmetry effects on bulk
matter can be represented by the following complex number trace equation5

U+ T (d)V_ 3V -(PV) =Ua + T (2)+T p U (dT a

whose solution yields complex numbers, with internal phase angles, for the state
functions of relativistic thermodynamics. Complex number solutions arise only
in those cases for which there are nonzero gauge terms of the form s 6

T-i #0 (3)T dT ;-V

d 0 (4)

This includes interacting systems and the general case of the noninteracting
relativistic Fermi gas.

The unrenormalized pressure and internal energy density for the real gases
are given by

7 ,8

pa nRaT[l + nBa(T) + n2 C a(T) + n3 D a(T) + (5)

a3 - BT a 1nTCa i Da -. ] 6
Ea= nRaT[- - nT 1T 2 T 3 n T (6)

where

n N/V = (7)

where N - number of moles, V - molar volume; Ra , B a(T) ,a C(T) and Da (T) = non-
relativistic values of the gas constant, second virial coefficient, third vi-
rial coefficient, and fourth virial coefficient respectively. The correspond-
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ing renormalized pressure and energy density that are obtained from the solu-
tions of the scalar trace equation (1) are written as

6,9

P = nRT[1 + nB(T) + n 2C(T) + n D(T) + ---] (8)

E R[- T2B - -Ln2T-C -I nB3T D ... ](9)3 3T 2 T  3 DT

where

R = Ra  (9A)

B(T) = B a (T) (10)

C(T) = Ca(T) - 3[Ba(T)]2 en Ca (11)

a T Ba(T) 2/3 T I Ba(T) 2/312)
TR Ba(TR) TCR Ba(TCR )

and where TR = relativity temperature constant, and TCR = conjugate relativity
temperature constant. An expression for the renormalized fourth virial coef-
ficient D(T) has not been obtained.

The solution to the complex number trace equation (2) for the real gases
is written as

=Pej P = nRT[l + nB(T) + n2C(T) + n3D(T) + (13)

B n2 n3 ..... (14)
Eej 'E = nRT[-! - nT LB r - 2 T L-- L3 T D(4

where

= BejeB (15)

= CejeC (16)

D DeJ eD (16A)

are to be determined from a solution of the trace equation (2). Only B and
are obtained in this paper, and in fact C is obtained only through a high tem-
perature approximation. It is the real parts of the complex number virial co-
efficients, pressure and internal energy that are the measured quantities.
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The determination of P and 6p for real gases with broken internal symme-
try is important because the state equation of real gases enters the physical
description of such diverse situations as the equilibrium configuration of
stars and the latent heat associated with the gas-liquid phase transition.
Consider for instance the Clausius-Clapyron equation for a real gas with
broken internal symmetry

1
D
- 1 3

dP

T(v 2 - vl) dT (17)

where Z = complex number latent heat of vaporization, v2 = specific volume of

vapor, v, = specific volume of liquid, and dP/dT = slope of the vapor pressure
curve. The complex number latent heat of vaporization can be written as

Z = tejet (18)

where Z = magnitude of latent heat, and ep - internal phase angle of the latent
heat of vaporization. Equation (17) can then be written as the following three
equations

= T(v 2 - vI) /(aP/aT)2 + (P 2/ T) 2 (19)

6 =Pep + SPT (20)

tan PT =P P /3T (21)
P,T P3

Note that if @p = 0 the standard form of the Clausius-Clapyron equation is re-
gained. The measured value of the latent heat is Z cos 6t .

Accurate state equations for the real gases, including broken symmetry
effects, are important for stellar structure calculations because the internal
phase angle of the radial coordinate is related to the internal phase angle of
the pressure. Therefore the complex values of the third and higher virial co-
efficients of the real gases will play an important role in stellar equilibri-
um calculations. In addition, it has been suggested that the third virial co-

efficient of the real gases can be utilized in the design of a gravitational
wave detector. '1

This paper calculates the internal phase angles of the second and third

virial coefficients of the real gases. The phase angle of the second virial
coefficient is determined to be equal to zero. The evaluation of the internal
phase angle of the third virial coefficient is more complicated, and has been

determined only in the regions of high temperature. The internal phase angles

of the pressure, internal energy, entropy, enthalpy, and free energy are then
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calculated in terms of the virial coefficients and their internal phases. The
heat capacity for a real gas with broken internal symmetry is then evaluated.
Finally, a general discussion of the interference effects expected to occur in
mixtures of asymmetric gases is given.

2. THIRD VIRIAL COEFFICIENT FOR ASYMMETRIC REAL GASES. This section uses
the complex number trace equation (2) to solve for the renormalized values of
the second and third virial coefficients of the real gases with broken internal
symmetry. It has been shown that the real number trace equation (1) does not
change the value of the second virial coefficient as shown in equation (10).6
In a similar fashion it is easy to show by substituting equations (13) and (14)
into the complex number trace equation (2) that the second virial coefficient
satisfies the following relation6

Id = I dr (22)
HdT -adT

where

8- RTB (23)

a af= RT a (24)

Equations (22) through (24) imply that

B= BejOB = BR + jBI  B = real number (25)

which gives

BI = 0 (26)

e B = 0 (27)

BR = Ba (28)

Therefore the relativsitic value of the second virial coefficient, as deter-
mined from a solution of equation (2), is a real number which is equal to the
unrenormalized value of the second virial coefficient.

The calculation of the complex number values of the third virial coeffi-
cients follows in a more complicated fashion from a solutLon of equation (2)
for the real gases. An expedient way of doing the caluclation is to make use
of the results for real gases that have been obtained for the relativistic form
of the third virial coefficient from a solution of the scalar relativistic trace
equation (M).6 First define a function F(T) which is given by
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RTC(T) - RTCa(T) + ?(T) (29)

then substituting equations (13), (14) and (29) into the trace equation (2) gives
the following equation for f(T)6

df+F
d-+.- -G (30)
dT T f-G(0

where

F -I - 2 
(31)

a dT

G - a [R/c la( a - Td Ia/dT) - 8
a ]  (32)

R 
2

B a (1 + 2 T d8
a

RT 2 a dT

where CV I 3R/2 . Equations (30) through (32) are of the same form that has

already been obtained in Reference 6 for the scalar relativistic trace equa-

tion (1) except F(T) is a complex number.

The complex number F is written as follows

f = - fe J f  (33)

fR = - f Cos af (34)

fl a - f sin ef (35)

with f > 0 , and where f and 6f are to be determined. Note that the use of the

function f is different from that in Reference 6. In the present paper f is
used as a magnitude of a complex number and is always positive. The choice of
the negative sign in equation (33) is made so that 6f is small and does not con-
tain the T associated with negative real and imaginary values of f in the re-
ions of high temperature. Placing equation (33) into equation (30) gives

eje ( + if def + If) = _ G (36)
dT d

Taking the real and imaginary parts of equation (36) yields
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Cos f (df_+ f) - sin f f = - G (37)coOf dT Tf f in 8  dT

sin e ( dT f) + Cos f = 0 (38)

f4.+f T CO ef f--

Equations (37) and (38) are the two required equations for determining f and
Of , Equations (37) and (38) can be rewritten as

f def/dT
tan Of - I (39)

df + Ff
dT T

+ E f)2 + (fd6f/dT) - G2  (40)

Equations (37) and (38) are difficult to solve without some approximations.
In this paper a solution of equations (37) and (38) is obtained that is valid
only for high temperatures.

An approximate solution for equations (37) and (38) can be obtained by
assuming that Of is small so that

sin f 6 f ' 0 (41)

cos ef f 1 (42)

f - f (43)0

Substituting equations (41) through (43) into equations (37) and (38) yields

dfo+F
-d f - G (44)

- 6fG + f d = 0 (45)

where all second order terms of Of are dropped. It has already been shown
that the solution to equation (44) is

6

f - 3RT(Ba)2 Zn *a (46)
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so that from equations (33) through (35) it follows that

? n 3RT(Ba) 2 en a eJef (47)

fR a3RT(Ba ) 2 a cos 8f (48)

f r - 3RT(Ba) 2 Z ,a sin 6f (49)

This solution is valid only when fo > 0 since in fact f is the magnitude of a
complex number. Therefore the assumption that Of is small and that fo > 0 re-
stricts the validity of the approximate solution to the regions of high temper-
ature. For this case fR < 0 and fi * 0 . Combining equations (29) and (47)
gives the following approximate relationships for the renormalized third virial
coefficients

C(T) =Ca (T) -3(Ba) 2 Zn a eJef (50)

C R(T) =Ca (T) -3(B a ) 2 t.n 1Pa Cos 0 f (51)

CI(T) = - 3 (Ba)
2 Zf pa sin ef (52)

It is the real value of the third virial coefficient CR that is measured from
experimental pressure versus volume curves at constant temperature.

It remains only to obtain Of from a solution of equation (45) which can be
rewritten as

d6f/ef = G/f dT (53)

tnlefj - fG/f° dT (54)

Combining equations (24), (32) and (46) gives

G -R(Ba) 2 (3 + 2 T dB ) (55)
Ba dT

1 2 d Ba
G/f " -f ( + - dT )/ Zn ,a (56)o T 3Ba dT3B2
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But from equation (12) it follows that

d tna . 1 2 dBadT -- (57)
dT_ T 3Ba dT

Combining equations (54), (56) and (57) gives

/nkefI -f dT a T -n(tn a) + b (58)

and therefore

0f = +b/Zn ,a (59)

where b = constant whose value can only be determined from the full solution of
equations (37) and (38). The solution in equation (59) is valid only when 6f
is a small number, and in general this limits the application of equation (59)
to the regions of high temperature. Note that equations (37) and (38) are un-
changed for 6f - - ef , so that either ±ef are valid solutions, and therefore
these equations exhibit degeneracy.

The relativistic third virial coefficient can be obtained from equations
(50) through (52) as

Z - CeiJ C . CR + jC1  (60)

CR = C cos 0C  (61)

CI = C sin e c  (62)

and therefore

tan eC M CI/CR (63)

sin e c = CI/C (64)

cos ec CR/C (65)

where CR and CI are given by equations (51) and (52) and where the magnitude of
the third virial coefficient is given by
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C2 2 + 2 (66)
R  I

= [Ca - 3 (Ba)
2 en pa] 2 + 6Ca(Ba)2 tn a (1 - o ef)

when a single phase ef of the gas is present. At high temperatures CR < 0

and either CI < 0 for positive ef , or C, > 0 for Of < 0 . For C, < 0 it fol-

lows from equations (63) through (65) that 6C = T + e' and eC is in the third

quadrant, while for CI > 0 it follows that eC = n - e' and eC is in the second

quadrant. Therefore equations (37) and (38) have degenerate solutions, and the
real gases can appear in two states corresponding to ±ef * If a real gas is in

a state which is a mixture of fraction a with ef > 0 and fraction (I - a) with

of < 0 it follows

CI(T) = -3(2a - 1) (Ba)2 tn a sin jefl (52A)

Therefore for equal mixtures of both phases CI - 0 and OC - w . The function

CR(T) is determined in static pressure versus volume measurements at constant
temperature, and is not affected by the sign of the phase function Of . Fi-
nally it should be noted that the fourth virial coefficient can be written as

5 - DeJ OD (67)

but no calculations to determine D and OD have been done.

3. INTERNAL PHASE ANGLES OF THERMODYNAMIC FUNCTIONS. This section con-
siders the calculation of the pressure, internal energy, entropy, enthalpy, and
free energy of real gases with broken internal symmetry. The relativistic pres-
sure and internal energy density for a broken symmetry real gas are given in
equations (13) and (14). The corresponding expressions for the entropy density,
enthalpy density and free energy density are given for asymmetric real gases as
a generalization of the standard results in the literature. 8 The basic thermo-
dynamic functions for a broken symmetry real gas are then given as follows

A. Pressure.

The pressure is written as

P - Pej O P = nRT(I + nB + n2C + n3D + (68)

or in component form
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PR = nRT(1 + nB + n 2C cos eC + n 3D cos eD + --.) (69)

PI M nlT(n 2C sin eC + n3D sin 6D + ... ) (70)

2

n (C sin 6C +nD sin eD + (71)
a + nB + n2C cose C + n

3D cos 6D +...)

n2C sin 0C  low density (72)

The magnitude of the pressure is given by

P - (p 2+ P)/2 (73)

It is the real part of the pressure PR that is measured in laboratory experi-
ments. For ef > 0 and 6C - 7 + 0' it follows from equations (69) through (72)

that O P< 0 in the regions of high temperature, but for the case 6f < 0 and

6C = n- OC it follows that 0p > 0. For an equal mixture of states with 0f > 0

and Of < 0 it follows that 8C = ir and 6. = 0 neglecting the effects of the fourth

and higher virial coefficients.

B. Internal Energy Density.

The energy density for an asy mmetric real gas is written as

E~ Ee n TET~ A ! 2 ac 3 aD _

3R (a1- T-B 1 n2T -C - I D

S naT 2 aT 3 DT

Using equations (60) and (67) in equation (74) gives

ER nRT 1 - nT BT 2, Cos (0 + CT) - I3 cos (D + aD,T (75)

i- 1

E1 M - n 3 RTC I sin (e + aCT ) + L nID sin ( +8 DT + ..- (76)

tan 0E EI/ER (77)

I n2, sin (0c + $ low density (78)
3 C inC,
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where

IC = /(TaC/DT)2 + (CT D6c/9T) 2  (79)

I D = /(TaD/aT)2 + (DT M D/T) 2  (80)

tanC = C C/ T (81)
C,T C3

aeD/aT

tanD = D D (82)
D,T aD/9T

The magnitude of the internal energy density is given by

E = E + E (83)R I

It is ER that is measured in the laboratory

C. Entropy.

The entropy density for an asymmetric real gas is written as

- ° B 1 n2(

S = sejes = - nR[Zn(nRT) + n(B + T -)+ 1 + ) (84)

+1 n3(5 + T 3D)

3 77

Using equations (60) and (67) in equation (84) gives

B 1n2J
s R - - nR[ln(nRT) + n(B + T -B) + 1n cos (e + CT (85A)

+ -nJ cos (e + D) +
3 D D D, T

s, M - n3RE J sin (eC + aCT) + - nJ sD , eT) + ""] (85B)

tan Os - I/S R (86)

- sin (eC + aC,T )  low density (87)2 n2JC Zkn (nRT)
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where

K = /(2C - T 3C/T)2 + (CT6 c/3T) 2 (98)

KD= ,'(3D - T DD/3T)2 + (DT 3D /3T) 2 (99)

CT aeC/ T
tan qC = 2C - T 3C/3T (100)

DT aeD /9T
tan TD = 3D - T DT (101)

The magnitude of the enthalpy density is given by

h = h + h (102)
R I

The value of hR is obtained from laboratory measurements.

E. Free Energy Density.

The complex number free energy density for an asymmetric real gas is given by

aej ea = nRT[2 + Zn(nRT) + nB + L . n5 +- (103)

a~ 2e 23u f C+

The real and imaginary parts of equation (103) are
3TF 12 13

a = nRr[ + Zn(nRT) + nB + - n 2C cos e + I n 3D cos e + ] (104)
R L 2  2 C 3D

a, = n 3RT(I C sin eC + I nD sin 9D +.--) (105)

tan 0a = a /aR  (105A)

In 2 C sin 6 /[-!+ Zn(nRT)] low density (106)

The real part of the free energy density is a physically measurable quantity.

4. HEAT CAPACITY AND GRUNEISEN PARAMETER. The calculation of the heat
capacity and Grineisen parameter for a real gas with broken internal symmetries
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where nRT > I and where

JC M (C + T X/3T)2 + (CT a6c/OT)2 (88)

JD = /(D + T aD/T)2 + (DT 36DT) 2  (89)

CT ae /aT

tan CT C C /DT (90)
CT C + T aC/3aT

DT aeD/aT
tan 'D,T D + T aD/aT (91)

The magnitude of the entropy per unit volume is given by

2+2 (92)
R  I

The real quantity is the entropy density measured in the laboratory.

D. Enthalpy.

The enthalpy density of an asymmetric real gas is given by

5e a 1n 2  ac

hei o h - nRT[ + n(B - T -) + n (2E - T7) (93)

1 n3(3B - T D

3 T)+

Placing equations (60) and (67) into equation (93) gives

r5, B 1 n2K
hR - nRT- + n (B nKT -L) + I cos (0 C - nC )  (94)

13n K cos (e - ) +

=n3RT- K sin (6 ) + -nK sin -n) + - (95)
I 2 C C C 3 "D D

tan 8h hi/h R (96)

' n 2Kc sin (eC - n low density (97)
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is performed in this section. The complex number molar heat capacity is ob-
tained from equation (79) to be8

Cv~CVR+JV
= C +ijCv =R( i-nC l - n2Cv2 ....* ) (108)

where

C I T  a2B + 2T (109)

2-
T 2 C a (110)

CV2 =  T2 2 + 2T T = CU2R + JCV21(10

Substituting equation (60) into equation (110) gives

C -1 ei2C + 2 1 ei (11)CV2 2C C (111)

CUR I 2C Cos e2C + 21 cos E1C (112)

C21 12C sin 82C + 21C sin 81C (113)

where IC is given by equation (79) and

12C = L2  +M 2  (114)

2C 2 2 C 2
L2 = T2 aT"'C - C (T -',-) (114A)

2C 2TC  a

M2a 2 6 De
2 CT C+2 (T L)(T-L-2) (114B)

e2C = eC + 7C,T (115)

tan yC,T = M2c/L2c (116)

elC = 9C + 8C,T  (117)
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where , is given by equation (81). Then it follows from equation (108) that

CV R( - nC 1 n 2 C (118)
VR 2 V1 2 V2R

C =- I nRC (119)VI 2 V21

tan OCV = vI/C VR (120)

-1 2 sin 2 + 21 sin e (121)

3 2CS 2C 0 c (121

where equation (121) is valid for low densities.

The Grineisen parameter for an asymmetric real gas can be written as
9

ye Jy = Y + jYI !(I + ny1 + n 2 + ) (122)

where

YI = f + gl (123)

Y2 = f2 + g2 + f g1  (124)

f = T - + B (125)1

91=2 (T 2 32B + 2T -'B (126)
2 D 2 3

f =T-
-2 1 +2 C

= i (T 2 2  + 2T _L) + (T2  -T2B + 2T B 2 (128)
2 3 aT2 DT 9 3T2

From equation (122) it follows that

Y = 1(1 + ny 1 + n y2R + "'" ) (129)

2 2

YI =  n Y21 + (130)
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where

Y2R = f2R + g2R + flg1  (131)

Y21 = 21 + g21 (132)

f2R JC Cos (6 C + aC,T )  (133)

f21 JC sin (6C + aC,T) (134)

g + CoS 4 (T2 o3 s B+ 2T ) (135)
g2R 3(12C 2o s 2 C o C 9' DT 2 3T

I i + 21 sin 6 (136)
g2 1  3 (2C s 2C C IC)

where JC and aC,T are given by equations (88) and (90) respectively, IC and

6lC are given by equations (79) and (117) respectively, and where 12C and e2C

are given by equations (114) and (115) respectively.

5. SUPERPOSITION OF THERMODYNAMIC FUNCTIONS. Consider a mixture of two
interacting gases with broken internal symmetries. There will be interactions
between the two species of gas as well as self interactions within each species.
Therefore the total pressure and internal energy is written as

= I + P2 + P12 (137)

1 1 + U2 + U12 (138)

where P12 and U1 2 are the interspecies interaction pressure and internal energy
respectively. For asymmetric real gases the terms in equations (137) and (138)
are written as

PPle~ 0 P

Pe PI2 =  12ejPI (139)

P2 =P2e j e 2  - (140)

UeiU U =Ue (141)

U 2= U2eJU2 - U "ejOU12 (142)2 212 =12
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Equations (137) and (38) can be written in component form as follows

P Cos ep = PI Cos 8p + P 2 cos 0P2 + P12 cos 0 P12 (143)

P sin ep = PI sin e6p + P2 sin eP 2 + P12 sin eP1 2  (144)

U Cos eU = U 1 Cos eU1 + U2 Cos eU2 + U1 2 Cos eU1 2  (145)

U sin eU 
= UI sin 6Ul + U2 sin 6U2 + u12 sin 6U12 (146)

From equations (143) through (146) it follows that

P sin epi + P2 sin eP2 + P12 sin eP12
tan 1 e pl + P2 cos eP2 + P12 CosP2 (147)

U 1 sin eUl + U 2 sin eU2 + U sin 6U1 2I U 2 U2 1U12 (148)

U U 1 Cos 0UI + U2 Cos 6U2 1 U2 Cos eU12

P = (0D + I) 1 /2  
(149)

U = 0 D + ¢I) (150)

where

2+ 2 2
D +P12 (151)

P= 2I P 2 Cos (eP1 - aP2 + 2PIP 12 cos (0pI - aP 12 ) (152)

+ 22P 12 cos (0P2 P12

U1 + U2 + U 2  (153)

= 2UI U2 cos (eU1 - 6U2) + 2UI U1 2 cos (eU - 6U1 2 )  (154)

+ 2U2U1 2 cos (e - 6U12)

Therefore mixtures of two asymmetric real gases should exhibit interference
in regard to the component pressures and internal energies, and the magnitude
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of the total pressure and internal energy should exhibit a small oscillation
as the density of the interacting mixture is increased. This is also true

of the measured pressure and internal energy which can respectively be writ-
ten as P cos p and U cos 6U .

6. CONCLUSIONS. Real gases are expected to exhibit broken internal sym-
metries that manifest themselves as internal phase angles associated with the

thermodynamic functions such as pressure, internal energy and entropy. These

internal phase angles arise from the third and higher virial coefficients and
are due to renormalization effects associated with the interaction of matter
with spacetime as described by equation (2). The ideal gas and the second
virial coefficient of an interacting gas are unaffected by spacetime interac-

tions. The phase angle associated with the third virial coefficient can be
determined from the solution of two simultaneous first order differential
equations. These equations are generally not easy to solve analytically, but

yield a simple solution for the high temperature regions of the real gas where

the phase angle of the third virial coefficient is small. The virial form of

the state equation for real gases allows the phase angles associated with the
pressure, internal energy, entropy, enthalpy, and free energy to be calculated

in terms of density and temperature. The existence of internal phase angles

for the thermodynamic state functions suggests that mixtures of real gases will
produce an interference phenomenon wherein the total pressure and internal en-

ergy will oscillate slightly as the density of the system is increased.

It can also be conjectured that parabolic waves of the form
1 5'1 6

U  a 2 e U

f fU) + D U  2(155)

-- f(p) + D P (156)
t Ix

can exist in asymmetric gases and liquids as well as in asymmetric solids and
quantum liquids, and these wave motions may have interesting applications to

thermodynamics, hydrodynamics and chemical and biological cycles. The internal
phase angles of the pressure and other thermodynamic functions of the real gases

are also expected to play an important role in the determination of the equili-
brium configuration of stars and planets. This is true because the internal
phase angles of the radial coordinates in a star are determined by the internal
phase angle of the pressure. Therefore the complex number values of the third

and higher virial coefficients are intimately involved in stellar equilibrium

calculations.
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GAUGE THEORY OF ATOMIC PROCESSES

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. Atomic particle processes that occur within bulk matter or the
vacuum are expected to be influenced by the broken symmetries of the thermody-
namic ground and excited states of these systems. Internal phase angles are
associated with the space and time coordinates and kinematic and dynamic vari-
ables of particles and radiation in bulk matter or vacuum with broken internal
symmetries. A broken symmetry photon gas in bulk matter or vacuum is consider-
ed, and the radiation pressure and energy density is calculated. The geometric
angles between kinematic variables and between dynamic variables have internal
phase angles. This affect3 the description of the photoelectric effect, Comp-
ton effect, and Coulomb scattering in bulk matter and the vacuum. Thomson,
Compton, Rutherford, Mott, Bhabha, and Miller scattering processes in broken
symmetry systems are investigated. The Schrdinger and Dirac equations are
developed for a particle located in bulk matter or vacuum with broken internal
symmetries. This work will have applications to nuclear explosions and the in-
teraction of directed energy beams with matter.

1. INTRODUCTION. In the past decade, great advances were made in the
theory of the elementary forces which bind the universe. These advances devel-
oped through the realization that gauge theory is the natural framework for de-
scribing the four basic interactions that occur in nature. 1-3 Gauge theory was
first formulated many years ago by Hermann Weyl, but only recently has its real
importance to physics been understood.' In some cases when gauge symmetry is
broken spontaneously by some special set of forces, a coherent state of matter
can be formed as in the case of superconductivity where the Cooper pairs of
electrons break the ground state gauge symmetry through electron-phonon inter-
actions.

It has been suggested that vacuum interactions with bulk matter may pro-
duce a coherent ground state which is described by thermodynamic functions that
possess internal phase angles.5 This coherent broken symmetry ground state can
possibly influence the microscopic processes that take place in bulk matter.
The effect can occur in two ways: first, through the Euler equations by which
fluid elements are expected to have space and time coordinates and kinematic
and dynamic variables that have internal phase angles. Secondly, a microscopic
gauge interaction between material particles can be induced by Minkowski space-
time, and this complex number gauge interaction will impart internal phases to
the space and time coordinates and to the kinematic and dynamic variables of
individual particles. Therefore individual particles in bulk matter require
complex numbers for their kinematic and dynamic descriptions and for their co-
ordinate locations in space and time. The same conclusions are valid for the
vacuum with broken internal symmetries, because the vacuum can be considered as
a special simplified case of bulk matter.
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The coherent state of bulk matter is due to spacetime interactions, and
these have been described by a bulk matter relativistic trace equation whose
scalar form for symmetrical bulk matter is6

U + T 3V -(P 5 V) = + T((1)s Us dT Ia

where Us = renormalized internal energy for symmetric bulk matter, Ps = renor-
malized pressure for symmetric bulk matter, T = absolute temperature, V - vol-
ume of substance, and Ua and pa = corresponding nonrelativistic internal energy
and pressure. Throughout this paper the index "a" will refer to nonrelativistic

(unrenormalized) calculations. The complex number form of the relativistic
trace equation that describes the coherent broken symmetry state of bulk matter
is given by

S

+T(dU) - 3V(pv) = ua + T dUa. (2)
+ T P U dTIa

~dTI~d ( dT)paV

or equivalently as

(1 - + T - - 3(1 + 7 + V - T a (3)

where

= (T " - ba V -L + I - ba)Ea  (4)

and where U, E, P, y, and b are complex number representations of the internal
energy, energy density, pressure, and the gauge parameters. 5 With their right
hand sides set equal to zero, equations (2) and (3) describe the broken symmetry
thermodynamic ground state of the vacuum. Therefore the broken symmetry thermo-

dynamic ground state of the vacuum is a simpler special case of the broken sym-

metry state of bulk matter.

Due to the spacetime interactions with bulk matter, the single particle
energy must contain a gauge potential that produces the difference between U and

Ua at the macroscopic level. Corresponding to equation (1) the noninteracting

single particle energy is given by
7

free 2 2 4 +V S  (5)
is / s g

where ps = single particle momentum for a symmetrical system, c = light speed,
m - proper mass, and V5 - scalar gauge potential for symmetrical matter. The
gauge potential is zero when PV = aU where a - constant, and U - Ua . When
it has a non-zero value, the gauge potential breaks the Lorentz symmetry of the
system.s The condition Vs # 0 is valid for the general case of a noninteracting
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zero temperature Fermi gas (for which PV # aU), except for the low density non-
relativistic case and the high density ultra-relativistic case for which PV - aU

and Vs = 0 .6 The single particle energy for the non-interacting case corre-
sponding to equation (2) for broken symmetry matter is given by

-free /252+ 2 4
p +mc + V (6)1 g

- V e j]Vg (7)g g

where 5 = complex number single particle momentum, and Vg = complex number gauge

potential. In a similar fashion, V = 0 when PV = aU . -It is just the deriv-

ative terms in equations (1) and (21, required for gauge invariance, which pro-
duce the spacetime interaction gauge potentials that prevent the single particle

energy and momentum from being four vectors in equations (5) and (6) when PV #aU

and PV # aU respectively. For the interacting case, the single particle energy

is written as

s c2p2 24 Vs V s
c. cp +mc +V +V (8)

i s g e

corresponding to equation (1) for a symmetrical system, and as

- . 2 2 + 24
S p2 +mc4 +V +e (9)Sg e

corresponding to the relativistic trace equation (2) for a system with broken

internal symmetry. For the broken symmetry case the external potential is writ-

ten as

= V e j ev e  (10)e e

In this paper the "s" refers to a symmetrical renormalized system.

The gauge potentials Vg or Vg are determined indirectly from the solution
of the trace equations (1) or (2). Consider the trace equation (2). This equa-
tion is solved to determine the bulk matter internal energy U in terms of the
unrenormalized internal energy Ua . The unrenormalized thermodynamic functions
are determined from the unrenormalized partition function Za which is given 

by899

Za  e- Hadq dp (11)= J da da

where n - degeneracy, $ - 1/(kT), qa and Pa = conventional generalized coordi-
nates and momenta respectively, and the unrenormalized Hamiltonian is given by

Ha(qP)= cP2 + m2c4 +a (12)
a a a c e
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where Va unrenormalized external potential, and8 ,'e

Ua (3 Zn Za) (13)

- 5V (14)

The trace equation (2) is then used to determine the renormalized complex num-
ber internal energy and pressure U and P respectively. These values of U and

are then used to determine the complex number renormalized partition function
from

3 - Z (15)

i ( aZn ) (16)

where

= fe-SHdqdp-= Zej6Z (17)

and and F = complex number generalized coordinates and momenta respectively,

and where the renormalized complex number Hamiltonian is given by

H(q,p) V c + m c + V + e (18)g e

From equations (15), (16), and (17) it follows that

U cos U= (3 Zn Z) (19)

U sin 5 --- --- (20)
U -(? "nZ) (1

P cos -p (21)

I 13Z 1

P sin ep = - - (22)
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Therefore equations (19) through (22) can be used to determine Z and eZ for a
relativistic system with broken internal symmetry. From a knowledge of Z ,
equations (17) and (18) are then inverted to determine Vg and Ve In summary,

Za paua -PU Z - V g,V e  (23)

Because V and Ve are complex numbers, it is expected that the coordinates ofg
space and time must also be complex numbers. Note that it is the real parts of
the complex number quantities such as coordinates, momentum, energy, pressure,
frequency, angles and scattering cross sections that are the measured quantities.

Therefore, macroscopic local gauge invariance suggests the existence of a
symmetry breaking microscopic gauge potential. Also, the macroscopic broken
symmetry state required by equation (2) suggests that the space and time coor-
dinates and the kinematic and dynamic quantities such as single particle veloc-
ity, acceleration, and force should be represented by complex numbers that in-
clude a description of internal phase angles. This paper indicates the effects
of microscopic internal phase angles on the photon gas, and on such elementary
atomic processes as the photoelectric effect, Compton effect, and Coulomb scat-
tering. The forms of the Dirac and Schr5dinger equations for particles in bulk
matter or vacuum with broken symmetry are developed.

2. BROKEN SYMMETRY PHOTON GAS IN BULK MATTER. This section describes a
photon gas with broken internal symmetry interacting with bulk matter that also
has internal phase angles. The spectral energy density of a symmetrical photon
gas is given by Planck's law as follows

1°- 12

E = A = E(v) = E E(v) (24)
Vs hv/kT vs va vae -1i

where

A= c 3  (25)

and where EVs = spectral energy density of radiation in symmetric matter,
Ev) = spectral energy density in the symmetric vacuum, h = Planck's constant,
k = Boltzmann's constant, and T = absolute temperature. For this case the total
energy density is given by the Stefan-Boltzmann law

1 0 , 1 1

=fE dv = aT4 =E (v ) = E =E (v )  (26)rs 0 rs ra ra

where Ers and E = total energy density for a symmetrical photon gas in sym-
metric matter and the symmetric vacuum respectively, and a = Stefan-Boltzmann
constant. The pressure of the symmetrical photon gas is given for the symmet-
rical vacuum by
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p(V) =1 E(v) = p(v) = E(v) (27)
vs 3 vs va 3 va

p(v) =±E(v)=±0T4  1LE(v) (28)
rs _3 rs =3 3 ra

where p(V) and p(v) = spectral and total radiation pressure respectively forVS rs

the symmetrical photon gas in symmetric vacuum.

In order to write Planck's law for radiation in matter or the vacuum with
broken internal symmetries, a complex number form of the radiation frequency is
adopted and written as

U = ve j eV = v(cos ev + j sin 6.) (29)

where ; = complex number frequency, v = magnitude of frequency, and e. = fre-
quency phase angle. For radiation in the asymmetrical vacuum, the radiation
frequency is written as

(v) e(v)
v) = veJv (30)

e(v)wher =V internal phase angle of the photon frequency in the asymmetric vac-
uum. Using equations (24) and (29), the complex number form of Planck's law is
written as

E h/T - (31)
V e - I

where

- 8rhv3 (32)
c3

Placing equation (29) into equation (31) yields

- A j

E A (B + jC) =EejeEv (33)

A [ 2 + C2
E = B+2 (34)
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e = tan (C) (35)
Ev B

where A is given by equation (25) and where

D = e 2 x - 2 cos y ex + 1 (36)

B = cos (30 ) (cos y ex - 1) + sin (38 ) sin y ex (37)

C = sin (3e ) (cos y ex - 1) - cos (3e) sin y ex (38)

- hvCos 6 (39)
kT v

Y = h- sin e (40)

y kiT V

The same expressions that are valid for radiation in matter with broken internal

symmetry are also valid for radiation in the vacuum with broken internal symme-
A(v)

try if the substitution 6 'v) is made in equations (36) through (40). This

gives the photon energy density for radiation in the asymmetric vacuum as

e (v)
E(v) = E(V) e j Ev (41)

V V

where E(v) and 0 (v) are obtained from equations (34) and (35) respectively.
v Ev

Matter in general has a spectral index of refraction, but it does not enter

into the photon spectral energy density as given by the Planck function. 14 This

is because the Planck function is universal and does not include specific prop-
erties of matter. 14 The index of refraction does not enter the spectral energy

calculation whether or not the radiation is symmetric or not. Later in this

paper it will be shown that the index of refraction does enter the calculation
of the total energy density of photons in matter due to an increased photon den-

sity in matter.

The spectral radiation pressure associated with the complex spectral radi-
ation energy density given in equation (31) is obtained by a generalization of

a radiation pressure formula given in the literature for mechanical radiation

in matter as 1

dW a n a va

Pv + V ~E (1 n d)Ea (42)a 3 +  a dnva dn a
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where Pva =spectral radiation pressure, n = particle number density for matter,a a
and WV = speed of waves of frequency v. The generalization of equation (42) to
the case of broken symmetry electromagnetic radiation is given by

d
(i n d V)E (43)

PV 3 Tv dn_ )V

V

where P. complex number spectral radiation pressure in matter, and com-
plex number spectral index of refraction for electromagnetic waves in matter.
For the vacuum with broken internal symmetry, equation (43) reduces to

P(v) E(v) (44)

because 1 for the vacuum. If the complex number spectral index of refrac-
tion is written as

PV = jiVej1V (45)

then

d5 d de
n v = n v + _n Jv,n
v dn dn + dn = Hve

V V

and then equation (43) can be rewritten as

V V[ I e EV - H e E + a (47)V

where

H _ +n V (n I-n d ) (48)
V ii dn lW dn

and where

tan npv n P n n dn (49)

and finally where 6Ev is given by equation (35). For the vacuum j = I and
6 =1 0 so that

230



S(v)
(v) E(v) eV (E,
V v (50)

whr (v) (vwhere e v is given by equation (35) with the substitution eV - 6v) For the

symmetric vacuum e 0 and 6(v) = 0 so thatV Ev

p(v) I E(v) E P(v) (51)
vs 3 vs =3vs va

where E = E(v) for the symmetric vacuum or symmetric matter is given by equa-vs vs
tion (24). For symmetric radiation in symmetric matter equation (43) becomes

( n di vsE #P (52)
V s n dn; vs va

vs

where Pvs = spectral radiation pressure for symmetric matter. Note that al-

though E(v) = E one has P P p(v) on account of the spectral index of refrac-
vs VS Vs Vs

tion that appears in equation (52).

Writing the complex spectral radiation pressure for asymmetric radiation
as

-- Pve (:3)

and using equation (47) gives

P cos e O E[ I cos Oe -Hv cos (6E + vn(54)
PV v 1l 3 sn +v 8V,n)]

P sin epv vF - sin eEV H (eE+ (55)

Equations (54) and (55) give for the asymmetric vacuum

P(v) cos e(v) =. E(v) cos O(v) (56)v UPV 3 v uEv (6

p(v) sin e(v) L E(v) sin ^(v)
v Pv 3 v Ev (57)

231



which can also be obtained directly from equation (50). From equations (56)
and (57) it follows for the asymmetric vacuum that

p(V) = I E(v) (58)
V 3v

6(v) = e(v) (59)
PV Ev

A comparison of equations (51) and (58) shows that this equation holds for both
the symmetric and asymmetric vacuum. From equations (54) and (55) it follows
that

1.in E - H sin (8 + a

tan pv 3 s Ev - Ev vn (60)
-cos 9 - H cos (e + )3 Ev V Ev iv,n

and

P 9  - H cos a (61)

When 8 = 0 and 8 = 0 equation (61) reduces to the case of symmetric radi-

ation in symmetric matter

P =E (- H ) (62)
vs vs 3

where

dvi

H = n vs (63)
vs PVS dn

for symmetric matter.

In order to determine the phase angles . and v
internal phase angle 6p that is associated with the state equation of bulk mat-
ter, the mechanical equilibrium of matter and radiation with broken internal sym-
metries must be considered. Consider a piece of matter bathed in the surround-
ing radiation of a vacuum with broken internal symmetry. Were no radiation pre-
sent, the matter would have a zero pressure P = 0 because the situation corre-
sponds to a minimum value of the binding energy at the equilibrium density. When
radiation is present inside the matter and outside in the vacuum, the density of
matter shifts from its P = 0 equilibrium value to a new value for which P # 0 .
The new equilibrium density depends on the internal and external radiation den-
sities (pressures) which in turn depends on the temperature and frequency for
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monochromatic radiation, or solely on temperature for thermal radiation. 1 6 The

relationship between the induced matter pressure and the radiation pressure of
a monochromatic radiation field will now be developed for matter and radiation
with broken internal symmetries.

For matter in mechanical equilibrium with internal and external monochro-

matic radiation fields, the equilibrium condition at the surface boundary is

P= (v) - T (64)

V V

where -(v) = spectral radiation pressure in vacuum, P. = spectral radiation pres-
sure in matter, and P = complex matter mechanical pressure induced by the radi-

ation fields. In component form equation (64) can be rewritten as

P cos -=(v) cos 0(v) - P cos O (65)

Psin(v) sin e(v) _ P sinS (66)

Combining equations (65) and (66) with equations (54) through (57) gives

P Cos o= sE(v) Cos s(v) - E os I Evs - H cos (8 + n (67)Po p= V Ev v L3 E V 8Ev WV'n ) I 67

P sin S =!E(v) sin (v)- E -L sin 6 - H sin(e + a (68)
3 v Ev vL 3  Ev V Ev l v,n)

For the vacuum the following conditions have been used

(v) = 8(v) = 0 8(V) 0 H(v) = 0 (69)
V vJ'U wv,n V

Note that for the asymmetric vacuum 8(v) # 0 just as for the case of radiation
in matter one has DV # 0. From equations (65) and (66) it follows that

p(v) sin e(v) - P sin 8

tan p =  (v) PV V PV (70)
P cos(v) - P cosS
V Pv V Pv

2 P(v)J2 + P 2 - 2P P(v) cos [( - a (71)

For the case p = 0 and 0 (v) = 0 equations (65) through (71) reduce to their
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proper scalar forms, for instance equation (71) gives the induced pressure in
symmetrical matter as

P = P(V) - p I E(v) ( - )E (72)
s vs vs 3 vs 3 vs vs

v vs so that equation
(72) can be written as

P = H E (73)
s Vs VS

In general P and Op are functions of matter density, and equations (70) and (71)
can be satisfied only if the equilibrium density of matter is altered by the ra-

diation fields. Therefore equilibrium at a surface requires that the internal
phase of matter and radiation are related by equations (70) and (71).

Now the total (integrated) energy density and associated pressure needs to
be determined for radiation in matter and the vacuum with broken internal sym-

metries. The integrated radiation energy density is obtained from equations
(31) through (40) by the following integral

J-Er 2 2 (0Ev + 'v + av' )
= Ee fE d fE I+(vd6/dv) e dv (74)r r v VV

where

dO
tans _V (75)

vv dv

and where the following result was used

dv = ej~v (dv + jvdeO) = ej(Ov+Svv) I + (vd6 /dv) 2 dv (76)

Therefore the gauge rotated frequency must be used to evaluate the integrated

radiation energy density. The radiation energy density has the following real

and imaginary parts

R = Eo Vo E (v + 6 2 + + a ) dv (77)
Er Er 1 e(rfEVVO/dv) cO(EVv V V'

r r Er = 1 + (v de /dv)2 sin (e + 0 + a ) dv (78)
r r Er =0 V VE '
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The magnitude and phase angle of the radiation energy is given in terms of
these integrals as follows

Er= (E) + (E' (79)
rr

tan Er E/rE (80)Er r r

The evaluation of the-integrals in equations (74), (77), and (78) is not simple
due to the complicated form of the spectral energy density given by equations
(34) and (35). It follows from equations (34), (35), (77), and (78) that the
energy density for asymmetric radiation does not have the T4 temperature be-
haviour that is valid for sywmuetric radiation according to equation (26). The
radiation pressure is given by

p =-E + I (81)
r 3 r r

where &Pr = small difference in radiation pressure due to internal phase angles,
and considering only the complex number values of the Planck function. Material
properties, such as the index of refraction, do not enter the Planck analysis.

1 7

Later in this paper it will be shown that the index of refraction enters the ex-
pressions for radiation energy density and pressure due to an increased photon
density in matter. For the asymmetric vacuum the integrated radiation density
is given by

(v) j (v) + ( (v) + (v)
E ) (E(v) / ( + (v de (v)/dv) e Ev V '' dv (82)rvv

0

.6(v)
= E(v)e Er = ER(v) + jEI(v)

r r r

tan e(v) = EIv)/ER(v) (83)
Er r r

which is formally identical in structure to equations (74) through (80) for asym-
metric radiation in matter. Asymmetric radiation in the vacuum also does not
have a T4 dependence. The radiation pressure for the asymmetric vacuum is given
by

(v) = E (v) + af(v) (84)
r 3r r
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where Avr = small difference in vacuum radiation pressure due to internal
phase angles.

Considering the effects of increased photon number density due to the in-
dex of refraction the energy density and pressure of symmetrical thermal radi-
ation in symmetrical matter is given by1 6

E 3 T4  (85)ErMs s

3 40 ndu

P T \ - (86)rMs T4 3 1s dn8

where ErMs and PrMs = measured radiation energy density and pressure for symme-
trical matter and radiation, and where ps = density dependent index of refrac-
tion averaged over frequency. The term 3 arises from the general thermodynam-

ic relations between pressure and energy denstiy. A comparison of equations
(26), (28), (85), and (86) shows that ErMs 0 Ers and PrMs # Prs . The expres-
sions in (26) and (28) are totally independent of any reference to material para-
meters (such as ws) and are the results of local thermodynamic equilibrium.1 7 This
is why the T4 law is universal in the sense that it applies to all symmetric ther-
mal radiation in symmetric matter or vacuum. The presence of the ps term in equa-
ti'fi (85) represents a diffusion effect where the photon number density is in-
creased dueto their slower speed in matter as compared to the vacuum. The
important point is that the p term (or any other dependence on material proper-
ties) does not originate from the Planck distribution. The subscript M (for mea-
sured value) is added to all expressions that include a vi3 dependence.

In analogy to equations (85) and (86) for symmetric thermal radiation in sym-
metric matter, the measured radiation energy density and pressure for an asymmet-
ric system is written as

jaErM
ErM =W(p)Er =E rMe (87)

- r rnd5 JOPrM

rM E(4 -r dM PrMe (88)

where Er = energy density for asymmetric radiation in matter as calculated from
the complex number Planck function given in equation (74), ErM = measured ther-
mal radiation energy density in an asymmetric system, i = density dependent com-
plex number index of refraction for asymmetric matter and averaged over frequen-
cy, and where W(i) = yet to be determined function of the complex number refrac-
tion index. The density dependent, frequency averaged, index of refraction for

asymmetric matter is written as

= ie (89)
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Note that equation (88) is already an approximation because the factor 1/3 holds
only for symmetric radiation as shown in equation (81). For asymmetric matter
and radiation the integrals in equations (77) and (78) have not been evaluated
due to their complexity and so values of Er in equation (87)_have not been found,
but it is clear from equation (74) that the leading term of Er is the scalar aT 4

corresponding to symmetric radiation

E= oT 4 + IE (90)r r

where mEr is small if 6 is small. From equations (81) and (90) it follows that

P = -oT 4 +-+ AE (90A)
r 3 3 r

The determination of the exact value of W( i) is not possible since the value

of Er has not been determined. However, an approximate value of the factor W( )
can be determined by using the first order term in equation (90). This is done
by first considering the Gibbs-Helmholtz relation (also called Maxwell's relation)
applied to ErM and PrM as follows16

DErM M PrM

-n -- =T -+T -Pr (91)
n rM T - rM

Combining equations (87) and (88) with equation (91) yields

-n (WEr) )WE [T r - WEr] (92)3nr 3 dn T r r

Then assuming W is a function of density alone, and Er is given by the scalar
term in equation (90) so that Er oT4 ' it follows from equation (92) that

dW I n d
-n - + W % 3W, - n--) (93)

dn 3 5 dn

or

ndW n d7
= d IQ 3-- (94)
Wdn dn

from which

, 
3  

(95)

From equations (87), (88), and (95) the following approximations are obtained
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ErM = jiEr (96)

r = 3r ( I dn (97)PrM - 3r (3 5 dn

From equations (87), (89), and (96) it follows that

E rM 3 Er (98)

eErM = Er + 30 (99)

where Er and aEr are given by equations(79) and (80) respectively. All further
analysis based on equations (96) and (97) is limited to the same approximations
that went into the derivation of equations (96) and (97) namely, that all asym-
metries are small.

The detailed calculation of the radiation pressure proceeds from equation
(97). From equation (89) it follows that

n d = HeJS ,n (100)
5 dn

where

H =V nw + nd n) (101)

tan = n d n d (102)ta un dn/W dn

Then the measured thermal radiation pressure in asymmetric bulk matter is ob-

tained from equations (97) through (99) as the following approximation

- 3 E eJ 0 ErM J (OErM + u n),
PrM = [e - He '] (103)

The component forms of equation (103) are

P cos ePrM =  [3 E cos E -H cos (e + a )] (104)
rM PrM r 3 ErM ErM p , n

3 1
PrM sin 6PrM =  [- sin eErM - H sin (0ErM + j,n) ] (105)
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From equations (104) and (105) it follows that

tan 6sin ErM - H sin (Er M + ,n (106)ta prM  1 Coi cs(
cos 0 ErM Hcos(EM+ ,n)

p 3 E / -1 2 c + H 2  (107)
rM r / 9 3 os ,n

For the case 8I n = 0 and e, = 0 for symmetric radiation, equation (107) becomes

- 1 3  (I-H)
PrMs sers 3 s (108)

which is just equation (86) because

dui

H =n s (109)
s V s dn

and E is given by equation (26).rs

For the vacuum 1 = 1 , e = 0 , Bn = 0 , and H = 0 , so that from equations

(98) and (99) it follows that

E(v) - E(v) (110)
rM r

(v) (v)
ErM Er (111)

For radiation in the asymmetric vacuum it follows from equations (104) and (105)

that the following approximate equations are valid

(v) Cos (v) = E (v) cos 0 (v) (112)

r Pr 3 r Er

P(v) sin (v ) = E(v) sin 6(v) (113)
r r r 5  Er

For the vacuum it follows from equations (112) and (113) that approximately

e(v) - 8(v) (114)

Pr Er

p(v) E (v) (115)
r 3r
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where e(v) and E(v) are obtained from the evaluation of the integral in equation
(82).

Consider now the equilibrium equations at the surface of asymmetric matter

that is bathed in asymmetric thermal radiation of the vacuum. The condition for
mechanical equilibrium at the surface of the body is that the induced mechanical
pressure is

T= 5(v) -
r rM (116)

or equivalently

Pcos Op = P(V) cose~r) -P Cose (117)
r Pr rM PrM

P sin O = P(v) sin 6(v) -P sine (118)
P r Pr rM PrM

Combining equations (117), (118) and equations (104), (105), (112), and (113)

gives the following approximations

Cos a = E(v) cos e(v)- L3E cos - H cos (e + 6 (119)
P 3 r Er r [k ErM (ErM wE_

sin p = E(v) sin E(v) E 3 sin - H sin + Sv,n) (120)

From equations (117) and (118) it follows that

p2 p (v)]2 P2 2PV)P cos [e(v) - e (121)

~(v) (v)
r M rrM Pr - PrM] 11

p(V) sin (v) P sin9
tanep - r Pr rM PrM (122)

p (v) (v) (122)P cosS - cosS

r Pr rM c PrM

For the case of symmetric matter and symmetric radiation in matter and the

vacuum, equation (121) becomesl1

= p(v) p (123)
s rs rMs

P (v) - 3 E (-H)
rs s rs 3 s

_ ~ v 1 3 33 ( _L -H ) (v) 1 _ 13  + 3ii3H
[rs s 3 s rs - s s s
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where (v) is given by equation (28). Equation (123) can also be obtained di-rsectly from equation (119).

The functions ev and E. have not been obtained explicitly, and therefore
the radiation energy Er is also unknown. For the purposes of the rest of this
paper it is sufficient to understand that the frequency of photons in asymme-
tric bulk matter or vacuum has an internal phase angle that will manifest itself
in the interactions of photons with other atomic particles.

3. BROKEN SYMMETRY OF ANGLES IN ASYMMETRIC BULK MATTER AND VACUUM. Within
asymmetric bulk matter or the asymmetric vacuum, the internal phase angles of
the coordinates produce a broken symmetry in various geometrical quantities such
as, for example, angles. These broken symmetry angles enter the basic calcula-
tions of atomic processes that are treated in this paper. Consider first the
fact that angles have internal phases, a result which can be deduced from the
law of cosines which, for the complex number lengths that appear in asymmetric
bulk matter or vacuum, can be written as

-2 - -2
cos T = + - (124)

2ab

where a, b, and Z are the sides of a plane triangle and T is the angle opposite
side E. Therefore it is clear that and cos are complex numbers and can be
written as

= OeJ (125)

Cos T = C e-J ec

where C = magnitude of cos 0 , and eco = phase angle associated with cos .
It also follows that

sin = Sees (127)

where So = magnitude of sin 0 , and eso - phase angle of sin k . From the follow-
ing expression

(ej  + ) (128)

it follows by elementary algebra that

cos € = cos R cosh 01 - j sin 0R sinh (129)

where
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R + jol = O(cos e6 + j sin 6 (130)

Then the combining equations (126), (129), and (130) gives

C = 4cos2 (0 cos 6,) + sinh2 (0 sin ) (131)

tan ecS = tan (0 cos 6) tanh (0 sin e) (132)

In a similar fashion from

sin 4 = -L (ejT -e~jT) (133)

it follows that

sin 4 = sin 4'R cosh 0 1 + j cos 0R sinh 4I (134)

and combining equations (127), (130), and (134) gives

So = Isin2 (4 cos e4) + sinh2 (4 sin 4) (135)

tan eso = cot (0 Cos 6 ) tanh (4 sin 6 ) (136)

These results will be used in Sections 5 and 6 where particle scattering in asym-
metric bulk matter or vacuum is considered. The measured angle is given by
Om= cos 94 = Oa where Oa = conventional angle between two lines.

4. PHOTOELECTRIC EFFECT IN ASYMMETRIC BULK MATTER OR VACUUM. A very simple
atomic process is the photoelectric effect wherein a photon collides with an elec-
tron that is bound in matter. If the photon has sufficient energy it will over-
come the binding energy of the electron, and the electron will leave its site in
the matter lattice with an excess kinetic energy.1 7 '1 8  The description of the
process that occurs in bulk matter or vacuum with broken symmetries is similar
to that of the standard analysis for the case where the electrons and photons
move in symmetrical bulk matter or vacuum, except that now the kinematic vari-
ables for the photons and electrons become complex numbers. This is related to
the broken symmetry of space and time in bulk matter and the vacuum.

Within asymmetric bulk matter the binding energy of an electron is described
by a complex number potential W , so that the binding energy is eW , where e = elec-
tric charge. The conservation of energy then requires

1 7

1 -2v = 2 hV - eW (137)
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where m = electron mass, = complex number electron velocity, and as before
v = complex number frequency of the photon. Within asymmetric bulk matter or
vacuum the electron velocity has a broken internal symmetry and is written as

v = ve V (138)

where v and 8v = magnitude and internal phase angle respectively of the electron
velocity. The complex number binding potential is written as

W = We j 6w  (139)

where W and OW = magnitude and internal phase angle of the binding potential.
As described in Section 2 the photon frequency is a complex number for a photon
propagating in asymmetric bulk matter or vacuum, and is written as in equation
(29). It is assumed that v ,v , W, and OW are known quantities and that equa-
tion (137) can be used to determine the unknown complex number speed of the
ejected electron.

The two scalar equations equivalent to equation (137) are

1 2I my cos (20v ) = hv cos 0 - eW cos OW (140)
2 v v

1 2Imv sin(2O) = hv sin 0 - eW sin 6w (141)
vV

These two equations can be used to determine the unknown quantities v and ev
as follows

hv sin e - eW sin O W

tan(2v) = hv cos 0 - eW cos 8 (142)

1 2 4 h22 e2W2- (43
Im 2 v = h v + e W 2hveW cos (6 - 0 (143)
4 v W

A plot of the kinetic energy of the electron versus frequency is shown in
Figure 1, while a plot of the internal phase angle of the electron kinetic en-
ergy 20v versus frequency is shown in Figure 2. These two figures show that
chere is a discontinuity in Lhe kinetic energy magnitude and phase angle at a
threshold frequency which is obtained from equation (140) by taking 2ev = 7/2

or

hvt cos 6 t 
= eW cos O W  (144)

where vt = threshold frequency, and 6vt = internal phase angle of the frequency
at the threshold frequency. The electron kinetic energy at the threshold fre-
quency is obtained from equation (141) to be
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1 21mv 2 hv sin e -eW sin e (145)
'Vt t 'Vt w

-eW (cos 8W tan eVt - sin 6W)

The threshold kinetic energy given by equation (145) is the minimum kinetic
energy that the ejected electron can have in asymmetric bulk matter or vacuum.
Below the threshold frequency the photoelectric process will not occur. If all
phase angles are set equal to zero, the standard results are regained that the
threshold frequency is given by hvt = eW, and the minimum kinetic energy of the
ejected electron is zero. Note that the measured electron kinetic energy is
given by equation (140) which is linear in the photon frequency v . The mea-
sured frequency is equal to v cos 6. .

5. THOMSON SCATTERING AND THE COMPTON EFFECT IN ASYMMETRIC BULK MATTER
AND VACUUM. The elastic scattering of photons by electrons is called Thomson
scattering. For this case the photon energy is much smaller than the electron
mass energy mc2 and, if the electron is bound in an atom, the photon energy is
larger than the binding energy so that the electrons can be considered to be
free. For this case the differential cross section is given by

1 3

2a r 21 2(1 + Cos (146)

where ro = classical electron radius, and where *a = conventional scattering
angle. The corresponding differential cross section for Thomson scattering
of photons by electrons in asymmetric bulk matter or vacuum is given by

2

( 1) .je1  r°(I + cos 2  )(147)

Combining equations (126) and (147) gives

2ro 2

I cos eI =--[I + C2 cos (2 )] (148)

2r 2

I sin e6 = - 2 sin(2ec) (149)

or

C2 sin (2ec)
tane =- C.2 (150)

1 + C cos (2eco)

412 ro +4 2 (
1 =-. [1 + C+ 2C cos (2e A (151)
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The Compton effect is the name associated with the quantum scattering of
photons by electrons with a transfer of momentum and energy from the photons
to the electrons. 1 1 ,1 7 The description of this process using quanta of light
was one of the early successes of quantum theory. This process is convention-
ally described by assuming that the photon and electron propagate in the sym-
metric vacuum, and applying the laws of conservation of energy and momentum to
the colliding particles. When this process occurs within asymmetric bulk mat-
ter or vacuum, the same conservation laws are expected to be valid except now
the kinematical parameters of the photon and the electron have broken symme-
tries and are represented by complex numbers.

Within bulk matter or vacuum with broken internal symmetries, a photon
of initial frequency U collides with a stationary electron, and a new photon of
frequency ' is emitted at an angle $ with respect to the initial photon direc-
tion, and the electron recoils with speed v in a direction ' with respect to the
initial photon direction. Then the conservation of energy for the nonrelativis-
tic case gives"l

- 1 -2

hv = - mv + h' (152)
2

while the conservation of momentum yields two equations"

hv- h cos - + m cos (153)
c c

- sin $ = my sin (154)

These equations can be used to determine the three unknown complex number quan-
tities ' , V , and in terms of the known quantities v and T . These three con-
servation equations are expressed in terms of complex numbers and are therefore
equivalent to six scalar equations. The two components of the nonrelativistic
energy conservation equation (152) are

1 2hv cos 0 = -m cos (2e) + hv' cos 0' (155)Y V V

v 2vv(15

h) sin 9v =1 2 sin (2e) + hv' sin e' (156)
1f in -mv

The four momentum conservation equations obtained from equations (153) and (154)
are respectively

hv h1 '
- cos 9 = -C C cos (6' - c.) + mvC cos (e - e) (157)
C \) c V cp) v c'

-) sin 5 =--- C sin (8 ' - ac ) + mvC. sin (Ov - acp) (158)
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hv So = mvS (159)
C ~ '

a' + e = e + e (160)
sV v si

where Co and S, are given by equations (131) and (135) respectively, and 8c
and 0sO are given by equations (132) and (136) respectively, and similarly

C = cos (p cos 0 ) + sinh ( sin 0 ) (161)

12 2S = isin (' cos 0) + sinh (' sin ) (162)

tan 8c = tan( cos 0 ) tanh (p sin 8) (163)

tan Os = cot (' cos 0e) tanh (' sin e@) (164)

where

p= eJ = q PR + j~l (165)

Co'= C e- j ec (166)

sin ' = Se j eSs  (167)

The six equations (155) through (160) can be solved simultaneously for the six
unknowns v', 0, v, v , , and e in terms of the four known quantities v ,

' and 9 .

For a bulk matter system or vacuum with broken internal symmetries, the
relativistic analogs of the energy and momentum conservation equations (152)
through (154) are 1  1 7

hT = mc2 (T - 1) + h ' (168)

h;U hT' Cos

= h -- cos +s 'p (169)
c c

sin $ = myv sin (170)
C
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where the complex number velocity factor for a particle with a velocity that
has a broken symmetry is

y = yejey _ (1 - I2/c2)-1/2 (171)

and where the magnitude and internal phase angle of the complex number boost is

Y = (f2 + b2)-I/4  (172)

tan (2e ) b/f (173)

where

b =v /C sin (2e ) (174)

f= I - v2 /c2 cos (2eV) (175)

The six scalar component equations corresponding to equations (168) through
(170) are

2
hv cos e = mc (y cos 0 - 1) + hv' cos 0' (176)

V -Y V

2
hv sin 6 = mcy sin 6 + hv' sin 0' (177)

VY V

- Cos 0 - C cos (0' - 0c) + myvC, cos (0y + 6v - ac ) (178)
c Vu c ~ V c ~

h sin 0 - h-L C sin (e' - 0 ) + mYvC sin (e + e - 0c) (179)
c V c v co 'py v ctp

h.s = mYVS (180)

9' + e = 6 + 0 + 0 (181)
V s y v s5

In the limit v/c - 0 equations (176) through (184) reduce to equations (155)
through (160) by noting that
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2 v"y - I + v c'cos (20) - 1 (182)

e. v 2 /c2 sin (2e) + 0 (183)
y 2 v

The six equations (155) through (160) or (176) through (181) can be solved nu-
merically using Brown's algorithm for the solution of simultaneous nonlinear
equations. This algorithm is a modification of Newton's method and requires no
derivative evaluations. 19

The solution of equations (168) through (170) can be obtained by direct
analogy to the solution for the standard Compton effect as follows 1 7

X' - 0 A (1 - cos $) (184)

where

' = A'ej0" = c/3' c/v'e-j0V (185)

X= Xejo = c/4 = c/ve- j0 v (186)

and where X0 = Compton wavelength = h/(mc) . The scalar equivalents for equa-
tion (184) are

A' cos 0' = A cos 0X + o (1 - C cos 0 c) (187)

A' sin 0' = X sin 9 + A C sin e (188)

From equations (187) and (188) it follows that

A sin 0, + AoC sin 0
,an 0' A o c (189)

a A cos 9 + A (1 - C cos 0 c)

(A )2 = A2 + 2NAQooS a X C cos (,0 + 0c)] (190)

+ A2 (1 - 2C cos 8 + C2 )

Equations (189) and (190) give the wavelength internal phase angle and wave-
length magnitude respectively of the scattered photon in asymmetric bulk matter
or vacuum. The corresponding frequency equations can be obtained from equations
(189) and (190) by noting that A' = c/v' , A = c/v , 0' - 0 , and 0A 0

Note that equation (187) gives the change in measured wavelengths, and this
wavelength difference is independent of the wavelength itself.
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Consider now the differential cross section for Compton scattering in asym-

metric bulk matter or vacuum. The standard Compton scattering differential cross

section is given by the Klein-Nishina formula
1 3'2 0

2 ,2
Ia ( ra 2j av a + a 2
1 0-a - sin2 (191)

a ~aa

where v = conventionally determined initial photon frequency, and v' = con-a a
ventionally determined scattered photon frequency. The generalization to the
differential scattering cross section for Compton scattering within bulk matter

or the vacuum with broken internal symmetries follows from equation (191) as

2
r -, 2 2,

I( p) =- - (i--) (_--L+.--- sin $) (192)

or equivalently as

2
r° 2 j ' 2 e3)

= (L) e' I + v e - (193)
2 v )Ie)

where v and v' = magnitudes of the complex number initial and scattered photon
frequencies respectively, and where

7 = 8' - 0 (194)
1 V V

T = 3(e - 0) (195)
'2 v v)

F3 = 2(0' - 6 + 6S ) (196)

Therefore from equation (193) it follows that

2 v'2

I cos I= -(-) (7- C F Cos S Cos F3 ) (197)

ro () ( V I 2

I sin e( L) (7 sin I +- sin - S sin 3) (198)
v= v v 2 - 3

from which I and 01 can easily be obtained. The measured differential cross
section = I cos eI 1

6. COULOMB SCATTERING IN BULK MATTER AND THE VACUUM WITH BROKEN INTERNAL
SYMMETRIES. This section considers Rutherford, Mott, Bhabha, and M~ller scat-
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tering in asymmetric bulk matter and vacuum.

A. Rutherford Scattering

The a-particle scattering experiments of Rutherford are one of the cornerstones
of knowledge about atomic structure. These experiments measured the scattering

angles of a-particles interacting with atomic nuclei of charge Ze. The basic
formulas for Rutherford scattering give the differential scattering cross section

as 
1 7

a A 4 a1
- csc (199)
v

a

where

A 2m (200)

Ca = measured scattering angle, va = conventionally calculated initial relative
speed of the c-particle and the atomic nucleus, Z' = atomic number of incident

particle (Z' = 2 for a-particle), Z = atomic number of the atomic nucleus, and
m = reduced mass of the incident particle and the atomic nucleus. In addition
to the differential cross section, the other quantity that is often calculated
is the number of articles deviated through and angle between a and 4a + d~a
which is given by

dN a  4 A a 2 a
da 4v cot -5- csc -- (201)

a

These formulas were deduced.by considering the scattering of an n-particle by an

isolated atomic nucleus situated in a symmetrical vacuum.

For Rutherford scattering within asymmetric bulk matter or vacuum equations

(199) and (201) need to be modified because the indicent c-particle speed v is

now a complex number, and because the deflection angle $ is also a complex num-
ber. Therefore equations (199) and (201) must now be written as

A 4 (202)

() 4A cot csc 2 1  
(203)

d : 2 2v

where I(p) = complex number differential scattering cross section, $ = complex

number deflection angle, dN/dT - complex number of particles deviated through_

and T + dT, and v = complex number initial n-particle speed. Because v and

are phase rotatea, the number of a-particles scattered will also include a phase
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rotated part, so that

N= NeJ (204)

where N and eN = magnitude and internal phase angle respectively of the number
of scattered particles.

Using the following standard trigonometric formulas

sin (1 - cos (205)

tan i (206)
2 1+ Cos

2 1cos =f (I + cos p) (207)

and combining them with equations (126) and (127) gives

2 0= K e-JXO (208)csc 2 K
2 s

csc - = K se2jx (209)2s

cot = e (211)2 t

sec 2 K e (212)2 se

where

K = 2(1 - 2C cos c + C ) (213)

1 2 1/2
Kt - (1 + 2C cos a + C ) (214)

K 2(1 + 2C cos cC) 1/2 (215)se cb CO
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C sin 0c

tan x C - sn c (216)
0 1-C 0CoseO'

sin GsO + C sin (ecC + %()
tan = 4 C~S4~(217)

t cos es + C0 cos (eco + 6sO)

C€ sin 6

tan 0 6 (218)ta 0y 1 + C 0Cos 6 cO

where CO , SO , 6c ' and 6so are given by equations (131), (135), (132), and (136)
respectively.

Combining equations (208) and (209) with equation (202) gives

AK
2

= ej( 4 v+ 2 xo) (219)
4

v

or

AK
2

I =- - (220)
4
v

6I  - 4 v - 2x (221)

which are the equations for the magnitude and internal phase of the complex num-
ber differential cross section for Rutherford scattering in asymmetric matter or
vacuum. Combining equations (208) and (211) with equation (203) gives

dN N d  NO = 4Ks t -j(4ev +X + z O)IL-e4e (222)
d d= v e v

and therefore

dR _ o + N - (23+ 0 d

6NO N + N,O - - 5 0'0 - 46 v - x 0 z (224)
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where

dON/d4

tan N = N dN/d (225)N, dN/d

tan , = de (226)

which gives the magnitude and phase angle of the number of scattered particles.

The measured scattering cross section is given by I cos 6

B. Mott Scattering

Mott scattering describes the Coulomb scattering of two identical fermions
such as, for example, two protons. The differential scattering cross section for
two protons scattering in the symmetric vacuum is described in the center of mass
coordinates by the following equation 21-26

a A 4 a 4 a 2 a 2 _a

I (ca ) =- [csc- + sec 2 csc _- sec -T cos (2 a Zn tan -a)] (227)
a 4 2 a 2v

a

where

2 2

A= (e) (228)

2
2

e v 
(229)

a

and m = reduced mass = mp/2 where mp = proton mass, and va = conventionally
determined relative speed of the two protons. For the scattering of two protons
within asymmetric bulk matter or vacuum, the differential scattering cross sec-
tion is written as a complex number as follows

($) A csc4 i + sec 4  csc -sec 2  cos (2 fn tan-)] (230)
-2 2 2

v

where

e2  e2  e-Jv = Ce- 0 v (231)

Equation (230) can be rewritten as

( - (JRe 3jR + j e j&JE + Jiejeji) (232)
v
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where the Rutherford term and the exchange term are written as

J = K2  (233)R s

JE = K 2  (234)
E se

6JR = 4ev + 2x (235)

6JE = 46v - 2y (236)

The interaction term is written as

- -j(46v +x 1 ,- y)
J = KsK sse co (237)

where from equations (211) and (230) it follows that

f Gej eG = 2 en (eKt ] (238)

= 2 (cos 6 - j sin e V ) (jz - Zn K )

= 2 [z sin ev - In Kt coos6 v + Zn Kt sin e )]

so that

G 2& 2 +(nK)2 (239)

tan z Cos + n K t sin (240)
z in 68 - Zn Kt' cos 6

The interaction term in equation (237) can be rewritten as

J1 JMe- j oJ 1 (241)

where
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J, = -K K seCG (242)

j 6 46v + x¢ - y + 6cG (243)

CG = 2 cos (G cos 6G ) + sinh
2 (G sin 6G) (244)

tan cG = tan (G cos eG ) tanh (G sin G) (245)

The two equations for determining I and eI are obtained from equations (232)

through (245) as

I Cos eI  -=-L (JR cos 6 + J Cos 6 + J Cos ) (246)
I 4 R JR E JE I JI

v

I sin6 = - _ (jsin6 + J sin6 + J sin6 (247)
i JR JR E JE I JI

v

In this manner a theory of Mott scattering in an asymmetric medium is developed

which is consistent with the gauge theory of the asymmetric background medium.

The measured cross section is = I cos 61

C. Bhabha Scattering

Bhabha scattering is electron-positron scattering e+ + e- - e + e by

photon exchange and pair annihilation. The differential scattering cross sec-

tion in the center of mass system and in the high energy limit (Ea>> m) is

given for the symmetrical 
vacuum by

2 7

- + Cos 4 Oa c 4 Oa]

+ (I + cos 2  2 "os 2 (248)
Yaa sin4 a sin 2 a

where

2

2 mc) (249)

Y v ~2 /C2 F-1/2(20
a (1 - Va/c 2) (250)

- fine structure constant, m - reduced mass of electron, and va = convention-

ally determined speed in center of mass system. The first term in equation

(248) is the photon exchange term, the second term is the pair annihilation
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contribution, while the third term represents the interference between the first
two terms.

2 2

The corresponding cress section for Bhabha scattering in asymmetric bulk
matter or vacuum is written as

- B I + Cos i2Cos $

I() =-2B + CS 2 1 + cos ) 2 S (251-260)
sin 2 sin 2

where v and y are given by equations (138) and (171) respectively. Combining

equations (208) through (215) with equation (260) gives

B +L -jP i(3 j4-0
I() 22 (Lle-2 + L eJ4 2 3 e L +L 5e- ) (261)

-y v

where y is now the magnitude of the boost for a broken symmetry system and is
given by equation (172), and where

= K2  L 1 2 (262)

1 s 4 2C

L = K2 /K2  L = - 2Ks/K 2  (263)
2 s se 5 s se

L3 = 1/2

v = 2(6 + 0 +4 = 2(0 + 0 + 06) (264)

'2 = 2 (Oy +Ov + x + Y5) = 2(8y + v + x /2 + y¢) (265)

D3 = 2(6 + 3 ) (266)y v

where Oy is given by equation (173). From equation (261) it follows that

I cos 9 = 2B 2 (L cos (P + L cos (D + L cos (D + L Cos + L cos ¢5) (267)
2 221 1 2 2 3 3 4 cos 4  5 5

y v

Isin 9 B (L sin I + L ssinin (268)i1 221 1 2 2L3 3 4 4 5 5
y v
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from which I and e1 can be easily determined. In equations (261), (267), and
(268) the first two terms are due to photon exchange, terms three and four are

due to pair annihilation, and term five is the interference term.

D. Miller Scattering

Miller scattering is electron-electron scattering e- + e- e- + e by

photon exchange. The differential scattering cross section for this process in

the center of mass system and for high energy (Ea>> m) is given for the symmet-
rical vacuum by

1 9 '2 3'2 7

44 Iai+ Cos I2 + sin 4  a

Ia 2B 2 2 +

YV [ n 4.  a 2 a 2 Oa 4 a
aanT sin - cos T Cos T

where 4a = scattering angle, and Ya = or(,nary relativistic boost given by equa-

tion (250). The first term in equation (269) is due to direct scattering, the

second is due to interference, and the third term is the result of exchange

scattering.

The corresponding differential scattering cross section for Miller scatter-

ing in bulk matter or vacuum with broken internal symmetries is given by

+ Cos 2 + sin4

I = B + 2 - + - n2 (270)

y v sin 2 cos 2 cos

-2 -2 2

where the particle speed v and boost y for a broken symmetry system are given

by equations (138) and (171) respectively. Combining equation (270) with equa-

tions (208) through (215) gives

B = 2 2 + T e e+T + T e +Tej + T e ) (271)
22 12 3 4 5

Yv

where the boost y for a broken symmetry system is given by equation (172), and

where

Ts = Ke2  T = K2  (272)
1 s 4 se

T = (K K2T = K 2/K 2(273)
2 s se 5 ses

T3 = 2K K (274)
2s7se
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where Ks and Kse are given by equations (213) and (215) respectively, and where

'= 2 0 Y +v + x )4 = 2(6y + e v y) (275)

2 = 2(6y + 6v + x + y) l5 = 2(8y + 6v - x- y) (276)

3 2(8y + 6v + x /2 - y /2) (277)

where x and y@ are given by equations (216) and (218) respectively, and where
8-y is expressed in terms of 6v by equation (173). From equation (271) it follows
that the magnitude and internal phase of the differential cross section for Moller
scattering in a broken symmetry system is given by

ICos 6 = - - (T 1 Cos 
+ T2 Cos 2 + T3 Cos3 4 + T Cos* + T Cos 5) (278)

Y v

sine I 
=  2 B (T sin +T sin 2 + T3 sin 3 + T4 sin 4 + T5 sini 5) (279)

yv

which can be solved for I and 81 immediately.

7. DIRAC EQUATION FOR FERMIONS IN ASYMMETRIC BULK MATTER OR VACUUM. The
Dirac equation determines the spectrum and eigenfunctions of half-integral spin
particles moving in an external potential.18 The eigenfunctions take the form of
four-component spinors, and therefore the Dirac equation for a particle moving in
the symmetric vacuum under the influence of an external potential must be equiva-
lent to four equations. In fact the Dirac equation is a matrix equation involving
4 x 4 matrices and is written as

1 8 '1 9 '2 7- 3 7

(-iy, - + m + Va)*a . 0 (280)
epa

where x a =ta , xa a Ya Za , and wherey Y Y2 . and Y3 are the

four Dirac matrices. Within asymmetric bulk matter or vacuum the Dirac equa-
tion is expected to be written as

(-iy a + m + w) - 0 (281)

where y - spinor with internal phase given by
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= peil = 1PR + J~l (282)

RW cos e (283)

= p sin e (284)

and where the complex number potential is written as

e +V (285)e g

The gauge rotated time and space coordinates = F, , , and i of a particle
in bulk matter or vacuum with broken internal symmetries are written as

t= tej t  R = xej e x  (286)

= yejeY = zejez (287)

The combined effects of gauge rotated coordinates, gauge rotated external poten-
tial (which is a function of the gauge rotated coordinates), and the gauge po-
tential itself Vg , will manifest themselves in the eigenvalues and eigenfunc-
tions of the Dirac equation for a fermion located in an asymmetric system.

The space and time derivatives that appear in equation (281) are written as

= e- j dt I + (t -- 1J a/3t - ejdt cos B, 3t  (288)

Se- jOdx 1 + x 2"]-1/2 a/3x - e - j edx cos a/ax (289)

2] 1/2

= e-JdY + y ]) 3/ay - e- dY cos y, 3/y (290)

e- j ed z I + /z c3z - eiJdz Cos 6 z /3z (291)

where
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Sdr = at + t,t = o + ao,o = Odo (292)

0dx = a + x  = e1 +I = (293)dx x x,x 1 1,1 8dl

dy = 0 + a = 2 +2 = (294)Yy y,y 2 2,2 @d2

0dz =0 + 8 = 3 +0, = d (295)dz z z z 3 3,3 @d3

and where

tanB =tan Bt, = t a /at (296)t 0,0ttt

tan S1 I  = tan S x,x x ;x (297)

tan 02,2 = tan a = y ae /ay (298)

tan a3,3 = tan = z 0 /az (299)

In this way the necessary space and time derivatives in Dirac's equation for
broken symmetry jystems are evaluated.

Equation (281) can then be rewritten as

(-ie-j dj cos 0 P -+ m + W) = 0 (300)

The two matrix equations corresponding to equation (300) are obtained by taking
the real and imaginary parts in the internal space as follows

(-i Cos 0 cos 0 y a/ax + m + W cos 6W) R (301)

-(isinad Cos aP9y 3/3x + W sin 6 W) 0

Ui f 0d YP a/ax + W sin W R (302)

+ (-i cos 0di cos 8 a/ax +m+WCos w) 0
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where it is assumed that the mass is a real number that is not affected by the
gauge rotations due to the asymmetric background. Note that from equation (285)
it follows that

W cos O W = Ve cos eVe + Vg cos OVg (303)

W sin eW = Ve sin eVe + Vg sin eVg (304)

The equations (301) and (302) are equivalent to eight equations for the eight
o 1 2 3 o 1 2 3

spinor components iR' R ,' R , R , I , I ,I , and pI , or equivalently

0o 1 02 03S  2 , eo , % , 2 , and 6e3 Therefore Dirac's equation for

a fermion located in a background with broken internal symmetry is equivalent to
eight independent equations. An approximate solution ignores the imaginary wave-
function components, which gives

iCos d/x + m + W cos eW)R 0 (301A)(-ics@ucos 8 ,

(i sin e cos a ,1 yl a/ax + W sin eW) *R = 0 (302A)

as the Dirac equations with four spinor components.

Alternatively, equation (300) can be combined with equation (282) to
give the following set of Dirac equations

[- i cos e cos B ,P y (a/ax + ae /ax ) + m + W cos e ]p = 0 (304A)

[i sin 6d cos 'lu yV(a/ax + De /ax ) + W sin 0W]p = 0 (304B)

If the space and time derivatives of e0 can be neglected these equations become

(- i Cos e cos 6Lu y a/ax U + m + W cos 0 W) = 0 (304C)

(i sin 6 cos 6 yU a/ax + W sin 6W) = 0 (304D)

8. SCHR6DINGER'S EQUATION FOR A PARTICLE WITHIN ASYMMETRIC BULK MATTER OR
VACUUM. This section considers the effects of bulk matter and vacuum with broken
internal symmetries on Schr~dinger's equation for a particle moving in a poten-
tial field. The time dependent Schrddinger equation for a particle moving in a
potential field in a symmetric vacuum is written as38-47
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[1(2 2 + a (305)
[mmPxa +  ya Pa e] =i 35

a

where the single particle momentum and energy operators are given by

P = - ili/aa E = ih/3t (306)saa a a

with a = x , y , z . Within asymmetric bulk matter or vacuum it is assumed that
space, time, momentum operators, energy operator, potential, and wave functions
exhibit broken symmetries and must be represented by complex numbers in inter-
nal space. For this case the time dependent Schrddinger equation is written as

[m (5 + P2 + P-2 ) +  ]N = it a (307)
2m x y Z a

whereWV +V and where
e g

p p a ep = - ih/3 = - it cos a e- j da 3/9a (308)

2 = Eej6E =ia/3E = it cos at' t e
-jIdt 9/at (309)

where

Cos = = [I + (01 36C2 -1/2(1

d 6 = + + ' (311)

= 1+ ti 2-/ (312)

0 = et + t't  (313)

where at t and a, are given in equations (296) through (299). From equations
(308) and (309) it follows that

pa ib cos 6 /3a (314)

e = -a 8d (315)

E = ih cos 6t't J/at (316)
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aE  e dt (317)

It is easy to show from the Heisenberg uncertainty principle applied to pa
and 3 and to E and t that a., < 0 and Bt,t < 0 , so that from equations (296)
through (299) it follows that 8. is a decreasing function of a, and et is a
decreasing function of t.

The kinetic energy operator in equation (307) is written as

3 _2 2da3

a o- e- j eda - (cos e-  (318)2mm cos ap 8" =a a- )a(3

L= c=1

For simplicity it is assumed that Ba and e. are slowly varying functions of
position so that equation (318) can be rewritten as

3 -2 32 2
3 2 2-2 2 -j 2 8 da a q'i

cos , e (319)
a= a~= aaa

Writing the wavefunction as = + j~l allows equation (307) to be written as
two component equations as follows

23 r2 2

2m csos [ cos (2ed) -- + sin (2eda) (320)2m =i da 2  eda

+ W(cos e W  R - sin ew 1Y

i( Cos cs + sin e -t t (CO dt at dt at

[ m o 2 , n(e 2 2-
-Cos sin (2 D -2+ cos (2 ed) (321)

a=1 Daa aa

+ W(sin eW R + cos eW  )

dt 3t + cos t
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Equations (320) and (321) can be used to determine 'R and 1. For the case of
a stationary state the wave function components are written as

-igt/ -i~t/h
R = Re . = ¢I e (322)

and equations (320) and (321) become

F23 2 R 2I]

Cos  cos (20) + sin (20d) (323)= dL 2 -

+ W(cos 0W  R - sin eW Y

= E Cos 6 ,t (Cos 0dt R + sin edt i)

h23 2 ) 2
2m cos 2  t, - sin (2 32 + cos (2e (324)

+ W(sin W R + cos 6W

E c cos tt (- sin Odt ' R + cos 6dt

It is generally quite difficult to determine R and fj (and c) from equations
(323) ana (324). The form and magnitude of the functions *tCa t't bljd , and

adt depend on the nature, density, and temperoture of the asymmetric bulk matter
or vacuum surrounding a particle.

Consider the case where the asymmetries are sufficiently small that the im-
aginary part of the wavefunction can be neglected in equation (323), so that this
equation becomes

3 2
- ~' cs 2  cos (29 - + W cos C Cos os tR (325)
m 1 L os 1,,x JO) d- c2 W tdt

For an isotropic system equation (325) becomes
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At this point it is easy to treat the Klein-Gordon equation for a particle
that is located in an asymmetric background. For a particle in a symmetric vac-
uum, the Klein-Gordon equation is writtzn as

3 4- 3 7

32e= 2-2 m2c 4

at2  C V a~ a 2 Ta (330)
a

Within asymmetric bulk matter or vacuum the spacetime interactions induce a bro-
ken symmetry in the wave function and in the space and time coordinates, so that
the Klein-Gordon equation becomes

32- c2la 2  a2 a 2- m24
3- i -- - + 3Y2  + 3- _ 2c 4 (331)

aE 2  \aR2  9 2  3i2J If .2

Taking the real and imaginary components of equation (331) gives

R2t(GR'I ) c c[R 2 (PR'I ) + R2y( R' I) + R2z( R 2 (332)

12t ( R 'I) c 2 [12x( R 'li) + I12y(1R'O l) + 12 z( R 'C)] 2 (333)

where

2. 2
Rcos 2  [cos ( 2 ed ) + sin (2a) (334)

R' I d an 2n 2

2  a 2 R a2d 2

Cos E sin (20 - + cos (2e] (335)

an an

where n = t, x, y, z, and where

adn =e + B (336)

9. CONCLUSION. On account of spacetime interactions with bulk matter and
the vacuum, these systems exhibit broken internal symmetries. In the case of
black body radiation in asymmetric bulk matter or vacuum, the photons have com-
plex number frequencies which produce a radiation pressure and energy density
that have broken internal symmetries. The space and time coordinates within a
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d 2m ( cos cos e - W cos 6 (326)
+ 2 2 cs(0x

dx 3 -cos 2 x (2e ) t 1 t dt R

This can be rewritten as

d R (E - W 0 (327)

dx
2  3

2

where m* is an effective given by

m* 2 m (328)
cos 8x~ cos (0x

and W* is an energy dependent effective potential given by

W =(l -cos 8t,t cos edt ) + W cos W  (329)

Equations (323) and (324) can also be written in terms of the magnitude and

phase angle of the wavefunction by writing R = 0 cos eo and 01 = 0 sin 60

If the derivatives of the phase angle 60 are sufficiently small and can be ne-

glected then equations (323) and (324) can be rewritten as

32
tm cos 2 8 cos (2) d20 + W cos e 0 (323A)

a=l da2

= . cos8S~ cosO @d

+2 COS s sin (2 e d2L$ + W s in 6W (324A)
+2m a os aa eda) da 2

= - E COS 6t,t sin edt

For a one dimensional system the factor 3 that appears in equations (326) and

(327) should be replaced by unity. Therefore in asymmetric bulk matter or vac-

uum the particle acquires an effective mass, due to spacetime interactions, which

is larger than the bare mass. In addition an energy dependent effective poten-

tial arises whose value depends on the degree of asymmetry that exists in the

background of the particle.
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broken symmetry system are also gauge rotated and are described by internal
phase angles. From this it follows that geometrical angles are described by
complex numbers and have internal phase angles. The skewed nature of space and
time affects the fundamental scattering processes of atomic particles. All atom-
ic processes that occur in asymmetric bulk matter or vacuum should also have bro-
ken symmetries that are manifested in the measured differential cross sections.
For broken symmetry quantum systems, the asymmetry produces an effective mass in
the Schrtdinger equation that is larger than the bare mass of a particle.
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MAXWELL'S EQUATIONS WITH BROKEN INTERNAL SYMMETRIES

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. On account of the broken symmetries of the thermodynamic ground
state and excited states of bulk matter and the vacuum, the electric and magnet-
ic fields in bulk matter and the vacuum exhibit broken internal symmetries. Max-
well's equations are formulated for an electromagnetic field with broken inter-
nal symmetry. Lorentz covariance is expressed in terms of space and time coor-
dinates that have broken symmetries represented by internal phase angles. Spe-
cial relativity mechanics in bulk matter and the vacuum with broken symmetries
is formulated for particles whose kinematic and dynamic variables exhibit inter-
nal phases. Electromagnetic wave equations for broken symmetry matter and vac-
uum are developed and the gauge conditions for the electromagnetic potential are
developed. The vacuum state is shown to have properties that are essentially
similar to those of a bulk matter system, and in particular both exhibit broken
internal symmetry. The description of electromagnetic effects in matter and the
vacuum must properly account for the broken symmetry of the fields and space and
time coordinates, and the internal phase angles of the electromagnetic field vec-
tors must be determined jointly with the internal phase angles of the space and
time coordinates. A better knowledge of electromagnetic interactions in bulk
matter will be useful for understanding electromagnetic wave propagation in the
atmosphere and for comprehending the complex processes that occur when high ener-
gy microwave beams interact with matter.

1. INTRODUCTION. Electrodynamics is a theory that is based on the Lorentz
covariant set of Maxwell's equations and on the symmetry of the gauge group
U(1). 1- 3 This theory has charges and currents as the sources of the electromag-
netic field. Maxwell's equations are a set of partial differential equations
that determine the space and time variation of the electric and magnetic fields
that are associated with the distribution of charges and currents. Classically,
the charges and currents are situated in a passive space and time background
(the vacuum) which is assumed to be inert and plays no active part in the deter-
mination of the fields. In quantum electrodynamics, the vacuum is taken to be a
polarizable medium which can affect the energy levels of charged particle config-
urations. The active vacuum is one of the great discoveries of twentieth century
physics, and has been experimentally verified in a number of ways including a
measurement of the Lamb shift of energy levels. -6

In this paper an additional vacuum effect on the electromagnetic field is
suggested to manifest itself through the fact that space and time coordinates
within asymmetric bulk matter or vacuum acquire internal phase angles (broken
symmetries). The electric and magnetic field vectors also acquire broken sym-
metries. The internal phase angles of the space and time coordinates and of
the electromagnetic field vectors are due to the interaction of Minkowski space-
time with bulk matter, the electromagnetic field, and the vacuum. The internal
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phase angles of the electromagnetic field vectors must be determined jointly
with the internal phase angles of the space and time coordinates, and it is the
joint solution of Maxwell's equations and the equations of motion of charged
particles for a system with broken internal symmetries that accomplishes this
task.

The relativistic values of the electromagnetic field vectors in asymmetric
bulk matter or vacuum must satisfy the relativistic trace equation for radia-

7-8tion. - This radiation trace equation relates the renormalized radiation pres-
sure to the corresponding nonrelativistic radiation pressure. The trace equa-
tion for radiation is derived from the relativistic trace equation for the ground
state of bulk matter which is written as7 ,8

d+T(") -3V (V) Ua  TdUa (1)
r PV U dT /paV

or equivalently as

(1 - b + T - bV )E - 3(1 + Y + V -T (2)
3T WV W~ T

where

a= (T T- b a V _ + -b a)E a  
(3)

and where U, Y, , y, and b are complex number representations of the internal
energy, energy density, pressure, and the gauge parameters, T = absolute temper-
ature, and V = volume of specified number of particles. The complex number GrUn-
eisen parameter is defined as

- V 3T _ 3P/3T (4)
CV 9T ;E/T

where y and e, = magnitude and phase of the GrUneisen parameter respectively.
The corresponding equation for radiation in matter with internal phases is de-
rived from equation (2) to bes

(I + T -P - V r - (T - (5)

T 7 T4)V r 7 a

- 3[(1 + + V - - (T 4 -P =
77V 3T r r 3T r

where
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a aT a aV Pa)a (T - baV + 1 - ba)Ea (T-
r-T3 r -r DT a)(6

and where Er' Pr' r' and 6r are the complex number radiation energy density,
radiation pressure, and two radiation gauge functions respectively.8 The radi-
ation Grneisen parameter is defined by

'P ;E= r r (Arr / __T_ (6A)

Throughout this paper the index "a" will refer to nonrelativistic (unrenormal-
ized) calculations. Equation (1) with its right hand side set equal to zero
represents the asymmetric ground state of the vacuum, while equation (5) with
its right hand side equal to zero represents the excited (radiation) states of
the asymmetric vacuum.

The relativistic trace equations for the ground and excited states of bulk
matter and the vacuum imply that the ground state and excited state pressure
fields have broken symmetries. 8  In turn, this implies that all of the descrip-
tive variables of particles and fields located in asymmetric bulk matter or vac-
uum also exhibit broken symmetries. Therefore the space and time coordinates as
well as the electric and magnetic field vectors will exhibit broken symmetries
as manifested by internal phase angles. The space and time coordinates are writ-
ten as

= xe X  (7)

y= yeJ y (8)

z = ze j 0 z (9)

t = tej6 t (10)

and the derivatives with respect to the space and time coordinates are written
as

3/3x = e- j 6dx cos 3 /3x (11)
X ,x

= -Jdt C/t (12)_/t cos Bt~

where

tan x = x Ox/3x (13)
x'x x

tan 8tt = t 3Et /3t (14)
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cos I + (xe /3x)2 - I / 2 (15)=, x (5

cos =tt [I + (t D t/3t)2]-1/2 (16)

0dx e + B (17)

adt = t + t t  (17A)

In a condensed notation the coordinates and derivatives are written with
q = t, x, y, z as follows

-= jell (18)

3/3n = e- j dn cos 8 2 /3n (19)

odn =e + (20)

tan T = n 3n /3n (21)

cos Sn n = [i + (-n e /3n) 2] (22)

Note that it is the real parts of the complex number quantities such as space
and time coordinates, electric and magnetic field vectors, pressure and energy
that are the measured quantities.

This paper develops Maxwell's equations for electromagnetic fields that
have broken internal symmetries and for space and time coordinates that also
have broken internal symmetries. Section 2 considers the fields and coordi-
nates with broken symmetry, while Section 3 develops Maxwell's equations and
the equations of motion of charged particles in an electromagnetic field in a
broken symmetry vacuum or bulk matter system. Section 4 develops the conse-
quences of assuming the validity of Lorentz covariance for coordinate systems
with broken internal symmetry. In Section 5 the electromagnetic wave equations
and their gauge conditions are written for systems with internal phase angles.
Finally, Section 6 develops the equations of the relativistic vacuum from the
corresponding bulk matter equations, and a broken symmetry condition for the
vacuum state is suggested. Therefore all of the conclusions for the bulk mat-
ter state with broken internal symmetries are also valid for the broken sym-
metry vacuum state. The conventional coordinates ta , Xa P Ya P Za are related
to the measured values tm , Xm , Ym , zm of the complex number coordinates by
ta = tm = t cos Ot , Xa =xm x cos ex * Ya = Ym = Y cos Oy and

za = zm = z cos ez

2. THE BROKEN SYMMETRY OF ELECTROMAGNETIC FIELDS. For electromagnetic
waves within asymmetric bulk matter or vacuum, the electric and magnetic fields
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are expected to acquire internal phase angles. This is due to the fact that
the spacetime coordinates and the kinematical and dynamical variables of parti-
cles in asymmetric bulk matter or vacuum exhibit broken internal symmetries. In
particular the particle velocity, and therefore the electric current for charged
particles, has an internal phase angle. Therefore the cartesian components of
the electric and magnetic field vectors in asymmetric bulk matter or vacuum can
be written as

E= E ej eEa = E + jE (23)a a = aR Eal

Da D ejeDa + " (24)a = DaR Dat

= ej eH a  H + jH (25)Ha = a HaR Hat

= B a ejeBa BR + jB (26)

where a = x, y, and z. The phase angles eEa, eDa , 8Ha, and eBa are in general
functions of space and time of the general form

SEa = Ea(x,ypz,t,exey ,ez,e) (27)

The field vector amplitudes are also functions of space and time, as for example

Ea = E (x,y,z,t,,ex9,SS z ) (28)

The imaginary number j will be used to refer to internal phase angles that are
associated with broken symmetries, while the imaginary number i will refer to
external phase angles. For plane waves the magnitudes of the field vectors in
equations (23) through (26) may be written as

E a= ae i  (29)

D = ADaei (30)

Ha= AeHa e (31)

= Aa ei  (32)Ba

where
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= k x + k y + k z - wt (32A)

where AEa , ADa , AHa , and ABa are constants; kx , ky , kz = wavenumber com-

ponents, and w = magnitude of the frequency.

In general the internal phase angles 8E. , eD 6 , 8Ha , and 6Ba are functions

of space and time, and it follows from equations (18) through (22) and (23)

through (26) that

e JEa,n cos B W (33)

j Da,
3D /3r = e cos Bq n W Da,(34)

a /T1 = e 
Ha 'n cos BqP n WHa,(

aB/ = ejoBa,' n cos BI W B,n (36)

where n = t, x, y, z and where

WEt,, = (9E L/n)2 + (E3eEa/3n)2  (37)

WDan = (D L/T) 2 + (D L0Da /n) 2  (38)

WHa,) = / (3H / T)2 + (H c 9 3n) 2 (39)

W /(3/Th)= 2 +( 3eB /T,) 2 (40)
WBa,i 

(40+

E,ri Ea + Ea,n dn 
(41)

Da,n eDa +  Da dn 
(42)

Ha,n = Hea +  Ha,n - dn 
(43)

CBa,n =a B + B dn (44)
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tan = E E (45)Ea,n a 3E /n
ta

tan B D Da /3n (46)Dot, n a 3,D /3ri

taa

tan 3HSeH (47)3Ha.r, a 3H / T 47

a

tanS i.=B B O;B /a (48)Ba,r a SB /3n (8

a

and where

ed =>+ r, (49)

If the electric and magnetic fields have an external time dependence given
by equations (29) through (32) it follows that

SE
S<Ec J CosE Wa t(50)

and

i 2 + 2a
A ea, t =+A EaAee3 Lk Ea 2 (51)

T(t t I

where is given by equation (32A), with similar exDressions for the magnetic
vector components. Similarly, the derivative with respect to the coordinate 3,
is given by

)E = e ,x cos E" W (52)
-Z X':- Ect,x

where

2 iA3 2 2i o 2 (53)WE:~ ~ e4 - + a Ea x Fax
Eax == -A e ) Ea- (53)
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with similar expressions for the magnetic field vector components and for the
derivatives with respect to y and z .

It is sometimes conventient to write the derivatives in equations (33) and

(36) in the following alternative forms

a9Ea o = nne 6d --s Rn(E REI) + JIn(E REI) (54)
annn Tn n a.R a.I ) iIn LR' al 54

3E = Cos ejd - R (BR B ) + ji (BR, (55)
n n an,n n in I in R I)

where

R(E ,E ) Cos (cos e E R/3n + sin e E I/3n) (56)Rin( cREl cos B,n 8dn ciRdp i

= Cos B,n ECos DE,n WEa,n

,cos nn cos (eEa - edn) aEa/ 3n

Iln(E aRE ai) = cos B ) n (- sin edn 3EcR/3n + cos edn aEal/a) (5')

cs sin C~ W~e

CoS 9.,n Ea,n WEcn

Cos sin (e - e 3E/nco n,n eEi edn) 3ET

R(B ,B ) =)Cos 6 (cos 6 9B R/n + sin e ai/On) (58)RIn(BiR, ci) co ,n 8dn ciRdn

=oS cos @ WB

Cos n,n C Bn ,n

'Cos S cos (6Ba - edn) 3B /an
o n,n B27E

27 E



I n(B RB i) = cos 8 1nT(- sin 0 9B R/an + Cos 0dn 3B I/an) (59)

=Cos a n,n s D Bct,n WBa,q

cos 8 sin (6Ba - edn) ;B /Dn

and where

EaR =E cos eEa (60)

E 1= E sin 6Ea (61)

B R B cos eBa (62)

B a B sin 6lB (63)

The second derivatives of the field vectors are obtained by consecutively
applying the first derivative operators that appear in equation (54) as follows

cos 8 e-Jdn L (cos 8 e- j od n  a (64),_2 TI .n an n, n an

a T

where a = x, y, z and n = x, y, z, t. For simplicity it will be assumed that
n3n= and edn are slowly varying functions of n. Within the limits of this ap-

proximation the second derivatives of the field vectors are written as

2-2
a -jd '(65)

2 ' cos e- R 2 n E , Jt2n(R, )(52 -2-d co R (E RE i) + ji (E RE i

2 2~ in

". cos 2  e JYEa,n TEa,

os2 J (eEci-2d )  2
%cos nn e

279



2 2-
R a cos 2 e -- R (H H + ji (66)TI3,TI 2  = 2nHaRHl +X J2n (xaRal)

3n]

cos n n e HaTHa,n

2 i(eHa- 2odn) H

cos 2 e (n 2

where

32a E OL206E
a(E 2 2a 2 26 A

S= ) + (Ea 2a,n = @n 2H -2 (66A)

2 2 2 2 ~a

T = (-a) + (Hae) (66B)
Ha,n 32a 2

T Ea,rj eEa + 6 Ea~n 26 dn (66C)

yHa,n Ti Ha + 6HaT ~ 2 e d (66D)

and where

2E

(E E )=Cos 2 [ao '2 aR a26 ~Ea (67)[cos (20dn - + sin (2Od)26l] (7
R2n(EaRE al r .o n  d n 2  d n 2

2

%cos , cos ,J  TE

IuCos 2 n~ Cos (oE - 2edq a
r), r) Ea n 2

2n
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CEE)=CSB If d 2 EaR p2 2Eal:

12nERE cos 2  sin (2ed D E- + cos (22 (68)
n cs s

C s2 TI lsin Y ,qT Ea , r

S n,n Ea, Eri 2

2 HEa

R ( HCos os (2 - +sin (26 69

cos 2Cos (e - 2d) 2

2o ( H 2Hnl

R (HR,Hl) = cos 2 [in (2e ) aR 2(22 n aR - - + s 2dn) 2 (69)

2 
co

Cos 2 a, n  sin Ha,ri THa,

2 _2H

cos 2 ci (6 - 2a ct

8HR _2H_

2n(a~cI o [- sin ( 2 0 dn) 2--- + cos ( 2 6 dn) 2 ] (70)

B sin P T~a

cos n~n  Ha,n Han

2 2H

~cs sin ( - 2ud 2

and

2 2 E

tan 6 =E E aL (70A)
Eao an 2 an 2

2 a2H

tan H a (70B)Ha,n a n2 2
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Similar equations can be written for the D. and Ba components. In this way the
derivatives necessary for evaluating Maxwell's equations in asymmetric bulk mat-

ter or vacuum can be evaluated.

3. MAXWELL'S EQUATIONS WITH BROKEN INTERNAL SYMMETRIES. This section de-
velops Maxwell's equations for electromagnetic fields whose field vectors have
internal phase angles. The asymmetric bulk matter or vacuum in which the elec-
tromagnetic fields exist also have broken internal symmetries in the static pres-
sure field, GrUneisen parameter, and in the space and time coordinates of each
point in the system. The internal phase angles of the ambient medium such as
ep ,ey , x ,ey ,e z and 6t must be calculated in conjunction with the internal
phase angles of the electromagnetic field vectors. The quantities of 6p and 8Y
are obtained from the ground state relativistic trace equation (1) and equation
(4) that defines the relativistic GrUneisen function.

The unrenormalized Maxwell equations for charges and currents are written
a9-17as-*

a a 0  (71)
a

-.-a aV . = pq (72)

-)a = a/, t + ] (73a q (3

a a

V x E _ aa/at (74)a a

where B unrenormalized magnetic induction vector, D = unrenormalized elec-
a

tric displacement vector, P = unrenormalized charge density, H =unrenormalized

magnetic field vector, j = unrenormalized current density vector, and Ea = unre-
normalized electric field vector. Equations (71) through (74) represent eight
equations, six of which are independent. The simplest constitutive equations are
the following

-'a a-*a
B = U H (75)

-*a =a-'a
D = (76)

where a =unrenormalized magnetic permeability, and a = unrenormalized dielec-
tric constant (permittivity). More complicated constitutive equations are often
used.18 In general

a a a a aaa

= ,a(pa,ya) = aa (P a,y ) (77)

282



where Pa and y are functions of density and temperature.

Within asymmetric bulk matter or vacuum a similar set of Maxwell's equa-
tions must be valid except now the renormalized electric and magnetic field
vectors must have internal phases, and the space and time coordinates must also
have internal phase angles. Therefore equations (71) through (74) can be writ-
ten for the electromagnetic field in bulk matter or vacuum with broken internal
symmetries as follows

.B = 0 (78)

7• D = pq (79)

7 x H = 3D/3t + (80)

7 x E = -B/st (81)

where B renormalized complex number magnetic induction vector, D = renormal-

ized complex number electric displacement vector, p = renormalized charge den-
t~ q -

sity, H = renormalized complex number magnetic field vector, j = renormalized
4

complex number current density vector, and E = renormalized complex number elec-
tric field vector. Equations (78) through (81) are complex number vector equa-
tions and represent a total of sixteen equations, twelve of which are indepen-

ent. Note that p Pa as can be seen from equations (72) and (79) on account
Z a a a a

of D # Da . Since w = nq and p = nq , where q and q = renormalized and unre-q qa

normalized charge per particle, it follows that q # qa The renormalized cur-

rent density is given by j = nqv , where v = vector particle velocity with in-

ternal phase. The internal phase angle of the particle velocity is a function
ta

of 9 , e ,e , e t and clearly j# 3•x y z t

The simplest renormalized constitutive equations are written as

B = 1,H (82)

D = :E (83)

where 4 = renormalized magnetic permeability, and e = renormalized permittivity.

Taking account of the fact that equations (82) and (83) are vector equations
with real and imaginary parts, it is clear that they represent twelve equations.
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The state equations for u and e will be assumed to be given by

a= I (P,y) (84)

a (P,Y) (85)

where the functions are evaluated at the values of the renormalized pressure
and Grtineisen function as determined from a solution of equation (1).

The component form of the renormalized Maxwell equations (78) through (81)
are ritten as

x /xx + aBy / + Bz /z = 0 (86)

5x I + , /3y + 3D /z = c (87)y z q

yH /;x - aH x/ay = Z5 z/E + z (88)

9 - y /3- = x/3E + j x (89)

x /;Z - z /;X = T5 /3E + 1 (90)
x z y y

3E / x - E /y = - aB /t (91)V z

3E z/y - 3Ey/3- = - B /E (92)

AmXl/i - zl- = - By/;t (93)

Using equations (33) through (49) to evaluate derivatives allows Maxwell's
equations to be rewritten as

: co os +W cos~ cos (4
WBx,x cos Bx, x,x WBy,y CBy,y Sy (94)

cost Bz, c=0

WBz,z Bzz z,z
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w sin' (D Cos + sin4 Cos (95)
Bx,x Bx,x x ,x By,y By,y y,y

+ WBz,z sin BzzCos Z = 0

w sn D Cos a sn (D Cos a (96)
Dx,x Dx,x x ,x Dy,y Dy,y y,y

+wDz,z snDDz,z Csz,z =q

Dx w D, Cos 5 +z~ Co sin + jo z (97)

w Hy~~~ ~,x Dy yX o ,x-wH,y si DyH,y Cs y,y (9

q sin (D CosS + , 0 n
Dz,z Dz,t z,z ]

W Cos' Cos - w Cos ~ CosE (10)
Hzy Hx ~ yl~ x,x Hy,y Hy,y y,y

-w DxtCost DtCos t + j xCos e.

wH sinc D Cos6 - w sin ~ Cos (99)

Hz,y Hzpy y ,y Hy,z Hy,z z,z

WDx,t snDx,t Cs5t,t +jx sn9j
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w Hxz Co Hx,z CsBz,z w Hz,x Cs),Hz,x Cs x,X (102)

= Dy,t Cs'Dyjt Co t,t + yCo j

wHx,z sn Hx,z Cs6z,z w Hz,x sn',Hz,x Cs3x,x (103)

=WDyvt si bDy,t Cs6t.,t +iy sn6jy

wEy,x Co pEy,x Cs x,x w Ex,y CsEx,y CsayIy (104)

=-WBz,t Co Bz,t Cs t,t

wEy,x si DEy,x Cs x,x w Ex,y snEx,y CsByvy (1OS)

=-WBz,t si )Bz,t Cs t,t

w EzyCos E Cos 8 5 - w EyzCos Ey~ Cos 3 5 (106)

wEz,y sn Ez,y Csay,y w Ey,z s nEy,z c sBz,z(17

= -WBx,t si Bx,t C s Bt,t

w~ EzCs f5 ExzCos S , - W E~ Csn E~ Cos 3 s 18

WBy,t csDBx,t Cst,t
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WExz sin cEx, Cos 6 - WEzx sin cEz, Cos 6 (109)

= -W~y sin~ Sy cos S
By,t i y,t t,t

Maxwell's equations can be written in an alternative but equivalent form by
using equations (54) through (59) as follows

RIx (BxRBxl) + R y(B y,ByI) + R Iz(BzR,B) = 0 (110)

I x(B xRBx) + I ly(B yRB y) + I z(B zR,B) = 0 (111)

Rx (xRDx) + + Rz (DR,Dz ) = 0  (112)

I x(D xRDxI + Ily(DyRDvI + I=z(DzRD = 0 (113)

RL(HyR'H) - R1 (H xR'Hx) = RIt(D zR'Dz) + JzR (114)

IIx(HyR'Hyl) - Ily(HxR'Hxi) = Ilt(DzR' Dz) + J (115)

R y(H zR' H) - RIz(HyR'H) = R It(D xR'D x) + jxR (116)

Ily(HzR' Hz) - Ilz(HyR'HyI) = lIt(DxR'Dxl) + jxI (117)

RIZ(HxR' Hx) - RIx(HzR'Hzl) = RIt(DyR'DYl) + JyR (118)

Iz (HR'Hxl) - lx(HzRHz) Ilt(DyR Dyl) + l (119)

R1x(ER ,E v) - R ly (E R = - RIt(BzRBzl )  (120)

llx (YREyT) - IIY(ExR'ExI) = - lIt(B zR'BzI) (121)
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Rly(EzR,Ez) - R Iz(E R,E ) = - R It(B xR,B x) (122)

1ly(EzRE) - Iz(EyREyI) - Ilt(BxR,BXI) (123)

RIz(EcR'EI) - R Ix(EzRE) = - RIt(ByRByI) (124)

IIz(ExR,ExI) - IIx(EzRE ZI - it (ByRBy I )  (125)

where

cos . j = j sin e (126)
JzR = Jz jz (126)j

jxR = jx Cos jjx Jxl = jx sin e (127)

JyR =  v 'Cos 6.y Jyl = j sin e. (128)

The radiation pressure is reiated to the radiation energy density for
isotropic radiation with broken internal symmetry by the following approxi-

mate formula

P ej ePr =ELE = LEejeEr (129)
r r 3 r 3 r

Equation (129) is exact onl; for symmetrical isotropic radiation. Equation
(129) gives the following approximate equations

P =' -E (130)
r 3 r

ePr = Er (131)

where Er = radiation energy density with broken internal symmetry, that is
related to the electromagnetic field vectors as follows

r = 72 =2) ; (p7 + p2 + 2)(32
E - 2 2 - - (132)

Equation (132) is equivalent to the following two equatiuns
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E (e 2 cos (2e ) + + 2cos (2e) (133)
r Er 2 x x y c Ey Ez

+ .[ H2 cos (28) + H2 cos 2e ) + H2 cos (2H

~Er 2cossin Ex)++sin (2 z)] (34

x y z

Er sin e E =[ E 2 sin (28 x) + E2 sin (26Ey) + E 2 sin (2ez) (134)

[H 2 sin (20 ) + H2 sin (29) + H2 sin (2
2 x Hx y z iHy Z Hz

from which Er and 6Er can be immediately obtained. The unrenormalized radiation
density is given by equation (132) with the bars removed and with the superscript
"a" inserted on all quantities.

In addition to Maxwell's equations several other equations are required to
form a complete set of equations to determine the phase angles of the spacetime
coordinates as well as the phase angles of the electromagnetic field vectors.
Six of the additional equations required are the equations of motion for charged
bulk matter (plasma). These six equations are given by the complex number vec-
tor nonrelativistic Euler equations combined with the Lorentz force as follows

19-22

p d dt = - PID - 3P /3a. - W/a + p q(E + v x B) (135)

where a = x , y , z , p = mass density, ve = spatial components of particle veloc-
ity with internal phase, P = static pressure with internal phase, Pr = radiation
pressure with internal phase, W = external potential (such as gravity) with in-

ternal phase, and v = particle velocity vector with internal phase = (7x' 1 , 9z)"

The static pressure and external potential are complex numbers with internal phase

angles and are written as

P= pej P  (136)

SWe j eW  (137)

The time derivatives of the velocity components in equation (35) are given by

the following six equations

a = dv /dt =v ( /3t + v r v / ([38)

where the following six equations define the complex number velocity
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v= da/dt = v Ce
j v a (139)

(da/dt) 2 + (Ado /dt) 2

v = (140)

+ (t det/dt)
t

0 = 0 + B t- - ,t (141)

where

dO /dt

tan Cc e a /dt (142)
t, t daL/dt

d8 De 39 De De
a _ + a dx + a dy + a dz (143)

dt at Dx dt 3y dt Dz dt

In addition, the continuity equation

- ( O q -t
DP /3t + V •( v) = 0 (144A)

is necessary to determine 6t and pq(XYlz,t) . Equation (144A) has two com-
ponents because it is a complex number scalar equation.

The Maxwell equations for broken symmetry matter, equations (94) through
(109) or equivalently equations (110) through (125), are not sufficient by them-
selves to determine the internal phase angles of the space and time coordinates.
This is because the twelve independent Maxwell equations (88) through (93), the
twelve constitutive equations (82) and (83), the two components of the ground
state trace equation (1), the two components of the ground state GrUneisen para-
meter equation (4), the two components of the excited state trace equation (5),
the two components of the radiation GrUneisen parameter equation (6A), the two
state equations (84) and (85) for the renormalized magnetic permeability and
electric permittivity, and the two components of the continuity equation, re-
present thirty-six equations. However, thus far only thirty-five field and
matter variables have been enumerated and these are: E, 0 Ea ; HC , 0Ha ; B , 0B,

E , aE ; Y ' ey ; Er , 0Er ; Yr ' ayr ; E , i ; and pq * But these thirty-five quantities

are related to nineteen kinematic and dynamic variables because of the space and
time derivatives of the field vectors in Maxwell's equations (33) through (48)
and because of the appearance of the current density (velocity) in Maxwell's
equations. The nineteen kinematic and dynamic variables are: x , y , z , vx , vx y

v z ) a x , ay , a and the corresponding phase angles 0 , ay , Oz , 9 , , e
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ax' ay ' aaz and by itself a t In these calculations the magnitude of the

time t is taken to be a free and independent variable. Therefore a total of
fifty-four unknown quantities need to be calculated, and thus far only thirty-
six equations have been enumerated. The additional necessary eighteen equa-
tions are: the six equations of motion (135), the six kinematic acceleration
equations (138), and the six kinematic velocity equations (139). Thus there
are fifty-four equations and fifty-four unknown variables to be determined.
Note that the two components of the complex number scalar continuity equation
introduces only one new unknown quantity Pq, and this leaves the second com-
ponent equation to determine et which stands by itself because t is taken to
be an independent variable.

The relativistic trace equations (1) and (5) play an important part in the
calculation of the renormalized electromagnetic fields in asymmetric bulk matter
or vacuum. Starting with the unrenormalized ground state energy density and
GrUneisen parameter, Ea and ya respectively, equation (1) is used to calculate
the renormalized values of the ground state energy density E , E and the ground
state GrUneisen parameter y , Y . The renormalized values of magnetic permeabil-
ity i and dielectric constant E are expressed in terms of P and y through equa-
tions (84) and (85). In addition to Maxwell's equations, the radiation trace
equation (5), in conjunction with equations (133) and (134) that relate the radi-
ation energy density to the electromagnetic field vectors, determines the renor-
malized field vectors in terms of the corresponding unrenormalized values. The
solution of the unrenormalized Maxwell equations (71) through (74) gives the un-
renormalized field vectors in terms of the unrenormalized charge density Pa and
current density j . The unrenormalized energy density is then calculated in
terms of the unrenormalized field vectors using equations (133) and (134). Then
equation (5) is applied again in conjuction with equations (133) and (134) and
Maxwell's equations to obtain the renormalized field vectors. Finally the re-
normalized charge and current density are obtained from the renormalized field
vectors by using equations (79) and (80).

For electromagnetic waves in the vacuum, the total density p and the charge
density Pq that appear in equations (135) refer to test charges placed within
the vacuum to measure the electromagnetic field strengths. Therefore the case
of electromagnetic waves in the vacuum is formally equivalent to the case of
electromagnetic waves in bulk matter. For the vacuum

S 3(v) = (v) a e(v)
X X V V Z Z

= 6(v) e = 6(v) 8 (v)
vx Ix vy v'y vz vz

(145)
= 6(v) = 8 (v) (v)

ax ax av ay az az

-(~ P= (Vp U= i(v)

v9 (v)(

= j291



where (v) refers to the vacuum state (see Section 6).

The enerzv conservation equation is the first integral of equation (135)
and in its simplest form is written as

1 9

1 -2

-2+ T + P + W - P f  • v dt = constant (146)r q

where = complex number vector velocity whose complex number magnitude is
given by

-2 -2 -2 -2
v2 = v +v + v (147)

x y z

where

= vej v (147A)

v= v ej6 v (147B)

Note that

z 3
E - v= (148)

C(=I

Were it possible to neglect the charge density term by making pq vanishingly
small, equation (146) becomes

1 -2 + P + P + W = constant (149)
2 r

where the mass density p refers to a test probe. Finally, the dynamical equa-
tions for relativistic bulk matter with broken internal symmetry are given by
the following generalization of equation (135)23

r)  2 da P r -3

[P + (P + d /c -[ + (_ + _)]r (150)
dt a a t t

Jri q

where = complex velocity factor that is defined in Section 4, and where
c = light speed in the vacuum.
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4. LORENTZ INVARIANCE IN ASYMMETRIC BULK MATTER AND VACUUM. This sec-
tion considers the Lorentz invariancc of Maxwell's equations in bulk matter
and vacuum with broken internal Symmetries. Maxwell's equations for symmetric
systems, equations (71) through (74), are invariant under the Lorentz transfor-
mation of coordinate systems9 '10'16 '23- 34

x' = Y (x - v t) (151)
a a a aa

ta = Y (t - vax /C2) (152)
a a a a a

where va = relative speed of coordinate systems, and the standard velocity
factor is given by

a = (1 - a2)-1I/2 (153)

where 6 a = Va/C , where c = light speed in vacuum. The Lorentz transformation
can be obtained by requiring the form invariance of the Minkowski metric as
follows

2 2 2 ,2  c2,2(14
x - c t = x - (154)a a a a

General relativity, which is not considered in this paper, uses a Riemann
metric.

2 3- 2 5

The form of Maxwell's equations for charges and currents in asymmetric bulk
matter or vacuum, equations (78) through (81), is the same as that for symmetric
bulk matter or vacuum, equations (71) through (74). The only'difference is that
in asymmetric systems the field vectors, current density, and spacetime coordi-
nates are complex numbers. Therefore by the same analysis that shows the sym-
metric Maxwell equations (71) through (74) to be form covarian- under the real
number Lorentz transformation equations (151) through (153), it follows that the
asymmetric Maxwell equations (78) through (81) are form covariant under the fol-
lowing complex number Lorentz transformations

X' = (x - Vt) (155)

t = (t; x/c (156)

where v = complex number relative speed of the two coordinate systems, and the
complex number velocity factor for an asymmetric system is given by

= (- -1/2 (157)

where6 =  /c. Also, simple algebra shows that equations (155) through (157)
satisfy

-,2 c2-,2 -2 2-2
- x - c t (158)
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where x , t , x' and E' are space and time coordinates that exhibit broken inter-
nal symmetry, and in general

xeJ e x x' xe (159)

E= tejt t' t'ej et (160)

and the relative speed of the coordinate systems is written as

= vej ev  B = aej ev (161)

where 0 , 0't, , e' and 6 are functions of P and 0p of the ambient asymmetric
x x t t V

bulk matter or vacuum.

Combining equations (157) and (161) gives

(f -jb) -I/2 f + b . ye jY (162)
V f2f+b

where

f = 1 a 2 cos (2e ) (163)

b = B2 sin (20V) (164)

From equation (162) it follows that for an asymmetric system the magnitude and
internal phase angle of the velocity factor are given by

Y = (f2 + b2)-1/4 = 11 - 2a2 cos (21v) + B4]-1/4 (165)

S- sin (2ev)
tan (29¥) = -2 (166)

- cos (29 V)

Note that a = v/c , where now v = magnitude of the complex number velocity that
appears in equation (161). Also, if Ov = 0 then equation (165) reduces to equa-
tion (153).

The Lorentz transformations in equations (155) and (156) can be written in
the form of real and imaginary components as follows
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x' cos' =Y[x cos ( + 6 ) - -t cos (9 + a + )] (167)x X Y v t

x' sin a' = y[x sin (6 + 8 ) - vt sin (6 + 6 + e )] (168)
x x y v t "

t' cos 6' = y[t Cs cos ( + + ) (169)t t Y v x y

t' sin 6' yEt sin (6 + 6 ) - vx/c 2 sin (V + e + 6 ) (170)
t Y v x Y

where y is given by equation (165). From equations (167) and (168) x' and 6'
can be calculated as follows x

x '2  2[x2 + v2t 2 - 2vtx cos (6t + 8v - 6x)] (171)

x sin (6x + 6 ) - vt sin (e v + 6t + Y)
tan = -V (172)

x x cos (6 + 6 ) - vt cos (6 + 6t + 6 )

while from equations (169) and (170) t' and 0t can be calculated in the follow-
ing manner

t12 = y2[t2 + v2 x2c - 2vxt/c 2 cos (6x + 6v - 6)] (173)

t sin (e t + 6 )- vx/c 2 sin (9 + e + 6 )tan 6'- t 2 v x (174)
t cos (6t + 0 ) - vx/c 2 cos (a + a + 6 )

From equations (171) and (173) the Minkowski interval can be written as

x 2 -c 2t 2 =2[(_2) (x2 c 2 ) 4vtx sin 9v sin (0 x - t)] (175)

where y is given by equation (165). If v= 0 equation (175) reduces to equa-
tion (134).

Consider now some properties of the velocity factor y given by equation
(165). The first thing to see is that y is not singular for real values of S
In fact it is easy to show that the roots of the denominator in equation (165)
are given by

4 - 2 2cos (23) + I = 0 (176)
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or

= e ± 0V (177)

Only when 0v = 0 does equation (176) have a real root I = which agrees with
equation (153). By taking the derivative of y given by equation (165) and set-
ting the result equal to zero it is easy to show that y has a maximum value (as-
suming 1v to be independent of velocity) given by

[']max = [sin (20v)] -1/2 (178)

and this maximum value of y occurs at a value of a given by

['Imax y = [cos (20v)]1 /2 < 1 (179)

Combining equations (166) and (179) gives the following value of 0 at the
maximum point of y

[a y = i"/4 - e (180)y max- V

The values of y and 0y for 6 I are obtained from equations (165) and (166)
respectively as

[y]- = [2 sin e] (181)

[ ] = 7/4 - 0v/2 (182)

The functions y and 6y appear in Figures 1 and 2 respectively. As shown by
equations (179) the maximum value of y occurs for < 1 , and if 6v is small
the maximum value of y occurs close to = I . Within asymmetric bulk matter
or vacuum y is nonsingular. For a '\ 0 it follows from equations (165) and
(166) that

122
Y 1 + 2 cos (20) (183)

2

0 - sin (2 ) (184)
y 2 v

For a - it follows from equations (165) and (166) that

y - 0 (185)

9 7 r/2 - v (186)
y V
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where ev is assumed to be independent of particle velocity. It is assumed
that 6v depends on P and Op of the ambient medium.

The complex number de Broglie wavelength for a relativistic particle mov-
ing at velocity T is

3 5

= h/p = h/(m ) = Xej ex (187)

where complex number momentum whose magnitude is given by p = myv , and

h = Planck's constant. From equation (187) it follows that

A = h/(myv) = A /(y) (188)c

Y- -e (189)A y v

where Ac Compton wavelength given by
30

X = h/(mc) (190)c

Three special cases can be considered.

Case 1. = [6] = [cos (2ev)]1/2  (191)Casei £ [Smaxy

It follows from equations (178), (179), (180), (188), and (189) that

= Ac[tan (2ev )]1/2 (192)

= -/4 (193)

Case 2. 8 1 (194)

In this case it follows from equations (181), (182) and (188) that

A = A (2 sin e )1/2 (195)c v

8= - 7/4 - v /2 (196)

Case 3. = (197)

In the limit S equaLions (185), (186), (188) and (189) 6.Le
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X -X (198)C

0 -* - 12 (199)

Therefore as 8 increases without limit the de Broglie wavelength increases to
a limiting value of Xc. It is assumed that 6v is independent of velocity.

The total energy of a particle located in asymmetric bulk matter or vacuum
is given by the following generalization of the standard results of special rel-
ativity 24

-- se j 0  = Ymc2  (200)

where the complex number velocity factor is given by equation (157), and m -

proper mass. Therefore the total energy of a particle has the same properties
as , so that

2
C = ymc (201)

0 =E (202)

where the magnitude and internal phase angle of the velocity factor is given
by equations (165) and (166) respectively. The kinetic energy of a particle
in asymmetric bulk matter or vacuum is given by

2 4

EK = EKeeK = ( - 1)mc2  (203)

The component form of equation (203) is written as

CK Cos 0K = (y cos 0 - )mc2 (204)

EK sin 6K = y sin e mc (205)

and therefore for a broken symmetry system

y sin3

tanY (206)K = cos e - 1Y

sK = mc 2 2 Cos 0 + 1)1/2 (207)

Placing equations (183) and (184) into equations (206) and (207) shows that
for B ', 0
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K " 20v (208)

EuI 2 (209)K 2

which agrees with the nonrelativIstic limit obtained directly from equations
(157) and (203) namely

- 1 -2C K  - mv (210)
K 2

Figures 3 and 4 show CK and OK in terms of 5

Specific values of the total energy, kinetic energy, and momentum will
now be considered for some characteristic values of .

Case 1. a , 0

y I 1 + 2 /2 cos (20) (211)
v

a Y 2 /2 sin (20 ) (212)

2 1 2C mc + i mv (212A)

e E 2/2 sin (20) (212B)

1 2

e K n, 2ev (212D)

p n, mv (212E)

Sn' 9 (212F)p v

Case 2. - ]max  = [cos (20v)]1/2

y [sin (20 )]1-1/2 (213)

o = /4 - 0 (214)y v
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= mc 2 [sin (20 v)1- 1/2 (215)

e = 7/4 - 0 (216)

m 2 1 2 cos (Tr/4 - 8 ) /2

K sin (26v) sin (2ev)

:K c for small 6 (218A)

sin (ir/4 - 0v)

tan 0K = (218B)

cos (Tr/4 - e) - sin (208)
Vv

K % 6 for small a (218C)
K y v

p/mc = = [cot (26 v)]1/2 (218D)

6 = 7/4 (218E)p

Case 3. 6 = 1

y = (2 sin v) -1/2 (219)

e = 7/4 - 8 /2 (220)"f V

C = me2 (2 sin 9 )1/2 = cp (221)

a = n/4 - e /2 (222)

= me2  1 2 cos (T/4 - 8 /2) 12E:K =m 2sin 6 1 i (223)
v /2 sin08

EK n 6 for small 0 (224)
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sin (Tr/4 - v /2)
tan = (224A)

cos (/4 - e /2) - ./2 sine@
VZi v

K % 6 for small 9 (224B)

p/mc = y= = (2 sin e )1/2 (224C)

= 7/4 + 6 /2 (224D)p v

Case 4. -

Y Ia/ - 0 (225)

- /2 - 8 (226)"f V

2
-~MC /8 - 0 (1227)

-E /2 - e (228)

K vV

K K T (230A)

pimc =  - 1 (230B)

- "/2 (230C)P

In direct analogy to the standard expression for relativistic momentum,
the momentum of a particle located in asymmetric bulk matter or vacuum is writ-
ten as

Z 4

= pe JP - m I (231)
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so that

p mYv (232)

e = a + 0 (233)p y v

where y and 6, are given by equations (165) and (166) respectively. From equa-
tions (157), (204) and (231) it follows that the single particle energy is

-2 2-2 2 4
-- c p + m c (234)

which shows the four-vector status of F and p . Equation (234) has two compo-
nent equations

222 24
cos (20) = c p cos (29) + m c (235)

P

22 2
E: sin (20) - c p sin (20 ) (236)

Equations (231) through (236) are equivalent to equations (165), (166), (205)
and (206). From equations (235) and (236) it follows that

2p sin (20 )
tan (2e ) = p (237):- 2 2 2

p cos (20) + m c

Y - L) + 2( c) cos ( 2 ep) + 1]1/4 (238)
Mc, cm

It should be remembered that for asymmetric matter or vacuum, an interaction
potential and a gauge potential needs to be added to obtain the total single
particle energy

. +V +V (239)
e g

Equation (232) can be written as

p/mc - y3 (240A)

Combining equations (165) and (240A) and setting the derivative of the momentum
equal to zero gives the following value of a for maximum momentum
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W6]max p [cos (26v)]- 1 12 = ]max y (240B)

for which

[y]max p - [cot (2ev)]1/2 = [p/mc]max y (240C)

so that the maximum momentum is

[p/mc]max = [sin (2ev )] - 1/2 []max

where equation (178) has been used. Figures 5 and 6 give p and ep in terms
of 8.

The following arguments show how numerical values of ev for the asymmetric
vacuum can be obtained from the experimental results of the Michelson-Morley
experiment.'0 The generalization of the standard relativistic velocity addi-
tion formula to a system with broken internal symmetry is 24

- U+V (241)i + 77c 2

where U = particle velocity relative to a reference frame that itself is moving
at a velocity v, and w- = particle velocity relative to a frame of reference
from which the moving frame has a velocity v. Writing the velocities as

-= we j w 9 = ue j 0 u 7- ve jev (241A)

gives the following velocity addition formula for asymmetric bulk matter or
vacuum

weJ w = A + jB (242)
C+jD

-A2 + 2 I/2

SA 2 +B (243)
2 2
C +

LW ' N -D (244)

tan ,. = B/A 245)

tan 5D = D/C (246)
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A = u cos 0 + v cos 0 (247)u v

B - u sin 6i + v sin 6 (248)U v

C = 1 + uv/c 2 cos (6 u + 0 V) (249)V

D = uv/c2 sin (6u + 8V) (250)

It is easy to show that

A2 +B 2 v 2

A2 + B= u + v + 2uv cos (0 - e ) (251)u v

C2 + D2 = I + u2v2/c 4 + 2uv/c 2 Cos( +0) (252)u v

It will be assumed that the internal phase of the particle velocity is indep-
endent of the magnitude of the velocity so that iu = ev = e and

A2 + B2 = (u + v) 2  (253)

C2 + D2 = I + u2 v 2/c4 + 2uv/c 2 cos (2e) (254)

Consider the case u = c and v = c , then equations (243), (253) and (254) give

w = c/cos a (255)

For the case 6 = 0 , the standard result w = c is regained.

In order to det=cc'ine 0 , consider the case where u = c and v - speed of the
earth in its orbit which is much less than c . From equations (253) and (254)
it follows that for this case

A + B = (c + v) (256A)

C + D = I + 2 + 2v/c cos (2e) = (1 + - 4v/c sin2 e (256B)

From equation (243) it follows that
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w c (257)

(1 + )2 - 4a sin
2 8

cEl + 28 sin2 0 • (258)
(1 +8)(

c(1 + 2a sin 2 e ... ) (259)

where 8 = v/c << 1. The Galilean result would be w = c + v = c(1 + B) instead
of equation (257), while the standard special relativistic result without bro-
ken symmetry would be w = c which can be regained from equations (257) through
(259) by taking 6 = 0 .

The details of the Michelson-Morley experiment are described in many ref-
erences, and only the briefest description will be given here.10 ' 2

4
- 3

4 Using
the Galilean assumption w = c + v and w = c - v respectively for the speed of
light propagating with and against the ether, the number of interference fringes
to be expected in a Michelson interferometer whose arms are parallel and perpen-
dicular to the earth's motion is given according to the Galilean assumption by

1 0

NG = - 2L/ B2 (260)

where X = wavelength of light, and L = length of the arms of the interferometer.
The experimental value NE of the number of fringes has been getting smaller rel-
ative to NG as more accurate experiments are performed, and following Reference
10, NE is given by

E

N , 4-N (261)
E 400 G

On the other hand for the broken symmetry vacuum case equation (259), the pre-
dicted number of interference fringes NBS is given by

NBS = -2L/X (2B sin2 8)2 = -8L/X 82 sin4 8 (262)

If it is assumed that NBS = NE it follows from equations (260) through (262) that

4 1
sin 8 et1 (263)1600

8 9.10 (264)

Since future Michelson-Morley experiments may find values of NE lower than the
one used in this paper one can conclude that e = 0(v) < 90 for the broken sym-

v
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metry angle of particle velocity in the vacuum. The Michelson-Morley experiment
not only shows that the Galilean velocity addition formula c ± v for a light
source is invalid, but gives a positive cesult in the form of an upper limit to
the value of the velocity asymmetry angle e

v

Alternatively, measurements of the velocity factor y from particle accel-
erator experiments may eventually produce a maximum value of Y which will im-
mediately determine the value of ev For this, particles with a > I would
have to be observed. If no such particles are ever found, it would show that
ev = 0 for the vacuum, and that the vacuum is symmetric. Experiment can only
resolve this issue. Experiments to determine Ov for asymmetric bulk matter may
be easier because Ov for bulk matter is expected to be larger than 6 (v) for the
vacuum. Note that astronomical objects with S > 1 have apparently already been

observed, and their explanation in terms of conventional effects can be given
only with much difficulty.

36

Finally, the laws of motion of a relativistic particle in asymmetric bulk
matter or vacuum are considered. Newton's law of motion is modified by special
relativity to give the following dynamical equation of motion for a force in the
direction of motion

24

Fa  d 3 3
F= (myaV a ) = my a dva /dta = mya a a (265)

where aa = conventionally calculated acceleration, and Ya is given by equation
(153). The generalization of this equation to the case of particle motion in
asymmetric bulk matter or vacuum is

F=3(m) = my d/dE = my a (266)

where 7 is given by equation (157) and where t , v , a , and F are the gauge rotated
time, velocity, acceleration and force respectively. Therefore

= aej a (267)

= Fe j F (268)

Combining equation (162) with equations (266) through (268) gives the force in
the direction of motion as

F = my 3 a (269)

F = 30 + (270)

where y and 3 are given by equations (165) and (166) respectively.
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5. ELECTROMAGNETIC WAVE EQUATIONS. A direct result of Maxwell's equa-
tions is a set of wave equations that describe the time and space dependence
of the electric and magnetic field vectors in a material body or vacuum.9'1 0

This section considers the construction of electromagnetic wave equations for
matter and radiation with broken internal symmetries. The standard equation
of telegraphy that determines the electric (or magnetic) field in a conducting
medium is

9'1 0

32Ea 3Ea
a2a  a a a a

7 = -- + " -- =0 (271)
act a

a

where a = x , y and z , and oa = unrenormalized conductivity. The Laplacian

operator is defined as

-2 32 
2  2

a 2 +  + - (272)
a 3 2 Dy2 Dz2Sxa Ya  za

The prescription introduced in this paper to handle electromagnetism in matter
or vacuum with broken internal symmetries is to use gauge rotated field vectors
and gauge rotated space and time coordinates. Applying this prescription to
equation (271) yields

2E =a + I -- (273)2 -2

The complex number Laplacian is given by

2 12 2 2
- + - + -(274)

,Dx )y 3z

The first and second derivative terms in equation (273) have already been eval-
uated in Section 2. Using the notation developed in equations (54) through (59)
and (65) through (70) allows equation (273) to be written as six real number
relations as follows

R2(E xRExI) x R2t (ExRExI) + wRIt(ExR ExI (275)

R 2E(E yREyI) co uR,)t(E R,E yI) + aR It(EyR EyI) (276)

R (E ,Ezl) , 1  (E ,E ) + uRt(ERE (277)
Sz' Z It zRzI
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12 (ER ,ER) ' EI2t (ExRE x) + POIIt(E xR ,ExI) (278)

12 ( ,Ey) % E12t(EyR,E y) + Iol t(E yRE yI ) (279)

12a(EzR ,E I V 12t (E zR,E z) + IOl t(E zR,E z) (280)

where the sum is over B = x , y and z.

The standard equations that determine the electromagnetic potentials are
written as

9'1 0

2 a
2a /a a a (281)
a 2 q

Lt
a

2a
_aa a a.a

72A 2 U - U Ja (282)
aa t2 a

a

The generalization of these equations to electromagnetic fields in asymmetric
bulk matter or vacuum is as follows

2 - LU a 2  / (283)

2-

V A - LU = - U3 (284)a -2a
U at2

where the complex number electromagnetic potentials are written as

= eJ = R + J I (285)

a A ej Ao = + jA a (286)a a AaR

Using the notation of equations (65) and (66) allows equation (283) to be writ-
ten as the following two relations

RB(6RiI) - LUR 2 t(OR,l) ', - q /L (287)
3q
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126(RO' I) - 12t(OR, I) ' 0 (288)

while equation (284) can be written as the following six approximations

R A )- ( AI R2 t (A xR)A x - PJx Cos 8ix (289)

R2 (AyR,AyI) - uR2t (AyR ,AyI) - j cos e. (290)

R2a(AzR'Azl) - sR 2t (AzR'A I - PJiz cos 8. (291)

128 (A xRA x) - EI2t(A RA xI) u - Pix sin 8jx (292)

1 2 8 (AyRAyI) - E1U 2 t(AyR,AyI) ' - ujy sin (293)

12 R (AzRAz) - £UI 2t (AzRAzI) - 4iz sin ejz (294)

Finally the gauge conditions for an electromagnetic field with broken in-
ternal symmetry is written as

9'10

V A + u = 0 (295)3t

which can be written in terms of real and imaginary components as

RI$(A RA I) + euRt(RO I ) = 0 (296)

I la(A RA I) + u1t( RI ) = 0 (297)

where the sum is over a = x, y and z

6. VACUUM WITH BROKEN INTERNAL SYMMETRIES. Of special importance to the
propagation of electromagnetic waves are the properties of the vacuum state.
The vacuum state may exhibit the same broken internal symmetries as does bulk
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matter. Consider the vacuum state to have a zero temperature state coupled to
a thermal state in such a way that the vacuum energy density and pressure for
low temperatures are given by

i(v) = E(v) + Ev)TJ + ... E(v)e E (298)
o

(v)
P(v) = P(v) + P!v)TJ + .... P(v)eJ P (299)

o 3

S ad v(v)
where t and v)= vacuum energy density and pressure respectively, Eo  and

(v) = zero temperature vacuum energy density and pressure respectively, and 
E(v)0 V) =j

and P(v) = thermal coefficients for the vacuum energy density and pressure respec-j
tively. The vacuum Grineisen parameter is defined by

(v) vleCeyv) (300)

YO =Yove~
0 o

P(v) (U - (v)V

T=o °"

-(v) v -(v)
where U. =E. , and where j = index that describes the thermal properties

3 3
of the vacuum.

The energy density -(v) and GrUneisen parameter o fv)or the zero temper-

ature vacuum are calculated from the simultaneous solution of two differential
equations

T(v) - 3)[1 + 7(v)lf(v) - R(v) 0 (301)

jy (V (V)d7 (v)

+ j+ 0 0 +3n 0 0 (302)
(v) - (v) dn

o 0

which are just equations (252) and (253) of Reference 8 with their right hand
sides set equal to zero. A trivial solution of equations (252) and (253) of

Reference 8 with their right hand sides equal to zero is just E(v) = 0 and0

E v) = 0 which is equivalent to the unrenormalized vacuum Ea = 0 and Ea = 0
J 0 j

A non-trivial solution is obtained by simultaneously solving equations (301)
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and (302). It is easy to show that equation (301) can be written as

d2E(v) dE(v)
3n 2  O + -(V)]n 0 + [3 o(v) + 4]ToV) = 0 (303)

dn 2  o dn + 0

The vacuum radiation energy density and pressure are written as8

E(v) = E(v) + E(v)Tj + "'" (304)
r or jr

T(v) = T(v) + P(v)Tj + --- (305)
r or jr

while the zero temperature radiation Gruneisen parameter for the vacuum is
given by

Se (v)
(v) (v)e yoror =y e ot (306)
or or

L /-- T (v) (i-I) ((v) )V

r T= o  jr Jr

The vacuum radiation equations are then written as
8

-(31[-+ ( - (v) (v) T(V)] 0 (307)
or 0 or or -(v) o or 0

- ;(v)P(v)] + -(v)g(v) = 0 (308)
j or or jr jr

which are just equations (287) and (288) of Reference 8 with their right hand
sides set equal to zero and a superscript (v) added to indicate a vacuum solu-
t ion.

Therefore in principle asymmetric vacuum state is formally identical to
the asymmetric bulk matter state. In fact, the vacuum is simpler than the
bulk matter state as can be seen by comparing equations (301), (302), (307) and
(308) U°ith equations (252), (253), (287) and (288) respectively of Reference 8.
The vacuum is expected to exhibit a broken internal symmetry state that is de-

s (v) and 6(v) The broken symmetry of the vacuum will impress bro-scribed by 6p Y ,
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ken symmetries on the kinematic and dynamic variable of particles moving in
the "'Pcuum. Similarly, electromagnetic waves in the vacuum are expected to
possess electric and magnetic fields and a spacetime coordinate description
that exhibit internal phase angles.

7. CONCLUSION. The effects of the broken symmetry of space and time on
electromagnetism in matter and the vacuum is considered, and Maxwell's equations
with broken internal symmetries are developed. The Lorentz covariance of these
equations is assumed to be valid but must now be represented in the form of com-
plex number Lorentz transformations. The results of the Michelson-Morley experi-
ment can be used to place a limit on the magnitude of the internal phase angle
of the velocity of a particle moving in the vacuum, but more accurate experiments
are required. Experiments conducted in asymmetric bulk matter may be fruitful
becuase the internal symmetries of spacetime are larger in this case than fcr the
vacuum. The wave equations and gauge conditions for electromagnetic waves with
broken internal symmetries are easily developed. Finally, the broken symmetry
properties of the vacuum are obtained by solving a set of coupled differential
equations which are similar in form to the corresponding equations for asymmet-
ric bulk matter.
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THE BROKEN SYMMETRY OF SPACE AND
TIME IN BULK MATTER AND THE VACUUM

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. Because the pressure and internal energy of bulk matter and
the vacuum are associated with internal phase angles, the space and time co-
ordinates and the kinematic and dynamic variables of an interacting system
of particles also exhibit broken internal symmetries. Specifically, in bulk
matter or the vacuum with broken internal symmetries, the internal phase an-
gles of the particle velocity, acceleration, and space and time coordinates
are related to the internal phase angles of the pressure and internal energy.
A procedure is developed for determining the internal phase angles of the ki-
nematic and dynamic variables and of the space and time coordinates in terms
of Euler's equations of motion. Continuum mechanics and elasticity solutions
for bulk matter require the joint determination of phase angles for the space
and time coordinates and the magnitude and internal phase angle of the pres-
sure. Rotating matter with broken space and time symmetries is treated, and
it is shown that the conservation of angular momentum is valid for such a sys-
tem. The gravitational equilibrium configurations of stars and planets are
treated for state equations that have broken internal symmetries, and equa-
tions are developed that relate the internal phase angles of the space and
time coordinates to the internal phase angle of the pressure. Newtonian grav-
ity in matter with broken internal symmetry is considered and applications to
the earth's gravity field are suggested. These results will also affect the
predicted trajectories of ballistic missiles.

1. INTRODUCTION. The fundamental interactions in nature are formulated
as gauge theories. For instance, the theory of gravity is formulated as a
gauge theory based on the Lorentz group SO(3,1) , while electromagnetism is
based on the gauge group U(1) .1 The nongravitational forces are thought to
be described by the gauge group SU(3) x SU(2) x U(1) .2,3 In fact the Lie
group U(1) and its real value analog e -o have been shown to be the gauge
groups of relativistic thermodynamics. The pressure and energy density of
matter described by relativistic thermodynamics are associated with broken
symmetries. This is related to the fact that the pressure and energy density
can be gauge rotated in such a way as to leave the terms of the basic trace
equation of relativistic thermodynamics gauge invariant.

For an interacting bulk matter system the broken symmetry of the state
equation is vacuum induced and results from the solution of a complex number
trace equation that relates the renormalized (relativistic) state equation
to the corresponding ordinary state equation. This trace equation is given
by5,

6
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-I U d-a TIdU a
U+T-3V dv(TV) =U + I (1)

U T PV u dT pa V

or equivalently as

I - + T -L- - 3( 3 +T = (2)

where U, E, P, y, and b are complex number representations of the renormalized

internal energy, energy density, pressure, and the gauge parameters, and where

T P
b 3(3)

P -VKT

KT V -P /T (5)

a = (T - baV + 1 - b 6)

ba= T =1(7)
(a a

The quantities Ua, pa, and K = unrenormalized values of the energy density,

pressure, and bulk modulus respectively. Throughout this paper the index "a"

will refer to nonrelativistic (unrenormalized) calculations. The complex num-
ber thermodynamic state functions that appear in equations (I) and (2) will be

written in terms of their internal phase angles as follows

b = Ue _'  
(8)

a a,

E= UIv=Ee j 0  (9)
(= Pep (_0)

h q tyes ( i)

b = be (12)
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where U' ap, ye and eb = internal phase angles of the internal energy, pres-
sure, GrUneisen parameter, and b gauge parameter respectively. The relativistic

ground state of the vacuum is described by equation (1) or (2) with their right

hand sides set equal to zero. The vacuum state also has a broken symmetry and

in fact the bulk matter state is essentially mathematically equivalent to the
vacuum state.

On account of the broken symmetry of the pressure and energy density of

bulk matter or the vacuum, time may not unfold in a purely linear fashion but

may also rotate in an internal space. Spatial coordinates in bulk matter or the
vacuum may also have broken internal symmetries that are associated with internal
phase angles. The broken symmetries of space and time in bulk matter or the vac-

uum are related to the broken symmetries of the state equations for these systems.

Thermodynamic and continuum mechanics theories will require the joint determina-
tion of the internal phase angles of space and time coordinates along with the

pressure and internal energy and their internal phase angles. The gauge rotated

space and time coordinates have an effect on the equations of motion of a system
of particles and will affect the equilibrium configurations of atomic nuclei,

planets and the stars. Note that it is the real parts of the complex number

quantities such as space and time coordinates, pressure, energy, velocity and

acceleration that are the measured quantities.

The broken symmetry of space and time is related to the broken symmetry of

the pressure and internal energy of bulk matter or the vacuum as determined from

solutions of equation (1). The right hand side of equation (1) is equal to zero

for the case of the vacuum. When matter is present the broken symmetry of space

and time can be calculated in two ways: 1, at the macroscopic level through

Euler's equations and the complex pressure field for interacting matter (Section

6), and 2, at the single particle level through the action of a complex gauge

potential that is induced by vacuum effects. For the vacuum only the second

method is possible because the matter density is zero, and the complex gauge

potential for the vacuum must be determined.

The complex gauge potential is calculated from the relativistic internal

energy and pressure that are obtained from equation (1). This is done by cal-

culating the renormalized complex valued partition function which is defined

as 7,8

Z = fne-BHdq dp (13)

where n = degeneracy, e = I/(kT), and where the complex number Hamiltonian is

given by

- 2
2m + (14)
2m

where W = Va + V- , where Va = ordinary external potential, V = complex num-

ber gauge potential that is responsible for the difference 
between U and Ua

given in equation (1). The connection between the internal energy and pressure

and the partition function is given by7,8
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(Zni an (15)

where U is given by equation (1), so that equations (13) through (15) can be
used to determine the complex gauge potential Vg in terms of P and 6p of the
complex matter fields. These equations relate the macroscopic pressure field
given by equation (1) to the microscopic gauge potential Vg For the broken
symmetry vacuum the partition function is

(v) = fe- Vg dq(v) dp(v) (13A)

from which j(v) and p(v) can be obtained using equation (15). These values of
j(v) and (v) must agree with the vacuum solutions of equation (1), and this

determines V .

The broken symmetry of the state functions of interacting bulk matter and
the vacuum impart a broken symmetry to the velocity, acceleration and space and
time coordinates of particles located in bulk matter or the vacuum. Forces ex-
erted in bulk matter or the vacuum will also exhibit broken internal symmetries.
The aim of this paper is to relate the broken symmetries of space, time and the
kinematic and dynamical variables, to the broken symmetry of the state equations
for interacting bulk matter or the vacuum. The paper is organized as follows:
Section 2. introduces gauge rotated coordinates, Section 3. treats the geometry
of broken internal symmetry, Section 4. considers the kinematics and dynamics
of broken symmetry particle systems, Section 5. studies rotating systems with
broken internal symmetry, Section 6. introduces the Euler equations for bulk
matter with broken symmetry, and Section 7. considers the equilibrium equations
of stars and planets whose matter has internal phase.

2. GAUGE ROTATED SPACE AND TIME. In bulk matter or the vacuum the thermo-
dynamic functions such as pressure and internal energy exhibit internal phases
(broken symmetry). 6 This suggests that space and time coordinates in bulk mat-
ter or the vacuum may also possess broken symmetries. Accordingly the space
and time coordinates of particles in bulk matter are written as

- jex
x = xe (16)

= yeJ0 Y (17)

Z = zeJ Z (18)

= tej t (19)

where the phase angles 5x, Sv , ez , and et manifest the broken symmetry. It
will be assumed that in bulk'matter the phase angles can be represented as
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6 x = 6 x(XIyVZ~t) (20)

0 6 (xpy~zjt) (21)

a = 6 z(x'ypz~t) (22)

at = 6 (x~y~zjt) (23)

For the vacuum, coordinates will be written as

~(v) -((v

x(V xve e (23A)

~(v) (v) e5v)(2B

Z()=z(v) e jezV (23C)

-(v) (v) ev
t = t e t(23D)

The differentials of the space and time coordinates can be written as

dx = e j 8X(dx +jxde ) = e~ jX[(1 +jx 3 x)dx + jxi x dy+jx Cdz+jx 3 xdt] (24)
x ~~ax D z

dy e Y(dy+jydo ) = ej 6Y~jy-36 dx+(1+jy 3e Y)dy +jy 3e dz+jy De Ydt] (25)
yax ay 9z 9t

jo j ax as3z

dt = e j (dt +jtde ) =e jot~tIt dx+jt tdy +jtItdz + (I a 8t )dt] (27)

From equations (24) through (27) it follows that

9x/ax = I + x 2 (36x/;) 2 ej(ex+ x'X) (28)

aR/ay = xasix ay e j(ex~ii 2) (29)

DX/az = xas az e j(sx+r/ 2 ) (30)

)5E/at = xaoiarDte j(Ox+Tr2) (30A)
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= 3y/xJ 0 ~ 1  (31)

a/ = I + Y20 (y / ) 21 j(ey+ay,y) (32)

=~~~ ye/zi(eY+uT/2) (3

/3t = y~ y /Ate i(ey +7/ 2 ) (33A)

-/x= ZD aej 6~T2 (34)

a/ =zaez/ay e j(Oz+rr/ 2 ) (35)

3EI z =1 + z2 (368IDz) e (z+zz (36)

D/t= zaG/3 ae j(6z+Tr/2) (36A)

ai/ax =taet/ax e j(t+r/ 2 ) (37A)

a-/; =tqetIay e e+/2(3B

a/z= t3et/3z e j (t+Wr/2) (37C)

at/at = 1+cae/) 2 ej(et+ht,t) (37D)

where in equations (28) through (37) the following notation is used

ae
tan a = y y- (38)

a e
tan a = (39)

a e

tan 6 t- - (41.)

The following angles are also useful
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ae ae aetan x X xtn =x- tan8 =x-- tan =ix- - (42)xy ax xz 0z ax,tt

ae ae ae

tan =Z tan 8 -7-- tan 8 y (44)

Sy'x = Yaxyz z yt at

aet aet aet

tanS = tD- tanS t tana t- (44A)axz,y ay t'Z az

From equations (16) through (19) it also follows that

a -dna
= e-jfl cos nn (45)

where n = x, y, z, and t, and

6d= e + an  (46)

ae
tan n -n (47)

CosS (48)co nn n I + (Tn aen/an)2 (8

The result in equation (45) follows from the fact that if Y, z, and i are
constant, then their respective magnitudes y, z, and t are also constant.
The measured space and time coordinates are xm = x cos ex  Ym f y cos ey ,
zm = z cos ez and tm = t cos et respectively. Space and time can be represent-
ed by helices whose spiral lengths are Lx - x sec x,x ; Ly - y sec ay,y ;
Lz = z sec azt z and Lt = t sec at,t . The conventional coordinates ta , xa
Ya , Za are related to the gauge rotated coordinates by ta = tm , Xa = xm ,

Ya = Ym and za = zm .

The following relationships hold for spherical polar coordinates

= rejer (49)

= ie9 * (50)

- eJe (51)

where 1 - zenith angle, # f azimuth angle, and where Or = er(r,*, ,t) ,
e f e (r,*, ,t) , and 0, ( which gives
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df=e~ (dr+jird6 e jer[( +jr er )dr + + jr er d+j96rt] (52)r 3 r 3r-- 3d0 +j-da+~t]

3e ;8 a ae
&= ej ( =~d eij~P- dr + - d , d dt] (53)

d= ejeo(do+ j~d% = e ae a ee3

d = ejet (dt+jtde eietjt Itdrj -,t e ae t 6+(I+ a-et-) (54A)

and

=I+ (r36rI/3r)2 e ~r+ r,r) (55)

;i/aip = rae r/a3p ei (er+rf/ 2 ) (56)

3i/aO = rae r /30ei (er+T/ 2 ) (57)

3i/;t = rae r,/t di(6r+T/2) (57A)

~/r= pae ,/ar e j (6+7T/ 2) (58)

i ,a T =1 Cpe,/a) 2 e j(6ep+a,ip) (59)

=Oa Oe /300ei P+Tt/ 2) (60)

= ; 3 /3at ej(6P+it/ 2 ) (60A)

3 0/ar ae j(00+7r/ 2 ) (61)

/3 e ~o+r2 (62)

=I+ (oae,/3o) 2 ej6+oo (63)

=;a a 3 (63A)
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= t /etlr ej (et+T/ 2 ) (63B)

= taer /a3 e j (et+l/2) (63C)

at/a = taot/pej(Ot+T/ 2) (63D)

where
a6

r
tan B r _r (64)r,r 3

tan B (65)

tan , - (66)

where the connection between r, 8r, , , 0 and x, ex, y, O6 and z, z
is given in Section 3. One can also define the following angles

ae ae ae_ r_ __r r,--r ( 7
r, r,O 3 r,t at

36 ae ae
tan r =rB tan 8r, = r tan t = rL (69tan %,r fa r tanS = tanS -@ (68)

0,r r 0 3 It at
t ta Btr  =-- tan ff6 = ae (69)=,r 3r tn t

t t ttanS =trfi t -- tanSB, = t - tanS6~ f t -- (69A)

The derivatives with respect to the complex spherical polar coordinates are
now written in the same form as in equation (45) where now n = t, r, P, .
The measured space and time coordinates are rm = r cos er , 4m fi cos ,
m = @ cos 6$ and tm = t cos 8t respectively.

The effects of the different types of forces on the gauge rotation of space
and time depend on the relative magnitude and ranges of the forces. Over small
distances < 10- 18 cm the color force dominates, < 10- 13 cm the strong nuclear
force between nucleons dominates, < 10-8 cm the electric and magnetic forces of
electrons and nuclei dominate.9 ,1  For ranges > 10-8 cm the long range gravi-
tational force dominates. Therefore when equations (24) through (69) are writ-
ten, the origin of the coordinates is associated with the origin of the forces
involved. Thus for gravity the origin is taken to be the center of the planet
or star in question, and the range of r is throughout the gravitating body and
beyond because gravity has an infinite range. For nuclear forces the range of
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r is r < 10-13 cm, while for electric forces in an atom r < 10- 8 cm. The values
of 0r and e depend on tne scale at which the dominant forces act. It is the
real part of a complex number coordinate that is the quantity measured when a
space or time coordinate measurement is made.

3. GEOMETRY OF SPACE IN BULK MATTER AND THE VACUUM. The broken symmetry
of coordinates of particles located in bulk matter or the vacuum will influence
the calculation of the effects of the basic forces that operate in these media,
such as for example pressure and gravity. This section considers the effects
of the broken symmetry of coordinates on basic geometrical quantities such as
angles, areas, and path lengths. For example, the simple law of cosines for a
plane triangle located in a medium with broken symmetry is written as

-2 -2 -2
cos - = a+ -c (70)

2ab

where a-, b and c are the complex number sides of a plane triangle, and $ is the
complex angle opposite side c . The complex number sides of the triangle can
be written as

a= ae j a  (71)

= bejeb (72)

= cej e  (73)

then

= 1 aeJ(eab + b eJ( b-a) - c ej( 2 0c-ea 0 b)(Cos = e a + e e 2a) (74)

2b2 a 2ab
From equation (74) it is clear that 7 and cos 7 are complex numbers so that

S= pej n (75)

Cos C= C e-jec (76)

where Cp = magnitude of cos $, and ec¢= phase angle associated with cos q)
In the same manner it follows that

sin $ = S 6e j as  (77)

where S. = magnitude of sin q, and 6s = phase angle associated with sin $
From the well known relation
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cos Ee [e + (78)
2

it follows that

cos P = cos R cosh - j sin sih (79)

where from equation (38)

$ = R + J l = 4(cos 6 + j sin 64) (80)

Combining equations (76), (79), and (80) gives

C = cos 2 (4 cos e ) + sinh2 (4 sin 84) (81)

tan 0c = tan (4 cos 6) tanh (4 sin ) (82)

In a similar manner from

sin $ = [e j $ - e - j $ ] (83)
2j

it follows that

sin $ = sin R cosh 4)I + j cos R sinh 91 (84)

and combining equations (77), (80) and (84) that

S = /sin2 (4 cos %b) + sinh 2 (4 sin 04) (85)

tan e = cot (4 cos e) tanh (4 sin ) (86)

The law of sines for a plane triangle is given by

a 
(87

sin A sin B sin C

where

A = AejeA (88)

with similar expressions for B and C It follows from equation (87) that
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a =b = c (89)
SA SB SC

and

e- e - = e -e (90)
a asA b sB c esC

and where

SA = 1sin 2 (A cos e A) + sinh2 (A sine A) (91)

tan 6 =cot (A cos eA) tanh (A sin ) (92)
sA A A

with similar expressions for SB, SC, esB, and OsC It should be noted that
for spherical triangles equations (89) and (90) become respectively

S Sb  S
- . b . c (93)
SA SB SC

and

asa sA sb sB = 6sc - esC (94)

Consider now simple plane areas located within a medium with broken inter-
nar'symmetry. For example, the area of a triangle of sides a, b and F with

angle between sides a and b is given by

I a9 sin @ = AeJ 6 A (95)
2

where A = magnitude of area, and eA = phase angle of area. Combining equations
(71), (72), (77), and (88) gives

A abS (96)

6 A +b +6 (97)eA ea b s

where S and are given by equations (85) and (86) respectively. Now con-
sider the area of a circular sector of angle * which is
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- 1 -2-
2 ($ - sin P) (98)

I r2 [eJ(2 r+e ) - S ej( 2 r + s)]

then it follows that

12
A cosOA r 2 r cos (26 + ) - S cos (20 + e)] (99)

A  r r r

A sin A = I r 2[o sin (28 + 0) - S sin (2e + 8 )] (100)
A 2 r 0 r SO

From equations (99) and (100) iL follows that

t sin (20r + 0 ) - S sin (2er + eso)

A = cos (20r + e0) - S cos (2 r + 0s) (101)

A 2  4-2 2 c 2(S -0 (102)

For a full circle obviously

A = iTr (103)

eA = 20r (104)

For a rectangle of sides R and one has

A = xy (105)

0A =a x + (106)

For these cases, measured area = A cos 8A

Now consider various coordinate systems located in bulk matter or vacuum
with broken internal symmetries. For example, for plane polar coordinates

= r cos = xejox (107)

= r sin € = yej oy  (108)

and

-2 -2 -2 2 2 "8r
x + r e (109)
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The scalar equivalents of equations (107) and (108) are

x = rC (110)

y = rS (111)

6 = a -r (112)x r c4

= = +0 (113)y r s

The scalar equivalents of equation (109) are

2 2 2x cos (20x) + y cos (20y) = r cos (20r) (114)xC x y r)

2 si 2)+2 2r
x sin (26x + y sin (20y) = r sin (20 ) (115)

or equivalently

r4 =x 4 +y 4 +2x 2y2 cos [2( x - 0 y)] (116)

and

2 sin (2x) + y2 sin (2ey)

tn(2rJ = 2 cs(0 2 (0(117)

x cos (26x) + y cos (2ey)

Finally, substituting equations (110) through (113) into equation (116) gives

=4 + 4 2C 2cos [2(e + 0 )] (118)

Consider now spherical coordinates located within bulk matter. For this

system

= sin i cos $ (119)

= sin i sin $ (120)

z = cos ' (121)

-2 2 -2 -2
x + + z = r (122)

The scalar equivalent equations for equations (119) through (121) are
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x = rS C (123)

y = rS S (124)

z = rC (125)

and

ax = er + as0 - acC (126)

e = e + e0 + 0 (127)y r sip sip

e = 0 -0 (128)z r cip

where C and S are defined in equations (81) and (85) respectively, and 6c and
es be equations (82) and (86) respectively. From equation (122) it follows that

2 2 2 2
x cos (2ex ) + y cos (20 y) + z cos (2e z) = r cos (20 ) (129)

2 2 2 2
x sin (26x ) + y sin (28 y) + z sin (2 z) = r" sin (29 ) (130)

Equations (129) and (130) give

r4 = x 4+ y4 + z4 + 2x2 y 2cos [2(e x - e )] (131)

+ 2y2z2 cos [2(ey - z)] + 2x
2z2 cos [2(0 x - z)]

2 2 2
x sin (20x) + y sin (20) + z sin (2z)

tan (2e ) = 2 2 2(132)
x cos (2) + y cos (2 y) + z cos (2 Z)

From equations (123) through (125) and equation (131) it follows that

I = S4 C4 +4 S 4 + C + 24 C2 s2 cos [2(0 + )] (133)

222

+ 2S S 2C cos [2(0 + 0 + 0cA

+ 2S 2C C cos [2(0 - 0 + e ]+p cos (sip ci c)

331



The last type of coordinate system that will be considered is the polar
space coordinates which utilizes direction cosines as follows

F r cos S (134)

y = r cos (135)

z = r cos Y (136)

-2 -2 -2 -2
r = x + y + z (137)

It follows from equations (134) through (136) that

x = rC (138)

y = rC B  (139)

z = rCy (140)

O =0e -e (141)
X r ca

y =r -eca (142)

a =0 - e (143)
z r cy

where

C = /cos 2 (a cos 0 ) + sinh 2 (a sin L ) (144)

tan 0ca = tan (a cos 0 ) tanh (a sin 0 ) (145)

with similar expressions for CB, C, eco , and Ocy Equations (129) through
(132) also hold for polar space coordinates. The equivalent of equation (133)
for polar space coordinates is

1= C4 + + + 2C2 C2 cos [2(0 - 0e)] (146)

+ 2C2C cos [2(9 - 6c)] + 2C2C 2 cos [2(cy -0 )
a Y cy ca a Y y Cci

Consider now the case of rotation of coordinates in a plane that is located
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within bulk matter or vacuum with broken symmetry. The values of the coordi-
nates in the cartesian system that is rotated through an angle ( are

= cos 4 + y sin ( (147)

Y y cos ( - x sin ( (148)

The component equations for equation (147) are

x' cos ' = xCp cos (0 - (c) + YSp cos (6 + 6 ) (149)
x x y

x? sin 0' = xCp sin (e - 6() + ySp sin (6 + 6 ) (150)
x x C y s p

while the component equations for equation (148) are

y'cos ' = yC cos(y -0e) - xS cos (ex + e (151)

y' sin 6' = yC sin (8 - 6 xS sin (6 + e (152)Yy i Y cl) -( x  s )

From equations (149) through (152) it follows that

(X)2 22 2S2 +2 (153)x') = xC + y$ +2 C os x -y -( s ]

(y,) 2  +2 2  2 2xyG S Cos [e - 0 + 0 + ] (154)
x y cp S p

The coordinate internal phase angles in the rotated system are given by

, xC0 ( sin ( -sin ( + s)tan 0 xC c$ y~Sin(Y (155)

pxC cos (e -ecd + yS Cos (ey + es )

tan E yC sin (6y - 8c)- xS sin (0 + 8s)
t ,0 (p y cp ( x s15p

y yC cos (8 - 0a) - xS cos (e + 0s(5
1 y c p ( x sq

From equations (153) and (154) it follows that

(x)2+ (y,)2 = (x 2 +y 2 )(C 2+S 2) + 4xyC Sp sin ( 0 x -y) sin (0 +6 ) (156A)

which reduces to the standard cartesian result when the internal phase angles
are set equal to zero. The Lorentz group of rotations in spacetime are con-
sidered in an accompanying paper where Maxwell's equations with broken inter-
nal symmetry are considered.
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4. BROKEN SYMMETRY OF KINEMATICAL AND DYNAMICAL VARIABLES. This section
considers the effects of gauge rotated space and time on kinematics and dynam-
ics. The gauge rotated space and time coordinates that were introduced in Sec-
tion 2 can be used to define gauge rotated velocity and acceleration of parti-
cles located within bulk matter or the vacuum. For instance the components of
the velocity of a particle are given by

dE eJevx (157)
x dt x

= d _ _ ej8v y  (158)
Y dE Y

= d= v eJ0 vz (159)
z dt z

where

(dx) 2  2 2
v,=O t + x x ( 1 6 0 )

x t t

v= \ 2 2 (161)

YI + t Wet

\dt 4 + z s
y l t, 1t

dz= 2 2 (162)

1 + t W at

9 = 8 -a t + 3 - t (163)

vy x t x,t t~t

'Y =~ e +%yt -~ t,t (164)

= - 9 + - (65)

Vz z t Z,t t,t

where the internal angular velocities are given by
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wet = dOt/dt =ex 
= d6x/dt (166)

w = dO /dt W z = de zidt (167)
e6y y

and where

d6x/dt
tan x = x x (168)

x't dx/dt

tan a = y dy/dt (169)
y't dy/dt

de /dt

tan z z dz (170)
z't Zdz/dt

and where 6t,t is given by equation (41). The internal angular velocities
can also be written as

dO aO aO aO aOx x + x dx +_x dy +D x dz (171)
Ox dt at ax dt ay dt 3z dt

dO ao ao a0o8

W = __ = ___ + _Y dx  + _ Y + ___y d z (172)
8y dt at ax dt ay dt 3z dt

dO ao ao a0 a0
z z + z dx _zz + Z dz (173)

8z dt at 3x dt ay dt az dt

dOt aOt +Ot dx + y + t(173A)

et dt at ax dt 3y dt az dt

The conventional special relativistic momentum of a particle moving with

a velocity va s iven for a conventional dynamical system by the following
standard formula'

a a a (174)Px x mxx

a = dXa/dta = dxm/dtm = conventionally calculated velocity,where m = mass, vX x  a/t

and ya = ordinary velocity factor (boost) given by 1
x

a = [ (va/c)2]-1/2 (175)
x x
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where c = light speed in the vacuum. These standard formulas are developed

by considering the particle to be attached to a coordinate system moving with
=a 11velocity v = vx . In this paper the generalization to bulk matter or vacuum

with broken internal symmetries is made by considering the particle to be at-

tached to a coordinate system moving with complex velocity v = x ' so that
the single particle momentum is written as

Px = my x vx myxvxeJ(ovx+eyx) (176)

where

= YxejYx - (I - 72/c 2
- 1/2 (177)

gives the complex number velocity factor. The magnitude and phase angle of
the complex number velocity factor is given by

[i cos (204) + (v1/c)4]-1/4 (178)

2(vx/c) sin (2 )vx)

tan (26 ) 2 (179)
2yx) - (Vx/c) 2 cos (20vX)

The results in equations (178) and (179) are obtained as a simple general-
ization of standard special relativity results to the case where space and
time have intrinsic broken symmetry, and reduce to the standard result in

equation (175) if the internal phase angles are set equal to zero. Note that
the measured velocity is vxm = v x cos av va

The magnitude of the particle velocity is obtained by noting that the

complex number particle velocity is written as

= ve Jv 
(180)

and from equations (157) through (159) and equation (180) it follows that

-2 -2 -2 -2v =v +V + v (181)
x y z

or

2 2jev = v2e 2j6v + v2e2j0vy + v2e2jevz (182)
x y z

The component equations corresponding to equation (182) are
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2 2 2 2v cos (2e V ) = v cos (2e vx) + v cos (2 vy) + v cos (20 vz) (183)x VX y zyV

2 sin (26 ) = v2 sin (20 ) + v 2sin (20 ) + v 2sin (20 ) (184)
V x VX y vy z VZ

From equations (183) and (184) it follows that

v4  v4 +v 4 +v 4 +2v 2v2 cos [2(8 - 0)] (185)
x y z x y vx

+ 2v2v 2 cos [2(0 - 0 )] + 2v2v 2 cos [2(0 - 0)]
x z vx vzy z vy vz

and

2 2 2
S(v sin (2ev) + v2 sin (26v) + v2 sin (2 (186)

v 2 y z
v cos (20 ) + v cos (20 ) + v cos (20

x y z

where v V v.y v z , 6vx, 0vy, and 6vz are given by equations (160) through (165)
respectively. The measured velocity = v cos 6v

The acceleration components are written as

x e j ax
a = -d= = a e (187)x dE x

a= = a eijay (188)
y dt y

vz eJeaz
a= E- =z e (189)
z dE z

where using the Eulerian derivative gives

dv av 3v 9 a
x d = -;= +x - + v 7 +z - (90

= a(o)+ a(G) + a (2) + a (3)

x x x x

a(o)ej xo (+ a()eJ~xl + a(2)eJ~x2 a(3) eJ~x3
x x x x
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d av +a + a +a;j

y y y y

= a oeyo + a~ej~ + a ejy2 + a ( ejy
y y y y

zz z z

= a (o) + a~l + a ()~i + a()e 'z +a(3e'3
z z z zz

where

a (o) - t) xk5 a(1) __Vaxxax (193)

x 2x x2

'vx t)2( \

(2) __ 2_+_v_2_2___x)_2_+_ (3)vx 2

a2 v a ) S a a (3) v 2zx a (194)
X y Xe 2 ' ae\

1 + y ~~1 + z

vav 13 2+z 2 a /

a(o) ;A-a a (1) va \a 15at --

51 +

a(2) vyY a(3) a \a 16

y y 6 Q2 y z F (e)
1 4. y + -
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z 3t Fxa

*(2) + v2( )a~) a (198)

1 +

xo v t I~ +tax

=0 +8 -8 +8 - (201)

( v y _x (y Zx~ ay 3 a Zy 18

vz vx 2"y z vxz F2( z

+p =8 -8 ++ -

yxo = vy e vvlt at,t (203)

-8X =2 v +8 -8xx (204)

x2 evz + eVy -8a +8avq - Y, (201)

x3= evz ev Z+ avy,z - z,z(2)

zyo = ve-z t + vt at,t(23

zii. = v + e V -Oex + 8vz9x 8 x,x (208)

'py2 8 v +8 -8VYa +8~ - S (209)

zo=0 z- Bv y a vz, (207

z3 =28v +6v -8 6 +8 av~ - 6 (208)

pz 20vz 6z +avz,z -az,z(20
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where
38v/3t 38ex

tanvx,t x 3v /at tan Dxx vx  X (211)

evx/ 3y 38 vx/az
tan svxy = V /x Vx/y tan a = vx avx/az (212)

38 l3t 38vyl3x

tan vy tan B =fi v (213)
vy,t = Vy av /at vy,x y 3VY /axY Y

ae /3y 3ev /3z

tan 6 = V vy tan a = v (214)
vy,y y 3v /ay vy,z y 3v /3zY Y

38 /at Me /axvz vztan $vzS t M Vz aV /at tan 8vz,x z v z/ax (215)

e evz
vzy z av /ay tan 6vz,z z 3Vz Z (216)

Equations (199) through (210) can be further reduced by using equations (163)
through (165).

Combining equations (187) through (189) with (190) through (192) gives

a cos e = a (° ) cos + a (1) Cos + a (2) Cos + a (3) Cos x (217)
x ax x Xos +a Xo~1 +a x~2 +a x3~(27

a sin 6 (o) sin + a (1) sin + a (2 ) sin + a( 3 ) sin (218)x ax x xo x xl x x2 x x3

a cos 6 ffi a(° ) cosy + a( ) cos + a (2 ) cos + a (3 ) cos (219)y ay y yo y y y y2 y y3

a sin =ay (0) sin Vy + a ( 1) sin ty + a (2 ) sin qy + a(3 ) sin ly3 (220)
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" cos( os + a(lo )Cos +a (2) (Cos3 + az3 Cos 3 (221)z az z zo z z z -z2 z z3

a sinesin zo + a(1 ) sin z + a (2 ) sin z2 
+ a (3 ) sin z3  (222)

z az zZ z2 z3

These equations can be used to determine ax, ay az, eax' 
0ay, and 0az . For

the special case when there is no spatial variation of the velocity field it
follows that

a = a(o) (223)
x x

a = a(o) (224)
y y

a = a(o) (225)
z z

6ax =-xo = ex - 26t - 2 t,t + vx,t + ax,t (226)

eay yo= y - 2t - 2 tt + Bvy,t + yt (227)

9 = zo = 0 - 20 - 2a + 8v + a (228)az z tz t,t vz,t z,t

The complex magnitude of the particle acceleration is written as

a = aej ea  (229)

and from equations (187) through (189) it follows that

-2 -2 -2 -2
a = a +a + a (230)

x y z

The component equations corresponding to equation (230) are

2 2 2 2
a cos (2e ) = a cos (29 ) + a cos (20 ) + a cos (20 ) (231)

a x ax y ay z az

o2. 2. 2
a sin (29a) = a sin ( 2 0 ax) + a sin (20a) + a sin (20 ) (232)

a x ax y ay z az

It follows from equations (231) and (232) that

4a4 4 a4 22gx Oy) 23

a = a + a + a + 2a2a 2 cos [2(0 - 0 A (233)
x y z xy ax ay

+ 2 cos[2(0 -0 )] + 2a2a 2 cos [2(0 -
x z ax azy z ay
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and

2 2 2
a sin (20a) + a sin (20a) + a sin (20a)

tan (2 a)  x ay Z az (234)2 2 2(24
a cos (26) + a cos (20a) + a2 cos (20a)
x ax y ay z az

where ax, ay, az, and 0ax' ay, 0az are given by equations (217) through (222).
The measured acceleration = a cos 6a .

For a particle moving in bulk matter or vacuum with broken symmetry and not
acted upon by forces, the momentum is constant and equation (176) gives

myxVx = C (235)vx

0 + e C' (236)
vx yx vx

where Cvx and C'x are constants of the motion. Equations (160), (163), (235),
and (236) give

2 2 (x\2 22]

2 + x=w2xJ. t C2  (237)
1 + 22 vx
0 +0 - 2et

0yx + 8x - 8t +  x,t a t,t = Cvx (238)

Equation (237) shows that there is a transfer of energy between the linear
motion and the internal phase motion. Equation (238) shows that there is also
a transfer between Ox and Ot because equation (238) can be rewritten as

8y a-11 dOx/dt) -i

+x dx/dt t - tan (t dt/dt) = C' (239)
YX x dx/dt

The nonrelativistic equations of motion of a particle moving in a poten-
tial field Wa are given by"

..a .a a a a
mx = mv = ma = - W a x (240)x x

* .a .a ma ay
my = mv = ma = _aWa/ay (241)

Y y
a aa a

mz = my = maa = -aWa/3z a  (242)
z z

The corresponding relativistic equations of motion for particles in a medium
not having broken internal symmetry are

1 2
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.a.3 a=
m(y) ax -awa/axa (243)X x

my a a= -W a/aya (244)xay

myaa = - aa/3za (245)
x z

where the standard velocity factor is given by equation (175). Consider now a
conservative force acting on a particle located in bulk matter or vacuum with
broken internal symmetries in the space and time coordinates. If the complex
number potential is written as

W = We J W (246)

then the nonrelativistic equations of motion are written as

mi = ma e j ax = -aW/ax (247)S x

ma = ma ej~ay = (248)y y

m - mae j eaz = -aW/3z (249)

where ax, 5, and az are given by equations (190) through (192); and ax , ay,
az, eax, eay, and eaz are obtained from equations (217) through (222). If the
theory of special relativity is considered in conjunction with broken internal
symmetry, equations (247) through (249) become

3-3- 3 j(ax+3e.7)
xyea m= = -xW/e (250)

myxay = my xa ye(eay+eyx) = (251)

myxa z = my xa ze(eaz+eyx) -/(252)

where 7 x is given by equation (177), Yx and eyx are given by equations (178)
and (179) respectively, and where the particle is moving instantaneously along
the x axis with velocity ;x . Equations (250) through (252) are simple gener-
alizations of the standard special relativistic inertia terms to the case of
particle motion in media with broken internal symmetries.

The derivatives of the broken symmetry potential can be written as
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(dW + jWdeW) j(ew-ex) (253)

DR (dx + jxdO x )

=W - _'x + W ej ( T + 6
W 

+ W x
-

x  
- (2F i2)2+ 2 Ox + x 

x 
!

/i lz + 21 e 2

W l\ z/+ W 2 1 W ( W+ BWz z zz

where

aew/ax
tan 8W x = W WI x (256)

tan W y _ = W W (257)

36w/2

tanW z  3Wz (258)

and where and z are given by equations (38) through (40) respec-

tively. Combining equations (187) through (198) with equations (250) through

(255) gives the following relativistic equations of motion for a particle lo-
cated in bulk matter or vacuum with broken internal symmetries.

_L3W) + W2 (all

' --Y) + ax - 3(.) (259)
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+ W2

my a 2-8y (260)

+xy

m F W 2 2( '6W )2

0ax + 30yx -- +L + +W -ex -8 (262)
0r +0z I1 3z (261)

eay + 3yx + eW +  W e - 8 (262)

9az + 6yx + ' + W+Wz - z 
-zz (264)

where yX and 6yx are given by equations (178) and (179) respectively, and where
ax, ay, az and eax, 6ay, and 6az are obtained from equations (217) through (222).

A useful form of the nonrelativistic equations of motion for a particle
located in asymmetric matter is obtained from equation (247) as follows

2-
d xm = - aW/ax (264A)

where R is a complex number given by equation (16) whose real and imaginary
components are written as YR = x cos 0x and xI = x sin 8x . Then it follows that

d C ,t dt di = Rt(X 'X + j (' (264B)

dE t't dt It R I itK'I)

where

dt t + 8t't (264C)
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dxR dx I
R (Cos _-- sin ) (264D)

Rlt(XRXI) = cos dt dt dt dt

cos 6 cos (e - dr dx
tt Xdx

t(XRX) -- cos (- sin edt d + cos e dx

(X co eo sin (264E)

cos a sin (6 - 8 dx
t~t x dt~ d

Then it follows that

dx = Cos 6t  j eJ edt d.(cos 6 e8 0  x (264F)

dE2  tt dt tt dt

d2
IQ Cos 2  2jedt d 2R=x

t~~t dt 2  2 t(xRixI) + jI2t(xR)x1.)

where
d2 d2x I

2(X Cos [cos (2ed) R-+ sin (2edt) d (264G)
2tcR I t,t dt dt 2 )dt 2

2
%Cos 2 Cos (6 - 2e)dx

t,t x 2 dt d 2

2 d2 .2
1 ( 2 [- sin (26) d2  + cos (2 a x- (264H)
2t(XRXI t,t  dt 2 + dt 2

dd

Cos sin ( e - d) d 2

x dtdt 2

The derivative of the complex potential can be written by noting that
WR S W cosO W a-d WI = W sin 8W so that
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3W -Jedx ~WW)(61
= cos 6x e x = R (WRWI) + jIx(WRW (2641)

xx 3x xRI IxRI

where

edx =x + 6 (264J)

R (WRW Cos (cos d W + sin 8) (264K)
Ix(R I) = x x  dx ;x dx 9x

3W
Cos x x cos (e W - 0 ) 2-

3WR 3WI

Ix(WR,W) = cos (- sin dx - + cos 0 - -) (264L)I R9Ix,x dx x dx ax

, cos x sin - 0dx) 3W

Newton's dynamical equation (264A) can now be written in the following
approximate forms

mRx2t(,x I ) nu - RIx(W R,W I) (264M)

mI2t(xR,xl) I)' - IIx(WRWI) (264N)

where R2t and 12t are given by equations (264G) and (264H) respectively, and
Rix and llx are given by equations (264K) and (264L) respectively. A further
approximation for relations (264M) and (264N) yields

2 d2x 3W
mcos 6 cos (0 - 20 _ - - cos S cos (0 e ) - (2640)

tt x dt dt2 x,x W dx )x

2 2 3
mCos 26 sin (e -20 dx -cos a sin (- - (264P)

t,t x dt dt 2 x,x W 0dx) ax

which gives
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x - 2edt 'W edx (264Q)

2 d2

mcos 2 -- -cos S - (264R)t,t dt 2  x,x ax

which are the approximate equations of motion for a particle in a potential
field that is located in asymmetric bulk matter or vacuum. For a nonrelativ-
istic system the measured acceleration is given by

2 d2
a a cos " cos 2 Cos dx (264S)
xm x ax tt ax dt

while the conventionally calculated acceleration is given by

d x d x cosa 2a a m x d~x

a =- = 2 2 (264T)
x 2 2 22

dt dt cos 8 dta m t

and therefore axm# a, . Relations (264Q) and (264R) can be applied to many
specific dynamical systems that are located in an asymmetric medium. For in-
stance the vibration of molecules and atoms located in matter are expected to
be described by these equations.

There are twenty three unknown variables that are needed to describe a par-
ticle in bulk matter or vacuum with broken internal symmetries: x, 6x, y, y, Z9

ez vx , vx, V evy , vz , ,vz, ax, eax, ay, eay, az , eaz, P, ep, Y, ey, and et

The magnitude of the time t is taken to be a totally independent parameter. Twen-
ty two equations have been derived thus far in an attempt to determine the twenty
three unknowns: two ground state relativistic equations (1), two equations for
the ground state GrUneisen parameter (5), the six kinematic velocity equations
(160) through (165), the six kinematic acceleration equations (217) through
(222), and the six dynamical equations (259) through (264). By means of the
twenty two equations the kinematical and dynamical variables have been expressed
in terms of the potential components W and eW . But the single particle poten-
tial parameters W and eW are related through a gauge potential to the complex
macroscopic state equation variables P, Op, y, and O. that are determined from
equations (1) and (5). This connection is made through a partition function as
shown in equations (13) through (15) which determine the gauge potential. But
through equation (1), P, 6r, y, and By are related to the unrenormalized pres-
sure and Gr~neisen function Pa and ya respectively. Therefore it should be pos-
sible to express all of the kinematical and dynamical variables in terms of t,
pa, ya and the unrenormalized potential Va

Clearly one additional equation is necessary in order to have a total of

twenty three equations that are needed to determine the twenty three unknown
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variables. The needed equation is given by the following complex number con-
tinuity equation for broken symmetry matter

-3 - -4
7+ V.(pv) = 0 (265)

where p = mass density. Equation (265) can be rewritten as two real number
equations as follows

G tcos t + G cos x + G ycos + G zCos f = 0 (266)

G t sin t + G sin X + G ysin + G zsin = 0 (267)

where

G; t ap/ t (268A)

1 (vx)2+ 
v2 e )2

G=+X2ax (268B)

xx

G 3Y y Dy(268C)

G 2 (268D)

t= -e %t - % -a (268E)

x= e0 + a8 x -o -8XX, (268F)
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p =6 +s -e - (268G)y vy pvyy y y,y

-z =0 + - 6 -z (268H)

where

96
vc

tans -, a (269)
-(ov )

where a = x, y, z. Therefore the complex number equation (265) has two real
components that can be used along with the previously elaborated twenty two
equations to obtain p and 8t  There are now a total of twenty four equations
and twenty four unknowm quantities which can be determined to give

x =x(t pa~ya tp~,V)(7A

y~~a, a y(, a, a, a )(7B

z = z(t,P , a,Va) 6 = 6 (t,pa,y a,Va) (270A)x x

y = y(t,p,ya,Va) 6 = 0 (t,pa,ya,Va) (270B)Y Y

z = z(t,p,ya,Va) 8 = 0 (t,pa,ya,V a)  (27OC)z z

Vx = Vx(t,pa,ya,va) 6v = 6vx(t,pa,ya,va) (271A)

V = Vy(t,pa,yav a) 6 = 0v(t,pa,yav a ) (271B)

v = v (t,Pa,ya,Va) 0 = 0 vz(t,pa,ya,Va) (271C)Z Z VZ v

a= a (t,pa,ya,Va ) 6 = a (t,Pa,ya,Va) (272A)
x X ax ax

ay = a (t,pa,ya,Va ) 6ay = 6 (t,P a,y a,V a) (272B)
I Y ay ay

az = a z(t,pa,'(a,Va) 9az = 6 az(t,P a,y a,V a) (272C)

a ap(p aaa

P=P(Pa, ,Va) p = ,a, V a) (273A)

Y = y(pa,ya,Va) 9 = a (P a,y a,V a) (273B)
7 3
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P = P(tP a,YVa) (274A)

0= t(tEpaa Va) (274B)et t

a
where time is treated as an independent variable, and where V = unrenormalized

potential.

The first integral of equations (247) through (249) is

1 -2 - -
imv + W = E (275)

-2

where E = complex number total energy, and where V is given by equation (181).
The two scalar component equations corresponding to equation (275) are

1 2
1mv cos (2ev) + W cos 6W = E cos E  (276)
12

1mv sin (2e ) + W sin eW = E sin 0E (277)

where v and 6v are given by equations (185) and (186) respectively. The corre-
sponding first integral of the relativistic equations of motion (259) through
(261) is

12

(Tx - )mc 2 +W= (278)

where the particle is instantaneously moving along the x axis and Yx is given
by equation (177) The component form of equation (178) is written as

(yx cos eyx - 1)mc2 + W cos 0W = E cos 0E  (279)

yx sin eyx mc2 + W sin eW = E sin SE (280)

The energy equations determine the magnitudes of coordinates and velocities.

5. ROTATING SYSTEMS IN BULK MATTER AND THE VACUUM. In Section 3 it was
shown that the angle between two lines located in bulk matter or the vacuum
with broken internal symmetry is expected to have an internal phase angle. This
suggests that angular velocity also has a broken internal symmetry. Accordingly
the angular speed associated with a complex number geometrical angle given by

je.0  (281)

351



is written as

w = w = d = e(j(a -6t) (282)

4 - e(Vtjt )

2 d 2 + jtt

= \- !+ € 2-k) J(O i + (f ,t - 0 t - Btt

1 +t2 t

so that

7d 2 22

('Idtl dt 6 (283)

1 + -2 +t Wet

and

+ 6¢ - 9 - (284)' ,t t t,t

where

dE) /dt

tan = , dp/dt (285)

The angular speed associated with the internal phase angle of the geometrical
phase angle is written as

dO 2, 0 3
_. ++ r+ i4d (286)

05 dt -- t yr dt , dt

and the angular speed of the internal phase angle of the time coordinate !,),t
is given in equation (173A) or equivalently by

d6t _ t + t dr D 
(

Ct = dt (286A)

and finally where
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d (287)
¢ dt

is the ordinary angular speed associated with the magnitude 0 of the geomet-
rical angle. Equation (283) is the general expression fox angular speed with-
in bulk matter or vacuum with broken internal symmetries. The measured angu-
lar speed is given by w cos e .

For short periods of time equation (283) shows that

W - W (288)

while for long periods of time

L - <W > . (289)
W Ot

where

t

<W > =+ f dt = /t (290)
o
0

In fact equation (283) shows that for a small t

2

Sto + ( ,>2 w _ t2t - .... (291)

2 2.2 2 2
for l9/w a << I and t U9t << 1 , while for large t it follows that

2<- > I +{(72 2 +''" (292)

> woo et,

Consider now the velocity of a particle in bulk matter or vacuum that has
a radial and a transverse component. The radial component is given by

veJ 0 vr d j(er-et) (dr + jrdOr

r r dE dt + jtdO t ) (293)

( 2 2dr 2
dr 2 + r2 ) ( +e -
de r r,t t

2(dOS+ j- )-
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so that

dr 2 2 2
1 t] +r r

v d 2 2 (294)
Vr 1 +t O

tWet

6 = 8 + -e8 - (295)
Vr r r,t t t,t

where

d6 /dtr
tan ~ =r dr/dt (296)

d /d r r rdr r d(W r = de = d-- + Dr dr + d (297)
Or r at r dt 30 dt

The transverse component of velocity is given by

v =ve v = F d = j (298)

dE

Combining equations (282) and (298) gives

vO= rw (299)

E =Or + 0 + gt - at - t,t = Or + 60 (300)

where w is given by equation (283). The magnitude of the vector sum of the
radial and transverse velocities is given by

v2 =- v2 + -2 = v2e2jOv (301)
r 0+ v 31

which has the following scalar components

2 2 2
v cos (20v) = V2 cos (20 ) + v2 cos (20 ) (302)v r Vt V
2. 2. 2.

v sin (26v) = V2 sin (28) + v2 sin (20 ) (303)
v r yr 0V

Frcm .quation ,O2_ and (303) it follows that
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v4 v4 +v 4 2 2 os[2(0 - (304)r r -r v)

22
v sin (26v) + v sin (2e )

tan (20) r r (305)vr Cos (26 vr) + v 2 cos (2e6)

where

e8e 8 -e - (306)
vr v r,t - 6 Ot(

The measured speed = v cos Ov .

For ordinary matter rotating about a center of force, the radial and
transverse accelerations are written as1 1

d2r

a dra 2a = - -w r (307)r dt 2  a a
a

a d2a da

a =r - + 2 W (308)a a dt2 dt a
a

The acceleration of a particle that is orbiting about a center of force located
within bulk matter or the vacuum with broken internal symmetry will have the
following radial and transverse components

w r2_ a2 e -2 e j e a r
(39r d (309)

a- 2  2 (310)
dt dE

Each of the four terms in equations (309) and (310) can be evaluated in terms
of previously calculated quantities.

The linear radial acceleration term in equation (309) is given by

2- d ;
d = r- = a a eJ earr (311)

di dE rr rr

where the time derivative of the radial velocity is given by the Eulerian
derivative as follows
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d~ v av 3 vV3- r r+ rr
a d r r + r (312)rr dF af rr rEi3

_- j(o) + -(1) + -(2)

rr rr rr

= a(o)eJ~ro + a (1) eJ'rl + a(2) eJr2
rr rr rr

where

a(°) = -at- + v2Vrr t

ar 2 (313A)
rr ;6

1 + t2~~

a(I)r =v + V (313B)
rr r 2

ro -- + -o8 - 8 (313D)
vr vr,t t t,t

i[ = 29 - 8 + - s (313E)yr r vr,r r,r

vr 3V +e -2 +- 2e vr) 2

v r - r - vr,4 -8, (313F)

r r,r and are given by equations (41), (64), and (66) re-

spectively, and vr and Ovr are given by equations (294) and (295) respectively,

and v¢ and 9 v are given by equations (299) and (300) respectively, and where
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tan fa Vrt (314A)
v'rt r 3v /at

r

tan5 aevrfa (314B)
vr,r r 3v 34ar

r

tan a v yr /4(314C)vr,O 'r 3v riaor

From equations (331) and (312) it follows that

" cos O = a(o) cos + a(1) Cos + a(2) Cos (315)

rr arr rr ro rr rl rr C r2

arr sin sin =aro sin +(i) sin + a sin (316)rr art rr ro rr rl rr r2

from which arr and earr can be obtained immediately. For the special case
where there is no spatial variation of the velocity field the acceleration
equation become

a =a(o) (317)
rr rr

6arr 1pro (318)

The centrifugal radial acceleration term in equation (309) is written as

--2 2 j(er+ 2e ) eJae
r =r 2e = a e acen (319)cen

so that

2
a ffi r2 (320)cen

6acen = r + 28 = 6r + 2(8 + 5 ,t -e - st t )  (321)

where w and OW are given by equations (283) and (284) respectively.

The first term in the angular acceleration given by equation (310) is
written as
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r -= - a eJ~a¢ (322)

d 2  dt a0

where Z5 is given by equation (282). The time derivative is taken to be an
Eulerian derivative (which accounts for differential rotation) as follows

- d : ; + + __
a r- r r vr - - =(323)

-a(o) a() +a(2)

= a(o)eJ o + a~e)ej 01 + a(2)eJ 2

where

(a) + w(a%2

(2w )2 W)O
_(0) r \at! + - (324A)

1 + t 23t) 2
at

(1) + r -2 -r (324B)
a¢¢ = ~r + 2/8r 2 --

rr

/[ D( 2  r1O \

2-W 2 + 2 ae 2

(2) _ _ _ t_ _ (3 24C )

io "r +8 +s,- -~ ,t4D

=0 +0 +r (324E)

44¢ yvr w w,r r,r

= 0vr + 06 + a , - O -t, (324F)
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where

ae /at
tan t =W a f/t (325A)

W't qi/at
3e /Dr

tanw,r  W f/r (325B)

ae /ar
tan W ,W= a (325C)

From equations (322) and (323) it follows that

a CosS =a(o) + a ( ) + a (2) Cos (326)
a cs 8 a cos4 +a cos cs 36

" sin ea (o) sin +a ( ) sin P + a(2) sin (327)a ~0 si a =a i o 0 a 2

from which ao and eat can be immediately obtained. For the special case
where there is no spatial variation of the angular velocity (uniform rotation)
it follows that

a = a2) (328)

oa0 = 0o (329)

Finally the Coriolis term in equation (310) is written as

20 = a ejeac = 2wv e j (e8O + v r )  (330)r c r

and therefore for the Coriolis acceleration

a = 2wv (331)c r

o 8 + 8 8 + S - 2(8 +S ) (332)
ac 6 vr r r,t + e ,t t + t,

where vr is given by equation (294), and 6W and Ovr by equations (284) and
(295) respectively. Combining equations (284), (324D), (329), and (332) shows
that for uniform rotation

a =8ac -a r,t + ,t (333)
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All of the terms in equations (309) and (310) have been evaluated and
these equations can be written as

r= a e j a  = a e36arr - a ejeacen (334)r r rr cen

a = aeJea a eja4 + a eJ6ac (335)

The magnitudes and internal phase angles of the radial and transverse components
of the acceleration ar, ear, a ,and ea¢ have yet to be calculated. This is done
using equations (334) and (335) From equation (334) it follows that

a cos e = a cos 0 - a cos 0 36r ar rr arr cen acen (336)

a sin e = a sin 6 - a sin 6 e(337)
r ar rr arr cen acen(37

and

a sin 0 - a sin 6
tan 6 = rr arr cen acen (338)ar a cosOe - a case6

rr arr cen acen

2 2 2
a = a + a - 2a a cos (0 - ) (239)
r rr cen rr cen arr acen

From equation (335) it follows that

a cos a = a cos a p + a cos 6ac (340)

a sin e a = a sin 6 a0 + ac sin 8ac (341)

and

tan 6 a ia sine +a sina
tan a c ac (342)

ap a cos ea + a cos aa c ac

2 a2 + a2 + 2a a cos ( - 0 ) (343)
c c D' a¢¢ ac

In order to complete the calculation of the acceleration, the magnitude
and phase angle of the vector .;um of the radial and transverse components of
acceleration need to be calculated. The complex number magnitude of the vector
sum will be written as
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a = aeJea (344)

so that

-2 -2 -2
a =a +ar (345)

from which it follows that

2 2 2
a cos (2e) =a cos (26 ) + a cos (2e ) (346)

a 0ao r ar

2. 2. 2
a sin (20) a2 sin (20 ) + a sin (26 ) (347)

a r ar

where ap and e are given by equations (343) and (342) respectively, and ar and
ear are given by equations (339) and (338) respectively. From equations (346)
and (347) it follows that

a = a4 +a 4 + 2a 2 a2 cos [2(eao - 6a)] (348)

2 2
a sin (20 ) + a sin (20ar)

tan (20 ) = r 2r (349)a cos (2e) + a cos (2e)
ao r ar

The measured acceleration is equal to a cos 6a

The relativistic force equations for a particle moving in bulk matter or
vacuum with broken internal symmetry are best written in terms of normal and
tangential components. The equations of motion of a particle under the action
of normal and tangential forces are written as

11

FN = mTr = mTYaNe J(eYT + eaN) (350A)

F -3- 3 J(B +
FT= mYTTaT = Te (350B)

where FN amd FT = normal and transverse complex number forces, a and aT = com-
plex number normal and transverse accelerations written as

a,, = aNe (351A)

aT = aTeJeaT (351B)

and where the transverse velocity boost is written as



e  2 2-1/2
Y = Y e -(1 - V2 /C (352A)

T T T

-T 
= vTeJevT (352B)

with

2 4.,-1/4(53
T= [I-2(v Tc) cos (26vT) + (VT/c) (353)

(VT/c)2 sin (20vT)

tan (2eT = T 2 vT (354)
I - (VT/c) cos (20vT)

Consider now the question of the conservation of angular momentum of a
body under the action of a radial force field in uniformly rotating bulk mat-
ter or vacuum with broken internal symmetry. For a radial force field in a
broken symmetry system, equations (340) and (341) become

a 0 cos ea + ac cos eac = 0 (355)

a sin Oa + ac sin eac = 0 (356)

In order for equations (355) and (356) to be satisfied, remembering that
a > 0 and ac > 0 , the following conditions must hold

a 0 - aC = 0 (357)

tan 5 = tan eac (358)

or

Sa¢ ¢ = 9ac- (359)

For uniform rotation and a radial force, the combination of equations (323),
(324A), (331), (294), and (357) gives the following equation

22O2 2( d + r2( d )r =0 (360)

Because dw/dr < 0 equation (360) can be written as

362



d/dO 12 /rl
r I + ( w '-I + 2w I + ( --- 0 (361)

Combining equations (333) and (359) gives for uniform LULaLion and a central
force

,t = t - r (362)

From equation (362) it follows that for a radial force and uniform rotation

tan a,,t = tan 6r, t  (363)

Combining equations (296) and (325A) with equation (363) gives

d6 d6r
r -dw (364)

Substituting equation (364) into equation (361) gives

r + 2 w = 0 (365)

dr

a differential equation whose solution is

2
wr = constant (366)

where w is given by equation (283). Dividing equations (364) and (365) gives
also

2er + a0 = 20r + e +6 It - 0t - 6t,t = constant (367)

so that in fact combining equations (366) and (367) gives

--- 2.or = constant (368)

which is the expression for the conservation of angular momentum for a particle
of unit mass uniformly rotating in a central force field that is located in
bulk matter or vacuum wherein the space and time coordinates exhibit a broken
symmetry.

Equations (283) and (366) show that
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2 2 22 "0 + = e
r 1 2 = constant (369)

+ t

Equation (369) allows a connection to be made between the t = 0 and t =

rotational states of a central force system located in bulk matter or vacuum
with broken internal symmetries namely

r :1 2 W (>c)

ro (0) = r. < > (c)> (370)

where

< (c)> = Lim (371)
t-O-

In a sirnilar way equation (367) allows a connection to be made between the
t = 0 and t = - values of the internal phase angles of the coordinates of a
particle in a central force system located in bulk matter or vacuum

26r(0)( + ) ((O) + (0t(O) -t(O ) -t't(O) (372)

= 26r ( -) + a (-) + S,,t(-) -t ( -) - St,t ( _)

Equation (369) shows that rotational motion is shared between external and
internal angular motions, and this equation may perhaps be of value for de-
scribing the rotation of galaxies, neutron stars, molecules, atoms, and atomic
nuclei where internal angular motions may exist.

A special case of interest, expecially for gravitationally bound systems
such as stars or planets, is the situation where er # 0 but der/dt - 0 , t = 0
and e= o . This gives the following results

dr de _ ' d4
v v = r d (373)
r dt dt d

dv d2dr _dr 2

a =- a = a - rw (374)
rr dt 2 r rrdt

dw 2 2 dr

a = r d = r d a =2 r a =a., + ac (375)
dt

2 =a 2 +2 2 2 2 (376)
rr
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0 = 0 rye = 0 0 = 0 (377)yr r V3 r

0 = e8 = 0 =O e (378)arr r ar r a c r

o =0O e =0 0 =0e(39ac r acen r 6a r

e0 t 0 r0 t = - 7 (380)a r r ,t

Therefore the case of a time independent er combined with et =0 and eo = 0
gives the standard kinematic and dynamic equations (373) through (376). Thus
the effects of a time dependent 6r with Ot # 0 and e # 0 can be discerned from
anomalies in the rotational motion of stars, molecules, atoms, and atomic nuclei.
However, the effects of a time independent er with et = 0 and 0 = 0 can be dis-
covered in non-rotating systems through its effect on the gravity and pressure
of non-rotating (or slowly rotating) stars and planets. Section 7 shows the
effects of er on the equilibrium configurations of stars and planets.

6. EULER EQUATIONS FOR BROKEN SYMMETRY MATTER. This section considers
Euler's equations of motion for a broken symmetry fluid, and is a prelude to the
study of stellar and planetary equilibrium which is considered in Section 7. The
standard special relativistic Euler equations for the radial and transverse di-
rections are written as12,13

(P + pa/ca)Y 2  a pa) 3wa (381)
a r ra r ata ra

(P + P ac )ya a = _a + P a I ; a (382)
a ra a at a r a a

where aa and aa are the conventional radial and transverse components of ac-
celeration, p - proper mass density, pa = pressure, Wa = macroscopic external
force potential, and where

Ya = (i -a = va/C va = ra + v20 (383)

In section 7. W will be taken to be the gravitational potential.

It has been shown that in bulk matter the pressure has an internal phase
angle as represented by equation (10), and that the coordinates within bulk mat-
ter also have internal phases such as, for example, is represented by equation
(49) for the radial coordinate. Therefore the generalization of the special rel-
ativistic Euler equations to the case of bulk matter with broken internal symme-
tries is written as
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P + T= Ya(p + eJOP)eJ(ear+2 6Y) (384)

P + = y a,(p + eJ 6 P)eJ(6a¢+ 2 eY) (385)
C2 2c c

r¢ 3 a r 3¢

where ar and a6 are given by equations (334) and (335) respectively, and W can
be written as in equation (246). The complex boost is written as

e= 2)- 1/2  Ye ey (386)

where

= v/c v- ve j v -2 -2 -2

r + (387)

and where the boost magnitude and internal phase angle are given as

y = i- 282 cos (2 v) + 4 - / 4 (388)

Ssin (28v)

tan (29,) = ^2 (388A)
I - 2cos (26)

The generalization of the relativistic Euler equations for bulk matter with
broken internal symmetries can also be written for the x, y, and i coordinates
as

1 2

(P+- (.+)x "" (389)

(p + P/c 2)7 2y =, _ P + r;y _Pi 3W 30
y ~ ~ tV~(390)

- a7 z - - (391)
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where ax, ay, and az are given by equations (190) through (192), T is given in
terms of v/c by equation (386), and where

-2 -2 -2 -2
v =v +v +v (391A)

x y x

Equations (384) and (385) or equations (389) through (391) are simple general-
izations of the standard special relativistic Euler equations to the case of
bulk matter with broken internal symmetry.

Euler's equations will be used to relate the internal phase angles of the
coordinates to the internal phase angle of the pressure. From the radial accel-
eration equation (384) it follows for aP/3t = 0 that

2 (p + 2 eDwar+ DPWe) + e (392)
c

where

D e D-_ jW (393)
Dr r

with

D 3 3(394)
PF 2

+ r-2(ar

P = a P + p,r - ar - 8r,r (396)

pW =W + W,r r r,r (397)

and where
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90p/9r

tan p,r = P/r (398)

tan = W/W (399)
W,r 3W/3r

and where 6r,r is given by equation (64). For the case of an external poten-
tial it follows from the radial equation of motion (392) that

y2ar[p cos (0 + 260) +-L cos (0 + 29 + e)]
r ar y 2 ar P(400)c

=Dp cos (0p + iT) + DW cos (DW 
+ 7)

= - D cos p - DW cos PW

2 P

y 2ar[p sin (0 + 20y) + sin (e + 20 + 0)] (401)
CY

D sin ((P + n) + DW sin (W + Tr)

=- D sin 4p - DW sin 4W

From equation (400) and (401) it follows that

422 p2 p 2 2

y a 2 2 P+ 2p -cos0a) D= +D 2 + 2DpDW Cos ( -D (402)r (P-- --4 2 p Dp DW  -WW p)

c c

Equations (400) and (401) determine ar and 0ar ' Note that ar and 0ar are re-
lated to the component acceleration terms through equations (338) and (339).
Expressions similar to equations (400) and (401) can be derived for the trans-
verse acceleration from equation (385).

Consider now the case of static equilibrium. In this case the acceleration
terms in equations (400) and (401) are equal to zero, with result

Dp = DW  (403)

tan (Dp +it) =tan ( W + 7r) or tan (P = tan DW (404)
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P =W + TT (405)

Because Dp > 0 and Dw > 0 , the only way equations (400) and (401) can have

their left hand sides equal to zero is to have Dp = DW and

cos p = - cos DW (406)

sin Dp = - sin DW (407)

which requires equation (405) to be valid while at the same time satisfying

equation (404). Combining equations (396), (397) and (405) gives

+ a +a + (408)ep + ,r W W,r

Equations (403) and (408) are the equations for static equilibrium for the

Euler equations describing bulk matter with broken internal symmetries under

the action of an external potential (which also has a broken symmetry). The

phase angle Op is determined by the relativistic state equation as shown in

Reference 6 for solids and quantum liquids, and in an accompanying paper for

the real gases. Therefore since 6w and aw,r are related to the coordinates

r and 6r it is equations (403) and (408) that relate the phase angle 6r of

the radial coordinate to P and Op of the equation of state. This will be made

explicitly clear in Section 7 where gravitational equilibrium in stars and

planets is considered.

Strictly speaking, only for a bulk matter system in which an external po-

tential acts can one define a variation of 6r with spatial coordinates, because
only in this case can a physical choice or origin of coordinates be made (such

as the center of a star rr planet) from which to measure the coordinate r and

thereby evaluate the denominators in equations (394) and (395). Only then is

there a fixed reference point from which to calculate the variation of the phase

angles such as 6r , 
e v , and ea over macroscopic distances. However, 6 rs ev , and

9a are determined by the broken symmetry of the local pressure Op and the broken

symmetry of the local potential eW through equations (384) and (385).

7. EQUILIBRIUM OF STARS AND PLANETS. The equilibrium of stars and planets

that are composed of matter with broken internal symmetries can be obtained from

the complex number form of Euler's equation (384) or the equivalent equations

(403) and (408). The gravitational potential energy that includes the effects
of the broken symmetry of the space coordinates is written as

= Wej6W _ GMp = GM e j (n-er) (409)
r r

corresponding to a gravitation force
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F FejeF = GMp _ GMp ej('- 2 0 r) (410)-2 2
r r

so that

W GM (411)
r

OW = 7T - e (412)
r

where M = M(r) = mass at radius r. Newtonian gravity is assumed to be valid

in this paper, so that the force is dependent only on F (through p-2 ). No

explicit dependence on the angular coordinates T or is assumed. However, the

radial cocrdinate phase angle Or can depend on angles, Or = 0r(r,P)

The first equilibrium condition that is derived from the Euler equation is

given by equation (403). Substituting equations (411) and (412) into equation

(395) gives

D - GMp (413)
DW 2

r

and therefore substituting equations (394) and (413) into equation (403) gives

the first equilibrium equation for a gravitating star as

2r + P 2 O- 1+ r --- (414)
ar ) ar )= 2 FI r r

Considering the fact that in a gravitating star or planet aP/3r < 0 , equation

(414) can be rewritten as

ra /Dr 2 I ae 2 (415)

T-V (P/r) r 2 -( r

which reduces to the standard stellar equilibrium equation for 6p 0 and

6r = 0 , namely1
4

P GMQ (416)

r 2r

where the mass is related to the density and radial coordinates by

CosrBr = 4rr 2 (417)

r,r 3r
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Note that equation (415) can also be rewritten as

r,r 3P GMp
co-~ 2(418)

Cos aP,r r

If the terms involving the internal phase angles in equation (415) are assumed
to be small it follows from this equation by expanding the radicals and solving
a quadratic equation for 9P/3r that to a first approximation

-P G- (419)
2

r

where
a 2 1 2 e p)2

r /+ r -- - I r ( r I (420)

Therefore to first order the pressure gradient in equation (419) for stellar and
planetary interiors with broken internal symmetry differs from the conventional
result given in equation (416) by two opposing terms that are related to er and
Op respectively. Solving for the mass M from equation (414) and placing the ex-
pression in equation (417) gives the following combined equilibrium equation

Cos 1 r 2 ()2r 1 = 4nGp (421)
r,r 2 3r 1+ J

or equivalently as

1 D ['r2 DP  (rai+2 Oe/ar)2]-f

cosr 2 apr cos r+r  P =- 4TGp (422)r,r r I r pa r,r 3P/3r) =rL

Similarly, using equation (419) for this purpose gives

_L _L ( E2 aP\
cos r 2 r P =r) 4irGp (423)

r,r r2 ar pTi an)r

where F is given by equation (420).

The second gravitational equilibrium equation can be obtained by noting
that equations (399), (412) and (64) yield
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aW, = e - T (424)Wr r,r

where 6r,r is given by equation (64), so that it follows from equations (408),
(412), and (424) that the second gravitational equilibrium equation is

aP + P,r = r,r - 6r + T (425)

where 6P,r is given by equation (398). Equation (425) can be used to solve er
in terms of ep because this equation can be written as

-1 P /3r I rH

+ tan-P 7 ) = tan-r -L),- 6 + i (426)

Equation (427) can be simplified by writing

= 7 + a, (427)P,r P,r

whereir is a small quantity which can be positive or negative. Combining
equations (425) and (427) gives the second gravitational equilibrium condition
as

p + ' =6 _ (428)
P P,r r,r r

From equation (398) it follows that the case of 6p > 0 and 36p/3r < 0 (corre-
sponding to planets and degenerate stars such as neutron stars and white dwarfs)
gives P,r > i or Pr > 0 , and from equations (428) and (64) it follows that

e < 0 and 6 > 0 . For gaseous stars it may be possible to have Cp > 0 orr rjrP

np < 0 because of a degeneracy in the state equation of the relativistic real
gas (see accompanying paper on real gases). For gaseous stars with ep < 0
and 3Ap /r > 0 it follows from equation (398) that p,r < 7 or ,r < 0 and

therefore from equation (428) it follows that 6 > 0 and a < 0 . This anal-r r,r

ysis assumes that P/;r < 0 for all stars and planets. Combining equations
(396) and (397) with equations (412), (424), and (425) gives

p = i - 2e (429)

CW = - 2r (430)

Equation (429) follows from the fact that

_f GMo (431)3F -2
r
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Equation (428) is the second equilibrium equation derived from the general Euler
equilibrium equation (408).

Equation (422), or the approximation equation (423), along with the equil-
ibrium equation for the internal phases given in equation (428) are the two
equilibrium equations for a gravitationally bound star or planet. These equa-

tions involve P, p, 8p, and Or , so that clearly two additional equations are
required for a complete solution of the equilibrium configuration (actually an
energy generation equation is also required). The two additional equations
that are required are the state equations which specify

P = P(p,T) (432)

Op = o (p,T) (433)

the magnitude and internal phase angle of the complex number pressure. Equations

(432) and (433) can be used to develop the following relationships

P 3P 9P +P 3T (434A)
Dr p Dr 3T 3r

P = P ap + 9P 3T (434B)

9 )p 3T 3¢

DeP 3P p 8P T

+ - -(435A)

_e ep3 (435A)

7r 7p r 3T 3r

96P ep (o Iep cDT

_ IO + T (435B)

I~e P OP e36D
p = - 1P + -3(435C)¢ 3p 3¢ T 3p

where r, ip, and b are the spherical coordinates whose origin is at the center

of the star. Defining the following quantities

tan = 9P/9P (436)

tan P,T = P P/ T (437)
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allows equations (435A) through (435C) to be written as

Dep P I[ (P Dp P aT)
S tan - - + tan p (438A)

r P F,p 3p r P,T 3T r

p _P + 3Ptan
=__ (-tan +an P T T (438B)

3i4 P P' D Ap TD

e I(tan 3P + tan De T)
-- P P,p - P,T 3T ) (438)

also

tan P 'p + tan 6p P DT

tan a P'p ;p ;r PT 3T r(439A)
P,r 3DP+p P DT

p 9r DT 9r

tanP P + tan p DP ;T

tan = a pp p 3. P,T 3T T (439B)tan Bp¢ P 3p+ 3P .3_T

p ip ' DT Dip

ta -P -p+ta 3P 3T

tan p'p 4 D- PT DT 3 (439C)tan ;p@ P ap + 3P 3T[

ap a aT a

Similarly for the internal phase angle of the radial coordinate

S(4e 3A)

Dr - Dr D rDr

r .30 3 r +  D e r (4 4 0 )

D9 a e , D

r r p r DT
-- = +(440B)

D' ,p 34 3 Dip

De De JO
r = + (440C)

; p T 3¢

which can be used to evaluate equations (64) and (67). Equations similar to
equations (440) hold for ep and P , but these internal phase angles are taken
to be zero in the simplest theory of gravitational equilibrium. In any case,
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it is clear that the determination of the equilibrium configuration of stars and
planets require the determination of er(r) and ep(r) as part of the solution.
Both of these phase angles must approach their vacuum values, (v) and e(v), at
the surface of the star or planet. r P

The magnitude P(p,T) and internal phase angle Op(p,T) of the relativistic
pressure are obtained from a solution of the relativistic trace equation (1)
along with the magnitudes and internal phase angles of the other thermodynamic
functions. 6 A T = 0 degenerate neutron gas state equation with a pressure de-
scribed by PO(p) and 60(p) , which is obtained from the solution of the T = 0
form of the relativistic trace equation (1), can serve as an adequate description
of a neutron star. 6 The radial variation of the internal phase angle of the ra-
dial coordinates of a neutron star can be determined from pO(p) and 60(p) using
equations (422) and (428). For the interacting classical or quantum gases that
occur in ordinary stars, the internal phase angle ep(p,T) can be evaluated from
the relativistic third and higher virial coefficients of a real classical or
quantum gas at high temperatures. The relativistic third and higher virial co-
efficients are obtained from a solution of the relativistic trace equation (I)
for the real gases. Therefore the relativistic third and higher virial coeffi-
cients of the state equation of real gases will play an important role in the
determination of the equilibrium conditions of ordinary gaseous stars.

The equilibrium of gravitating planets is treated in a slightly different
manner than for stars, but the two basic equilibrium equations (422) and (428)
are also valid for gravitating planets. Equation (422) will be written in a
slightly different form for planets. As in the case for stars, the complex num-
ber equilibrium equation is written as

_- GPM (441)

f -2
r

or

D peJDp GPM ej (Ir- 2 er) (442)P 2
r

where Dp is given by equation (394) and Dp is given by equation (396). Equa-
tion (441) can be rewritten in terms of a density derivative by introducing the
bulk modulus at constant entropy K " In order to determine KS , the bulk mod-
ulus at constant temperature KT must first be introduced. The constant temper-
ature bulk modulus is given by6

= P _; = K ej(eP+1P1P) (443)

where
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KT a + -2(P (444)

and where ap P is given by equation (436). The bulk modulus at constant entropy
is easily found to be given by

K T+ T =_ K Se 0KS (445)

where the complex number Grineisen function 7 is given in equation (5). Equa-
tion (445) can be written in component form as

KS cos 6KS = K cos (6p + ap,P) + yN cos (8y + 8p + 0 p,T) (446)

KS sin 0KS = K sin (8p + 8p,p) + yN sin (8Y + 8p + 0p,T) (447)

where expressions for the magnitude y and internal phase Oy of the GrUneisen
function are given in Reference 6, 8p,p and aP,T are given by equations (436)
and (437) respectively, and where

6

N + P2 T -- (448)

Equations (446) and (447) give immediately

tan sin (0 + $p,p) + yN sin (y + 0 + $p,T) (449)KS K cos (ep + 8pO) + yN cos (8y + 8p + 8P,T)

2 = 2 2 2K = + y2N + 2y(0 + a a ) (450)KS  %+N + NIcos (6 P,T- 8p,p)

which allow the calculation of the phase angle and magnitude of the bulk modulus
at constant entropy.

Combining equations (434A), (441) and (445) gives the following approxi-
mation for a planet with broken symmetry matter

1 7

=p GP 2M GpM (451)

- -2 -2-2Kr VSr

where the adiabatic velocity of elastic waves in a material with broken internal
symmetry is given as
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-2 2 2j6 S
Vs = vse vS =_ (452)p

or

2 KSV S = - (453)
S P

20vS = eKS (454)

Equation (451) can also be rewritten as

ap GpM
Cos Br  _LpG= (455)r,r 3r 2 2

r S

20v =r - = tan r a--- - 6r (456)

where

cos a [i + (r Hr /ar) 2 ]-1/2 (457)

Substituting the expression for the mass in equation (455) into equation (417)
gives

I a r ap 2Cos S - i_-v cos~ (458)
r,r 2 ar p 3r S r,r) = -r

where vS is obtained from equations (450) and (453). Equation (458) is the
first equilibrium equation for gravitating planets and is the analog of equa-
tion (422) for stars, while equation (456) is the second equilibrium equation
for gravitating planets with broken internal symmetry and is the analog ot equa-
tion (428) for stars with broken internal symmetry. Finally it should be point-
ed out that for matter with broken internal symmetries the adiabatic wave veloc-
ity is given by a simple formula, analogous to the conventional formula for sym-
metric matter, as follows1

7

-2 -2 4 -2
vS = a (459)

where a and B = compression and shear wave velocities respectively for matter
with broken internal symmetries. Writing

377



8=ae Ja 8 jeB  (460)

gives

2 2 48
v cos (2e ) Ma cos (28) 4 B cos (298) (461)

Svs a 38 aO

2 2 48
vs sin (28 ) = a sin (28 ) _ B sin (26) (462)

Svs a 3 jl(28 42

which are equivalent to the following equations

2 4 2
" sin (28) -- sin (2e8)

tan (2e vS) = 2 4 2 (463)
cos (2e) 42 cos (2e

2 4 16 4  8 2 2
vS = a + - a 8 cos [2(ea - )] (464)

The measured adiabatic wave velocity - vS cos evS , while the measured compres-
sion and shear wave velocities = a cos 8 and 8 cos 68

A knowledge of P and 8p as a function of density and temperature can be
obtained experimentally from high pressure measurements on earth materials such
as olivine and gabbro. Alternatively P and ep can be obtained from the solution
of the relativistic trace equation (1) if the unrenormalized pressure pa and
GrUneisen function ya can be estimated from atomic structure. The seismic wave
velocity vS and its internal phase angle evS can then be obtained from equations
(453) and (454) respectively. Finally, equations (463) and (464) can be invert-
ed to find the relativistic values of the compression wave velocity a and the
shear wave velocity 8 . It may be possible to reverse the arguments and mea-
sure a and 8 which gives vS and 8vS by equations (463) and (464) and then obtain
P and ep from equations (449), (450), (453), and (454). Equations (456) and
(458) are the equilibrium equations for a planet whose solution gives p(r) and

er(r) in terms of P and ep . As in the case of the equilibrium calculation for
stars, two auxiliary state equations of the form given in equations (432) and
(433) are required. In any case, it is clear that P, ep, and 8r are required
for an understanding of the equilibrium configuration and seismic properties of
a planet.

From the previous analysis it is clear that the Newtonian force of gravity
acting on a unit mass at a distance r from the center of a spherical body of
mass M(r) with broken internal symmetry is written as

GM GM ej28r (465)
_2 

2
r r

F GM co 6 GM/r Cos 2r cos (28 (466)R 2 - (r )  m r (466
r
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where rm = r cos Or - measured value of the radial distance between two points,
F = complex Newtonian gravity force with internal phase, and FR = real part of
the gravity force in the radial direction which is the measured gravity force.
The force FR must be compared to the force Fa = conventional Newtonian gravity
force for asymmetric matter which is given by

F GM GM (467)Fa 2 2 2(47
r r cos 0
m r

The difference FR - Fa is given by

FD = FR - Fa  (468)

GM [cs-2 6r - cos (20)]

r

GM 2
- [1 - cos 0 cos (20 )

2 r r
r

m

+ 362 GM/r
2

r

+ 362 GM/r
2

r m

where the last two approximations are valid for small Or , and where
Or Or(r,p, ) is a function of the spherical polar coordinates of the unit
mass. Therefore the effect of broken symmetry matter on Newtonian gravity is
to imply that there is a new additional repulsive gravity force FD in operation
which does not have a strictly r-2 dependence on radial coordinates. But in
fact gravity in the planets is Newtonian in form (neglecting general relativity
effects) and has a F-2 dependence as given in equation (465) for broken symmetry
matter. The apparent deviation from Newtonian gravity is due to the internal
phase angle er(r,*,O) of the radial coordinate which can have a complicated co-
ordinate dependence because of the inhomogeneous nature of the earth's core,
mantle and crust. Equation (466) shows that FR does not have an r-2 (or r-2)
dependence on coordinates.

The rate of change of the force of gravity with radial distance is obtained
for broken symmetry matter from equation (466) to be

F R  2 G 3-FR[cos (2) r __ sin (20r)] - 4wGp cos (20 ) (469)

Dr 3[ o ) +r r rr

and for radial variations only
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FR FR r FR ae
3r _ 3r = R /(cos r - sin 8 r-D ) (470)

m m

The corresponding variation for the conventionally calculated Newtonian gravity
force given by equation (467) is

3Fa 2GM ( a 4nGp
ar 3 2 ( tan r r-r) - 2 (471)

r cos e cos 0r r

3F 3F ae
a a /(cos e sine (472)

3r ar r r r
m

Introduce the parameter

D= R/r m- F a FR/r - F /r(473)a a m aaFal3r. 3 F /ar(4)

then a simple calculation shows that to second order in 0r (there are no first
order terms)

D 2 30 - n) (474)
r

where

36
r r
e ;r
r (475)

2r3

1 M

For planets 6r < 0 and D0r/3r > 0 , so that in general n should be small and
negative.

Therefore experimental measurements of the variation of the force of grav-
ity with height should indicate D < 0 , while measurements of the gravity force
itself should yield FD > 0 . The net result of the internal phase of the radi-
al coordinate is that the measured gravity force given by equation (466) should
be slightly weaker than that predicted by the conventional Newtonian force giv-
en by equation (467). A weaker than Newtonian gravity force has been experi-
mentally observed in geophysical measurements and in new Ebtvbs experiments 1

- 2 3

These results have been interpreted to be due to a new finite range repulsive
force associated with gravity. 1 9'20  Reference 21 contains many citations to
the literature in this field. However the results of the present paper show
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that in fact the weaker attractive force that is observed may be due to ordi-
nary Newtonian gravity operating in matter with broken internal symmetries as
in equation (465). A complete understanding of the earth's gravity field will
require a detailed knowledge of the internal phase of the radial coordinate
er(r, ,) and its variation with location. The orbits of satellites and bal-
listic missiles will be affected by the internal phase function Or(r, ,,) v
and perturbations in these orbits that are not explained totally by shape and
density variations in the earth may lead to techniques for determining local
values of er(r,*,) .

8. CONCLUSION. By means of a relativistic trace equation, the Minkowski
metric of spacetime impresses a broken symmetry on the matter and vacuum that are
embedded in spacetime. The broken internal symmetries of matter and the vacuum
are manifested at the microscopic level through the internal phase angles that
are associated with the coordinates and the kinematic and dynamic variables for
single particles. At the macroscopic level the broken symmetries appear in the
thermodynamic functions such as pressure and internal energy of interacting sys-
tems. Within bulk matter and the vacuum, space and time exhibit broken symmet-
ries that are manifested by internal phase angles that produce the broken sym-
metries of the kinematic and dynamic parameters and the broken symmetry of geo-
metrical constructs such as angles, lengths and areas. The physical rotation of
matter must also be associated with the rotation of the internal phase angles of
the space and time coordinates. The internal phase angles of the kinematic and
dynamic parameters of bulk matter fluid elements are determined by the Euler
equations for broken symmetry matter. The calculation of the equilibrium con-
figurations of stars, planets and other gravitationally bound systems such as
galaxies must include the determination of the spatial dependence of the inter-
nal phase angle of the radial coordinate along with the spatial vari.ation of
the pressure and density. This can only be done if the state equation of bro-
ken symmetry matter is known from solutions of the basic complex number rela-
tivistic trace equation. The fact that time and space are gauge rotated quan-
tities should affect the basic calculations of astrophysics, geophysics, and
the engineering disciplines.
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NONLINEAR PROBLEMS IN THE STUDY OF WATER

MOVEMENT IN FROZEN SOILS

Yoshisuke Nakano

U.S. Army Cold Regions Research and Engineering Laboratory
Hanover, NH 03755

ABSTRACT

Water in unsaturated frozen soils generally exists in ;hree phases:
vapor, unfrozen (liquid) water and ice. Recent experimental data indicate
that the flux of water f in frozen soils may be written in a general form:

f -- pD,(w,T) w . pD2 ( w , T ) 'T

ax 8x
where p is dry density, and D, and D2 are the properties of a given soil
that generally depend on the content of total water in three phases w and
the temperature T. Since D, and D2 may vanish depending on w and T, the
equation of mass balance becomes a quasilinear, degenerate equation of
parabolic type. Our presentation is focused on a couple of special cases of
this quasilinear problem which we encountered during our search for accurate
experimental methods to determine D, and D2.

INTRODUCTION

Water in unsaturated frozen soils generally exists in three phases:
vapor, unfrozen (liquid) water and ice. We will fegoi2 the content of water
in three phases by w. Reported experimental data ' indicate that a
gradient of w and a gradient of temperature T are two major driving forces
of water in unsaturated frozen soils. Hence, the unidirectional flux of
water f is given as

f- fl + f 2 ()

f- - p Dl(w,T) a(2a)ax

2-p D2(wT) 8x (2b)

where p is the dry density of the soil that is a given positive number, x is
a coordinate, and t is time. Nonnegative functions D, and D2 are the
properties of a given soil that must be determined experimentally. We will
describe experimental methods for measuring D, and D2 and discuss
mathematical problems associated with these experiments below.

FUNCTION D,(w,T)

The experiment1 -8 consisted of connecting two long columns of soil that
were of the same size and the same dry density under an isothermal
condition. One of them was uniformly dry with a negligibly small water
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content, while the other was uniformly wet. At time t - 0 we connected the
two columnns to make a single column from which no water escaped. While we
maintained the column at a specified temperature, water was transported from
the wet part to the dry part across the contact surface between the wet and
the dry columvs. After a specific time passed, the soil column was quickly
sectioned into many equal segments. The water content of each segment was
determined gravimetrically.

The experiment is described by the following initial value problem

w(x,O)- w < x < 0
0 (4)

-0 O~x<+.

where T is a given temperature and w is a given posit4e number. When we
seek a similarity solution u(n) - w(x,t) with n - x t"  , Eqs. 3 and 4 are
reduced to

[D,(u,T) u'] + u- 0 - < 9 < + G (5)

u(-CO) - w , u(+- 0 (6)

where primes denote differentiation with respect to n.

§ince D, vanishes at w - 0, Eq. 3 degenerates at this point. It is
known thaWot problem of Eqs. 3 and 4 has a unique weak solution. It is
also known . that the problem of Eqs 5 and 6 has a unique weak solution
that is the asymptotic solution of the problem of Eqs 3 and 4. Integrating
Eq 5, we obtain

D1[u(7)] - 2 f udn - uq]/u' (7)

Using measured probes w(x) in the place of u in Eq. 7 we determined the
value of D,(w,T).

The measured D,(w,T) of Morin clay is presented in Figure I as a
function of w with T being a parameter. It is known that the unfrozen water
content w* in a frozen soil depends mainly on the temperature T and that w*
decreases with decreasing T. Since the mobility of water in a frozen soil
is mainly due to the unfrozen water, the function D,(w,T) decreases with
decreasing T. A common feature found in Figure 1 is that D,(w,T) for each
given T has two peaks. One of them is around a point where w - 1.0% and the
other is not far from a point where w is equal to the maximum unfrozen water
content w* at T. For instance, the value of w* at T - -1.0°C is about
12.7%. The content of water in the solid phase (ice) increases as w
increases beyond w*. Since the presence of ice tends to decrease the
mobility of unfrozen water, D, decreases with increasing ice content.
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FUNCTION D2 (w,t)

We will consider a problem in which a closed soil column initially with
given uniform p and w is subjected on one end x - 0 to a temperature Tw and
on the other end x - x to a temperature T < T at time t > 0. We assume
that the temperature distribution T(x) is ctrictly linear, namely

11x" " a - (Tc . T )/x°  (8)ax c w o

where a is a positive number. We will describe the problem in mathematical
terms as follows.

The equation of mass balance for water is given as

at w(X't) - L f for X > x > 0 , t > 0 (9)

The initial condition is given as

w(x, 0) - w (10)

where w is a positive number. The boundary condition is given as0

f(O, t) - f(x , t) - 0 (11)

It follows from Eq. 8 that there is a one-to-one correspondence between
x and T. Substituting T by x in Eqs. 2a and 2b and using Eq. 8, we rewrite
f as

f p(D,(w,x) ax - a D2 (w, x)] (12)

We will introduce a new function O(w,x) defined as

w x
O(w,x) - f D,(w,x)dw - a f D2 (w,x)dx - (13)

0 0

Using 0, we reduce the problem of Eqs. 9, 10 and 11 to a commonly used form
given as

at - (w,x) for x > x > 0 t > 0 (14)at "ax 2  o

w(x,O) - w (15)

LO(wO) - L O(w'x ) 0 (16)
ax ax '0

When we seek a stationary (time-independent) solution w+(x) to the problem of
hqs. 14, 15 and 16, w (x) must satisfy the following equation if it exists:

+  ) dw  +
DIN' dx - a D2(w ,x) (17)

It follows from Eq. 17 that the stationary solution w+ (x) is a nonde-.reasing
function in a part where D, is positive if D2 are nonnegative.
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The solution w corresponds to a stationary state of the soil column in
which the net flux of water f vanishes everywhere in the column while the
dry density is kept at the initial value. It should be mentioned that this
stationary state may not necessarily be a state of equilibrium so that a
local circulation of water may occur. Whan the soil column initially with
uniform p and w is subjected to the temperature gradient given by Eq. 8, the
transport of water is expected to occur in the positive direction of x
because of Eq. 2b. As water moves toward the cold end, the initial uni-
formity of w breaks down and a driving force of water toward the warmer end
starts to build up because of Eq. 2a. Sooner or later two driving forces of
water, one due to a temperature gradient and the other to a gradient of
water content, tend to balance each other while the profile of water content

w(x,t) asymptotically approaches the stationary profile with increasing
time. If we are able to measure w (x) experimentally, then D. can be deter-
mined by Eq. 17 for a given soil with known D 1 .

It is not certain that the anticipated event described above actually

takes place. For instance, the time required for the column to reach a
stationary state may turn out to be too long for the method to be practical.
These problems must be examined experimentally.

(1) Experimental Results

A typical evolution of the water1 2 ,1 3 content profile w(x,t) with time

is presented in Figure 2 under conditions that w - 15%, T - 1.40°C, T =
-4.95°C and a - 0.310 *C/cm. It is clear from Figure 2 that water moves in
the direction of negative temperature gradient and that w tends to converge
to a stationary profile as time increases. The profiles at t - 22 days and
at t - 34 days differ little. This implies that the flux of water f(x)
almost diminishes everywhere after t - 22 days. An interesting feature of
these profiles is the appearance of a maximum.

The effect of w on the stationary profile is shown in Figure 3. These
experiments were conaucted under the same thermal conditions as those in
Figure 2. Among the four profiles in Figure 3, the measured stationary
profile for the case of w - 5% is monotonically increasing, and the maximum

appears in the profiles for three other cases. We conducted many
experiments similar to those presented in Figure 3 under various thermal
cnnditions. From these experiments we found that the stationary profile

w (x) generally consists of three parts, R1 , R2 and R 3 , depending upon the
value of the first derivative w (x), when w is greater than 10% or so.

These three parts are characterized as

w >0 in R(O < x < x ) (18a)x m

< 0 in R 2 (xm < x < Xn) (18b)

- 0 (w - w ) in R 3 (xn < x < Xo ) (18c)
+

where x il the point where w attains its maximum. We did not assign the

y$lue o? w at x - xm because we are not certain about the continuity of

wx at xm in view of our measured profiles that often had a maximum

resembling a sharp peak.
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As the first step we calculated the value of D2 from Eq. 17 by using
part of w in R, to find the properties of D2 as a function of w and T. The
calculated values of D2 are presented at four temperatures, -1.00, -0.50, -
0.25 and -0.10C, in Figure 4 where curves are drawn to show the general
trend of data points. A common feature found in Figure 4 is that D2(w,T)
for each given T has one peak. D2 increases as w increases up to some point
w and then decreases as w increases beyond this point. This decrease of D2
is caused by increasing ice content.

(2) Mathematical Problem

Let us assume that Di and D2 are smooth functions of w and T given by
Figures 1 and 4, respectively. Under such an assumption it is easy to
explain the appearance of a maximum at an interior point x as described by
Eqs. 18a, 18b and 18c from a physical point of view because the lack of
water movement in R3 causes the accumulation of water in some part where x <
x when water moves in the direction of negative tmeperature gradient. An.n
important question arises whether the solution to the problem of Eqs. 14, 15
and 16 under the above assumption actually behaves like the measured
profiles. We do not have the answer to this problem. However, we will show
below that Eq. 14 degenerates at the point x where w attains its maximum if
the profile characterized by Eqs. 18a, 18b and 18c is a solution to the
problem of Eqs. 14, 15 and 16.

We will consider the profile w(x,t) in the earlier stage of an
experiment such as Exp. 1 in Figure 2. From such a profile we find.

x > 0, f > 0 in RI(O < x < x m ) (19a)

< 0, > 0 in R2(xm < X < Xn) (19b)

- 0, - 0 in R3 (xn : X < Xo) (19c)

We will evaluate k of the profiles given by Eqs. 19a, 19b and 19c.

Differentiating Eq. 13 with respect to w once, we obtain

BLx

kw " D1(wx) - a aw I D,(w,x)dx (20)
0

It follows from Eqs. 19a, 19b and 19c that a one-to-one correspondence
generally does not exist between w and x for a given time t. However, we
can find such a correspondence in each of R, and R2 separately. Hence, we
reduce Eq. 20 to

Ow - D1(wx) - a D2 (w,x)/w x  x < x and x # x (21)wxn m

Using.Eq. 12, we reduce Eq. 21 to
Ok - - f/(p wx ) x < x and x v x (22)wxn m

Since f > 0 in R, and R2 froi Eq. 22 we obtain

4w < 0 in R1  (23a)
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> 0 in R2  (23b)

It follows from Eqs. 23a and 23b that k must vanish at x under the
assumption and that Eq. 14 degenerates at this point.

Oleinik et al.' showed the existence of a unique weak solution to the
Vroblem of Eqs. 14, 15 and 16 with the condition that ;_ - 0 at w - 0 and
_ > 0 for w.> 0. In their problem Eq. 14 degenerates at w - 0. They
siowed that w may not be continuous at a point of transition between a part
w > 0 and a part w - 0 and that a point of degeneracy propagates with a
finite speed. A boundary where a degeneracy occurs is often referred to as
a free (or moving) boundary. In our problem Eq. 14 degenerates not only at
a point where w - 0 but also at a point where w attains its maximum (;w
changes its sign). Equations such as Eq. 14 in which the coefficient of the
highest derivative changes its sign have been intensively investigated
lately14 . The results of such investigation are needed to understand the
mechanism of water transport in frozen soils.
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1. Function D,(w,T) vs. the water content w%.

2. Typical evolution of w(x,t) with time.

3. Effect of w on the stationary profile w +(x).

Function D2 (w,T) vs. the water content w%.
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INCOMPRESSIBLE RUBBER ELASTICITY FINITE ELEMENT

ANALYSIS USING AN ELIMINATION METHOD

A. R. Johnson and C. J. Quigley

Mechanics and Structures Branch
U. S. Army Materials Technology Laboratory

Watertown, MA 02172-0001

SUMMARY

Finite element analysis of rubberlike materials requires the
enforcement of an incompressibility condition. Penalty, Lagrange
multiplier and mixed methods are typically used to enforce the constraint
of incompressibility. These methods can lead to poorly conditioned tangent
matricies or add a large number of variables increasing the size of the
tangent matrix. In this effort the use of the implicit variable
elimination method is investigated for enforcing incompressibility in
rubber elasticity finite element analysis. No penalty parameters or
Lagrange multipliers are used but it is difficult to generalize the method
for two- and three-dimensional analyses. The one-dimensional inflation of
a thick rubber cylinder is formulated and solved to demonstrate the method.

INTRODUCTION

The formulation of algorithms for the finite element analysis of large

deformations of incompressible materials has involved many efforts since

the mid 1960's. There are several methods in use at the present time.

They include penalty, Lagrange multiplier and mixed methods solved with

either updated or total Lagrangian algorithms. The basic problem is;

compute the minimum of some energy functional such that a ystem of

constraint equations is simultaneously satisfied. This is a constrained

optimization problem and can be solved using methods from nonlinear

constrained optimization theory. Additional techniques include successive

quadratic programming and implicit variable elimination methods. Below we

briefly mention references to the current methods in use and then describe

a one-dimensional implicit variable elimination algorithm for the thick

rubber cylinder. The review is intentionally brief.
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BACKGROUND

The hydrostatic pressure was modeled with a Lagrange multiplier

variable and used to attach the incompressibility constraint to the

potential energy for rubber by Levinson [1]. He was then able to generate,

solve and investigate the stability of solutions to the equilibrium

equations for the internally pressurized Neo-Hookean sphere. Finite

element methods using the Lagrange multiplier method were formulated and

reviewed by Oden [2). In Oden's formr.lations nodal displacements and

pressure variables are related through the nonlinear equations which

represent stationary points of the energy functional. He then solves

illustrative examples including large deformations of rubber membranes and

solids of revolution.

Tielking and Feng [3) considered problems for which the

incompressibility constraint can be satisfied directly. That is, problems

for which computation of the force of constraint (hydrostatic pressure) is

not an issue. Instead of using displacements as variables they

demonstrated the advantage of using configurations as variables. The Ritz

method was then applied globally to obtain solutions to membrane problems.

The configuration variable approach could then be used to construct a

finite element algorithm.

While studying plasticity problems Nagtegaal, Parks and Rice [4] made

an important contribution to finite element theory when they recognized the

problem of dependent or redundant constraint equations. Too many or too

few constraint equations in the finite element model cause numerical

difficulties; either poor convergence rates or locking. Efforts were then

concentrated on how many pressure variables were best for a given element

formulation.

An extensive review of work done by Argyris, et al [5] included a

special "fluid filled" finite element. These elements develop an internal

energy when their volume (area) changes. The energy is minimized during the

solution process making it a penalty like formulation. These penalty and

mixed methods were under review at the same time by Hughes and Malkus[6,71.

Equivalence of the penalty method in the limit to the Lagrange multiplier

method was proven. Also, it was noticed that quadratic convergence of the

Newton - Raphson method is lost when large penalty
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parameters are used (near incompressibility). The use of configuration

variables mentioned above and a penalty enforcement of incompressiblity was

investigated by Fried, Johnson, and Quigley [8,9,10]. These formulations

allow for efficient computation of gradient and tangent matricies but are

still subject to poor convergence when large penalty parameters are used.

A completely different approach to enforcing incompressibility was

investigated by Needleman and Shih (11]. They used an implicit variable

elimination method to enforce the divergence equation (incompressibility

constraint) for small strain plasticity problems. The number of

displacement variables are reduced by this method and the hydrostatic

pressures are determined after the displacement solution is obtained.

Because of the element to element interdependence of the incompressibility

constraint superelements must be constructed during the variable

elimination process.

The enforcement of contact constraints for large deformantion

minimization problems involving configuration variables has been

investigated by Johnson and Quigley (12,13,14]. Penalty, successive

quadratic programming and implicit variable elimination methods have been

used successfully.

In this effort we investigate implicit variable elimination for large

strain rubberlike deformations. A formulation and results are presented for

the one - dimensional axisymmetric deformations of an internally

pressurized thick rubber cylinder.

INFINITE CYLINDER MODEL

In this section we construct unconstrained gradient and tangent

matricies for the one - dimensional expansion of a thick rubber cylinder,

see Figure 1. We let (a,r) represent the (undeformed,deformed)

configurations. Then, the principle stretch ratios become:

X= 1.0

dr r r(a) (1)
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r
3 a

Using linear two - node elements we have

a(e) - (1 - C)aI + Ca2 = T aaT (alva2)

r(E) = (1 - Or + Cr2 = T ; rT = (rl ,r2 )

where vectors are displayed in boldface. Then, we write

T
OE r

x2 = -
S== Tr

3 =  -- ( 3 )
CLsT

X x rT(OCO
T + 00C T)r'N

2 3 2 a T .

We select the unconstrained [10] energy density function

w = C1(I - 3131/3) + C2(12 - 3132/3) (4)

where I1 =i + x22 + x32

12 2 + x32 + x22x32

2 2 2x3 23
13 - 22A3

Assuming an element height h - 1 (Figure 1) we have the internal energy for
an element on (a1la 2 ) as

a 3 13) a/
U = 21 f [C1(I - 313' + C2(12 -313 a da (5)

a1

The element gradient and tangent matricies then become

a2  dX.
g 21 f (f2x2r + f3x3r) a da X 'r = 1 (6)

a 2 dX
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2w a2  T T T+k =27 f2 (93(X3rX2r + X2r)3r ) + g2X2rX2r +

g3TX3rX3r T ) a da

where

f 2 =2(C1 + C2)A2 + 2C2x2A32 2C1x3(A2x3 ) -1/3 - 4C 2X3 (2X3 ) 1 / 3

f = 2(C1 + C2 )x3 + 2C
2x22x3 - 2CIx2(x2x3)-1/3 - 4C2x2(X2x3 )1/3

g2  2(CI + C2) + 2C2x3
2 + 2/3 C1 x2 4/3x32/3 _ 4/3 c x

2 -2/3X34/3

93 4C 42x2x3 - 4/3 C1A2-1/3 x3-1/3 _ 16/3 C2x21/3 31/3

3T = 2(C1 + C2) + 2C2x222 2/3 -4/3 _ 44/3 -3-2/3

After changing variables (cl,a 2) - (0,1) and using one point integration
we have:

x r 2  r r1
A2 = r2 - 1

r1 + r2

3 a 2+ a1

g =21T 2 a + f 3 a2 2 O

(7)
( a 3 -2 0 g21 L +a 2  2

k = 2g 22  2  +

S2  - a1 0 1 (a2 - CL 1

+ g3T 1 1 2 - C1

(a 1 + a2)  2

We can now quickly assemble global gradient and tangent matricies using
equations (7).
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REDUCED GRADIENT AND TANGENT / UPDATE

Given the unconstrained internal energy function above and internal
pressure, F, the minimization problem defining deformed configurations is

min n - Z Ue - nF(r 2 _ a12)

e
2 2 2 2 (8)

such that r2  - r1  = 2 - a1

2  2  2 2r 3 " r 2 C 3 - a 2

etc.

We now linearize the constraint equations. That is, use

6v v I
v v + &r + 6 6r

lo r o r2

(9)
vv2I 26v 1

v2  v2o o Sr2 +6r Sr3  "

etc.

In this one - dimensional problem there will be one free variable -
all others defined by the constraint equation (9) and we find

r2/r 0 0 0 6r 2  6r 1

-r2  r3  0 0 6r 3  0
0 -r 3 43 0 6r 4 0 (10)

0 0 -r4  r5  6r5  0

Solving (10) we find

6r 1  1

6r2 r /r22 - 1 (11)

6r r /r
.n1 n
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Equation (11) can be used to compute the reduced global gradient and

tangent consistent with the linearized constraint equation (9). We have

n n n

gr = .ag kr = Z Z aak. (12)ili i=l jl 1 i

where a. = r1/ri and gi., kij are from the global maricies.

Equation (12) is used to update r1 using the Newton - Raphson method. The

remaining variables are updated by sequentially solving the constraint

equations.

RESULTS AND DISCUSSION

We solved the infinite cylinder problem discussed by Oden [2]. In

particular the cylinder inner and outer radii were 7.0 inches and 18.625

inches respectively. The Mooney - Rivlin constants C1 and C2 (eq(5)) were

taken as 80.0 and 20.0 psi and ten elements were used. The implicit

variable elimination method reduced the eleven variable unconstrained

problem to ONE variable. A Lagrange multiplier method would require twenty

- one variables when the ten element hydrostatic pressure variables are

added. Figure 2 shows the convergence of the inner radius with respect to

the Newton - Raphson steps. The initial configuration was a poor guess but

after two steps the log of the reduced gradient converged linearly, see

Figure 3. The converged solution is the correct solution and is shown in

Figure 4. In addition we solved another one dimensional problem involving

the stretching of a rubber rod. Again, the reduced gradient converged

linearly.

It is important to note the difficulties involved in extending this

method to two - dimensional problems (our original intent). The

superlements suggested by Needleman and Shih [111 are apparently

unavoidable. The implicit variable elimination method would be very

attractive if the reduced gradient and tangent matricies could :'e computed

at an element level. That is, if internal element displacement variables

could be eliminated using the linearization of the constraint equations.

Then, there would be no bandwidth change, the constrained gradient and

tangent would be computed almost as quickly as the compressible case. This
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method of eliminating internal variables fails because the eliminated

variables cannot be updated so that the element volumes return to their

original values. This is due to the interelement dependence of the

constraint equations. One can carefully identify a set of global variables

which can be eliminated and updated, etc. but a system of nonlinear

equations must be solved at each Newton - Raphson iteration to exactly

enforce incompressibility.
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STRESS DISTRIBUTIONS NEAR MICROSTRUCTURAL INHOMOGENEITIES

Dennis M. Tracey and Paul J. Perrone

Mechanics and Structures Branch
U.S. Army Laboratory Command

Materials Technology Laboratory
Watertown, Massachusetts 02172-0001

ABSTRACT

Three-dimensional analyses nave been conducted of elastic-plastic con-
tinua which contain pairs of spherical particles and voids. Response to
shear loading was investigated with the intention of characterizing stress
states at the microstructural level which result in void nucleation and
softening, leading to shear strain localization in ultra-high strength
steels.

INTRODUCTION. There is a great deal of evidence that ductile fracture of
metallic alloys stems from the nucleation of voids at second phase micro-
structural particles. Nucleation occurs when either critical conditions at
the interface are achieved, or when the strength of the particle is reached,
causing a fracture of the particle. Either event produces local crack damage
which deforms into a void as the plastic deformation of the sample proceeds.
Plasticity theory has been applied to the case of void deformation in the
presence of triaxial tension, and results have demonstrated that the void
surface can experience strain levels far in excess of nominal values when the
mean stress is above yield stress levels, Rice and Tracey (1). Consequently,
the voids grow and the material progressively weakens as neighboring voids
coalesce by impingement in such stress environments. Gurson (2) has devel-
oped a plasticity constitutive theory, including yield criterion and flow
rule, to represent materials which dilate from the void growth mechanism.
This theory is most properly applied to cases involving significant regions
of high triaxial tension.

When the mean stress is low compared to the yield stress, the "void
sheet" mechanism of internal damage is commonly observed in planes of maximum
shear, Rogers (3). This may involve nucleation from different size scale
populations of particles. For instance, pairs of relatively large voids
nucleated from grain refinement particles might elevate the stress and strain
fields locally to nucleate a number of smaller voids from strengthening
particles between pairs. Coalescence would occur by cracking of ligaments
after a critical spacing is achieved.

In this report three-dimensional elastic-plastic results are given for
the stress and strain fields that develop near void and particle pairs. The
matrix material has been modeled as a non-hardening elastic-plastic metal,
while the particles are considered to be elastic with a modulus twice that of
steel. The results vividly demonstrate how nominally uniform shear condi-
tions are perturbed near interacting inhomogeneities. Comparisons with plane
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strain solutions are made and these demonstrate the importance of including
three-dimensional effects into micromechanical computer simulations.

The analyses modeled a sample of metal, nominally under uniform shear
loading, containing one inhomogeneity pair (either a pair of voids or a pair
of particles) buried within the sample far from its boundaries. Spheres
placed at a distance of three diameters is the pair configuration we have
limited our discussion to in this paper. Two separate orientations of the
pair with respect to the direction of applied shear were considered, as
illustrated in Figure 1. As shown in the top quarter section, one orienta-
tion has the applied shear directed parallel to the pair centerline. The
bottom quarter section illustrates the other orientation which has the
applied shear directed perpendicular to the centerline.

NUMERICAL FORMULATION. A finite element formulation was employed in the
study to ascertain fully plastic solutions within the small strain theory of
non-hardening plasticity. These solutions can be used to approximate the
conditions that would prevail near interacting voids and particles at the
point of incipient flow localization on the macroscale. Not considered here
are solutions representing conditions of large deformation which develop
after localization has initiated.

Specifically, an incremental elastic-plastic finite element formulation
was used. The fully plastic solution which provides the local flow field of
interest is achieved numerically by incrementally tracing the loading param-
eters (boundary displacement here, as described below) from the initial
unstressed state. The approach consists of approximating the undetermined
displacement rate field with standard piecewise defined finite element inter-
polations. The primary discrete variables are nodal displacement rates
(increments) which are determined at each step of loading.

To achieve the desired uniform remote strain state, boundary nodes were
constrained to displace according to the specified state. These constraints
were imposed at each increment and magnitudes were maintained in fixed pro-
portions. If these specified displacement increments are denoted u, through
um, the matrix equation for the vector of undetermined values u is given by

Ku = - K1u - ... - Km um

In this equation, K is the constrained stiffness matrix and K. are stiffness
columns correspondTng to the specified components. The stiff'ess terms vary
according to the position of the elastic-plastic boundary and stress state
(flow rule). An implicit scheme is used at each step to average the flow
rule at each position within the plastic zone. The load history is discre-
tized through an adaptive incrementation procedure discussed by Tracey and
Freese (4, 5). The planar and three-dimensional versions of this formulation
are embodied in the MTL FORTRAN code EPFE which was utilized in this study.

The treatment of a pair of inhomogeneities can be contrasted with formu-
lations which have considered periodic arrangements. Figure 2 illustrates
typical idealizations used in plane strain and axisymmetric analyses. The
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pair model would appear to allow a more realistic assessment of interaction
in actual microstructures. If loadings are restricted to tractions perpen-
dicular to the model (unit cell) boundaries, discretization requirements are
essentially the same for the periodic arrangements and the pair configura-
tion. Results presented below suggest limited usefulness of the cylindrical
geometry and that the spherical geometry should be modeled instead. The
axisymmetric formulation displayed in the bottom of Figure 2 treats spheres
but suffers from the requirement that the centerline of the spheres must be a
principal stress direction. The three-dimensional pair model employed in
this work allows treatment of any applied loading, including the cases of
interest which have the centerline in the plane of maximum shear.

In Figure 1 if the coordinate axes are centered between the spheres, the
planes x=y=z=O then serve to define planes of reflective symmetry of the
model. Geometrically the total region can be viewed as an assembly of eight
identical subregions, each containing a single quarter sphere. The regions
displayed in Figure 1 are unions of two of these elemental subregions.
Actually, only an interior subregion is displayed. The total region had
dimensions 13x1Ox10 relative to the sphere diameter D. By noting conditions
of skew anti-symmetry in simple shear, it was possible to perform the analy-
sis by discretizing a single subregion (octant) of the total model.

If the entire region were to be modeled, the simple shear state would be
enforced in the top problem of Figure 1 in the following way. The two yz
boundary faces would have the x displacement varying linearly with y, and on
these faces the y component of displacement would be zero. The xz faces
would have a constant value for the x displacement and a zero value of y
displacement. The z component of traction would be zero on these four faces,
corresponding to zero valued xz and yz shear stresses. Finally, the xy faces
would be completely traction free.

When the skew anti-symmetry conditions are invoked on the planes of
geometric symmetry, the following boundary conditions produce the state of
nominal simple shear. In the top problem, on x=O the y component of dis-
placement as well as the x and z components of traction are zero. On y=O,
the x component of displacement and the y and z traction components are zero.
Finally, on z=O the z displacement and x and y tractions are zero. Similar
conditions can be applied to the faces of the elemental octant in the bottom
problem where the applied shear is directed perpendicular to the centerline.

The finite element mesh used over the octant consisted of constant
strain tetrahedra. The mesh was generated by first developing a field of
eight-node brick elements which were individually subdivided into five tetra-
hedra. The mesh refinement was different in the analyses of the two void
problems. The case of parallel shear had a mesh consisting of 4500 elements
and 1200 nodes, each with three degrees of freedom. The perpendicular shear
analysis was more refined in that there were 7100 elements and 1800 nodes in
the mesh. The analysis of the pair of particles was conducted using the
refined mesh for both load orientations. The additional complexity in the
particle analysis involved discretization of the particles themselves. The
quarter particle appearing in the octant was represented by 1300 elements to
give a total mesh of 8400 elements and 2000 nodes.
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VOID PAIR INTERACTIONS. The elastic solution for an isolated spherical void
in simple shear has been described by Love (6). Referring to Figure 1, the
maximum stress occurs at the two points on the void surface on the xz plane
with tangent in the direction of applied shear. For a Poisson's ratio of
0.3, the stress concentration factor at these locations is 1.91, suggesting
that void surface yielding should con~ience when the nominal shear level
equals 1/1.91=0.52 times the material's yield strain in shear.

Four stages of the elastic-plastic solution are illustrated in Figure 3
for a pair of spherical voids spaced at a distance of three diameters under a
remote shear directed parallel to the centerline. Plastic zones are repre-
sented in a quadrant by regions consisting of tetrahedron elements which have
met the yield condition at the load level indicated. As anticipated from the
classical elasticity solution, yielding first occurs in this quadrant at the
void surfaces 90 from the pair centerline in the xz plane. As load is
increased, plasticity spreads from these locations. In the top left, corre-
sponding to a remote strain 0.80 times the yield strain, most of the void
surfaces have yielded, but there is no plasticity between voids. Significant
yielding between the voids has occurred at 94% of yield, as demonstrated in
the bottom left. At 96% of yield, bottom right, the separate plastic zones
have merged, leading the way for a mechanism of extensive plastic straining
between voids.

The strain intensification that occurs along the centerline of the void
pair is summarized in Figure 4. Data are plotted for the two spherical void
pair problems and also for the cylindrical void pair problem that has been
discussed by Tracey, Freese, and Perrone (7). These problems are individu-
ally considered in the two top and the bottom left plots of Figure 4. The
results of the three problems are contrasted in the bottom right plot which
has peak local strain plotted against nominal strain level.

The component of strain that is plotted for each case corresponds to the
nominal simple shear state, e.g. yz component for the top left problem. The
data are presented relative to the material's yield strain in shear. The
distributions along the centerline are plotted for x/D values from 0.5 to
2.5, which corresponds to the distance between void surfaces.

When the applied shear is directed perpendicular to the pair centerline
(top left), the centerline strain maxima occur on the void surfaces. The
results for incipient yield (nominal strain = 0.49 times yield strain) demon-
strate the extremely localized effects of inhomogeneities in an elastic
field. As can be seen, the elastic solution has the strain elevated over the
nominal value only within a distance of one void radius from the void sur-
faces. Hence, there is effectively no interaction in the elastic pair prob-
lem with a center spacing of three diameters. Consistent with Love's (6)
isolated void result, the strain maxima are approximately twice the nominal
value before plastic yielding intervenes. At general yield, the strain
maxima have increased to about three times the nominal value and interaction
is evident with mid-centerline strain magnitudes significantly exceeding the
nominal value.

The analysis of the spherical void pair with shear parallel to the
centerline was conducted using a mesh that was too coarse to adequately
capture the shear free condition which holds at x=0.5 D and 2.5 D.
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Nonetheless, the character of the elastic-plastic solution is thought to be
reasonably represented in the top right plot. As in the other case, the
elastic solution shows strain variations only within one radius of the void
surfaces, with the nominal strain value realized over the middle half of the
span between the voids. At general yield, the strain exceeds the nominal
value over the entire ligament. The plot shows a modest peak at roughly 3/4
of a radius from the surfaces and strain levels roughly 30% over the nominal
strain.

The cylindrical void pair analysis shows strain amplification levels
greatly exceeding those found in the spherical void analyses. For this plane
strain case, the mesh refinement was adequate to capture the shear free
conditions at x=O.5 D and 2.5 D. The elastic solution shows a strong gradi-
ent out to a distance roughly 1/2 of a radius from the surfaces, otherwise
reaching a near uniform state between the voids. Interaction is evident in
this problem even in the elastic regime with the strain between voids approx-
imately 50% over the nominal value before yielding occurs. Plastic zones
develop at the void surfaces and separately in the center of the ligament for
this problem. When these zones link, distinct strain maxima develop at
positions roughly 3/4 of a void radius from the surfaces. The strain inten-
sification is seen to increase in severity as general yield conditions are
approached.

The three solutions are compared in the bottom right plot of Figure 4.
Curves show the variation of local peak strain for each case as a function of
nominal strain level. Of the two spherical pair cases, it can be seen that
the orientation perpendicular to the load induces the highest local strains.
Nonetheless, a comparison of the top left and right plots shows that the
strain level attained in the middle of the centerline is essentially inde-
pendent of orientation. The strain magnitudes found in the cylindrical void
pair case are intermediate to the spherical pair results when plastic zone
size is small. As can be seen, at approximately 75% of general yield corre-
sponding to extensive local yielding, the peak strain values begin to take on
values exceeding those found in the spherical pair cases. At general yield
the local strain and strain rates for this case greatly exceed the values
found for the spherical void problems.

It is the strain rate field that is most useful in assessing the local
intensification of the nominal state once general yield conditions are
achieved. Before general yield this field continually changes, as the plas-
tic zones change, but thereafter, within the small deformation and nonharden-
ing assumptions, the field remains constant relative to the nominal value.
Figure 5 illustrates contours of shear strain rate (normalized by nominal
strain rate) for the perpendicular loading. Results are given for nominal
strain levels before (.94) and after (1.03) general yield. The contours are
drawn over a quadrant of the xz midplane of the model. It is apparent that
the maximum strain rate occurs in each case at the point of strain concentra-
tion at the void surface on the centerline.

At the lower load level, the maximum strain rate is approximately 4.3
times the nominal value. The gradient is steep, with the middle of the
centerline experiencing a modest value of approximately 1.5. Little interac-
tion is apparent at this nominal strain, as the 4.3 value holds on the oppo-
site side of the void surface as well as at the surface-centerline
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intersection point. At the higher load level, interaction is suggested by a
maximum of 10.0 and the somewhat lower value 8.7 across the surface. In this
case, the mid-centerline strain rate is 4.5 times the nominal value, indicat-
ing significant elevated strain rates along the entire centerline after
general yield is achieved.

PARTICLE PAIR INTERACTION. The void pair analyses obviously have neglected
the presence of nucleating particles, and thus are applicable to the study of
post nucleation effects resulting from the creation of interior traction free
surfaces. The field near perfectly bonded elastic spherical particles was
studied by performing an elastic-plastic finite element analysis which mod-
eled particles as elastic with infinite yield strength and a modulus twice
that of the elastic modulus of the elastic-plastic matrix in which they
reside. As in the void pair analyses, a particle pair with a three diameter
spacing was considered.

The strain intensification is plotted in Figure 6 for the two loading
orientations considered above. Curves display the strain distribution
through the particles and along the centerline between them. In these prob-
lems incipient yield was found to occur at a nominal shear strain equal to
77% of the shear yield strain. Eshelby's (8) analysis of isolated ellip-
soidal particles in elastic fields demonstrated a uniform strain state within
particles. The finite element results displayed in Figure 6 agree with this
result and have a near uniform state within the particles even after exten-
sive matrix yielding has occurred. At incipient yield the shear strain of
the particles is approximately 50% of the shear yield strain of the matrix,
consistent with the difference in elastic moduli.

In the left plot of Figure 6, for the case of orientation perpendicular
to the shear load, it can be seen that the distribution is continuous across
the particle/matrix interface. The nc;minal value of shear strain is reached
at the middle of the centerline. For this orientation, there is essentially
no strain intensification over the nominal value along the void pair center-
line.

The right plot of Figure 5 displays the shear strain intensification for
the case of particles oriented in the direction of the applied load. At
incipient yield the magnitude of strain in the particles is slightly higher
than 50% of the shear yield strain of the matrix and at a load slightly
greater than general yield, the magnitude is approximately 70% of the shear
yield strain. Across the interface the shear strain is discontinuous and
jumps from a subnominal value in the particle to the maximum value found in
the matrix. At incipient yield, this maximum value of strain is equal to the
shear yield strain of the matrix. The severe gradient shows a decrease to
the nominal value of shear strain within one half of a particle radius into
the matrix. As loading progresses, the shear strain rate intensifies on the
matrix side of the interface corresponding to the occurrence of extensive
plastic deformation.

SUMMARY. Results have been presented for the three-dimensional aspects of
interaction of pairs of voids and particles in shear. While the work has
been motivated by metallurgical needs, particularly the need to develop
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microstructures for the delay of void nucleation, clearly, much remains to be
done to guide alloying from a mechanics basis. Future work on pair interac-
tion in shear must address void nucleation, the spacing issue and a more
complete assessment of orientation effects. Ultimately, the goal is to
consolidate the simulation features, so that the necessary data and methodol-
ogy will be available to allow microstructural design for ultra-high strength
and toughness.
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FINITE ELEMENT ANALYSIS OF SWAGE AUTOFRETTAGE PROCESS

Peter C. T. Chen
U.S. Army Armament Research, Development, and Engineering Center

Close Combat Armaments Center
Benet Laboratories

Watervliet, NY 12189-4050

ABSTRACT. Swage autofrettage process is often used to produce favorable
residual stresses in the tube. In this paper a finite element analysis of the
swage autofrettage process is reported. The nonlinear finite element program
(ABAQUS) is used to obtain numerical results for the displacements, strains, and
stresses in the tube during and after autofrettage. Approximate solutions are
obtained for one- and two-dimensional tubes pressed by rigid or elastic mandrel.
The longitudinal effect and the elasticity of the mandrel on the permanent bore
enlargement and the residual stresses are discussed.

INTRODUCTION. To increase the maximum elastic carrying capacity and to
enhance the fatigue life, residual stresses are often produced in tubes through
autofrettage [1]. Many solutions are reported for the hydraulic autofrettage
process. The thick-walled cylinders are subjected to uniform internal pressure
of sufficient magnitude to cause plastic deformation and then the pressure is
removed.

A more economical way of producing residual stresses in thick-walled cylin-
ders is the swage autofrettage process. This process is carried out by a
mandrel, the diameter of which is greater than the inner diameter of the tube.
The mandrel is driven through the tube from one end to the other. A rigorous
analysis of this process is difficult. Recently a simple analysis of the swage
autofrettage process was reported (2]. The model used was a one-dimensional
plane-strain problem of mandrel-tube assembly. The steel tube was assumed to be
elastically-ideally plastic, obeying Tresca's yield criterion and the associated
flow theory, but the tungsten carbide mandrel was elastic. The deformation and
stress distribution during swaging were obtained by solving the shrink-fit
problem beyond the elastic limit. After swaging, the permanent bore enlargement
and residual stresses were calculated by an unloading analysis [2], taking into
account the Bauschinger effect and the strain-hardening during unloading (3].

The solution reported in [2] is in closed-form and the numerical results
indicate that the agreement between the calculated and experimental data is
excellent in zones with larger wall ratios but not so good in zones with wall
ratios less than two. The differences in thinner sections may be due to the
longitudinal bending effect since the simplified analytical analysis is one-
dimensional and bending is neglected. In order to determine the longitudinal
effect, a two-dimensional analysis based on the finite element method is made.
In this paper, the finite element solutions are presented for both one- and two-
dimensional models and a comparison of the results is given.
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METHOD OF ANALYSIS. Since the total length of the tube is about sixty
times the diameter of the mandrel, a complete finite element analysis of the
swage autofrettage process is very difficult. As the mandrel is driven through
the tube from one to the other, the simulation requires the study of elastic-
plastic moving contact and separation history between two deforming bodies. In
addition, a considerable amount of computer storage and run time would be
required. In the present study, however, approximate finite element models are
chosen to represent swaging in only a part of the tube (zone 3). We consider
the process as quasi-static and neglect the effect of sliding and friction
between the mandrel and tube. We want to obtain the information about the
deformations and stresses for a section at only two particular stages, i.e.,
when the mandrel is at or far away from the position of interest. To achieve
this purpose, we can simplify the simulation by studying two related problems,
i.e., shrink-fit and complete unloading. When the mandrel is at the position of
interest, we consider a shrink-fit problem of the mandrel-tube assembly to
obtain the maximum deformation and stresses during swaging. When the mandrel is
driven far away from the section, we study it as a complete unloading problem of
the mandrel-tube assembly to obtain the information about the permanent bore
enlargement and residual stresses after swaging. Figure 1 shows a one-
dimensional interference-fit problem of the mandrel-tube assembly. Initially,
the inner and outer radii of the mandrel is c. Given the interference I = c-a,
we can determine the interference pressure p and the deformation and stresses in
the mandrel and tube. In general, this problem can be solved only by an itera-
tive approach. If the mandrel were rigid, then the direct approach using
displacement constraints could be applied. The results based on this approach
were obtained so we could discuss the effect of elasticity in the mandrel. The
actual strength ratio of tungsten carbide to steel is about three. For the
problem considered here, it is reasonable to assume that the steel tube is
elastic-plastic, obeying Mises' yield criterion and the associated flow theory,
but the tungsten carbide mandrel remains elastic. The finite element analysis
is carried out by using the nonlinear program, ABAQUS [4]. Two types of ele-
ments used are shown in Figure 2. The axisymmetric solid elements (CAX4) are
used to model the tube and mandrel. The interface elements (INTER2A) are used
to model the separation or interference fit between the mandrel and tube. Truss
elements (CID2) can also be used to model the mandrel because the displacement
U1 is directly related to the external pressure p by

Ul/c = -(1-Vj-2Vl2)P/E

where El, v, are elastic constants of the mandrel.

FINITE ELEMENT MODEL. Figure 3 shows a two-dimensional finite element
model (E3) chosen to represent the swaging process in zone 3. The model is con-
sidered symmetric with respect to z = 0 so that only half of the model is shown.
We have used 133 and 21 elements of type CAX4 to represent the tube and mandrel,
respectively, with a = 1, b = 1.431, c = 1.007415. There are eight interface
elements of type INTER2A to represent the interaction between the tube and
mandrel. Figure 3a shows an interference-fit problem of the mandrel-tube
assembly. This model is used to determine the maximum deformation and stresses
during swaging. Figure 3b shows a complete unloading problem when the two parts
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are separated. This problem is used to determine the permanent deformation and
residual stresses after swaging. In order to determine the longitudinal bending
effect, we would like to compare the two-dimensional analysis with the one-
dimensional analysis. The one-dimensional model (El) consists of ten elements
(of type CAX4) each for the tube and mandrel with one interface element (of type
INTER2A). Another one-dimensional model (E2) is to replace the mandrel by one
or two Truss elements of type CID2. The material constants used are E = 200, ao
= 1, v = 0.3 for the high strength steel and E1 = 590, a, = 3.33, V1 = 0.258 for
the tungsten carbide. The materials exhibit no strain-hardening. In the
modeling and computation we have used the dimensionless quantities with the
inner radius (2.283 inches) as the unit length and the initial yield stress (150
Ksi) as the unit stress. The actual quantities can be obtained easily if
needed.

In the above three models (El, E2, E3), the tube is elastic-plastic, but
the mandrel remains elastic. If the strength ratio of the mandrel material to
tube material is very large, then the mandrel can be regarded as rigid. In
order to determine the effect of elasticity in the mandrel, we have chosen three
finite element models (RI, R2, R3). Models R1 and R2 represent one-dimensional
plane-strain and plane-stress cases, respectively. We have used ten elements of
type CAX4 to represent the tube. The model R3 is the same as the model E3 shown
in Figure 3 except that the mandrel is replaced by a rigid block.

Following the instructions given in Reference [4], we have prepared the
input data for each of the six finite element models. For each model we ran the
problem in two steps, i.e., loading and unloading. The input deck for the
finite element analysis of model El is shown in Table 1.

RESULTS AND DISCUSSIONS. For each of the six models (RI, R2, R3, El, E2,
E3) discussed in the preceding section, we have run the finite element program
successfully. The numerical results for the displacements, strains, and
stresses in the tube during and after swaging have been obtained. Only the
results for the stresses along the radial direction near z = 0 and the displace-
ments along the bore are presented graphically.

When the mandrel is assumed to be rigid, the displacement at the bore is
equal to the given interference. The results for the stresses based on models
(R1, R2, R3) are presented in Figures 4 through 6. When the interference is
only half of the maximum, the state of stresses remains elastic as shown in
Figures 4 and 5. When the maximum interference (I = 0.007415) is reached, the
state of stresses is elastic-plastic. The effect of interference on the distri-
butions of hoop and axial stresses can be seen in Figures 4 and 5, respectively.
By comparing the results for model Ri (one-dimensional, plane-strain case) and
model R3 (two-dimensional case), we can also see the influence of the longitudi-
nal effect on the hoop and axial stresses. The influence on the maximum axial
stresses is very significant as shown in Figure 5. Unloading after the maximum
interference is reached, we have obtained the residual stresses as shown in
Figures 5 and 6 for the axial and hoop stresses. A comparison of these residual
stresses indicates that the differences between one- and two-dimensional models
(R1 and R3) are very minor. Models R1 and R2 represent plane-strain and plane-
stress cases, respectively, and both models are one-dimensional.

423



TABLE 1. THE FINITE ELEMENT INPUT DECK FOR MODEL El

*HEADING
TUBE-MANDREL ASSEMBLY AND SEPARATION
*NODE

1,.
11,1.007415
21,1.0
31,1.431
101,. , 0.05
111,1.007415, 0,05
121,1.0 , 0.05
131,1.431 , 0.05
*NGEN,NSET=SIDE1
1.11
101,111
*NGEN,NSET=SIDE2

21,31
121,131
*NSET,NSET=BORE
1,101
*ELEMENT,TYPE=CAX4
1,1,2,102,101
11,21,22,122,121
*ELGEN,ELSET=MANDREL

11,10
*ELGEN,ELSET=TUBE
11,10
*SOLID SECTION,ELSET=MANDREL,MATERIAL=CARBIDE
*IATERIAL,NAME=CARBIDE
*ELASTIC
590., .258
*PLASTIC
3.33
*SOLID SECTION,ELSET=TUBE,MATERIAL=STEEL
*MATERIAL,NAME=STEEL
*ELASTIC

2.E2, .3
*PLASTIC
1.
*ELEMENT,TYPE=INTER2A,ELSET=SFIT
101,111,11,121,21
*INTERFACE,ELSET=SFIT
*FRICTION
.0

*BOUNDARY
SIDE1,2
SIDE2,2
*STEP, NLGEOM,CYCLE=10
*STATIC,PTOL=I.E-4,DIRECT

1. , 1.
*END STEP
*STEP,NLGEOM
*STATIC,PTOL=I.E-4 ,DIRECT
1.,1.
*MODEL CHANGE, REMOVE
MANDRELSFIT
*END STEP
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When the mandrel is considered as elastic, the interference-fit assembly is
solved iteratively. The same results for the one-dimensional models (El and E2)
have been obtained. A comparison of two models (El and Ri) for the hoop
stresses during and after swaging is shown in Figure 7. The elasticity in the
mandrel reduces the amount of overstrain from 70 to 60 percent. The numerical
results for the two-dimensional model (E3) are presented in Figures 8 through
11. Figure 8 shows the distributions of hoop stresses during and after swaging.
Figure 9 shows the corresponding distributions of maximum and residual axial
stresses. Also shown in Figures 8 and 9 are the one-dimensional results based
on model El. A comparison of the results based on models El and E3 can deter-
mine the two-dimensional effect on these stresses. In Figure 10 we show the
results for the radial stresses based on four models (El, E3, R1, R3). Finally,
the results based on several models for the radial displacement along the bore
are presented in Figure 11. The displacements during and after swaging are
represented by U and U", respectively. Also shown in the figure is the measured
permanent bore enlargement. By comparing the results based on models El and R1,
the elasticity effect gives a smaller value for U". If we include the two-
dimensional effect with model E3, we get a value for U" even smaller than that
based on the one-dimensional model.
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(a) interference-fit (b) separation

Figure 3. A two-dimensional finite elemen"r model.
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NONMONOTONIC STRESS-STRAIN LAWS:
BIZARRE BEHAVIOR AND ITS REPERCUSSIONS

ON NUMERICAL SOLUTIONS*

Ted Belytschko and David Lasry
Department of Mechanical Engineering

Northwestern University
Evanston, Illinois 60208

ABSTRACT

The properties of solutions with nonmonotonic stress-strain laws are described.
Some particular properties are: severe mesh dependence, an apparent lack of convergence,
and chaotic results for converging waves. These results are partially explained by examining
a closed form solution for a simple problem. It shows that in a nonmononic continuum, the
unstable dynamic response localizes to a set of measure zero.

To remedy this difficulty, localization limiters have been introduced to provide
solutions where the deformation concentrates in regions of finite size. Several formulations
of such limiters are discussed, with particular reference to stability and computational issues.
Various applications are presented.

1. INTRODUCTION

Solutions of problems involving a strain-softening material law are fraught with
serious difficulties, both from mathematical and numerical points of view. In dynamics,
these difficulties were illustrated in Ref. [1] using a simple one-dimensional wave
propagation model: an elastic wave propagating in a bar travels with a velocity proportional
to 'IET, where ET is the tangent modulus. When ET becomes negative, as is the case for a
strain-softening material, the wave cannot propagate anymore, giving rise to what Freund [2]
calls a deformation-trapping phenomenon: the deformation is trapped in a certain zone of the
body and no information can be transmitted to the rest of the material. Bazant and Belytschko
[1] have shown by a closed form solution that strain-softening in transient problems is
characterized by the appearance of infinite strains on a set of measure zero. This is reflected
in numerical simulations by a strong dependency of the results upon the refinement of the
mesh [3]. When the equations are discretized, by finite elements for example, the
deformation will localize in the smallest discrete cell of material capable of representing that
set of measure zero, namely one element in constant-strain elements in one-dimension or a
one element-wide band in two dimensions. The problem of mesh dependency is not an
intrinsically numerical one, but rather stems from the more fundamental loss of strict
hyperbolicity of the equations of motion [4] upon attaining the strain-softening regime.

*Supported by the U.S. Army Research Office ( Contract DAAL03-87-K-0035)
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In statics, localization has been associated with the loss of ellipticity of the
incremental equilibrium equations [51, and the existence of a bifurcation from a
homogeneous state of deformation into a nonhomogeneous ones and the appearance of
multiple equilibrium paths. This approach provides the orientation of the localization band
and the critical load for which localization may be triggered but does not provide any length
parameter for the subsequent behavior; in this respect, it is somewhat different from the
dynamic case, where a localization zone (albeit reduced to a single point or line) appears in
the closed form solutions [3]. This difference is reflected in the numerical simulations as
well. If a solid with no imperfections is submitted to a homogeneous state of deformation,
the numerical solution for a static problem will follow that homogeneous deformation path
even when it becomes unstable beyond the bifurcation point, provided the machine precision
is sufficient to prevent round-off error from triggering an inhomogeneous mode.

In order to circumvent these difficulties, the concept of localization limiters has been
proposed in [3,4]. The essential idea of these limiters is to change the character of the
equations so that the region of localization does not degenerate to a set of measure zero. The
limiters proposed in [3] and [4] were respectively of two distinct types: integral limiters
based on nonlocal constitutive equations and differential limiters based on higher order
derivatives of the strain.

One purpose of this paper is to present analyses of the governing equations with and
without limiters in one dimension and in the case of antiplane motion in two dimensions. It is
shown that without limiters, the static equations lose ellipticity for strain softening materials
and nonassociated plastic laws, while the dynamic equations lose strict hyperbolicity. With
the gradient-type localization limiter, the dynamic equations change from hyperbolic to
parabolic, which introduces a length scale.

It is also shown in this paper that the two types of localization limiters, differential
and integral, possess very similar characteristics. Both limiters (1) exhibit a stable response
to short wavelength input and and unstable response to long wavelength, and (2) limit the
localization to a width dependent strictly on the length parameter. It is noted that even with
the limiter the discrete tangent stiffness does not maintain positive definiteness and the
numerical difficulties associated with strain-softening in local materials also appear.

The paper is organized as follows: Section 2 deals with the relationship between
localization and change of type in the governing equations. Section 3 classifies the different
localization limiters. In section 4, solutions are given for simple problems.

2. CONDITION FOR LOCALIZATION AND CHANGE OF TYPE

In order to better understand the difficulties associated with the localization
phenomenon and the role of the gradient localization limiter, the relation between the onset of
localization and a change of type of the governing equations is investigated here.
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2.1 Change of type in statics and dynamics

The purpose of this section is to derive for a simple problem the condition for the
onset of localization in statics and dynamics and relate it to the type of the system of PDE's
governing the problem.

For the general three-dimensional case, the equations of motion are written:

Yij,i + bj = p vj,t (2.1)

where a is the Cauchy stress tensor, v the velocity vector, p the mass density and b the
vector of body forces. Subscript indices preceded by comma denote partial derivatives. The
body forces intervene in the governing equation only as a forcing term, so we can omit them
in the study of the character of the equations.

The constitutive law relating the stress and strain rates is written:

bij = Cijkl kkI (2.2)

where the tensor Cijkl has minor symmetries Cijkl = Cjikl = Cijlk. E is the strain tensor
defined as:

EM ="(uk,l+ uI,1) (2.3)

The equation will be analyzed for a simple antiplane shear problem, but the main
results remain valid for the general three-dimensional case. The antiplane shear problem has
been studied for a class of incompressible hyperelastic materials by Knowles [7] in statics
and by Freund et al.[8] and Toulios [9] in dynamics. For this problem, the displacement and
stress fields are as follows:

ul = u2 = 0 , u3 = u3(xl,x2) , 013 = 013 (xl,x2) , 023 = 023 (xl,x2) (2.4)

In statics, the equilibrium equations (2.1) then reduce to:

0Y13,1 + 0Y23,2 = 0 (2.5)

The constitutive law reads:

G13 = 2C 1 3 13 i13 + 2C 13 2 3 i23

623 = 2C 23 13 613 + 2C 2323 i23 (2.6)

We make the simplifying assumption that stress is a single-valued function of strain. This
holds for elastic-plastic laws as long as there is no unloading at any point. We can write:
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13,1 = C 13 + C 23 2C1313 C13,1 + 2C1323 E23,1 (2.7)
& 13  IT F-23 =xj

and a similar relation for 023,2. We look for solutions that have discontinuities in £cx3,
along a line r defined by its local normal n (nj,n2,O). The tangent vector to f at the current
point is s (sI,s2)=(-n2,nl,O).

The governing equations along r (equilibrium, compatibility, directional derivatives)
can be cast in a matrix form:

C 13 13 C1323 C2 3 13 C2323  "£13,1 0

S 1 - 0 E13,2 0

(2.8)
SL s2 0 0 E23,1 r 13,s

0 0 Sl s2 -23,2.J -E23,s-

This relation is of the form A £D = c ; in order for ED not to be unique, we must require

det A = 0 (2.9)

which yields in this case:

2 2
-SI C2323 + SlS2 (C 1323 + C2313) - s2 CI3 13 = 0 (2.10)

or in terms of the normal vector n :

2 2n2 C2 32 3 + njn 2 (C 132 3 + C2 313) + n2 C13 13 = 0 (2.11)

The above can be written

det (ni Cijl nl ) = det (n Cn) = 0 (2.12)

which is the classical localization condition [5,10]. The loss of uniqueness corresponds to
the loss of ellipticity of the governing equations, or in other words, to the appearance of real
characteristics which are associated with equations of a hyperbolic type.

We focus now on the dynamic case. The equation of motion for the antiplane
problem is:

013,1 + 023,2 = P v3,t (2.13)

The cross-derivative relations:
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e13,t = V3,1 , 23,t = V3,2 (2.14)

are combined with the equation of motion to yield a system of first order PDE's:

ro C1313 C12 3 0 C2313 C22 3 -p 00 v3 -0

-1 0 e13  T0 0 0 3 10 e13 0

LO 0 0 1-23{, -- 1 0 0 Le 23-, 2  0 01 .e23.,t 0

This system is of the form:

AlU, 1 + A2 U,2 +AtUt = 0 (2.16)

where At is nonsingular. The condition for C(xl,x 2,t) -0 to be a characteristic surface of
(2.15) is [11]:

det (A) = 0 (2.17a)
where

A =A 1  1, + A2 ID2 +AtI,t '2.17b)

which yields here:

4t(_(2 2 2
€1 ,t( -P(it + (C 13 2 3 + C 23 13) (D,10, 2 + C 13 13 b,21 + C 2 3 23 (I, 2 ) =0 (2.18)

The extra factor (1 ,t in (2.18) corresponds to a characteristic surface with zero velocity and is
a result of introducing an additional dependent variable by choosing strains and velocity as
the dependent variables [12]. In order to better understand the meaning of (2.18), we define
the constitutive matrix D such that:

DId = Ck313  (2.19)

and select a new coordinate system ( , 2) defined by the principal directions of D, so that in
the new coordinate system:

[ D10]1
D- (2.20)0D21

Equation (2.18) can thus be written as:

2 2 2
+D't + D 2 , =0 (2.21)

Characteristic surfaces are cones of elliptic section, as illustrated in figure 1; the equation of

the cone passing through a point (RO, y'o, to) is:
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(t- to) 2 ( - o)2 + 1( y - yo)2 (2.22)
cl C2

where

cl= J and C2= f (2.23)

As D loses positive definiteness, say for example D1 remains strictly positive and D2approaches zero, the cone collapses to a plane surface. Considered as a function of the
variables ( y, t ), the system loses strict hyperbolicity, or equivalently real waves no longer
propagate in every direction (in our case they stop propagating in the ' direction). It is
therefore seen that here the condition of strict hyperbolicity of the system of governing
equations and the condition of strong ellipticity are equivalent

It should be pointed out that when a viscoplastic constitutive law is used, the
equations of motion do not lose hyperbolicity. This is readily seen by observing that for
viscoplastic models the rate constitutive relation is written as:

ijkl ild - Rij(a) (2.24)

where Cij.l is the elastic tensor and the inelastic part is embedded in the term Rij. The type

of the system of governing equations is determined by Cijk, SO that it remains strictly
hyperbolic, the inelastic effects appearing only as a forcing term.

2.2 Relation between strain softening and localization for elasto-plastic materials

The rate constitutive relations for an elasto-plastic material are written in tensor form
as:

Ce = CP (2.25)
h + Q : C p Q:Ce:

where P and Q are symmetric first order tensors giving respectively the direction of the
plastic deformation and the outer normal to the yield surface, h is the rate of hardening, and
C e the elasticity tensor:

Cijl = X 8ij 1d + G ( 8ikSjl + 5il 8 jk ) (2.26)

and X and G are Lam6's constants. The case P - Q corresponds to plastic normality, P # Q
corresponds to a non-associative flow rule.

We consider again the antiplane shear problem and focus on the relation between the
localization condition and the strain-hardening modulus in the case of an elasto-plastic
material model. For localization to occur on a plane of normal n, the condition (2.12) has to
be met. We can write that condition in a set of cartesian axes n , e3 x n and e 3 ( e 3 is the
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unit vector in the "'3" direction ). With subscripts denoting components in that set of axes,
and for the constitutive law (2.25)-(2.26), the localization condition reduces to:

C1313= 2(G - 4 P13 Q13) =0 (2.27)C133 2( -h + 4 P13 2G Q13

or equivalently
h
U = - 2 (2 P 13 Q13) (2.28)

This expression shows that if plastic normality holds (i.e. P = Q ), then localization can only
occur with negative h, that is in a strain-softening regime, whereas if normality does not
apply, it is possible for localization to be triggered with a positive h.

This result, obtained for the particular case of the antiplane shear problem, is in fact
general as shown by Rudnicki and Rice [13] and Rice [5]. In the three-dimensional case,

(2.28) can be generalized to (with ox, 03 denoting components on cartesian axes in the plane
of localization):

h27h =_ 2 PaP QaP - 2G Paa Q13 (2.29)

and the conclusions derived previously remain valid. An example of a material model where
localization occurs for positive h can be found in [13].

3. LOCALIZATION LIMIERS

Localization limiters can be classified as follows:

1. nonlocal or integral limiters where the strain measure includes an integral of the
deformation over a finite domain [3].

2. differential limiters where the strain or stress measures include derivatives of order
higher than one [4,14-17].

3. rate limiters, where a time dependence is built into the equations[18].

The rationale underlying the nonlocal limiters is that a classical local rheory does not
take into account the influence of the length scale associated with a rapidly varying strain
field on the stress distribution, an essential part of the localization phenomena.

In the case of a one-dimensional rod with strain-softening, a nonlocal limiter is obtained by

defining the stress field O(x) as a function of a nonlocal strain i(x) [3]:

0(x) -a( (x)) (3.1)
with 1 f L/2

i(x) f E(x+s)w(s) ds (3.2)
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where [ x - x + is a domain around x, and w(s) a weighting function. For the sake of
1

simplicity, we will assume in what follows a uniform weighting function w(s) =

The gradient-type limiter in a one dimensional context is given by [4]:

9(x)= e (x) + a e,xx() (3.3)

These two limiters are related through a Taylor expansion [4] and actually differ by a
function of order o (L2), provided that:

L2

a= (3.4)

In dynamic problems, the effect of the differential and rate limiters from a
mathematical point of view is that the governing equations no longer become elliptic with the
onset of strain-softening. This can be seen in a one-dimensional context for a path
independent material, by combining the equation of motion and the compatibility condition
into a system of first order partial differential equations:

+ [ (3.5)
,et 1 0 / C ' L e0 -

where v, ca(e), e and p are respectively the particle velocity, stress, strain and density, and

subscript comma denotes a partial derivative. This system is of the type

A U,t + B U,x = c (U) (3.6)

where one of the matrices A or B, e.g. A, is nonsingular and c is a forcing vector. The nature

of (3.6) is determined by the roots of the characteristic determinant, det ( B - X.A) (or det ( A

- X B ) if A is singular ).In the case of Eq. (3.5)

det(B -XA)=det(B XI)=X2.3'. (3.7)

so that the system becomes elliptic when a'(E)<O (which corresponds to strain-softening)
because the determinant (3.7) does not possess real roots anymore.

When the differential limiter defined in (3.3) is included in the formulation, a
modified system of P.D.E's is obtained:
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0 00 0 1 0 0 0 I -

[ 1 0 0 I 0

+ 0=1 0 1 (3.8)
0 0 00 Jw2 L'_. 0 ao'(. ) 0 w2 W2
-0 0 0 -1- -v-, p p - v/,X -O-

where wl = rZ,x and w2 = e,xx. The characteristic determinant

det (A -XkB )=-aG O(e'---) )L4  (3.9)

P

possesses four real roots, all equal, irrespective of the sign of a'(e), so that the system is
parabolic. It should be pointed out that, when a rate-type limiter is used via a viscoplastic
material model, the governing equations remain hyperbolic[181.

In order to better understand the behavior of the integral and differential limiters, a
Fourier analysis by the method of frozen coefficients is useful. In this analysis a
displacement disturbance 5u is applied to the body, and the material is considered to be in a
strain-softening state over an interval [xl,x2l:

S(x) = -IEtl &(x) for x in [xl,x2 l (3.10)

where the tangent modulus Et < 0 is assumed constant. We then look for possible wave
solutions of the form

5u(x,t)=A eik(x-v0 (3.11)

for the equation of motion for 5u:

lEti nonloc.
8ut - o (X),x = 0 (3.12)

p

The following dispersion relation was obtained in [4] with the gradient-type limiter 9 defined
by Eqn. (3.3):

kv { Et. (1(- k2) 11/2 k =i(k) (3.13)

nonloc.A similar analysis can be done for the integral limiter e N(x) = E(x) defined in Eqn. (3.2).
Looking for wave solutions of the equation of motion
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IEtl !r/
8u'tt + L/2 (J Be(x+s)ds),x = 0 (3.14)

one obtains the following relation:

I Etl k s_ 1/2
kv=i t P t 2 n 1 k =i (k) (3.15)

The two functions (x) and ' (k) are plotted in fig. 2, for values of a and t related through

eqn. (3.4). In [41 the plot of 'y (k) was interpreted to mean that the growth in short
wavelength inputs susceptible to develop in the narrow localization zones is bounded when
the limiter is present.

It is interesting to notice that for small values of a, the expression of j, (k) can be
expanded, and using (3.4):

Ik Etl 2k [kt 1 11 _3]/2 It k2)/=

_Tj_ :p3[k = 1_ ' -J ak)-cck(k) (3.16)
P( P 6x

A perturbation analysis [4] reveals that, when the differential limiter defined in (3.3)
is used, the width of the zone in the strain-softening regime varies with the square root of the
parameter a. Numerical simulations confirmed this type of dependence, and for the integral
limiter they yield a zone size proportional to the averaging length t [31 as can be expected
from relation (3.4). Thus both localization limiters prevent the growth of waves of the scale
of the localization bands which are generated by the presence of strain-softening.

As far as static problems are concerned, the only attempts to derive closed form
solutions using limiters known to the author are due to Aifantis and co-workers [16,17]
Coleman and Hodgdon [15] and Schreyer and Chen [14]. In the former approach, higher
order terms are included in the evolution equation of the flow stress, and in that sense it is
quite similar to the work of Schreyer and Chen. In Coleman and Hodgdon [15], a second
order strain gradient is added directly into the constitutive equation without modifying the
yield function. The common denominator to all of these approaches is that they make the
stress field dependent in some way on the spatial derivatives of the strain field. We follow
the approach of Coleman and Hodgdon [15], but do not limit our formulation to rigid plastic
materials. The expression for the stress is given by:

a = O(e)-a V 2  (3.17)
where O(e) is the usual elastoplastic constitutive law(stress-strain relationship) and (a > 0 is a
coefficient having the dimensions of a force. The stiffness matrix corresponding to the finite
element formulation of (3.17) is developed in [211.
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4. NUMERICAL EXAMPLES

In this section numerical solutions are presented with and without limiters for simple
problems. Dynamic situations, where no stiffness matrix has to be constructed if explicit time
integration is used are first considered; static problems are considered in subsection 4.3.

4.1 Wave propagation in a rod

This problem was considered in [3], see fig. 3a. Equal and opposite velocities v0 are
applied to the two ends of a rod of length 2L made of a strain-softening material, so that
tensile waves are generated at the ends. The magnitude of the strain is slightly less than the
strain corresponding to the onset of strain-softening. These tensile waves propagate
elastically to the center, when they meet at the center, the stress would double if the behavior
remained elastic, so that strain-softening starts at this midpoint.

The analytical solution for this problem was proposed in [1]: localization occurs at the
midpoint where the strain becomes infinite. The solution, symmetric about the midpoint x=L,
is expressed for the left half as:

-- [H(t-- - H(t-- Co + 4<c0t-L>8(x-L)] (4.1)

where H is the Heaviside step function, <A>=A if A >0, A=0 otherwise, 5 is the Dirac-
delta function, co the elastic wave speed in the material. Numerical studies of this problem
based on nonlocal approaches were conducted in [3]. Here we will use the localization limiter

A= e + a exx (4.2)

The development of a finite element formulation corresponding to (4.2) can be found in [4].
Particular provisions are made to avoid zero energy modes, and stiffness proportional
damping is added in order to prevent oscillations ahead of the wave front, see[4].

The stress-strain law considered for the calculations is illustrated in the enclosed box
in fig. 4. Other parameters used in the calculations were: density p=l., end velocity v0=0.6,

and for the stress-strain relation, E = 1., yield stress ap = 1., Et = -.25, ef = 5., nearly

horizontal tail of slope Ef =.001 beyond Ef.

It was first checked (see fig. 4) that, without introducing the localization limiter (that

is, for ct=0), the strain profiles are severely dependent on the mesh refinement, and the
localization zone shrinks to one element, irrespective of its size. Furthermore, the total
energy dissipated in the mesh tends to a zero value as the mesh is refined, as seen in fig. 6a.
Convergence studies were then performed with the localization limiter defined in (4.2), for a
value (x = .1667 , for different meshes with increasing number of elements (fig. 5). They
exhibit a localization limited to a finite size zone, the length of that zone and the strain profiles
being independent of the mesh refinement. Moreover, the total energy dissipated in the rod is
independent of the mesh size, all other parameters remaining equal, as illustrated in fig. 6a.
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Calculations were also conducted at fixed mesh size for different values of a, see
fig. 6b. showing that the length of the localization zone is linearly dependent on Va . This is
consistent with the results of [31, that found a linear dependence in P. (averaging 'ength),

since a Taylor expansion yielded the linear relation (3.4) between a and t 2 .

4.2 Spherically symmetric problem

This problem (see fig. 3b) was considered with strain-softening materials in [20]. A
sphere made of a strain-softening material is loaded with a uniform traction on its exterior
surface. To better appreciate the complexity of this problem, consider the load to be a ramp
function in time. Before the onset of strain-softening at an interior surface S, a portion of the
stress will have passed through S. Due to the spherical geometry, the stresses in this wave
are amplified as they pass t. the center and trigger the formation of additional strain-softening
surfaces. As conjectured in [20], it seems that an infinite number of localization surfaces will
appear, although no analytical solution has been proposed so far.

The localization limiter defined previously in (4.2) was used to solve numerically this
problem. We considered a sudden application of a uniform normal traction cr = p0H(t) at the
exterior surface R2=100; the interior surface is R1=10. The applied surface pressure was
chosen as po=.7 0 8 ; for this boundary conditions, the wave propagating from the outer
surface remains elastic until the wavefront reaches 0.7R2. The same material constants as in
section 4.1 were considered.

It was first noticed (see fig. 7) that without the localization limiter (that is for a = 0),
as the number of elements is increased, several points of localization develop, and these
points change arbitrarily with mesh refinement, even in the presence of damping. These
points of localization can be appreciated both in the volumetric strain plots, with the presence
of spikes, and in the radial displacements plots, where sharp discontinuities indicate
separation along a surface.

The next group of solutions ( figs. 8 ) examines the effect of the localization limiter.
These solutions converge well with mesh refinement, and furthermore, they are very similar
to those found with the imbricate elements approach [20].

4.3 Static problems

When conducting the numerical simulations for static problems, where a stiffness
matrix has to be developped, it was noticed that the introduction of the localization limiter did
not remove completely all the unpleasant features present in calculations involving strain-
softening materials. More precisely, when the strain-softening regime is incipient, the
Newton-Raphson procedure often results in iterations that oscillate between two or more
states and fail to converge to one equilibrium state. From a numerical point of view, this is
linked to the tangent stiffness KT does not remain positive definite. In [19], a remedy for
this difficulty was proposed; it consists of posing the problem as the minimization of the
length of the residual vector:

Minimize: F = rT(d) r (d) (4.3)
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where

r (d) = -Fxt -int (4.4)

and require " = 0 at the minimum.

This provides a more well-behaved problem for the line-search procedure and the rate
of convergence of the Newton method is improved substantially. The method was also
adapted in [19] so as to combine it with arc-length procedures.

To test the effectiveness of the localization limiter and the solution strategy, we
consider the problem of a one-dimensional rod, subjected to equal and opposite loading at its
two ends, as illustrated in figure 9. One node in the mesh is held fixed, so as to prevent rigid
body translations.To trigger the appearance of a non-homogeneous strain-distribution,a small
imperfection is introduced. In the present example, this was accomplished by making the
cross-section of the center element 1% smaller than the cross-section of all other elements.

Numerical studies of this problem were conducted based on the localization limiter
defined previously in Eqn. (3.17), which in one-dimension reduces to:

a = 0(e) - (X aX X  (4.5)

The elasto-plastic strain-stress law considered is also illustrated in fig. 9. It consists of a
linear elastic part, and an exponential branch including a strain hardening portion followed by
a softening one. At any point the unloading is elastic with Young's modulus E. The physical
parameters used for the calculation were: Young's modulus E=200, yield strain E = .05, Em

= 0.3, exponential branch: O(e) = E el (E+8) eg(E) g(ei) where g(e) = (1- E

(s1 +80)
parameter controlling the convexity 80 = 0.11.

To solve this problem, the line-search technique combined with the arc-length method
with a linearized constraint equation described in [19] was used. It was first checked that
without introducing the localization limiter, that is for o=0, the deformation localizes in the
element with imperfection, irrespective of its size, while all other elements unload elastically.
In a load-displacement curve, a sharp decrease is observed once strain-softening is attained,
and even a snap-back behavior can be observed, which could not be captured with a pure
displacement control strategy.

Calculations were then conducted with the localization limiter defined in Eqn. (4.5),
for several values of the parameter (x. The strain distribution along the rod for various load
levels is given in fig. 10a. These strain-profiles are very close in shape to the ones obtained
by Coleman and Hodgdon[ 15] in their study of the effects of the localization limiter (4.5) on
strain-localization for a rigid plastic material with a parabolic law. Essentially, a finite
localization zone emerges, practically constant in size, where the strain increases but remains
bounded, while in the rest of the rod, the material unloads elastically. In the finite element
calculation, that localized zone spans a few elements of the mesh. The size of the zone is
directly related to the value of ax.
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Load-displacement curves for various values of a are reported in fig. lOb. They
exhibit a milder negative slope with increasing oa. It should be pointed out that, without the
use of the line search procedure described above, the Newton-Raphson procedure fails to
converge near the critical point.

5. CONCLUSIONS

Localization limiters can be classified as nonlocal, differential and rate limiters. A
Fourier analysis of the wave-propagation problem shows that the introduction of nonlocal or
differential limiters leads to governing equations where short waves, which are likely to
develop with the onset of strain-softening, have a bounded growth. In dynamic problems,
strain-softening causes the governing equations to lose strict hyperbolicity; it was shown for
example that they become elliptic in at least one direction for the antiplane problem. With the
gradient-type localization limiter, the dynamic equations change from hyperbolic to parabolic
for the one-dimensional case. The character of the amplification spectrum of the integral and
differential limiters is similar and they become identical in the limit as the magnitude of the
parameter governing the limiter goes to zero.

The differential localization limiter proposed by Coleman and Hodgdon [ 15] based on
the introduction of the second derivative of the strain in the stress expression was
implemented in the context of static problems. Numerical studies showed that it allows for
the development of a localized strain zone spanning over several elements of the mesh.
However, the addition of the limiter does not guarantee positive definiteness of the tangent
matrix.
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Fig. 3. Problem descriptions, a) ID-rod problem, 2L=40; b) Spherically symmetric problem,
interior radius R1=10., exterior radius R2=100.
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symmetric problem, E is replaced by K (bulk modulus), ET by KT, c by ev (volumetric
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Abstract

In any explosive device, the chemical reaction of the explosive takes place in
a thin zone just behind the shock front. The finite size of the reaction zone
is responsible for: the pressure generated by the explosive being less near the
boundaries, for the detonation velocity being lower near a boundary than away
from it, and for the detonation velocity being lower for a divergent wave than for a
plane wave.

In computer models that are used for engineering design calculations, the
simplest treatment of the explosive reaction zone is to ignore it completely. Most
explosive modeling is still done this way. The neglected effects are small when
the reaction zone is vy much smaller than the explosive's physical dimensions.
When the ratio of the explosive's detonation reaction-zone length to a representative
system dimension is of the order of 1/100, neglecting the reaction zone is not
adequate.

An obvious solution is to model the reaction zone in full detail. At present,
there is not sufficient computer power to do so economically. Recently we have
developed an alternative to this standard approach. By transforming the governing
equations to the proper intrinsic-coordinate frame, we have simplified the analysis
of the two-dimensional reaction-zone problem. When the radius of curvature of the
detonation shock is large compared to the reaction-zone length, the calculation of
the two-dimensional reaction zone can be reduced to a sequence of one-dimensional
problems.

I. Introduction

Describing the propagation of detonation in complex multi-dimensional explosive geometries

is an important and ongoing problem in the design process for explosively driven devices. In order
for the design of the explosive system to be successful, two requirements need to be met. First,

the detonation of the explosive system must be robust, that is relatively insensitive to variations

in the initial conditions, such as changes in temperature and variations in the initiation system.

At the same time, the explosive system must be safe from accidental initiation of detonation.

The parameter P, which is the ratio of the explosive's detonation reaction-zone length to a
representative system dimension, is the parameter that controls these properties. When P is

small (relatively fast reaction) the system is robust, but prone to accidental initiation. When P is

large the explosive is near its failure limit making it harder to set off accidentally but also more

sensitive to variations in the initial condition. A value of P of about .01 is a good compromise.

Problems of accidental initiation are minimized, yet at the same time the detonation is relatively
insensitive to initial conditions.

For most explosive geometries, this ratio is small enough so that the integrated momentum

*Supported by the U. S. Department of Energy. 459



through the reaction .one is small in comparison to that in the broad region where the reaction

products expand and do work on their surroundings. Thus the reaction zone has little direct

influence on the process of driving inert materials that are in contact with it. However, the

indirect influences of the reaction zone on the calculation can be much more important. When

P = .01 a significant fraction of the explosive charge experiences such things as reduced detonation

pressure and velocity near boundaries, as well as a slower detonation velocity everywhere for a

divergent detonation than for a plane one. These, in turn, lead to large errors in zeroth-order

effects such as the time of detonation arrival and the two-dimensional detonation wave shape.

From the point of view of the designer, this is a difficult computational regime. Not only does

he need to resolve the broad region where the reaction products expand and do work on their

surroundings, but he must also resolve the thin reaction zone.

Because of the disparate lengths of the reaction zone and the products expansion wave, most of

the explosive design codes in use today employ some variant of the constant-detonation-velocity

"Huygens" construction to propagate the detonation wave. This method for propagating the

detonation only works well for explosives for which the reaction zone can be ignored (i.e., P is less

than 1/1000). Ad hoc "fixes" of this simple model have been tried to model systems with larger

values of P. For example, the detonation velocity may arbitrarily be set to some lower value near

the edge. These have met with only limited success.

With all of its shortcomings, the simple "Huygens" method has one real advantage,

computational sDeed. Since the reaction zone does not need to be modeled, design calculations

are fast enough to allow many design iterations to be tried. This is an important feature that

design codes need to have.

In order to improve on this simple method, the reaction zone must be modeled. This of

course requires knowledge of the equation of state (eos) of the partially reacted explosive and

of the reaction rate. When explicit information is available, one can in principle follow the

standard approach and do multi-dimensional simulations that resolve both the reaction zone and

the explosive products region. Typically we have only limited constitutive information: the shock

Hugoniot of the "unreacted" explosive, an equation of state of the explosive products, and a

compatible energy-release rate callibrated to one-dimensional experiments.

To be useful, a numerical simulation of the reaction zone must be able to resolve all of the

important features of the flow. Fickettl has shown that when the standard one-dimensional

(D) Lagrangian-mesh artificial-viscosity methods are used, roughly 15 computational cells are

needed in the reaction zone to get 10% accuracy. This translates into many tens of thousands

of computational cells for a typical two-dimensional (2D) numerical calculation done with a

uniform grid method. Even with today's supercomputers, such calculations take many hours
of computation time; they are not practical for routine use. When one reduces the number of cells

in the calculation in order to get sensible computational times, the accuracy of the calculations

suffers.
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In large measure, the inordinately large computation time is a result of the lack of

sophistication of the standard uniform grid methods. The mesh size that is needed to achieve

reasonable resolution in the reaction zone is excessively fine for the broad products expansion

region. Today researchers are developing a variety of improved methods that include such features
as: (1) multi-grid techniques that employ moving fine zoning near shocks, 2 (2) schemes based on

the method of characteristics such as CIR and Godunov, 2,3 and (3) shock-tracking methods. 4 To

date, however, none of these methods has reached the point of maturity where they could replace

the standard method for routine detonation calculations.

The central issue in improved 2D calculations of detonation is a high-accuracy calculation
of the reaction-zone structure, plus a relatively coarse-grid calculation of the following products
release wave. One way of getting a high-accuracy calculation of the reaction-zone structure is to do

it analytically. This alternative brings with it the direct computational benefit plus the advantage

of a theoretical understanding of the 2D detonation process. With such an understanding, we could

make a fast high-resolution wave-tracking code that solves the reaction-zone flow analytically and
the broad products region with a coarse-grid numerical simulation. This increased knowledge also
brings with it the insights that lead to the improvements that are necessary if some of the more
sophisticated computational methods mentioned above are to become practical tools.

An analytical solution of the general 2D time-dependent detonation problem is not within
reach. However, in many applications of explosives, one observes that the radius of curvature

of the detonation shock is large in comparison with the reaction-zone length. Recently we have

developed an alternative to the standard numerical approach that is based on the large radius of

curvature limit. By transforming the governing equations to the proper intrinsic-coordinate frame,
we have simplified the analysis of the 2D reaction-zone problem, and reduced it to a sequence of

one-dimensional problems. The coordinate frame of choice is one in which the spatial coordinate
axes are everywhere locally parallel and perpendicular to the shock. The governing equations

consist of a kinematic equation that describes the progress of disturbances moving along the
shock, and equations for the reaction-zone dynamics that describe the quasi-steady flow normal
to the shock (i.e., through the reaction zone). We call this method DETONATION SHOCK

DYNAMICS (DSD).

This paper gives a brief review of DSD. We have divided it into four sections. In Section II,
we give an overview of the theoretical model. This section is divided into three subsections. In

Shock Kinematics, we briefly describe our coordinate system and the kinematics of the detonation
shock. The subsection entitled Boundary Conditions is devoted to a discussion of the boundary

conditions that are applied at the edges of the explosive. In Reaction-Zone Dynamics, the Euler
equations are transformed to the intrinsic-coordinate frame, and the analysis that leads to the

quasi-steady description is briefly reviewed. In Section III, we demonstrate how our theory can be

used to study a representative explk.ive design problem. In Section IV, we summarize our results.
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HI. Overview of the Theory

The thrust behind our theory is the concept that the response of the detonation shock is

local, and is governed by its current local configuration. Philosophically, it is an extension of

Whitham's geometrical shock dynamics to detonation.5 Our theory is a uniform perturbation

theory, which is based on the notion that the radius of curvature of the shock is large compared

to the reaction-zone length. It is a nonlinear theory that can be used to describe arbitrarily

large departures of the detonation shock shape from the plane one-dimensional state. From the

results of our theoretical calculations, the following picture has emerged. In many situations, the

dynamics of the detonation reaction zone is decoupled from the evolution of the large following

reaction products expansion wave, and is controlled by the flow near the shock. As a result, we find

that the important waves in the reaction zone, either rarefactions or compressions, are transverse

waves. Our theory describes how waves on the shock are generated (e.g., near an explosive edge)

and move along the shock (see Figure 1).

There are three components to the theory: (1) a kinematic condition for the shock surface,

(2) conditions to be satisfied at the boundaries of the explosive, and (3) the flow dynamics in the

direction normal to the shock. We will briefly describe each of these.

end of reoction Moneo

Figure 1. A schematic diagram that shows how chemical/mechanical energy are
transported laterally through the reaction zone. The kinematic condition is applied
along (1), boundary conditions are applied at (2) and the reaction-zone dynamics
describes the flow along (3). To leading order, the reaction zone is insulated from
rarefactions from the rear.

Our theory is based on the time-dependent, two-dimensional, reactiv- Euler equations. As a

consequence, the detonation shock (shock) is a surface of discontinuity. Since we wish to treat

detonation-wave evolution in complicated two-dimensional geometries, we have developed our

theory in a problem-determined intrinsic-coordinate system (see Figure 2). It is a shock-centered

frame that moves with the local normal detonation-shock velocity (D,,). The space variables are



n

the distances and 77 locally parallel and perpendicular to the shock.

a. Shock Kinematics

The principal object of the theory is to calculate the shock shape as a function of time. The

intrinsic representation of a curve, such as the shock, is in termas of its curvature (r.) as a function
of arc length along the shock () and time (t). In this coordinate system, the shock shape is
described by the shock angle () as a function of and t. In terms of these variables, the shock
curvature is ic objwhere the indicates a partial derivative with respect to arc length. The
laboratory coordinates for the shock are returned by

to=ztf in(O)d ,rt--rt+ cos(O)d ,(1

where z and rt are the coordinates of the edge. Typically we are most interested in describing

the changes in the shock shape that are the result of the interaction that occurs between the shock

and an explosive edge. For such problems, having the zero of arc length coincide with the edge is
the most convenient origin to use for . Figure 3 shows a schematic representation of the shock
including the independent variable ( ) and the definition of the dependent variables D,, and €.

The cartesian unit vectors are g, and it.

The geometric compatibility conditions for a moving two-dimensional surface are given in

Whitham5

= - D (2)
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(3)

The variable a is equivalent to time, and labels a particular shock surface. The constant-/3 rays

are orthogonal to the shock and are its propagators. The streamtube area is A, where at fixed a

dC = Ad3 (4)

(i.e., the shock area between two adjacent constant-3 rays or streamlines).

edge shock

Figure 3. Intrinsic coordinates and shock kinematics. The independent variables
are arc length (e) and time (t), while the dependent variables are the normal shock
velocity (D,,) and the shock normal angle (0). The curves/3 = constant are normal

to the shock, and 4, is the angle between the tangent to the edge and normal to the
shock.

For the problems of interest in condensed-phase detonation, the shock is seldom normal to the

explosive boundary. As a result, the coordinate 3 is not a convenient independent variable since

boundary conditions must be applied at the edge. Changing independent variables from (a, 3) to

(t, C), we have

dC Ad3 + Bda (5)

and

dt = , (6)

where the coefficient B describes the change in arc length with time along a constant 3 ray. Under

this transformation, the surface kinematics [i.e., Eq. (2)] takes the form of a one-dimensional

Burgers equation along the shock: B is the wave velocity and D, is the transport term

t + B4, - -D . (7)
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The coefficient B is obtained by requiring that the transformation [Eqs. (5) and (6)] be solvable,

from which it follows that

A, = B,p (8)

From Eqs. (3) and (8) it follows that

B = 0 + Bo(t) (9)

The function Bo(t) is the rate at which shock arc length crosses the = constant ray that

intercepts the edge. It is given by

Bo(t) = Dr, tan( ,) (10)

This intrinsic form of the shock-surface kinematics is fundamental to any shock-tracking

method that seeks to describe the evolution of shocks of arbitrary shape in a uniform manner.

Clearly, Eqs. (7) and (9) simply yield a constraint between D. and r = Obf. However, if a second

algebraic relation between D, and x can be obtained, then this contraint can be converted into a

one-dimensional partial-differential equation for the shock surface. Further, if we then prescribed

the initial shape (40) of the surface, as well as some boundary condition at the intersection of the

shock and the explosive boundary, then Eq. (7) could be solved to get the 2D shock locus at any

subsequent time.

b. Boundary Conditions

For the problems we consider here, we do not need to study the complex flow or the detailed

boundary conditions that apply in the vicinity of the explosive boundary. It will be sufficient to

consider only the condition, if any, that must be applied at the locus generated by the intersection

of the shock and the edge. We consider only an explosive/vacuum interface.

At such an interface, the flow experiences a singularity. In the explosive, the pressure just

behind the detonation shock is near the Chapman-Jouguet (cj) pressure; just outside the explosive,

the pressure is at or near zero. In order for the flow to execute such a transition, a singularity

of Prandtl-Meyer (PM)-type must be embedded in the flow at the intersection of the shock and

the edge. Since locally the flow at this point is quasi-steady, it can only be either a sonic or a

supersonic flow (as seen by an observer riding along the edge/shock intersection locus). We will

discuss the consequences that result from having flows of these two types.

Along the edge/shock locus, the sonic parameter is a function of the normal detonation velocity

along the edge, D"., and the shock interface angle, e. For a polytropic eos, with -y the polytropic

exponent, the expression is

C2IU2 .~~j 1 ( 1 2tan 2 (,) (11)
+12e Y+1 D'ne)

4 5,



where C is the sound speed, I U I is the magnitude of the particle velocity in the edge/shock locus
frame and Dr. is the minimum value of D,, for a one-dimensional detonation.

If the flow is supersonic along the locus, then disturbances from the edge can not propagate
into the detonation reaction zone. The interface moves faster laterally than do acoustic waves. For
this case, no boundary condition is applied, and the interface does not affect the detonation. As the

flow turns subsonic, then D,,e and .e must be adjusted so that the sonic condition, C 2 - I U 12= 0,

is maintained. This condition serves as a boundary condition for the flow.

The following rule summarizes the the edge/shock locus boundary condition: monitor the
sonic parameter on the locus. If C 2- I U 12< 0, the flow is supersonic and no condition is applied.

When the flow is either sonic or subsonic, then D,,e and e must be adjusted to satisfy the

condition C 2 _ I U 12= Q.

c. Reaction-Zone Dynamics

As noted above, Eq. (7) is a one-dimensional partial-differential relation that Dn and 0 must
satisfy if they are to describe a two-dimensional shock. If a second relation between D, and 0 can

be found, we can convert this relation to a partial-differential equation (pde), and in the process
reduce the two-dimensional shock tracking problem to a one-dimensional one. For a number

of cases, we have found such a second relation between D,, and r. = 0, . When it exists, this
relation contains all the necessary reaction-zone dynamics; the consequences of the interaction
of the chemical-heat release with the flow. To find it, we must solve the time-dependent two-
dimensional Euler equations. In order to solve these equations for complex explosive geometries,
we must express them in terms of a natural system of coordinates that simplifies their form. In the
limit that the radius of curvature of the shock is li.rge compared to the reaction-zone length, the
coordinates shown in Figure 2 are particularly convenient. Bertrand curves that are everywhere
parallel to the shock are the constant-;? coordinates; the lines perpendicular to these curves are
the constant-C coordinates. These coordinates are related to the laboratory cartesian frame, by

z 0 -7 cos € (12)

and

r t = t- sino , (13)

where z4 and r are given by Eq. (1). Expressed in these coordinates, the Euler equations are
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mass 4p+ p(*,U -U,,7 + U )+... 0 (14)

7 - momentum U -(16

1p-momentum zU + -1 ,4- D,U +... =0 O6

and
Penergy £E- -jp+...= (17)

The chemical rate law is

rate £A +... = (18)

We have displayed only those terms that are necessary to do the leading order theory in the small

x-limit. In the above, the operator £ is
a a a

'=N+(D9-U) +Bj (19)

p is the density, Uj is the n-component of the particle velocity (at leading order U,, > 0 and

U,,,, < 0), U is the e-particle velocity (UC = 0 at the shock), P is the pressure, A is the degree
of reaction (A = 0 at the shock), R is the chemical rate and E is the specific internal energy. The

above equations, the standard one-dimensional shock conditions, the kinematics [Eq. (7)] and
appropriate initial/boundary conditions completely define the 2D problem that must be solved.

Even in the small-K limit, this is a formidable task.

What we have shown recently is that for certain rate-law forms (i.e., expressions for R), the

important large-scale dynamics is quasi steady.6 We considered relatively long-scale disturbances

to the shock

2 = 0(r) C 1 (20)
f (21)D, = Dj +0 (C2)  ,(21)

and two spatio-temporal regimes:

(1) "fast" dynamics {tI = Et , C1/2 =1/2C

shock deflection ( = /(2) (22)

and

(2) quasi-steady dynamics {t 2 = I 2t, CI = CC

shock deflection 0 = 0(c), or larger (23)

The "fast" scale problem was necessary to treat the early influence of the two-dimensional

initial/boundary data, and to describe the hydrodynamic wavehead that separates the reaction
zone into parts that are either influenced or uninfluenced by the edge. As the flow evolves, the

"fast" scale perturbations become smaller, and the disturbances to the one-dimensional state
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became larger and quasi-steady. This quasi-steady regime is particularly simple; the Euler

equations reduce to the steady nozzle equations [a steady cylindrically-symmetric system of

ordinary-differential equations (ode)]

[(Dn a- UOIyp]+ PKU, =O , (24)

etc.

The only parameters in these equations, besides the fixed constitutive parameters, are D. and

x. That is, the initial/boundary data did not appear in the large-change reaction-zone dynamics.

In some sense then, the dynamics is local and universal. The resulting one-dimensional problem

is simply the detonation "eigenvalue" problem considered by Wood & Kirkwood 7 In this limit,

detonation shock propagation problem decouples from the product expansion region. Therefore

for detonation, no ad hoc approximations are necessary to get a theory for the shock evolution

that is local. At least this is the case for diverging detonation.

The quasi-steady problem defines Dn(r-). With ic specified, Dn is determined by solving an

eigenvalue problem. In addition to yielding Dn(I), this solution also gives the reaction zone end
state as a function of oc. Thus for an important class of problems, the reaction-zone dynamics is

given by D,(ix), and the two-dimensional shock-evolution problem is reduced to a one-dimensional

problem.

Two points are worth noting. First, the Dn(sc) relation only contains limited constitutive

information about the explosive. The constants in this relation are integrals through the reaction

zone of this information. Secondly, Dn(K) is independent of initial/boundary data. Therefore,
when detailed constitutive information about the reaction zone is not known (the typical situation

for condensed phase explosives), Dn(c) can be measured directly via simple steady-state two-

dimensional hydrodynamic experiments. Thus we have a way of using simple experiments to

calibrate the reaction-zone dynamics. In turn, the calibrated Dn(c) relation can be used to

predict the shock evolution in complex explosive geometries.

Direct calculations of D(#c) performed with the simple polytropic eos, show that Dn(pc) is

sensitive to the form of the rate law.9 Calculations were done for two state-independent rates

with different depletion forms; square-root depletion

. 1(25)

and simple depletion

-- (1-A ) (26)

The D,(,c) rule for Eq. (25) is

Dn=l-ar , (27)

while for Eq. (26) we have

Dn = 1 +/ l¢/tn(p) - ax (28)
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The constants a and 03 are not be confused with Whitham's curvilinear coordinates. Compacted

into these two constants is everything that we need to know about the constitutive laws. D'j is

set to one. In the next section, we give a brief tutorial that describes how this theory can be

applied to explosive engineering design problems.

IU. Applications

a. Chapman-Jouquet Wave

The simplest time-dependent problem that can be done is the constant-velocity detonation or

"Huygens" construction for a diverging detonation. For convenience we take D" = 1. Equation (7)

then becomes the simple nonlinear-wave equation for the shock angle (see Figure 3)

Ot + (0 - 4,6)0b = 0 , (29)

where , is the value of (b at the edge (i.e., at - 0). Equation (29) states that (b= constant

along the characteristic lines 0 - (=- - constant, that is

4=k 0  along (, 0 -(b 6 )t= (30)

If we consider a flow where the two-dimensional shock is convergent initially, then the initial angle,

bo, is a decreasing function of the initial arc length, ,. Such a flow looks compressive, in the

sense that the characteristic lines are convergent. After a finite time, some of the characteristics

cross one another and the solution becomes multi valued. Physically, the rule D, -1 does not

apply to a convergent detonation, so we will not consider this case further.

diffraction regiond

difrcto r*onic
+ V[72

line of sight

supersonic

Figure 4. A prototypical diverging detonation problem. The wave is propagated
with D,,, = 1, a "Huygens" construction. Below the dashed line, the wave is free of
boundary effects and expands as a circle. Above the dashed line, the wave shape is
determined by applying the sonic condition along the radius R 3 circular edge.

When the two-dimensional shock is initially divergent, the initial angle is an increasing function

of arc length, and the characteristic lines are rarefaction like. An example of a divergent-wave
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problem that is often encountered in designs is shown in Figure 4. It is a prototypical example
of a diverging detonation that features the diffraction of the detonation (i.e., the "shadow zone"

problem). The left-most vertical line is a symmetry plane; the lower horizontal line and the upper

circular arc are the edges of the explosive. The wave is initially circular with a radius R2. Since the

wave is perpendicular to the horizontal edge, the flow along that edge/shock locus is sonic, and the

edge does not influence the shock evolution. When the expanding wave first reaches the circular

boundary, the flow along the upper edge/shock locus is supersonic. It remains supersonic until

the detonation reaches the point where the dashed line is tangent to the arc. The region above the

dashed line is not in direct line of sight of the initial data; it is a "shadow zone." Diffraction is the

process that allows the wave to spread into this region. The solution in this region is determined

by the boundary data supplied along the circular edge.

In both regions of the problem, the solution takes a simple form. The great advantage of our

formulation over older methods is this simplicity of representation. The calculations shown in

Figure 4 are free of reaction-zone effects. We conclude this section by showing how detonation

shock dynamics can be used to include the important finite size reaction-zone effects for this

example.

b. OSO Wave

We assume that the reaction-zone dynamics is given by Eq. (27)

and introduce the change of variable

(31)

where 0. is the angle that the tangent to the edge makes with the reference direction i,.

Substituting these into the kinematic equation (i.e., Eq. (27)1, yields a "Burgers" equation

-"B = , (32)
-R3 COS (4e) +~ 2

as the propagator for the shock. The independent variables in Eq. (32) are scaled time (t) and

scaled arc length (z). The finite length reaction-zone effects enter this equation as the transport

term on the right-hand side. This is similar to the structure of wave-hierarchy problems that arise

in one-dimensional wave propagation problems in reactive materials.9 The second term on the

left-hand side represents the diffraction effect. Equation (32) is a one-dimensional parabolic pde.

Thus in the quasi-steady limit, the reactivity acts to smooth the shock locus.

Equation (32) was solved numerically for the design problem shown in Figure 4. A mesh was
used with one thousand points along the shock. The computation time was one minute on the

Cray-1 supercomputer. The results of the wave tracking calculation for a set of parameter values

that highlight the finite-length reaction-zone effects are shown in Figure 5.
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I

Figure 5. The DSD calculation of the example considered in Figure 4. The
reaction-zone dynamics rule was D,= 1 - anc, where the magnitude of a~ is
shown. Three calculations are displayed: (---- -)D, - "Huygens."

JuA,=1 - axc circularly expanding wave and ()the

The important parameters in this calculation are (cz/R2), the ratio of the reaction-zone length

parameter to the radius of the booster, and (R2/R 3) the ratio of the booster to the edge radius.

The dashed contours correspond to the standard "Huygens" construction studied in Figure 4.

The dotted contours show the cylindrically expanding finite-length reaction-zone wave without

any edge effect. The solid contours show the complete DSD calculation, including the edge effects.

Although the results shown in the figure speak well for themselves, a few comments are in order.

Even in regions of the flow that are not influenced by the edge, the finite-length reaction-zone

effects cause the detonation to lag behind the "Huygens" wave. Near the lower edge, the complete

DSD calculation is strongly curled back. Along this edge, the phase velocity of the detonation

wave is initially low, but as time passes it builds back to that for a cylindrically expanding wave.

Along the upper surface, no edge effect is observed until the detonation wave passes into the
"shadow zone." After this occurs, the detonation wave is continually undergoing wave diffraction.

Since the phase velocity at the edge quickly reaches a steady value that is well below D,, the

curl back is more pronounced in this region than at the lower edge. The value of this velocity is

a function of the radius of the upper explosive/vacuum interface.

M Summary

We have developed a theory for propagating two-dimensional detonation shocks in complex

explosive assemblies. The three components of our method are:

(1) shock kinematics [Eq. (7)],

(2) boundtry conditions Eq. (11), a and

(3) reaction-zone dynamics [e.g., Eq. (27)1.
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In spirit it is the detonation analog of Whitham's inert shock propagation theory, geometrical

shock dynamics. It is a rationally derived theory that applies when the radius of curvature of

the detonation shock is large compared to the reaction-zone length. A fully nonlinear theory, it
describes the large amplitude changes in the two-dimensional detonation shock that occur over

long times.

The DSD method that we have developed is a powerful tool that can be used to efficiently

model reaction-zone effects in numerical simulations of detonation. Using this method, a model
explosive design calculations was performed with about one minute of supercomputer time. This
is to be compared to the many hours that are required for modest resolution full numerical
simulations of explosive assemblies. In addition to the direct computational benefit, this theory
also increases our understanding of time-dependent two-dimensional detonation. For example,
this theory defines the relationship between the detonation wave phase velocity and the radius of

the explosive edge in the "shadow zone."
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Reactive-Euler Induction Models

J. Bebernes and D. Kassoy
University of Colorado

Boulder, CO 80309

ABSTRACT. A unified formulation for the induction period for all thermal reaction
problems is presented using high activation energy asymptotics. The important parameters in
the nondimensional equations are the ratios of characteristic reaction, acoustic, and conduction
times in the thermally disturbed parcel of a reactive gas of dimension L. In larger systems
transport effects are negligible and the induction period is controlled by reactive gasdynamics
equations. Two of these models are analyzed.

1. INTRODUCTION. The evolution of thermal explosions in gaseous systems depends
on the interaction between chemical heat release, conductive thermal losses, and the effects of
compressibility. The latter factor can accelerate reaction rates in constant volume systems where
compression heating plays a role [1], [2], [7]. In unconfined systems however, the conversion of
some thermal energy to kinetic energy may retard the appearance of thermal runaway. Systems
in which conductive losses are unimportant will inevitably explode, perhaps faster than diffusive
systems. In this sense it is important to be able to predict which physical processes control the
evolution of an exothermic reaction in a specific gaseous system. In this paper, we present the
results of our recent studies which provide a rational basis for deciding the correct induction
model for the given physical system and analyze these models mathematically.

Consider a reactive viscous heat conducting compressible gas in an equilibrium state defined
by the dimensional quantities Po = p(x, 0), p0 = p(x, 0), To = T(x, 0), Yo = y(x, 0), and uo =
u(x, 0) which represent pressure, density, temperature, concentration, and velocity, respectively.

At time t = 0, assume a small initial disturbance is created on a length scale L. Define
x /L as the new position vector. Let f - t= R be the new time scale where tR is a

reference time to be determined later. Nondimensionalize the system variables, letting p = p/po,
A = p/po, P = T/To, 9 = y/yo, and U- = u/(L/tR). Assume a single one-step irreversible
reaction which has a rate law described by Arrhenius kinetics. The complete combustion
system car, then be written in nondimensional form, where the bar notation has been dropped,
as:

pt + V . (pu) = 0

p(u, + u. VU) = 1 (&) 2 Vp+ Pr(t&)puAu + IV(V . u)]

pc (Ti + u VT) = (!)V. (kVT) - (y -1)p(V • u)

+2p [(-vi)Prt2] [D : V ® u - (V. u)2]

+tRBpyexp[-,,]

p(y + u. Vy) = Le( & )V. (pDVy) - tRBpyex(--L)

p = pT

where p = o, D = DIDo, p = c=/cP0  = c /cvk k/ko, and R = K/Ko where
K = k/pcp is the thermal diffusivity, cp and cv are the specific heats. Also, - = cPO/c. 0 is the gas
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parameter, c = RTo/E is the nondimensional inverse of the activation energy, Pr = coo/ko,
the Prandtl number, Le = Do/Ko the Lewis number, co = (-yRTo) 1/2 the initial sound speed,
tA = L/co the acoustic time scale, t = L2 /Ko the conduction time scale and h = hyo/c ,oTo is
the nondimensional heat of reaction.

2. INDUCTION PERIOD MODELS. As in [8], assume that Pr = 0(I), Le = 0(I),
h = 0(1) and that e < 1. Using the method of activation energy asymptotics, we seek simpler
models of the combustion process. In (lc,d), the reaction terms contain an expression of the
form exp(- ' ). For < 1, an induction period theory can be described in terms of the
perturbed variables

( 2= { +cm p= I+eP T= + 0

U = CV y = 1-cc
where we assume that the initial temperature disturbance is 0(c). If 0(E) terms are ignored,
we obtain the induction model for a gaseous system from (1) using (2):

mti-V~v=O

Vt = - (a)2 VP + Pr (L&) [AV + 1V(V . v)It= -- tA t' t3

Ot = tRBhE- lel/Ee8 + -Y (h.) A0 - of - )V V(3) t

+2ty(i- 1)jePr [- (V. v) 2 + ® v + V®)T} V

ct = tRB-le- 1/eG + Le Ac

P=m+0

The induction model (3) contains three time scales tR, tA, and t, which depend on the
particular thermochemical system with the reference time tR yet to be specified. The character
of the induction models depends intimately on the ratios formed from these three time scales.
We will consider initial temperature disturbances on a macroscopic length scale so that tA/tc <c

1. If we assume that the perturbation temperature 0 and the concentration c variations are
caused by the chemical reaction process, then for c small there should be a bala.-,ce of the
accumulation terms Ot and ct in (3) with the reaction terms involving e. It follows that the
reference time can be defined by

tR (4)

which represents the chemical time for a reaction initiated at To multiplied by E. The three time
scales are now completely defined and the reduced induction models depend on their ratios.

The first case to be considered is that for
(5) 0(1)

tA

then the induction momentum, energy, and species equations of (3) can be written as

6 fP +( ) Pr. [Av -4- 'V(V . v)]
(6) Ot = he'° + ayAO - (7 - I).v

ct = e' + LeaAc
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Since we are assuming that the initial disturbances are spatially macroscopic so that tA/tc < 1,

we have from the inductive momentum equation (6a) that P = P(t) to a first approximation.

Combining the mass equation (3a) and the energy equation (6b),

(7) O = h ee -t- aAO --- P'(t)

For a bounded container R2 since the total mass must be conserved, fo p(x, t)dx = vol (Q2) which

implies fo m(x, t)dx = 0 and hence

P(t) v (xt)dx.

We can thus rewrite (7) as

(8) 6t-aAO = bee + 3' - 1 1j-jOt(x,t)dx-Y Vol Ql 10

and impose initial-boundary conditions of the type

{ O(x,O).= Oo(x), x E 12

(9) O(x,t)=0, (x,t)E012X(Ooo)

This model (8)-(9) with the last term representing the effects of spatially homogeneous gas

compression was originally derived by Kassoy and Poland [7] and was analyzed in [1].

If the ratio tRItc = a < 0(1) so that the reaction time is much shorter than the conduction

time, then (3b,c,d) can be written

vt - 1 (tRt,) VP + Prap AV + V(V • v)
7 (tA/tc) 2  + 3

Ot = hee - ( - 1)V . v + a-AO + 27(7 - 1)Prcu tAltc)'
(10)a

[-3v v), + {V E® v + (V® 0Vf1' V

ct = eo + Le -a • Ac.

Because a = o(1), viscous, conductive, and diffusive effects are weak. Three subcases are

of interest, all of which lead to reactive-Euler explosions.

I) For tA < tR < t,, then from (10a) P = P(t) to a first approximation and the energy

equation becomes

O, = hee + - I P'(t)

7 -V
(11)7
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where Ql is a bounded container.

II) For O(tR) = tA < t, to first order the momemtum equation (lOa) becomes

(1 a2

(12) Vt= 1ta2t VP-1 (tA/tc) 2

and (3) reduces to

Ot - Pt = hea

1 a2

(13) vt + 1 VP=0

V .,V + 1 p, = hoe
7 "7

III) For t R < tA < to, (10a) reduces to vt = 0 or v = v(x). This implies t1  inertial
confinement of the heated gas is dominant. Aspects of short time inertial confinement
have been discussed by Clarke et al. [3], Dold [4], and Jackson et al. [5], [6].

3. The First Reactive-Euler Model. For an arbitrary bounded container Q2 C JRN,
the reactive-Euler model (11) can be written as

(14) 1t=6eo + 7-1 1 /f t-Y Vol Ql in z td

with

(15) O(x, 0) = 0o()

assuming Oo(x) is continuous and bounded on f2. By integrating (14) over 12, we see that (14)
is equivalent to

(16) = 6e + e~dx

where .
Vol n1

The IBVP (16)-(15) has a unique nonextendable solution ¢(x,t) on f? x [0, a) where a =
+0c or a < oo with imt-,- sup{O(x, t) : z E Ql} = 00.

The inital value problem

(17) al = 6e a , (x,t) E Q x (0.T)

(18) a(x,O) = o(x), x Efl
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has the explicit solution

(19) a(x, t) = -ln[e-o(x) - t]

which blows up in finite time T = 6-1 exp(-o(x,)) where x, is any point in S- at which
o(x) attains its absolute maximum. Since a(x, t) is a lower solution for (16)-(15), the solution

O(x, t) satisfies
O(x, t) > -1n[e-o(z) - bt]

and hence O(x, t) blows up in finite time a with a < T.

To get more information about O(x, t), consider the implicit representation

(20) O(x,t) = a(x,r(t)) + B(r(t))

where a(x, r) is the solution of (17)-(18) and r(t), B(r) are scalar functions to be determined.
As given in (20), O(x, t) is a solution of (16)-(15) if and only if

(21) T1 = eB( T ), r(0) = 0

(22) B1 = 0 in e a(x,-)dx = injle-0(x) - 6T-]-dx, B(O) = 0

By integrating (22), (21) can be solved by quadrature to get

(23) B(r)= fa(x,r) - o(x))]dx = e fin [- -r] dx

and r satisfies

(24= 7=exp[ / In [eo(z) ( d],r(0)=0

(24 16j e-Oo(z) - 6T I jx rO

which can be solved by quadrature.

From (20), we thus have

Theorem 1. The number o is the blowup time for the solution O(x, t) of (14)-(15) if and only if
r(a) = T is the blowup time for the solution a(x, r) of (17)-(18), and thus a - T - (=e-(T-,))
where x, is any point in fQ at which €O has an absolute maximum.

By considering (20) and (23), we can observe that O(x, t) blows up at those points x,, at
which o(x) has its absolute maximum provided that B(r(a)) < oo. This is true if and only
if fo a(x, r(a))dx < oc which in turn is true provided that fo In[e - 4O(x) - e-Po(z.)]dx > -oo.
Similarly, O(x, t) blows up everywhere in f at a" if and only if B(r(a)) = oo. Thus,

Theorem 2 (a) The solution 4(x,t) of (14)-(15) blows up only at those points X, of Q2 at
which 0O(x) has its absolute maximum if and only if

(25) n ln[e- "(-) - e-0°(=:)]dx > -oo.
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(b) The solution O(x, t) blows up everywhere in fQ at a if and only if

(26) j n[e- O(z ) - e-00( = -00.

The integral in (25) is finite if there is at most a finite number of critical points xm E 11
at which 00 has an absolute maximum and if at each xm qo(x) is strictly concave down and
analytic in a neighborhood of x,m. In this case, blowup occurs only at those X, at which 00
has an absolute maximum. If on the other hand 0o is too flat in a neighborhood of an xm, then
blowup occurs everywhere in fl.

A second method for representing the solution ¢(z, t) of (14)-(15) is to set

(27) $(X t) = O(z, t) -'3 j O(x, t)dx

Then 4 satisfies

(28) t = aFte

with

(29) '(X, 0) = o(x) -3 jn o(x)dx

where

(30) Ft = e f , F(o) = 0.

By integrating (28) and using (30), we find that O(x, t) can be expressed as

(31) O(x, t) =- In-dy + In-
VolQ 1 0 GC

where G(z,t) = ke - o(x) - aF(t), k = et0f Oo(y)dP. Note then that the blowup time a for € is

given from (31) by F(a) = k,-o(m)

Since Po(t) =-jj f0 (¢(x,t) - 4o(x))dx, we have from (31)

In dy - Oo(y)dy(32) vol(t) t)

From (31) and (32), we have

(33) O(x, t) = Co(x) + ?- Po(t) - In(1 - 6e-00(r) F(t))

from which we can conclude that the temperature evolves from the initial value 0(z) through
a purely time dependent term rplated to the homogeneous pressure increase and a logarithmic
evolution term with spatial dependence which has a shape-preserving property.
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4. The Second Reactive-Euler Model. In on. spatial dimension, the reactive-Euler
model (13) can be written as

Ot - - 1Pt = be€7
1( a' 2

(34) vt+ I tA/t, =0, (x,t) E X(0, x0)

v? + 1Pt = 6eo
7

with

(35) ¢(x,O) = 1o(x), P(X,O) = Po(x), v'(x,O)= vo(x)

continuous bounded functions on R. Setting a 2-1, b = 6, c = ( then for
w = - aP, (34) becomes

Wt " bew+aP

(36) vi + cP, =0

A +1 V' bew+aP

with

(37) w(x,O) = Co(x)- aPo(x), v'(x,O) = vo(x), P(x,O) = Po(x)

Using the change of coordinate matrix

T= I(d)_1/2 (Cd11/2) and setting T- 1 (V)

we have

wt = bew+u(P- )

(38) Vt - At, = - ebAW+ "(P - )

2

Pt + AP. = 2eW+Aw -O)

where u = (cd12 and A = ( )1/2. Set u = juP, v = -pfy, A = b = 6, B = 6, then

{t  = Aew+u+v

(39) ut + Au. = Bew+u+v

vt - Av. = Bew+u+v

with

w(xO) = Oo(x) - a'Po(x)= zfv(x)

(40) u(x,0) = 1[(cd) 1 /2 VO(X) + Po(X)J = 1(X)

v(x,0) = -E[(cd)- 1 /2 vo(x) = Po(x)] V(X).
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Thus, we have shown that the reactive-Euler induction problem (34)-(35) is equivalent to the
more symmetric problem (39)-(40). Problem (39)-(40) is closely related to the low frequency-
mean field equations considered by Majda and Rosales in [10] and the disturbance equations
considered by Jackson, Kapila, and Stewart in [6].

Let c+  = max[A,B], c- = min[A,B], m +  = max{ft(x),ii(z),iD(x)}, m- =
min { t(x), U(z), V(x)} and consider

Z1 = C:ke3z

(41) 
z(0) =m+.

By comparison with (39)-(40)

3M ]-1/3 tv(X 7t)+]1/(42) ln[e -a - 3c-t] 1 / 3  u(x,t) 1n[e - a" + - 3c~t] - 1/3

v(Xt)

Hence, every solution (w, u, v) of (39)-(40) blows up in finite time with
1 1

(43) 1cem < T < 1cem

(4)3c+e 3 -+ - -3c-e 3 --

Note that ¢(x, t) = w(x, t) + u(x, t) + v(x, t). Assume henceforth that A + 2B = 1 and that
O(X, t) blows up at Xm E BR at time T. We would like to describe how the blowup singularity
evolves at (Xm, T). Make the backward similarity change of variables

X -

(44) r =-ln(T- t), 771= (T- t/
-(T t)1/2

with

W = w + Aln(T - t)

(4)U u + Bln(T- t)

V v + Bln(T- t)

S =W + U + V = + In(T- t),

then

w + Rw, = A(es 1)

J U. + 1U,7 + Ae-r/ U-, B(eS -1)

V. + RVI, - :-'2v,,= B(- s -1)
s1 + 2 s, + Ae-'/-(U,, - V,) = es - I

To describe how the blowup singularity evolves would require analyzing the behavior of
solutions of (46) as 'r becomes infinite. To get an idea of what to expect or hope for, consider
the easier problem when there is no drift, i.e., A = 0. The temperature 0 blows up at

Tb =
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where x, is an absolute maximum point for 00. Then we know exactly when and where blowup
occurs. We can also describe precisely how the singularity evolves. Let z + 4 + In(T - t), then
z is the solution of

( z.+ Iz, = ez1

z(77, -InT) = zo(77) -o(77T + xm) + InT

which can be explicitly solved to give

(48) z(77, r) = -In[1 - e'(1 - e 007-" A

Thus,

lim,-o..z(ri, r) = -In [1 - zg(0)ez0(°) 7L]

=-in 1 - -r} ] =,Z(r,)

From this, we conclude that for A = 0

O(x, t) + ln[(T - t) _ 1l(x - Xm) 21 __-, 0

uniformly for (X - Xm) 2 < qi(T - t) as t --+ T- which gives a description of how the blowup
evolves. We expect a similar type behavior for (39)-(40). This has been confirmed formally by
[6] and [4].
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NONBLOWUPS, PERIODICITIES, VORTEX SHREDDINGS
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COMBUSTION AND HYDRODYNAMIC FLOWS:
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ABSTRACT

We report here on some of my recent work with my Ph.D. students (the co-listed authors)

on current bifurcation problems in Combustion Theory, Fluid Flow, and Aerodynamics. Our

approach has been both computational and analytical. Although much work remains to be

done, the results presented here are new and the sharpest to date.

1. Counting the Number of Solutions in Reactive Flow Problems.

The nonlinear elliptic partial differential equation

U

-Au = Xe I+(U (1.1)

has been of considerable interest in Combustion Theory. In it, u represents a temperature in a

self-heating body fl near explosion, X represents the lump exothermicity of the substance under

consideration, and c-1 is the activation energy. Equation (1.1) may possess anywhere from zero

'Current address: Dept. of Mathematics, Univ. of Colorado, Boulder, CO 80309-0426.
2Current address: NCAR, P.O. Box 3000, Boulder, CO 80307.
3Current address: Dept. of Mathematics, Kansas State Univ., Manhattan, KS 66506.
4Current address: CCAR, Univ. of Colorado, Boulder, CO 80309-0-131.
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to an infinite number of solutions, depending on the values of the parameters X and e under

consideration. The determination of the exact number of solutions is of importance to the asso-

ciated reactive flow problems.

Although physically a number of boundary conditions are relevant, here we shall restrict

attention to the (usual) case of homogeneous Dirichlet boundary conditions u = 0 on the boun-

dary 911. Also we will consider here only the so-called type A geometries (spherical). The par-

ticular case of n = 3 dimensions is physically the most important, and the results given here

will be for that case. The physical interest is in the case when all of u, X, and f are nonnega-

tive.

The results to be presented here for E > 0 will be published in more detail in Ash, Eaton,

and Gustafson [3]. For c = 0 the equation (1.1) has a long, varied, and distinguished history,

found in the literature under the names Liouville, Poincare, Bratu, Frank-Kamenetskii, Gelfand,

Chandrasekhar, among others. See Gustafson [21 for a full historical account, including an

exposition of Bratu's original work on the equation. In [2] many references to other recent work

on this problem rlij be found, and we will not repcat them here. For our initial numerical

work for the calculation of critical bifurcation points for equation (1.1) for c > 0, see Eaton and

Gustafson, [1].

1.1 No Blow Up.

Qualitatively, the case e = 0 (which we call the Bratu approximation) and the case

c > 0 (which we call the full Arrhenius equation) are fundamentally different. For E = 0 there

exists a critical X. beyond which nonsingular solutions do not exist. On the other hand, for

E > 0, solutions always exist for all positive X. One way to view this situation is that the act

of approximation (taking E = 0, i.e., taking activation energy cr = E-1 to be infinite) introduces
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a singularity into the problem. From this view, the singularity is artificial and should not be

confused with solution explosion.

On the other hand, our recent numerical and analytical results [3] show, for very small e,

a pronounced tendency to a 6-function like nearly singular solution profile centered on a point

in f2 (the center, for spherical geometries) at which very high temperature is concentrated.

Remarkably, the XS at which this occurs is near the next to the last turning point of the bifur-

cation diagram, rather than near the first turning point as one may have imagined from an

= 0 analysis.

1.2 The Last Turning Point.

Precise calculation of the last turning points of the bifurcation diagrams for equation (1.1)

is difficult, both numerically and analytically, for small f > 0.

Figure 1 here, taken from [13, shows the exact bifurcation diagram for (1.1) for E =0.04

(i.e., activation energy, a = 25). The 6 turning points are so labelled on the curve. To compute

this critical branching curve it is more convenient, following our approach of [1], to plot the

bifurcation parameter vertically, rather than horizontally, as is usually done.

The solution u was found to be closest to a 6-function profile near the 5t h turning point.

At the 61h (and last) turning point, which is in the "noise level" along the hori7nntal axis in Fig-

ure 1, the solution profile snaps back to one very close to that of solutions along the leftmost

first (stable) branch. Thereafter, although it cannot be seen from Figure 1, the final curve

(stable) branch slowly rises and eventually increases to provide solutions for all X.

The numerical scheme [1,2,3] that provides these results is called [2] HOC (Higher Order

Calculus) inasmuch as it involves further implicit differentiation of the equations. This scheme

provides an enlarged system, in some ways resembling the so-called inflation methods. In [31 we
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also employ a :r scaling trick which greatly increases the efficiency (shooting with only one itera-

tion) over that of the original scheme in [1].

Our latest computations [31 have resolved the E--0.01 case (unresolved in [21). In this

case there are 34 turning points, the last occurring at X - 10- 38. This means that up to 35

solutions may occur for certain X. See [3].

1.3 A Comparison Theorem.

Analytical lower bounds for the last turning point have been derived [31 using comparison

techniques. Their proofs depend on and are motivated by the numerical procedures of the HOC

scheme of L1,2 1. One of them is the following:

dX ( 0 whenever n > p2 (Norm U)d (Norm u)

where

1 -2e

p2 (Norm u) = X (Norm U)'4E2 e (

For the case f = 0.04 this analytical bound estimates a lower bound for the last turning

point to be: Xb = 1.57 X 10- 7. The numerically computed value of X at the last turning point

(see Table 2) was X = 2.-1 X 10-7 . This is a very favorable comparison, and indicates the gen-

eral comparison method we have used is a good one.

It would be very interesting and valuable to further investigate the general use of these

numerical and analytical IlOC methods on other reactive flow problems and in particular to

study the implications of these results to CombutLion Theory. For example, the presence of two

(low and high temperature) stable branches for X greater than a (very small) last turning

point indicates an interpretation of explosion as a solution jump rather than singularity. Also

there are interesting basic stiffness questions arising in the computations that need more under-
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standing.

2. Vortex Dynamics in Cavity Flows

In Gustafson and Hialasi [4] and 151 an in-depth study of lid driven cavity flow was carried

out. The emphasis was on following the full dynamics of the unsteady (time-dependent) flow

from an impulsive start. The full (vicuL9, incompressible) two-dimensional Navier-Stokes equa-

tions

1t Au + (u.V)u = -Vp

(2.1)

Vu =0

were simulated under a NLUC (marker and cell) primitive variable (velocity v and pressure p)

discretization in which considerable care was given to maintaining correct incompressibility and

pressure conditions near the boundary 09-1 of the cavity f0.

See [41 for a full accounting of previous work on this basic fluids problem, a fundamental

geometry for the study of the effect of domain closure and corners on evolving fluid dynamics.

In [51 the tolerance to varying grid size at Re = 2000 was determined and then a single long

run of 360,000 time steps was carried out in a depth A = 2 cavity for the relatively high Rey-

nolds number Re = 10,000.

From [5] it appeared that we had obtained a periodic solution, and hence had gone past a

H-opf bifurcation at some Reynolds number between Re = 2000, where the solution became

steady, and Re = 10,000, where it did not.

However, in recently writing the review chapter, Gustafson [6;, I looked more closely at the

results of the long run of [5[ and came away with a different conclusion: tentatively, I will
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assert that I found Feigenbaum's constant 6 = 4.669201 in the final oscillations. More details

will be given in [61 but I will explain the finding briefly, in 2.3 below.

2.1 Computational Reliability

It is rather astounding, to those of us who started on a Royal McBee LGP-30 Machine

(drum memory, 4096 words, electronic tubes failing all the time - but when used as an excuse for

a coding error, tube failure was seldom the case!), that we may now routinely expect to do a

Poisson Solver on a 40 by 80 rectangular grid 360,000 times without an interruption or logical

error in the computation. Such is, however, the case these days.

Given this electronic reliability, we chose to use an extremely stable method (,IAC) in the

natural variables p and v. Our goal was to avoid numerical speed up tricks or stabilizing

devices (no upwinding, etc.) to best follow what would be a representation of the physical flow.

Physical experiments, by the way, to date cannot very well track secondary vortices lower in

the cavity because the intensities fall off too quickly, e.g., by 10- 4 in a vortex cascade in a

corner.

2.2 Periodicities

After 180,000 time steps the flow at Re = 10,000 had settled into an oscillating pattern

which clearly was not going to converge to a steady final solution. See the flow histories of [5]

and Figure 3 here. The latter figure, from [6[, shows final patterns of the flow after 330,000

time steps. We produced flow portraits only at every 1000 time steps, i.e., at each dimensionless

time t = 1 second, having used At = 0.001. In these flow portraits, the velocity values have

been normalized, namely, divided by their magnitude. Thus the portraits are qualitative:

quantitative magnitudes are too small to show as more than points.
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The "period" of the flow, e.g., see Figure 7 of [5], had appeared to be somewhere between 4

and 5 seconds.

2.3 Feigenbaum Frequency

As mentioned above, looking more closely at the final oscillation of the run of [5), I found

[61 that the "period" of this oscillation is extremely close to Feigenbaum's universal constant

6 2 4.669201. To conclude this I took the portraits at 14 second intervals, as shown in Figure

3 here, and noted that 36 14.007, already knowing the oscillation pattern to be repeating

itself at a frequency somewhere between 4 and 5 seconds.

I have been mentioning this result at conferences since February 1988. The feedback has

been interesting. It is of course objectionable that 6 occurs here (it (approximately) definitely

occurs, coincidence or not) as a "period", whereas one expects it to occur in a parameter ratio

of increasing Reynolds number differences, for example.

Let me note however that there is a steady local Reynolds number buildup in the region of

the left wall oscillation. Moreover I have found vestiges of at least one earlier period doubling

in that critical flow region. And time here is really a dimensionless iteration parameter of a

highly coupled quadratic dynamical system, as in the period doubling theory of Feigenbaum.

Finally, I have linked the Feigenbaum frequency to the actual shedding of vortices in the

high shear interface region. This shedding, of alternatively signed tertiary vortices, is shown in

Figure 4, taken from [6]. This shedding started earlier in the flow (t -' 92) but could not main-

tain itself until later (after period doubling). Looking carefully at the quantitative velocity out-

put shows a small chaotic fluctuation of trajectories about the (normalized) qualitative flow

portraits, e.g., in an attractor like fashion.
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It would be very interesting and valuable to have the resources to run this flow under

different grid sizes and at aspect ratios and Reynolds numbers deviating slightly from A = 2

and Re = 10,000. A full parametric study would be of great value as the bifurcation diagram

for cavity flow is not at all known.

The computational determination of valid flow conclusions for unsteady flows (e.g., how

does one really conclude periodicity of a flow) will be a new chapter in numerical analysis.

3. Vortex Interactions in Aerodynamic Flows

We have begun a program to better understand the physically visualized vortex dynamics

of flows over airfoils, and to investigate new numerical methods for their simulation. Initial

results have been published in Gustafson and Leben [7,8,9].

3.1 Robust Multigrid Vortex Resolution

In [7,8] we have developed a numerical scheme which has successfully resolved up to 25 of

the vortex cascade descending into a corner. This goes beyond the physics (the 25th small

corner vortex has intensity 10- 111) and is based upon a linear steady (Stokes) fluid model. No

one really knows how many corner subvortices really persist in a nonlinear Navier-Stokes corner

flow. But our method has proven its robustness.

3.2 Orthogonal Grid Generation

In [8,9 we have implemented a multigrid method to efficiently generate orthogonal grids

around an airfoil, in body fitted coordinates. The equations describing the mapping are
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(fx + (f-X, 7)7 = 0

(3.1)

(fyJ& + (fy, = 0

namely, two covariant Dirichlet problems are iteratively solved until a sufficient degree of

orthogonality is obtained. The function f is a distortion function which must be interpolated

into the domain. For details see [8,9].

Our method of grid generation in principle extends to 3 dimensions and it would be very

interesting to examine its analytical and computational properties in that case, as well as its

implementation to flow problems.

3.3 Vortex Shreddings

We have successfully simulated the full Navier-Stokes flow over an airfoil, in agreement

with physical experiment. See [8,9] and Figure 5 here.

At moderate Reynolds numbers and constant acceleration we have been able to give the

first demonstration the enhancement of lift by vortex shreddings. These simulations also agree

with physical visualizations.

An example of vortex shredding is given in Figure 6 taken from [9]. Splitting of the pri-

mary positive lift vortex by the trailing edge vortex takes place in frame 20, causing a decrease

in lift. Then shredding of the forward secondary negative lift vortex by the fragment of the pri-

mary vortex returning to the wing restores lift, thereby preventing stall under acceleration.

More details may be found in [9].

It would be very interesting and valuable to have the resources to do a full unsteady flow

analysis using locally refined grids and the multigrid FAS feature to better understand the fun-

damentals of these vortex phenomena as they occur in aerodynamics.
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Figure 1. Bifurcation diagram and turning points for the full Arrhenius equation in 3 dimen-
sions, for E = 0.01.

Number of Turning Solution Exothermicity
Unstable Modes Points n = max u A

0 1 1.77223040 3.4828675
1 2 12.776063 1.0772377
2 3 35.563049 2.3736164
3 4 59.911631 2.203S626
2 5 97.240239 3.3059654
1 6 1054.2805 2.4383822 x10 - "

Table 2. Exact values of the turning points for f = 0.01.
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Figure 6(a). Constantly Accelerating Flow from Rest
R..= 500, a = 400
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Figure 6(b). Constantly Accelerating Flow from Rest

R,.= 500, a=400
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An Integrated Approach for Scientific Computing

An Extended Abstract

PAUL S. WANG*
Department of Mathematical Sciences

Kent State University
Kent, Ohio 44242

1. Introduction. Modern workstations make it feasible to investigate such inte-
grated computing environments. A workstation-based integrated scientific system
should be the tool of choice for contemporary scientists and engineers. It is rela-
tively simple to bring numeric, symbolic and graphics computing capabilities to a
single computing system. What is more difficult is to have a truly integrated system
where these techniques work together with very little barrier between them. More
importantly, these three techniques should reinforce one another so that the whole
is bigger than the sum of the parts. We briefly present some recent developments
in this direction:

1. Symbolic derivation of numerical code for finite element analysis

2. Automatic numeric code generation based on derived formulas

3. Generating programs for parallel computers

4. Interactive graphing of curves and surfaces for mathematical formulas

5. Graphical user interface for mathematical systems

6. Software packages developed

This extended abstract is partially based on an earlier paper which appeared
in the Proceedings of Compcon88, the 33rd IEEE Computer Society International
Conference, Cathedral Hill Hotel, San Francisco, California, Feb. 29 - Mar. 4, 1988.

2. Symbolic Derivation for Finite Element Code. We have implemented a
prototype software system to automate the derivation of formulas in finite element
analysis and the generation of programs for the numerical calculation of these for-
mulas. The generated code can be used with existing numerical packages. This is
a general approach with good potential for many other scientific and engineering
problems.

2.1. FINGER and GENTRAN.
From input provided by the user, either interactively or in a file, FINGER [8] will

derive finite element characteristic arrays and gc;icrate FORTRAN code based on
the derived formulas. The initial system handles the isoparametric element family.
Element types include 2-D, 3-D, and shell elements in linear and nonlinear cases.
The system allows easy extension to other finite element formulations.

*Work reported herein has been supported in part by the National Science Foundation under Grant CCR-8714836
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3. GENTRAN. Actual generation of FORTRAN code from symbolic expressions
or constructs is performed by the GENTRAN package [2,7] that we developed. It
is a general purpose FORTRAN code generator/translator. It has the capability of
generating control-flow constructs and complete subroutines and functions. Large
expressions can be segmented into subexpressions of manageable size. Code format-
ting routines enable reasonable output formatting of the generated code. Routines
are provided to facilitate the interleaving of code generation and other computa-
tions. Therefore, bits and pieces of code can be generated at different times and
combined to form larger pieces. At the present time, work is going on to construct
a LEX/YACC based code translator which will be much faster than GENTRAN
and which can also produce vectorized f77 code.

4. Techniques for Generating Efficient Code. Our experiences in automatic
code derivation and generation indicate that code generated naively will be volumi-
nous and inefficient. We have used several techniques to generate better FORTRAN
rode.

(a) Automatic intermediate expression labeling.

(b) Using symmetry for generating functions and calls.

(c) Common subexpression identification.

(d) Using generated subroutines.

5. Generating Code for Parallel Processors. Carrying the automatic code
derivation and generation idea one step further, current research at Kent State
University addresses the derivation and generation of code for advanced parallel
computers. As mentioned before, automatic generation of parallel code not only
reduces manual mathematical manipulations but also helps engineers and scientists
who are not computer experts take advantage of advanced parallel computers.

We have access to the Carnegie Mellon University (CMU) Warp systolic array
computer [1] through dialout lines. We are able to make substantial progress ex-
perimentally with the Warp computer because Warp provides a good programming
environment.

W2 is a simple Pascal-like high-level programming language [3] for the Warp
array. W2 hides the low-level details of the Warp computer and provides a high-
level abstraction for the Warp programmer. Using W2. a programnmer can specify
programs for each Warp cell and define inter-cell communications. It is the pro-
grammer's responsibility to devise an algorithm and map that algorithm to cell
programs which can be executed in parallel efficiently. This is not a trivial task and
is often central to finding a Warp solution to a problem. W2 is a convenient tool
to program that solution.

6. P-FINGER AND GENW2. To generate key parts of the finite element
computation into parallel code we have constructed the P-FINGER system [4". P-
FINGER runs under VAXIMA and is an enhanced version of FINGER to derive
parallel code. Along with P-FINGER. a code generator package. GENW2 '6]. has
been developed by Trevor Tan at Kent State University. GENW2 is a parallel code
generator written in Franz LISP and runs under the VAXIMA symbolic computa-
tion system. Given high-level algorithm specifications and expressions in symbolic
representations. GENW2 outputs W2 code for the Warp systolic array compiiter.
GENW2 can be used from VAXIMA top-level or invoked directly from the lisp
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level. Generated routines may involve declarations, I/O statements, flow control,
data distribution, subroutines, functions and macros. A code template can be spec-
ified by the user to render the output code in a designated format. The GENW2
package frees us from the syntax details of the target parallel language, W2, so we
can concentrate on devising the parallel algorithms that will map important parts
of finite element analysis on the Warp. The GENW2 package can also be used
independently.

7. Graphics Display for Scientific Computation. Graphics display will
play an important role in an integrated scientific computing environment. In such
an environment graphics display should be an integral part of the user interface.
A graphics package [9] for this purpose has been implemented to run under MAC-
SYMA. This package features a highly interactive environment, a multiple window
format and extensive help facilities. The capabilities include full color graphics,
efficient hidden line removal, solid shading and cubic spline and least square curve
fitting.

The package can display curves and surfaces given in either implicit or parametric
form. The equations can be results of prior symbolic derivations. For plots involv-
ing many points, Fortran code is automatically generated to compute the function
values more efficiently. The user has control over color, viewpoint, rotation, hidden
line treatment etc. of plots. The control is provided alternatively through interac-
tive menus or commands typed on the key-board. Plots can be superimposed using
different colors.

The curve fitting capability allows the user to enter data points which are plotted
as discreet points on the graphics display. A least square interpolation functions
can then be calculated and the curve defined overlays the points. The equation for
the fitted curve can be returned for further manipulation.

8. The GI/S Graphical User Interface. The user interface for a scientific
computing system which combines numeric, symbolic and graphical capabilities
should also be of advanced design which not only provides functionalities to control
computations but is easy to learn and use. Recent studies in this direction resulted
in the MathScribe [5] and the GI/S [10] user interface systems for REDUCE and
MACSYMA respectively. These represent the initial steps in an investigation into
suitable user interface designs for complicated scientific computing systems.

The trend is to take full advantage of the capabilities of a modern workstation.
Multiple windows are provided to allow concurrent control of multiple activities. In
GI/S, a mouse is used as a pointing device to select windows and expressions, to pop
up menus and to issue cmmands. High resolution graphics is used for mathemati-
cal symbols, fonts and interactive plotting of points, curves and surfaces. An emacs
style editor is active whenever and wherever user input is typed. Mouse-assisted
.'cut and paste " allows the user to rearrange text and graphics between windows.
Mathematical expressions are displayed in a textbook-like two dimensional format.
Using the mouse, subexpressions of mathematical formulas can be selected interac-
tively. User specified operations can be applied to selected subexpressions.

8.1. GI/S windows
In the GI/S user interface system, two standard windows are displayed on the

screen when the system begins. These are the input and display windows. The
input window provides a command-line editor and a history mechanism to recall
past commands. Results of computations are displayed in two dimensional form in
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the display window. Other windows may be opened by the user as needed. There
are several different types of windows:

1. Display window

2. Scratch window

3. Graphics window, and

4. Help window.

Windows are named. Each can be relocated and re-sized interactively by the user.
A corner of each output window contains status information on how the compu-
tation controlled by the window is progressing. The mouse buttons are used for
selection and for appropriate pop-up menus.

8.2 Mouse apply
One way to exploit the capability of the mouse in a scientific system is to use

it to enhance mathematical operations. One such operation is singling out a part
of a large expression and apply a user specified function to it with the result of
the function replacing the original part in place. Let us call this operation "mouse
apply".

Studies of user interface design of complicated scientific systems have just be-
gun. Standards, protocols and conventions are still largely lacking. However, one
can be sure that advances will be made and users will benefit much from the next
generation interface systems.

9. Conclusions. Modern workstations offer a practical way to integrate nu-
meric, symbolic and graphics computing systems into one comprehensive scientific
computing environment. Operations such as symbolic formula derivation, auto-
matic numerical program generation, derivation of parallel code, graphics display
of data points and mathematical equations, and advanced user interfaces can work
together and offer many desirable features and capabilities that are otherwise un-
available. Evolution of such integrated environment will one day provide a powerful
tool for scientists and engineers for substantially increased productivity.

504



REFERENCES

1. Annaratone, M., Arnould, E., Gross, T., Kung, H. T., Lam, M. S., Menzil-
cioglu, 0., and Webb, J. A., "The Warp Machine: Architecture, Implementa-
tion and Performance", IEEE Trans. on Computers, Dec. 1987, vol. C-36, no.
12, pp. 1523-1538.

2. GATES, B. L., "GENTRAN: An Automatic Code Generation Facility for RE-
DUCE",

3. PAVELLE, R. AND VANG, P. S., "MACSYMA from F to G", Journal of
Symbolic Computation, vol. 1, 1985, pp. 69-100, Academic Press.

4. SHARMA, N. AND WANG, P. S., "Symbolic Derivation and Automatic Gen-
eration of Parallel Routines for Finite Element Analysis", to appear in Pro-
ceedings, International Symposium on Symbolic and Algebraic Computation
(ISSAC-88), Roma, Italy, July 4-8, 1988.

5. SMITH, C. J., SOIFFER, N., "MathScribe: A User Interface for Computer Al-
gebra Systems," Proceedings, the 1986 Symposium on Symbolic and Algebraic
Computation, 1986, pp. 7-12.

6. TAN T. AND VANG, P. S., "Automatic Generation of Parallel Code for the
Warp Computer," to appear in Proceedings, International Workshop on Com-
puter Algebra and Parallelism, Grenoble, France, June 29 - July 1, 1988.

7. VANG, P. S. AND GATES B., "A LISP-based RATFOR Code Generator",
Proceedings, the Third MACSYMA Users Conference, August, 1984, pp. 319-
329.

8. WANG, P. S., "FINGER: A Symbolic System for Automatic Generation of
Numerical Programs in Finite Element Analysis", Journal of Symbolic Com-
putation, vol. 2, 1986, pp. 305-316, Academic Press.

9. YOUNG D. A. AND WANG, P. S., "An Improved Plotting Package for VAX-
IMA". abstract, presented at ACM EUROCAL'85 Conference, April 1-3 1985.,
Linz Austria, Lecture Notes in Computer Science No. 204 (1985), Springer-
Verlag, pp. 431-432.

10. YOUNG D. A. AND 'WANG, P. S., "GI/S: A Graphical User Interface For
Symbolic Computation Systems", Journal of Symbolic Computation, Academic
Press, Jan. 1988., pp. 365-380.

505 /



A Study of Symbolic Processing and Computational Aspects in Helicopter Dynamics*

S Ravichandran and G. Gaonkar J. Nagabhushanam T.S.R. Reddy
Florida Atlantic University Indian Institue of Science University of Toledo
Boca Raton, Florida Bangalore, India Toledo, Ohio

ABSTRACT

Even research models of helicopter dynamics often lead to a large number of
equations of motions with periodic coefficients; and Floquet theory is a widely
used mathematical tool for dynamic analysis. Presently, three types of
approaches are used in generating the equations of motions. These are: 1)
General purpose symbolic processors such as REDUCE and MACSYMA, 2) a special pur-
pose symbolic processor DEHIM ---Dynamic Equations for Helicopter Interpretive
Models---, and 3) completely numerical schemes. Comparative aspects of the first
two purely algebraic approaches are studied by applying REDUCE and DEHIM to the
same set of problems. These problems range from a linear model with one degree of
freedom to a mildly nonlinear multi-bladed rotor model with several degrees of
freedom. Further, computational issues in applying Floquet theory are also
studied, which refer to: 1) the equilibrium solution for periodic forced response,
2) the transition matrix for perturbations about that response and 3) a small
number of eigenvalues and eigenvectors of the unsymmetric transition matrix. That
study shows the following: 1) Compared to REDUCE, DEHIM is far more portable and
economical, but it is also less user-friendly, particularly during learning pha-
ses. 2) The problems of finding the periodic response and eigenvalues are well
conditioned.

1. INTRODUCTION

Symbolic processing or computer algebra is a highly desirable adjunct of
rotorcraft dynamics research [I-7]. For illustration, we select one research area
... aeroelastic stability in forward flight. Here, the complexity and extent of
the process of deriving the equations of motions merit special mention. We
broadly mention a few stages of that process, by passing details such as model
description, ordering scheme, perturbation about a periodic orbit etc. For
example, these stages include the following: 1) partial differential equations of
inplane or lead-lag bending, out-of-plane or flap bending and elastic torsion, 2)
rotor-support system or fuselage equations, 3) flow-field equations such as of
downwash dynamics, 4) Galerkin-type discretization to generate ordinary differen-
tial equations with periodic coefficients, and 5) transformation of a complete set
of equations in rotating or non-rotating coordinates, and state variable represen-
tation. Generally blade elasticity, blade-to-blade coupling and coupling between
the rotor and the rotor-support system introduce a large number of state
variables. In fact, use of nearly 50 state variables has become rather common
even in simplified models of basic research (interpretive models). The
corresponding picture in a stochastic environment e.g. rotorcraft in turbulence,
is far more demanding. If we apply the second moment stability criterion, we need
to generate "state equations" of order N(N+1)/2, [8-10]. In other words, a 40 th-
order system requires 820 state equations.

*Supported by the U.S. Army Research Office.
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Experience both with manual algebra and with computer algebra shows that
computer algebra is the viable alternative to manual algebra. This viability is
expected. After all, computer algebra is as much intrinsic to computers as is
numerical computation, and the required expertise is comparable to that required
in generating numerical results. In fact, once the user is used to a particular
approach or system, computer algebra becomes rather routine, much more than
numerical computation. Presently, three types of approaches are used: 1)
general purpose or catholic symbolic processors such as MACSYMA and REDUCE [4,7],
2) a special purpose symbolic processor DEHIM ---Dynamic Equations for Helicopter
Interpretive Models [1-3] and 3) completely numerical schemes [5,6], such as
AGEM---Automatic Generation of Equations of Motions [6]. This study is restricted
to the first two purely algebraic approaches.

With this as background, we now come to the two main objectives of this
paper. The first one is to compare DEHIM with a general purpose processor, say
REDUCE. The comparison is based on our experience in solving the same set of
helicopter dynamics problems by the two approaches under reasonably identical con-
ditions. Still a note of caution is in order. Such a comparison involves umpteen
variables many of which defy quantification and it is subjective to a degree, and
it may well be a boundless exercise. Moreover a multipurpose processor is vir-
tually a finished product, provides numerous services and is less amenable to evo-
lution. But a special purpose processor provides services restricted to a
specialized area, it has modular structure and is constantly evolving. In spite
of many gaps and constraints, the comparison of DEHIM with REDUCE should promote
further research on the role and viability of special purpose processors in spe-
cialized areas, a research area in which only the barest beginnings have been
made. Further, that comparison should contribute to finding better and improved
means of comparing one approach with the other, including a completely numerical
approach. The second objective is to broadly outline the computational aspects of
the Floquet theory, particularly for high order (N>100) systems. We begin with
this second objective.

2. APPLICATIONS OF FLOQUET THEORY

Rotorcraft models lead to mildly nonlinear ordinary differential equations,
often with a large number of dominant periodic coefficients. The term "mildly
nonlinear" implies that nonlinearity is important, but it does not dominate the
solution. Thus, a perturbed linear solution about a periodic orbit is justified.
Application of Floquet theory involves computation of three items [10]: 1) the
periodic forced response, 2) the transition matrix for perturbations about that
response and 3) a small number of eigenvalues and eigenvectors of the Floquet
transition matrix, which is the state transition matrix at the end of one period.
However, for many problems, we have to simultaneously and iteratively compute
control settings along with response to obtain a periodic and desired system
response, what is referred to as vehicle trim. In this paper the role of control
settings is not studied. For completeness, we present a brief background of these
three items, and then present a set of numerical coordinates, which provide a
means of objectively describing the computational issues on the application of
Floquet theory. We conclude this section with a discussion of numerical results
pertaining to those coordinates.
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2.1 Equilibrium State

The transient and forced responses are connected in a direct way in that the
transient dynamics (about a periodic equilibrium) depend on that equilibrium solu-
tion. The Floquet transition matrix provides this connection. To elaborate, we
introduce the Nxl state vector x(t) and the T-periodic NxN state matrix A(t).
For the Nxl input vector G(t), the linear forced-response system can be expressed
as

[x(t)j = [A(t)] fx(t)j + IG(t)1 (1)

Now, the NxN state transition matrix 0(t) is given by

[i(t)] = EA(t)] [§(t)], 0(0) = I, 0 : t s T (2)

To compute the initial state to give periodicity of the steady state,

{x(O)1 = {x(T)], we first compute xE(T) which is the nonperiodic solution of

the complete equation (1) at t = T for the zero initial state. Then we have

{x(0)j = [I - §(T)] -1 {xE(T)l (3a)

Thus, the partial derivative of the errors, (x(T)-x(O)), with respect to the ini-

tial state x(O), is [I - FTM]. For the nonlinear case when G(t) in equation (1)

is replaced by G (x, x, t), we iterate with an iterative adaptation of equation

(3a):

[I - §(T)]k+1 {XE(T) -xE(0)Ik+1 = {xE(T) - XE(0)Jk (3b)

where XE(O) is some Nxl assumed initial state vector to start the iteration (k =

0). For details see references 11 and 12 which also include algorithmic aspects of

sequentially perturbing each of the N elements of xE(O) by a small amount.

Henceforth we will represent the Floquet transition matrix §(T) by FTM.

Concerning a solution strategy which couples Floquet theory to the response
analysis, there is considerable similarity among the several trimming methods

509



[11,13,14] and for illustration we choose the method of periodic shooting [11,14].
In that method, we iterate on the initial conditions in order to find those that
lead to a periodic solution of the nonlinear equations. The Floquet connection
referred to earlier occurs in the Iterative scheme, equation (3b), through the
matrix [I-FTM]. Thus, the condition number of [I-FTM] quantifies how well-
conditioned (or equivalently ill-conditioned) is the problem typified by equations
(3); details in section 2.4 which introduces the concept and in section 2.5 which
illustrates on the basis of numerical results.

2.2 Floquet Transition Matrix (FTM)

The FTM is part of the trimming analysis. For an nth-order system, the
calculation of the FTM is equivalent to the solution of n, nth order initial-
value problems or to one n2 xl initial-value problem, what are referred to as n-
pass and single-pass computations [15]. To effect this solution, several
methods have been exercised, methods such as rectangular ripple [16], numerical
perturbation [17], and recently finite elements [18-20]. Of these, time-
marching in single-pass is by far the most popular. However, much promise
exists for the finite element technique in the space-time domain [18-20]. A
comparison of well tested IVP codes with the emerging finite element approaches
to generate the FTMs and an exposition of the differences among the various
finite element formulations present fruitful areas of research.

2.3 Eigenanalysis of the FTM

For large systems, the crux of the Floquet analysis is the eigenanalysis,
which becomes more and more demanding with increasing order of the FTM. Due to
algorithmic robustness and availability of well-documented computer codes, the
generic QR-method (e.g., EISPACK version for a general matrix) is almost exclu-
sively used for the eigenanalysis [21]. However, for high-order systems and for
stochastic stability problems, such usage presents a computational barrier.

For a general matrix, the QR-method is the recommended method for a
complete eigenalysis, as seen from its algorithmic structure (e.g., QR
decomposition). While the operation counts and the machine time requirements grow
cubically with the order of the FTM, the storage requirement grows as the square
of the system order. Further, the Floquet analysis for stability requires only
the dominant characteristic multiplier [10,12]. (In practice, we need a small
subset of the dominant/sub-dominant eigenvalues, as well as the correspondent
eigenvectors, due to frequency ambivalence and due to the necessity of identifying
stability margins of critical modes). Thus, in summary, these restrictions show
that the QR method is not practical for large systems and for the stochastic
second moment stability of even a relatively small order system which requires
an eigenanalysis of order N(N+1)/2. Two promising alternatives to the QR-method
are: 1) the simultaneous iteration method [22-26] and 2) the generalized
block-Lanczos method [22,27,28]. However further research is required to ascer-
tain their viability for the Floquet eigenanalysis owing to nonsparsity of the
FTMs.

2.4 Computational Reliability

The trimming analysis which includes the computation of the FTM, and the
eigenanalysis of the FTM are subject to numerical perturbations which are
involved and Interdependent. For example, the characteristic multipliers
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(eigenvalues of the FTM) are subject to numerical perturbations due to already
existing perturbations in the FTM. It is necessary to know that we are not
dealing with an ill-conditioned problem. That is, the perturbations or small
changes in the data do not introduce large changes in the computed result or at
least we have some means of ascertaining the goodness of the computations. The
problem is ill-conditioned if the condition number is large, say, larger than
100, the ideal value being 1. To this end, following Ortega [29], we introduce
the following computational reliability coordinates:

1. The matrix condition number of [I-FTM].

2. Condition number of characteristic multipliers and the vector of resi-
dual errors of eigenpairs (eigenvalue and the correspondent
eigenvector).

The first coordinate concerns the periodic orbit analysis and it is a
priori. The second set of two coordinates concerns the eigenanalysis
of the FTM and is a posteriori. Though the condition number concept has a
rigorous analytical basis [29], the corresponding condition number analysis for
eigenvectors is too delicate to be practical [30]. Therefore here we use a com-
bination of the eigenvalue condition number and the residual error of the
correspondent eigenpair.

In the sequel we give a very brief account of these numerical coordinates
with respect to a generic nonsymmetric real matrix A, right eigenvector x, left
eigenvector y and eigenvalue A. We use the 2-norm for the vector and the
spectral norm for the matrix, that is,

I x 12 = /xHxand I A 12 = /(max. eigenvalue of ATA) (4)

where xH is the Hermitian or complex conjugate transpose of x and AT, the

transpose of A. We mention in passing that xHy represents the inner product of

x and y. The vectors are normalized such that

I x 12 = I x I = I xHx I = 1= I y I = I yHy i (5)

The condition number of A or Cond.(A) is given by

Cond.(A) = [maximum eigenvalue of ATA]/[minimum eigenvalue of ATA] (6)

and it satisfies the following inequality:

1 < cond.(A) <oo (7)
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We assume that Aj is a simple eigenvalue. Then the condition number with
respect to each Aj is given by

T -1
Cond.(Aj) = I yj xj 1 (8)

where yj and xj are the left and right eigenvectors such that

Axj = Ajxj and ATyj = Ajyj (9)

It is good to emphasize that it is yjT that is used in equation (8) and not the

Hermitian transpose yj' Referring to the trimming analysis typified by

equation (3b) we consider the following symbolic representation:

[A + SA] Ix + 6x} = lb + Sbj (10)

For example, A + SA represents I-FTM, x and b respectively representing

IxE(T) - xE(O)lk+ I and IXE(T) - XE(O)lk. Under fairly general conditions it can

be shown that [29]

16xl IAI ISbI
< cond.(A) I + 1 (11)

IxI IAI IbI

Thus Cond.(A) represents the maximum magnification of the total relative errors
in A and b. That is, the higher the value of cond.(A), the greater is the sen-
sitivity of equation (3b) to computational perturbations, and consequently
the less well conditioned is the problem of finding the periodic initial state.
From equation (9), the relative residual error e follows:

Axj -Ajxj I I 1 (12)

SAj xj I mAjI

where r is the residual error. In the following section we present the numeri-
cal results on Cond.(A), Cond.(A) and e, which are respectively given by
equations (6), (8) and (12).

2.5 Discussion of Results

In table 1, we present the condition numbers of the FTM and [I-FTM]
together with the maximum eigenvalue condition number Aj,max and the
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corresponding residual error of the eigenpairs. The physics of the problem
refers to a multibladed rotor system with 3, 4 and 5 rigid blades. As sketched
in Figure I each blade has two degrees of freedom, flapping or out-of-plane
motion and inplane or lead-lag motion. For the 3 and 4 bladed models the feed-
back system from the assumed unsteady aerodynamics or dynamic inflow model
introduces 3 additional state variables, and for the 5 bladed model, it introdu-
ces 5 state variables. Thus we have 15 (3x4+3), 19 (4x4+3) and 25 (5x4+5) state
variables. The first column contains the dimensionless velocity parameter 11,
the higher the p the more the dominance of periodic coefficients (and
nonlinearity). While the second and third columns contain the condition numbers
of the FTM and I-FTM, the fourth column contains the maximum eigenvalue con-
dition number, that is the maximum value of cond.(Aj) with respect to all the
simple eigenvalues. (For the data in Table 2, all the N eigenvalues were simple
or of multiplicity one.) The last column contains the residual error for the
eigenpair corresponding to Aj,max- The results are extremely interesting. The
FTM is seriously ill-conditioned and this undesirable feature increases with
increasing V. But the crucial ingredient, [I-FTM], as seen through equations
(3), is extremely well conditioned, the ideal value being one. This means that
the problem of finding the periodic orbit as typified by equation (3) is well
conditioned. These data show that though the FTM is ill-conditioned (with
regard to its inverse), all the eigenvalues of the FTM are well conditioned.
This feature is well corroborated by the corresponding residual error vector in
the fifth or last column.

3. SPECIAL PURPOSE PROCESSOR DEHIM

The literature on the multipurpose processors such as MACSYMA, REDUCE and
MAPLE is extensive. For example, the book by Davenport, Siret and Tournier [31]
is encyclopedic. It contains an extensive bibliography and provides an
excellent introduction to the general algorithmic basis of computer algebra and
also in particular to the use of MACSYMA and REDUCE. By comparison, DEHIM, as
is the case with special purpose processors, is restricted to a highly spe-
cialized area and merits some introduction. Details intended both of the
learning and use of DEHIM are given in the Users' Manual [2] and in references 1
and 3. The introduction in the sequel is overly condensed. Nevertheless it
should facilitate an appreciation of the view point that a special purpose pro-
cessor can be developed as a natural predecessor to programming for numerical
computations, and that the development and use of such processors are no more
involved than programming for numerical results in such specialized areas.

3.1 Description of DEHIM

The four main aspects of DEHIM are the following: 1)Algebraic manipulations
capabilities, 2) Commands, 3) Input-output details, and 4) Special features.

3.1.1 Algebraic Manipulations Capabilities

The manipulations consist of combining expressions, replacing variables in
an expression by designated expressions or relations, and substituting numerical
or logical values and tables into expressions. They also include the expansion
of composite functions and expressions according to stipulated ordering schemes
and the collection of coefficients of a specified variable in an expression.
The algebraic manipulations of partial differentiation and integration, and
matrix operations are carried out from the user supplied rules.
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3.1.2 Commands

Several commands such as input commands form an important feature of the
processor, and a brief account with illustration in parenthesis is given in
appendix 1. Essentially, commands are constructed to perform various symbolic
manipulations and they are oriented to the algebraic manipulations typical in
helicopter dynamics as in deriving equations to ordering schemes and transforming
into multiblade (non-rotating) coordinates.

3.1.3 Input-Output Details

The input to the program comprise the command names and their parameters
which are in Alpha Numeric Format. Further, the processor gives two sets of
outputs. The first set contains the resulting expressions of algebraic manipu-
lation commands, perturbed linear equations and equations involving multiblade
(nonrotating) coordinates. The expressions are printed term by term and one
below the other for easy perusal by the user. The second set contains outputs
which are coded FORTRAN statements of the equations as required in the sub-
sequent numerical analysis. A typical input block diagram is sketched in Fig.
2. Appendix 2 gives a few samples of intermediate (optional) outputs. For
example RYD there represents the y-component of the total time derivative (in a
fixed frame of reference) of a dimensionless position vector r, as detailed in
Figure 1.

3.1.4 Special Features

These features primarily refer to modular construction and portability. The
modular structure permits the introduction of new commands or modifications of
the old commands to consider major modifications in the formulation. Thus, the
same program can be utilised to consider a variety of modifications or exten-
sions of the original analytical model. Usually the implementation of symbolic
manipulation systems on another computer requires a major effort in that it must
take advantage of the specific features of the hardware and operating system of
the host computer. The present program originally written in FORTRAN IV and now
in 77 can be implemented with minimal assistance from the host computer, i.e. by
utilising its Fortran compiler. As such, it is highly portable. A reset
counter is also incorporated which erases all previous equations and saves core
space for the next equation. If other language facilities such as LISP are
available, required adaptation is routine. Other features include format free
input and execution of several derivation steps through a single command. We
conclude this section by mentioning that it is a routine exercise to incorporate
ordering schemes and tables of formulae of trigonometric tables, perturbation
scheme tables and multiblade coordinate transformation tables [2].

4. APPLICATIONS OF REDUCE AND DEHIM

We begin with the core space requirements to install these packages. As
expected DEHIM takes far less core space; that is, as shown in table 2, 83 ver-
sus 1573 blocks. However, this comparison should be tempered by the fact that
REDUCE provides numerous services, as is typical of a multipurpose processor.
By comparison DEHIM provides services that are restricted to deriving equations
of motions of rotorcraft dynamics models. In table 2 four cases are presented
---one-bladed and three-bladed rotors in combination with rigid flap and rigid
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flap-lag blades. While in hover, the system has constant coefficients, in for-
ward flight, the system has periodic coefficients. The treatment includes deri-
vation of nonlinear equations, perturbed linear equations for stipulated trim
conditions (no trim analysis) and transformation into multiblade or nonrotating
coordinates for the three-bladed case. It is clearly seen that DEHIM is far
more economical and this saving in machine time increases rapidly with N. Our
experience with a wide range of problems also shows that DEHIM is remarkably
portable. However, the feedback from users shows that during inital stages
DEHIM is far less user-friendly compared to REDUCE. This is probably due to two
reasons. First, the present USERS' manual does not take the user in small gra-
dual steps and merits further elaboration on the basis of highly simplified
graded examples. Second, all the users had used REDUCE earlier. The exercises
of table 2 were treated as another set of problems to which REDUCE was applied
once again, whereas with DEHIM those exercises were entirely a new experience.

5. CONCLUSIONS AND FUTURE WORK

The feasibility of programming with special purpose processor DEHIM for
generating the equations of motions of helicopter dynamics models with a priori
ordering schemes is demonstrated. Some examples treated range from a four
bladed rotor model that has flap bending, lag bending and torsion degrees of
freedom to a coupled rotor-body system with 3,4 and 5 rigid lag-flap blades with
hinge offset and dynamic inflow under forward flight conditions [1-3]. The
viability has been tested in including nonlinear airfoil characteristics and
dynamic stall characteristics according to user supplied tabulated airfoil data
and dynamic stall models. The program generates perturbed linear equations from
the nonlinear ordinary (for rigid blades) or partial (for elastic blades) dif-
ferential equations [1-3].

Compared to multipurpose processor REDUCE and with respect to a restricted
class of helicopter dynamics problems, DEHIM is far more portable and economi-
cal, though it is found to be less user-friendly during learning phases.

The modular structure of the program allows the programmer to alter the
existing modules and to add new subroutines. This program is oriented towards
flexibility of application and user modification. Its application-oriented com-
mands make user inputs minimal since many of the formulation steps are built
into commands. The intermediate expression swell is significantly minimised
since formulation procedures are carried out at term level rather than at
expression level. DEHIM offers considerable promise in demonstrating that sym-
bolic manipulation can be significantly exploited in deriving equations of
motions of helicopter systems.

Concerning the computational reliability, the problem of finding the ini-
tial state that guarantees periodic forced response is found to be well-
conditioned. That is, the condition number of [I-FTM] as typified by equations
(3), is of the order of one, see table 1. This is remarkable in that the con-
dition number of FTM, compared to that of [I-FTM] is extremely high and it
generally increases with increasing nondimensional flight speed j. The present
study does not include the impact of control inputs. Therefore, how well-
conditioned is the complete trim problem of finding the iugmeLed vector of ini-
tial state for response periodicity and control inputs for desired response
characteristics merits further research.
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The problem of finding the eigenvalues in the Floquet analysis is well con-
ditioned in that the eigenvalue condition numbers are of the order of one. This
finding is further corroborated by the computed residual errors of the
correspondent eigenpairs, as typified by equation (12).

Presently the QR method is almost exclusively used in the Floquet eigena-
nalysis for which the machine time grows cubically with the system dimension N.
This fact practically precludes the use of the QR method for large systems
(N>100) and for the stochastic second moment stability of even relatively small
order systems (N=25), since the latter case requires an eigenalysis of order
N(N+1)/2. Floquet eigenanalysis in practice requires only a small subset of
eigenvalues and eigenvectors. Therefore, though the FTM is generally not
sparse, the feasibility of using simultaneous iteration and generalized Lanczos
method for the unsymmetric eigenanalysis offers considerable promise.
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Table 1: Computational Reliability Coordinates for N = 15, 19 and 25.

N = 15

COND.(FTM) COND.(I-FTM) MAX. COND(A) RESIDUAL ERROR

0.0 2.79E02 1.91 1.51 0.109E-14

0.1 9.61E01 1.95 2.89 0.222E-13

0.2 6.42E02 1.89 2.32 0.165E-12

0.3 7.69E03 1.86 2.19 0.264E-11

0.4 4.50E04 1.84 2.22' 0.123E-10

0.5 1.27E06 1.83 2.07 0.252E-09

N = 19

0.0 1.10E02 2.05 1.49 0.770E-15

0.1 5.59E01 2.02 3.77 0.137E-13

0.2 6.08E02 1.92 2.32 0.136E-12

0.3 7.79E03 1.88 2.13 0.146E-11

0.4 9.77E04 1.87 2.10 0.146E-10

0.5 1.36E06 1.87 2.09 0.252E-09

N = 25

0.0 3.72E02 2.05 3.40 0.272E-14

0.1 1.57E02 1.86 5.37 0.890E-14

0.2 5.94E02 1.91 3.38 0.189E-14

0.3 7.65E03 1.89 3.57 0.889E-12

0.4 9.07E04 1.87 3.39 0.273E-14

0.5 1.09E06 1.87 3.40 0.130E-14

519



Table 2: Applications of DEHIM and REDUCE (Vax 8800)

Approach REDUCE DEHIM

Core Space
(in blocks) 1573 83
CPU time
(in secs.)

Rigid Flap (N=2)

NONLINEAR Hover 6.06 1.74
EQUATIONS
(Single-Bladed Forward Flight 7.14 2.11
Rotor)

Rigid Flap-lag(N=4)

Hover 9.02 5.25

Forward Flight 12.00 8.26

Rigid FLAP (N=2)

Hover 6.59 2.81

LINEAR Forward Flight 8.16 3.25
EQUATIONS
(Single-Bladed
Rotor) Rigid Flap-lag(N=4)

Hover 15.82 6.43

Forward Flight 34.20 7.91

Rigid Flap(N=6)

Hover 11.17 3.15

Forward Flight 19.18 3.54

MULTIBLADE Rigid Flap-lag(N=12)
EQUATIONS
(Three-bladed Hover 139.00 9.06
rotor)

Forward Flight 362.00 14.39
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Appendix 1: COMMANDS

" To input an expression

:%FCT=5.X**4*Y**5+A*SIN(BT)*COS(BT)$

(function fct=5xys+a sin~cosO)

" To input a matrix

:?TR(3,3)=COS(P);O.;-SIN(P);O;1;O;SIN(P);O;COS(P)$

(matrix of size 3x3),[TR]= OCS(P) 0 SIN(P)]

01 0

L-SIN(P) 0 COS(P)]

" To input a relation table

:REL.TAB:#RTB1:SIN(ZE)=ZE+DZ;SIN(BT)=BB+DB-.5*BB**2*DB$

(a table of relations named RTB1 containing sln(C)= +6C and sin

(0)=W+60-.52 60)

" To assign order of magnitude to the variables

:ORD.MAG:(BB,1,2),(DB,2,1)$

(the variable 0 belongs to group 1 with order of magnitude E2 (e,measure

of magnitude of group 1 variables) and 60 belongs to group 2 with order of

magnitude 6 (6,measure of magnitude of group 2 variables))

" Scheme for term retention

:TER.RET:#TSCHM=(1,2),(2,1)$

(term retention scheme TSCHM defines that during expansions retain terms

whose magnitude is limited to C 2 for group 1 variables and to 6 for group

2 variables)
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* Algebraic manipulation of matrices

:Al[DIFF,TAU,BT;SUBS,#RTBl]=?A2(TRAN)*?A3(INTG,RB,O.,l)

[SUBS,#RTB2;TRSH,#TSCHM]+?Bl*?B3(DIFF,BTD)$

a2 I

(matrix [Al])=[ {[A 2]T( f [A3]dr)] with substitution

of table of relations RTB2 and application of retention scheme TSCHM I +

EBI](8/84[B3] with substitution of relations of table RTB1]

-To input variables whose coefficients are to be collected

:VAR.COL.COE:#CVAR=DBDBD$

(define a string of variables by CVAR which contains the names of the

variables DB and DBD).

" To collect coefficients of an expression

:COL.COE:%Al (#CVAR,FORT,PTEQ)$

(collect the coefficients of the variables defined in the string of variables

CVAR of the function Al and transform the coefficient expressions into

FORTRAN statements and store the details with index PTEQ)

" Multiblade Coordinate Transformation

:MUL.TRA:?MUEQ[#RMUB,4]=?PE$

(Transforms the expression PE which is written in rotating coordinates into

expression with non-rotating coordinates (multiblade coordinates for blades)

using relations defined in relation table RMUB of a 4 bladed rotor system)
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Appendix 2: INTERMEDIATE OUTPUT

Details of expression RYD

1.OOOOOO*COS(CY)*HEPS

+1.ODOOOO*COS(BT)*COS(ZE)*COS(CY)*RB

-1.OOOOOO*BTD*SIN(BT)*COS(ZE)*SIN(CY)*RB

-1.000000*COS(BT)*ZED*SIN(ZE)*SIN(CY)*RB

-1.000000*COS(BT)*SIN(ZE)*SIN(CY)*RB

-1.0OO000*BTD*SIN(BT)*SIN(ZE)*COS(CY)*RB

+1.000000*COS(BT)*ZED*COS(ZE)*COS(CY)*RB

(Output of the details of expression Ry = hecosIP + T cosO cost cos* - rO sin

8 cosC sinm -r cosO sinC sin* - r cosO slnC sin* -6 sino sinC cos9 + -C

cosO cosC cos*;

where Ry is the y-component of the time derivative of the position vector.)

Details of Matrix AA (3xl)

Terms of element (1,1)

1.*SIN(BT)*COS(CY)+5.*SZE

Terms of element (3,1)

1O.5*SIN(CY)*LOG(X) sin~cos +5sinC]

(output of matrix AA(size 3xi) which corresponds to 0

10.5sin~logx

FORTRAN Statements

PEQN(5,1)=1.125*GAH2+1.5*MU*SIN(CY)**2

PEQN(6,3)=5.*BETA*COS(BETA)

(Fortran statements of equations P51 and P63 which correspond to 1.125 Y2+1.5p

sin 2 (*) and .50 cosO, respectively, where Y2 is an aerodynamic force integral

and p, a dimensionless speed parameter).
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VARIABLES DESCRIPTION REPRESENTATION

Position Vector from hub axis R

Hinge off-set/Rotor Radius HEPS

Location of the blade element RB
(Dimensionless:
r/(rotor radius - hinge offset))
from hinge axis

r Huh elasticity parameterh

e Blade pitch setting

I

Rh r

ROTOR CHEMATC ~ ~-Lead-log()

ROTOR SCYNAIC

INFLO INDUEDR

ANGLE OF LIFTING THEORYI

CONTROLS ' ATTACK OR CIRCULATIION
AIROI AERODYNAMx I AND LOADS-

DYNAMIC INFLOW BLOCK DIAGRAM

Fig.l ROTOR SYSTEM WITH DYNAMIC INFLOW FEEDBACK
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VARIOUS RELATIONS / FORMULAE

DESCRI PTION OF ORDERING SCHEME
f --

DESCRIPTION OF POSITION VECTORS

DESCRIPTION OF FLOW OVER ROTOR SYSTEM

EVALUATION OF DISPLACEMENT
AND VELOCITY VECTORS

DERIVATION OF PERTURBED LINEAR
EQUATIONS

TRANSFORMATION TO MULTI BLADE
COORDINATES

FIG.2 INPUT BLOCK DIAGRAM
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HYPERBOLIC WAVES AND

NONLINEAR GEOMETRICAL ACOUSTICS

John K. Hunter

Colorado State University

ABSTRACT This paper reviews asymptotic methods for weakly nonlinear hyperbolic

waves. When applied to compressible fluid flows, these methods give a theory of

nonlinear geometrical acoustics.

1 INTRODUCTION

Nonlinear wave propagation is a unified scientific field largely because the basic

phenomena are described by a relatively small number of canonical equations. These

equations can be derived systematically from the primitive equations modelling the

wave motion by means of formal asymptotic expansions. The aim of this paper is to

summarise the canonical equations for weakly nonlinear hyperbolic waves, with or

without the inclusion of small dissipative effects. We apply these results to the

equations of motion of a compressible fluid, which gives a theory of nonlinear

geometrical acoustics (NGA).

Exact solutions of the canonical equations are of particular interest. As well as

providing quantitative asymptotic solutions, they often give considerable insight into

the physical processes of the wave motion. We therefore note what is currently

known about exact solutions of the canonical equations presented here.

Unfortunately, in comparison with the situation for dispersive waves, few exact

solutions are known. For example, the cylindrical KdV equation, the KP equation,
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and the three wave resonant interaction equations are all solvable by the inverse

scattering transform [1], [11]. None of the corresponding asymptotic equations for

dissipative waves can be solved completely.

In section 2, we derive asymptotic equations for a single wave. The result is

the kinematic wave equation (2.4) for inviscid waves, and the generalized Burgers'

equation (2.19) for viscous waves. In section 3, we include diffraction. This gives

the unsteady transonic small disturbance equation (3.5), and the Kuznetsov equation

(3.7). In section 4, we consider wave-wave and wave-mean field interactions, leading

to the integro-differential equations (4.4) and (4.13). Finally, in section 5, these

equations are specialized to the case of sound waves in a fluid.

Our references are biased towards review articles and books, where they are

available. These may be consulted for references to the original papers. For other

reviews of asymptotic theories for hyperbolic waves, see Nayfeh [33] and Majda [28].

2 SINGLE WAVE EQUATIONS

2.1 The kinematic wave equation

Let us begin by considering a hyperbolic system of conservation laws in one space

dimension,

(2.1) Ut + f(U) x = 0,

where U(x,t) e Rm and f: Rm - Rm . The weakly nonlinear expansion of solutions

of (2.1) is

(2.2) U = ca(-Ait,x,t)r + 0(( 2 ), f - 0+ with t = O(1).

Here, A is an eigenvalue of
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A = Vuf(0),

and r is a corresponding eigenvector. We denote a left eigenvector by 4 and

normalize it so that I.r = 1. We assume throughout that A is a simple eigenvalue

(see [5], [171 for multiple characteristics). The wave amplitude a(9,x,t) is determined

by means of the method of multiple scales [21]. In this method, (9,x,t) are treated

as independent variables, and the final asymptotic solution is obtained by evaluating

0 at -l(x-At). The equation for a is found to be

(2.3) at + Aax + Maa 0 = 0.

In (2.3), the coefficient of the nonlinear term is
m a2)f.

XI = VuA(U).r(U)I u= 0 = I.V2f(O)(r,r) = ri,j , k=l 1 0J kjk"

Thus, M # 0 if the wave is genuinely nonlinear [23]. If M = 0, nonlinear effects are

negligable to leading order in e and over times for which the asymptotic solution

(2.2) is valid. Nonlinear effects may be retained by rescaling the amplitude in (2.2).

In this paper we always assume that M j 0. For a discussion of other cases see

[24], [40].

The amplitude a in (2.2) depends on a "fast" phase c-1 , where ¢ = x-At, and

on "slow" variables (x,t). In this form, (2.2) is a weakly nonlinear extension of the

high-frequency geometrical optics expansion. Therefore, one name for this method is

weakly nonlinear geometrical optics (WNGO) [17]. Alternatively, note that (2.1) is

invariant under the change of variables

x= -lx, tE t.

In these variables, (2.2) is

U = ca(.X-ATcJ,cT)r + 0(c), c 0C - = O(-l),

which corresponds to a long-time/far-field expansion. It describes a wave which
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changes slowly in a frame of reference moving with the linearized wave velocity A.

This point of vi,'w is adopted in the perturbation-reduction method (Taniuti et al

[44]). Thus, provided that there are no lower order source terms in (2.1), the

high-frequency and far-field expansions are equivalent.

If a = a(9,t) is independent of x, then (2.2) describes a wave which is uniform

in space and changing slowly in time. This form is appropriate for initial value

problems. If a = a(9,x) is independent of t, then (2.2) describes a wave which is

modulated in space, and distance x is a "time-like" variable in (2.3). This form is

appropriate for boundary value problems.

The wave-form of the wave in (2.2) is described by the dependence of a on 0.

There are two main cases: oscillatory waves, and wavefronts. For oscillatory waves,

a is a periodic (or almost periodic) function of 0, and (2.2) is valid in the limit

e- 0+ with x,t = 0(1).

The solution represents a rapidly oscillating wave field, with frequency and

wavenumber of the order c, which is modulated over distances and times of the order

one.

A typical example of a wavefront expansion is when

a(0,x,t) a+(x,t) as 0 +oo,

a(9,x,t) - a_(x,t) as 0 -x,

as in a viscous shock profile. In this case, (2.2) is valid near the wavefront x = At,

but not necessarily elsewhere. Formally, the limit is

e-- 0+ with t = 0(1) and x-At = 0(c).

To put (2.3) in a standard form, we define

u(0.tx-At) = Ma(0,x,t).

This implies that u(x,t,6) satisfies
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(2.4) ut + uux = 0.

Here, we have renamed the independent variables - x in (2.4) is the phase variable,

and not the original space variable - and 0 occurs as a parameter. Equation (2.4)

is called the kinematic w'ave equation, or the inviscid Burgers' equation. It is the

canonical equation for a weakly nonlinear, genuinely nonlinear, hyperbolic wave.

Weak solutions of (2.4), in the conservative form

u t + u2  = 0,

continue to provide formally valia asymptotic solutions of (2.1) after shocks form [3] .

Equation (2.4) can be solved exactly, in principle, by using the method of

characteristics and shock fitting [46].

2.2 Nonplanar waves

The method of the previous section generalizes to nonplanar waves in several space

dimensions and to nonuniform media which vary slowly over a wavelength. Consider

a hyperbolic system of conservation laws,
n

(2.5) j .fI(x,U) + g(x,U) = 0,
i=O I

where x = (xo,...,X ) E Rn+1 , U(x) E Rm, and fig : IRn+ 1-Rm - Rm . We assume

that U = 0 is a solution of (2.5). Given a smooth nonzero solution of (2.5), this

can always be arranged by a shift of dependent variables.

The weakly nonlinear solution of (2.5) is

(2.6) U = ca(6(--,x)r(x) + O(E2 ), as e - 0+ with x = 0(1).

This solution represents a small amplitude, locally plane wave. To show the latter

fact, we expand U for x close to a fixed value y. From (2.6) we find that

(2.7) U = ca[ y' ( x - y ) + 6- ,y]r(y) + o(c), as f _ 0+ with x-y = o((1/2).

where
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K = D 6(y) = (6x0,...,OXn)x

-1
For fixed y, (2.7) is a plane wave with frequency-wavenumber vector K.

The choice of scaling in (2.7), namely

dimensionless wave amplitude = O(c),

relative change in frequency per period I -Do ,

leads to a balance between nonlinear and nonplanar effects. For amplitude << C,

one obtains linear geometrical optics in a first approximation; for

<< amplitude << 1 one obtains the weakly nonlinear plane wave solution

described in section 2.1.

Equation (2.) is an asymptotic solution of (2.5) if:

(a) The phase O(x) solves the eikonal equation

n
(2.8) det[ N x.Ail = 0,

i=0 i
where

(2.9) Ai(x) = Vufi(x,O).

We denote right and left null-vectors of the matrix in (2.8) by r(x) and 4x).

(b) The amplitude a(O,x) solves the transport equation

(2.10) a, + Maa + Na = 0,

where

n

i=o
n

(2.11) M(x) = X . Vu'f I(x,.r, r),
i=O i

N(x) (Air) + t.VUg(x,0)r.
i=0 i

To decribe the structure of these equations, we introduce the rays associated
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with 0. The rays are curves in space-time Rn + I with parametric equation x = x(s)

defined by

-Xi = I.Air.

There is an n-parameter family of rays, which we label by f(x) E I n. The above

equations are valid in regions of space-time where the transformation between ray

coordinates (s.') and x is smooth. We shall write functions of x as functions of

(s.0) whenever it is convenient to do so.

The eikonal equation (2.8) can be written as a system of ODE's along the rays

associated with o 17]. Equation (2.10) may be regarded as an n-parameter family

of PDE's in one "space" variable, with one PDE for each ray. The time-like

variable, s, is a one-to--one function of arclength along a ray and the space-like

variable 9 is the fast phase. The coefficients in (2.10) are functions of s (and the

ray parameters ). but are independent of 0.

The eikonal equation (2.8) states that the local frequency-wavenumber vector

f I satisfies the local, linearized, high-frequency dispersion relation of (2.5). The

transport equation is an energy balance equation for the wave.

The velocity of the rays (with x0 = t = time),

d. = (1- r A r, i = 1. ,

is called the group velocity of the wave. The phase velocity is the normal velocity

of the wavefron;t. o = constant. It is given by
- o :vOj 2  '0

where

Vo= (6X ... ,Oxn )

The phase and group velocities are not the same. in general. Equation (2.10) shovs

that wvave ergy propeatps at the group velocity.

533



Because of the importance of rays, these theories are often called ray methods.

The geometry of rays was first used to study the propagation of light, hence the

name geometrical optics.

Equation (2.8) defines the same phase, and therefore the same rays, in the

linear and the weakly nonlinear cases. Ostrovsky [37] therefore calls the weakly

nonlinear theory the "linear ray approximation". An alternative point of view is

obtained by writing a solution of (2.10) in the form

(2.12) a(0,x) = (s,fl)F( .#).

In (2.12), F is arbitrary, while a and (O,x) satisfy

(2.13) a s + Na = 0,

(2.14) 0 = + F(,) f M(s',/)a(s', )ds'.

According to (2.12) - (2.14), the solution is of the same form as the linearized

solution, but it depends on a perturbed phase (J-1€,x), instead of on the linear

phase c-1o. This point of view is used in the analytical method of charactistics [22].

To put (2.10) in standard form, we define the new variables [26],

a(0,x) = E(s, )u(0,s.),

(2.15) a(s,#) = .s M(s',f)E(s.#) ds',

E(s.#) = exp -fs N(s',fi) ds'.

Using (2.15) in (2.10), and renaming the independent variables, implies that u(x,t.)

satisfies the kinematic wave equation (2.4). Thus, (2.10) can be solved by using the

method of characteristics and shock fitting.

2.3 The generalized Burgers' equation

Now consider (2.5) with a "viscous" term,

n n r
(2.16) 7 a fi(x,U) + g(x.U) = p E a[Dij(xU)Ux.]

i= 0 F i i. --= 0 i
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In (2.16), the D1 j are mxm matrices, and p is a scalar (the "viscosity"). A balance

between small nonlinear, nonplanar, and viscous effects is obtained in the limit (2.6),

with

p=&s, p =O(1) as c- 0+.

The phase satisfies (2.8), as before, and the transport equation is

(2.17) as + Maa + Na = Pao0,

where M and N are given in (2.11) and

n
(2.1S) P = p X ' -LDij(x.0)r.

i, j 0 Xi Xj

The change of variables (2.15) puts (2.17) in the form

(2.19) ut + uu x = v(t)uX,

where

(2.20) v(s,P) = P(s.#)E-I(s.,)M-(s,),

and we write v(t,) as v(t) in (2.19).

When v is constant, (2.19) is called Burgers' equation, and when v depends on

t, it is called the generalized Burgers' equation (GBE). (It is customary to use

"generalized" to denote variable coefficients, and "modified" to denote altered

nonlinear terms.)

The initial value problem for Burgers' equation can be solved exactly by the

Cole-Hopf transform [46]. The Cole-Hopf transform is a Backlund transform [39]

between Burgers' equation and the linear heat equation. However, Nimmo and

Crighton [34] show that v = c( -stant is the only case in which there is a Backlund

transform connecting (2.19) with another parabolic PDE. Apart from some similarity

solutions [41], [42], it seems necessary to use asymptotic or numerical methods to

solve the GBE [35], [42].

535



Viscous effects on waves modelled by (2.16) are weak when c >> p, where the

wavelength is of the order c. Thus, this expansion uses a long wave approximation.

Other long wave equations (e.g. the KdV equation for dispersive waves) are reviewed

by Rosales [40].

3 DIFFRACTION

The equations described in the previous section are all based on a locally

one-dimensional approximation to the wave. In this section, we describe some

asymptotic equations, involving two space variables, which incorporate diffractive

effects.

3.1 Weak transverse diffraction

First, let us consider a hyperbolic system of conservation laws in two space

dimensions,

(3.1) Ut + f(U)x + g(U)y = 0.

The linearized phase velocity of a wave propagating in the x-direction is

T(MO) , where A is an eigenvalue of

A Vuf(o).

We assume that \ A 0. We denote associated right and left eigenvectors by r and t.

and normalize t so that Itr = 1. The group velocity of the wave is (A.g)T where

p = I.Br, B = Vug(0).

For anisotropic waves. u is generally nonzero. The equations of the spatial

projections of the rays are
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(3.2) y - ,-Ipx = constant.

The following ansatz desribes a weakly nonlinear wavc propagating in the

x-direction and diffracting slowly in a direction orthogonal to the ray projections

(3.2):
(.-At -A- x 3/2

(3.3) U =a, , ,x,y,t)r + O(3 ), c 0+ with t 0(1).

The wave amplitude a( 0,q,x,y,t) satisfies

(3.4) 19(at + Aax + Lay + Maao) + Qa,, 0.

In (3.4),

M = .U 2 f(0)(rr),

Q = £.(B-plI)s,

where s is a solution ot

(A-AI)s + (B-pl)r = 0.

Assuming that M and Q are nonzero, and rescaling variables in (3.4),

a(9,Rx,y,t) = (MQ)- u(QO,q,t,x-At,y-pt),

implies that u(x,yt,1,I) solves
(3.5) x yy

( t + UUx) + Uyy 0

Equation (3.5) was first derived in the context of transonic flows, and it is called the

unsteady transonic small disturbance equation (UTSDE) [6]. The equation is a weakly

nonlinear extension of the parabolic approximation to the wave equation [2].

For the general system (2.16), the asymptotic solution is [20]

U = ca(O(x), '.x)r(x)+ (312),

where is a solution of the eikonal equation (2.8), r and t are associated right and

left eigenvectors, and V is constant along the rays asociated with 0 i.e.

n
tA rw =0.

i=0 i
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The amplitude a(9,q,x) satisfies
(a + Maa 0 + Na - Pa 9 ) + Qar= 0.

Here, 0s, M, N, and P are defined in (2.11) and (2.18), and

Q = t.Ks,

where s is a solution of

Hs + Kr = 0,

and

n n
H = O xA i ,  K= E Ox Ai .

i=O i 1=0 i
We make the change of variables

(3.6) a(0,77,x) = E(s,#)u(0,q,A ,

where E and o are defined in (2.15). Then u(x,y,t,#) satisfies

(3.7a) [t + uux - v(t)uxx + (t)U yy 0,

In (3.7a), z/ is defined in (2.20) and

6 = QE-1 - 1 .

This equation can be written in system form,

ut + -OR -2u.-Vx ) + Dy(bV) = O,
(3.7b) +

U y- vx  0,

and in potential form for , where u = x and

(3.7c) xt + - zC'xx + [yy - 0.

If v = 0. solutions of (3.7) may contain shocks. The jump conditions for

(3.7b) imply that. if the equation of the shock position is x = s(yt), then

st = < u > + 6s.

Here,

1< u 1. {lim u(x,y,t) + lir u(x.y,t)}
X-S--S --
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is the average of u ahead of and behind the shock.

For plane waves, v and p are constants, and the change of variables

t - (vp 2 )1/ 3 t, x -4 (V-1p) 1/3x

transforms (3.7a) to

a(3.8) a(ut + uux -uX ) + Uyy = 0.

Equation (3.8) is known by several names: the 2-D Burgers' equation; the

Kuznetsov equation; the Zabolotskaya-Khokhlov (Zh) equation; or the

Kuznetsov-Zabolotskaya-Khokhlov (ZKZ) equation. Equation (3.7) is the generalized

Kuznetsov equation (GKE).

A GKE may be transformed into another GKE with different coefficients by

the change of variables

= Kftlpl- 1/2dt,

x = x + (lp)- 1y 2,

= Lp-1y,

u= K-1 1p 1/2u,

where b(t) = p'(t) and K and L are constants. Then _ satisfies

&lt + u - i(DiiEj + = 0,
X

with

V= K-1 1PIl/2 ,  3 = L 2 p1-3/2&.

If v = t p and 5 = tq , then T = tP and 3 = - , where

- 2p+q+1 I q 33+q
I - ,q ' 2

For the cylindrical GKE (see section 5.3.1) p = 1 and q = -3. This transformation

therefore reduces it to the planar Kuznetsov equation.

Unfortunately, not many exact solutions of these equations are known.

Travelling wave solutions of the UTSDE (3.5),
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u = c + U(x-ct,y),

satisfy the steady transonic small disturbance equation (STSDE), or Karman-Guderl.y

equation,

(3.9a) 9(UUx) + U = 0.
a- x yy

This is often written in terms of a potential , where U = x and

(3.9b) xx + y = 0.

Equation (3.9) is nonlinear and of mixed type. It is hyperbolic if U < 0 and elliptic

if U > 0. Solutions can be found by using: (a) group invariance properties

(similarity solutions); (b) the hodograph transformation [6]. The hodograph

transformation linearizes (3.9), but it is difficult to use if there are shocks.

Another reduction of the UTSDE's to a system with two independent variables

is obtained for scale-invariant solutions depending on t-1 x and t-1 y. It is

convenient to transform (3.5) to "polar" coordinates

r = x + 0=

w(r,0,t) = u(x,y,t),

which gives the cylindrical UTSDEa 1 1 w

T(wt + wwr + -w) + -'w 00 = 0.
t

The similarity solutions
= w(0), P = r = x + 1(y2'

t t 4 t'
satisfy

+ +w] +w = 0.

The potential form is w = p and

(3.1Ob) (p-P)pp + oo + 4p= 0.

Equation (3.10) cannot be linearized by the hodograph transformation (because of the

lower order term), but Zahalak and Myers [47] found some particular solutions in the
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hodograph plane.

Gibbons and Kodama [12] give a generalization of the hodograph transformation

which applies directly to the UTSDE (3.5). They use it to construct a family of

solutions which are polynomials in appropriate dependent variables.

There seem to be no known exact solutions of the Kuznetsov equation (3.8)

that involve nontrivial nonlinearity, dissipation, and diffraction. Treatments thus far

have used numerical or approximate methods [41].

The UTSDE describes weakly nonlinear waves at singul ,r rays [20]; in

particular (3.10) decribes a shock at a singular ray [47], [15], [20]. The UTSDE is

also a nonlinear caustic equation (see the next section); and it should describe the

transition from regular to Mach reflection for weak shocks. The Kuznetsov equation

has been used extensively to model acoustic beams, especially in connection with

parametric acoustic arrays [14].

3.2 Caustics

The straightforward ray method expansions described in section 2 break down near

caustics. A caustic is an envelope of rays. Straighforward ray methods predict that

the wave amplitude is infinite at a caustic. In fact, the wave amplitude is limited

by diffraction, and remains finite. However, the ratio of the amplitude at the caustic

to the amplitude away from the caustic is unbounded as the wavelength E 0+.

Therefore a modified asymptotic expansion is needed to describe a wave near a

caustic.

The simplest case is a smooth convex caustic. On one side of the caustic (the

"illuminated" region) there are two waves, an incident and a reflected wave. On

the other side (the "shadow" region), the straightforward ray method expansion
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predicts that there is no wave field; in fact, according to linearized theory, the wave

amplitude decays exponentially into the shadow region. The illuminated region is

doubly covered by rays, while no rays reach the shadow region.

Suppose that a wave forms a smooth convex caustic at the surface (x) = 0,

and let the phases of the waves in the illuminated region ' > 0 be

2 p3/ 2

The associated null vectors are of the form

r :k 01/2S.

According to the linearized caustic theory for (2.5) [27], ¢, (,, r, and s satisfy:

det H =0,[ LK HjH iK ] 0,
where

n n
(3.11) H = EK A., K =A

i=0 "i=0

Here, Ai is defined in (2.9). We also use the left null vectors 1, m defined by

(in, ' [K I = 0

The weakly nonlinear caustic expansion of solutions of (2.6) is
E2/3l ( (- ' !( )

U = ,a(6(x) ,x.x)rx) + 0(c),

as c - 0+ with x = 0(1), i, = O(C2/3).

It uses the same phases as the linearized theory, but the amplitude a(9,q,x) solves a

nonlinear equation,

(:3.12) a-(Ma-q)a 0j + a = 0.

In (3.12),
n

M = I.i 0'xiVUf(0)(r,r).
i=0

Equation (3.12) was derived by Giraud [13] and Hayes [16] for gas dynamics, and by
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Hunter and Keller [19] for general systems.

To put (3.12) in a standard form, we define

u(O,q) = Ma(O, ),

and we do not show the x-dependence explicitly, since x occurs in (3.12) as a

parameter. Then u(x,y) satisfies

(3.13) [(u-y)ux] + uy = 0.

The change of variables u -. y+u, reduces (3.13) to the STSDE (3.9).

When a smooth, weakly nonlinear wave (2.6) forms a caustic, its amplitude

near the caustic is of the order c5/6 << C2/3 [19]. Thus, the wave is described by

the linearized version of (3.13) i.e. the Tricomi equation. However, if the incident

wave contains a shock, the linearized theory is inconsistent, because it predicts a

logarithmically infinite singularity in the reflected wave. Seebass [43] uses the

nonlinear equation (3.13) to analyze a weak shock at a smooth caustic (although a

complete formal justification of this procedure has not beeen given). He reduces

(3.13) to the STSDE, and uses the hodograph transformation, but it does not seem

possible to satisfy the shock conditions exactly.

A cusped caustic (or arete) is described by three functions, ¢(x), -(x), and

Xyx). The caustic is at

(7) 0

and the cusp is at

u'= y=0.

To define the phases, let

¢(x,= O(x) + '(x)- I x(X) 2 + 14,

and denote the solutions of

= 3_ X + = 0
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by = j(x). Then the phases are

( .(x) = x (
There are three phases inside the caustic and one (real) phase outside the caustic.

It follows from the linearized theory [27] that these functions, and their

associated null-vectors, satisfy

detL = 0,

L ] = 0, (n, m, t).L = 0,
tj

where

1 1K

Here, H, K are defined in (3.11), and

nJ = E xiA .

i=0 i

The weakly nonlinear cusped caustic expansion of (2.6) is

= 3/2a x 0X42,x)r(x)+ 0(3/4

as c-. 0- with x = O(1), = O(3/4 ), x = O(1/ 2).

The equation for the amplitude a(O,7,,x) is the UTSDE again,

0(2a + Maao) + a 0,

where

nNI 6 x. V xiU-f irr)
i=0

The UTSDE was derived by Cramer and Seebass [8] for slowly focusing, weak shocks.

and studied further by Obermeir [36]. The above derivation suggests that it should

also describe strongly focusing weak shocks.
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4 INTERACTING WAVES

So far, we have described asymptotic equations for a single wave. When several

waves are present, they may interact and generate new waves. A wave may also

generate a mean-field. The asymptotic equations for such processes are

integro-differential equations.

4.1 Wave-wave interactions

For simplicity, we consider interactions between collinear waves, when the problem

involves one space dimension. Interactions between oblique plane waves are described

by similar equations, but the details are more complicated [18]. The asymptotic

analysis for nonplanar wave interactions usually leads to a passage-through-resonance

problem which has not been solved.

We denote the eigenvalues of A = Vuf(O) in (2.1) by

A 1 < A2 < ... < Am'

and right and left eigenvectors associated with A. are denoted by r. and t.. We

normalize t. so that I.rj = 1.

The asymptotic solution, for m interacting, weakly nonlinear waves is

m k.x-w.t
(4.1) U = c E a.( ,x,t)r + 0(c9), c - 0+ with x,t = 0(1).

j=l J i

In (4.1), the wave amplitudes a.(O.x,t), and their derivatives, are zero-mean, almost

periodic functions of 0. It is convenient to introduce explicitly wavenumbers kj and

frequencies wj, which satisfy the dispersion relation

w = A k., j= 1,...,m.

We define
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kj(A -A.)

Ajpq = kp(Ap-A'))

for distinct j,p,q, so that

'j = Jtjqp~p + Ijpq lq

kj = "jqp kp + /jpqk q

The wave amplitudes satisfy the following system of resonant interaction

equations [29],

(4.2) ajt() 
+  Ajajx()

+1 2 1 iTqp
+ 2[Ma-() + ira ,Oap( )aq(Uq p+gqjp)d ] = 0.+ [Mja() Fjpq1 mT qqp

" "p<q T- o

In (4.2), we show only the O-dependence and

E = sum over all pairs (pq) with 1 < p < q < m, p j and q#j.
p<q

The coefficients in (4.2) are

Fjpq = I.V 2 f(0)(rprq,

M. = F....
%I riii,

The simplest case is when: (a) there are three interacting waves e.g. (2.1) is a

3x3 system; (b) the waves are periodic in 0 - we normalize the period to 2r (c)

there are no spatial modulations i.e. a. is independent of x; (d) the frequencies and

wave numbers satisfy the resonance condition

W I + c4 _ + w3 = 0'

k1 + k2 + k3 = 0.

Then (4.2) becomes
a 1 2 l2'

(4.3) aj + -['NSIjaj(0) + F 0 a q(= 0,

where (jp,q) is a cyclic permutation of (1,2,3).

Equations (4.2) and (4.3) are in conservation form. They are valid in the weak

sense after shocks form [3].
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Rescaling variables in (4.3),

uj(O,t) = Mjaj(O,t),0 j

o if Mi  0

implies that {u.(x,t)} satisfies
Xt) + 1 1 U2 + 1 fy 27 O

U.t(x,t) + -{-17U 1
2 (x,t) + F1 1 u2(y,t)u 3(-x-y,t) dy} = 0,
9, , t 1 2.,r

(4.4) ult(x,t) + ')-,ux,t) + F2 ,, u3(y,t)u 1(-x-v,t) dy} = 0,S29 1 27
u3 t(xt) + { o 3 u3 (x,t) + f3  T, u1(y,t)u2(-x-y.t) dy} = 0.

In (4.4),

1 if N # 0

j 0 ifM. = 0

M . F.
F. = Pq, (j,p,q) = (1,2,3), (2,3,1), (3,1,2).

p Np q

Smooth solutions of (4.4) satisfy the following conservation laws for

< p < q < 3:

(4.5) Fpf2uq2(xt)dx - Fq 2,TUp 2(x,t)dx = constant.

Equation (4.5) is a generalization of the Manley-Rowe relations for dispersive waves

[7]. Once shocks form, (4.5) must be modified to allow for the decrease in entropy

across a shock (see (31] for the appropriate modification in the case of gas dynamics).

If the interaction coeffecients {f.} are not all of the same sign, then (4.5) implies

that solutions of (4.4) are bounded in the L2-norm. If the interaction coeficients are

all of the same sign, then (4.4) has "explosively" unstable solutions, which blow up

in finite time. The weakly nonlinear approximation is inconsistent after the blow-up

time.

Equation (4.4) simplifies for some special types of solutions, namely: (a)

sawtooth waves; (b) travelling waves: (c) separable solutions.
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(a) Sawtooth waves

We define the sawtooth function S(x) by

S(x) = x, xl < 7r,

S(x+2,T) = S(x).

Equation (4.4) has solutions

(4.6) u.(x,t) = aj(t)S(x- j),

where

1 + 9 + (3 (mod 2 T),

and {a.(t)} satisies the ODE's,

(4.7) jt + ajaj2 = Fjcaq.

The solution (4.6) is admissible if

Unless the rU's are all positive, solutions of (4.7) typically become inadmissible after

a finite time.

A simple, but interesting, special case of (4.4) which shows what can happen

when a sawtooth wave solution becomes inadmissible is

'Nil) = M3 = 19 = F3 = 0,

M1 =1, F1 =-1,

uII= u3 = S(x).

The equation for u1 is

ut + uu + S(x) = 0.

This has the sawtooth wave solution,

u(x,t) = -tan(t)S(x),

which is admissible for < t < 0. Majda, Rosales, and Schonbeck [31] show that

when t > 0, the shocks become "cusped rarefaction waves", containing a square root
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singularity. Their solution is: for 0 < t < 7r

, 2 -x91/2 7ost < x < ',

u = {-xtant -7rcost < x < 7rcost,
( 29-x2)1/2 -r < x < -Trcost;

and for t > T, ~9 9

- ( - x 
0 < x < 

2 1,(2-x2)1/2 
-" < x < 0.

A particular solution of (4.6) and (4.7) is

(4.) u = t-Kj,

where the constants K. satisfy
2

K. + ojKj = 1K pKq

If ojKj > 0, j = 1.2,3, then (4.8) is admissible for t > 0, and decays to zero as

t - + 0c. If ojKj < 0, then (4.8) is admissible for t < 0, and blows up as t - 0-.

Otherwise, (4.8) is inadmissible for all t.

(b) Travelling waves

Nonlinearity steepens the wave profile of any genuinely nonlinear hyperbolic wave and

periodic travelling waves do not exist. Wave-wave interactions can balance

nonlinearity, so that interacting travelling waves are possible. They are described by.

solutions of (4.4) of the form

u. = U.(x - ct -

where the wave velocities c. and the phase shifts j satisfy

c + c2 + c3 = 0,

+ 2 + 3 0 (mod 2r,),

and {U.} solves a nonlinear system of integral equations,
(9) 1 .2 r l 2 r 1 y)Uq(-X-y'dv = 1K.

(4.9) lojUj(x) - cjUj(x) + j"0
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In (4.9), K1 , K2 , K3 are constants.

Pego [38] gives an exact solution in the special case of gas dynamics (see

section .5.4). If a*. = 0, and cjFj > 0 - which implies that the F. are of mixed

signs (the nonexplosive case) - (4.9) has the solution,

c c 1/2
U.(x) = 2 (,21,) cos(x).

J~ pq
Solutions of (4.9) with aj # 0, can be found in the limit F. >> I by perturbing off

this solution.

(c) Separable solutions

The separable solutions of (4.4) are

(4.10) uj(xt) = t- X(x), where

da-jXjr(x) + I 1--2x (y)X (-x-y)dy] = Xj(x).
U-,x2 Tj 60 Xp q

A particular solution of (4.10), when the F. have the same signs, is the sawtooth

wave solution (4.8). Also, for a. = 0. (4.10) has the solution

X.(x) = 2-1F f 71/2cos(x- ),

where

+ 2 + =  2(mod 2,),

sgnF 1 = sgnF 2 = sgnF 3 = 7.

Small amplitude solutions of (4.10) with aj # 0 may be found by perturbing off this

solution in the limit F >> 1.

The resonant interaction equations can be generalized in a straightforward way to

include other effects, such as weak viscosity [29] or dispersion. For example, consider-

(3.1), and suppose that the wave motion is isotropic (j. Br. = 0). Then the
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following asymptotic solution describes interacting waves with diffraction:

m k.x-wt2
U = Ej-1 a.(- -, ,x,y,t)rj + O(C2), f - 0+ with x,t = 0(1).

The amplitudes a.( O,,x,y,t) satisfy.31

{ajt(0) + Ajajx(0) + -I[-M a2 (0)

+jpq lim JToap( )a (Gqpj O+qjp)d ]} + Qja = 0.
p<q jqT, To p op ~

where

Q. = Ij. Bs.,

(A - A\I)s. + Br. = 0.

4.2 Wave-mean field interactions

Averaging (2.1) with respect to x, shows that the mean of a bounded solution is

constant. Therefore, waves cannot generate a mean field. However, suppose that

there is a rapidly varying source term, so that

(4.11) Ut + f(U) + g(-) = 0.

(We consider one space dimension for simplicity - the analysis extends easily to

several dimensions.) Then (4.11) has the following asymptotic solution,

(4.12) U = fa( At,x.t)r + (U(xt) + 0(( 2 ), c -- 0+ with x,t = 0(1).

In (4.12), A is an eigenvalue of A = VUf(O), and r and I are eigenvectors, with

I.r = 1. We assume that a and its derivatix(s are periodic (or almost periodic),

functions of 0 with zero mean. It is also straightforward to include several waves, as

in section 4.1. The mean field U satisfies the semi-linear equations,

(4.13a) Ut + AUx + < g > = 0,

where

< g >(x,t) = Iim fo g[J(x,t) + a(I,xTt)r]dO.
T-+ T 5
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The wave amplitude a satisfies

(4.13b) at + Aax + Maa 0 + t.[g( + ar) - < g >1 = 0,

where M is given in (2.12). The wave drives the mean field, and the mean field

modulates the wave.

A special case is when (4.11) is semi-linear, meaning that

f(U) = AU.

Then V = e-l satisfies

Vt + AV + g(V) = 0.

The asymptotic solution is [32]. [45]

V = a(",At,x,t)r + U(x,t) + 0(c), f - 0+ with x,t = O(1),

where a and 'G satisfy (4.13) with I = 0.

5 NONLINEAR GEOMETRICAL ACOUSTICS

Nonlinear acoustics is a well-developed subject with applications to sonic boom

research, remote sensing in the ocean, and ultrasonic technology. Here, we

summarize the basic asymptotic equations of nonlinear acoustics. They are obained

as a special case of the general theory described in the previous sections. For other

reviews, see Crighton [9], [10] and Hamilton [14].

5.1 Equations of motion of a compressible fluid

The equations of motion of a (one species) compressible fluid are
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Pt + div(pu) = 0,

(3.1) (pu) t + div(pu x u- T) = pF,

[P( Uu+e)]t + div[( u.u+e)pu - Tu + q] = 0.

In (5.1), p is the mass density of the fluid, u E nn is the fluid velocity, T is the

Cauchy stress tensor, e is the specific internal energy, q is the heat flux vector, and

F is the body force per unit mass. We neglect any heat sources. The constitutive

equations for T, q and e are

T= [-p + g'divu]I + 2ME, E = (Vu + VuT),

q= KVT.

Here, p is the pressure, p is the shear viscosity, p' = IuB - is the dilatational

viscosity, with B the bulk viscosity, n is the thermal conductivity, and T is the

temperature. The internal energy, temperature, and pressure are functions of p and S,

and they satisfy the thermodynamic relation,

TdS = de + pd(1).
p

The conductivity and viscosities n, p, and g' are also functions of p and S. We

define the sound speed c(p,S) by

For simplicity, we shall consider a polytropic gas, for which

e = cvT,

p = RpT = Kexp(. )pT,
v

c 2

where cv is the specific heat at constant volume, and

cP
cv

is the ratio of specific heats. One obtains the similar asymptotic equations for
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general equations of state. Only the values of the coefficients are affected.

The non-conservative form of (5.1) is

t+ pdivu = 0,

(5.2) pD + Vp = V(p'divu) + div(2,sE) + pF,

pTD - = 21iE:E + #'(divu) 2 + div(KVT),

where
Di)t= at + u'V,

is the material derivative.

Linearizing the nondissipative version of (5.2), with F = 0, about a constant

solution, p = P0' u = u0, S = So, and c = co, we obtain the acoustics equations,

PT + P0divu = 0,

(5.3) uT + c0 p -1Vp + p0-1Ps 0 VS = 0,

ST = 0,

where 9T = 9t + u0 *V. The plane wave solutions of (5.3) are

p = pexpi(k.x-.,t), S = Sexpi(k.x-wt), u = uexpi(k-x-wt),

where
(W - U0 .k)n[(W _ u0.k)2 - c0

2 k2 = 0.

The root

( - u0 .k) 2 = C02k

is the dispersion relation of sound waves. The associated null vector is

P 1O
uj = [c0 1 , k =k-1 k.

0'

Sound waves are compressive, longitudinal, and isentropic. The root

W = u0 .k,

is a multiple eigenvalue in more than one space dimension. Such waves are

554



convected by the background flow. The associated null space is spanned by vectors

of the form

P -PSO 0
u = 0 or k" where k'-k = 0.

These waves carry either entropy at constant pressure, or vorticity.

5.2 A single sound wave

We begin with two examples. The first is a sound wave propagating through a

stratified fluid. The equations of motion in one space dimension - including

viscosity, heat conduction, and a gravitational body force - are:

(5.3) u + c /p u ps/ = -g + [9x(- Ux /p

S t 00 . S x 0 /lux2+ax( T)pT
4Here, p = 4 + PB" We suppose that the unperturbed state is one of hydrostatic

equilibrium,

p = PO(, u = 0, S = S0 (x),

p = p0(x) = exp(S 0/Cv)p 0
7 '

9 90

c= (x) = -Ip0/P0,

where

PO' = -gpO' d

The scale height of the stratification is a typical value of

pO/po,
A special case is isothermal equilibrium, when the fluid is exponentially stratified,

p0 = pexp(-x/H), p0 = p. exp(-x/H), co = (-,gH)1/ 2.

Here, H is the scale height, p, and p, are the density and pressure at x = 0, and
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the sound speed is constant. In the atmosphere, the sound speed is not constant -

it varies from about 330 ms- 1 at sea level to 300 ms - 1 at 10 km.

To explain when a sound wave may be described using the weakly nonlinear

theory, we introduce the acoustic Mach number
u

a c 0

Here, u max is the maximum particle velocity in the sound wave. We denote a

typical wavenumber by k i.e.

IVlL= O(k).
Umax

The wave is small amplitude if Ma << 1. The cumulative effect of nonlinearity is

important over propagation distances 1N = 0(M ak)-1. A more precise value is

tfN = (MakL)-i,

where L is the parameter of nonlinearity of the fluid, defined below (5.4). Then eN

is the shock formation distance for a plane wave with maximum slope k.

Nondimensionalizing lengths by eN' the weakly nonlinear theory describes the

propagation of waves of amplitude order c << 1, and wavenumber of order -1 over

distances of the order one.

A typical width of the N-wave in a sonic boom is 100m (k = -1). The.50
the strength of a strong boom is M = 10- 3. This gives fN - 40 km. For a 20

kHz ultrasonic wave in water, at standard conditions, with strength Ma = 10- 1

(which corresponds to maximum overpressures of two atmospheres), one finds that

e N :353 m.

The importance of shear viscosity is measured by the acoustic Reynolds number.
_p 0 C0

Re = -- "

Viscous effects are important over propagation distances of the order
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f D = Re k- 1.

For the sonic boom in air with k -1m this gives 'D 2 106 km. Thus

shear viscosity has negligable influence over most of the N-wave. However, it may

have an important effect in spreading out the shock waves. Also, dissipation due to

relaxation effects, which we shall not consider here, is usually more important than

that due to shear viscosity. For a 20 kHz ultrasonic wave in water t - 103 km is

also much longer than the nonlinear lengthscale. However, at higher frequencies of

about 100 N4Hz, one finds that fN tD ': 1 0- 2 m, so that nonlinear and viscous

effects are about the same magnitude.

A balance between weakly nonlinear, viscous, and nonuniform effects occurs in

the limit M a -- 0+, with f N ID - H. This gives

Ma = 0(f), small amplitude,

kH = O(c - ) high frequency,

Re = 0(e- 1 ) large acoustic Reynolds number.

These effects are significant over propagation distances of the order ((k) - 1 . Special

cases (e.g. an inviscid fluid) may be obtained from this expansion by neglecting the

appropriate terms.

We nondimensionalize (5.3) by the scale height H, and the density p, and

sound speed c., at x = 0. With the above scaling assumptions, the nondimensional

2
viscosity and thermal conductivity are of the order c,

The weakly nonlinear expansion for a sound wave propagating in the positive

x-direction is

U 0  + ca[k-l(xt)xt] c0 (x) + O(c),
S S(x)J 0
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where 0 is the retarded time,

= t - f c0(x- dx.

The transport equation for the wave amplitude is,

1 31 6 -2(5.4) at + c0 ax - I-Laa9 + (2po)- (coPo'+3copo)a 2 0 ao0,

where

6= + )
PO POC p

The quantity c26 is the "diffusivity of sound" [26],
2 4 + IB + I-Cv/A

f2 =[4+ 5+ir Pr = = Prandtl number.

The coefficient of the nonlinear term,

is called the parameter of nonlinearity of the fluid. The "I" in L is due to

convection of the wave by its own velocity field. The remaining part is due to the

variation of sound speed with density. L = 1.2 for air, and L - 3.5 for water. The

nonlinearity of sound waves in air is mainly due to convection, but in water it is

mainly due to the dependence of sound speed on density.

The inviscid form of (5.4) may be written as,
d(~c a3 9 d+1 2 3

(5.3) t(poco-a-) + a(poCo a-) - ( 0

2 2which states that the average linearized wave energy density, P0 c0 a , is conserved.

For a uniform fluid, in which p0 and co are equal to one, (5.4) reduces to Burgers'

equation,

(5.6 at +a x -aa a

For an exponentially stratified fluid, (5.4) gives

(.5.7)+ at+ ~ 1 1 1X(5.7) a t + ax - T-aa0 - la = l6 0 eXa 09 .

Here, 60 is the diffusivity of sound at x = 0. (We assume that the viscosities and
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thermal conductivity depend only on temperature.) If nonlinearity and dissipation

are neglected, the wave amplitude grows along a ray like exp(x). This follows from

conservation of energy (5.5), since the density decays like e -x , and the sound speed

is constant.

For our second example, we consider spherical sound waves. Geometrical

acoustics applies at distances r which are much greater than a wavelength. The

NGA solution for an outgoing spherical wave propagating through a uniform fluid is

u = 0 + ca[.-,r,t] I + O(2),
S 0 0

where u is the radial velocity component. The transport equation is
n-l1a =la,

(5.9) at + ar + a -+ -

where n is the number of space dimensions (n = 2 for cylindrical waves and n 3

for spherical waves). If 6 = 0, this has the conservative form
an-i 2, n-1 +1 n-1 a 3)
t r a ) + -Fr(r a-) + = 0.

The general solution of the linearized equation is therefore

a = a0(r-t)r-(n1)/2

n-iThe cross-sectional area of a cone of rays at a distance r, is proportional to r

Thus this formula states that (amplitude 2 x ray tube area) is constant along a

ray, which also follows from conservation of wave energy.

For a sound wave propagating through a nonuniform, moving fluid the NGA

solution of (5.1) is
P PO Pop

(5.10) u = u0 + ca[ -1 (x't),xt][ c0
2 k + O().

S SO 0o

In (5.10), p0(x,t), u0(x.t), S0(xt) are smooth solutions of the nondissipative form of

(3.1), and c0(x.t) is the corresponding sound speed. The local frequency and
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wavenumber are

w =- 6t' k =V,

and Q is the frequency in a reference frame moving with the fluid,

Q = w - u0*k =- P

where

OTw= a+ U0 V.

The eikonal equation for 6 is

Ow2 = c02V12

The transport equation for a is
(.5.11) aT + Q k.Va + 1+i)aa

QT + c0
2divk 8T(POCO) . k.V(P 0 C0 

4 ) 2+ { 2M. + 2P0C2 +divuO + 2 2Q- }a =2& a00.

If J = 0, (5.11) can be put in the conservative form,

+ div[(u 0 +Q2k)A] = 0,

where

A = P0C02.a2

is the wave action.

Chin et al [4] have used this expansion for (5.1) with heat sources, to study

the nonlinear development of acoustic instabilities.

5.3 Diffraction

5.3.1 Transverse diffraction

Transverse version of the GBE's in section 5.1 are most easily obtained by the

following heuristic argument. We consider plane waves in two space dimensions for
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simplicity. In a stationary fluid, with sound speed one, the linearized dispersion

relation is

(5.12) 2 k2 + + m2 .

In (5.2), k, f, a.d m are the x, y and z components of the wavenumber vector. For

waves propagating in the positive x-direction, with slow variation in the y and

z-directions,
f m
K - -k - < < 1

Expanding (5.12) gives

(5.1:3) ~k + (2k)-l([+r2).

The transverse version of (5.2) and (5.6), whose linearized dispersion relation agrees

with (.5.13) is

u = 0 + ]a( -- , I v ---2xIyIz,t) I +

S 0 0

where a(0.17, ,x.y,z,t) satisfies

0-(at + ax 2 aa 0 ,a) ( +a = o.

For an axially symmetric beam, this gives

(5.14) aO0(a t + ax - Iaa 0 - : O1,6a - !(app + p- a) = 01p

where
2 2) 1/2 -/ /

p = (q + (') - -lr(yjz), r-- (y2 + z2) 1 -2

This equation is not obtained directly by using V' = r, which gives (.5.14) without

the tern proportional to p-a p. This is because r is not smooth at r = 0. The

two expansions agree when r >> /.

For nonplanar waves (in a uniform, stationary fluid for simplicity), o(x.t) solves

the eikonal equation.

k'1 k = V
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and i'(x) must satisfy

VQ.Vl' = 0.

The transport equation is

[at + UTk.Va + u)}aa 0 + . -k -2 a0  + c0 a +1 -- 0.

For the case of a sound wave propagating vertically upwards through an

exponentially stratified fluid and diffracting horizontally, the transverse equation

corresponding to (5.7) is
00at +ax 1 a 1a  1e~ 1 a =Odo~t +ax- _;-a -_ -.17 -20 e a00) -0,ir

where q = c-1/2y. The change of variables (3.6), with an additional rescaling to

remove constant factors, puts this equation in the form
ut + uux - tuj + t- uvv =0, t >0.

For a outgoing cylindrical wave diffracting in the angular direction, the transverse

equation corresponding to (5.9), with n = 2, is

0(at + ar + 0 +  - 1r a+ 2ra 0

where q = -1/2t-1 v). The change of variables (3.6) leads to

[t + uux- tuxx] + t-3Uy 0.

As shown in section 3.1. this equation is equivalent to the Kuznetsov equation (3.8).

5.3.2 Caustics

Suppose that a nonplanar sound wave propagates through a uniform fluid at rest and

forms a smooth. convex caustic at '(x) = 0. The weakly nonlinear solution is

u - 0 + f2/3a[f-O(Xt),- 2/3liO(x),x.t] k(x) + 0(c).

Here.
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6(x,t) = ¢(x) - t,

and the sound. speed and the density of the unperturbed fluid are one. The functions

and 1' are determined from

,V(l2 + Vovwl = , vl. I V! = 0,

and a(Or,x,t) satisfies

5+ a, =0,

where

M = IV (7+1).

For example, consider a circular caustic at r = R, where (r,o') are polar

coorninates in the plane. ThenR ? 2.3/2=9

R o,, 2V312 = (r2_R2)1/ 2 _ Rcos-(R).

On r = R, this implies that

M = 24/3R2/3 (7+1).

5.4 Interacting waves

5.4.1 Reflection of a sound wave off an entropy wave

The weakly nonlinear expansion for interacting wave solutions of (5.3) has the

following form

p 1 kl(x+t )  1
u i = 0 + call . ,t]

+ 'x'a2- x0t] + ca3 r Xt] I + O(
- 0

Here. the entropy variations are nondimensionalized by cp. This solution is a sum of

a sound wave moving to the left (with amplitude a,), an entropy wave (with
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amplitude a.), and a sound wave moving to the right (with amplitude a3).

The resonant interaction equations for the wave amplitudes are

alt(O) alx(O) - k, +1 ,

1 T-a-~ ~ + k0)a 0(0),1ur 3-20 k9l1'

-9Ii J0 a.' + 2 v ] 219
- -oo - 3 ( d k'a0()

(5.15) a9t = k2I2 a200,

a3t(0) + a3x(O) + k3 324 a3 (O)a3 0(O)
1 1-T k.20 k2d 1 2+ 41-k9 Ilim f .,' a2L-- + a ) d k=

T-k T'0 Lk3  al (o 2T3 0 a3 .00

In (3.15), we have not shown the dependence of aj on (x,t) explicitly, and a,'(0) =

0a 2( 0). These equations consist of a pair of Burgers equations for the sound waves

coupled by a correlation with the entropy wave. The entropy wave is determined

independently of the sound waves from the diffusion equation (5.15b). Thus, (5.15)

describes the reflection of sound waves off an entropy perturbation.

We obtain a simpler version of (5.15) if we neglect thermo-viscous effects

(6 = s = 0), and assume that there are no spatial modulations (a. independent of

x). Then from (.5.1b)

a, = a.(,)

is an arbitrary function of 0, which we assume to be 2:r-periodic in 0. \Ve shall

look for 2--periodic solutions for {a1,a2}. The correlations in (5.15) are only

2h -periodic if
k ,2  k 9

7- I n. 3-m1 3

where n and m are integers. Then, nondimensionalizing lengths so that k2 = 2. the

wavenumbers are
= 1

k = , k2 2, k 3 m= ,

and the correspondi ng frequencies are
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1 = -k 1 , 2 = 0, w3 =k 3 .

They satisfy the resonance condition,

k9 = nk 1 +mk 3,

9 = n + mW T

Defining new variables

u(9,t) = k3.-a3,

v(9,t) = -kl /- 1a l (9t),
121(O) = 1 a.' ( 0) ,K(9

in (5.1.5), gives the following pair of integro-differential equations for u(x,t) and

v(x,t),

ut + uux I f 2 K(mx + ny)v(y,t) dy 0,
(5.16) 7r

v + vv + a-! f2 K(nx + my)u(y,t) dy =0.

These equations (with Iml = Il = 1) have been studied analytically and

numerically by Majda, Rosales, and Schonbeck [31]. For a sinusoidal entropy

distribution, and m = -n = 1, (.5.16) becomes

u+±uu + 1 f2T sin(x - y)v(y,t) dy = 0,ut +u x  2 7r-0

(.5.17)

v + vv + _ f27 sin(x - y)u(y,t) dy = 0.

Pego [38] found an exact travelling wave solution of (.5.17), namely

u = c + 3[1 + acos(x-ct)]1/ 2,(.5.18)

v = c + 3[1 + oacos(x-ct)] 1/ 2,

where a E {-1,+1}, 0 < a < 1, and

3(a) = - 2T cosy(1 + acosy)1/2dy,
c(a) = - 1(a) f2 + acosy)1/2
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An interesting feature of this solution is that waves exist only up to a maximum

amplitude, correponding to a =1. The limiting wave has a cusp at its crest or
trough.

5.4.2 Wave induced combustion

The combustion equations contain source terms which are rapidly varying when the

activation energy is large. A combination of weakly nonlinear-high frequency and

high activation energy asymptotics leads to equations of the type described in section

4.2 [30]. The mean field equations are

- - I T v~(1alt -aix (2r)-le < exp(^-I)a > ,

- 9 -i Ta9t = (2-y)-e < exp('r-l)a >,
a3t + a 3x =(2" -1) < exp(^t-1)a >,

and the equation for the wave is

at - ax - [(-/+l)al + (-lla 2 + (,-3)]a -- 2 aa0

=(2)-leTITexp('y-i)a -- < exp(--1)a >].

Here. cal(x,t). ), c 3(xt) are the mean field perturbations in the left-moving

sound wave. the entropy wave, and the right-moving sound wave, and

T = 1 + a2 + -a3 ).

The amplitude of the left-moving high frequency sound wave is ca(x--t,x,t), where

a(O.x.t) is a zero-mean almost periodic function of 0, and

< exp(-/-l)a > (xt) = 1 im T fT exp[(yt-1)a(9,x,t)] dO.
T- 3o

The solution for the mean field blows up in finite time. The blow-up time is

shorter when a j 0 than when a = 0. This describes one way that a sound wave

could enhance the detonatation of a reacting gas.
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Phase-Change Problem for Hyperbolic
Heat Transfer Model

Dening Li
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Abstract

Phase-change problem is discussed for a hyperbolic heat transfer
model under the traditional assumption that the temperatures on two
sides of the interface are equal and given. The sufficient and Retessary
conditions are given for the local solution to exist and be unique.
Global existence is discussed for some special case.

1 Introduction

As is well-known, the classical mathematical model for the heat transfer and
diffusion phenomena is of parabolic type, in particular, the heat equation.
These models are based upon the Fourier's law of heat conduction:

q= -kVu, (1.1)

where j'is the heat flux vector, k the thermal conductivity, u the temperature.
In most cases, this kind of model works pretty well and gives satisfactory
results. But one inherent shortcoming of the parabolic model is that it implies
a physically unacceptable infinite propagation speed. This might be very
important in certain models with large variations in temperature or large
gradients of temperature.
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In order to avoid this difficulty, it has long been proposed that instead of
the Fourier law, one should assume that the heat flux responds to tempera-
ture gradient after a delay period of r > 0 : i.e.

q(t + r) = -kVT(t). (1.2)

Taking first order approximation one has the following relaxation relation:

rq(t) + qt) = -kVT(t). (1.3)

Replacing the Fourier law with this relation and combining with the law of
conservation of energy:

cput + V. q= 0, (1.4)

with p being the density, c the specific heat, one has the hyperbolic telegra-
pher's equation

rut + ut - a 2Au = 0. (1.5)

Here, a 2 = k/pc is the diffusivity.
In particular, for 7 = 0, we get the classical heat equation. There are

already a lot of works about the relation between the classical heat equation
and the telegrapher's equation. For the Cauchy problem or initial-boundary
value problem, the solution of telegrapher's equation tends uniformly to the
solution of classical heat equation as r --+ 0.

On the other hand , for the classical heat equation, an interesting and
important problem both in theoretical research and application is the famous
Stefan problem. The Stefan problem consists of finding not only the temper-
ature distribution u(x, t), but also the surface along which a phase change
occurs. It is only natural that one should study the problems of Stefan type
for the hyperbolic heat transfer model.

In [5], Solomon and others gave a formulation of hyperbolic Stefan prob-
lem based upon the traditional assumption that the temperatures on two
sides of phase change boundary are given and equal. Also in their paper, an
explicit solution was given where the phase change front propagates faster
than sound speed and consequently is physically unacceptable.

Partly in order to avoid this difficulty, several authors [1][2][4][6] sug-
gested other formulation of phase change condition based upon the Rankine-
Hugoniot conditions for the hyperbolic conservation laws. In particular, in
this type of formulations, the temperature across the phase-change surface
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is discontinuous. And in all these papers, the original question of Solomon
and others in [5] remained unanswered.

In this paper, we want to study the Stefan problem for the hyperbolic
heat model in the classical framework where the temperature is assumed
to be given and continuous across the phase-change surface. The sufficient
and necessary conditions are given for the local existence and uniqueness.
In particular, for the example in [5], a natural mathematical explanation
is given. Also, the global solution is discussed for some examples. But
the conditions to guarantee the global existence are only sufficient ones. It
remains open as to what extent these conditions could be relaxed. And also,
we treat here only the case of one space dimension. For the high dimensional
case, the only result now available is in [4], where a weak solution was given.

2 Local Solution

2.1 One Phase Problem

The one-phase Stefan problem for the hyperbolic heat transfer model consists
in solving the following free boundary problem;

rqt + q + ku. = 0, <X< 0(t), t>0. (2.1)
cput + q_ = 0.

pl ' (t) = q(x,t) on x = 0(t), t > 0. (2.2)

where H is the latent heat, and 0(0) = 0.

The boundary condition imposed on the fixed boundary x = xo < 0 may
be one of the following:

1. Imposed temperature:

u(zo, t) = u#(t), t > 0; (2.3)

2. Imposed flux
q(xo, t) = q#(t), t > 0; (2.4)
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3. Convective boundary condition

q(xo, t) = h[u#(t) - u(xo, t)], t > 0. (2.5)

If x0 = 0, then no initial condition is needed. If Xo < 0, initial conditions
should be given:

u(x,0) = uo(x), q(x,0) = qo(x), xo < x < 0. (2.6)

Now for the case of x0 < 0, we have the following result:

Theorem 2.1 If uo, qo E C 1(-oo, 0], and satisfy the corresponding compat-
ible condition at x = 0,t = 0. Then the problem (2.1)(2.2) coupled with
any one of the boundary conditions in (2.3)-(2.5) has a unique local solution
(u,q,) E C' X C 1 X C2 if

jqo(0)l < pH('r)- . (2.7)

The idea of the proof is to introduce the new variables

.t = X - 0(t), T = t (2.8)

to transform the original free boundary problem into a fixed boundary prob-
lem, and then solve the transformed problem by integration along character-
istics and linear iteration.

The condition (2.7) is also necessary in the sense that if it is not true,
one would have either non-uniqueness or non-existence of the solution.

In particular, Theorem 2.1 explains the physically unacceptable explicit
solution example given in [51 where (2.7) is not satisfied and consequently
the solution is not unique in that case.

If xO = 0, then the situation is a little different from the previous case:

Theorem 2.2 If uo, qo E C'(-00, 0], and satisfy the corresponding compat-
ible condition at x = 0,t = 0. Then the problem (2.1)(2.2) coupled with
any one of the boundary conditions in (2.4)(2.5) has a unique local solution
(u,q,6) E C' X C 1 X C2 if

0 < qo(0) < pHa(r)-4 . (2.9)

The problem (2.1)(2.2)(2.3) is not well-posed.
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The proof of this theorem is again achieved by integration along character-
istics and linear iteration. In doing so, we make use of the theorem of Zhao
about the well-posedness of boundary value problems for hyperbolic system
in corner domain in (7] which extends the result of [3].

The non-well-posedness of the problem (2.1)(2.2)(2.3) follows from the
fact that q(0, 0) is not uniquely determined. Consequently the solution is
not unique. 1

2.2 Two phase problem

Similar to the one phase case, the two phase Stefan problem can be formu-
lated as follows; {cl9tUq1 + kid u = 0, in 0 < 0(t). (2.10)

ciptqu + akqu = 0.

72#9 tq2 + k2 .U2 = 0, in x > 0(t). (2.11)
IC2P(9tU2 + OA,2  0.{ui(x- t) = U2(X,t) =0, onx(.2

pH4'(t) = (q, - q2)(X,t). on x = 4(t). (2.12)

u(x,0) = uIo(x), qi(x,O) = qlo(x), x <O,
U2 (X,0) = u2o(X), q2(x,0) = q2o(X), x > 0, (2.13)
0(0) = 0.

Theorem 2.3 If u1 o, qio, u20, q2o E C 1, and satisfy the corresponding com-
patible condition at x = 0, t = 0. Then the problem (2.11)-(2.13) has a
unique local solution (ul, ql, u2 , q2, 0), if

I(q20 - q10)(0)j < min{pH(ar/71), pH(a2/r 2)1. (2.14)

The proof of this theorem is similar to the proof of theorem 2.1.

3 Global solution

For the global solution of the hyperbolic Stefan problems discussed in section
2, we'll consider only some special case.

For the one phase problem with the imposed temperature condition on
the fixed boundary (2.1)-(2.3),(2.6), we have
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Theorem 3.1 If uo, qo, u# are sufficiently smooth and corresponding com-
patible conditions are satisfied at (0, 0), (Zo, 0). If in addition,

U' ± kcrIq < 0,

0 < c(uo(0) + karqo(0)) < 1.

Then the problem (2.1)-(-.3),(2.6) has a unique global smooth solution (u,q, 4,).

For the proof of this global result, we follow the approach of J. Greenberg in
[2]. As usual, by linear transformations of the independent variables and the
unknown functions, we can reduced the problem into the diagonal form. The
global existence is proven if we can show that the free boundary will remain
uniformly noncharacteristic for all times. This in turn can be achieved by
the monotoneity argument similar to the one employed in [2].

Very similarly, the global existence of the two-phase Stefan problem can
be stated and proven if the same kind of monotoneity of the initial data is
assumed and the relaxation time r and the diffusivity ct in two phases are
assumed to be equal.
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Modifications to the Calculation of Fire Spread
in Large Compartments

K. C. Heaton
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Abstract

Recently, it has become possible to model the progress of fires in large
structures, such as buildings, with considerable accuracy. However, many of
the physical processes involved in large fires, such as the rate of spread of
the fire and the balance between convective and radiative heating and cooling
effects, are difficult to model accurately from first principles.

In this work, an improved approximation for the flux onto burning objects
from flames is derived and used to obtain an expression describing the rate
of fire spread. The new formulations developed in this work are incorporated
into a compartment fire model. Some results from a numerical solution of the
equations governing fires for a specific case are presented.

1 Introduction

Fueled by recent events such as the fire in the King's Cross underground station,
there has been considerable interest in modelling the spread of fires in the interiors
of large structures such as buildings and large compartments. In general, there
are two types of fire models: stochastic and deterministic. An example of the
first type is the model originally developed at Worchester Polytechnic Institute to
model the spread of fire in buildings, and subsequently substantially modified at
DREV to model the spread of fires on board ships (Fitzgerald 1984). This model
is a stochastic one, and hence one must specify the probabilities of thermal and
structural failures of the walls, the probability of self-extinction of a fire within a
given compartment, and the probability of success of attempts to extinguish the
fire.

The other approach is a deterministic one in which the initial conditions such
as fuel load, ignition temperatures, ventilation parameters, and dimensions of the
compartment are specified, with the progress of the fire being modelled by simu-
lating the physics of the fire. The deterministic models are further subdivided into
two subclasses: computational fluid dynamics models and zone models. The CFD
models divide the volume of interest, such as the interior of a compartment, into
several thousand cells, and calculate the conditions within each cell based on e.g.
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the gas species and temperatures, incident and emitted radiation, and air movement
within each cell. This method has the disadvantage of being very computationally
Litensive, requiring the use of a supercomputer.

The second type of deterministic fire model is the zone model. In this class of
models, the volume of interest is divided into two or more zones, and the model
calculates average conditions within each zone. The most usual choice of zones is
one in which the layer of hot gases which tend to accumulate near the ceiling and
the lower layer of relatively cool gases are represented. CFC V, the fifth Harvard
Computer Fire Code (Mitler 1985, Mitler and Emmons 1981), is a two zone model
originally written to be used in the prediction of the spread of fires within buildings.
Even in these relatively simple forms, the physical processes involved in burning
require large numbers of calculations with all the problems attendant upon the
solution of non-linear systems of equations.

In this paper, the methods used in CFC V to calculate the radiant flux from
flames, flame spread and temperatures for objects are described. The modification
to the algorithms for the calculation of the radiant flux are described, along with
the adaptation of Quintiere's (1981) model of flame spread to a form suitable for
incorporation into CFC are described, and numerical examples are presented.

2 Calculation of Heat Flux, Temperature and Flame
Spread

2.1 Review of Previous Work

In CFC V, a flame is modelled by a cone of grey gas at a temperature of 12600 K,
with radius r/, height hf, and semi-apex angle tp. The power per steradian per unit
volume, dSQ, from an emitting element dV is given by

dSQ = g -, (1)
47r

where g is given by
g = 4teaT, (2)

and ic is the absorptivity of the flame gas in m- 1, Tf the flame temperature in *K
and a = 5.67 x 10- 8 W/m 2 °K4 the Steffan-Boltzmann constant. The flux per unit
volume per steradian at a point P a distance p from the emitting element dV is
given by

d3  gdV. (3)= 47r 7 p ,' 3

as shown in Fig. 1. The flux normal to the surface, dS ,, is given by

Sg dV (4)-~. 47r p2 p - n. (4)
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As can be seen from Fig. 1, for an element of volume located on a disc at a height
z above the surface containing the point P and at a radial coordinate z,

.. X

p-,= -, (5)P

and
p2 = 32 + Z2 - 2sz cos (6)

where s = (x2 + L 2) 2 is the distance from the centre of the disc at x to P, L is the
distance from the centre of the flame base to P, and 0' is the angle between s and
z. Again referring to Fig. 1, if 0 is the usual azimuthal coordinate, and 0' is the
angle between . and L,

= z cos 0Z + z sin ,

3 = s cos O'i - s sin O'D. (7)

Hence,

g.i"
CosqS 131 Izl

- cos 0' cos (8)
L

- Cos4,

Substituting eqs. (5), (6) and (8) into eq. (4) and using dV = z dzdz do, one obtains

d _3, = g z947r (X2 + Z2 + L 2 - 2Lzcos O)A2zzd 9

(Mitler 1978).
The normal flux from the whole flame at P, 0., is then given by

On= 4rf. f0 0 (z2 + Z2 + L 2 - 2Lz cos ) 2do dzdx, (10)

where z(z), the width of the cone as a function of height x, is given by

z(x) = rf + (x,. - x) tan 0'. (11)

Usually, z = 0 and xb = hf; however, if the cone of flame extends into the layer of
smoke at a height x above the firebase, it is (perhaps unrealistically) assumed that
that portion of the flame within the layer produces a negligible contribution to the
flux at P. Under those circumstances, zb = h/- xL. If P is not on the same level as
the fire base, z. will take a non-zero value which is a function of the line of sight to
P.

Evidently, the evaluation of eq. (10) by analytic methods is not tractable. In
CFC V, eq. (10) is integrated by the expedient of setting cos 4' to its average value
of cos o = 0.
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Substituting cos 4) = cos O = 0 into eq. (10), and integrating, one obtains that

-@,L = ((L2+x4) i- (L2 + x.) L-cos2?(sb - sa) (12)2 12

+bsin ik cos2 0ln I b + x -ec Ot - b sin b\

where

b = r!+za tan ,

=- (L2+ z +r'), (13)

8b (L' + ' + (rf - (xb- x.) tan J 2)4

(Mitler 1978). The error introduced by setting cos 4) - 0 in eq. (10) is compensated
for by multiplying eq. (12) by

0 0.5068dP, d < 1
f(d) = 1 + 0.37 d > 1 (14)

where d - and p = 2.825 (Mitler 1978). For an optically thick flame, the
rf

modified normal flux, 4D, is given by

= f(d) ,, 1- (15)

where the effective optical depth, r, through the source is given by

-= 4 Xrf (1 + 0.84 2), (16)

where f! < 1.L -*
For the case in which P lies within another fire, V, is given by

= f(d) D,, e -ri (17)

where rT = icrf1 , and ici and r' are the absorptivity and radius, respectively, of
the flame at P. For the case of a flame radiating to its own base, an average value
for V,, , ib, is used where

Tb = aT" (1 - e- 755 oT4) . (18)

In CFC V, the fire spread is modelled by a semi-empirical formulation which
uses an expression for f,the average normal flux to the base of the fire, given by

(19
5 30 1 - e- A (19)
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1
where A is an experimentally determined fire spread parameter, B - and

= By inverting eq. (19), one obtains 
O

f dr"-

I= -Aln(1- BT) (20)
AB"T 1 + B--- + B'2) , B6 ¢< 1.

A value for r1 (t) at each time step of the integration can then be obtained from
ro0 +At

r1 (to + At) = rf(to) + t dt. (21)
to

There are several problems associated with this method of determining rf. The
principal difficulty is that eq. (19) was derived under an implicit assumption that
rI ; .Olrf. This assumption derives from a series of tests on polyurethane foam,
and there is no particular guarantee that it is applicable for all circumstances or for
other materials.

2.2 Evaluation of Flux and Fire Spread

It is possible partially to evaluate eq. (10) exactly by rearranging the order of the
integrations,thusly:

gn= ,2 f W xz dz dx do. (22)

7= z0 . 0 (x 2 +z 2 +L 2 -2Lzcos d)  z(

Integrating eq. (22) with respect to z yields

4

= (23)
i=1

where
g f 2rf x Lco z x L coo)7-g 2/ ~o4(~)Lcs)dx do, (24)

47r J0Jz, (x2+L2sin2 4)( X2+z2(z) +L 2 -2Lz(x)cos¢)d

g2 = -" ff dxdo, (25)
47r Jo z. (X2 + z 2(z) + L2 - 2Lz(x) cos0)2

O = g f(21 jzb xL 2 COS2 0 d do, (6
4r o (x2 + L2) (Z2 + L2sin4) (26)

0 4 g = L d d o. (27)41r = fo fz. (X2 + L2) 2

Now, $4 can be completely integrated, thusly:

g(( + L+2 (2 + )) . (28)
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The integrals for '0, I2 and OD3 can be integrated analytically only with respect to
X. $3 becomes

=03 g L 2cos

47r 2 Jo
In (( X2 + L2 sin2 2)-1 [(.2 Isin4'I)x((cos z' + 2L 2(- sin 4' + 2 sin 2 0 + 1)X2

+L 4 (sin2 4± 1)2) -cos 2  X2 - L(sin 4 + 1))1

+(V/2L((cos 4 kz 4 + 2L 2 (- sin4 40 + 2sin2 4' + 1)X2  (29)

+L (sin2 4+ 1 )2)i +cos 2 4'z + L (sin' 4 + 1))i

+(cos' 4z 4 + 2L(-sin4 4' + 2sin2 4 + 1)V+ L4 (sin2 4' + 1)2) + sin2 4'x2 + L : d1z .

In order to proceed further with integration of 4D and 4s it is assumed that z(X) is
always an expression of the form

z(z) = a -b x, (30)

Substituting eq. (30) into eq. (25) one obtains

4rf0 f. ((l+b 2)z2 +2b(Lcos4'-a)x+L 2 +a 2 -2Lacos4) d

(31)
Integrating eq. (31) with respect to x yields

g f2v ((l + b2)X 2 + 2b(Lcos4' - a)x + L 2 + a2 - 2Lacos') (324 2- (32)
47rJo (1 +b 2)

b(L cos' - a) 2(, 2X
+b- ln(2V/(1 + b2)((1 + b2)z2 + 2b(Lcos 0 - a)z + L2 + a2 - 2Lacoso)

+ (1-+b)

+2(1 + b +)z + 2b(Lcos 0 - a))I ° d1: .

The substitution of eq. (30) into eq. (24) and the expression of the result in terms
of partial fractions produces

1 - + 12, (33)

where

g11 f frf (34)47" J0 Jze

Lcos4(Lcos4'- a)x - bL s cos4'sin2 4d

(2 + L2 sin2 )((1 + b2)X 2 + 2b(Lcos 0 - a)z + L2 + a2 - 2Lacoso)

g41 .2 bLcos 0 dxdo.

4fr fo,& ((1 + b2)X2 + 2b(Lcos4' - a): + L2 + a2 - 2Lacos4) d
(35)
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Equation (35) can be integrated directly, resulting in

g f2v bLcos 0 (36)
47r ao (1 +b2)12

ln (2V(1 + b2)((1 + b2)x 2 + 2b(L cos -a)x + L 2 + a 2 - 2Lacoso)

+2(1 + b2)x + 2b(Lcos4- a))jX6 dO.
Iza

The integration of 4D1 requires some additional effort. Using the substitutions
suggested by Gradshteyn and Ryzhik (1980, pgs. 80 -81), one finds that

g f2 rLcos(3 I (37)
47rJ0 2

In ((1 + b2 )X 2 + 2b(Lcos - a)x + L 2 + a 2 - 2Lacos4) - bx - Lcos4+ a))j dO
((1 + b2)x2 + 2b(Lcos4) - a)x + L2 + a2 - 2Lacos )1 + bx + Lcose - a))° d .

By substituting eqs. (28), (29), (32), (36), and (37) into eq. (23), one can integrate
the resulting expression for 0, numerically with respect to 4 and so obtain an exact
expression for the flux at the point L.

There are four special cases which must be dealt with individually: that for
which L = 0 and those for which x = 0 while 4 - 0, 7r, or 2r.

When L - 0, 0, is given by:

2)(1(V( 2+X2 2)1 b) b
n = (g (Xb ab2 )a In / +b 2)(( l + b2)zb - 2baxb + a2) +(+b 2) - 2ba))

((1 + b2)X2 - 2baXb + a2)i -a(1 + b2 ) J (38)

The integrands of eqs. (29), (32)-(37) are undefined when x = 0 at the same
time as 4 = 0, 7r, 27r. When this arises during the numerical integration of these
equations with respect to 4, the limit of X?=0 t as x -+ 0 must be taken. Explicitly,

3 g{Lln + L-a (39)
lim, E 

-1

(b(b L+a) n(b+(b +1)2I
(b2 + 1) 2J

and
liT i = {Lln (L a) (40)

X -- 47rL (b2 + 1)(40)

1 (b(b2L-a) ln((b2 + 1)i -b))}

(b2 + 1)i
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Finally, when the field point L is very much greater than rf, eq. (22) can be
expressed as

° g- f ,& ,o 2 (z + 3 cos (,)z + 3 ((5coo - 1 -)Z2 + ) do dz dx

(41)
The integration of eq. (41) yields

4L= X2 ( (42)4P 2 3

x2 ( 3b4 X4  b2x4  9ab3z 3  3abx3

+L2 T6 4 - 10 5

27a 2b 4 X2  3a 2 X2  a3bx 9ba 4 )'] Z

16 8 2 16 - '

Once Dn has been obtained, either numerically or by means of direct integration if
possible, (D' may be found by the application of eqs. (16)-(17) with f(d) 1, since
there is no error arising from the use of an average value for cos 4 in the calculations
described above. For the case of L = 0, r = .2062994 r, hf which corresponds to
the average optical depth at the height at which the volume of the cone has been
divided into two equal parts.

In order to obtain the total normal flux, 4", at a point P, one must sum not only
the contributions to the flux from all flames visible at that point, but as well those
from the walls, ceiling, and hot layer.

Once the flux 4" is known, the surface temperature distribution across any object
may be calculated using the one dimensional heat conduction equation,

aT a 2 T (3)
-t' (4

under the condition that

- k T-. = l"(Z,,z, A t) - h(T(x., z, At) - T(x., z, 0)) (44)
2=Z&

(Quintiere 1981). It should be noted at this point that the coordinate system of
eqs. (43)-(44) is that of Fig. 1, and hence x is the vertical coordinate and z the
horizontal.

The solution to eq.(43) is given by

T(x,,z,At) - T(x,,z,O) fo a ' J " (x",z,s) ds (45)
k - fo A t -

- h at 4"(x., z,s) exp (a(A t - s)) erfc /a(A t- s)ds
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where p is now the density of the object, h the heat transfer coefficient, k the thermal

conductivity, c the specific heat capacity, a L the thermal diffusivity, and
PC

a = a(h (46)

If At = t - to is sufficiently small, one can write

4"=(Xa, Zt) "(Xa, z, to) + ! L =, At (47)
dt tt

Setting to = 0 in eq. (47) and substituting the result into eq. (45), one obtains an
expression for the change, AT, in the temperature T across the surface of an object
during a time interval At:

A T = q"(x azo) (eIf( aA-t)e dW e a t +  2V -A-t 2v/-A-t- 1
h h V~r/Wirh hJ

(d4" erf(v/-Aa At aAt 4,/- (At) (48)
(t to=O a ah +  3Vrk

4V (A t)i At 2v' t + 1
3 fir + h 77rh + h

Using eq. (48), one can evaluate the temperature across the surface of an object
at as many points as desired for each value of At. If one knows the ignition tem-
perature Ti,, for an object, it is possible to calculate, using eq. (48), , at what time
the temperature at each point exceeds T4g, and so determine the present radius of
the flame.

3 Numerical Methods

The bask;. equations governing the spread of fires used in CFC V have been doc-
umented in several places e.g. Mitler (1978), Mitler and Emmons (1981). They
constitute a set of coupled linear and non-linear simultaneous algebraic equations,
linear ordinary differential equations with respect to time, and one partial differen-
tial equation, that for the diffusion of heat into a solid.

Two methods of solution are used in CFC V: a successive substitution method
and a Newton-Raphson method for use when successive substitution fails. The
convergence criterion for the equations is that the scaled difference between suc-
cessive iterations of the system of equations be less than a predetermined value c.
These methods of solution have not been altered in the modified version of CFC V
described above. Presently, e has been chosen to be 1 x 10- 4 .

CFC V has been modified to incorporate the changes described in section 2.2.
The original expression for the flux 0,,, eq. (12) was replaced in the computer
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programme by the sum of eqs. (28), (29),(32), (36), and (37) or by eq. (38) for
L = 0 or eq. (42) for L > 10rf .

The integrals with respect to 0 were evaluated using the composite trapezoidal
rule and Richardson extrapolation. That is, two estimates, I,,, and I,2 for si-, b
were obtained using subintervals of - and -I- , respectively, were obtained. The

n, nl
final estimate, I*, for the integral was found by means of

/ = In, + 1f2 - (49)1- [n]2.
nr2J

In this case, n, = 32 and n 2 = 64.
In eq. (48), dt to= 0 was approximated by 4"(At)- "(0) The surface tem-

MtoAt
perature of combustible objects was calculated by means of eq. (48). The rate of
flame spread, f, was estimated from the calculation of the temperatures at a series
of points along the burning object. If z is the closest exterior point to the flame
radius at which the temperature has been calculated, then,

Zi - r1 (to) AT
ST(zto + At) - T, At (50)

Equation (21) was then used to determine rf.

4 Numerical Results and Discussion

For the purposes of example, it was decided to simulate a fire in a compartment
with aluminium walls and ceilings, with dimensions of 9.14 x 5.8 x 2.4 m. and which
contained two combustible objects. There were two vents, one near the ceiling and
the other near the floor, and a door with dimensions 1.8 x .69 m. Air was allowed to
circulate freely through all three openings. Since most common items of furniture
are composed largely of polyurethane foam, it was decided to treat the two objects
as parallelepipeds made entirely of polyurethane. The dimensions of the two objects
were chosen to be 4.5 x .72 x 1.73 and 2.06 x .58 x 1.73 m. They were located along
adjacent walls with the separation between their centres being 2.73 m. A fire, whose
initial radius was set to .037 m., was assumed to have been started at the centre of
the larger object (hereafter called object 1) at t = 0. Since both objects possessed
the same height, x, = 0, xb = h1 and hence a = rf and b = tan i in eqs. (30) - (42).
Following Mitler's (1978) work, it was decided to set T! = 12600 k and the initial
value of 0 to 30°. The initial temperature of the ambient air was taken as 293°K,
as was that of the second (non-burning) object. Because the fire had just started,
it was assumed that the surface temperature of the object 1 was ambient, except at
those points located inside rf, where the temperature was assumed to be T7g = 7400
K.
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Figure 2 shows the results of a calculation carried out using both the original
version of CFC v and a modified version, incorporating the changes described in the
previous section. As can be seen, for the first 16 seconds, both versions yield ap-
proximately the same results, after which time the modified version of CFC predicts
a marked increase in the rate of flame spread. This rapid increase after 16 seconds
seems to be largely an artefact of the calculation. In order to keep the computation
times as short as possible, the changes in temperature, AT, were evaluated at only
four points on each object. For ease of computation, CFC V simulates all objects by
cylinders of the same height as the objects they represent, and whose radii R0 are
chosen so as to give each cylinder the same total surface area as the object it mod-
els. The four points, then, at which the temperatures were evaluated were ro = 0,

r, = .05 m, r 2 - and r3 = R0. The sharp transition at 16 seconds occurs
at the point at which the application of eq. (50) for the estimation of tf is switched
from r, to r2, and hence it is reasonable to expect that much of the apparent in-
crease in rf is due to estimation errors. This could be improved by substantially
increasing the number of points, at a considerable sacrifice in computation speed.

Figure 3 shows the averaged radiative flux from the flame on each object 1. As
can be seen, where the two fire radii are nearly the same, the modified code predicts
significantly less flux than the original. This difference seems to arise because the
term represented by 43 in our version was set to zero in the original version of CFC
V. Since this term is always negative, it has the effect of significantly reducing the
flux from the value predicted by the original version of CFC V.

In the original version of CFC V, the surface temperature of any burning object
was always set to Tig for all points on the object's surface. In our modified version
of CFC V, the average temperature of an object was calculated by assuming that
the centre of the fire maintained a constant temperature of Tig and the temperature
was a linear function from r0 to r3 . Figure 4 shows the result of this calculation.
Figure 5 shows the same calculation for object 2. Since this object never ignited,
the linear approximation of the temperature variation across its surface should be
rather more realistic than for object 1. The slightly uneven temperature rise in the
modified version of CFC V arises because the contribution to the total flux from
the walls of the compartment varies from moment to moment. Object 2 shows no
temperature rise in the original version of CFC V because the flux on object 2 never
rises above .01 W/m 2, below which level the flux is considered to be negligible in
both versions of CFC V.

Finally, Figs. 6 and 7 show the surface temperature and flux, calculated with the
modified version of CFC V, at r0, rl, r2 and rs. It was assumed that the temperature
inside r! would always be constant at Tg. The calculations of the flux (except for
L = 0 which is a special case) , was terminated when the fire reached that point,
since eqs. (28), (29),(32), (36), (37) are not valid for L < rf.
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5 Concluding Remarks

In this work, we have discussed the modifications made to CFC V in order to im-
prove the calculation of the flux to an object from a conical flame. It was then
shown how the value of the flux could be used to determine the temperature varia-
tion across the surface of an object, and consequently the rate of flame spread across
the object. Some numerical results were presented and compared with results from
the unmodified version for identical initial conditions.

Considerable work remains to be done in order to improve the fidelity of this
fire simulation. The number of points at which the temperature profile across a
burning objec: is calculated should be increased, therby improving the accuracy
of the computation of the flame spread, more accurate models for the flux from the
flames to the walls and ceiling should be developed, as well as for the exchange of
heat between the hot layer and objects in the room.
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ON THE NUMERICAL SOLUTION OF A SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS TO
OBTAIN THE WIND FROM THE GEOPOTENTIAL FOR NUMBERICAL WEATHER PREDICTION AND
ON RELATED MATHEMATICAL ASPECTS.

H. Baussus von Luetzow

U.S. Army Engineer Topographic Laboratories

ABSTRACT. The paper first discusses the numerical solution of a system of
partial differential equations as optimal filter equations to obtain the
wind field from the geopotential field under consideration of solution con-
straints. It then addresses the use of these equations in the case of available
horizontal winds, constrained initialization in the sense of Sasaki, non-
statistical smoothing and univariate and multivariate estimation and smoothing
of meteorological variables, and a special problem of data assimilation.
Finally, it outlines a non-hydrostatic prognostic approach in the case of
highly accurate and dense initial meteorological fields. Although emphasiz-
ing the mathematical point of view including the need for parallel and large
scale computing, the paper also endeavors to relate to the present state
of the art in numerical weather prediction.

I. INTRODUCTION. Present operational numerical weather prediction models
use the hydrostatic equation and require hydrodynamic and hydrostatic stability
which, in the numerical solution process, is enforced by a convective adjust-
ment. The horizontal grid length used is generally greater than 50 Km, and
the number of vertical levels is usually 15 or less. In a prediction system
with pressure 0 as the vertical independent coordinate, the dependent variables
are the wi-d components u and 7? , the geopotential 0 , the diabatic rate
of heat dg/dt and the mixing ratio r , sometimes replaced by the relative
humidity. Further considered are the saturation mixing ration I' , the pre-
cipitation criterion I , and the sea surface temperature Z . The so-called
primitive equations which incorporate the hydrostatic equation are the two
equations of horizontal motion, the continuity equation, the thermodynamic
equation, and the continuity equation for the mixing ratio. The latter may
be supplemented by continuity equations for substances other than water.
In global models, spherical coordinates are employed in the horizontal.

Most models use normalized pressure a/' where 4o, stands for surface pressure.
Further, so-called spectral methods are generally used in major forecast
centers to compute horizontal derivatives with a high accuracy. The determination
of initial fields of dependent variables is the subject of objective analysis.
The most important endeavor is the estimation of , , and 10 at regular
grid points from irregularly distributed geopotential and wind data by multi-
variate statistical methods and the geostrophic relationship between the
wind and the geopotential. In the past, geopotential data have been considerably
more numerous than wind data, and in the near future this situation is not
expected to change. As a consequence, in order to use wind and geopotential
data in the numerical integration process, filter equations have been developed
classified as static, dynamic, and normal mode initialization. Unfortunately,
the deter-mination of the wind field from the geopotential field is unsatisfactory
in the equatorial belt where wind estimates are presently obtained at about
2 levels from the movements of clouds and not in a desirable density. New
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earth observing systems under development are expected to provide highly
accurate and dense wind measurements over many areas of the globe. Denser
and more accurate measurements of surface pressure, temperature, and humidity
will be of utmost importance for numerical weather prediction.

Experience has shown that numerical humidity forecasts are only satisfactory
for 1-2 days in contrast with better predictions of the other meteorological
variables. This is partially due to the coarse representation of the humidity
field which requires a relatively smaller grid of resolution, both horizontally
and vertically. However, incorporation of a more detailed humidity field
would result in a greater number of hydrodynamic-hydrostatic instabilities
through the interaction of the continuity equation of water vapor with the
thermodynamic equation. As shown by Baussus von Luetzow (1980), convection
on the mesoscale, requiring a horizontal grid resolution of about 10Km,
necessitates a more sophisticated equation for the vertical wind velocity
and the application of the unmodified continuity equation in a coordinate
system with Z as the vertical coordinate. Parameterization of certain sub-
grid processes, like moist cumulus convection, would also be more successful
in the non-hydrostatic prediction system. Simultaneously, Baussus von Luetzow
described a signal generation process approximately equivalent to the present
hydrostatic forecast system, particularly for a period of several days.
Significant in this respect is the statement by Ghil and Childress (1987)
that the practical limit of usefulness of numerical weather forecasts is
between 3-7 days. This limit could, however, be extended by nonhydrostatic
forecasts in combination with a much denser and more accurate data base than
presently available. The specification of lower and upper boundary values
required for the numerical solution process presents additional difficulties.
Their inaccuracies tend to degrade the forecast with increasing prediction
time. As to an improvement of upper boundary values, Baussus von Luetzow's
signal generation system, cited above, reduced to one level, has some potential
value.

This paper addresses in section II the numerical solution of optimal
filter equations with emphasis on the determination of the wind from the
geopotential as the main effort. Section III contains some considerations
about the incorporation of friction. The performance characteristics of
new earth observing systems are shown in section IV. The use of filter equations
as conditional equations, including constrained initialization, is the subject
of section V. Section VI is concerned with a critique of objective analysis
as practiced at this time. Relevant comments about a nonhydrostatic approach
are made in section VII, and section VIII enumerates some pertinent conclusions.
Throughout the paper, including the introduction, the author has endeavored
to relate to the present state of the art in numerical weather prediction
and to offer some new and/or relevant points of view.

II. NUMERICAL SOLUTION OF OPTIMAL FILTER EQUATIONS. According to Baussus
von Luetzow (1971, 1980), the following system of diagnostic filter equations
can be derived from the hydrostatic equations of motion without friction
under partial use of the thermodynamic equation in a planar x,y,p,t-system:

'98
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)' A;(1yV (2)

In eq.(l), f is the Coriolis parometer and/ stands for .# . In eq.

(2),Ij= .4 is the generalized vertical velocity, and// Y is the effective
static stability. The terms 4,, 1 4q,4aare functions of the geopotential
and of Yi ,s'( ,,4)is comprised of functionals involving z, v and
spatial derivatives thereof, and of the radiation component of

Subsequently, Baussus von Luetzow (1988) showed that eqs. (1) and (2)

are optimal filter equations or equilibrium solutions free of high frequency
gravity-inertia waves and superior to normal mode initialization. Filter

equations using spherical coordinates and A. which correspond to eqs.
(1) and (2) can be derived as well.

Actually, the filtered variables in eqs. (1) and (2) should be designated
by a symbol, eg., .- , to distinguish them from unfiltered variables. However,

0, tends to be a non-fluctuating variable in the first place, and it is
the primary purpose of eqs. (1) and (2) to determine filtered or relatively
smooth winds primarily from the geopotential. Finally, the solution of the
prognostic equations in a discrete manner implies the use of sufficiently
smooth variables.

In the iterative, interactive solution of the system (1) and (2) it is
necessary to observe the Helmholtz decomposition

V' 3~ (,?,6)

This decomposition applies only to filtered variables free of vertical trans-

verse waves.

Using eqs. (3a) and (3b), vorticity and divergence can be expressed as

.L - -M =  A
TK_ _

Because of the dominance of the vorticity in horizontal motion, the first

approximation to eq. (1) can be formulated as
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It is obvious that eq. (5) is not effective in the equatorial belt where
the neglected terms involving the velocity potential X approach those associated
with the stream function Y- . Wind observations in the equatorial belt are
thus indispensable for successful numerical weather prediction in the tropics.
Additionally, the source function on the right side of eq. (5) and the partial
derivatives of the geopotential are not strong in the equatorial belt.

If the smooth wind field is Known, the geopotential can be computed by means
of eq. (1) without reference to the omega equation (2). Again, the source
function /44y, -2/e/t would be generally small in the equatorial belt.
Because of the relati"/yloose functional relationship between wind and geopotential
in the equatorial belt, they should be independently and as accurately as
possible determined by measurements.

The solution criterion for the first approximation is obtained from
eq. (5) as

It is generally fulfilled, corresponds to the criteri4 applicable to the
omega equation (2), and can be imposed if necessary. In this respect remember
that 0 is generally not free of "measurement" errors.

The solution criteria for the omega equations are

A >0 (7h)

> o0 (
They can be imposed if required.

The filter equations (1) and (2) are applicable for a horizontal grid size
4 l - Ay /00 A',o and are compatible with about 15 vertical levels.

Equation (5) may, for example, be solved for a square region 2000Km . 2000Km
with ax ak- 2mo4,. In this case, there are 81 .

0)- unKnowns.
An effective solution process is the following:

(I) Formulation of finite difference equations for each interior grid point.
(2) Computation of functionals - , etc.
(3) Establishment of the matrix equation

/ A,i. .' = 1(S)
with t, /- on the boundary.
(4) Solution of eq. (8) as

- 4. 9.1.
but only for the central interior point where j-r ,

(5) Equation(?)- type solutions for moving central points by translational
shifts of the quadratic integration area by IAKV ).n y wi/4 47= / , "
(6) Identification of about 25 square regions as an aggregate region.
(7) Parallel processing for separate aggregate regions.

600



(8) Improvement of initial > t'_ solutions by improved boundary values y, 1/j

LL --A).z,

Under consideration of 9 intermediate levels, limited by a ground and a top
level, the fundamental4'-integration region comprises 729v-unKnowns. The
solution process to obtain 4 is the following:
(i) Formulation of finite difference equations for each interior grid point.
(2) Computation of coefficient functionals and of F)gy, under
utilization of V, ') and . as radiation heat compatible with
the grid resolution.
(3) Establishment of the matrix equation

with W = O at the upper boundary and at the lateral boundaries and
cd dd (r Ve r where c is a constant) Ut anolz. are

the wind components at g;und level, and , is the geopolential of the ground
commensurate with the horizontal grid resolution. As an approximation,4 z4alv*
be replaced by - " 417e 54 obtained at the lowest level.
(4) Solution of eq. (11) as

but only for central interior points where 6 = 1" / resulting in
- determinations.

(5) Translational shifts and parallel processing for separate aggregate
regions in accordance with those applicable to -) determination.

The solution process to obtain improved stream functions is:
(1) Computation of '4 )  from AX D) = - W

(2) Computation of 4O) and Z" to from "'.
(3) Computation of Z and Z V/)
(4) Determination of the omitted terms of eq. (1) by finite difference methods,
yielding a right side corrective source function A,., ()where V , f
replaced by W?4V
(5) Computation of

but only for central interior points. -i

(6) Use of eq. (13) for all computation grid points, i.e., with variable ,.
and . "

If indicated by experimentation, an improved 4 - solution may be attempted
which can also be achieved in a differential form without new matrix inversions.

The solution of a system of linear equations with unKnowns of the order 10

can be accomplished without time constraints by the new generation of supercomputers
which are a requisite for the timely and accurate solution of the omega equation.
According to Elmer-DeWitt (1988), the Cray-3 will be released in 1989, soon
followed by the Cray-4. IBM and AT&T Bell Laboratories are on the verge
of introducing new parallel-processing computers, and Sandia National Laboratories
has coaxed a 1024 - processing computer. Fortunately, the matrices to be
inverted are essentially band matrices with numerous zero elements. Care
has to be exercised to further the stability of the solution both in regard
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to ellipticity and to accurate coefficient functions of the omega equation,
notably of//. Additionally, round off errors have to be controlled. Whether
application of Gauss' transformation, matrix splitting, and successive overrelaxation
methods are promising, only experimentation can tell. If sufficiently accurate
predictediv-data are available at initialization time t,, these might be
used as lateral boundary values with a resulting decrease of the fundamental
computational region.

III.INCORPORATION OF FRICTION. The inclusion of frictional terms

F a d F,, for the surface layer (0-100m) and A , /,J. 0, &6,,V///, lyd
(100-1000m) precludes a good determination of filtered winds from the geo-
potential by means of eqs. (1) and (2). The structure of these terms have
been discussed, among others, by Kasahara (1977) and Corby, Gilchrist and
Rowntree (1977). The frictional terms increase the divergence in comparison
with the relative vorticity and tend to make the flow hydrodynamically unstable,
particularly in low latitudes. Only in the stationary case 4 - 0 ?
where V denotes the velocity vector, and under consideration of simplified
frictional terms, approximate wind components may be computed from the geopotential.
The general filter equations (1) and (2) are only fully effective in the
free atmosphere.

IV. NEW EARTH OBSERVING SYSTEMS. The lack of a well synchronizeable, dense
and accurate global data base has been the greatest drawback for numerical
weather prediction. New earth observing systems under development and assumed
to be operational in the foreseeable future can be expected, in conjunction
with improved modified objective analysis, improved initialization and prog-
nostic models, and supercomputers to revolutionize numerical weather prediction.
The new systems of particular interest are the subject of the LAWS, HMMR
and LASA Instrument Panel Reports (1987), published by the National Aero-
nautics and Space Administration. The performance characteristics of the
above systems are:

LAWS - LASER ATMOSPHERIC WIND SOUNDER (DOPPLER LIDAR)
100 KM HORIZONTAL RESOLUTION
1 KM VERTICAL RESOLUTION
1-2 MS - 1 LOWER TROPOSPHERE
2-5 MS - UPPER TROPOSPHERE

CLOUD COVER AND RAIN REMAIN OBSTACLES

HMMR - HIGH RESOLUTION MULTIFREQUENCY MICROWAVE RADIOMETER
IMPROVED TEMPERATURE PROFILES (tlK)
IMPROVED HUMIDITY PROFILES (tl0 PERCENT)
HORIZONTAL RESOLUTION 10 KM
VERTICAL RESOLUTION 0.5 KM

LASA - LIDAR ATMOSPHERIC SOUNDER AND ALTIMETER
SURFACE PRESSURE (t2MB)
VERTICAL PROFILES OF TEMPERATURE AND PRESSURE FROM THE STRATOSPHERE THROUGH
THE TROPOSPHERE, TO THE GROUND TEMPERATURE IN TROPOSPHERE AND STRATOSPHERE.

The prognostic horizontal grid resolution should be smaller than 100 KM to

602



minimize forecast errors, especially in medium to long range predictions.

V. USE OF FILTER EQUATIONS AS CONDITIONAL EQUATIONS. The filter equations
(1) and (2) will still be useful after the introduction of LAWS since cloud
cover and rain present obstacles to wind measurements or accurate wind measure-
ments.

The first filter equation or both filter equations may be used in connection
with "measured" winds and geopotentials to obtain improved initial fields.

In a first application optimally smoothed LAWS wind measurements in the lower
troposphere may be used to determine 0(u, u-) by virtue of eq. (). The
"measured" optimally smoothed geopotential may be 0. An improved geopotential
would then result as

where K, and K are regression coefficients.

In a second application, LAWS wind measurements in the upper troposphere
may be improved and to a lesser extent the geopotential in the following
sequence:

(I) 0 (Vzr) is determined from eq. (1).
(2) An improved 0 is calculated according to eq. (14).
(3) ,is computed by means of eq. (2).
(4) It is then possible to formulate an improved = =ioj-a4& where m, ,
are regression coefficients and where 4d = 40
(5) u and V are computed from
(6) is determined from e4' (1).

The above procedure would simultaneously provide a multiple consistency check,
and the integration domain for the solution of eqs. (I) and (2) could be
reduced.

A third application would be the estimation of an improved geopotential from
the "measured" geopotential , # (1,) and from the computed geopotential

0, '.z" 0 with /7, and /.
ai regression coefficients'."'Potentially a multiple regression approach could
be used. Merging a measured and a computed field would only be warranted
in the case of relatively large 9 - errors which are not uniform be-
cause of the actual estimation of 00n in the context of objective
analysis, addressed in section VI. The above approach has been suggested
by Hoffman and Kalnay (1983). The improved - field can then be
used for initialization by means of eqs. (1) and (2).

In constrained initialization according to Haltiner and Williams (1980),
the integral

is minimized by a variational method. In eq. (15), c and/. are generally
latitude-dependent weights, 9 and / denote fields obtained from objective
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analysis, A is a variable Lagrangian multiplier, M is the classical truncated
balance equation, and S is the integration area. Variation of I under neglect
of nonlinear terms in M yields two differential equations which, together
with M, permit the determination of A and of improved fields of o Ya /.

The above approach has some merit in the context of recent 0 and V coverage
and 9 and V estimation by objective analysis. It is not satisfactory in
the case of sufficiently dense and accurate 0 -fields and their use in eqs.
(1) and (2). It is not required in future more accurate wind and geopotential
determinations associated with nes earth observing systems. Substitution
of eq. (5) for the truncated classical balance equation M would result in
somewhat improved 0 and )1 solutions.

VI. OBJECTIVE ANALYSIS. Present objective analysis concentrates on the
estimation of the geopotential andsecondarily, on the estimation of winds,
using "measured" and generally not uniformly distributed data. The estimation
of the geopotential can be characterized as

2 i00 4 i (wv 6rv -t-.d e~) 5~(4v -/ e,.) (

In eq. (16), the symbol £ denotes deviations from climatological means & ,e
are incorrelated measurement errors, and a., j #lCfV are regression

coefficients. The subscriptm indicates estimation at point ,w . The multivariate
estimation (16) is generally performed at one isobaric level although it
can be extended to other, reasonably close isobaric levels. Covariance analysis
of the geostrophic relationship permits the estimation of4 and of I a
as the climatological mean. A recent review of methods of ojective anafysis "7r
has been made by Gustafsson (1981).

The approach (16) is not satisfactory in the case of future more accurate
and more uniformly distributed "measured" winds and geopotentials and because
the meteorological generation process is neither ergodic nor stationary.
Newly developed advanced smoothing techniques such as those addressed by
Adams, Willsky, and Levy (1984) would be more appropriate.

VII. NONHYDROSTATIC APPROACH. Highly accurate and dense measurements of
pertinent meteorological variables, provided by new earth observing systems,
in combination with advanced smoothing techniques might permit the replace-
ment of the primitive equations with a nonhydrostatic prediction system as
outlined by BAUSSUS von LUETZOW (1980). This system with Z as the vertical
coordinate has a more complicated diagnostic equation for the vertical wind
component w and leaves the continuity equation invariant, i.e., introduces
an additional degree of freedom. Application of the w-equation, however,
requires improved condensation criteria and additionally incorporation of
improved parameterization of moist cummulus convection to be highly effective.
Only then can the inital humidity field be fully exploited. In agreement
with Anthes, Kuo, Baumhefner, Errico, and Bettge (1985), the nonhydrostatic
system would be able to cope with meso- scale phenomena including frontal
and jetlike discontinuities, flows produced in response to small scale topo-
graphic forcing, and large-amplitude instabilities such as convective storms.
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VIII. CONCLUSION.

(1) The wind field can be satisfactorily computed from the geopotential

field in the free atmosphere and outside the equatorial belt by the numerical
solution of a system of two partial differential equations, using supercomputers
and parallel processing. This method is also promising in the case of Doppler
Lidar failure.
(2) The optimal diagnostic filter equations permit the determination of
improved geopotential and wind fields in the case of both uniform and dense
"1measured" wind and geopotential coverage, particularly in the upper tropo-
sphere.
(3) New earth observing systems with the capability to provide uniform,
dense, and more accurate determinations of meteorological variables and
advanced smoothing techniques permit the application of a nonhydrostatic
prediction system which could fully exploit the availability of the initial
humidity field.
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Introduction

This work concerns Lie transforms, a method for

obtaining approximate solutions to systems of differential

equations. We apply the method to a general class of two degree

of freedom Hamiltonian systems, viz., two coupled nonlinear

oscillators with nonresonant frequencies. For systems in this

class, we use Lie transforms to approximately reduce the system

to an equivalent simpler system which is immediately solvable,

i.e., a system with ignorable coordinates.

As an application of our results, we determine the

nonlinear stability of the triangular points in the circular

restricted three body problem. In doing so we corroborate a

computation recently performed by Meyer and Schmidt [16]. Their

computation was based on their own computer algebra program

written in PL/I, whereas the present work is based on readily

available utilities written in MACSYMA [19]. Moreover, while

their computation was specifically performed for the problem at

the triangular point L4, the present work applies to a problem

with arbitrary (symbolic) coefficients.

We begin by introducing the reader to Lie transforms.

Then we show how the method may be applied to a particular class

of problems, and finally we specialize the results to some

examples, including the problem at L4.
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Lie Transforms

In this section we summarize the method of Lie

transforms (see [8], [12], [15]. [17]). This work is concerned

with Hamiltonian systems, i.e. systems which are derivable from

a single scalar function H. the Hamiltonian:

dx o I dym 6t{

(d dt - "Y ' dt - axm

where xm and ym are the dependent variables of the problem.

m = 1,...,N, where N is called the number of degrees of freedom.

The method of Lie transforms generates a near-identity

transformation from (xmym) to (X mYm) variables,

x X + quadratic terms + cubic terms +in km m in (Xk . Yk) in (Xk , Yk)

(2)
y Y + quadratic terms + cubic terms +

m= i in (Xk.Yk) in (Xk.Yk)

which is canonical, i.e., which preserves the Hamiltonian form

of the equations:

dX dY
(3) M OK m AK

d W' dX
m m

where K = K(Xmm) = H(xmYm) is the Hamiltonian in the new

variables (called the Kamiltonian after Goldstein [11]).

The near-identity transformation is generated by first

introducing a scaling parameter F into the problem. Expanding H

in a power series about the origin (assumed to be an equilibrium

position),
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(4) H = H(xmYm) + e Hl(xYm) + e2 H(2xmym) + ...

where Hn (x my m) is a polynomial of degree n+2. Then the

near-identity transformation is generated by the associated

Hamiltonian system

dx M w dy m a(5)m OW m OW
de -Oy m' da - m

in which e plays the role of time. The transformation evolves

in e. starting with the initial conditions

(6) a=0, x=x. ym = m

The Hamiltonian W of eqs.(5). called the generating function, is

also expanded in a power series in e:

(7) W = W1 + F W2 + 62 W3 + 0.0.

where Wn is a polynomial of degree n+2. The point of this

generating scheme is that the resulting transformation is

canonical for any choice of the Wn 's (see [8], [15]). The

actual choice of these functions depends upon the problem at

hand, but the main idea is to pick them so that the new

Hamiltonian K is as simple as possible. We note that the

parameter 6 in this paper corresponds to -e in [15] and [19].

The transformation is generated by expanding the

variables (xmym) in Taylor series in a and using the generating

equations (5)-(7) to evaluate the coefficients:

dxmd 2 x2
(8) x = x + + m Lx £+m--O e-O de 2 2
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(9) xm =--o m

dx jWOW1(zo -0 7-0In -_ --O--W 1-

(1d e= m d -aU

de 2 de IN

cl OW + a .L dy.
ae aym xjOym de Oy.Oy de

OW2  + A awl AI aW
- x + ay ay Y y m axm j m J j i

OW 2 la W Ii Owl

m axi3m ayj OYie m a

aW2 OW1aY + 7 1)Wl
m m

where the Poisson or Lie bracket {f,g} is given by

(12) {fg - L - af !2s
A i 'i 6Y iA *

The transformation is thus found to be given by

(13) x m = X + e + + (O.W1] -+

and similarly,
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OW1 722
(14) Y = Y - e - + {!! ,W 1} t--+ - -

Ymm axAAm

In order to obtain the transformed Kamiltonian K (cf.

eq.(3)), the transformation (13),(14) is substituted into a

power series expansion for the original Hamiltonian H:

(15) K(Xm,Y) = H(x mym )

HO(x my m ) + a Hl(x my m ) +a2 H2(x *y ) +

OW 1  OW1

(16) Ho(x,Ym) = Ho(X + 6-- + "'"m - . .

m m

dH1 d2HO 2
= HO + d6+ - ~ L +

16=-0 de6=0 de 2 2

(17) HO = Ho(X mYm)

(18) d e--O = j 0y -
_3 j 6=0

OHo8 OHoW

.j Yj a j 0a _

where the generating eqs.(5)-(7) have been used. This gives
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(19) Ho(x.Ym) = Ho(XY m ) + (H0.W1} e

2

+ [({Hc.W},.W1} + (H0 ,W2 }]

This equation, which represents the expansion of Ho under the

near-identity transformation (13),(14). also holds for any of

the Hn 's. and in fact is valid for any function f(x m, ym).

Substitution of (19) and the corresponding eqs. on the other

H(xm.ym) into eq.(15) gives, after some simplification:

(20) K(XYm) = Ko(XYm) + KI(X,Ym) 6 + K2 (XmYm) a +

where

(21) K0 = H0

(22) K1 = H1 + (Ho,WI)

1 ~ {H. 2 1 ~ 1
(23) K2 = H2 + (HoW2 + - (KI,W} + I (HW 1}

1 1 1

(24) K3 = H3 + y {HoW3} + N (KIW2} + 1 {K2 ,WI}

+~ 1 ,W} 2 1
+ -GL (HIW21 + + I {{HI.W1 j.WI}

(2) K 1 ~ 1 1 1

(25)H 4  H,W4 } + (K 1 .W3 } + (K2 W2 } + I (K3 .W1 }

+1 3
12 HI'W 3 } + L (H2 ' W2 } + 4" (H3.W I }

1 1

+ HIW}W2 } + - {{HI'W 2 }'WI}

+ 1 {{H 2,W,}.Wl} + 1- jH.j,~.j
4 12
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In eqs.(21)-(25), the H and W are taken as functions of then n

variables X ,Ym m

So we see that the method of Lie transforms is nothing

more than the introduction of the generating equations (5)-(7)

into Taylor series expansions for the variables (xmym) and H.

However, the transformation eqs. (e.g. (21)-(25)) can be

generated much more efficiently than by the foregoing expansion

method. There are several schemes for doing so (including the

original method of Deprit [8] based on the "Lie triangle" and a

method of Dragt and Finn [10] based on infinite products rather

than infinite series ), but we prefer the following method (see

[15]), which is easily implemented on MACSYMA ([13], [14],

[19]).

Define the operators L and S as follows:
n n

(26) Ln = { ,W n

(27.1) SO = Id (the identity operator)

n-1

(27.2) Sn = n L S , n = 1.2,3....

M=O0

Then the near-identity transformtion from (xmym) to (X ,Y )

variables is given by

(28.1) xm =[So + e Sl + e 2 S2 + . Xm

(28.2) Y +e S1 + y2 $2 +  Y
m SO 1 2 jm

th 1+ S +.

and the n term K of the Kamiltonian is given by the

expression

613



n-i

(29) K = H + -L Ho.W IL +K + m S H]n n n n n-m m n-m m

n = 2,3,4....

where the cases n = 0.1 are given by eqs.(21).(22).

Coupled Oscillators

In this work we shall apply the method of Lie transforms

to two degree of freedom Hamiltonian systems in which H0 has the

special form:

(3) H 1  2 22 1 2 2
(30) HO (Pl 2 + (jI ql 2 (P2 +  2 q22)

0 2 P 1  + 1  q1 ) 2L(p 2  +w 2  q2

where ql and Pm are variables representing the displacement and

momentum of oscillator m. For e = 0, the equations of motion

corresponding to such a Hamiltonian become

(31) and = qm ,or + qm = 0.

Thus when e = 0. the system has eigenvalues + i wI , +1 i W02 ,

where i = v-T, and we change variables to eigencoordinates

(x m Ym
) ,

x y W
(32) i m Ym + ix- - 'm 2 i m

m

for which the eqs. of motion (31) and Hamiltonian (30) take the

form

(33) Xm =iWm xm andym W ymm ind in i

614



(34) H i l Yl -i2 x 2 y 2

In these coordinates, each H becomes a polynomial ofn

degree n+2 in the four variables xl.yl,x2,y2. For example,

there are 20 cubic monomials which form a basis for HI:

3 2 2 2 2
(35) H1= linear combination of {x 1x1 x2 ,x I yl,xl Y2 ,xlx2 2

2 2 3 2 2
xlx y1 ,xlX2y 2 ,xlyl *XlYlY2 XlY2 'x 2 'x 2 Yl'X2 Y2'

2 2 3 2 2 3
x2yl 'x2Yly 2 ,x2y2 'yl 'Yl Y2 'YlY2 'Y2

The number of basis monomials for H2 , H3 and H4 are:

Term Decree No.of basis monomials

H1  3 20

H2 4 35

H 3 5 56

H4  6 84

We now come to the question of how to choose the

generating functions Wn so as to best simplifiy the Kamiltonians

th
K . At the n step of the method, K is given by eq.(29),n n

(36) K = {HoWn} + terms which are already knownn n 0

Now with H0 in the simplified form (34).
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M a % O OH MOw O aW
(37) Ho = 1 W1 1 2 2 2 2

= i (31 1 Y X - i €o 2  2 X 2

We want to choose W so that this linear partial differentialn

operator on Wn cancels as many terms as possible in eq.(36).

Each term to be cancelled will be of the form

(38) A XI YII  r Y s

where A is a constant. In view of the linearity of (37), we

choose Wn to be a sum of terms, one for each term (38) to be

cancelled, of the form

(39) Wn = B X1j Y1 I X2r Y2
s

where B is an undetermined constant. Then

(40) 1 1HoW 1- - i ((s-r) B X1 3 Y11 x2 r Y s

leading to the choice

(41) B= i_ r , n = j+l+r+s-2.
(Jl~-j)- w 2(s-r)

Note that this scheme fails if the denominator of (41)

vanishes. Assuming that the frequencies w1 and w2 are

incommensurable (nonresonant), the denominator will vanish only

if both

(42) 1 = j and s = r
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Thus we cannot remove terms of the form

(43) (X1 Y1)i (X2 y2 )r

This means that we can always reduce every such (nonresonant)

problem to the form:

(44) K0 = H0  w 1 (XIyI - i(X2Y2)

(45) K1 = 0

(46) K2 = K2200 (XIYI)2 + Kll11 (XIYI)(X2Y2 ) + K0022 (X2Y2 )
2

(47) K3 = 0

(48) K4 = K3300 (XY 1)3 + 2211 (XIY1)2 (X2Y2 )

+ KI122 (XIYI)(X2Y2 )
2 + K0033 (X2Y2 )3

That is, every such nonresonant two degree of freedom problem

can, to 0(4), be reduced to only 7 coefficients. Note that in

this case the resulting ICPiltonian is a function only of the
"action" variables,

(49) I 1 = i X1 Yl and 12 = i X2 Y2

and hence both coordinates are ignorable and the system is

immediately solveable to 0(4). Such a system is said to be in

Birkhoff normal form ([5], p.85).

By inspection of eq.(41). the foregoing scheme fails at

special resonant values of w1 amd w2. In solving for Wn ,

resonant terms occur for integer values of k and k2 such that
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(50) k + 1 1 k2 w2  0. Ikll + Ik2 1 n + 2

In such cases additional non-removable terms occur. We shall

not consider such resonant cases in this work.

Computer Algebra

The computation just described turns out to involve vast

qiantlties of algebra. We used the computer algebra system

MACSYMA ([18]) in order to do the computation more accurately

and more efficiently than by hand. For example, the key

formulas (12).(26),(27).(29) can be represented in MACSYMA via

the following lines of code ([7]. [19]):

POISSON(F,G):=
SUM(DIFF(FX[I])*DIFF(G,Y[I])-DIFF(F,Y[I])*DIFF(G,X[I] ),I,1I,N)$

L(I ,F): =POISSON(F, W[I ] )$

S(I.F):=(IF I=O THEN F ELSE SUM(L(I-M.S(M.F)),M,O,I-1)/I)$

K[I] :(H[I]+POISSON(H[O],W[If]/I
+SUM (L (I-M, K[/M] )+/*S (I-4. HI/] ).M4,1, I-1 )/I )$

In order to efficiently compute Wn by the formulas

(39),(41), we use the MACSYMA tool called pattern matching. A

rule named WSOLVE is defined as follows:

LET(X1^J*Y I^LX2^R*Y2^S,

X1^J YI^L*X2^R*Y2^S I*N/(W1*(L-J)-W2*(S-R)).WSOLVE)$

That is, replace the term X JYIX2rs i n X 1 lry 2 s
1 XY 2 by w1 (l-j)--w2 (s-r)

When WSOLVE is applied to the "terms which are already known" on
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the right hand side of eq.(36), the correct expression for W is
n

automatically generated. Note that this rule is not applied to

non-removable terms of the form (43).

One could hope to simply apply these formulas to the

problem at hand, and to thereby automatically obtain the

transformed Kamiltonian. Unfortunately, the size of the 0(4)

computation is too large to proceed directly; MACSYMA on a

Symbolics 3670 runs out of space. E.g. from eq.(25) we see that

the computation of K involves the evaluation of the quantity

{{{H1,WI},WI},W1}. The innermost Poisson bracket involves 20

terms for H1 and 20 terms for W1, i.e. 400 pairs which can be

collected together into 35 terms (since there are 35 fourth

degree basis monomials). These then need to be combined with

the 20 terms of W1 in order to evaluate the second Poisson

bracket, i.e. 700 pairs which combine together into 56 terms.

Next the third Poisson bracket combines the previous result with

the 20 terms of WI to require the computation of 1120 pairs.

which may be collected together into 84 terms.

In order to complete the computation, we broke it up

into pieces, each of which was sufficiently small so as not to

cause MACSYMA to encounter space problems. We shall refer to

our strategy for treating such large computations as the method

of telescoping compositions. As an example of this strategy, we

once again consider the computation of the triple Poisson

bracket {{{H 1,W1},W1}.W1}. We first compute {HI,W 1} and store

the resulting 35 coefficients Ajlrs in a disk file. Next,

instead of computing {(H1 ,W1 },W 1}, we compute instead {A,W 1},

where A is a dummy polynomial with symbolic coefficients Ajlrs.

Although we are eventually interested in identifying these

coefficients with those we have stored in a disk file, we save

that step for later. We store the resulting 56 coefficients

Bjlrs of {AW 1} in a disk file. Next we compute {B,WI}, where
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now B is a dummy polynomial with symbolic coeffcients Bjlrs*

This results in 84 coefficients which are known in terms of the

Bjrs coefficients. The latter are stored in a file and are

known in terms of the Ajlrs coefficients, which are also stored

in a disk file. At this point the computation of

{{(H 1 ,W1 },W1 ).W1} is complete, although it still remains to plug

the values of the Ajlrs and Bjlrs coefficients into the final

result.

For a complete listing of the programs, see [7].

Results

The results of this work take the form of expressions

for the transformed Kamiltonian K in terms of the original

Hamiltonian H. If we express H in X,.Ym eigencoordinates

defined by eqs.(32). then H0 takes the canonical form (34), and

the polynomials H of eq.(4) can be written as
n

Hn = Hjlrs xljylx1 2r , n = j+l+r+s-2

where the Hjlrs are given constants. Then the coefficients

Kjlrs in K2 in eq.(46) are given by:

(51) K2200 = 2200

+ -o H1101 H 1110 + 1I{HI200 H2100 + H0300 H3000)
w2 I

- 1 200 1 H
S0210 H2001 + H0201 H2010

2 1+W2 2w1 2
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(52) K111 1 = H1 ll1

+ 1 ( H1 0 1 1 H1200 1 1 1 H210 0 }- H0 120 H100 2(I W 1+ 2 2
2 4

I H110 1 H002 1 + H1110 H00 12} + - H0 2 10 H2001

(J2 (.2 +2(13,

4 4
- H0102 H1 020 + - H0201 H2010
2 2-- W1  2 1 '- 2

(53) K 0022 -H0022

+ [ H H 3
HOI0111 111 - Ho03 H0030 + H0012 H00211

1 H012H H1002 - 122 2+ (J ,1 -w

The comparable coefficients in K4 in eq.(48) were also

found, but cannot be displayed here because they are too long.

E.g., the ASCII files for K33oo and K0033 contain 164K

characters, while those for Kl122 and K2211 contain 468K

characters. These expressions simplify greatly, however, in the

special case in which H1 and H3 are identically zero. Since

this special case occurs in frequently in sample problems, we

give the associated coefficients of K4 here:
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+ +

"2 + 3"1 1 "1

(55) K2211 = H2211

9 1 H030 1 H3010 1 (3 H1200 + 2 HOl12) H2110

"2 - 3 "i (J2 - "1

9 1 H03 10 H3001 i (3 H12 10 -2 H0 12 1) H2 10 1

+ +

"2 + 3 1 2 + w1

2 1 H020 2 H2020 2 i H1 0 2 1 H120 1  2 i H0220 H2002

'2 - 'j1 '2 - (j1 '2 + "l

2 1 H1012 H1210 2 1 H1102 H1 120  3 1 H02 11 H3100
+

"2 + w1 " 2 "1

3 1 H1300 H2011

+
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(56) K - H1122 1122

9 , H0103 H1030 1 (3 H0112 + 2 H1201) H1021

3 w2 1 2 1

9 1 H0 13 0 H1003  1 (3 H012 1 - 2 H1210) H1012

3 2 + w 1 2 + w 1

2 i H0202 H2020 2 1 H0112 H2 1 10  2 1 H022 0 H2002

2 1 (l 2 - w I2 + wl

2 1 H0 12 1 H2101 2 i H0211 H2011 3 1 H0013 H120
+ +

"2 + w1I 1 "2
3 iH003, Hl102

"J2

(57) K0 0 33 = H0033

H 0103 H1030 H 0130 H1003 i H0112 H1021
-- +

3 2 - 1 3 2 +  1 2 - 1

i H0121 H1012 4 i H0004 H0040 4 1 H0013 H0031
4-

" 2 +1 "6 2 2
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Arnold's Theorem

We are interested in applying the previous results to

the determination of the stability of the equilibrium at the

origin in a system of two nonlinear coupled oscillators in which

H0 has the form (30). Note that the linearized Hamiltonian

differential equations (1) corresponding to H = H0 have purely

imaginary eigenvalues, and thus are inconclusive regarding

stability. Moreover, because of the minus sign in (30), H0 is

not positive definite, and Lyapunov's direct method [7) cannot

be used to determine stability.

For such cases, stability may be determined by appealing

to a theorem of Arnold [4), which has been restated and reproved

by Meyer and Schmidt [16]. The theorem, based on the existence

of invariant tori in KAM theory [3], gives sufficient conditions

for stability in nonresonant systems, in terms of the

transformed Hamiltonian K(I1,I2 ) which has been put in Birkhoff

normal form, cf. (49). The terms Kn of eqs.(44)-(48) are thought

of as functions of 1 1 and 12, K(I 1 . I 2 ). The theorem involves

quantities D defined by

n

From (44)-(48), the first two non-identically zero Dn 's are D2

and D4 :

(5 9 )  S2 = - (K2200 W22 + K 1 I 2 2 32 3

(60) D = i (K3300 (23 + K22 1 1 i(22 + K1 2 W12 + K

Arnold's theorem states that the origin is stable for
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those parameter values for which D2  0 0. In the case that

D2 = 0. stability is assured if D 4 A 0. and so on. I.e.. the

origin is stable if D2n A 0 for some n.

Using the expressions (51)-(57) for the coefficients

Kjlrs. expressions for D2 and D4 (the latter in the special case

that HI=H3 =O) may be obtained:

(61) D2 = - (22 H2200 + W1 W 2 H1111 12 H0022)

+ i [E2 H1101 H1110 - H011 HOll1

+ 2 w 1 (H110 0012 + H 110 1 H002 1)

- 2 w 2 (Holl H2100 + H1011 H1200 )

W2  (Ho003 H0030 + H0 0 2 1 H0 0 12 )

322

32 (H3000 H0300 + H2100 H12 0 0 )

4 W + WI  4 2 - H
+ 2 H 1020 H0102 + 2 I H1002 H0120

2 2 1 2 + 1

~W ~" H 1- 1 H(3 H
2  2 0 10 H020 1  22 2001 0210

2 (6 2 ) 2  2 3 2 + 2

(62) S4 i {23 H3 3 0 0 + w2 2 1 H22 11 + 2w2 1122 1 0033)

- 2 "1 2 (H1 10 2 H 11 2 0 + H0 2 1 1 H2011 + H0 2 0 2 H2020
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" H1021 H1201 + H1012 H1210 + H0220 H2002

+ H01 12 H2 110 + H2101 H012 1)

- 3 w22 (H3100 H02 11 + H1300 H20 1 1
)

- 3 w1 (2H0013 H,120 + H003 1 H,102 )

3

- 4 W2 (Ho004 H0040 + H0013 H0031)

3

- 4 W2 (H4000 H0400 + H1300 H3100)
w121 2

w2 H1201 H2110 (W2 + 3 wi) w2 H1210 H2101 (02 - 3 oy)

"2 +  1'2 - 'l

"1 H021 H0112 (l1 + 3 "2) I1012 H0121 (w1 - 3 W2)
w1 + W2 1 - "22 2

"2 H001 H010 ( 2 +9 i) 2 H0310%H001( 2 9 1 )

2 +  3 w, 2 - 3 1
2 2

"1 H0103 H1 030 (wI + 9 (2) "1 H0130 H1 0 0 3 ('I - 9 (2)

w1 + 3 w2 w1 - 3 2

(assumes HI = H3 = 0)

The expression for D4 in the general case is too long to

be included here, but is available on our computer for numerical

evaluation.
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Examle 1

We consider a variation of the Henon-Heiles Hamiltonian

where the linear oscillators are not at low-order resonance and

are of different signs:

H-1  2 2 1 2 2 2 1 3263 W 1 1.(l2 + q 2  (P22 + q 22 + qI q 2 q q2

Using the transformation to eigencoordinates given by eq.(32), H

becomes

1 3 i 3 i 2
(6) H =ixY 1 -ix2Y 2 - x 2  + y2  2 2 1 Y2

+1 2 2 1 2 i 2 1 2
2 lx 2  2 Y2 - yX2 - Yl Y2 +  x 2 Y2

(3

i 1
+(XlX 2 Yl 2w' llY2 * 

> 0

Then using eqs.(51)-(53), we find the K2 coefficients to be

3 s 2

(65) K 22 2 2

4 w (4 w 1)

42+

(66) K 1 1 1  - 2
w (4w -1)

5
(67) K0022 - 12

Using eq.(61). we find D2 to be

20 w6 _ 534 w + 12 2_2 9
(68) D2 = 12 2  21=-

12 2 (4 2 _ 1)

We find that D -O only for w = w c 1.5752078... In order to

determine the stability of the origin for w = w , we must
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consider the D4 condition. Because H contains only cubic

nonlinear terms and because each cubic coefficient is simple, we

are able to find the expression for D4 algebraically. The

coefficients for K4 turn out to be

i (1024 (a8 +768 6 _1632 wa4 +596 w -51)
(9 K3305 - - 3 3

48 w (2 w - 1) (2 w + 1)

i (384 w 10 -288 W8 +16 (a6 _340 w 4 +159 w 2 -6)
(70) K22 1 1 = 4 (23 34w(a (1 - w) (2w(a-1) 3 (2 wa+1) 3

i (4 W 2 + 1)(320 w(a -480 w 6 +360 w 4 161 (2 +6)(71) K11 22 - w -6w
12 W 3 (,2 _ 1) (2 (- 1)3 (2 w + 1) 3

235i(72) K0033 432

and D4 becomes

(73) D4 = (15040 w 16 -72400 w 14 +113172 w 12 -77935 w 10

+14491 (w8 -10188 (6 _3096 (w4 +5175 w 2 -459)

432 -5 (W 2_ 1) (2 w - 1)3 (2 w + 1)
3

So, at w = wc, D4 = -0.19180289... A 0.

Thus by Arnold's theorem, the origin is nonlinearly

stable. We note that this result does not apply to a small set

of resonant values of w which correspond to vanishing

denominators in the algorithm (41). From eq.(50) with n = 2, we

find the following resonant values of w:

1 1

wa = {, . 1, 2. 31.
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Exampl Ie 2

This second example involves a spinning mass-spring

system, which contains no odd powered terms in the Hamiltonian.

Consider 4 identical springs, each attached at one end to the

outer rim of a wheel of unit radius separated by 90o. The other

end of each spring is attached to a unit mass which is free to

move about its equilibrium position at the center, see Fig. 1.

Let the Q1-Q2 axes rotate with the wheel with angular velocity

(i > 0 relative to an inertial frame. Each spring is unstretched

when the mass is at the origin. The potential energy V. for1

each spring under a deflection 6 is taken to be

(74) V = ( 62 +jA64

1

where the linear spring constant has been taken equal to and ii

is a noilinear spring constant. Then this system has the

Hami 1 tonian

1 F2 p2
(75) H- =V p2

2 1  2 ) + w (PIQ2 - P2QI) + V1 + V2 + V3 + V4

where P. are momenta. Then upon taking the Taylor series of H

about the origin, H becomes [7]

(76) H = + 2 2 1 2 2
(76 H=( 1 P 2 ) + ((PlQ2 -P 2 Qd + (Q + Q2 )1 4 122

+ [(4 I + 1) Q1 4 8Q 2 2 + (4 i + 1) Q24]
1 6 2 6
1. [Q 6 + 4 (-) Q1

4 Q 2
2 + 4 (p -) Q 12  

4  
2 ]

= H0 + H2 + H4 + ...

Using the linear differential equations corresponding to H0 , we
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Q2

Fig. 1. Example 2 involves a spinning mass-spring system. The

unit mass is restrained by 4 identical nonlinear springs. The

QIQ2 axes are fixed to the wheel and rotate relative to an

inertial frame.
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find the characteristic equation to be

(77) X 4 + 2 X 2 (1 + 2) + ( 2 _ 1)2 = 0

which has eigenvalues X = {i i (1-i), + i (l+w)}. From this we

conclude that the equilibrium at the origin is elliptic for

w 1. i.e., comprised of two oscillators with frequencies 1 -

and 1 + w in the first approximation. Then using a canonical

eigenvector transformation from (Qm.Pm) to (xm, ym) gives [7]

(78) H0 = i (1 - c) xl1y - i (1 + w) x2Y2

which is in the proper form for our analysis. After similarly

transforming H2 and H4 , we use eqs.(5l)-(57) to find that

(79) K2200 = K 1 -312 p K - 1 - 12 p

002 32 11118

(80) K3300 = i[(576 2 -32 p +20) 2 _ (864 p -48 p +30) w

+ 272 p,2 -56 p -15]

1024 (w - 1) (2 w - 1)

(81) K22 1 1 = 3 i C(1440 A,2 -48 W +58)w 2

- (720 1,2 -24 p +29) w - 48 2 -120 i -75]

1024 w (2 w - 1)

(82) K122 = 3i[(140 2 -48 A +58) w2

+ (720 A -24 p +29) w - 48 2 -120 ji -75]

1024 w (2 w + 1)

(83) K0033= i [(576 4,2 -32 p +20)w 2 + (864 2 -48 W +30) w

+ 272 g -56 g -15]

1024 (w + 1) (2 w + 1)
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We find D2 and D4 using eqs.(61)-(62) to be

= j- )(3c 2  1

(84) D2 = (2g 16 3( 2 )

22 81(177441
2 16

(85) D4 = [(9792 2 -352 W +388) W8 (17744 2 +264

+1213) 6 + (9104 A2 +2.32 +657) w4  (1392 p 2

+216 W +207) W 2 _ 144 g.2 -360 p -225]

512 w (W 2 _ 1) (4 w2 _ 1)

1 2 1
Then D2 = 0 for = 1 and W = 5, which are two lines

in the -ci parameter plane. When D2 = 0 we must check the D4
1

condition. Consider the line W = . The value of D on this
12 4

line is

(86) D4 =1= 60 w8 -191 W6 +104 4 _33 w2 -36

72 w ( 2 _ 1) (4 2 _ 1)

which is zero only for w = w c- 1.6241875... Now consider the

2 1line w = 5. D4 on this line becomes

D4( 2 1 2 (6.

(87) - - ) 1 2 +1064 A +661)

which is zero only for p = p1 2  - (133 i 4 1 )2-8

{-0.84870, -2.317961.

We now apply the stability theorem. First, note that

we consider w > 0 and that for w = 1 the origin is not elliptic

so that our analysis does not apply there. From eq.(50) with
1 1n = 2. we must also exclude w = { , 5. 2, 3} from the analysis.

Applying the D2 condition, we find that the origin is stable
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everywhere in the ji-w parameter plane except possibly along the
1 2 1

two lines W = and . On these lines the D4 condition

must be used. From eq.(50) with n = 4. we must now exclude
1 3 235 5whn 1 1

= {1 3 2 3 5.51 when = -L. Elsewhere on p = -L. the

origin is stable provided w A w ; on w2 = . the origin is
c

stable provided pi A W 12" For the three points where

D2 = D4 = 0. the D6 condition must be used to prove nonlinear

stability.

We note that for w < 1. stability of the origin can be

independently proved by Lyapunov's direct method [7].

Application to the Problem of Three Bodies

The circular restricted three body problem is well-known

to exhibit five equilibria in a rotating barycentric coordinate

system [20]. L 1,L2 and L3 represent equilibrium positions of

the thiTd body, in which all three bodies are collinear. All

three of these are unstable for all values of the mass ratio

parameter i. L4 and L5 represent equilibria where all three

bodies sit at the vertices of an equilateral triangle. For

values of p > p1 - 0.0385208. both these equilibria are

unstable. For pi < p 1. Alfriend [1,2] showed that the triangular

points are unstable when pt = p2 and 113, special mass ratios

which cause the linearized frequencies to be in the ratio of 1:2

and 1:3. respectively. For other values of W < W 1, stability of

L4 (and L5 ) can be obtained by using Arnold's theorem. This was

first done by Deprit and Deprit-Bartholome [9]. who calculated

D2 by hand. The value they obtained.

36 - 541 ( 122 + 644 1 142
(88) D2 2=22-

( 6 - 4 312W22 4 - 25 c 12 22
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is non-zero for all values of p except for p = PC = 0.0109136.

For p = p c, Arnold's theorem requires the quantity D4 be found.

This computation was performed by Meyer and Schmidt, who found

D4 -- -66.6. The non-zero value of D4 implies stability, by

Arnold's theorem.

In what follows we shall apply the results obtained in

this paper to confirm the previous computations of Deprit and

Deprit-Bartholome [9] and Meyer and Schmidt [16].

The Hamiltonian for the circular restricted three-body

problem about the equilibrium L4 is :

(89) H = (p 2 + P 2) + P , (1-211) Q 1_ -/_

2 2

+1-p1 ]
where P1

2 = Q1 2 - Q1 
+ v5 Q2 + 1

p22 = Q + 2  + Q I + Q 1  + Q2 +

Expanding in a Taylor series about the origin, H becomes . Hn
nnwhere H n contains terms of order n+2 and Ho is given by:

1 2 2 12
(90) H0 = (P1  + P2

2 ) + P1 Q2 - P2Q1 + Q 1

5 - (1 - 2p)A
4

Then using the linearized differential equations corresponding

to Ho, the characteristic equation for the system is found to

be:
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(91) x 4 + X2 + 1E (1-_2) = 0 where r = 1 - 2p
16(1 )

The eigenvalues X have positive real parts for

1 V9
S> A, =_1 (1 - .. _-_) implying the system is linearly unstable.

2 9

For W < ji1. the system is critically stable having eigenvalues

+iW1 and :iw 2 where:

0 ( w2  ( (V l < 1 12 + (A 22

2

2 W2 27 2an1 2 -2 = 1')
16

Using a canonical linear transformation (see [6]), Ho(Qm,Pm) is

transformed into Ho(qm,Pm) which is of the form (30). Then

following eqs.(30)-(34) we introduce the variables (x my m) and

find the following components of K2 :

-2(1 4 l -66l2+ 1

(92) K2 200 = 2(124 w, 4 696w1 +81)

144 (2w 1 - 1) 2 ((2 d"2 )

4 2

(93) K111 1 = "1 W 2 (4l 64w 1  43)

6(2w 1
2  1) 2 (W2

2 -_ 1
2 ) (w1  

2  2

(94) K = W1 2(124 w 14 + 448 w 12 491)

2 1 2 2 2

and the first stability condition becomes:
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8 2 ~ 6 4 2
-)644 WI + 1288 w - 1165 WI + 541 w 1 - 36

2 )28 (2t I 12 - 1)I ((2 - W dI ( 2 +  2A I) (2 (2 - WI)  (2 2 +  (1 )

which is equivalent to the expression (88) found by Deprit and

Deprit-Bartholome [9). Then, on 0 < W < pl, D2 = 0 only for:

1 = PC = 3 - - T V+ 0.0109136

6 A8-

At this value of p = Ac- the components of N become:

(95) K3300 0.219259187 i + 6.52 E-37

(96) K22 11  -- 7.79324843 i + 3.74 E-35

(97) Kl122 209.933620 i + 2.35 E-34

(98) K0033 14.5264460 1 + 1.75 E-34

and D4 becomes:

(99) D4 = - 66.6 - 4.27 E-36 i

The very small real part of each Ki lrs and imaginary part of D4

results from taking only a finite number of digits (40 in fact)

in the numerical approximation. Because the real part is so

much larger than the error term, the approximation D4 = -66.6

is accurate and D4 A 0. Hence, at w = wc, the Hamiltonian

system is stable. These values for the coefficients of K4 and

D4 agree with those obtained by Meyer and Schmidt [16].
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Symbolic Computation and Perturbation Methods

Using Elliptic Functions

Vincent T. Coppola and Richard H. Rand

Department of Theoretical and Applied Mechanics

Cornell University

Ithaca, NY 14853

Abstract

We apply the method of averaging to first order in a to the autonomous

system

3
x' +ax+ x =eg(xx')

This involves perturbing off of Jacobian elliptic functions, rather than off of

trignometric functions as is usually done. The resulting equations involve

integrals of elliptic functions which are evaluated using a program written in

the computer algebra system MACSYMA. The results are applied to the problem of

finding limit cycles in the above differential equation.
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Introduction

A limitation of most texts which treat nonlinear vibration problems by

perturbation methods is that most problems involve perturbing off of the sine

and cosine solutions of simple harmonic oscillators. For example, consider the

nonlinear oscillator:

- 1.x' 31x2,x' it

(1) x'' + x = x3+ L + -x 2 x x 3  with - 10

The usual approach to studying eq.(l) involves assuming that the parameter e is

asymptotically small, and perturbing off of the associated equation (for e = 0)

(2) x- + x = 0

which has the general solution

(3) x = C cos (t + B)

The method of averaging [7-9,11-16] seeks a solution to eq.(i) when e 4 0 in

the form:

(4) x = C(t) cos '(t)
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Variation of parameters and averaging over the unperturbed period 2T gives the

usual formulas:

2W

(5.1) C'-- G(x.x') sin 4,dp

2w

(5.2) 1' =1+ f G(x,x') cos 4 dq

in which eq.(1) has been written in the form

(6) x'' + x + E C(x.x') = 0

3_1 .31 2, 3
Evaluating eqs.(5) with G(x.x') = x x xx + x gives

(7.1) C' h C (C2 + 20)

(7.2) 1' =1+ C2

Nontrivial fixed points of eq.(7.1) are, in view of (4), periodic motions

(limit cycles) of eq.(l). Since the only fixed point of (7.1) is C = 0, the

method of averaging predicts that there are no limit cycles for eq.(1). This

prediction is, however, erroneous! See Fig.1 which shows the results of

numerically integrating eq.(i).

This embarrassing failure of averaging may be remedied in two ways.

One may extend the averaging process to second order, i.e., include terms of

0(a2). This involves combining the averaging process with a near-identity
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3

-3

Fig.l. Limit cycle of eq.(l) obtained by numerical integration (N). Also
shown is the analytic approximation (A) for the limit cycle obtained by using
first order averaging utilizing elliptic functions, to be discussed later, see
eq.(40). Note that first order averaging utilizing trigonometric functions
fails to predict a limit cycle in this case, cf. eq.(7.1).
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transformation of dependent variables. This route has been treated in [14],

and computer algebra (MACSYMA) programs have been presented there to automate

the process. Alternatively, one may stay with first order averaging, but

follow the path presented in this paper.

In this paper we treat a class of problems which involve perturbing off

of Jacobian elliptic functions. We consider the differential equation

(8) x" + a x + P x3 + a g(x.x') = 0 . a > 0 . P > 0

in which P is not assumed to be a small quantity. The unperturbed system is

(9) x" + a x +  0 x 3  0

which has the general solution

(10) x = C cn(u,k),

k2  C2
2k2 C t + u 0 and k 22(a + 3 C2)

where cn(u,k) is a Jacobian elliptic function. We use the method of averaging

implemented on MACSYMA to treat this type of problem. We compare results found

using elliptic functions with those found using trigonometric functions. In

particular we will return to eq.(l) later in this paper.

Although the method of averaging has been treated in numerous

references (e.g. [7-9,11-16]), each deals almost exclusively with perturbations

off of the simple harmonic oscillator, eq.(2). A few authors have considered
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perturbations off of nonlinear systems using elliptic functions. Kuzmak [10]

looked for periodic solutions in eq.(8) using a multiple scale method, where a

and 0 are slowly varying parameters. Chirikov [3] studied resonance overlap in

multiple harmonic excitations of eq.(8). Davis [4] investigated second order

ordinary differential equations using elliptic functions. Cap [2] applied the

method of averaging to perturbations of the mathematical pendulum. Greenspan

and Holmes [6] and Guckenheimer and Holmes [7] have applied the Melnikov method

to perturbations of eq.(8) where a ( 0. Nayfeh [12]. Kevorkian & Cole [9] and

Sanders & Verhulst [15] have also treated such problems. In most of these

references the authors have reduced the problem to the evaluation of integrals

which, through complicated algebraic manipulations, may often be expressed in

terms of standard elliptic integrals. By using MACSYMA, we have been able to

treat a large class of problems by efficiently evaluating the associated

integrals.

We begin with a brief review of elliptic functions. Then we present a

general treatment of averaging to systems of the form of eq.(8), and finally we

apply the method to the problem of finding limit cycles in eq.(8).

Jacobian Elliptic Functions

Jacobian elliptic functions involve a collection of identities which

are similar to those for trigonometric functions but are more complicated

algebraically. The use of computer algebra makes manipulation of these

identities easier, permitting investigations to proceed on problems which were

previously avoided because of the quantities of algebra involved. All formulas

and conventions concerning Jacobian elliptic functions in this paper are taken

from Byrd and Friedman's Handbook of Elliptic Integrals for Engineers and

Physicists [1].

644



We now offer a brief comparison of elliptic functions with the more

familiar trigonometric functions. Corresponding to sin(u) and cos(u) are three

fundamental elliptic functions sn(uk), cn(u,k), and dn(u.k). Each of the

elliptic functions depends on the modulus k as well as the argument u. These

reduce to sin(u). cos(u), and 1 respectively, when k = 0. The sn and sin

functions share common properties as do cn and cos. These are summarized in

Table 1. The dn function has no trigonometric counterpart. Note that the

elliptic functions sn and cn may be thought of as generalizations of sin and

cos where their period depends on the modulus k.

The argument u is identified as the incomplete elliptic integral of the

first kind which is usually denoted F(e,k). This identification shows that u

also depends on k. The value of k normally ranges from 0 to 1. The sn. cn,

and dn functions are shown in Fig.2 for k2 = 1/2.

Table 1

Function f

Property sn(u.kl sin(u) cn(u.k) cos(u) dn(u.k)

Max. value 1 1 1 1 1

Min. value -1 -1 -1 -1 (1-k2 )1/ 2

Period 4 K(k) 2Y 4 K(k) 27r 2 K(k)

Odd/Even Odd Odd Even Even Even

df/du cn dn cos -sn dn -sin -k2 sn cn

fi k=O sin sin cos cos 1

K(k) = complete elliptic integral of the first kind

K(O) = r/2 K() = +
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s n

Id

7.5

Fig.2. Comparison of elliptic functions for kc2 =1/2 with trigonometric

functions. The period of the elliptic functions is 4 K(k 2= 1/2) = 7.416. See
Table 1.
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The elliptic functions also satisfy the following identities which

correspond to sin
2 + cos2 = 1:

2  2 2sn 
+ 

= 1(11.2) k2  + 2 = 1

(11.3) 1 - k2 + k2 cn2 =dn
2

The Unperturbed Solution

We shall consider unperturbed systems of the form of eq.(9). We find

the general solution by assuming the solution in the form

(12) x = C cn(A t + Bk) = C cn(uk) = C cn

where the argument is omitted for brevity and where A and C are positive

constants. Substituting (12) into eq.(9) we find

(13) CA 2 (2k 2 - )+ a C cn + [C3  -2k 2 A2 C] cn3 = 0

where we have used the relation

(14) cnuk2 cn' = (2k2 - 1) cn - 2k2 cn3
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For nontrivial solutions (C 4 0), we find

(15.1) A2 (1 - 2 a

(15.2) C2 p =2k2 A2

We define three separate cases depending on the parameters a and (3.

Case I: a O, 1 = 0

From eqs.(15) we find that

(16.1) k = 0, A2 = a. C is undetermined

which is the correct solution for the harmonic oscillator.

Case II: a s 0, (3 $ 0

From eqs.(15) we find that

(16.2) k2 = A2 - a C2 A2 = a + P C2

2 A2  2 (a + P C2 )

2 21

For C > O. the range of k2 is 0 < k(2 < I We note that cases I and III are
22

limiting cases of II that are recoverable by setting k2 equal to zero or

one-half.
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Case III: a = O. 1 0 0

From eqs.(15) we find that

(16.3) k2  A 2 =6 C 2

The oscillator is purely nonlinear in this instance.

In all three cases, the origin is a center and the (x,x') phase space

is filled with periodic orbits. For cases II and III, the period of an orbit

depends on its amplitude, see Table 2. As the amplitude of the vibration

approaches the origin (C -* 0), the period of oscillation increases to the value

T - 2r/vZ , which becomes infinite for case III.

Table 2

Case Period T

2T

1I 4 K(k(C))

J 2

111 4 K(k 2=1/2)
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Since eq.(9) is Hamiltonian, it possesses the first integral

1 .'2 1 x2 1 x4
(17) H - x + 1ea x+ L1

2 ~24

which provides another method for solving eq.(9). We define action-angle

variables (J.p) for this Hamiltonian [5.7] in order to provide more "natural"

variables to be used later in setting up the averaging scheme. After some

lengthy calculations, we find that

(18.1) J = J(C)

(18.2) 4 K(k) if = A t + B = u

For simplicity, we take the variables (C.p) as primitive.

It is interesting to note why the variable fp is preferred to B in

deriving the averaging scheme. First note that although each orbit in phase

space is orbitally stable [8.11,16]. it is Lyapunov unstable. This is because

the frequency of an orbit depends on its amplitude, and motions starting close

together but on two different orbits eventually become far apart (in fact, out

of phase), even though their orbits are close.

In the next section we derive the equations governing averaging based

on the variables (C, p), cf. eqs.(5) for the simple harmonic oscillator. In a

similar fashion we could attempt to derive comparable equations based on using

the phase B or the argument u of the unperturbed solution (cf.eq.(12)) instead

of the angle variable p. In doing so for (CB), we would obtain equations of

the form (before averaging):

(19) C' = a fI(C,At+B), = - A't + e f2 (C,At+B)
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in which f2 turns out not to be periodic in t. The method of averaging

requires that the variational equations be periodic. Thus eqs.(19) are

unsuitable for averaging. The orbital stability of the solutions is reflected

in the variational equation for C (or equivalently in the variational equation

for A. since A and C are related algebraically, cf.(16.2)). The Lyapunov

(phase) instability is reflected in the variational equation for B.

Similarly, choosing (Cu) as primitive variables, u = At+B, gives

(20) C' = 6 fl(Cu), u' A + a f2 (C,u)

in which f2 is not periodic in u, so that eqs.(20) are again unsuitable for

averaging.

However, setting u = 4 K(k(C)) p, cf.(18.2), gives

(21) C' = e f 1 (C,4 K p). ' =LK + e f2(,4 K p)

in which both f and f2 are found to be periodic in p and hence in the correct

form for averaging. Thus the unperturbed solution can be written as

(22.1) x = C cn(4 K fk)

(22.2) x' = C A cn'(4 K q,k) = C a + C2 cn'(4 K p, k)

(22.3) K = K(k), k = k(C), cn' acn(uk)
cLu
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which can be viewed as a generalized van der Pol transformation from (xx') to

(C, 9). In this way, (C,v) constitute "natural" variables because they take

intc account the change of period occurring from orbit to orbit in the

unperturbed flow.

Variation of Parameters

In order to obtain a solution to eq.(8) when e $ 0. we vary the

parameters (C,ip) so that C = C(t) and ip = f(t) in eqs.(22). Differentiating x

in (22.1) and equating the result to (22.2), we obtain

(23) dC (cn + C cn' 4 p K' k' + C a k') + Ccn' 4 K C A cn

where primes denote differentiation with respect to the argument (the first

argument in the case of cn). Differentiating eq.(22.2). we find

(24) x- = dC [(A + A' C) cn' + 4 C A K' k' ,o cn" + C A k' --cn-
dt

+4CAKcn" dip
dt

We substitute eqs.(24) and (22.1) into (8) and solve for dC/dt and dp/dt. The

result can be written in matrix notation as

dC C A cn']

(25) W rt C I

4t - a g - a C cn C3 cn3
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In solving these equations, we need to compute the determinant of W:

(26) det[W]= 4 C K A (cn cn' - cn '2 ) - 4 C2 K A' cn.2

+ 4 C2 A K k'(cn" 2cn - cn' acn'

= -4K C A = -4K C (a + P C2 )1/ 2

where we have used eq.(14), eq.(16.2). and the identities [1]:

(27.1) cn.2 = (I - cn2 ) (1 _ k2 + k2 cn2 )

Ocn' 18 , 2 1 2 2 22
(27.2) cn' 5k- 2 @k&-cn ) = f {kj(l - cn ) (1 - k2 + k2 cn

Note that the determinant of W is independent of p. We then solve eq.(25) to

find

(28.1) d= _e g (a + C2)- /2 cn'

1 (a + (32)1/

(28.2) (ad- C2-1/2 (a + g C2) 1 1 2 +e g 1

x 2 a C2 z cn' + (a + cn (1 - cn 2)]]2a+ P 2  2 (a+PC2)

where Z = Z(4 K p.k) denotes the Jacobi Zeta function (an odd 2 K periodic
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function with zero mean) and all arguments are 4 K fp. In eq.(28.2). we have

used [1]:

(29.1) Ocn cn' [(2-k 2 4 K f E(4 K -p~k)]

ka2

k (1 - k2

- 2 cn (1 - cn2 )

(29.2) Z(4 K fk) = E(4 K f,k)- 4 9 E

where E(4 K ,k) is shorthand notation for E(Ok), the incomplete elliptic

integral of the second kind (where e = am(4 K 4pk) and am(uk) is the elliptic

amplitude function [1]) and E = E(k) denotes the complete elliptic integral of

the second kind.

We consider eqs.(28) in the three cases I,II.III separately:

Case I:

(30) A2 = a, K(k=0) = 2, Z(u,k=O) = 0

dC i~ 1
(31.1) = - g cn'(2 v .k--O) = e - g sin(2 T p)

dip vra 1r1

(31.2) dp = + 1 1 gdT -7 2 v C v cs( -

which agrees with the perturbation equations off the linear oscillator.

cf.eqs.(5) with ' = 2w~p.
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Case II:

Here the variables C and k are related. Since the modulus k is a

natural elliptic function quantity, one could formulate eqs.(28) in terms of k

and p:

dk a f dC 2 2(32.1) dk _3 C2)312 dC a "Eg (I - 2k2 ) cn'
dt (a + a

(32.2) d_ *' v2
dt - 4 K (1 - 2k )

+ eg VVF 1- 2k2) [cn - 11 2k 2[ cn' + k 2 cn (1I cn2)]
4 Z K a k (I k2 )

Note that this formulation breaks down for cases I and III.

Case III:

Eqs.(28) simplify to

(33.1) dC 1 g cndt - e gCn

(33.2) LP : V " + g " cn
dt 4 K 4 KC 2

We will formulate the averaging procedure in terms of (Co) and for case II, we

will use k and C interchangeably (via eq. (32.1)).
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The Averaxirz Procedure

While eqs.(28) are valid for any perturbation g. in this section we

consider perturbations of the form g = g(x.x'), where g is a polynomial in x

and x'. We write eqs.(28) in the form

(34.1) C' = e F1(C.V)

(34.2 V 1- (a + P3 C2)1/ 2 + a F2(C.v)(34. 2) p'

= 12 (C) + e F2 (C.4p)

where the F.. as given by eqs.(28). are periodic in V.1

We denote the averaged variables by (C.p). Then, the averaged

equations become

(35.1) C' e F1 + 
O (e 2)

(35.2) V = Q(c) + 6 F 2 + 0()

where F. are the mean values of Fi over one period of the unperturbed system:

1 i

(36) Fi = fo Fi dp = 41Rrj Fi(C.u) du

where u = 4 K V-, K = K(k). k = k(C) as given by eqs.(16).
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Computer Algebra Implementation Of The Averaging Scheme

We present a short summary of our implementation of the averaging

scheme on the computer algebra system MACSYMA. The perturbation g is composed

of a sum ol terms of the form

(37) x n X m = Cn+m Am cn n c n ' m

each of which can be written as a sum of terms of the form

(38.1) cn+m Am cnn+(m-1l)/2 cn. m odd

(38.2) Cu +m Am cn n + m/ 2  m even

using eq.(27.1). It is therefore sufficient to consider g to be composed of a

sum of terms of the form cnm and cn m cn ' . By inspection of eqs.(28), we can

make a list of all combinations of elliptic functions which can possibly occur

in the integrands of eqs.(36), and their mean values. The integrands are

listed in Table 3 and their mean values in Table 4.

Table 3. Terms occurring in F.
1

Expression Typical terms

m m
F1  cn cn cn

m m , m m ,
F2  cn ,cn cn', Z cnm, Z cn cn

657



Table 4. Mean values of elliptic functions

Function Mean Value

cn D for m evenm

0 for m odd
m ,

cn cn 0

Z cn 0

Z cn cn 0 for m even

1 2 E 2
im + 1 [(1 - k- ) Dm + k DM+3] m odd

where

D 0 1

D 1 E 1+k2
2 2 (W -

D (m - 1) k2 [(n - 2) (2k - 1) DM_2 + (m - 3) (1 - k 2 ) Dm-4]

Armed with Table 4. one could find the averaged equations for a given

perturbation g(x,x') by hand. This lengthy calcu.ition, however, is much

better suited to MACSYMA. The MACSY1A program which implements the foregoing

averaging procedure is listed in the Appendix. As an example of its use, we

next apply the method to the problem of finding limit cycles in eq.(8). We

begin by returning to eq.(1). then we generalize the example.
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Example: EQ.(1) revisited

If we write eq.(1) in the form

x,' + x + [x = 6 1x + 3x x' - x.3 with = I

I1 31 2 .

we identify a =1, 1o. - x T- X x + x3 . Substitution of these

values into eqs.(28) and averaging gives (see sample run of our MACSYMA program

in the Appendix):

(39) -e P(C) K- Q(C) E -, (1 + 02/10)1/2
%0=

350 ZC K 4K

where P(C) = 5 E6 + 447 C4 + 10175 2 + 64700

Q(C) = 594 C 4 + 11880 e + 64700

2 -2 + 20

and where K = K(k) and E = E(k) represent complete elliptic integrals of the

first and second kinds respectively. Numerical evaluation of the condition

0' = 0 gives the limit cycle amplitude C 1.9861. Then eq.(22.1) gives the

following approximation for the limit cycle:

(40) x = 1.9861 cn(l.1808 t. k=0.37608)

This approximation offers reasonable agreement with numerical integration of
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eq.(l) for e = 1/10, see Fig.l. Note that first order averaging off of the

simple harmonic oscillator failed to predict a limit cycle for this equation.

cf. eq.(7.l).

Example: Limit Cycles in EQ.(8)

We investigate limit cycle solutions in systems of the form

(41) x'' + a x + j x3 + e g = 0

in which g = 6 x' + 2 v. . xi x j , where 2 _ i+j < 4

Using eq.(27.1), eq.(28.1), and Table 4. we find that the only terms that make

nonzero contributions to C' are

2 , 3
(42) 6 x', V2 1 x X, V 0 3 x

The condition for a limit cycle is that C' be zero, i.e.. F 1 = 0. This

condition on the parameters 6. v2 1, and u03 will then determine the limit cycle

radius (if a limit cycle exists). The other ten terms in g do not influence

the existence of a limit cycle (to O(e)). Therefore, we take a modified

perturbation for g:

(43) g = 6 x' + p x2 x. + i x. 3

Note also that 5 = p = T7 = 0 implies the existence of a family of closed

orbits, and not limit cycles.
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Eq.(45) can be viewed as a relationship between the limit cycle amplitude C and

the parameters 6. p, a d 71. When any two of these parameters are zero, there

can be no limit cycle. Eq.(45) is singular when the product Ti 0 vanishes,

i.e., the normally quadratic equation in C2 becomes linear. When i =0O

eq.(45) reduces to:

(46.1) C2 6 V.1 0
p V 2 + n a V 3

Eq. (46.1) can have at most one positive root, and hence there can be at most

one limit cycle. For r 3 0, we solve eq.(45) to get

(46.2)- C2 a jV 3 -p V 2  (a V v3 + P v2 2 _4 P 5 qV1-a713 -p2 ~I a~V+pV 2  -43 1 V 1 V3
(46.2) = 13 1113O

For cases I and III. C does not depend on k. Eqs.(46) are then explicit

relations between the parameters and amplitude C for the existence of a limit

cycle. For case II, however. C does depend on k so that eqs.(46) only

implicitly define C (since Vi depends on k). Investigating eq.(46.2)

numerically, we find C2 can be made to have zero. one, or two positive roots

for real C. A bifurcation occurs along the curve that is the intersection of

eq.(45) with

(47) d V + 2 + C2 (a + P C2 )  - 0
C 61 V2 3
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We find F1 and F to be (cf. eqs.(34).(36)):

(44.1) F1 =- C [6 cn '2 + p C2 cn2 cn'2 + n C2 (a + C2 ) cn 'A]

(44.2) F 1 = [6 V1 + p V2 + 2 (a + 2) V3]

where

V1 = mean of cn

1 [K (k2 - 1) + E (1 - 2k2)]

3 k 2K.

2 ,2
V = mean of cn cn

1 [K(k 4 - 3k2 + 2) - 2 E (k4 - k2 + 1)]

15 0 K

V3 = mean of cn'
4

35 [K (8k -13k + 3k2 + 2) - 2 E (Sk 6 -12k 4 + 2k2 + 1)]35 0 K

We drop the bar notation for convenience here and in what follows. The value

of k is related to C by eqs.(16). The Vi turn out to be positive for valid

values of k. Ignoring the trivial case C = 0, a limit cycle exists (F1 becomes

zero) for:

(45) 6 V1 + p C2 V2 + 77 C2 (a + If C2 ) V3 = 0
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Limit cycles on this curve are degenerate. As one moves across this

bifurcation curve, two limit cycles coalesce at a finite non-zero radius. We

continue the discussion by considering the limiting cases I and III:

Case I: Results for the linear oscillator

The values of Vi become indeterminate at k = 0. By taking limits we

find (cf. eq.(46.1)):

1~ 1 - 8

(48.2) C2 =4 

p+3a17

This agrees with the solution found in [14] by perturbing off of the linear

oscillator.

Case III: Results for the Purely Nonlinear Oscillator

We evaluate Vi and C2 to be (cf. eqs.(46)):

11

(49.1) V1 =- . V2 = .09139.... V 1

(49.2) C2  1 6 0
3V 2 P

(49.3) -7 3 p v2 ± F 1 2 1 P2 v 22- 4 0 6

213 P 76
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We continue the discussion of this problem by considering the number of limit

cycles which occur for given values of the parameters, i.e.. the bifurcation

set.

The Bifurcation Set

The cases ri = 0 and 7 , 0 are considered separately. The latter case

is then divided into the two cases 3 = 0 and 3 0.

Case n = 0

From eq.(46.1), we expect at most one limit cycle with amplitude C satisfying

(50) C2 v 2
V1

where po = - ) is a parameter

We now compare limit cycle bifurcation curves for cases I. II, and III.

Eq.(50) reduces in these instances to (cf. eqs.(48.1), (16.2), (49.1)):

(51.1) Case I: C = to

a 2k2 V2 (k)-
(51.2) Case II: ( 2 k2 -V (k)

I - 2k2 )  Vl(k)

(51.3) Case III: 0.27417... C2 =
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C V2/VI

III

C

Fig.3. Limit cycle amplitude C for eqs.(41) and (43) with 7 = 0. C. shown as

the abscissa, is determined by the intersection of a particular C
2 V2/V1 curve

(which depends on a/13) with the straight line go = -6/p. The arrow shows the

increase in limit cycle amplitude C resulting from increasing al while holuding1

0o fixed.
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A graph of eqs.(51) appears in Fig.3. Note that cases I and III provide bounds

for case II and that w0 is rather insensitive to the parameter ratio a/3.

Numerical experiments support these analytical predictions.

Case n 9 i 0

From eq.(45). we find

(52) 2 = [ V2  1 + (a + 3 C2) V3]
V1

where P - and = (-) are parameters

Eq.(52) defines a family of straight lines in the (pl,2) parameter plane with

slopes and intercepts parameterized by a, 3, and C. Both the slope and the

i2-intercept have the value zero at C = 0, and increase as C increases.

Case ni 0. 13 = 0 (Case I)

Eq.(52) becomes (cf. eqs.(16.l),(48.l)):

(53) 2 C2 [3 a +(53) U2 T l

with W1-intercept at point P (p 1 = -3 a. 42 = 0) for all values of C. A graph

of eq.(53) parameterized by C is given in Fig.4. There is one limit cycle in

regions I and II; there are none in regions III and IV, The p2 = 0 line is a
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ht 2

HII

Fig.4. Limit cycles in eq.(41) for 0 = . The parameters A1 and p2 are

defined by AL1 = p/77 and i2 = -6/i, cf. eq.(53). Along each straight line there

exists a limit cycle of fixed amplitude. Thus, in regions I and II there
exists 1 limit cycle while in regions III and IV there are no limit cycles.
The p, axis corresponds to the limiting case of a limit cycle of zero amplitude

(and, hence, a Hopf bifurcation occurs as one crosses the 4 1 axis.). The

dashed line is 1 = - 3 a and corresponds to limit cycles of infinite

amplitude. The arrow shows the direction of increasing limit cycle amplitude.
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Hopf bifurcation curve where a limit cycle is born at the origin. On the

bifurcation line j'1 = - 3 a, a limit cycle of infinite amplitude is predicted.

Point P is a highly singular point: near P. the limit cycle amplitude is very

sensitive to small changes in p1 and w2.

Case n 9 0. 0 0 0 (Cases II and III)

The ;il intercept moves out from I = - 3 a at C = 0 towards infinity as

C - m. With this information, we plot eq.(52). parameterized by C, in the

(A1,42) plane (see Fig.5). One limit cycle exists in region I. two in region

II (where each point lies on exactly two intersecting lines), and none in

region III. A degenerate limit cycle exists on the bifurcation curve between

II and III. The g 1 axis is a Hopf bifurcation curve where a limit cycle is

born at the origin. Point P (p1 = - 3 a, 12 = 0) is again a singular point

where a degenerate limit cycle of zero amplitude exists. Near P. the

sensitivity of the amplitude on p1 and 42 depends on the smallness of 3.

The predictions of Fig.5 are in agreement with the results of numerical

integration of the original differential equation (41).

A comparison of the linear analysis (P = 0. Fig.4) with the nonlinear

analysis (P s 0, Fig.5) shows qualitatively different results. In both

3
analyses, a perturbation term of the form e V30 x does not contribute to

determining the existence of a limit cycle. Yet for 3 small, the nonlinear

analysis does not reduce to the linear one. The linear analysis fails to

predict one limit cycle in region IV of Fig.4 and two limit cycles in part of

region II for P small.
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L2

~-3a

Fig.5. Limit cycles in eq.(41) for f 0. The parameters p 1 and 2 are

defined by u1 = p/ and g2 = -6/7, cf. eq.(52). Along each straight line there

exists a limit cycle of fixed amplitude. Thus, in region I there exists 1
limit cycle; in region II there exists 2 limit cycles; and in region III there
are no limit cycles. The A, axis corresponds to the limiting case of a limit

cycle of zero amplitude (and, hence, a Hopf bifurcation occurs as one crosses
the 1 axis.). Along the curve separating region II from III two limit cycles

coalesce. The arrow shows the direction of increasing limit cycle amplitude.
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Numerical simulations confirm the nonlinear analysis. Eq.(l) provided

an example with the following parameter values:

(54) a = 1, P = e = 0.1, 6 = -0.5. p = -3.1, n = 1

in which the system belongs to region IV of Fig.4 and I of Fig.5. As we saw

before, the analysis based on elliptic functions agreed with numerical

integration, while the usual trigonometric approach failed to predict a limit

cycle.

Another example is afforded by the parameter values:

(55) a = 1, P = 2 a = 0.1, 6 = 1, p = -4.6, n = 1

in which the system belongs to region II of Figs.4 and 5. A numerical

simulation finds two limit cycles with amplitudes 1.93 and 2.93. Using

eq.(52), the predicted values are 1.97 and 2.59, which compare well with the

numerical integration values. The linear prediction eq.(48.2) predicts only

one limit cycle with amplitude 1.58.

Conclusions

With the advent of computer algebra, perturbation analyses using

elliptic functions can now be done almost as easily as those using trignometric

functions. We have shown that perturbing off of elliptic functions will

generally provide better quantitative and in some cases better qualitative

results than a comparable perturbation off of trigonometric functions. In some

problems, averaging off of elliptic functions (which contain an

670



amplitude-frequency dependence that trignometric functions lack) provides

results at first order w;xich can only be attained by averaging off of

trigonometric functions to second order. In the case of limit cycles in

eq.(41). first order trigonometric averaging gives qualitatively incorrect

predictions if P 0 and A, < -3a, cf. Figs.4,5.

Related work in progress by the authors includes the extension of the

averaging method off of elliptic functions to include terms of O(E2 ). This

involves computing a near-identity transformation and is a generalization of

second order averaging off of trigonometric functions (see [14].) Additional

applications of the MACSYMA program have been made to the forced Duffing

equation and to systems of the form of eq.(9) in which a and 13 are slowly

varying functions of time. In particular, extensions of this work to problems

in which a and P are not necessarily positive are in progress.
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Appendix. MACSYMA Computer Program Listinix

/* ROUTINE TO PERTURB OFF X'' + AL X 4 3E X 3 + E G(X,X') = 0 E

AVERAGE() :=BLOC([X. Y.XX, YY, EC, KC, AL. BE.GF. FX2, F22, FI, FBAR. HI, D,CFLOW, PFLOW,
PRINT ("AVERAGING OF X'' + AL X + BE X 3 + EPS G(X.X',EPSwT"),
PRINT(" ")A:.A(ETRAL:"),
PRINT(" "-).BE:READ("vENTER BE:").
PRINT(- ").PRINT("ENTER G(X,X') USING Y=X':"),
G: READO,
PRINT(" ")PRINT("THE SOLUTION TO THE UNPERTURBED SYSTEM IS"),
PRINT("X C C N(4wKC(C)*PHI,K)v"),
PRINT("X' = C SQRT(AL + BE C-2-% aN'(4*KC(C)*PHI.K)"-).
PRINT("WHERE 0 <= K-2 = BE C'2/2/(AL +BE C-~2) <= 1/2"),
PRINT( "KG = COlMPLETE ELLIPTIC INTEGRAL OF FIRST KIND").
PRINT("AND 4wKC(K)*PHI = SQRT(AL + BE C-2)*T+B"). PRINT("")
PRINT("SEEK PERTURBED SOLUTION OF SAME FORM WHERE (C,PHI)"),
PRINT( "BECOME FUNCTIONS OF TINE"),
PRINT(" "),

/* X = C CN(4'EKoEPHI) E
/* Y = X' = C SQRT (AL + BE C-'2) ai'(4KCwPHI) E

/* SYMBOLS 'El

/* XX = (N FUNCTION l
/w YY = C7N' FUNCTION (DERIVATIVE OF CN W.R.T. ARGUMENT) /
/* ZZ = ZETA FUNCTION l
/* KC.EC = COMPLETE, ELLIPTIC INTEGRALS OF 1ST,2ND KINDS w
/w K = MODULUS l

KILL(K),

/w FOR SPECIAL CASES, K IS A NUMBER /

IF AL = 0 THEN K:SQRT(112),
IF BE = 0 THEN (K:O,KC:EC:%PI/2).

/w REDUC ROUTINE TO REDUCE EXPRESSIONS TO FORMS: CN-M AN]) CN^M CNP l

REDUC(EXPR): =BLOCK((EEVEN, ODD, VAL].
EVEN: EXPAND( (EXPR+EV(EXPR, YY=-YY) )/2),
ODD: EXPAND( (EXPR-EVEN )/YY),
ODD: YY*EXPAND(EV(ODD, YY=SQRT( ( -XX 2)*( 1-K-2+K 2*XX 2)))),
EVEN: EXPAND(EV(EVEN,YY=SQRT( ( -XX 2)*( 1-K 2+K-2wXX 2)))),
VAL: EVEN+ODD

672



/* AVERAGING PROCEDURE */I

C: EV(G. X=O*XX. Y=O>SQRT(AL+BEwC-2)wYY).

F[ 1) ]: -1ISQRT(AL+BEwC'2)*REDUC(GwYY).
F[2]: 1/C/41KC/SQRT(AL+BE*C-2)

wREDUC(Gw(XX-( I-2wK'-2)/( l-K-2)w(ZZ Y+K-2wXXw( l-XX-2)))).
IF K = 0 THEN F[2]:EV(F[2].ZZ=-O).

F[1]:EV(F[1],YY=-O), /w CN-M aCIP TERMS HAVE NO MEAN w

FZ2:RAT(XJEF(F[2].ZZ). /* PICK OFF Z TERMS IN F[2] w
FX2:FXPAND(F[2)-F2wZZ), /* PICK OFF X TERMS IN F[2] w
FZ2:EXPAND(EV(F2Z2-EV(FZ2,YY=-O),YY=1)). /* Z CNI'M TERMS HAVE NO MEAN w

FX2EV(X2.Y--),/w aNrM CNP TERMS HAVE NO MEAN w

/w MEAN VALUE ROUTINE w

D[O]:l.
D[l]:O.
D[2]: 11KBARW2*(EC/KC-1+KBAR 2).
D[3] :0.

+( II-3)w( 1-KBAR-2)*D[II-4])).

IF K = 0 THEN (D[2]:1/2.D[II]:=RATSIMP((II-1)/II*D[II-2])),
IF K = SQRT(1/2) THEN KBAR:SQRT(1/2).

/w FIND MEAN USING TABLE 4 w/

HI:MAX(HIPOW(F[1],XX) ,HIPOW(FX2,XX) ,HIPOW(FZ2,XX)).
FOR II:1 THRU 2 DO FBAREII]:O.
FOR 11:0 THRU HI DO (

FBAR[ 1]: FBAR[ 1]+RATCZOEF(F 1 ] .XX. I I)*D[ II]
FBAR[2] :FBAR[2]+RATcOEF(FX2,XXC.II)*D[II)

-RATOEF(FZ2, XX. II)/(I I+ 1)*((1-KBAR'2-ECI/KC)*D[I 1+ 1
+KBAR 2*1DEI1+3)

/* CHANCE RESULTS TO PRINTABLE FORM w

FOR II:1 THRU 2 DO FBAREII]:EV(FBAREII].ABS(C)=-CBARC=-CBAR.K=KBAR).

/w PRINT AVERAGED E(S w/

CFLOW: EPSwFACTOR( FBAR[l1]),
PFLOW: 1/4/K(>wEV(SQRT( AL+BE*CBAR 2),.ABS(CBAR) =CBAR )+EPS*FACTOR( FRARE 2]).

DERIVABBREV : TRUJE, KILL (KBAR).
VAL: EDIFF(CBAR(T) .T)=CFLOWDIFF(PHIBAR(T) ,T)=PFLOW.

KBAR^2=BE*CBAR'2/2/ (AL+BEwCBAR2)].

PRINT( "THE AVERAGED EQUATION~S ARE") ,PRINT(" )

PRINT(VAL), PRINT(" "
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Here is a sample run based on the example discussed in the text, eq.(1):

(c6) AVERACE$

PERTURBATION OF X" + AL X + BE X^3 + EPS G(X,X".EPS*T) = 0 BY AVERAGING

ENTER AL:
1;

ENTER BE:
1/10;

ENTER G(X.X') USING Y=X':
-Y/2-31WX^2*Y/10+Y^3;

THE SOLUTION TO THE UNPERTURBED SYSTEM IS
X = C CN(4KC(C)*PHI.K) , X' = C SQRT(AL + BE C^2) CIN'(4*KC(C)*PHIK)
WHERE 0 <= K-2 = BE C-2/2/(AL +BE C^2) <= 1/2
KC = COMPLETE ELLIPTIC INTEGRAL OF FIRST KIND
AND 4*KC(K)*PHI = SQRT(AL + BE C^2)*T+B

SEEK PERTURBED SOLUTION OF SAME FORM WHERE (C.PHI) BECOME FUNCTIONS OF TIME

THE AVERAGED EQUATIONS ARE

4 6 2 6
[cbar(t) = - cbar eps (24 cbar kbar kc + 240 cbar kbar kc

t

4 4 2 4 4 4 2
- 39 .bar kbar kc - 173 cbar kbar kc + 175 kbar kc + 9 cbar kbar kc

2 2 2 4 2

- 561 cbar kbar kc- 175 kbar kc + 6 cbar kc + 494 cbar kc

4 6 2 6 4 4
- 48 cbar ec kbar - 480 cbar ec kbar + 72 cbar ec kbar

2 4 4 4 2 2 2
+ 286 cbar ec kbar - 350 ec kbar - 12 cbar ec kbar + 314 cbar ec kbar

2 4 2 4
+ 175 ec kbar - 6 cbar ec - 494 cbar ec)/(1050 kbar kc),

2
cbar

sqrt( ----- + 1) 2
10 2 cbar

phibar(t) = ------ -------- , kbar = --------

t 4 kc 2
cbar

20( ---- 1)
10

(VAX 8530 Time = 157 sec.)
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The results of the program give the averaged equations in terms of both C

(called cbar) and K (called kbar). The results are stored in the variable VAL:

VAL[l] contains the C equation. VAL[2] contains the &' equation and VAL[3]

contains the expression for 2 in terms of C2 . The following command

substitutes k in terms of C, giving eq.(39) of the text:

(c7) FACTOR(EV(VAL[l],KBAR=SQRT(RHS(VAL[3]))));

6 4 2
(d7) cbar(t) = - eps (5 cbar kc + 447 cbar kc + 10175 cbar kc + 64700 kc

t

4 2
- 594 cbar ec - 11880 cbar ec - 64700 ec)/(350 cbar kc)

(VAX 8530 Time = 3 sec.)
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The Effective Use of Computer Algebra Systems

Joel S. Cohen
Department of Mathematics and Computer Science

University of Denver
Denver, Colorado 80208

Abstract
In this paper we give an outline for an applied computer algebra course

which describes the technical skills needed to effectively use a computer

algebra system to solve symbolic mathematical problems in science and
engineering.

I Introduction.

A Computer Algebra System (CAS) is a powerful computer program which is
able to manipulate and analyze symbolic mathematical expressions. Computer
algebra systems are quite easy to use and it is easy for both students and
professionals to learn to use the systems in a superficial way. For example, to
compute an indefinite integral or find the closed form solution to an elementary
differential equation, one needs to master only a few simple operations. However,
to really understand the potential uses (and limitations) of these systems, a
mathematical scientist 1 must have:

" An understanding of the kind of mathematical knowledge contained in a
CAS and an understanding of the extent and reliability of this knowledge.

" Some knowledge of computer algebra programming techniques including
recursion and list manipulation.

" The ability to formulate a symbolic mathematical problem in an algorith-
mic way and the ability to express the algorithm in terms of the math-
ematical operations and programming structures available in a computer
algebra language.

'We use the term mathenatical scie7is1 as a generic term to represent mathematicians,
computer scientists, physical scientists, engineers, statisticians, economists and others who
use mathematical reasoning in their work.
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* Some understanding about how a CAS works.

* An exposure to a collection of examples that illustrate the successful use
of a CAS.

* A feeling for which symbolic calculations are best done by hand and which
are best done by a CAS.

In this paper, we shall outline a course in applied computer algebra. The course
outline describes the technical skills needed to effectively use a CAS to solve
symbolic mathematical problems in science and engineering.

2 A Frustrating Example.

Let us begin by taking a critical look at an example that illustrates the use of a
CAS. The problem we have chosen is from modern physics. It emphasizes many
of the issues faced by the mathematical scientist who wishes to use a CAS to
help solve a problem.

Consider the time dependent Schroedinger equation for the one electron
atom

h 2 92 T T k, + a -O T + 20 ') +I V V ' T r' T2,-7 a + O-T+ V,'T = (I (

where OT = V'T(X1, X2, Y2, Z, Z.,). If we make the following change of vari-
ables

mix, + in,) x-
X "

rnly +m 2y2
Y 71 1 + 7712

mi + mn2-- (2)
mI + 111

r = (X.-X) 2 + (Y2 -yl)
2 + (.2 -

0 = arctan( y,! - Yl
xl - '

0 = arccos( 2 - Z )

equation (1) is transformed to the form

h2  (2"±T + .'J'T + hf 1024, 0 07-,

2 (in, + n,) x + O-+ - 2/1 -2 (a.)

1 024,T I* aTI00
00 ,), -- (sin 0 - ) i U) = ,7 V- r,

r2sin2(0)O110 0  0 + + - =
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where
mI rn2 =. (4)

inl + in2
The transformation appears in tile text Eisberg([5], pp. 295-297) where tile au-
thor remarks, "This is actually a quite tedious task, and so we present here only
the results." This example is similar to the polar and spherical transformations
of the Laplacian and other vector analysis operators which appear in texts on
advanced engineering matiematics. This problem is more Involved since there
are six independent variables.

A number of years ago the author attempted to verify this transformation
using a GAS. 'Fle point of the exercise was to illustrate to a class of miathe-
matics, engineering and physical science students the power of a CAS to ha,,dle
tedious but routine calculations. This problem is typical of the type of symbolic
calculations a scientist or engineer might encounter in his work. Let us suppose
this person is lucky enough to have a powerful work station with computer alge-
bra software in the office and has had some experience with a CAS. Let us also
suppose that he needs to verify this transformation and must make a decision
whether to do this with pencil and paper or with a GAS. A number of questions
of a philosophical nature come to mind:

* Can this calculation be done by a CAS? Since this calculation is straight-
forward, the answer is presumably "yes."

* Should this calculation be done by a CAS or with paper and pencil? There
are number of important considerations here. First, there is tie question
of time and effort. Will using a CAS require less time than hand calcula-
tion? Next, there is a question of accuracy. This is particularly important
if the final answer to the problem is unknown. Presumably, if tile problem
is accurately entered into the computer, if the user has chosen tile appro-
priate commands, and if the CAS is free of bugs, the GAS should produce
an accurate result. Finally, will important side effects of a pencil and
paper calculation be lost? In the course of a derivation other important
relationships often appear which would not be apparent if tile calculation
were done with a CAS.

* Can this problem be done by a novice symbolic programmer or is expert
knowledge of a CAS required? Presumably, our hypothetical mathematical
scientist is closer to the novice than the expert and is more interested in
obtaining insight into the scientific problem than learning about computer
algebra.

* Is this calculation a direct application of the mathematical knowledge in a
GAS or does it require a symbolic program which might include conditional
statements, loops and subroutines? Ideally, one would like to have a single
command which takes (1) and (2) as input data, and returns (3) as a
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result. If this command is not available, we must combine a number of
commands into a symbolic program.

What algorithm should be used to perform the calculation? Can we il-

itate the steps found in a textbook? A starting point for an algorithiu
is the transformation of the Laplacian from rectangular to polar coor-
dinates found in many advanced engineering text books. (for example,
see Kreyszig[8], pages 4,17-448). However, most textbook derivations are
written to facilitate human understanding. They are not written with a
computer algebra system in mind. For example, the Laplacian derivation
cited above contains many local substitutions which make it understatid-
able to the human reader. Is it necessary to follow the same approach
with a CAS derivation'?

" low does one express the algorithm in terins of the operatons and data
structures available in a computer algebra language? In the example con-
sidered here, the primary question is how to deal with the undefined func-
tion tPT. Most (but not all) computer algebra systems have two ways
to express undefined relationships between variables. The first way rep-
resents an undefined relationship explicitly with anm expression similar to
f(x, y). The other way declares that the symbol f depends on the symn-
bols x and y, and then carries out all calculations with derivatives in this
environment. Will both representations produce the desired result?

" Can this calculation be done with any CAS? Will the same algouthi'm work
with all systems? Perhaps the mathematical scientist is wondering which
of many available systems should be used. At the time this problem
was tried, the author had these four systems available: NIACSYMA[13],
REDUCE[61, MAPLE[IJ, and muMath[1O].

" What input is required for this calculation? Obviously, one has to input
the original equation (1) and the transformation (2). However, the in-
verse transformation which expresses the variables xi, x.2, yi, y2, z1, z. iin
terms of the variables x, y, z, r, 0, 0 is also required. Although, computer
algebra systems are able to solve some systems of itonliiuar t(I',atioms,
no CAS is able to invert the transformation (2). Therefore, tlme imverse
transformation must also be input into the system.

" Will a CAS produce the intended result or will the result appeir i a Imath r-
matically equivalent forn ? Although a GAS can perform some remarkable
simplifications, it is often difficult to transform an expression to the exact
form found in a textbook.

* Is trigonometric simplification possible with a CASTlIeoretically, it is im-
possible to do all the simplifications we may wish to do with a CAS. Il this
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case, however, the problem is primarily one of trigonometric simplification
which involves repeated application of the identity sin 2 u + cos u = 1.

" How much CPU time will the calculation require? Obviously, we should
only perform the calculation if it is within the capabilities of our equip-
inent.

" How will we know if the ansver is correct'? Since the problei is one of
verification, we know what we are looking for. If we had not known the
result, we could apply the inverse transformation to the result to see if we
could obtain the original equation. In general, determining if a result is
correct poses a difficult problem.

In retrospect, the transformation of (1) to (3) is not a particularly difficilt
calculation for a CAS. However, it would have l,-en diflicult to convince the
author of this when lie was trying to verify the result with a CAS. The question
is not so much whether someone with an intimate knowledge of some ('AS cani
obtain the result by pulling a few coinmands out of a hat. Rather, the q 01loll
is whether a person with moderate knowledge of a CAS can obtain tdhe rerii It
in a reasonable anount of time.

It would be interesting (in fact comical!) to review the path ( incluiliig all
the false starts) taken by the author to solve tills problem with a CAS. Ve shall
not go into all the technical details in this paper. Rather, we shall give sonie
overall impressions of the experience.

" A preliminary analysis of the capabilities of the four systems indicated
that the MACSYMA system had the greatest chance of success with this
particular problem. Although it is not apparent from reading the inan-
uals, the other three systems did not have the capadility to apply the
differentiation chain rule to abstract (undefined) functions .2. Sile-. this
rule is needed in the derivation, these systems were dropped from Coisid-
eration. Certainly, this limitation may be eliminated From these systeims
by modifying or even rewriting the differeitiator.

* The problem took about one and a half weeks of the author's tine amid
over 30 test files Lbfore a correct program was obtained.

" Although it was relatively easy to write a program to transform a two di-
mensional version of tihe problem, it was not so easy to modify the rtcsilt
for three dimensions, In fact, the obvious generalization of the two dinmieii-
sional program to three dimensions originally produced ; result which was
nearly correct but contained a few superfluous terms which did not sim-
plify to zero. Luckily, iII this case, the final result was kiown. Ot hierwis,
this incorrect result miay have been accepted as correct!

"In fact none of the systems handle the differentiation and ittegati,,i ,f midclihed Ii,.-

tions in a satisfactory manner. See Cohen(21 and WVester[I4].
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" Originally, we ignored niany of tile local suibstjtitioils and simplificatiols
found in textbook derivations for prol)lems of this sort. Instead, we relied
on a brute force approach which required all unacceptable anout of CPU
time (up to four hours on a VAX 750). By performing some local substi-
tutions we were eventually able to get the derivation down to 15 minliutes
of CPU Lime.

" To effectively use a CAS, it is essential to thoroughly understand the se-
mantics of commands in the system . Unfortunately, a precise descriptiol
of a command's function rarely appears in the system manual. li the
course of trying the above example, significant differences were observed
in the same command from system to system. A program's behavior in
one system may be quite different from its behavior in another system.

3 A Course In Applied Computer Algebra.

We believe that the CAS experience described above is not unique. 'lere is
more to using a CAS than reading the manual, seeing a few examples and
trying a few commands. Numerical analysts have always emphasized that using
a numerical method in an inappropriate way can lead to disastrous results. We
believe the same is true for symbolic methods. In tile remainder of the paper,
we describe an applied computer algebra course which is intendeo to aldrS.,
some of these issues.

There are currently many CAS courses being taught it the U.S.. (an a
and Europe. The range is from language courses, which describe how to use i
particular CAS system to solve a variety of symbolic imatheilatical prolilell.
to more advanced courses which concentrate on the mathematical background
needed to develop efficient algorithms for computer algebra. To make am anal-
ogy with numerical computation, tile former courses are similar to scientific
programming courses which teach the mechanics of a programming language
(FORTRAN or Pascal), and, in some cases, the use of numerical or statistical
software packages. The advanced CAS course is similar to a course in numeri-
cal analysis which includes a theoretical discussion of numerical algorithms. In
the numerical setting, numerical methods courses, which lie between these two
extremes, serve to introduce a mathematical scientist to some of tie issues alnd
applications of numerical computation (for example, see Conte aid dt-lour[3]
or Dorn 4]). These courses are taught ii mathematics departments, coimpluter
science departments, and other science and enginetring departmiients. T'e'l g,'d
is to introduce the issues surrounding numerical computation and to eiphiasize
its advantages and pitfalls. The applied computer algebra course we have iII
mind is the computer algebra analogue to the miumerical methods course.

The following four premises underly the design of the course:

1. The course is designed for mathermatcal sctentsls whose prinary in/crests

682



are riot tin computer algebra or even computer science. This populationl
has an extremely diverse background in both mathematics arid coflijpit-
ing. A safe lower bound for backgrounds is to aSSumI~e thle Usual two year-
freshmair-sopluornore mathematics sequence (through iuultivariable calci-
lus, linear algebra anrd applied differential equations), p~lus some experi-
ence with numerical programming. Many iii the audience will not have
studied discrete mathematics, abstract algebra or programming concepts
such as recursion aunl list manipulation. This limits thre set of' examrples
that can be used to demonstrate thne capabilities of a CAS. It also ureaiis
that mathematical concepts from these areas which are neehed to wriite
symbolic programs must be Integrated intto course rmaterial.

2. Thre course is oriented toweird algorili is rathier t/han 11 pe141thl CA-',
language. Although th~e notion of an algorithm for a symbolic roirrpu tatiOui
is Implicit iii tradhition~al mathematics, it is not usurally the focus of hre
subject. Techniques for so~vIng a problem are usually not stated IIIIre
formal way that they are in numerical methods or computer prograninnig.ll
For example, although differentiation is formally a recursive process, it is
usually described in an informal wvay in a mathematics textbook. Riather
than emphasize a particular CAS language, the goal should be to develop
the skills needed to create symbolic algorithmsI.

Of course, it is important to include sorne progranlining in one or ierore
GAS languages. However, Computer algebrat systems are evolving rapidly
and ne~v systems are being developed 3. Rather than learn all thre de-
tails and eccentricities of a particular language, it is more usefutl to learn-1
the general principles of GAS languages and( air approach to0 ev;rltllte tire
capabilities of a particular language.

3. Examples of CAS aipplicartionrs should be c/hosen to illustrate bot/h tiet po.s*i-
bi/sties and liitialions of comiputer algebra a nd shou /ld inpleusize /re role'
of computer algebrai tit tihe problem solving p~rocess. The miessage of muost
written material currently available on compitter synmbolic comupeutauor
tries to promote tire field rather than give a balanced, realistic view of
where a CAS can be used. In solving mathiematical p~roblemrs, a G'AS') i.1
only of many tools that canl help solve a prob~lem. Thre importanrt question
is, what is the place for computer symbolic computation ili thre prolilein)
solving process? What is thre role for tire mathematical scientist and whrat
is thre role for the niaciire?

-l . Pec il arnd paper syicbolic carlcu~lationi is inor I n pollranti c tha evr'e. 0cc;L-
sionrahly, it is said rhat. coruputer algebra will revohrt ional ize Ilie wayrv, do
mnathemiatics by eliruriunatirg thre rneed for muech symbolic corurtatiorn wit!1

3Durirrg the past year, two new CAS systems, NIATI[EMATICA (se!e Wolfr;uii[15j) and
DERIVE( [121), hrave been introduced.
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pencil and paper. We believe that this statement is misleading and gives
a false picture of the role that computer algebra can play in the problem
solving process. A CAS can perform many symbolic calculations which
are ordinarily done by hand. However, we believe to effectively use a CAS,
the mathematical scientist must be good at pencil and paper symbolic cal-
culation and have a good understanding of the underlying mathematical
concepts. This understanding is essential to recognizing situations where
a CAS can be applied.

There is another more subtle reason to emphasize the importance of hand
calculation. For some people there is a tendency to immediately try t
computation with a CAS with the hope that the systeli will miratculo(i.ly
produce the intended result. Using a CAS in this way can be countLerpro-
ductive. A more useful approach is to spend some time thinkiig about
a problem with pencil and paper. Perhaps the problem can be put into
a more convenient form which leads to a transparent solution or which
provides some unexpected information.

Course Organization.

There are three important components to an applied computer algebra course:

1. An exploration of the capabilities of a CAS.

2. A discussion of symbolic programming techniques including recursion and
list manipulation.

3. A discussion of some of the elementary algorithms which make a CAS
work.

We shall discuss each component in greater detail in the following sections.

4 Exploring The Capabilities of a CAS.

Many mathematical scientists do not use a CAS because they do not umder-
stand its capabilities or believe it can be useful in their work. It is easy to
understand where this feeling comes from. Tile manipulation of niatlieniatical
expressions is a difficult intellectual exercise which often requir'es insight s well
as perseverance. Indeed, even those who have considerable experience xrith a
CAS may find it difficult to describe what it can do or whet| it night, be useil
for a particular problem. There are some who even take t.he point of view that
it is too difficult to precisely define what a CAS system does. They believe a
user should simply try a problem with a CAS and see what. happeis.

The mathematical knowledge in a GAS is delined by the properties ,of the
various mathematical operators in the system (expand, factor, limit, dillerenti-
ate, integrate etc.) and the automatic simplification rules which are applied to
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an expression. The capabilities of most mathematical operators can vary from
system to system (sometimes dramatically) and may change significantly when
a new version of a system is introduced. For example, some CAS systems have
the capability to compute the limit of a function or a sequence. In the manual
which accompanies the CAS, the semantic action of the limit operator is ustally
loosely described rather than precisely defined. This description will include a
few isolated examples of how the operator is applied but little information about
what to expect in non-trivial examples. If one were to scan through a typical
text on applied mathematics, one would find that the limit operation is used
in many different contexts - some very specific and some quite abstract. For
which limit operations should we expect that a CAS will produce a reasonable
result?

Fig. I shows the results of applying two computer algebra systems 4 to soIe

limit problems encountered in undergraduate mathematics. Example I requires
two applications of L'hospital's rule and is easily computed by both systems.
Example 2 is similar but requires n applications of L'hospital's rule where tIt is
undefined. Nevertheless, both systems are able to compute the result. Iloweve,
MACSYMA requested additional information about x and n which in this case is
extraneous. The limit in Example 3 requires another approach. The expression
is the absolute value of the nth term of the series

Xn

n=0
which converges by the ratio test. Therefore,

lim - = 0.
X 0 it!

Neither system was able to compute this limit. Example 4 is the formal deli-
nition of the derivative for sin z. Both systems are able to compute this limiit
but MACSYMA requested additional but extraneous information about the sin
function. Example 5 is a similar calculation (the transformation s = I/t trans-
forms the limit to the derivative of exp(x) at x = 0) but surprisingly MAC-
SYMA is unable to compute the limit. Example 6 is the general delfuition of
the derivative. However, neither system recognizes this fact even though both
systems have some capability to work with undefined functions. Example 7
is a famous result due to Euler. Tihe author was quite surprised to find that
MAPLE can compute this limit. Example 8 is the Laplace trauslormn of sin t.
MACSYMA is able to compute this limit by requesting inbrmnation about the
sign of s. MAPLE was unable to compute the limit.

What is a user to make of this performance? Certainly all these limits may
arise in the course of doing mathematics and are fair requests of a CAS. If tll

4The systems are MACSYMA 309.6 and MAPLE 41.1. MACSYMA is a trademark of
Symbolics Inc.
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Limit MACSYMA MAPLE

1 lim - = 0 0 0

2 lira - = 0 0 0

3 lir 1 = 0 U U

4 lir sin(x + Ax) - sin x = Cos x Cos x Cos X
A Oz-o AX

5 lim t(exp lt - 1)= 1 U I

6 lir f(X + AX) - f() _f() U U
An- 4 X i2 iT2

7 lim U -
n oo 1 I..,  j  6

8 lim sinwtexp(-st) dt + s > 0 " 2 U

Figure 1: Examples of limit operations in two computer algebra systels. The
symbol U means "unable to compute."

person is familiar with the computer algebra field and has kept up with the work
on limits, lie might know about the difficulties which arise when programming
a CAS to compute limits, and thus thus be willing to excuse the system when
it fails to produce a result. Most users will not have this knowledge and may
end up wondering just what a system can do ani whether to trust the results.
To effectively use a CAS, a user must have a clear idea about the semntiC
capabilities of mathematical operators in the system. The exploration of the
semantic capabilities of one or more CAS systems is an imnportant cOmnl)unecnt
of an applied computer algebra course.

We use the )hrase semantic capacitly to refer to the miathematical power
of an operator in a computer algebra system. In many cases it is difliciult lo
precisely define the semantic capacity since even the developer of a CAS may
not know exactly what an operator can and cannot do. Nevertheless, we believe
that this is an important question and it should be discussed even if it cannot
be completely answered.

We do not believe it is practical or interesting to simply list in detail tile
capabilities of an operator in a CAS. The capacity of an operator may change
when new versions of a CAS are released and it is difficult for a clsual user to
keep details of this sort in mind. An alternative approach is to discuiss what
a mathematical operator should ideally be able to do and compare this iII a

general way to what current systems are capable of doing. [For examuple, coiiside!r
the differentiation operator. Obviously, a CAS should I -able to dilt;f,'uli at,.
most specific functions no matter how complicated. However, iII mathuaticah
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calculation we also differentiate im;dicit functions, functions defined by integrals
(including differentiation under the integral sign), functions defined by infinite
series, and undefined functions (general f(x), g(x,y)). We differentiate with
respect to a variable, a function and even a differentiation symbol such as y'.
We compute ordinary derivatives, partial derivatives and total derivatives. Is a
CAS able to perform the differentiation operation correctly in all these cases'?
A carefully chosen list of exercises can help a user explore the semantic capacity
of an operator.

Properly Posed Requests.

As with all forms of programming, the mathematical scientist should take
care to ensure that the input to the system makes mathematical and compti-
tational sense. Informally speaking, an operation is said to be properly posed
if:

" The ezecution of the operation produces a meaningful mathematical ex-
pression. It is quite easy to get a CAS to return absurd looking results.
Therefore, the mathematical scientist must always carefully inspect the
result returned by the system to ensure that it makes mathematical sense
and satisfies all the explicit (and implicit) assumptions in a problem.

" The CAS has all the informnalion needed to perform the operation in an
unambiguous manner. A CAS is sometimes asked to perform a matlhe-
matical operation without all the necessary information. In this case, the
system may not perform the operation, may request additional infornia-
tion, or may even return a result which is not entirely correct. To obtain
a satisfactory result, the mathematical scientist must supply additional
information to the system or modify the request to remove the ambiguity.

Fig. 2 is a MACSYMA session which illustrates a few instances of operations
which are not properly posed. Line cl assigns an equation to a variable dl.
Line c2 substitutes the value x = -3 into dl. In response, NIACSYMA returns
the expression d2. We consider this substitution operation to be improperly
posed since it returns an absurd expression even though it is perfectly legal ini
MACSYMA. The problem here is with the ambiguous use of the equal sign,
which has a number of different uses in mathematics and therefore a number of
different uses in a CAS. In the present context, no semantic meaning is assigned
to the equality and the system is not aware that the last result is incorrect. A
similar computation can by done in both MAPLE and imuMath. The I;DUCE
system does not accept the substitution and returns an uninformative error
message.

In statement c3 we request the system to evaluate the indefinite integral
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(cl) x-2+4=x-1;

2

(dl) x + 4 = x - 1

(c2) subst(x=-3,dl);

(d2) 13=- 4

(c3) integrate(x-n,x);

Is n + 1 zero or nonzero?

nonzero;
n 1

x
(d3)

n + 1
(c4) integrate(sin(omega*t)*exp(-s*t),tOinf);

Is omega positive, negative, or zero?

positive;

Is s positive, negative, or zero?

positive;

omega

(d4)
2 2

s + omega

Figure 2: A MACSYMA session demonstrating statements that are mproplerly

posed.
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where n does not depend on x but is otherwise undefined. This statment is
improperly posed since the result depends on whether or not n = -1, which
is unknown at this point. In this case, MACSYMA queries the user for more
information about the value of n. We have informed the system that n + 1 0 0
and the system returns the appropriate result d3. The computation was tried
on three other computer algebra systems (muMath, MAPLE and REDUCE).
Each automatically assumed n 0 -1 and returned xn/(n + 1).

In the next statement (c4), we ask MACSYMA to evaluate the integral

0 sinwi e-"dt.

This improper integral represents tie Laplace transform of the fuinctiom sill .t.
It converges when s > 0 and otherwise does not converge. Without inlormima-
tion about the relationship between s and zero, the statement is improperly
posed. MACSYMA realizes this fact and requests more information about S.
MACSYMA also requests unnecessary information about the sign of turneya. In
both cases, we indicate that the variables are positive and MACSYMA returns
the result (d4). The muMath, MAPLE and REDUCE systems are unable to
evaluate this improper integral.

The question of when an operation is properly posed is an important Zspect
of operator capacity. It is important to understand that a CAS must occasionally
make assumptions about the nature of variables in an expression and that the
result produced by a system may not be correct in all situations.

Simplification Context.

For efficiency reasons it is unreasonable to expect a CAS to apply all its
simplification rules during the course of a computation. The designer of a CAS
must choose which simplification rules are appropriate for a particular operation.
We use the term simplification context to refer to those simplification rules whicih
are applied during the evaluation of a mathematical operator. The simplification
context often determines the form of the output of an operator and ill some cases
determines whether or not a CAS can even perform an operation.

For a simple example, consider the MIAPLE session inI Fig. 3. At the iir.-
prompt, u is assigned a polynomial in x with coefficients which are poly non mils
in a. At the second prompt, we request that MAPLE determine the dlegree of'
u in x. The system returns the value 2 even though tie the coeflicent of j'"

simplifies to 0. In this example, the expand simplification rules apparently ;irc
not part of the simplification context of the degree operator.

The simplification context will often determine whether or not a CAS is able
to perform an operation. For example, consider the indefinite integration

I 2x cos(x 2 + X) + cos(Z 2 + X) dx = sin(x2 + X) + C. (5)
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> U := (a'2-1-(a+1)*(a-1))*x-2 + 2*x + 3;

2 2
u := (a - 1 - (a - 1)(a - 1)) x + 2 x + 3

> degree(u,x);

2

Figure 3: A MAPLE session demonstrating a simplification conlexit.

If the integrand is first factored, the integral can be easily evaluated by making
the substitution u = x2 + x. InI factored form, the four systems available to the
author (MACSYMA, MAPLE, REDUCE and muNMath) are able to evaluate
the integral. However, in the form (5), only REDUCE was able to evaluate the
integral. Apparently, factorization is part of the simplificatiou context of the
integration operator in REDUCE but not part of the simplification context of
the operator in the other three systems.

Experiments with these computer algebra systems have shown that it can be
difficult to determine exactly which simplification rules are applied during the
the evaluation of an operator and at which point of the computation the rules
are applied. Nevertheless, the simplification context is an important aspect of
operator capacity and should be raised as an issue even if it can not be evaluated
precisely.

Simplification of Mathematical Expressions With A CAS.

An important application of computer algebra is the siml)lification of iI-
volved mathematical expressions. It is easy to give examples which are difficult
to simplify by hand but can be routinely simplified with a CAS(see [Il]). (.! i-
fortunately, it is also easy to find simplifications which a CAS is unable to do.
For most people, this is not particularly surprising since simplification with
pencil and paper often requires considerable insight, clever substitutions and
application of involved identities.

Although many simplifications involve concepts which most mathematical
scientists consider elementary (factorization, expansion, trigonometric identities
etc.), the simplification process is computationally quite complex. In fact, it is
possible to show that it is theoretically impossible to find amI algorithm that can
perform all the simplifications we might hope to do with a CAS 5. To complicate
matters, the goal of simplification is difficult to define precisely. What is simple

' In the language of ct.npn ter bcience, I he simplificatiot problem is recirsively midc:i, abl,.
For a discussion of this theorem see the paper by moses[9]. This paper contaLins Mn iiitere5tig
discussion of the simplification problem.
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to one person may not be simple to another.
For a mathematical scientist the important question is "which simplifications

are possible with CAS?" This question, which is not an easy one to answer,
helps put in context the role of a CAS in the problem solving process. While
a CAS usually cannot discover the sequence of steps needed for an inivolved
derivation of a mathematical result, it can do many of the local siinplifications
which are encountered in the course the derivation. By combining a numiber of
simplification commands, it is sometimes possible to write a program to verify
all the details of an involved derivation.

Generally speaking, a CAS is good at simplifying expressions that contain ex-
plicit forms of elementary functions and involve complicated but straightforward
manipulations. Most systems contain commands for expansion, some forms of'
substitution, simplification of rational expressions, radical simplification and
transcendental simplification. If the simplification is not straightlorward these
systems are less useful. For example, none of the systems available to the atahor
is able to perform the simplification

log tan(x + -) - arcsinh(tan 2x) = 0, -- < X < -

which requires a number of different transforinations. In addition, siinplificatioil
of expressions which contain indefinite sums or series (using the Z symbol or
ellipses) and other expressions of a more abstract character are usually not
possible with a CAS. For example, the MACSYMA system is able to solve the
Bessel differential equation

X 2 Y" + xy' + (X2 -p 2 )y= (6)

in terms of the Bessel functions J,,(x) and Y,(x) or in terms of infinite series
representations or these functions but is unable to perform the simplification
which shows that the series

C- k J(X)2k+pl'X E (- '(-,)( 7)
Jp(z) = k!(k + 1)!

satisfies differential equation (6) 6
Each new user brings to a CAS a conceptual model of simplification which

is based on experience with pencil and paper calculations. For many people this
6 One must always be careful when making a claim that a particular CAS system is tuable

to carry out a certain computation. Comiputer algebra systemnb are comlplicated plogi-wUli
with many hundreds of coniuiaiads and it is dillicult for a person to know exactly what a (:\ S
can and cannot do. When we say a CA S cai niot perfonii a simnlpilicattiuoi we mnit the atil itr
was unable to fil onte or two geueral il|,Mse C,,iiiiila lstA wJiith Wi'e able i, leibtin I bki,

simplification. Of course, it is possible to write a progran with a large tulber o1 ,:oi ',ikn, Is
to perform this particular simplification. However, if one lust go to all this trouble, the
simplification might just as well be done with pencil and paper.
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model may diverge radically from what is currently possible with a CAS. For ex-
ample, some mathematical scientists may consider the simplification mentioned
above which involves the series (7) fair game for a CAS and wonder why such
a simple manipulation cannot be done. Indeed, glancing through an applied
mathematics textbook, one finds many manipulations involving more general
expressions of this type which also cannot be done with a CAS.

In order to develop confidence in the capabilities of a CAS, it is important
to realistically assess what types of simplifications a CAS is able to do. A good
starting point for selecting examples are the symbolic calculations found in ele-
mentary textbooks on trigonometry, algebra, calculus and differential equations
'. Clearly, not all of these manipulations are appropriate for a CAS. By present-
ing these examples, we examine the types of manipulations a CAS is lW:ely to
encounter and raise important questions about the capabilities of these systems.
In addition, we develop a connection between hand calculation and calculation
with a CAS.

The Nature of Mathematical Kniowledge in a CAS

The view of mathematics programmed into current computer algebra sys-
tems is reminiscent of the approach taken by mathematicians in tile eighteenth
century 3. Like the mathematicians of that time, a CAS views the concepts
of calculus primarily as an extension of the formal rules of algebra. Computer
algebra systems have almost no knowledge about the underlying concepts- of
calculus such as rational and irrational numbers, the meaning of limits, the
continuity of a function, the derivative of a function in terms of liits, the rela-
tionship between integrals and areas, or the convergence of infinite series. For
example, in a CAS, the derivative is defined by a collection of r ran fobrmatitmm
rules instead of with the limit definition 9.

For the most part, this lack of analytical knowledge does not hamnper the use
of a CAS. However, it does mean a CAS can occasionally produce an unexpected
result. For example, consider the MACSYMA session in Fig. 4. At line c I,
we ask MACSYMA to compute the power series representation for the expies-
sion l/(1 + x). The result is returned in dl where the subscript "il" has been
generated by the system for this expression. At line c2, we ask rvIACSYMA to
substitute x = 1 into both sides of the expression and simplify the sum. MAC-

71nuth[7] illustrates some of the different types of manipulations found in matliei,;ntic;d

reasoltitig.
"'ihis refers to the user's view. .ltlay of the algoiithlns which miake L (CAS work itr:

part of twentieth century luatheiiiatics and conputer science. NfevitlheIhvs, hlie pi'illiaoy

applications of symbolic maniptlation systems are to mathematics developed ill the eiglhteei t h1

and nineteenth centuries.
" However, it is interesting to note, that it is possible to find the derivative t.f iio,,t fnliici

in a CAS using the limit definition. 'I his is not because the systelm hts ail 1,iiderstading ol 1l1e
limit process. It follows instead fron the transformation rules for limit which use l'ihiosital's
rule or a similar construction using derivatives for the calculation of limits involviing inldeter-

minate forms.
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(cl) 1/(l+x)=powerseries(1/(l+x),x,O);

inf

I ii il
(dl) > - ) x

x+l /

il = 0

(c2) ev(dl,x=l,simpsum);
1

(d2) - = undefined

2

(c3) log(l+x)=powerseries(log(l+x),x,O);

inf
i2 i2

\ (-I) x
(d3) log(x + 1) = - >

/ i2

i2 = 1

(c4) ev(d3,x=2,simpsum);

inf
i2 i2

(-1) 2
(d4) log(3) = -- -

/ i2

i2 = 1

Figure 4: Convergence of series in MACSYMA.
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SYMA tries to evaluate the series and realizes that it does not coiiverge(d2).
At line c3, we ask MACSYMA to find the power series representation for the
function log(1 + z). The result is returned in line d3 where the subscript "i2"
has been generated by the system. At line c4, we ask MACSYMA to evaluate
the series at z = 2 which is outside the interval of convergence. Since MAC-
SYMA cannot evaluate this series it simply returns the series as a result. III
this case, the series does not converge since the general term of the series does
not converge to zero. Unfortunately, MACSYMA does not recognize this fact
and returns a divergent series. This example emphasizes that mathematical
reasoning is not just a matter of blind manipulation. Successful use of a (-,AS
requires a good understanding of the underlying mathematics.

5 Symbolic Programming.

Computer algebra systems can be used in both an interactive mode and a pro-
gramming mode. The interactive mode is illustrated by the examples in Fig. 2,
Fig. 3 and Fig. 4. The programming mode makes it possible to imupleieut
mathematical algorithms in a high level programming language II

Like numerical computer programs ", programs in a CAS language utilize
assignment statements, conditional statements, loops and subprograms. Since
there are differences between numerical programming and symbolic l)rogramn-
ming, it often takes time for a numerical programmer to feel conifortahle with
symbolic programming. These differences inchide:

" In a CAS language, variables can represent programming variables or
mathematical variables in an expression.

" The primary data type in symbolic programming is the mathematical
expression. The two most important data structures are lists and sets.
Arrays are also used in symbolic programming but they do not play the
essential role they play in numerical programming.

" Symbolic programs can utilize mathematical knowledge by invoking imat h-
ematical operators which analyze or manipulate mathematical expressiolls.

" Recursive programming techniques are often utilized (in1stead of loops)
to solve symbolic mathematical problems. Many matlheinatical scientists
(particularly FORTRAN prograinniers) may not be familiar with riecur-
sion.

"Some computer algebra systetns (MAPIE and tnu/latli) are writtel primarily ifl the high
level computer language which comes with the system.

" We refer to prOg'ils writtel in languages such as FOtTRAN, oar;d C as imeriac'ical
programs to distinguish them from programs written in the high lvel laiigiaage " A.5.'. ()f
course, these "numerical" lailguiages have other data types and can I,.. usel foi other Lypeis of
programming. For the solution of mathemnatical problems, it is there numerical capabilities
which are most important.
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Some computer algebra systems (MACSYMA, REDUCE, and NIATIIE-
MATICA) have pattern matching facilities which provide a way to add
new simplification rules to a CAS. In some instances, this capability can
eliminate the need for involved programs based on conditional statements,
loops and recursion.

In mathematical discussions there is a subtle distinction between tie way
the variable assignment and substitution operations are used. It is also
important to determine when each of these two operations is appropriate
in a symbolic program.

Program efficiency (for CPU time and memory allocation) is aI iutiportail
issue for the symbolic programmer. Programs written in a CAS lailgilage
can be unbearably slow. Reasons for this include:

1. CAS languages are interactive rather than compiled. Each statement
in a program must be translated each time it is used.

2. Most arithmetic in a GAS is done with rational nunihers, which cal
have an arbitrary nuiber of digits, rather thai real imtubers, which
have a fixed precision. This increases the Cl'tU time t'r arli,,tical
operations.

3. The algoritlhns to performsi somic iuatltesiiatical ,,,,iaI.ioi.s (iili.

integration, solution of or6inary dilferential eqtattions, radical 5i in-
plification, etc.) are time conlsuning.

-1. Automatic simplification rules are applied during the execution of
each statement in a program.

Programs in a CAS language can also require a large anount of conpuiter
memory. Reasons for this include:

1. The storage of a mathematical expression requires much more cout -
puter memory tltan th, storage of a real number in a titimerical pr,-
gram.

2. Some mathematical operations (expansion, dill'erelntiatiun', ,het,.rtii-
nant calculation) often produce very large expressions which may
eventually simplify to much smaller expressions. This plienomslet.'t.
known as intemptediate expression swell, can signilicantty iltcre:.sc the
memory requirements for a program.

Programming examples and exercises are chosen to illustrate the prograill,,,ng
techniques and data structures needed to implement symbolic ntathenatical
algorithms in a CAS language. A good source for ;progranuitmg exerises i.
some of the elene,,tary mathematical operators which already exist. In ;t ('AS

It, the next section, we suggest a collection of exercises which i llstrat, fcl,,
the special problems associated with symbolic coiipitatio.
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6 Algorithms For Symbolic Computation.

To effectively use a CAS, it is important to have some understanding of how
a CAS works. By examining algorithms to perform symbolic coinpu tation, w ,
clarify the important computational issues faced by the field and develop a
sense of what manipulations are appropriate for a machine. Since the audience
is composed of mathematical scientists who will use a CAS to solve -irllnis
rather than developers who design compuiter algebra syst.ells, sinple cun vi mIC,
algorithms are more appropriate than tle most elficient algoritlhis ctiriel. iiv
available. The algorithms for the following operators illustrate many ies
which arise in symbolic computation:

1. An operator freeof(f,') which determines if an expression f contai, s a
variable z.

2. Au operator to find a list of all variables and function njames which occur
in a mathematical expression.

3. An operator to find the power set of a set.

*1. An operator degee(fr) which determines if an expression f is a polyniomiiial
in x, and, if so, returns the degree of the polynlomIial.

5. An operator coefficiend'.,n) which deLtermes the coellicient of '" III a
polynomial f.

6. An operator to perform polynomial division for polynomials with on- or
several variables.

7. An operator to compute the greatest, common divisor of two polynomials
with one or several variables using Euclid's algorithm.

8. An operator to find the square free factorization of a polvnomial.

9. An operator to find the partial fraction expansion of a rat ional expre.sik,1.

10. An operator to factor polynomials with one or several variables wit i ii,'-
ger coefficients using Kronecker's algorithm.

11. An operator to expand trigonometric expressions using the angle addli ion
formulas and the multiple angle formulas.

12. An operator to reduce trigonometric expressions using the reduction Ir-
mulas for products and powers of trigonometric expressions.

13. An operator to simplify ail occurrences of i'" (i 2 = 1, n an intevger) inI aM
expression.
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14. An operator to implement the rational substitution operation found in tile

MACSYMA system.

15. A differentiation operator.

16. An integration operator which applies the substitution method to perforinl

integration.

17. An operator which determines tile real and imaginary parts of a complex

expression.

Most of these examples involve relatively simple symbolic programning tech-
niques and none of them involves advanced imat leiatics. Nver.tlIcss. a pro-
grain to implemnent some of these operators can be su rjriiMgly cliallenging to
the beginning symbolic programmer.

We have purposely omitted from this list the more miodern algorithmiis which
make a CAS work efficiently. This material requires a strong backgroumd il
modern algebra and is more appropriate for anl advanced course in coliiptlitr
algebra. Ve have also purposely omitted more advanced areas of applied math-
ematics. Unless one is thoroughly familiar with some area of mathemiatics, it

can be difficult to appreciate the point of an example. Once a matheimatical
scientist has some experience with symbolic programming, the techniques can

be applied to more advanced problems.

7 Conclusion.

It is often said that computer algebra systems have the potential to revolutimize
the way we do symbolic mathematics. Nevertheless, to date, only a Iractoio uf

the mathematical scientists who could profit by using this technology use a CAS
in a significant way. We believe that this is partially due to the fact that suany

mathematical scientists do not understand the possibilities (and limitationz) (,

computer symbolic computation and do not believe a CAS can hell , in their
work. We also believe there is more to the effective use of a CAS thaii readtil
a system manual and seeing a few impressive examples. In this paper w, ha\,
discussed an applied computer algebra course which can providhe tlie trch inc:11
background to effectively use this technology.
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Groebner Bases

GROEBNER BASES

Moss Sweedler
Mathematical Sciences Institute

Cornell University
Ithaca NY 14853

ABSTRACT Groebner bases are remarkable sets of polynomials which permit effec-
tive manipulation of multivariate polynomials. In spirit, Groebner bases apply univariate
polynomial techniques to multivariate polynomials. The theory and techniques which
have grown up about Groebner bases are an important branch of computational al-
gebra. While many of the techniques associated with Groebner bases are simple
enough to be taught in high school, an undergraduate abstract algebra course is re-
quired to begin appreciatiating the algebra applications. Outside of algebra, Groebner
bases have application to robotics, computational geometry, geometric theorem proving
and other areas. Application to surface modeling and cryptography are under investiga-
tion. Groebner bases are remarkably poorly known within the algebra research com-
munity. This, despite the fact the associated algorithms are high school algebra [1] yet
provide systematic answers to important questions which most algebraists have no
other way to answer.

INTRODUCTION Groebner bases are the invention of Bruno Buchberger, [9]. The
present importance of Groebner bases results from the conjunction of Buchberger's
seminal work together with the body of techniques which have developed around his
work. Buchberger theory is an appropriate name for the area. In the same way
Galois theory refers to a body of techniques.1 At present, pure mathematicians
primarily use Groebner bases to compute examples. Inevitably, Buchberger theory, like
Galois theory, will be freely used in proofs.2

The four cornerstones of Buchberger theory are:
LEADING TERMS REDUCTION
BASIS TEST BASIS CONSTRUCTION

The rest of the introduction airs algebra applications of Buchberger theory. Those un-
familiar with the concepts may still understand the sections: 1 LEADING TERMS,
2 REDUCTION, 3 GROEBNER BASIS TEST and CONSTRUCTION, which are

1PROPAGANDA: Buchberger theory is as fundamental and more elementary than
Galois theory and should be taught in advanced undergraduate algebra courses and the
first year graduate algebra course.
2Which gets us to Hironaka theory. Ideal bases with special properties are not new.
Among others, there are Ritt bases [50], [51] and standard bases [23] which are already
used in proofs.
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Groebner Bases

honestly elementary. The last harangue: 4 WHERE THE ACTION ISN'T, passionately
portrays the prevailing pitiful, paltry position of constructive algebra among North Amer-
ican academic algebraists.
ALGEBRA APPLICATIONS When using Groebner bases, one typically starts with a fi-
nite set of polynomials - and an ordering on the monomials of the polynomial ring - and
constructs a Groebner basis for the ideal generated by the original polynomials. One
customarily gets information from a Groebner basis by one of two methods:

I: simple Inspection of the Groebner basis
R: a constructive technique called Reductiorn

Constructing the Groebner basis is generally tedious, i.e. computationally expensive,
(38]. Reduction is much easier. Reduction has the flavorof the Euclidean algorithm
and is occasionally described as: The generalization of the Euclidean algorithm to
several variables.3 Here are several algebra applications of Buchberger theory. Each
application is preceded by R for Reduction or I for Inspection, according to how one gets
information from the Groebner basis. We use the following notation: A = R[Xl,'",Xn]
is a polynomial ring over the field R, a is an element of A and F is a finite subset of
A. <F> is the ideal in A generated by F, R[F] the subalgebra of A generated by F
and R(F) the subfield of R(Xl,..,Xn) generated by F.

R Determine if a e <F>.
I Determine if a r 4<F> , the radical of <F>.
R Determine if a e R[F].
I Determine if a E R(F).
I Determine a generating set for (<F>:a) = { b E A I ba E <F> 1.
I If J is another ideal in A with an explicit finite generating set, determine a gen-

erating set for <F> n J.
I If 1 < m < n and B = R[X 1 ,. .,Xm] , determine a generating set for the ideal:

Br<F>,in B.

I Find the relations among the elements of F.
I Determine [ R(X1 ,--,Xn) : R(F) , meaning the index if algebraic, the trans-

cendence degree, if not.
R Be able to effectively work in A/<F> by having distinguished coset representa-

tives in A for elements of A/<F>. For any element of A be able to
determine the distinguished coset representative to which it is equivalent.

There are aspects of Buchberger theory which have the spirit of construction lines in
plain geometry. For example, in most of the above applications, one finds a Groebner
basis for a cleverly chosen ideal in the ring: A-with-additional-indeterminates-adjoined.
Although the techniques are elementary, they are tedious, when done by hand, for all

3 See the end of section 2 for more about this.
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but the smallest examples. A number of computer algebra systems -- Macaulay, MAC-
SYMA, MAPLE, Mathematica, REDUCE, Scratchpad II, etc. -- are capable of executing
various aspects of Buchberger theory.
Buchberger theory has many generalizations, for example: to free modules over poly-
nomial rings [3], rings with suitable filtrations or valuations [53], [67], etc. Groebner
bases for free modules allows effective computation of syzygies, free resolutions, Hilbert
functions and more.

1 LEADING TERMS Portions of Buchberger theory are extensions of univariate poly-
nomial techniques to multivariate polynomial rings. Univariate polynomials have a natu-
ral expression in terms of descending term degree. The degree of the largest non-zero
term is the degree of the polynomial and plays a key role in univariate polynomial
theory. The first difficulty with multivariate polynomials is the lack of a natural leading
term. The first cornerstone of Buchberger theory is a method for recovering a notion of
leading term. Buchberger's method, which we present here, involves orderings on the
monomials of the polynomial ring. Specific orderings on sets of monomials have been
used long before Buchberger's work. Particularly the lexicographic order. Buchberger
isolated the needed properties of an abstract ordering.4 One approach to generalizing
Buchberger's work has been to develop alternative notions of leading terms not based
on orderings of monomials.
1.1 DEFINITION A multiplicative order on monomials of a polynomial ring is a total
order on the monomials satisfying:
1.1.a 1 < m for all monomials m
1.1.b if ml < m2 then ml m 3 5 m2m3 for all monomials m1 ,m 2 ,m 3

Lexicographic order is an easy example of a multiplicative order. In this order:
Xayb ... Zc > Xdye ... Zf if the left-most non-zero term of (a - d b - e,.. c - f) is pos-
itive. The reverse lexicographic order - where Xayb ... Zc > xdye Zf if the right-
most non-zero term of (a - d, b - e, ..., c - f) is negative - is not a multiplicative order.
Two other multiplicative orders:
1.2 Compare by total degree, break ties lexicographically.

1.3 Compare by total degree, break ties reverse lexicographically.
Mathematicians' usual initial reaction is that (1.2) and (1.3) must give essentially the
same order, possibly after renaming the variables. However in three variables X, Y, Z:

X>Y>Z and XZ>y 2 inthe(1.2) order
X>Y>Z and XZ<y 2 inthe(1.3) order

This essential difference cannot be renamed away.5 In one variable, the usual degree

4 Not being a historian, I cannot say whether these properties had been isolated earlier.
5A few applications of Buchberger theory require the (1.3) order.
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order is the unique multiplicative order on monomials. In general there are an infinite
number of multiplicative orders. Often, the application for which one is using Buch-
berger theory, constrains the multiplicative order which may be used. The lexicographic
order is an easily implemented multiplicative order for computer algebra systems. The
lexicographic order is suitable for most, but not all, applications. However, other orders
- in particular the (1.3) order - generally require less computation [6].
Once one has a multiplicative order, the univariate case may be imitated to some de-
gree. For example, polynomials may be written with the monomials in descending or-
der. The largest term - with non-zero coefficient - is dubbed the leading term of the
polynomial. The coefficient (monomial, exponent) of the leading term of a polynomial is
called the leading coefficient (monomial, exponent) of the polynomial.
Multiplicative orders have the important property of being well orderings. Consequent-
ly, processes such as reduction halt.

2 REDUCTION Let us begin with polynomials in one variable and the familiar process
of dividing one polynomial, f0 (X), by another, g0(X). The aim is to evolve the process
of reduction from the process of polynomial division. Hence, the polynomial division
process will be considered in detail. Suppose

f0 (X) = 6X 17 + lower degree stuff
g0(X) = 2X 1 2 + lower degree stuff

First step: 6X 1 7/2X 12 = 3X5 ; f, (X) is defined as f0 (X) - 3X 5 *go(X) . The step is im-
itated with fj (X) and g0 (X), assuming fl(X) has degree at least as large as go(X).
Let us tweak the division process. Suppose at the second step go(X) may be replaced
by another polynomial gl(X). In other words, the first step is imitated with fl(X) and
gl (X), assuming fl (X) has degree at least as large as gl (X). Suppose at each step
the g#(X) polynomial may be replaced by another polynomial. Suppose S is a given
set of polynomials, where at each step6 g#(X) may be chosen as any polynomial in S.
This process is the reduction of f0 (X) over S. When must it halt? When an fi(X)
has been reached which has smaller degree than all polynomials in S. Polynomial
division yields a remainder which is uniquely determined by the divisor and the dividend.
The example where f0 (X) = X and S = { X, X + 1 } shows that the remainder can
depend upon which elements of S are chosen as g#(X)'s .7 In one variable, halting is
apparently based on degree. The halting condition may be rephrased: the reduction
process halts when an fi(X) has been reached whose lead monomial is not divisible
by the lead monomial of any polynomial in S. The univariate reduction process is now
easily generalized to polynomial rings in several variables, with a given multiplicative or-
der.

6 Including the first!
7Looking ahead: when S is a Groebner basis, the remainder of complete reduction is
independent of how the g#(X)'s are chosen from S.
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Let A be a polynomial ring with a given multiplicative order. As indicated toward the
end of the previous section, the multiplicative order allows us to speak of the leading
term, leading coefficient, leading monomial, etc. of a polynomial. Let f0 be a polyno-
mial in A and let S be a subset of A. The following, inductively defined, process is
the reduction of fo over S.

1 If fi = 0, halt.
2 If the leading monomial of fi is not divisible by the leading monomial of any

polynomial in S, halt.
3 If this step has been reached 8 , there is a polynomial si in S whose lead

monomial divides the lead monomial of fi . Find a polynomial qi where the
lead term of qi times the lead term of si equals the lead term of fi .

4 Set fi+l = fi- qisi .
5 GOTO step (1).

Conventionally qi is chosen as the polynomial consisting of the single term whose
coefficient is the lead coefficient of fi divided by the lead coefficient of si and whose
monomial is the lead monomial of fi divided by the lead monomial of si . The coeffi-
cient division can be performed because the coefficients lie in a field.9 The monomial
division can be performed by the assumption stated at the start of step (3). More elabo-
rate choices of qi , may lead to computational optimization in the reduction process. Al-
lowing general qi's in the definition of the reduction process has advantages for devel-
oping the general theory. Further restrictions may always be placed on qi's in imple-
mentations.
The f#'s which result are called reductums of f0 (over S ).10 The reduction process
always halts. The last fi reached is called a final reductum of f0 (over S ). The final
reductum is the generalization of the remainder in polynomial division. As noted earlier,
the final reduction is not an invariant of f0 and S. If fi is a reductum of f0 over S
then f0 - fi lies in the ideal generated by S.

Suppose S lies in an ideal I. It is easy to show the equivalence of:
The lead monomial of each non-zero element of I is divisible by the lead
monomial of some element of S.

Each element of I has a reduction over S with final reductum zero.

For each element of I all reduction over S have final reductum zero.

8 Meaning, has been reached on the current pass through the algorithm.
9 Another realm of generalizations of Buchberger theory concerns weakening the re-
quirement that the coefficient ring of the polynomial ring be a field.
10NOTATION CONUNDRUM Across the disciplines of abstract algebra, computa-
tional algebra and computer algebra there is great terminology disparity. For example,
one author's term is another author's monomial. Our usage of reduction is more or
less standard. Our usage of reductum is not. A polynomial f can be written:
lead term + lower stuff , where lower stuff indicates the sum of terms other than the
lead term. What we call lower stuff is frequently called the reductum of f.
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2.1 DEFINITION S is a Groebner basis for I if the above conditions are satisfied.
A Groebner basis for an ideal generates the ideal. This prompts:
2.2 DEFINITION A set T is a Groebner basis if it is a Groebner basis for the ideal it
generates.
The previous univariate example with S = { X, X + 1 } is an example of a set which is
not a Groebner basis. In the univariate polynomial ring, a set is a Groebner basis if and
only if it contains a principal generator for the ideal it generates. In fact, for polynomial
rings in any number of variables, a subset of a principal ideal is a Groebner basis for the
ideal if and only if the subset contains a principal generator for the ideal. Thus a
singleton set is always a Groebner basis.
A fundamental application of Buchberger theory uses reduction for an ideal membership
test.
2.3 THEOREM Let S be a Groebner basis for an ideal I and let a be an element of
the polynomial ring. The following are equivalent:

a lies in I.
a has a reduction over S with final reductum zero.
All reductions of a over S have final reductum zero.

COMPLETE REDUCTION In the reduction process, only the lead term of the f#'s
gets reduced by elements of S. In the complete reduction process, all terms of the
f#'s get reduced by elements of S. The process halts with an fi which is either zero
or where no terms of fi (have monomials which) are divisible by the lead monomial of
an element of S. The complete reduction process always halts. When doing complete
reduction of f over S , the final reductum may be referred to as a complete reduction
of f over S.
2.4 THEOREM Let S be a Groebner basis and let a be an element of the polyno-
mial ring. The complete reduction of a over S is unique. If T is a Groebner basis
which generates the same ideal as S, the complete reduction of a over S equals the
complete reduction of a over T.
Thus, complete reduction gives distinguished coset representatives. This allows effec-
tive computation in multivariate polynomial rings modulo an ideal. To compute modulo
I, find a Groebner basis S for I.1 Given a in the polynomial ring, the distinguished
coset representative for a modulo I is the complete reduction of a over S.
Groebner bases (for an ideal) are not unique. Their cardinality is not unique and they
generally are not minimal generating sets for the ideal. There is a notion of reduced
Groebner basis which involves complete reduction. Ideals have unique reduced
Groebner bases. 12

11 How to find a Groebner basis for an ideal comes later.
12 Welllllll, reduced Groebner bases consisting of monic polynomials are unique.
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Presenting reduction as the multivariate polynomial analog of univariate polynomial
division has pedagogical merits and relies on the following dictionary:

REDUCTION POLYNOMIAL DIVISION
the set one reduces over the divisor
the element being reduced the dividend
the final reductum the remainder
comparison by multiplicative order comparison by degree

The analogy has limitations. With R a field, consider the polynomial ring R[X,Y] hav-
ing the lexicographic multiplicative order with X > Y. The singleton set { Y ) is a
Groebner basis. Consider the reduction of X over { Y }. X itself is the final reductum.
The size of the final reductum is larger than every element of { Y }. With reduction, one
cannot be certain that the size of the final reductum will be smaller than elements of the
set one reduces over. Translated to univariate polynomial division, this would be as if
the remainder were not necessarily of lower degree than the divisor.

3 GROEBNER BASIS TEST and CONSTRUCTION: in which it is revealed how to
test if a given set S is a Groebner basis and if S Is not a Groebner basis, how to
enlarge S to a Groebner basis generating the same ideal. We plead guilty to
presenting the easiest material, the most leisurely. The pace quickens this section. The
Groebner basis test involves a number of reductions over S. S is a Groebner basis, if
and only if all the final reductums are zero. If one of the final reductums is not zero, S
is not a Groebner basis. However, this non-zero final reductum is an element to be
used to enlarge S to get closer to having a Groebner basis.
3.1 DEFINITION Let f and g be non-zero polynomials with lead monomials Mf and
M g respectively. Let Mf be the monomial which is the least common multiple of Mf
and Mg. One can find po=tynomials F and G where fF and gG each have lead
monomial Mf 0 and fF has the same lead coefficient as gG. fF - gG is an S-
polynomial orthe pair f and g.
Notice that the lead terms of fF and gG cancel in the difference fF - gG . Thus, the
lead monomial of an S-polynomial of the pair f and g is always lower than Mf, g.
F and G may each be chosen as polynomials consisting of single terms which are got-
ten as follows: the monomial of F is Mf /Mf and the monomial of G is Mfg/Mg.
The coefficient of F is the lead coefficierflof g and the coefficient of G is the lead
coefficient of f. More elaborate choices of F and G may lead to computational op-
timization in the Groebner basis test and construction processes. Allowing general F
and G in the definition of S-polynomials has advantages for developing the general
theory. Further restrictions may always be placed on F and G in implementations.
This may not be correct but it would make good sense if the S in S-polynomial stands
for syzyjy. S-polynomials are the key to the Groebner basis test:
3.2 TEST THEOREM S is a set in a polynomial ring which has a multiplicative order.
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The following are equivalent:
S is a Groebner basis.
For each pair of distinct elements f,g E S, there is an S-polynomial of f and g
which has a reduction over S with final reductum zero.
For each pair of distinct elements f,g G S , all reductions over S of S-polynomials
of f and g have final reductums equal to zero.

S is not assumed to be finite in the theorem. When S is finite, the theorem yields a
constructive test whether S is a Groebner basis. If S is a singleton set, it automatical-
ly passes the test because there are no pairs to reduce. As mentioned before, the test
underlies Groebner basis construction procedures. Here is one such procedure which
begins with a finite set S and produces a finite Groebner basis for the ideal which S
generates.

For pairs of distinct elements f,g e S form an S-polynomial of f and g and
reduce the S-polynomial over S. If the final reductum is always zero, halt. S is a
Groebner basis. On encountering a non-zero final reductum, let T = S j { the
non-zero final reductum ). Repeat with T in place of S.

Although this procedure always terminates with a finite Groebner basis for the ideal
which S generates, the cardinality of the Groebner basis may be much larger than the
cardinality of S. There are many optimizations which can be made. For example, as
described, the procedure will duplicate many computations.

4 A NON-IDEAL APPLICATION So far, Groebner bases have been used in connec-
tion with ideals. We end with an application not concerning ideals. 13 The application is
the matter of subalgebra membership determination and appears in [59]. Suppose
f,g, ", gr lie in the polynomial ring R[X 1 , ..., Xn]. The question is to determine
whether f lies in R[g 1 , -.., gr], the subalgebra of R[X 1, .. , Xn] generated by
{ g1, ", gr } . As part of the solution, we introduce additional variables. This is typical
of Groebner basis applications and is what is meant by construction lines in the intro-
duction. In this case, we introduce an additional variable Ti for each gi.
Let A be the polynomial ring R(X1 , .- , Xn,T 1, ".', Tr]. Choose a multiplicative order
on A where each Xi is larger than all monomials just involving { T1, ..-, Tr }. For ex-
ample, the lexicographic order has this property. Construct a Groebner basis G which
generates the same ideal as { gl - T1, ,gr - Tr} .14 Considering R[X 1, -, Xn] c A,
we may think of f as lying in A. Reduce f over G and let h e A be the final reduc-
turn. The answer to the subalgebra membership question is given by:

f lies in R[g1 , ..-, gr] if and only if h lies in R[T 1 , ... , Tr].
If h lies in R[T 1, ..., Tr], so that h = h(T1 , .. , Tr) then f = h(g1 , ., gr)•

13 Welllllll, ideals creep in.
14 1n Groebner basis applications, the additional variables are often referred to as tag
variables when they are used to tag other elements in the problem.

706



Groebner Bases

5 WHERE THE ACTION ISN'T North American academic mathematics departments!
As a whole, North American algebraists, in academic mathematics departments, appear
to have computer anxiety or computation anxiety. Conferences and bibliographies,
which pertain to computational and computer algebra, have a remarkably low fraction of
contributors from North American academic mathematics departments. In their place
one finds algebraists from Europe, from industry and from computer science and other
academic departments. North American algebraists, in academic mathematics depart-
ments, are appallingly ignorant of even the most elementary, yet relevant, developments
in computational algebra.
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ABSTRACT

This paper will intoduce a generalized harmonic balance
method and illustrate the use of symbolic computing to solve a class
of nonlinear vibration problems. The program package MACSYMA is used
in this demonstration.

First, a forced vibration problem with several different type
of nonlinearities is given. An outline of the method will be described
next. This will be followed by symbolic computing statements and
programs which will crank out asymptotic solutions in routine manner.
Solutions for a subharmonic and a superharmonic will be given. Thus
the easy of obtaining results of these otherwise extremely complicated
problems will be shown.
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1. INTRODUCTION

Since the introduction of symbolic computation as a tool for

mathematical analysis, it has been increasingly used for solutions

of problems where laborious and repetitious mathematical

manipulations are required. In particular, it is found extremely

helpful for solutions of nonlinear differential equations in

conjunction with various perturbation methods(i]. In this paper,

we will introduce a generalized harmonic balance methods for

solutions of a class of nonlinear vibration problems and

demonstrate the use of MACSYMA, a very powerful and popular

symbolic computation software package to obtain these solutions in

a routine manner. We will consider the vibrational response of a

nonlinear single degree-of-freedom system with quadratic and cubic

nonlinearities governed by the equation

d2u/dt2+u+2cu(du/dt)+Cx 2u2 + 2 3u3 +4(du/dt)2

+E2 5u(du/dt) 2=2fcos(2t) (1)

where Q-2+ca. This same equation has been considered by Nayfeh[2],

using the method of multiple scaling. Our objective is to obtain

his key results by a method that avoids steps of the elimination

of secular terms, repeated solutions of intermidiate differential

equations and Nayfeh's reconstitution method and thus to

demonstrate that the multiple scaling results can derived from our

solution approach. Although we solve only this specific example,

714



the proposed method is quite general and can be used for any

problem where the nonlinearities are polynomials in u and du/dt,

e.g., see Nayfeh and Mook [2], and Nayfeh (3] and [4].

In both Nayfeh [3] and Nayfeh and Mook[2], Sect. 2.3.4, it is

shown that the method of harmonic balance can lead to erroneous

results if applied simply in a routine fashion. Quoting from p.61

of this later reference: ".....to obtain a consistent solution by

using the method of harmonic balance one needs either to know a

great deal about the solution a priori or to carry out enough

terms in the solution and check the order of the coefficients of

all the neglected harmonics ....... Therefore we prefer not to use

this technique." In this paper, we avoid both of these objects by

using the beginning steps of multiple scaling to tell the form of

the solution (see equation (18) at the end of Section 2), which

gives us the a priori information we require and also enables us

to see clearly which harmonics has to be taken into account and

which can be neglected.
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2. FORM OF SOLUTION VIA MULTIPLE SCALING

As emphasized already, the key to the success of our varient

of the harmonic balance method is to know the form of the

solution, by which we mean dependence of the solution on the small

quantity £ which is a measure of the nonlinearity. We do this by

the multiple scaling approach but without getting involved in the

laborous tasks of supression of the secular terms, obtaining the

explicit solutions of the intermediate differential equations and

reconstitution of the final solution.

To illustrate the point, the multiple scale method as applied

to (1) assumed that (cf. Nayfeh [31, p.461):

u(t,£)-u 0 (T0,T1 . ... )+cu1 (T0 ,T1 , .. ..

+C 2 . 2 ( 1(2)

where
T- nct, n-O,1,2,. ... (3)

Using Nahfey's notation, Dn-d/dTn , one has

d/dt - + D 1 + C2D 2 . .....

d2/dt2 . D02 + 2sDOD 1 + C2(2D0D2 + D 2 + 4)

Substituting (2) and (4) in (1) and equating coefficients of

like powers of c, one obtains (Nayfeh [31, p.466, (32)-(34)):

D 02u0+u02fcos(QT) (5)

D02Ul + Ul --2D0Dlu 0 -2D0u0 -0u
2 -4(D0u0 ) 2 (6)

D2u2* - 2
D0  + u2  -(2D 0D2 + P1 )u0 -2D0D1uI -2#D 0u1
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3

-2pD 1u0-2a2u0u1 -c 3 u 0

-2t4D0u0 (D1u0+D0u1 )- =5U0 (D0 u0 )2  (7)

Equations (5)-(7) are obtained easily using the basic steps

of the multiple scaling represented by (2) and (3), which are the

only part of the multiple scaling used in the present approach.

Yet, (5)-(7) are significant because they provide us the form of

the solution desired as will be described below.

In order to save labor from carrying unnecessary terms (and

there are many of them), one must keep track on the relative order

of various terms. We begin by noting that uk (k=0,1,2,....) in (2)

are of order unity, or 0(l).

Taking the case of subharmonic response for an example,

= 2 + ca (8)

where a is of O(i) and is called the detuning parameter. Eqn. (5)

can now be written as

D02u+ u 0= fSA 2 + c.c. (9)
whereiett

S = e , A = et (10)

and c.c. stands for the complex conjugate.

It is important to note that S is a slow varying function

compared with A in the sense that while dA/dt is of 0(l), dS/dt is

of 0(c).

It is easily observed, from (9), that

u0  - P0 1 (TI,T 2. . . . . )e 
iT  + P02(TIT2. ..... )e iT °  + c.c.

or,
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u0- P0 1 (ct, 2t...... )A + P02 (Ct, C2t. ..... )A2  + c.c. (11)

with

A - eiT °  e it  (12)

and that P0 1 and P02 are some functions of t, the specific forms

of which are not the concern here. However, it is important to

note that P01 and P0 2 are slow varying functions in t compared

with A in the sense that while dA/dt is of O(1), the derivatives

of P0 1 and P02 are of 0(c). We shall also use the fact that

=e - it, and A A = 1 (13)

Next we substitute (11) into the right hand side of (6)

resulting a polynomial in A k , k-0,1,2,3,4. Hence, it is easily

observed that the solution of (6) can be written as

u 1  P1 0 +( P1 1A + P12A2 + P13 A 3 + P14 A  + c.c. ) (14)

where, again, Pk' k-0,1,2,3 and 4, are slow varying functions in

t compared with A. Now, substituting (11) and (14) into (7) and

going through a similar process as before, one can write easily

u 2 M P2 0 + (P2 1
A + P2 2

A  + P2 3
A  + P2 4

A

+ P2 A 5 + P A6 + c.c.) (15)
25 26

Once again, P2k (k-0,1. ..... ,6) are slow varying compared with

A.

Hence to obtain the form of the solution u, one substitutes

(11), (14) and (15) in (2) and collects terms of same powers in A.

The result is

u - cU0 +[(U1 A + U2A 2 ) + C(U3A 3+U4A 4)+C 2(U5A 5+U6A 6)+c.c.] (16)
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where

U0 = P10 CP20' U1 = P01+ CPll +  2P21

U2 = P0 2 + P1 2+ C2P22' U3 = P13+ C P2 3  (17)

U4 = P1 4+ CP 2 4  U5 = P25' U6 
= P26

It is then also clear that Uk(k=O,l, 2 ,...,6) are of 0(l) and

slow varying compared with A. The approximate solution (16) of u

is good to the order of e . To obtain a solution of u good to the

order of e, we shall drop U5 and U6  terms so that the final form

of the solution to be used in this paper is

u = CU0 +[(U 1 A+U 2A 2)+(U 3A 3 +U 4 A4)+c.c.] (18)

In the next two sections, we shall derive expressions of Uk's with

the help of the MACSYMA program for the subharmonic and

superharmonic vibrations.
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3. THE TRANSIENT SUBHARMONIC CASE

If one wishes to obtain the first two-term approximation,
u=u 0+CuI , in the solution of (1) as a power series in c, the

procedure is -henk to substitute (18) in (1) and set to zero the
coefficients of A , k-0,1,2,3 and 4. First, all the terms in (1)

will be written in power series in c, dropping those of O( 3):

du/dt-(dU1/dt+iU 1 )A+(dU2/dt+ 2iU 2 )A
2

+((dU 3/dt+3iU 3 )A 3+(dU 4/dt+4iU 4 )A 4+c.c. (19)

d2u/dt 2 .(d2Ul/dt 2+2idUl/dt-Ul)A+(d 2 U2/dt 2+4idU2/dt-4U2)A 2

+c[(6idU 3/dt-9U 3 )A3 +(8idU 4/dt-16U 4 )A 4+c.c. (20)

u2=2U1 U1 +2U2 U2+(2UIU2A+U12 A 2+2U U2A3+U 2
2A 4

+2c(U 0 U1 IU 2U3 )A+c.c.] (21)

Since u3 appears with a coefficient of c2 in (1), one only needs

to keep terms of 0(l) in the expansion:

u3-3U1 2U2 +3U1 2U2 +[(3U 1 
2 UI+6U1U2U2)A+(3U 22U2+6UIU1U2)A 2

3 - 2 3 2 4+(U1 +3U1U2 )A +3U1 U2A +c.c.] (22)

Similarly, one has

(du/dt)2=2U 1U1 +8U2U2+2i[(U 1 dU1/dt-dU1 /dt U1 )

+2(U2 dU2/dt-dU 2/dt U2 )]

+[(4U 1 U2 -2iU 1 dU2/dt+4idUl/dt U2 +I12 cU2U3 )A
+(-U1 2+2idUl/dt U1 +6CUIU 3+16cU 2U4 )A2

+(-4U 1 U2-2 2idU 2/dt Ul+4idUl/dt U2+8EU1U 4 )A3
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+(-4U 2 2 +4idU 2/dt U2-6cUJ1UU3 )A 4+c.c. (23)

u(du/dt)2=3U 1
2U2+3U1 2u 2+HU12Uj+SU1U2U2)A

+(2UI 1UIU 2+4U 2 U 2 )A -U1 2 2S 3 3 -U 1
2U +c.c.] (24)

We now substitute (18) and (20)-(24) in (1), collect terms of like

power of Ak, k=0,1,..,4 and then set the coefficients to zero. The

resulting equations are: for A0 coefficient,

C[U 0+2 2 (UIU1 +U2U2 )+2 4 (UIU1 +4U2U2 )1=0 (25)

for A1 ,

2i(dU 1/dt+pU 1 )+2(a 2 +2cx 4 )U1U2 +d
2 Ul/dt 2 +2cudUl/dt

+2i c 4 (2U2 dUl/dt-U1 dU2/dt)

+c2 (22(UoUI+U3 U2)+3 3(u 2U+2UIU2U2 )

+12a 4U 2U 3+C5 (u1 2UI+8U1 U2U2 )1=0 (26)

for A
2,

-3U2+4idU 2/dt+c[ 4igU 2+( x2-a4)Ul2 ]=fS (27)

for A
3

[-SU3 +2( 2 -2 4)UIU2]=0 (28)

and, finally, for A4,

c[-15U 4+( 2- 4 )U2 2 1=0 (29)

Equations (25)-(29) can again be conveniently put in a tabulated
form as in TABLE I.

Since the end goal here is to obtain an equation which

contains the information on the relationship between the amptitude

and the frequency, and since we have five unknowns and five

equations, we can reduce them to one equation with a single
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TABLE I. TABULATED EQUATIONS INDICATING RELATIVE ORDER OF TERMS
IN THE TRANSIENT, SUBHARMONIC CASE

0 1€2 IiJRHSIII I C

0 _

A 0 C[U 0+2c2 (U1 U1+U2U2 ) *01

+2e4 (UIU1 +4U2U2 )]

I 2I
A 0 2i(dU1 /dt+CtU 1 ) d2 U 1 /dt+2cdU/dt

+2c( 2 +2 4 )UIU2  +2icm 4 (2U 2 dUl/dt

-U 1 dU2/dt)

+2[cc 2 (U0U1 +U2U3 )

+6 4U2U3 ]
I II + 2 2

+c (3 3 (UIUI +2U1 U2U2 )

+a5 (UIUI +8UIU 2U2 )

A -3U 2 1 4idU 2/dt I*I fSl

1 +c[4ipU 2 +( 02 -C4 )U1

4 1 I

A 0 1 E[-15U 4+( 2 -4 4 )U2
2  I 101

Note that, RHS indicates the right hand side of the equation and
*** indicates terms not needed for the present approximation.
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unknown. Also from (18), it is clear that U1 and U2 are more

significant compared with U0, U3 and U4 in the sense that, in

order to obtain a solution of u(t) accurate to O(2 ), while U1 and

U2 must be accurate to 0(e 2), U0, U3 and U4 only need to be of

0(c). This relati-9 significance in order also affords us an easy

way to solve these equations by an iterative procedure.

The most dominant term of the solution is U2 in (27),

U2=-(1/3)fS=-(1/3)fe i c t (30)

In terms of U1 and U2 , one has, to the first approximation,

U0=-2(m2+a4)UIUI-2(2 +4N4)U2U2 (31)

U3=(1/4) (a2-2a 4 )UIU 2  (32)

U4=( 1/15) ( 2-44)U22  (33)

And the differential equation to determine U1 is

dUl1/dt--c[,uU1- i ( L2+2m4)UiU2] (34)

To improve the solution to the next order of accuracy, one

includes the 0(c) terms in (27) for U2 and the O(c2 ) terms in (26)

for the differential equation for U I . Hence

U2--(I/3)fS+(I/3)c[(( 2-a4)UI12_-(4/3)(ip-a)fS] (35)

U2 --( 1/3 )fS+( 1/3) [ (2-o4 )U12+( 4/3) (i+ a) fs] (36)
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Also obtaining

d2Ul/dt 2-- [udU,/dt-i(a 2+2x4 )(U2 dUl/dt+U I dU2/dt)] (37)

Equations (35)-(37) can be substituted in (26) to obtain an

improved first order differential equation for U1 :

2i(dUl/dt+c#Ul)-(2/3) C(a2+2 4 )fSU 1

+C2 [-P2U1+(2/9)f 2 )3a3+4c5)-(1/18)f2 (5(22+1224-12N42 )]U1

+(1/3)(9a 3+3a5-1Ocx 2
2-l0a 2(x4-4a4

2 )U1 2U1

-(4/9)ip(2 2+ 4 )fSU 1 +(1/9)(lla 2+ 16 4 )fSU 1 =O (38)

It is not difficult to show that (38) is identical to

Nayfeh's equation (81) in [1] by replacing Q with 2+ca, w0 with

unity and U1 with A. In this comparison, caution must be used

however, in obtaining the expanded terms of O(c2 ) in the last

expression in Nayfeh's equation where, specifically, Q=2+ca and

Q-(2+ca) 2-4+2ca should be used for the parameter A=f/(l-2 ) in

the expansion before dropping the ,igher order terms too early.

The procedure as described hitherto is automated via a

MACSYMA program in the following. Remarks are contained between

symbols /* and */ in the program. It is noted that the equation

obtained by seting the final expression (D56) to zero in the

MACSYMA program is identical to Eq. (18) as it should be.
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4. THE SUPERHARMONIC CASE

Next, we will demonstrate the technique in obtaining the

solution for a superharmonic case, where the frequency of the

forcing function 2 is close to one-half of the natural frequency

of the system. That is

Q - (1/2) + ca, or, 22 = 1+2ca (39)

By using (39) instead of (8) in Sectioin 2 of this paper, it is
clear that all the steps remain unaltered except that S and A in

(10) will be replaced by

S = e i at/ 2 and A - eit/ 2  (40)

Thus we can conclude that (18) is still the form of solution of

(1) for the superharmonic case with A given by (40). Now the task
is simple. Substituting (18) in (1) with proper consideration of A

in (40), one arrives at a similar set of equations and can be
solved as before. Here, we shall use the following simple case of

(1):

d2u/dt 2+u+2co(du/dt)+ 2u 2=fe i9t+c.c. (41)

or,

d2u/dt 2+u+2cp(du/dt)+c 2u2-fSA+c.c. (42)

Substituting (18) in (42) the following Table (Table II) of
equations similar to Table I is obtained.

The final equation in U2 from solving the above set of equations

iteratively as before is the following:

2i(dU 2/dt+ CU 2 )+(16/9)CO2 f2 S
2

+C2 [-U _2 (64/9)(23/15)2 2 f2 ]U12-(1/3) 22U 2U22
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+(8/27)(5 -13ip)a 2 f2 S 2} - 0 (43)

Again, it is easily shown that (43) i6 identical to the result

obtained by Nayfeh using the method of multiple scaling (equation

(2.46) in (4]).
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TABLE II. TABULATED EQUATIONS INDICATING RELATIVE ORDER OF TERMS
IN THE TRANSIENT, SUPERHARMONIC CASE

0 2 IRHSI

A 0 I [U0+2 2 (UIUI+U2U2 ) 0

I A 13U 1/4 i(dUl/dt+epU 1 ) I fS1

I I +2c 2U1U2 I
I2c 2 ~ U 1 2 U 2

A 0 1 2idU 2/dt 2 2 /dt 0 1
1 2 2 2 1U
1 +c(2iU 2+c2U1 ) 2c (UU 2 +U1 U3 +U2U2 )

131 1 1
A 0 1 e(-5U 3/4+2 2UlU 2 ) * 1

141 1 2
A 0 c(-3U 4+c 2 U 20

Note that, as in TABLE I, RHS indicates the right hand side of
the equation and *** indicates terms not needed for the present
approximation.

731



REFERENCES

(1] Richard H. Rand and Dieter Armbruster, Perturbation
Methods, Bifurcation Theory and Computer Algebra, Springer-Verlag,
1987.

(2] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations,
Wiley-Interscience, 1979.

[3] A. H. Nayfeh, The response of single degree of freedom
systems with quadratic and cubic non-linearities to a subharmonic
excitation, Journal of Sound and Vibration (1983), Vol. 89(4),
pp.457-470.

(4] A. H. Nayfeh, Perturbation Methods in Nonlinear Dynamics,
Lecture Notes in Physics: Nonlinear Dynamics Aspects of Particle
Accelerators - Proceedings of the Joint US-CERN School on Particle
Accelerators, Editors: J. M. Jowett, M. Month and S. Turner,
Spring-Verlag, 1985, pp.238-314.

732



A Shared Memory Parallel FFT for Real and Even Sequences

William L. Brigga

Van Emden Henson

Mathematics Department
University of Colorado at Denver

Denver, Colorado 80202

Abstract

A compact symmetric FFT algorithm for real and even data is implemented on
a shared memory parallel processing computer. The parallel implementation is
complicated by the uneven distribution of work induced by splitting symmetric
sequences. A performance model is developed to predict the amount of speed-up
that may be expected as the number of processors is increased. Factors included in
the model are the arithmetic operations, calls to the transcendental libraries, and
overhead for the fork-join operations. Actual processing times are given for the real
and even FFT. For fixed N, speed-up curves are shown for increasing numbers of
processors, and are compared to the theoretical curves of the performance models.
While the speed-up is excellent for long sequences, for short sequences the speed-up
peaks at some intermediate number of processors.

Introduction

Since its introduction in 1965 [1], the Fast Fourier Transform (FFT) has
become one of the most widely used algorithms of computational mathematics. Its
enormous popularity is due largely to the fact that the FFT requires 0 (NlogN)
arithmetic operations to compute the transform of a complex vector of length N,
instead of the 0(N2 ) operations required to compute the transform as a matrix-
vector product. The term 'compact symmetric' refers to a family of FFT algo-

rithms that uses minimal storage and arithmetic for data sequences possessing cer-
tain symmetries. The first such algorithm, generally attributed to Edson [2], com-

putes the transform of a real vector using half the storage and half the operations
used by the original FFT. It has long been known that further savings are possible
when the data has additional symmetries, but with the exception of one little-

publicized algorithm by Gentleman [3], such transforms were performed by pre- and
post-processing of data for use with conventional FFTs [4]. In recent papers by
Swarztrauber [5] and Briggs [6], compact algorithms were developed for sequences

with real, even, odd, quarter wave even, and quarter wave odd symmetries.
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The Cooley-Tukey Algorithm

Suppose a complex sequence, {z} = {zO,z 1 , " N.-}, is given, for which the
Discrete Fourier Transform is desired. For convenience, assume that the length of
the sequence, N, is a power of two. The DFT of the sequence is given by

N-i
Xk = xnw k=0,1, N-1

- i2r

where wN = e N As a matrix-vector multiplication, the DFT requires O(N 2)

operations.

Suppose the sequence {X,} is split into two subsequences {y.} and {zn}, whose
elements are y, = z 2,, and zn = z2.+l. Then the DFT can be written as

N 1  N_2 2.. _ _

2 nk k 2 oiXk= W + W ZWk=0,1,
n=0 2 n=0 2

The two summations in this equation are themselves DFTs, of the subsequences
{y,} and {z} respectively, which are denoted { Yk} and {Zk}. Therefore the first
half of the desired transform is given by

Xk = Yk + ''k=0,1, 2

The second half of the desired transform may be obtained by substituting k + N& for
2

k and noting the periodicity of { Yk} and {Zk}, which yields
= - WkZk k=0,1, N -

These two formulas together make up the "butterfly relation", or combine formulas.

The Cooley-Tukey FFT algorithm proceeds by recursively splitting the input
vector until eventually N sequences of length 1 are produced, which are their own
DFTs. The butterfly relations may then be applied to build longer transforms from
pairs of short ones. This process continues until finally two transforms of length -L

are combined to form the length N transform of the original input sequence.

An Algorithm for Real and Even Data

An even sequence is one in which z, = ZN_. A sequence which is both real

and even (E) can be shown to have a transform which is also an E sequence. Sup-
pose the transform of an E sequence is desired. Following a process suggested by
the Cooley-Tukey algorithm, the input sequence is split into its even and odd subse-
quences. These subsequences are split in turn, and this recursive process followed
until length one sequences are produced. With each splitting the subsequences
inherit certain symmetries from the parent sequence.
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Suppose an E sequence {x.} is split into two subsequences, {y.), consisting of
the elements with even-numbered indices, and {z.}, the elements whose indices are

odd. Then

Yn -" X2 n - -N-2, Y, -1

and

Zu= z 2 3 1+L -- N_2_ - z

Therefore the subsequence {y.} is an E sequence, while the subsequence {z.} is real
and and has a new symmetry called quarter wave even.

A quarter wave even sequence of length N is one in which z. = ZN,_l. If the
DFT of a real quarter wave even (QE) sequence is considered, it can be shown that

i2rk
the transform has the symmetry Xk-e N Xk. Therefore it is possible to
represent both the real and imaginary parts of the sequence e.ement X by a strictly

irk
real quantity, namely Xk = e N Xk. If a QE sequence is split into its even-

numbered and odd-numbered elements, each of the resulting subsequences has no
symmetry by itself (except that it is real), but taken together they have the intrase-
quence symmetry

-- I zN-2,-2 = =2a+1 = Zx.

Thus a real QE sequence splits into two strictly real subsequences, one of which is

redundant.

A strictly real sequence (R) is one in which each element is its own complex
conjugate. Substituting this relationship into the definition for the DFT, it is easy
to show that the transform of an R sequence {z.} has the conjugate symmetric pro-
perty that Xk = XCN.-k' Splitting an R sequence produces two R sequences which are
of half the length of the original. No additional symmetry is induced by the split-
ting of an R sequence.

A symmetric algorithm, proposed by Swarztrauber, is schematically illustrated
in Figure 1. The input sequence is split, producing one E subsequence and one QE
sequence. The E subsequence splits into another E and QE pair, while the QE

sequence splits into two real R sequences, one of which is redundant. The splitting
process continues, with each E generating an E and QE pair, each QE splitting into
an R (and a redundant R), and each R sequence spliting into two more R
sequences, until sequences of length one are produced (left of the bar in Figure 1).

Note that no work has yet been performed, merely that data has been moved, and
is now said to be in scrambled order.

Since the transform of a length one sequence is itself, the short transforms may
now be combined into longer transforms, a process that may be applied recursively
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until the transform of the full length input sequence is obtained. In order to do this
recombination, it is necessary to have butterfly relations that combine the various
symmetric transforms into transforms of longer symmetric sequences. By substitut-
ing the transform symmetries discussed above into the Cooley-Tukey combine for-
mulas and simplifying, Swarztrauber derived these butterfly relations.

The Combine Formulas

If an R sequence {X,) has been split into its two subsequences, {y.} and {z.1,
the butterfly relations for constructing the transform, {Xk), of the original sequence
are

Xk = Yk + wtkzk k=O,1,...N
4

and
XTt4-k= Yk- k k WL

These equations are called the "RtoR" combine formulas, because they combine the
transforms of real sequences into the transform of a real sequence.

It was shown above that an E sequence {z.} splits into an E and a QE subse-
quence. Since { Yk}, the transform of the E subsequence, is also real and even, and
{Zk}, the transform of the QE subsequence, can be represented by the strictly real
sequence {Z}, the butterfly relations for combining the transforms of an E and a
QE sequence are

Xk= Yk +

and
x_, Yk - ik k=0,1,...- -- 1

IV k 4Y-Z

These relations, which are together called an "EQE" type combination, produce the
first -A-+1 values of the transform {Xk}. Since {Xk} is real and even the remaining

2

values may be obtained by symmetry.

It has been noted that in splitting a QE sequence {z} one of the resulting
subsequences is redundant. Therefore {Xk} can be recovered entirely from the
transform of ,[y,}, which can be represented by a strictly real sequence { Yk}, while
the transform of {z.} need be neither computed nor stored. The butterfly relations
by which the transform of a QE sequence can be formed from the transform of one
of its R subsequences are

k= 2RwkYk I 4

and

X k = -21[wk Yk] k-O,1,1... N-
2
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Thus A& real values are required to represent the N complex values of the transform
2

of a real and quarter wave even sequence. This set of relations is called an
'RRQE" combine.

The combine phase of the algorithm is shown schematically by the right side of
Figure 1. In general, each pass has one EQE combination, followed by an RRQE,
followed by a series of RtoR combinations. At the second to last pass, there are
only the RRQE and EQE types, while the final pass involves only the EQE combi-
nation, performed on sequences of half the length of the original input. In practice
none of the redundant R sequences are computed or stored. The program uses only
N +1 storage locations. The algorithm begins with the input data in scrambled

order, and proceeds through log2 N passes, until the transform coefficients are pro-
duced in natural order.

The Inverted Algorithm

It is generally more convenient to have an algorithm which operates on the
input data in natural order, producing the coefficients in scrambled order. Briggs
[5] developed such algorithms for sequences which are real, quarter wave even, and
quarter wave odd. Following his lead, an ordered-to-scrambled algorithm for an E
sequence may be developed.

To derive this algorithm it is necessary to formally invert the Swarztrauber
algorithm. Since an E sequence is itself the transform of another E sequence, the
inverted algorithm can be thought of as following Figure 1 backwards, from the
right side to the middle bar. Beginning with the transform of an E sequence in
natural order, it is possible to "uncombine" it into the transforms of its E and QE
subsequences. These in turn are uncombined into the transforms of their subse-
quences, and so on. After log2 N passes through the data, length one transforms are
produced, which are the transform coefficients, in scrambled order, of the original
sequence.

To invert the Swarztrauber algorithm, it is necessary to formally invert all of
the combine formulas. The EQE combine relations are easy to invert, and produce
the uncombine relations

Yk 1(Xk+ X k=O,1,... N
2 4

and

kL"-(X, - X k=O,1,...-1
24

Inverting the RRQE combine formulas is a bit more tedious, leading to the uncom-
bine relations

1 , i rk - . r k=O~l,...
Re[Y] = - (Xkcos- + X _esm- - 1

2 N N N4
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and

Im[Ykl = -(ksin- - - X_ cos--) k=0,1 A-i
2 N _t-k N4

Inverting the RtoR combine formulas, and at the same time separating real and
imaginary parts for storage in a real array, leads to the following four relations:

Re[ Yk = -L(Re[Xk] + Re[X _J)2J

Ir[ Yj = -(m[X - Im[X,_J)
2

Re[Zk] = -L (Re[Xk] - Re[X_, - (IM[Xl + Im[X_. _kl)Sin

In[ZkI 1 L R[k - +eX (h[k + IM[XN J),cos

2 j(Re[Xk Ne[X +I~ 2 Irk 2ir

where the real parts of both { Yk} and {Zk} are calculated for k = 0,1,... and the
4

imaginary parts of both sequences are calculated for k = 0,1,...A-1.
4

The remainder of this paper is concerned only with the ordered-to-scrambled
algorithm, so the names EQE, RRQE, and RtoR are retained for these uncombine
formulas.

Savings from the Compact Symmetric Algorithm

The data flow and storage of the ordered-to-scrambled algorithm are illustrated
in Figure 2 for a real even sequence of length N=32. During each pass through the
data, the first type of uncombine is an EQE. In the first pass this is the only type
of uncombine. Beginning with the second pass, the RRQE type uncombine follows
the EQE, and with each succeding pass there is one EQE, one RRQE, and all
remaining uncombines are of type RtoR.

To analyze the algorithm, let the passes through the data be indexed
= 0,1, • • • log2 N - 2. The last pass, j = log2 N-1, is considered as a special case.

The scalar multiplication by one-half occurs in all of the formulas, and may be per-
formed at the end of the algorithm.

The backwards running index (-i--k) is important in the EQE uncombines.

Because of it, individual EQE butterflies cannot be performed in place. However,
pairs of EQE butterflies can be performed in place if performed together, as an

EQE 'unit". The th pass through the data requiresT -(-L), such units, beginning
8 2

with pass j=0. On the j pass 4± 2L, RRQE butterflies are required, beginning
with pass j=l. Beginning with the pass j=2, each RtoR sequence requires -4--N -,

4 2

RtoR butterflies, and there are 2 j-1- 1 such sequences. The last pass through the
data is considered separately because in this pass the sequences are all of length two
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and all the butterfly types reduce to a butterfly which is identical to the EQE, and
there are -L such butterflies.

4

Noting that each of the combine types requires a different amount of work,
and using the counting arguments just listed, it is possible to compute a total opera-

tion count for the algorithm. The transform of an E sequence of length N using this
algorithm requires -- +1 storage locations, and the total number of real arithmetic

operations (counting multiplications and additions equally) is -Arlog 2N-2N.

Performing the transform of an E sequence by placing the input sequence into
the real part of a complex array and using a conventional FFT requires 2N storage
locations and a real operation count of 5Nlog 2 N. Thus the compact symmetric FFT
requires one fourth the storage as its conventional counterpart, and requires some-
what less than one fourth the arithmetic. Performing the same transform by tradi-
tional pre- and post-processing methods [4] utilizes -L storage locations and entails

4

0Nlog2N+-2-N real operations, somewhat greater than the compact symmetric
4 2

transform.

Parallel FFTs

Before proceeding to the problem of parallelizing symmetric sequences, it is
useful to review some of the features of parallel FFTs for complex sequences. Many
of the problems encountered in developing the parallel symmetric algorithms are
similar to those that arise in parallelizing the conventional FFTs. Briggs [7]
developed strategies for implementing FFTs on shared memory parallel processors.

The fundamental work unit of the FFT is the butterfly relation. During every
pass through the data each butterfly relation can be performed in-place (without
using an extra storage array) and independently of all other butterflies. It is at this
level of the algorithm that parallelization may occur. The log2 N passes through the
data must be performed sequentially, so there is no parallelism at a coarser level.

The two basic strategies for parallelizing an FFT are called scheduling-on-pairs
and scheduling-on-w. In the former strategy, each processor is assigned independent
butterflies to perform. Suppose there are p processors. The butterflies are passed
out by giving the ith processor the jth butterfly, and every pth butterfly thereafter.
Prior to performing the butterfly, the processor must calculate the appropriate
power of w. At the end of each pass through the data, each processor must wait in
a synchronization step until all other processors have completed that pass.

During each of the log2 N passes through the data, the number of powers of w
required changes. At the kth pass, there are 2 k- 1 distinct powers required. This fact
gives rise to the scheduling-on-w strategy. If each processor is assigned every pth
butterfly, as suggested above, then several processors may have to compute the
same powers of w as they stride through the data, an obvious duplication of effort.
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This is unavoidable in the early passes of the algorithm, where 2 k'- < p. During the
later passes, where 2 k1 > p, each processor is assigned all the butterflies
corresponding to a given set of powers of w. This strategy avoids the duplication of
effort in having several processors compute the same sets of exponentials.

Briggs [7] implemented both of these parallization strategies on the Denelcor
HEP computer. It was found that the scheduling-on-w ran faster than scheduling-
on-pairs by 25% (for small IV) to 80% (for large N).

The Parallel E Algorithm

The parallel algorithm for computing the transform of an E sequence may now
be developed. Only the ordered-to-scrambled case is considered, but the commen-
tary and analysis extend readily to the scrambled-to-ordered case, although the
computational details differ. Further, for shared memory computers, the extensions
are immediate to parallel algorithms for real, real and odd, and real quarter wave
(even or odd) sequences. For consideration of symmetric FFTs on distributed
memory architectures, see Sweet [8], or Henson [9].

The basic assumption regarding the hardware is that the number of processors
is small compared to the sequence lengths (coarse grained processing), and that all
of the processors share a common memory. This assumes that there are no explicit
communication costs in the algorithm. There will, however, be some overhead that
must be paid for fork-join operations, and there will be some implicit communica-
tion cost in the form of memory bus contention. Since all the processors have equal
access to all of the data, the algorithm is distributed among the processors.

At the beginning of the jth pass through the data (j=0,1,...log2 N-1), copies of
the subroutine are "forked' to the processors. The 'units" of type EQE are then
distributed as evenly as possible across the processors. If the current pass is not the
first, RRQE butterflies are distributed as evenly as possible across the processors.
After the second pass RtoR butterflies are required. The number of RtoR butter-
flies per sequence decreases with each pass, but the number of sequences increases.
There are two cases that must be handled. If the number of RtoR butterflies per
sequence is greater than the number of processors, the algorithm distributes the
butterflies as evenly as possible across the processors, each of which strides through
the sequences performing its designated butterflies. This mode is called scheduling-
on-butterflies. If, however, there are fewer butterflies per sequence than processors,
then the algorithm distributes the sequences across the processors as best it can,
and each processor must compute all the butterflies for each of its sequences. This
mode is called scheduling-on-sequences. At the end of each pass the processors are
joined in a synchronization step. If the current pass is the last pass, all the butter-
flies are of the EQE type, and these are distributed across the processors.
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Considering the second parallel strategy, there are two causes of decreased

parallelism. The first is simple divisibility. When the number of processors does

not divide the number of work units to be performed, there will be a time in which

some processors are busy while others must wait. The second cause is the duplica-

tion of effort required when the algorithm switches from scheduling-on-butterflies to

scheduling-on-sequences. In scheduling-on-butterflies, each processor need only cal-

culate the one set of cosines for each set of butterflies it performs. While scheduled

on sequences, however, all the processors must calculate all of the cosines for each

sequence, implying duplication of effort.

Complexity of the Parallel Algorithm

To predict the speedup due to the parallel implementation consideration must

be given to several factors: the changing amount of work of each uncombine type,

the cost of the change from scheduling-on-butterflies to scheduling-on-sequences,
the divisibility problems, and the cost of the fork-join operation. This leads to an

analytic expression involving six terms: the cost of the fork-joins, the cost of the
EQE units, the cost of the RRQE butterflies, the cost of the RtoR scheduled on

butterflies, the cost of the RtoR scheduled on sequences, and the cost of the last
pass through the data. This can be written:

log, N-2 -')logN-2 4"'-

Tp = Tf(p,N) + 4a [ + A 1
1=o P i P

LT-I [ ___
+ , (2j-t-l) B, + 2c

i-2 1 1

42p

where a is the cost of one real addition, c the cost of obtaining a cosine from the

transcendental library, A the cost of an RRQE butterfly, B 2 the cost of an RtoR

butterfly, and B, the cost of an RtoR butterfly without the cosines. LT is the
index of the first pass through the data in which the RtoR portion must be
scheduled on sequences, rather than butterflies.

The overhead for forking operations is given by the expression

Tf(p,N) = a( + 81(p-l)+(og2N-1)(C12 + 62(p--1))

where a, is the cost of the first fork on the first processor, 61 is the cost per addi-

tional processor for the first fork. All succeeding fork calls have a cost of a2 for the
first processor and/62 for each additional processor.
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The complexity equation is difficult to analyze because of the least integer
function which occurs in most of the terms. In cases where the number of proces-
sors is a power of two, the least integer functions are easily computed, and after
some algebraic labor, the complexity equation reduces to

I 1092oN +lgp (3a+c-B1 ) A]Tp = TfaN + - oz -L + 2 +2P

+ (A+4a+2c)log2p - 2clog2N-A + 2c + BI.

Regrouping the terms of this equation, the structure of the performance model
consists of four terms:

= T(p,N) + o(-log 2N) + o(-log2p) + O(log2p)
p p

Each of the terms of this equation can be identified with the phenomenon it
represents. The first, Tf(p,N), is the overhead required to fork processes. The

o(Nlog2N) term represents perfect speedup relative to the serial algorithm. The
P

remaining two terms reflect decreased parallelism. The first, 0(--log2p), is the
p

amount of time spent in the duplication of effort caused by changing from RtoR
scheduled on butterflies to RtoR scheduled on sequences. The last term, 0(log2p),
represents the amount of time spent in EQE and RRQE butterflies after the
sequences become sufficiently short that there are fewer of these type butterflies
than there are processors.

The Parallel Implementation

The algorithm taking ordered E data to scrambled coefficients was imple-
mented on a Sequent Balance multiprocessor. The maximum number of processors
available to one user was 23. All of the processors had access, through a common
bus, to all of the data. To compute predicted performance curves, the timing
parameters of the machine were obtained from the Sequent documentation, and
then verified by experiment.

Timings of the actual transforms were obtained for sequences of various
lengths, and speedups compared with the values predicted by the performance
model. The results are shown in two separate charts: Figure 3 shows the perfor-
mance characteristics of long sequences and Figure 4 displays those of shorter
sequences.

For very long sequences, (N=32768, N=65536, N=131072), the implementation
performed very well. There is good speedup throughout, with speedup generally
increasing with increasing processors. The maximum speedup achieved was just
over 17, occurring on the longest sequence when transformed on 21 processors. The
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open circles represent the predicted speedups from the model. For long sequences,
the actual speedup very nearly matches the model speedup.

On shorter sequences, (N=16384, N=8192, N=4096), the implementation per-
formed less well, both from a standpoint of measured speedup alone, and when com-

pared with the model speedup. In all cases, there is a significant decrease in the
efficiency as the number of processors is increased, and on each curve there is an
"optimal' number of processors, after which the transform requires more time to
perform as the number of processors is increased. On a sequence of length 16384,
for example, the best performance was achieved using 17 processors, resulting in a
speedup of approximately 8. On an 8192 point sequence, however, the best results

occurred with 9 processors, but achieved a speedup of only 5. Additionally, as
sequence lengths become shorter, the actual performance differs more and more

from the predicted curve. This may be attributed to two factors. First, the over-
head of loop indexing is not included in the model. As sequences become shorter,
the loop indexing represents an increasing fraction of the algorithm. A more signifi-
cant factor is related to the memory management of the Sequent Balance. Essen-

tially, as sequences become shorter, the memory accesses by the processors become
more frequent, and the bus becomes saturated. (It should be noted that the new
generation of Sequent multiprocessors, the Symmetry family, utilize a different
memory management scheme designed specifically to eliminate this effect.)

Conclusions

The transform for real and even data is one member of a family of algorithms
that efficiently compute the transforms of symmetric sequences. The serial versions
of these compact symmetric algorithms provide a tremendous savings over the
direct use of the complex FFT to transform these sequences. They also offer a sav-

ings over traditional pre- and post- processing algorithms, using the same total
storage, but requiring somewhat fewer arithmetic operations.

The compact symmetric algorithms have straightforward extensions to shared
memory parallel computers, and produce additional savings from parallelization. A

major benefit is that FFTs are usually performed as part of some larger calculation,
which in turn is made more efficient. This is especially true for many of the sym-

metric sequences, that arise in the direct solution of partial differential equations
with various boundary conditions. Much recent research [10] has centered on

improving the performance of these larger computations by implementing them on
parallel machines. The utilization of the family of parallel compact symmetric

FFTs should represent a significant contribution to that effort.

743



Acknowledgements

The authors would like to thank Roland A. Sweet for his support and assis-
tance. The Argonne National Laboratory provided time on the Sequent Balance

21000 computer. This research was supported by National Science Foundation
grant number DMS-8611325.

REFERENCES

[1] Cooley, J. W., and Tukey, J. W., (1965), An Algorithm for the Machine Calcula-
tion of Complex Fourier Series, Math. Comp., v. 19, pp. 297-301.

[2] Bergland, G., D., (1968), A Fast Fourier Transform for Real Valued Series,
Comm. ACM, v. 11, pp. 703-710.

[3] Gentleman, W. M., (1972), Implementing Clenshaw-Curtis Quadrature, Comput-
ing the Cosine Transformation, Comm. ACM, v. 15, pp. 343-346.

[4] Cooley, J. W., Lewis, P. A. W., and Welsh, P. D., (1970), The Fast Fourier
Transform Algorithm: Programming Considerations in the Calculation of Sine,
Cosine, and Laplace Transforms, J. Sound Vibration, v. 12, pp. 315-337.

[5] Swartztrauber, P. N., (1986), Symmetric FFTs, Math. Comp., v. 47, pp. 323-346.

[6] Briggs, W. L., (1987), Further Symmetries of In-Place FFTs, SIAM Sci. and
Stat. Comp., v. 8, pp. 644-655.

[71 Briggs, W. L., Hart, L. B., Sweet, R. A., and O'Gallagher, A., (1987), Multipro-
cessor FFT Methods, SIAM Sci. and Stat. Comp., v. 8, pp. s27-s43.

[8] Sweet, R. A., Porsche, J. A., and Henson, V. E., (in preparation), A Fast
Fourier Transform for Real Data on a Hypercube

[9] Henson, V. E., (in preparation), A Comparison of Symmetric FFTs on Shared
and Distributed Memory Parallel Processors

[101 Swarztrauber, P. N., and Sweet, R. A., (to appear), Vector and Parallel
Methods for the Direct Solution of Poisson's Equation, J. Comp. Appl. Math.

744



E E Ff FE}-I F{E}j

}F{E}

,--R F{", "'.F{QE}

QE R F{QE}/{QE

E\_--PR F{R} >_R {E}
R F{R}{E

QE = RFFQQE

* ,

Figure 1

Schematic diagram of the Swarztrauber Algorithm. F( ) indicates the Discrete Fourier Transform.
The asterisks represent the redundant R sequences which are not calculated or stored. The portion
of the diagram to the left of the column of bars is the ordering phase, that to the right of the bars is
the combine phase. The column immediately to the left of the column of bars is the E sequence in
scrambled order, the final F{E} on the right is the transform in natural order.
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Figure 2

Storage and data flow diagram for c.mpact real and even transform, with N = 32, taking ordered

data to scrambled coefficients. R and I refer to the real and imaginary parts of the complex quan-

tity. During each pass through the data, the first set of lines is the EQE uncombine, the second set

is the RRQE uncombine, and all other sets are RtoR uncombines.
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Figure 3

Measured Speedup for long sequences. Speedup curves are shown for N = 131072 (#), N = 65536
(x), and N = 32768 (+). Perfect speedup is represented by the diagonal line. Theoretical speedup
Lq plct'.e at p = 2, 4, 8 for N = 131072 (solid triangle), N = 65536 (solid square), and N = 32768
(solid circle). At p = 4 only the square is plotted, as all three computed values fell within the size of
the square.
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Figure 4

Measured Speedup for "short" sequences. Speedup curves are shown for N = 16384 ( ), N = 8192

(x), and N-- 4096 (+). Perfect speedup is represented by the diagonal line. Theoretical speedup is

plotted at p = 2, 4, 8 for N =163842 (solid triangle), N = 8192 (solid square), and N =4096 (solid
circle). At p = 4 only the square is plotted, as all three computed values fell within the size of the

square.
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Abstract. We discuss a group of parallel algorithms, and their implementations, for solving a special class

of nonlinear equations arising in VLSI design, structural engineering and other areas. The class of sparsity

occurring in these problems is called block bordered structure. We present the explicit method and several

implicit methods for solving block bordered nonlinear problems, and give some mathematical analysis and

comparisons of the two methods. Several variations and globally convergent modifications of the implicit

method are also described. We present computational results on a sequential computer that help compare

and justify the efficiency of the algorithms. Finally, the implementations on shared memory multiproces-

sors and local memory multiprocessors, are discussed.

1. Introduction.

The solution of a system of nonlinear equations is one of most basic and important problems encoun-

tered in many applications. The general form of a system of nonlinear equations is:

f (X 1. X2. ...- X.) = 0, i=1, ..... n.( .)

Several parallel algorithms for solving (1.1) have been developed and implemented on some parallel com-

puters. Newton's method is the main approach in those algorithms. Thus, most algorithms for solving (1.1)

consist mainly of solving the linear Jacobian system. Many parallel algorithms have been developed for

solving a linear system, such as parallel factorizations, parallel SOR method, parallel red and black

method, parallel multicolor and so on (see e.g. Ortega and Voigt [1985]). One of the typical parallel New-

ton methods for solving (1.1) is called Newton-Jacobi(or Newton-SOR, or Newton-Gauss-Seidel), in which

the main iteration is the Newton iteration for solving (1.1), and the inner loop is to solve the linear system

iteratively by using the Jacobi method (or SOR method, or Gauss-Seidel method) (see e.g. O'Leary and

White [1985], White [1986]). Fontecilla [1987] gives a parallel implementation of a different approach, the

serial nonlinear Jacobi algorithm for (1.1). This algorithm is based on the same idea as the Jacobi algorithm

7 ehserch is panmly mpponed by ARO cmtracts DAAL-03-k-006 an AFOSR gnmt AFOSR-85-0251.
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for solving linear systems of equations. The Jacobi (or SOR) is the primary iteration, and Newton iterations

are used to approximately solve the jth block of equations for the jth block of variables in the inner loop

where j = 1 ..., m for m 5 n. This method is called the Jacobi-Newton method. Coleman and Li [1987]

develop parallel algorithms for the solution of (1.1) on a message-passing multiprocessor computer with a

distributed finite-difference Newton method, a multiple secant method and a rank-I secant method.

In the case of very large nonlinear problems one cannot expect a single parallel algorithm to handle

the all instances of the nonlinear problem (1.1) efficiently, but rather the algorithm must take into account

the sparsity structure and other special characteristics of the problem. In fact, many nonlinear problems in

the applications have their own special sparsity structure. Parallel algorithms taking advantage of the spe-

cial structure can be much more efficient than the algorithms ignoring the special structure. In this paper

we give a group of parallel algorithms and implementations for solving a special class of nonlinear equa-

ions arising in VLSI design, structural engineering and other areas. The class of sparsity occurring in these

problems is called block bordered structure. In such a problem the n variables and equations may be
grouped into q+l subvectors, x1, ..., x¢+l andf 1..... fq+ such that the nonlinear system of equations has

the form

fi(xi.xq+ =0; i = 1,...,q

fq+I(X I, .-- ,Xq 1) =0 (1.2)

where

xi r= R4, fi r R ,  i=1, ... , q+l, and ni =n.

The block bordered Jacobian matrix of (1.2) is as follows:

A, B,

A 2  B 2

(1.3)
C1 C2. Cq

where

Ai=-- r:R4 , ... q,

Bi = afi R4P1 q,

Ci = af +IE Rn lx7 , i = 1 q,

X q+I
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In VLSI design, P is a permutation matrix and the structure of Bi is in the form of

[ (1.4)

i.e. only one Bi is nonzero in any given column of the right-hand border (see e.g. Rabbat et al [1979],

[1980]). In addition, the equations fq+1 are linear. We will concentrate on systems with this special struc-

ture.

We will give a group of parallel algorithms for solving block bordered nonlinear system of form

(1.2) which may be implemented on both shared memory multiprocessors, such as the Encore Multimax,

and local memory multiprocessors, such as the Intel hypercube. In section 2, we give some background of

the block bordered problems, and survey related work. Section 3 presents the explicit method and implicit

method for solving the block bordered nonlinear problem, and gives some mathematical analysis and com-

parisons of the two methods. Several variations of the implicit method are also described. Experiments with

the two methods on a sequential computer are given based on the analysis of the section. Global strategies

for the different methods and their implementations, are given in section 4. Parallel versions of these

methods are described in section 5. Our conclusions and some future research directions are summarized in

section 6.

2. Background and related work.

Block bordered systems of equations having the form (1.2) arise in many areas of engineering and

science, and a few algorithms have been developed to solve them. In structural engineering, models of

large structures may be divided into q regions such that each region only interacts directly with neighbor-

ing regions. The xi are the variables for each region, and the extra linking variables (the xq+i) are intro-

duced at the boundaries of the regions. The linking variables are tied together with an q +1st set of equa-

tions representing the interactions between the regions. Thus the equilibrium equations for such a model

will be of the form (1.2). In addition, the Jacobian matrix is symmetric, i.e. Bi = Ci, and often the sizes of

Ai are the same. One current parallel algorithm to solve the problem in the linear case (see eg. Farhat and

Wilson [1986]) is to let each processor hold the pair (Ai, Bi ) as well as fi and xi. Then the updates

[x,, i = 1, .... q ) can be all performed concurrently by solving the subsystem in parallel:

Aix, +' =fi -B +, i = 1, ... q (2.1)

and the components xi are updated locally in each processor using sequential SOR iterations. It remains to

update the unknowns associated with block P. This block is coupled to all the Ai terms. If its size is negli-

gible compared to each of the sizes of the diagonal blocks, the overall algorithm will suffer a serialization

for only a small amount of time. If not (and this usually the case for three dimensional structures), the

updates of xq, may ruin the sought after speed-up. The algorithm is simple to implement, and efficient for
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the special engineering structure problem because the problem is linear and the function of fq+l is rela-

Lively small. Because the coefficient matrix (1.3) of the linear system is symmetric and positive definite, a

parallel conjugate gradient method is also efficient for its solution (see e.g. Nour-Omid and Park [1986]).

Similar equations arise in the analysis of VLSI design, where the circuits may be subdivided. The

concept of macromodeling the circuit is to decompose the circuit into subcircits and to analyze them

separately. Macromodeling of the circuit results in a system of nonlinear equations of the form (1.2).

xi (i = 1, .... q ) and xq+1 in the Jacobian matrix are usually used to represent internal and input-output

variables in each of the q independent subcircuits respectively. Here the equations involve voltages and

currents, either of which between the subcircuits serve a linking role which results in the function fq+i.

Since each voltage or current is used only in one block of equations fi plus possibly the bottom block

fq+i, the nonzero columns of Bs (and Ai) are disjoint and so the form (1.4) results. The size of the func-

tion fq+1 may be quite large.

Two nested sequential algorithms taking advantage of the structural properties of VLSI circuits have

been developed by Rabbat et al [19791, [1980]. The multi-Newton method is to apply Newton's method to

fq+1 of (1.2), where xi. (i = 1. .... q) are implicitly determined by the fi of (1.3), and another Newton

method is applied to solve them in the inner loop. This is discussed further in section 3. Similarly, the

Gauss-Seidl-Newton method is to apply the Gauss-Seidel method to fq+i of (1.2), where

xi (i = 1. .... q ) are implicitly determined by fi of (1.2), and the Newton method is applied to solve them

in the inner loop. These algorithms appear suitable for implementation on parallel computers, but to our

knowledge this has not been done.

3. Explicit and implicit approaches to the problem

There are two basic ways in which Newton's method can be applied to (12). The explicit approach

for solving (1.2) is related to Newton's method, which simply involves iteratively solving the linear system

J (X)AXk = -F(Xk) i = , .... q (3.1)

for AXk, where J(Xk) is the Jacobian ofF, which has the block bordered structure of (1.3).

The implicit approach is to solve or approximately solve each of the q equations

fi (Xi. Xq+) = O, i 1 .... q (3.2)

for a fixed value of xq+I. This would mean that each of the xi is implicitly given by a function of xq +1. The

the whole problem (1.2) is then equivalent to solving

fq+1(X i(Xq+1), - xq(xq+i),q+) 0. (3.3)

The Jacobian of this system is given by

f = + f +1 f )-I f q(3.4)
ix= q .... -i" (3.4)Z;+
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or

j = P - A.CiAi-tBi i = 1I.... q (3.4)

and we may solve (3.3) by Newton's method.

In this section we describe these two approaches and their relations to each other, and give some

experimental results on a sequential computer.

3.1 Explicit method and implicit method

Newton's method applied to (1.2) in the explicit method consists of the following formulas at itera-
tion k (k = 0, 1, ....): from fi(x).,i =1, ..... q,

'f + 'f Ax,,+, + f i(xk,+ = 43.1.1

or equivalently

AiAx4+BiAxr4+l +fj(x,4x +i)=O (3.1.1)

and fromnfq.4 I(Xt, .. 4.4+0)

, a +Axl fg*IAxki +f+&;k k,,k. 0  (3.1.2)O~i Xqi +1

or equivalently

ACA.P qklfqIX....-Xq Xqk+l )= O. (3.1.2)

Substituting (3.1.1) into (3.1.2), we obtain

(P CjAj1IBj)Ax+i =fq+I(X ... , x,+0)+ l CiAi-lfi(xt, 4+) (3.1.3)

or

f A4+1 = -fq+I(X, +, 4,4.1) + CjAj-tf (x, 4+) (3.1.3)

where f is given by (3.4). So

x4+1 =4+ i +Axq4*+ (3.1.4)

can be determined from (3.1.3), and

x& +h =xt+Axk i=1,...,q (3.1.5)
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can be determined from (3.1.1).

In the implicit method, Newton's method is applied to (3.3), and gives

aff+1+ 1 (&faq +)), XI~ A4 1  1.0
- . f f fi )-' fi I AXqk+l +fq+l(X1+'-O(Xq+l), ...,x4 "(xq+l), 4+ 1) =(4.1.6)

or

fAx +i +fq+i(x1+ '° (x4k+i), ... , +1.O(z +i), 4+1 = 0. (3.1.6)

where x+1.O(xk+) (i = 1, ..., q) is implicitly determined by solving the nonlinear system

fi(x , X +*, ) =0 (3.1.7)

for xkj. Here, j is the inner iteration number for solving (3.1.7) for xi, and k is outer iteration number for

solving (1.2). We use a second (or inner) Newton process on (3.1.7) to evaluate xi(xq+i), which yields

'fi Ax,-1+ fi (x,t -1, x+l)= i q, j=1, 2, (3.1.8)

or

i, Ax j-1 + fi(xiJ-1,xk+ )=o i q ... q j = 1, 2, (3 .1.8)

where 4A = Ai if it is only evaluated once at the beginning of each outer iteration, else it may be evaluated

up to j times. This second Newton process is at a lower level since Xq+l is determined from (3.1.6) and is

held fixed in (3.1.8). Thus, j = 1, 2, '. , and k is fixed for the outer loop. Then

xt'J = x/ - + AxHj -1  (3.1.9)

When xPdJ1 exits from the inner loop, it is set to

X, ., = x'J. (3.1.10)

Then, Xq+I is determined from (3.1.6), and

xq*+ =xqk+ + Xk+1 (3.1.11)

3.2 Comparisons and analysis of the two methods

The following theorems show that the explicit and implicit methods are very closely related.

Theorem 1. If the function fq+1 of the nonlinear block bordered problem (1.2) is linear, then the equation

solved for x4+l (k = 0, 1, • ' • ) in the implicit method is equivalent to the one in the explicit method,

except that the value of xi that is used may be different.

Proof: Substituting (3.1.8) into (3.1.9), gives the implicit formula for solving the xi (i = 1, ... q):

X.= X' - -- A-fi (x XQ+1 ) (3.2.1)
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where ] = 1. 2, ,and k is fixed, and Ai =Ai if it is only evaluated once at the beginning, else it may

be evaluated up to j times.

Substituting (3.2.1) to (3.1.6) with the condition of linear fq+l gives

fJ.]+ --- -fq +l(Xfj_-t ..... gq -, 4q+l) + a Cimgi-tfi (XI j-11xq +1) (3.2.2)

(3.2.2) is equivalent to (3.1.3) which is the explicit formula, except different variables may be

applied in the two formulas.

Theorem 2. If fq+l is linear and only one Newton iteration is applied to solve xkj (i = 1, ... , q), i.e.

j = 1, in the implicit method, then the steps Axqk+l (for a fixed k) are identical in both methods.

Proof: This follows immediately by substituting j = 1 to (3.2.2):

fA4+i = -f q+i(xo ... ,.. 
' ,4+ 1) + , CA-1fj (x '° , x+ 1 ) (3.2.3)

which is identical to the explicit formula (3.1.3).

Theorem 3. If -Ai- 1 BiAXq+1 is added to the right hand side of (3.1.10), then the equation solved for

Axi (i = 1, ..., q) in the implicit method is equivalent to the one in the explicit method except that the

value of xi that is used may be different.

Proof: Adding -Ai-'Bi Axq+i to (3.1.10), and substituting (3.1.9) and (3.1.8) into (3.1.10), gives

x.1 +
1

0 = x 1 
-I1 - Aj-[f1 (xtJ- , x+ 1) - Bi Ax,.+i 1] (3.2.4)

which is equivalent to the explicit formula (3.1.1) is substituted by (3.1.5), except different variables may

be applied in the two formulas.

Theorem 4. If fq.+ is linear and only one Newton iteration is applied to solve x,/1j (i = I, ..., q). i.e.

j = 1, in the implicit method, and the system is corrected by adding -Aj- 1 Bi Axq+I to xi after each itera-

tion, then the explicit method and implicit method a., identical.

Proof: From Theorem 2, A4+1 are identical for the two methods. Substitutingj = I into (3.2.4):

x,k+I.0 = x" ,° - Aj-Lf i(x. ,0 , xl:+, ) - Bi Ax 1. (3.2.5)

which is identical to the explicit method and completes the proof.

The following theorems give the local convergence rates of the explicit and implicit methods.

Theorem 5 results front standard theory. The proof of theorem 6 is given in Zhang [1989].

Theorem 5. Assume that F(x) is continuously differentiable in an open convex set D r R1. Assume that

there exists x - c R" such that F(xo)=0. J(x*) is nonlinear, and J(x) is Lipschitz continuous in an

open neighborhood containing x . Then the explicit Newton's method is locally quadratically convergent

Lox
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Theorem 6. Let the assumption of theorem 5 hold, and assume the addition that each Ai (x *) is nonsingular,

and that each Ai(x) is Lipschitz continuous in an open neighborhood containing x*, then the implicit

Newton method with one inner iteration per outer iteration (j = 1) is locally 2-step quadratically conver-

gent to x*.

3.3 A corrected implicit method

Theorem 3 and Theorem 4 indicate that the implicit method may obtain the same quadratic rate of

convergence as the explicit method even if the inner iteration is solved inexactly, if a correction term is

added to (3.1.12) after each iteration. The problem may be defined to find a correction term 8 such diaL

f1 (x- +1'0 + 5, Xk+ ) + 0. (3.3.1)

or

f (xhq+18, 4+1 + 54+) O. (3.3.1)

(3.3.1) may be approximated by treating the function fi to be linear, then

f, kx,k+'-, , +i )+AiB+BiA4k+ =0. (3.3.2)

The correction term 8 is obtained from (3.3.2)

8 = -A j'[' (xh . °, x4+) + B Ax +1 1 (3.3.3)

Afterj inner iterations for solving x, I , for a fixed k ,fi (x + '0, xqk+l) = 0. Thus we may make a further

approximation for the correction term 8

8 = -Ai-'Bi &Xqk+l. (3.3.4)

which is exactly the correction term we have used in Theorem 3.

We prove a lemma showing that one step of the corrected implicit method has a similar structure to

one step of the explicit method.

Lemma 1. One step of the corrected implicit method with j inner iterations is identical to solving the fol-

lowing linear system of equations:

A1  B AX

(3.3.5a)
C1 C2 • kCq

, , c+2 (X.'A ..... x '° , xq+i

and oae step of the uncorrected implicit method with j inner iterations is identical to solving the following

linear system of equations:
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A1 A2  A x (x",40
• ] =-(3.3.5b)

71  2 . +Aq 9f 0(4J.x +0

Cq 4-0,+4+0

where f = fCiA-'Bi + P.

Proof : Recall that xi (i 1 .... q) is calculated in the inner iterations using equations (3.1.8), (3.1.9),

(3.1.10), and 4+i is calculated following the inner iterations by (3.1.6).

Substituting xt+1,0 = x,. ° + %-J into (3.1.6) and using the linearity offq+i, we obtain

(P , C~j-~j)xq*j =-fqI(X'o,..., 4O,x4.,)+±CiAi-1jf1 (x&J,x 4+1) (3.3.6a)

or

__t C [-Aj-Iefi(x, , x..+i ) + BiAx.+I + P Ax,+i = -fq+l(xk, 0 ... , 4 '0, xk+1) (3.3.6a)

where

-A(i-Ill'f i (xk", X..k+l ) + BiAq4.1+) 1 %Ax,= - Aix-Bi Aq4k+1. (3.3.6b)

The right hand side of (3.3.6b) is the corrected step of Xht+l - x k.0 after the outer iteration is complete.

Let the corrected step be Ax*. (3.3.6a) becomes

A C, Axt + P AX4+t = fq+I(X1.0 ... , 4-0, 4) (3.3.7a)

The equation (3.3.6b) for solving the corrected Ax/ may be converted to

AiAxk + BiAxk.l = -"f (x t, X.l). (3.3.8a)

This completes the proof of the first part of the lemma.

From (3.3.6a) and (3.1.8), one step of uncorrected implicit method is equivalent to solving

A I f A X l xq+! (3.3.7b)

and

=Ci AxA+ (A.CiAi-'Bi + P)Axk+l =--f, +1(x0 .....-0'°,4+7). (3.3.8b)
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which is equivalent to solve the linear systems of equation of (3.3.5.b).

From theorem 4 and 5, we view that the corrected implicit method with one inner iteration (j = 1) is

locally quadratically convergent. Theorem 7 shows that this rate of convergence is retained if more inner

iterations are used. Its proof will be given in Zhang [1989].

Theorem 7. Let the assumptions of theorem 6 hold. Then the corrected implicit Newton method with j a 1

inner iterations per outer iteration is locally quadratically convergent to x*.

3.4 Some experiments on a sequential processor

We have tested the methods discussed in this section on several problems. Here we report results on

a simple 20x20 nonlinear block bordered system of equations which has four 4x4 blocks, A 1, " - " , A 4,

and a 44 bottom block P which is a 4x4 matrix, and fq+I linear. First, we compare the performance of

the three methods when only one inner iteration (j = 1) is used in the uncorrected implicit and corrected

implicit methods. All these experiments were run on Pyramid P90 computer.

Experiments with the three methods (j=l)

outer iterations (seconds)

explicit implicit corrected implicit

13(0.44) 14(0.40) 13(0.40)

The explicit method and the corrected implicit method with j = 1 are identical (see Theorem 4.). Thus,

the same number of iterations are used to converge to the solutions. The computing times are slightly dif-

ferent since the implementations of the two methods are different. The implicit method converges a little

bit slower than the other two methods, which is reasonable since our analysis shows it has a 2-step qua-

dratic convergence rate. (see Theorem 6).

Next we increased the number of inner iterations in the implicit and corrected implicit methods.

Experiments with the implicit method (j>1)

outer iterations (seconds)

j=I j=2 jf=f3 jf=f4 j=5

14 (0.40) 8 (0.34) 7 (0.40) 6 (0.44) 6 (0.54)
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Experiments with the corrected implicit method (j> 1)

outer iterations (seconds)

j= j=2 j=3 j=4 jf=f5

13 (0.40) 8 (0.38) 6 (0.36) 6 (0.50) 5 (0.54)

The experimental results show that the number of outer iterations is sharply decreased when the number of

inner iterations is greater than 1. However, the number of outer iterations does not decrease forever as j

increases. There exists an optimal j for the number of outer iterations, or for the least time in both

methods, but it is problem dependenL Our experiments also show that the corrected implicit method con-

verges a little bit faster than the uncorrected implicit method when j > 1, which is consistant with our con-

vergence analysis.

4. Globally convergent modifications of the corrected implicit method

The corrected implicit method was shown to be locally quadratically convergent in the last section.

In this section, we will give conditions for the steps generated by explicit method and uncorrected implicit

method to be descent directions. We will also discuss the combination of a globally convergent strategy for

the corrected implicit method with a fast local strategy. We let I I. I I denote the 12 (Euclidean) norm.

4.1 The conditions for a descent direction

The basic idea of a global method for solving block bordered nonlinear problems is to choose a

direction AX from the current pointXk in which F decreases initially, and a new point Xk+l in this direc-

tion from X t such that I IF(Xk+l)I I < I IF(Xk)I I. Such a direction is called a descent direction.

Mathematically, AX is a descent direction from Xk if the directional derivative p of I IF I ; 2 at Xk in the

direction AX is negativei.e. if

p =-F(X)TJ(X)AX <0. (4.1.1)

If (4.1.1) holds, then it is guaranteed that for sufficiently small positive 8,

I IF(Xk +5AX)I I < I IF(Xk)I I. Given a descent direction AXk, we setXk+ ! =Xk + XkAXk for

some Xk > 0 that makes I IF(Xk+I)l I < I IF(Xk)l I, where X1, is chosen by a line search strategy.

(see e.g. Dennis and Schnabel [1983]). The following theorems indicate when the directions generated by

the explicit, implicit and corrected implicit methods are descent directions.

Theorem 8. The step generated by the explicit method is a descent direction on the function I I F (X) 1 I12

Proof: Since the explicit method is a pure Newton method, the step will be a descent direction. This may be

simply shown by

p = -F(Xk)TJ(Xk)J(X Y)-F(X) = -F(X)rF(Xk) < 0
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Recall from lemma I that one step of the uncorrected implicit method is identical to solving the

linear system of equations (3.3.5b). From (3.3.5b), the directional derivative of I I F (X) 12 at Xk in the

direction AX = (Axf ..., Ax, Axk+1 ) is given by

p =F(X)Tj(X)1jF1 (4.1.2)

where

F =[ ~ 4+0, ..., fq(4J4+1),fq +1(X ... x40 ,xg+i)A

and Jj, is the Jacobi matrix in (3.3.5b). If only one inner iteration is applied (j = 1). (4.1.2) becomes

p =-F(Xk)TJ(Xk)J4F(Xk) (4.1.3)

The multiplication J (X )J, yields a full matrix which is given by

I-B ICIA ' -BIC 2AT 1  -BlCqAq"I B 1
1-1

-B 2C A I -B 2C 2A ;I  -B2CqA- 1  B 2f 1

J(k M4= (4.1.4)

-Bq C A F1  -Bq Cq -iAI I-BqCqA ' Bq l-1

C 1Aj-(I-P) CAi'F(I-P) CqAq (I-P) I

When the element values of BiCiAi-1 (i = 1 .... q) are large enough, J(Xk)Ji4 may not be positive

definite, so it may occur that the step given by the uncorrected implicit method may not be a descent direc-

tion.

Now we consider the corrected implicit method with a line search on the inner iteration. If the New-

ton direction along Ax ,t =-Ai-ifi (xk , xk+ +), (I = 0, ... j-1, i = 1 ..., q), in the inner iteration is a

descent direction for I Ifi (x4" t, xq+i) 1 12, a line search global strategy can be applied in the end of each

L-'ner iteration

where Xjj is the distributed line search parameter for ith block in the I+lth iteration so that

If,(Xk. 0 ,x I 1 I xf,(X,.'°x Xfi)xI I Z! 2! 1 >f,(_.f i- 1, X+1) 1 1 i =l....q.(4.1.5)

Theorem 9. Iffq+1 is linear, and an inner line search satisfying (4.1.5) is required, then the necessary and

sufficient conditions for the corrected implicit direction Axki-t, Ax+ 1, (i = 1. .... q) to be a descent

direction from x,0, xk+l , where j = 1, 2, • is the inner iteration number, are

(1)j = 1;
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or (2) j =2 and

,XjI fi(X,*,01Xq+1)l 12+ 1 lfq+i(Xf., ...,4.0,Xqk+i)I 12> ~X~f ,(X..O, Xq+ I k+xt 1

or (3) j > 2 and

I Ii~x~',4+)I 2+I Ifq+I(XI'0 , ...,x,0,Xq+i)I 112> jf (Xb"O, Xq )f (XiJ,4+i

Some sufficient conditions which are valid given (4.1.5) are:

or (2) j > 2, and

~X~IIf,(x,*Iko,+)I 12+ 1 Ifq+i(XI.0,...,X4.0, Xq+,)I 12>~~, ki Ifi(xA, x4+i) I I I If (xkJ, 4+0) 1I1.

Proof : Based on (3.3.5a) in lemma 1, one step of the corrected implicit method with inner line search is

identical to solving the following linear system of equatio similar to (3.21.5a):1

A BqI AX4 (VX
A C2  B 2 AiqXiXqXq1

The directional derivative of I I F(X)I1 12 at Xk in the direction AX = (Axf,., Ax4, Ax4+l ) is

given by

p =.-F(X)TF (4.1.7)

where

F L.L I= E~, f Xt',+,) %xqf .... ,k , q~~ 40, x+iA

Thus

wherpo=~o 1 IIf~( 1~X'x,)I 112+ 1 Ifq+I(X' 0, ... 'q i) 2>

Therefore, p <O0if and only if

(1)]j = 1;
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or (2) j = 2, and

P> ,X ljif i(X.- ° , xqk+l Vfi (X:k", Xqk+1

or (3) j > 2 and

In order to derive some simpler sufficient conditions, the following approximation is substituted into

(4.1.8):

uq~j i(xb*0. 4+1Y)fi(xb"', 4+ 1 )- Xj Iq If (xk '0,xqk+t)II Ifi (x,-', 4+0) 1I

Then

p :5-P -Ak - I If i(xi.*O, 4+1) 111 Ifi (x,",x4+1 )1 1

Therefore, p < 0 if

(1) j =2 and XOj X1 . (i -I .... q), since I Ifi(xi.O,x+i)Il > I Ifi(x-', 4+1) I I after

the inner line search,

(2)j >2and

PO> Akl~iI Ifi (xt., 4q+i) I I I If i(x.*J, q+1 )I I.-

A special case of theorem 9 is when Xj= I (I =0 .... j-1, i = 1, ... , q). that is, no line search

is applied in the inner iteration. The necessary and sufficient conditions are then:

(1) j = 1;

or (2) j = 2 and

I Fxf., ... , 4 0,4 0 1 12 +F(x.o, ... , 4-0, 4+ )TF(xf .... W , 4+i ) > 0

or (3) j > 2 and
)I F(x . 4.Ox4+i)I12+F(x.', . X,. )T F ) x.... ,x4+t)>0

IFx-,..........1 4. ,q€')r Fx

Some sufficient conditions are

(1)j =2, and I I F(xf " , ... , 40,°x+) II > 11 F(x' ,... 1, xq,+i) It.

or(2)j > 2,and I I F(x:O, ... xpO, 4 +) I > I F2x% ...,4J,4+i) I q .
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4.2 The implementation of the global strategy for the corrected implicit method

The idea of a globally convergent modification of the corrected implicit method is to try the method
with step length one first at each iteration. If it seems to be taking a reasonable step --
I IF (xf +1.0 , ..... x + 0, x' 1) I decreases sufficiently, then use it. If not, fall back on a step dictated by

the line search method. Such a strategy will always end up using the full corrected implicit method step

close to the solution and thus retain its fast local convergence rate. If the global method such as line search

is chosen and incorporated properly, the method will also be globally convergent under appropriate condi-

tions.

Our analysis shows that the conditions for descent direction without inner line search are stronger
than the conditions with inner line search, since the latter is guaranteed to be satisfied when j = 2 and
X > Xlj (i = 1, ..., q). Our experiments show that the total number of iterations decreases most shar-

ply at j = 2. Thus, we would choose to implement the global strategy with inner line search When j > 2,

(AxI, .... Ax,, Axk+l ) is a descent direction and the line search can be applied at the end of the iteration if

the condition (3) of theorem 9 is satisfied. If the condition is not satisfied, the line search is not applied at
current the j point but the j-l point which satisfies the conditions for the descent direction. Then a new
iteration is started. The detail corrected implicit method with global line search strategy is given by:

Inner Newton step

1. set j = 0 and lja = fixed inner iteration number (2).

2. Do

(a) Solve A8 (xt °, 4+ )Axd = -fi (xij, 4 + ) for Ax,i (i = 1 ... , q

(b) inner line search: xAJ. +1 =x* J+ X)tjAxi t for some k,/ > 0 so that

I lfi(x:' 1+l, xqk+)I < 1 fi(x'tJ,X+l)l l,(i -l1....q, l =0 ... 1j-).

(c) setj =j + I

(d) if (j = 1) then

set X1,i = )Lojii 1, ..... q

endif

Until j = lo. or condition (3) is not true)

if (condition (3) is not true)

Set x,*+ I' = xk , - ! , (i =1, ..... q).

else

Set x, + 1 0 = xkj, Ui=1.. q)

endif
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Main Newton step

3. Formf = P - ci x,' o, 4 1 )A' x, °, 4 )Bi Cx-, 4+)
4. Factorizef =L+Iuq+.

5. Solve fAxq+I =-fq+1(Xtf + , .... X '0, X ) for AXq+I.

6. Do correction: x, + 1,0 = x +. ° -Ai-'BiAxq+l, (i = 1 ... , q)

7. outer line search: x*+. ° = x ,°O + Xk (x* + ' ° - x k '° ), (i = q ... q),

and xqk++l = x4+l + kk Axq+1 for some ).k and ,k > 0

sothat I IF(xJ+1.0 , .. , 4 ,xk+)l I < I iF(x4.0 . x4 0, x+ 1 )1 i

4.3 Summaries of the two types of the methods

We give the following summary based on our experimental comparisons and analysis of the explicit

method and implicit methods.

(1) The implicit (uncorrected and corrected) methods requires more function evaluations per iteration than

the explicit method since more than one inner iterations are applied, but possibly fewer total iterations.

(2) The corrected implicit method has an asymptotic convergence rate at least as fast as the explicit method

since it retains quadratic convergence rate, and a little bit faster than the uncorrected implicit method. Both

uncorrected and corrected implicit methods may speed up the convergence of the interior variables.

(3) A global strategy such as a line search can be applied to the corrected implicit method to ensure global

convergence subject to limited restrictions.

(4) The implicit methods will be shown to have additional advantages on parallel computers in the next

sections.

5. Parallel solutions to the problem

We will briefly discuss a range of possible strategies for parallelizing the structure of block bordered

systems of nonlinear equations. What strategies are best depends on the nature of the nonlinearities and the

sparsity structure of the problem, as well as on the characteristics of the parallel machine being used. We

intend to implement these strategies and variations of them on both shared memory parallel machines, such

as the Encore Multimax, and local memory parallel machines such as the Intel Hypercube.

5.1 Parallel explicit method

The explicit method involves iteratively solving the linear system (3.1). Thus the parallel method

focuses on how to solve the block bordered linear system J (X)AX = -F (X) which is of the form:

A B 1 -f
A 2  B 2  AX2 52

Aq Bq X -q7C I C 2 • P •+ CL +-I J+
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in parallel.

Recall that Axi (i = 1, ..., q ) and AXq +1 can be explicitly solved as follows:

Axi =-Ai-tfj - Ad- t BiAxq+i. (5.1.2)

and

(P - ,CiA-IBi)Axq+l = -fq+i + , CiAi-fi. (5.1.3)

Obviously, the q factorizations of Ai = Li Ui and the q solutions of Aj-'f, and Aj-IBi i = 1, .... q, may

be performed concurrently. But the other operations do not decompose as obviously. Thus, the following

basic operations are directly from (5.1.2) and (5.1.3):

1. factorize Ai = Li Ui (i = 1, ..... q) in parallel.

2. solve Ai zi =fi (i -1 ..., q) for zi = Aj-lf8 in parallel.

3. solve Ai wi = Bi (i = 1, ..,q) for wi = Ai-Bi in parallel.

*4. formf = (P - A Ciwi)

*5. factorize f = Lq+IUq+I.

*6. solve JAxq+I = -fq+I + Cizi for AXq+I.

7. Axi =-zi -wiAxq +1 (i = 1, .... q) in parallel.

8. xl +t = Ax k + x k (i = 1,... q) in paralleL

",. -q++l =-- 4 1  +4+ 1

The steps with stars requires some synchronizations on a shared memory multiprocessor, or some

message-passing among the nodes on a local memory multiprocessor to parallelize. We will discuss those

their implementations next.

On a shared memory multiprocessor data is stored in the shared memory where it can be accessed by

all processors through an interconnection network. Step 1, 2, 3, 7 and 8 are independent data operations,

and may be fully parallelized. The matrix multiplications and subtractions in step 4 and 9 are independent

data operations on a shared memory multiprocessor, which may also be fully parallelized. Steps 5 and 6 are

to solve a linear system of equations by first factoring f and then back solving for the variables of AXq +1.

These operations involve dependent data operations, and synchronizations are required for the computa-

tions on a shared memory multiprocessor. Many parallel algorithms for LU decomposition and back solv-

ing on a shared memory multiprocessor have been developed. (see e.g. Jordan [1985]).

Thus, on a shared memory multiprocessor, the operations of the explicit method may fully be paral-

lelized except step 5 and 6 which involve some of the synchronizations. Although the synchronizations
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seem minor in comparison with the parallel operations in those two steps, the bottle-neck of explicit

method, if any, will come from solving the bottom linear systems of equation at each iteration.

On a local memory multiprocessor, there is only local memory associated with each processor and

data is passed among the processors through a connection network. Since data is not shared, a distributed

data structure is associated with the parallel algorithm. In our application, processor pi, i = 0, ..., p-1

will store the following data file:

Block Ai or a group of blocks Ai;

Block Ci or a group of blocks Ci;

Block Bi or a group of blocks B;

Blocks Axi and A or groups of blocks Axi and xi;

An efficient LU factorization algorithm needs to minimize the communication costs among the pro-

cessors, and keep all the processors working in parallel. Current fast parallel LU factorizations on local

memory multiprocessors (see e.g. Moler [19861) require the columns of the coefficient matrix to be evenly

distributed among the processors. In order to keep all processors working efficiently, the matrix is distri-

buted in following order: column j is in processor (j-1) mod p. This kind of storage is called wrap map-

ping. Thus, the columns of P matrix are distributed in wrap mapping among the processors. AXq+i, Xq+1

and fq + are stored in the control processor, say p0.

Based on this distributed data structure, steps 1, 2, 3, and 8 in the explicit algorithm are independent

data operations without any data communications and may fully be parallelized in a local memory mul-

tiprocessor. Stp 7 is also a independent data operation after AXq+l is broadcast from p0. Since Axq+1 and

xq+l are stored in po, step 9 is a sir'gle process in P0. This sequential operation has minor effect to the.

parallel performance since the computation is small comparing with other parallel operations.

The columns of f are required to be distributed in wrap fashion for efficiently solving the linear sys-

tem of equations on a local memory multiprocessor, and the columns of P are already distributed in wrap

mapping among the processors. Thus, forming f in parallel in a local memory multiprocessor requires

some message passing among the processors.

Step 6 in the explicit method involves solving a single (lower or upper) triangular linear system of

equations in parallel. This would be hard in a local memory multiprocessor, and would be especially hard

in the case where the matrix is distributed by columns instead of by rows. There has been some recent pro-

gress on this problem (see e.g. Romine & Ortega [19861, Li & Coleman [1986], [1987]). Li-Coleman's

methods require the columns of the (upper or lower) triangular matrix be distributed to p processors in a

wrap mapping. The computation is not perfectly parallelized, and the sw.np incren.s as i.nre._ee.p

We would use a distributed sequential method is applied to solve the triangular system without any extra

communications when n is small. When n is large, we would apply Coleman's method to solve the
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tiangular system since the columns have already been stored in wrap fashion during the factorization.

Steps 4, 5, 6 in the explicit method involve data communications. Thus, the bottle-neck of the paral-

lel explicit method is to form f and to solve the bottom system of linear equations.

5.2 Parallel implicit method

One portion of an iteration in the implicit method is to solve each of the q equations

f i (Xi, xq+0) -- 0, i = 1, ..... q (5.2.0)

in parallel for a fixed value of Xq+i. Newton's method may be used to solve (5.2.1). Then Axq+, is solved

by

JA4+1l +f~~ l(Xqk+i) Xkkl.O xq q ..... 4 q --o. (5.2.2)

Based on (5.2.1) and (5.2.2), the parallel implicit method is given by:

Inner Newton step

1.j =0.

2. Solve Ai Axed = -fL at xHk points for Ax~ki in paralleL

(a) x~kJ+1 x,AK + Axj,.

(b) if xh+1, is not "precise" enough, setj = j + 1, and goto step 2.a. Else continue.

(c) Set x*+',O = xJ+1 in parallel.

3. solve Ai wi =Bi (i = 1 ..., q) forwi =Ai-lBi in parallel.

Main Newton step

*4. Formf =P - A CiWi

*5. factorizef = Lq+iUq+i.

*6. solve fAXq+I = -/q+i(X I , ..... x4 +0, + ) for AXq+..

7. Do correction: x*+ I,0 
- xk +I '0 - Wi Axqk+i

.... -q ,.. q+!.

The data structures and operations of the implicit method are almost exactly same as the operations

of the explicit method although they are different methods and have different performance. The implicit

method is expected to have more inner iterations and less total iterations than the explicit method. How-

ever, the implementations of each of these steps on both shared memory and local memory multiprocessors

are roughly as same as for the parallel explicit method described in section 5.1.

5.3 What can we gain from the implicit method in parallel
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The analysis in section 3 indicates that the corrected implicit method converges at least as fast as the

explicit method. If we assume the total computing time for solving a given nonlinear problem by the expli-

cit method and corrected implicit method are identical on a sequential processor, then it is easy to see that

the parallel corrected implicit method will be more efficient than the parallel explicit method on a parallel

multiprocessor, especially on a local memory multiprocessor. As we know, the bottle-neck of the explicit

or the implicit methods implemented on either type of multiprocessor is to (form the f and) solve the bot-

tom system of equations which involves synchronizations or data communications. If the implicit method

has more inner iterations and fewer total iterations than the explicit method, then the implicit method will

form f and solve the bottom linear system of equations less times than the explicit method. The effects of

reducing this bottle-neck on the parallel performance will be greater on a local memory multiprocessor

than a shared memory multiprocessor, since the formation of f may fully be parallelized on a shared

memory multiprocessor, and since the communications delays on a local memory processor are usually

significantly larger than synchronization delays on a shared memory multiprocessor.

6. Conclusions and future work

We have studied three methods for solving block bordered nonlinear system of equations: explicit,

implicit and corrected implicit methods. The following conclusions are obtained from our analysis and

experiments:

(1) The corrected implicit method retains the quadratic convergence rate of the explicit method, and

appears to converge a little faster in practice.

(2) The steps of the corrected implicit method are in descent directions under some limited conditions.

(3) Both the explicit method and the implicit methods should get reasonably good speedup on a shared

memory multiprocessor. The implicit methods should gain more if the solution off is expensive.

The next stage of this research will be to complete the implementations of the parallel methods on

both a shared memory multiprocessor, the Encore Multimax, and a local memory multiprocessor, the Intel

hypercube, and to study the performance of the methods when f is full, sparse and very sparse. A load

balancing problem in a local memory multiprocessor may occur in the applications when the size of the

diagonal blocks Ai are different. We also plan to study this issue.

The methods we have discussed have assumed that the Jacobian matrix of the block bordered non-

linear system (1.2) is available. However, in many practical applications, the Jacobian matrix is not given

by a set of formulas, rather it is the output from some computational or experimental procedure. In this

case, secant methods (such as Broyden's method) are often used to solve (1.1). (see e.g. Dennis and Schna-

bel [1983]). We also intend to develop a secant method for solving block bordered systems of nonlinear

equations.
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Preface

A complete study of the principal nth root of a complex matrix and associated
matrix-valued functions is presented in this research monograph. This includes the
development of techniques to compute the principal nth root of a matrix, study of
associated matrix-valued functions, and their applications to mathematical sciences
and control systems. First of all, a computationally fast and numerically more stable
algorithm has been developed to compute the principal nth root of a complex matrix
without explicitly utilizing its eigenvalues and/or eigenvectors. The principal nth
root of a matrix is shown to be useful for the following: constructing the matrix-sign
function and the (generalized) matrix-sector function; solving the matrix Lyapunov
and Riccati equations; separating matrix eigenvalues relative to a circle, sector and a
sector of a circle in the A-plane; block-diagonalization (parallel decomposition) and
block-triangularization (cascaded decomposition) of a general system matrix; gen-
eralizing the block-partial-fraction expansion of a rational matrix; and modelling
a continuous-time system from the identified discrete-time model. Also, in this
research monograph, new definitions and computational algorithms have been pre-
sented to determine the rectangular and polar representations of a complex matrix.
Furthermore, their applications to control systems have been discussed. Finally,
utilizing the developed algorithms, a multi-stage design procedure has been estab-
lished to design discrete-time controllers to achieve pole-assignment in a specified
region for a large-scale discrete-time multivariable system.
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Chapter 1

Introduction

Computational methods for finding the nth roots of some specific matrices have
been proposed in [1,3,4,9] and [17]-[22]. Hoskins and Walton [4], using the Newton-
Raphson algorithm, have derived a fast and stable method for computing the nth
roots of positive-definite matrices. Based on a spectral decomposition technique ob-
tained from the matrix-sign function [17] together with Hoskins-Walton algorithm
[6], Denman et al. (18,19] have proposed an algorithm to compute the nth roots of
real and complex matrices without prior knowledge of the eigenvalues and eigenvec-
tors of matrices. However, in general, the computed nth root of a general matrix
by using the above algorithms is not the principal nth root of the matrix. There
are many applications of the principal nth root method to mathematical sciences
and control systems such as these listed below:

1) to construct the matrix-sign function [9,17], the matrix-sector function [26,27]
and the generalized matrix sector function, to solve the matrix Lyapu7.ov and
Riccati equations [1,17,23,24,25],

2) to separate matrix eigenvalues relative to a sector, circle and a sector of a circle
in the A-plane,

3) to achieve A-invariant space, the block-diagonalization (parallel decomposition)
and block-triangularization (cascaded decomposition) of the system matrix,

4) to generalize block partial-fraction expansion of a rational matrix [12,13],
5) to model a continuous-time system from the identified discrete-time model,
6) to determine the rectanguiar and polar representations of a complex matrix,

and
7) to develop the multi-stage design procedure for designing discrete-time con-

trollers to achieve pole-assignment in a specific region for a large-scale discrete-
time multivariable system.

Shieh et al. (20] first proposed an algorithm to compute the principal nth roots
of complex matrices. To improve the convergence rate of the computational algo-
rithm in [20], Tsay et al. [211 derived a fast algorithm using the matrix continued-
fraction method to compute the principal nth roots of complex matrices. However,
the above two algorithms [20,21] are not numerically stable. For example, for an
ill-conditioned matrix such as a stiff matrix containing both large and small eigenval-
ues, the algorithms in [20,21] converge in the first few iterations and then diverge
very quickly. To overcome this problem of numerical stability, Higham [22] and

1
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Shieh et al. [29] have proposed fast and stable algorithms, respectively, for comput-
ing the principal square root of a complex matrix. Since the algorithms [22,29]are
limited to compute the principal square root of a matrix only, we can not apply the
algorithms to compute the principal nth root of a complex matrix when n is not
the power of two.

Since there are so many applications of the principal nth root method to math-
ematical sciences and control systems, a computationally fast and numerically more
stable algorithm has been developed to compute the principal nth root of a matrix
without explicity utilizing its eigenvalues and/or eigenvectors. Moreover, some ap-
plications of the principal nth root method to mathematical sciences and control
systems are presented in this research monograph.

The material in this research monograph is organized as follows.

In Chapter 2, based on the generalized continued-fraction method for finding
the nth roots of real numbers, a fast computational method for finding the principal
nth root of a complex matrix has been developed. Computational algorithms with
high convergence rates are presented, and their global convergence properties are
investigated from the viewpoint of systems theory.

In Chapter 3, rapidly convergent and more stable recursive algorithms for find-
ing the principal nth root of a complex matrix have been developed. The developed
algorithms significantly improve the computational aspects of finding the principal
nth root of a matrix. Thus, the developed algorithms will enhance the capabilities of
the existing computational algorithms such as the principal nth root algorithm, the
matrix-sign algorithm and the matrix-sector algorithm for developing applications
to control-system problems.

In Chapter 4, the matrix-sector function of A has been generalized to the
matrix- sector function of g(A), where the complex matrix A may have a real or
complex characteristic polynomial and g(A) is a matrix function of a conformal
mapping. Based on the computationally fast and numerically more stable algo-
rithms for computing the principal nth root of a complex matrix, rapidly conver-
gent and more stable recursive algorithms for finding the matrix-sector function and
the generalized matrix-sector function have been developed. Moreover, the gener-
alized matrix-sector function of A is employed to separate the matrix eigenvalues
relative to a sector, a circle, and a sector of a circle in a complex plane without ac-
tually seeking the characteristic polynomial and the matrix eigenvalues themselves.
Also, the generalized matrix-sector function of A is utilized to carry out the block-
diagonalization and block-triangularization of a system matrix, which are useful in
developing applications to mathematical science and control-system problems.

In Chapter 5, fast computational methods are developed for finding the equiv-
alent continuous-time state equations from discrete-time state equations. The com-
putational methods utilize the direct-truncation method, the matrix continued-
fraction method, and the geometric-series method in conjunction with the principal
nth root of the discrete-time system matrix for quick determination of the approx-
imations of a matrix-logarithm function. It is shown that the use of the principal
nth root of a matrix enables us to enlarge the convergence region of the expansion
of a matrix logarithm function and to improve the accuracy of the approximations
of the matrix-logarithm function.
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In Chapter 6, some new definitions of the real and imaginary parts and the
associated amplitude and phase of a real or complex matrix have been defined.
Computational methods, which utilize the properties of the matrix-sign function
and the principal nth root of a complex matrix, are given for finding these quantities.
A geometric-series method is newly developed for finding the approximation of the
matrix-valued function of tan -1 (X), which is the principal branch of the arc tangent
of the matrix X.

In Chapter 7, a multi-stage pseudo-continuous-time state-space method is de-
veloped for designing a large-scale discrete system, which does not exhibit a two- or
multi-time scale structure explicity. The designed pseudo-continuous-time regulator
places the eigenvalues of the closed-loop discrete system within the common region
of a circle (concentric within the unit circle) and a logarithmic spiral in the complex
z-plane, without explicitly utilizing the open-loop eigenvalues of the given system.
The proposed method requires the solution of small order Riccati equations only
at each stage of the design. The principal nth root method has been employed to
obtain a multi-time scale structure for the proposed design method.

Conclusions are summarized in Chapter 8 and numerical examples are given at
the end of each chapter to illustrate the concepts of the material presented in that
respective chapter.
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Chapter 2

A Fast Method for Computing the Principal
nth Roots of Complex Matrices

Based on the generalized continued-fraction method for finding the nth roots
of real numbers, this chapter presents a fast computational method for finding
the principal nth roots of complex matrices. Computational algorithms with high
convergence rates are developed, and their global convergence properties are inves-
tigated from the viewpoint of systems theory [21].

2.1 Introduction
Computational methods for finding the nth root of some specific matrices

have been proposed in [1-7]. The matrix-sign function method [1,7], the matrix
continued-fraction method [2,5,6], and the Newton-Raphson method [3,4] have suc-
cessfully been used to determine the square roots of real and complex matrices.
Applications of above methods have been made to solve systems problem, such as
the matrix Lyapunov and Riccati equations, spectral factorization and solvents of
matrix polynomials, etc. Recently, Hoskins and Walton [4] have proposed an accel-
erated, stable Newton-Raphson method for computing the nth root of a positive-
definite matrix, whereas Denman and Leyva-Ramos [7] have used the extended
matrix-sign function [8], which is a variant of the Newton-Raphson method [9],
for finding the nth root of a positive-semidefinite matrix. However, the exist-
ing Newton-Raphson methods [4,7,, in general, cannot be applied to determine
the principal nth roots of complex matrices which may be positive or positive-
semidefinite.

In this zhapter, we shall extend the generalized continued-fraction method [10,
which was developed for determining the nth root of a positive real number, to find
the principal nth roots of a complex number and a complex matrix. Also, we shall
establish a fast computational algorithm for determining the principal nth roots of
complex matrices which may not be positive or positive semidefinite. Moreover, we
shall investigate the global convergence properties of the proposed algorithm from
the viewpoint of systems theory.
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2.2 The Principal nth Roots of Complex Numbers
The principal nth root of a complex number is defined as follows.

Definition 2.2.1

Let a = pej e E C, where p, O E R and p _ 0, 9 E I, -7r). The principal nth
root of a is defined as

= (2.1)

where the real number l with , > 0 is the principal nth root of p. 0

Based on the generalized continued fractions [10], a recursive algorithm with
the help of matrix operations has been developed for finding the nth root of a
positive real number and associated fractional powers of the positive real number.
The algorithm is described below.

Consider a discrete state equation,

X(k + 1) = HX(k), X(O) = [1,0,0,... , 0 ,oiT E C" × , (2.2a)

where

X(k) = (z 1(k),z 2 (k),...,z,,(k)] T E C n X  (2.2b)

and

a ( .. a a'
a ... a a

H 1 E C x .  (2.2c)

The superscript T in (2.2) denotes the transpose operation on a vector. When a in
(2.2c) is a positive real number, its determined fractional powers are

tim z1(k) =(f/t)-- for O<i,j <n and k >1. (2.3)

The correctness of the convergence values for the formulation in (2.3) has been
proved in [10] via the continued-fraction approximation theory. In this section,
we shall extend the results in (2.2) and (2.3) to include a complex number a wiLh
arg(a) $ 7r and a # 0, and we shall investigate the convergence properties from the
viewpoint of systems theory.

Consider the matrix H in (2.2c), which is the transpose of a k-circulant with
k = a [14, pp. 84-851 and can be expressed by

H = (D - 'F)A(D - F) - , (2.4a)
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where the matrix A = diag[p(a),p(aW),... ,p(aWn-')] with a = ./'a, W = ej2  / ,

and p(=) -']iozi the matrix D = diag[1,a,...,a'-], and the Fourier matrix
F [14, p. 321 is

111 ... 1 1
1 W - 1  W - 2  ... W - n + I

F 1 IV- 2  .
- 4  ... V-2n+2 (2.46)

1 W - n+ 1 Wjj- 2n+ 2 ... W - ( n- 1)( n- 1)

Hence the eigenvalues of H, which are defined as A, for i = 1,2,... , n, are p(caV -1)
for i = 1,2,-.. , n, and their associated eigenvectors of H are (D-1 F)ei, where ej is
the ith column of I,,. It also follows that the modal matrix of H, denoted by Al, is
D -'F. Employing the similarity transformation,

X(k) = D -1 FXd(k) = MXd(k) (2.5a)

to (2.2a) yields

Xd(k + 1)= AXd(k), Xd(O) = J-[,1,...,1]T . (2.5b)

The solution of (2.5b) is

Xd(k) = [p()kP(a H)k,...,p(a Vn-I)k]
T

- [A \k A2 .,Ak]T, (2.5c)

and the solution of (2.2a) becomes

X(k) MXd(,)

n n I

for k > 0. (2.5d)
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Lemma 2.2.1

If arg(a) 5 7r and a 0 0, then A, 4 0 and 0 < IA/Al I < 1 for n > 1> 1.

Proof
When i = 1, A, [= p(a)] becomes

A, =1+ a+( ) .. "'

If a = 1, then A1 = n 40 and A1 = 0 for > 1. Thus, JAI/A 1 = 0 for n> > 1. On

the other hand, if a # 1, then A1 = (1 - a)/(1 - i) # 0 and

A, 1- /a

Let a =pej o and '/'a= ip-ej ,9 /'. Thus, we have

2 1 + (f) -2cos -

n

2. /[Cos(O) cog(8 + 27r(I- 1))]

-n 1 -- n

1 + 2)- 2cos(O+ 27r(l -1)

Since a # 0, we have ;/p. > 0 and so the lemma is proved if

Cos( ) cs 0 27r(l -1) )> 0.cos -cos -- ) O
n n

It follows that 0 < IAI/AI' < 1 and 0 < jAI/AlI < 1 provided that 0 :F 7r. m

Theorem 2.2.1

limk-..<[z(k)/zj(k)] = ( a )-' for i : j, 1 < i, j < n, a $ 0, and arg(a) ,r.

Proof

From (2.5d), we obtain

7
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1=1a

1=1

Since A,1  0, we have

n Ak

x (k ) _ ( Al -
k (2.6)

Using the result in Lemma 2.2.1 or 0 < JAt/AI < 1, we obtain

lim X(k) •
k-C xj (k)- (

Corollary 2.2.1

Having the state equation defined in (2.2), the principal nth root of a can be
found as

1- (k) = /a for 1<: <n (2.7)

if a # 0 and arg(a) 0 7r. U

Corollary 2.2.2

The pth power of the principal nth root of a can be found as

lir (k) _(C/) for n-1 >p>1. (2.8)
k-cc xp 1(k)
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2.3 Recursive Algorithms and Their Global Convergence Properties

From (2.2), we can compute each state zi(k) as follows,

Il

Xn(k) = E ri(k - 1), (2.9a)
1=1

zi(k) = xi+(k) + (a- 1)zi(k - 1) for i = n- 1,n- 2,...,1. (2.9b)

The algorithm to compute the pth power of the principal nth root of a complex
number a becomes

rP ( 4a)p = lim Xl(k) (2.9c)
n JL - oo X + (k ) "

The direct use of (2.9) to compute ( /a)P may result in numerical overflow if
the magnitude of any eigenvalue of H in (2.2) is larger than unity. However, the
numerical difficulty may be overcome by normalizing c (k) in (2.9) to be unity for
all k.

To analyze the convergence rate of the algorithm in (2.9), we assume

= max Al , l = 2,3,...,n (2.10a)

and rewrite (2.6), with i = 1 and j = 2, as

x, (k) -=/(k), (2.10b)

where

'A(k)= (2.1 Oc)

Then, by using Lemma 2.2.1 and assuming k is sufficintly large, the error ratio
(/a- A(k)- ,/a) / faI becomes

JA(k) - 11 < 2(n - 1)ek (2.10d)1 - (n - I)ek

or

9
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IA(k) - 11 = o(?:). (2.10e)

Therefore, the algorithm in (2.9) has a linear convergence rate. The derivation
of the convergence in (2.10) for the algorithm in (2.9) is similar to that of the
Bernoulli-Aitken method [15,16], which is the well-known power method for finding
the largest real or complex root of an algebraic equation.

The linear convergence of the algorithm in (2.9) is not reEaistic for practical
computations. We shall now develop alternative algorithms with higher order con-
vergence rates.

Lemma 2.3.1

From (2.2), if the first column of H' is defined as

hi _ [hik, h2k,.. , k ikT ,

then

hik ahL ah(,.l)k ... ah 3k ah2k

h2 k hik ahnk ... ah4 j, ah3 k

h3k h2k hlk ... ahs5 A ah4k
Hk = . (2.11)

h(- )k, h{,-2)k h(,- )k ... hlk ah k

hn~k h(n-I)k h(n- 2 )k ... h2k hik

Proof

Since H satisfies Hrk = r7kH [14, p. 84], where

[0 /1_-]
77k a 0 '1

Lemma 2.3.1 follows immediately, since H k17 T = 7THk .

Lemma 2.3.2

The solution X(k) of the state equation in (2.2) is the first column of HA in
(2.11).

Proof

Since X(k) = HX(k-1) = HkX(O) and X(O) = [1,0,.... OT, the first column
of Hk is X(k). U

10
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Theorem 2.3.1

If the solution of the state equation in (2.2) at the kth step is X(k), then

X(2k) = [z(2k),z 2 (2k),...,z,,(2k)] T , (2.12)

where

n

z,(2k) = E z,(k)x,+I_,(k) + a E X,(k)X_, +,_I(k) for 1 < I < n,
i=1+1

X'(2k) = E X,(k)x l_,Ck) for k > 1.
i=1

Proof

From (2.2), we have X(2k) = HkX(k). Using the results in Lemmas 2.3.1 and
2.3.2 yields the result in Theorem 2.3.1. U

From Theorem 2.3.1, we can establish a quadratic convergence algorithm for
computing the principal nth roots of complex numbers.

Corollary 2.3.1

The convergence rate of the algorithm in (2.12) is quadratic.

Proof

Define Z(k) = [z(k),z 2 (k),...,z,.(k)]T = X(2k-1) for k > 1 and Z(O) = X(O).
From the algorithm in (2.12), we obtain

Z(k + 1)= X(2k) = H2&X(O)= H2'Z(O) = Hz(k)Z(k),

where H,(k) = H2b- .

Define rk(k) z,(k)/z 2 (k) and e max{Aj/AI1, 1 = 2,3,... ,n}. From (2.6),
we have

rnl(k) =/_~)

where

')h

,A(k) = -1=1

11
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Similar to the derivation in (2.10), the error ratio !(/aA(k) - /a)/ 'fia I becomes

2(n -le 2 -
IA(k) - 11 2(_-<c'-

- (n - 1)C2 - 1

and

f k(k + 1)- 11 = O(A(k) - 112) = O(C2"- ' )

for large k.

Therefore, the algorithm in (2.12) converges quadratically. U

Algorithms with higher order convergence rates are established below.

Theorem 2.3.2

Define Z(k) 1 X(qk- ), where q is a positive integer with q > 2 and k > 1.
Also, define a state equation,

Z(k + 1) = Hq-(k)Z(k), Z(O) = X(0), (2.13a)

where H,(k) = Hq
t
- L for k > 1 and H,(k) has the same structure as Hk in (2.11),

having the first column [zj(k),z 2 (k),...,z,(k)IT . Then, the algorithm for finding
the pth power of the principal nth root of a,

( /ra)p = lim zi(k) (2.13b)
k-. zj(k)

where p = j - i, has qth-order convergence rate.

Proof

Theorem 2.3.2 can be proven in a manner similar to Theorem 2.3.1 and Corol-
lary 2.3.1. U

2.4 The Principal nth Roots of Complex Matrices

The methods described in Sections 2.2 and 2.3 for computing the principal nth
roots of complex numbers can be extended to compute the principal nth roots of
complex matrices. The principal nth root of a complex matrix is defined below.

12
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Definition 2.4.1

Let A E C'n x 'n , o,(A) = {A, i = 1,2,... ,m}, Ai i 0 and arg(Ai) i 7r. The
principal nth root of A is defined as ;'E C ", where n is a positive integer and

(a) ( ;/f)n = A,

(b) each eigenvalue of ;/A- is the principal nth root of each A,. 13

To derive a fast algorithm for computing the principal nth roots of complex
matrices, we extend the discrete-state equation in (2.2) to the bloc-discrete-state
equation as follows,

X(k + 1) = GX(k), X(o) = [Im,o' ,...'O] T', (2.14a)

where the matrix G is the transpose of a block-k-circulant [14], viz.,

Im A A ... A A
I,,I,A ... A A
Im I. I ... A A

G = . E C "*rn)C r, (2.14b)

Im n Inm...I17,A
LIm InmIm... ImImJ

and
[.t( ) [ 2~kT 'l.,T)]T Cnm' Xm.

(k)= I (k),2(k).... n (k E (2.14c)

Note that the state variables zi(k) in (2.2b) are of dimension 1 x 1, whereas the
block-state variables fi(k) in (2.14c) are of dimension m x m. The characteristic
polynomial matrix [141 of G can be determined as

D(A) = An"j - nC An-,I", + nC 2A - 2 (Im - A)- nC 3An- 3(Im - A) 2 +...

+ (-1)'n-,nCn,A(I, - A)n - 2 + (-I)(I,, - A) n - ', (2.15a)

where D(A) E Cmx [A], A E C, and ,C are the coefficients of a binomial expansion.
The block eigenvalues of G, which are also known as the solvents [11,12] of

D(A), can be obtained from D(A) in (2.15a) as

D(Ai)=0=m for i=1,2,...,n, (2.15b)

where Ai C Cmx are the block eigenvalues of G.
Let a set of complete solvents [11-13] of D(A) be
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A, =w']'-' for 1 < <n, (2.16a)
i=I

where W g ej 2 ,/n. Then the block eigenvector [11] associated with Al becomes

and the corresponding block-modal matrix l1) is

I = [f, ,.., , E cE ' x"''. (2.16c)

Thus, following the derivations in (2.4) and (2.5) and employing the properties
of the block-k-circulant [14 in (2.14b), the block-state equation in (2.14a) can be
transformed into a block-diagonalized state equation by using the following trans-
formation [11],

X(k) = 7-- d(k). (2.17)

The tranFf:rorme b1'c-'.' zzt.tir,- h--

..Xd(k + 1) = Gdtd(k), (2.18a)

..d(O) = - [,.,I,,. .. (2.18b),

where

Gd = t -' G, = block diag[A, A2,... A,,]. (2.18c)

The solution of the block-state equation in (2.14a) is

,(k) =_1 ('~§ i)- A -(-1)(-l) for i = 1,2,...,n. (2.18d)
1=1

Thus, we have the following result.
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Theorem 2.4.1

Let A E Cn r , o(A) = {Ai, i = 1,2,... ,m}, Ai 0 0, and arg(Ai) # 7r. Then,

lim ,i(k);E7(k) = (CrA)j-' for i > 1 and j <n. (2.19)

Proof

Since At and fAi or ( fA-)-' commute, (2.18) becomes

,( l '( ) =( f - A M-' ')' ' AkW -(j-')(1-1)
1=1 1=1

Let -ti for 1 < i < m be the eigenvalues of AIA - , I = 2,3,...,n. Then, from
(2.16a), we obtain

for i=1,2,...,m.

jA-

From Lemma 2.2.1, we have 0 < 1-iI < 1 if A, # 0 and arg(Ai) # 7r, 1 < i < m, and
so

lia A'(A-1)k= lim (AA-')'= 0 if 1 #1.

Thus, we have

lim ij(k) 1 i(k) = (V-A )j-'.

Corollary 2.4.1

The principal nth root of a complex matrix A E C" ' with or(A) = {A, i =
1,2,. .. ,n}, Ai # 0 and arg(Ai) #57r, can be found as

lir ifk)/-,(k) = / for 1 < i <n.
k-oo i

Corollary 2.4.2

Given a complex matrix A E Cm m as defined in Corollary 2.4.1, the principal
nth root of A is unique. •
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Corollary 2.4.3

The pth power of the principal nth root of a complex matrix A as defined in
Corollary 2.4.1 can be obtained as

lim ,(kc).-'1(k) -- ( -A)P for O<p<n.
k-00c P

Following Theorems 2.4.1, 2.3.1 and Corollary 2.4.3, we can construct a quadratic
convergence algorithm for computing the pth power of the principal nth root of a
complex matrix A as follows.
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Algorithm 2.4.1

Given:

A = an m x m complex matrix with eigenvalues Ai = pie'', where pi # 0 and
0i 0 7r for i =1,3,...,m,

n = root index,
6 = error tolerance.

Find:

RP = pth power of the principal nth root of a for 1 < p : n - 1.

Algorithm:jInitialization}

or i 1 to n do {Initialize the states X1 , i = 1,2,...,n}
Xi :=m,;

R := 0,; {Initialize the principal nth roots}
{Computation of the principal nth roots}
repeat

for i =1 to n do {Copy Xi to Y1 for i = 1,2,...,n}
1 :=Xi;

for i := 1 to n do {Compute Xi, i = 1,2,...,n}
begin
Xi := XiA";
for j:=2 ton do

if j _< i then
Xi :Iyi'-j + + Xi

else
n;Xi :=Aln-j+i+1 + Xiend;

R 1 := XX'1; {Find the principal nth root}
:R - R1I; {The norm of difference between the last and current

iteration of the principal nth root}
if a > b then {Error is not within the specified

tolerance}
begin
R:= R; {Copy R1 to RI

for i 2 to n do {Normalization}
Xi:=Xi X- ;

X, :=I,
end

until A < 6;
jCompute the pth power of principal nth root, for 2 < p _ n - 1}
or i 2 to n - 1 do

When arg(Ai) = 7r, Algorithm 2.4.1 cannot directly be applied to compute

(/ T )P. The matrix A can be rotated by a small angle to give A = e-j" (where

AO is a small positive real angle) so that (V'-)P = ( ')Pejp,1 /n.
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Example 2.4.1

Given a complex matrix,

-1.25 + .3.25 2.50 . j3.50 -2.75 - j3.25 6.25 4- '0.75

A= 4.00 + j1.75 6.00 - j1.50 -6.50 + j2.75 6.0 - 7.75
-2-25+ j1.75 -0.50 + j2.50 0.25 - j2.75 3.25 + j2.25
-2.00 - j1.50 -3.00 - j1.00 4.00 + jO.50 -4.00 + j1.50

it is desired'to find /1i with n = 5.
The matrix A has an eigenvalue -1 with arg(-1) = 7r. Thus, Algorithm 2.4.1

can not be directly used for finding -.-. The matrix A is modified with the rotation
angle AO = 50 (or 7r/36). The modified matrix A becomes

A= E-0.96199 + ./3.34658 2.79553 + j/3.26879 -3.02279 - ./2.99795 6.29158 + j0.20242"1

4.13730 + j1.39472 5.84643 - j2.01723 -6.23559 + j3.30605 5.30171 - j8.24344
-2.08892 + j1.93944 -0.28021 + j2.53406 0.00937 - j2.76132 3.43373 + j1.95818
-2.12312 -j1.31998 -3.07574 - jO.73473 4.02836 + 0.14947 -3.85408 +j1.84292

Using Algorithm 2.4.1 with error tolerance 10- 1o, we have the principal 5th root A
with 10 iterations as

VA~=
1.23828 + jO.78835 0.70104 - jO.13515 -0.63288 -4- /0.13618 0.49772 - jO.83723 1
0.63025 - jO.40270 1.61288 - j0.72001 -0.37929 4- j1.37819 -0.15461 - j1.93558
0.18516 + jO.32017 0.31079 - j.029380 0.89469 + jO.48856 0.06699 - .0.98547

-0.23397 + jO.10540 -0.39025 - jO.15865 0.50842 - j0.22120 0.38842 + ]0.42534 J

Thus, the desired principal 5th root of A is given by

1.22433 -- j0.80985 0.70330 - jO.12290 -0.63516 4- jO.12512 0.51226 - jO.82841
0.63718 - jO.39163 1.62521 - jO.69175 -0.40329 + j1.37136 -0.12081 - j1.93799
0.17954 + j0.32336 0.31587 - 30.28833 0.68606 + ]0.50061 0.08418 - ./0.98415

-0.23577 + jO.10130 -0.38742 - jO.16543 0.51220 - jO.21229 0.38094 + jO 6.43205

It is interesting to note that the eigenvalues of A are -1, 2 + jl, 1 - jl, -1 + 0.5.
whereas the eigenvalues of Y-A are 0.80902 + j0.58779, 1.0586 - jO.16766, 1.1696 +
jO.10877, 0.87937 + j0.52186. All eigenvalues of .FA lie in (-r/5, ir/5].
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Example 2.4.2

Given a complex matrix,

1.20 - jO.10 0.60 - jl.30 -1.35 + jO.05 -0.95 -0.65

A -0.70 + 30.10 0.40 - j1.20 0.35 + j0.45 -0.55 j10.35
1.10 + jl.20 1.05 - j1.15 -1.55 - j1.10 -1.10 - j1.95
0.80 + j0.10 -0.35 - jO.45 -0.40 - j0.05 -0.55 - j0.60J

it is desired to find -:'A.
The matrix A has an eigenvalues 1.0 and a Jordan chain of length 3 with an

eigenvalue -0.5-jl.0. The Jordan form of A can be found as

JA =  0.0 -0.5 -- i.0 1.0 0.0
0.0 0.0 -0.5- jl.0 1051.0 j
0.0 0.0 0.0 -0 li.01

Using Algorithm 2.2.1 with error tolerance 10" , we have the principal 5th root of
A with 7 iterations as follows,

0.85676 + jO.00206 0.23415 + jO.02042 -0.04496 - 20.29987 0.10000 - jO.027591
-0.17671 - jO.00329 1.11192 - jO.21818 -0.00296 - j0.00354 0.06362 - jO.14713
-0.26275 + ,0.28943 0.26571 + jO.16929 0.98433 - jO.84590 0.34128 - jo.10743
0.10531 -- jO.14969 0.2219 - j0.12750 -0.05265 - jO.07484 0.86423 - j0.35203

It is interesting to note that the eigenvalues of V are 1, 0.93908-jO.40468, 0.93908-
jO.40468 and 0.93908-jO.40468. All eigenvalues of Y are lying within -7r/5 and
+7r/5.

This example demonstrates that Algorithm 2.4.1 can be equally be used to find
the principal nth roots of complex matrices having eigenvalues unity and/or Jordan
chains with length greater than unity.

2.5 Conclusion

The generalized continued-fraction method developed for finding the nth root-
of real numbers has been extended to determine the principal nth roots of complex
matrices. Computational algorithms with high order convergence rates have been
established for determination of the principal nth root and associated pth power
of the principal nth root of a complex matrix. The global convergence properties
of the proposed algorithms have been investigated from the viewpoint of systems
theory.

19

793



Chapter 3
Fast and Stable Algorithms for Computing the Principal

nth Root of a Complex Matrix

This chapter presents rapidly convergent and more stable recursive algorithms
for finding the principal nth root of a complex matrix. The developed algorithms
significantly improve the computational aspects of finding the principal nth root
of a matrix. Thus, the developed algorithms will enhance the capabilities of the
existing computational algorithms such as the principal nth root algorithm, the
matrix-sign algorithm and the matrix-sector algorithm for developing applications
to control-system problems [61].

3.1 Introduction
Computational methods for finding the nth roots of some specific matrices have

been proposed in [1,3,4,9] and [17]-[22]. Hoskins and Walton [4], using the Newton-
Raphson algorithm, have derived a fast and stable method for computing the nth
roots of positive-definite matrices. Based on a spectral-decomposition technique ob-
tained from the matrix-sign function [17] together with Hoskins-Walton algorithm
[4], Denman et a). [18,19] have proposed an algorithm to compute the nth roots of
real and complex matrices without prior knowledge of the eigenvalues and eigenvec-
tors of matrices. However, in general, the computed nth root of a general matrix
by using the above algorithms is not the principal nth root of the matrix. The
rincipal nth root of a matrix can be utilized to construct the matrix-sign function

[9,17] and the matrix-sector function f26.27], to solve the matrix Lyapunov and
Riccati equations [1,17,23,24,25.] and to approximate some matrix-valued functions
[28] etc. Shieh et al. [20] first proposed an algorithm to compute the principal
nth roots of complex matrices. To improve the convergence rate of the computa-
tional algorithm in [20], Tsay et al. [211 derived a fast algorithm using the matrix
continued-fraction method to compute the principal nth roots of complex matrices.
However, the above two algorithms [20,211 are not numerically stable. For exam-
ple, for an ill-conditioned matrix such as a stiff matrix containing both large and
small eigenvalues, the algorithms in f20,21] converge in the first few iterations and
then diverge very quickly. To overcome this problem of numerical stability, Higham
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[22] and Shieh et &1. (29] have proposed fast and stable algorithms, respectively,
for computing the principal square root of a complex matrix. Since the algorithms
[22,29] are limited to compute the principal square root of a matrix only, we can
not apply the algorithms to compute the principal nth root of a complex matrix
when n is not the power of two. In this chapter, we generalize the fast and stable
algorithm in [29] to compute the principal nth root of a complex matrix and then
extend the algorithm to compute the matrix-sector function.

This chapter is organized as follows: In Section 3.2, we summarize the fast
algorithm for finding the principal nth root of a matrix. Next, fast and stable
recursive algorithms for finding the principal nth root of a matrix are developed
in Section 3.3. An illustrative example is given in Section 3.4, and the results are
summarized in Section 3.5.

3.2 Summary of the Fast Algorithm for Finding the Principal nth Root
of a Matrix

The fast algorithm [21] which was derived via the matrix continued-fraction
method for finding the principal nth root of a complex matrix is summarized below.

Consider a block-discrete-state equation as

X(k -4- 1) = H-- 1 (k)X(k), X(O) = [I,I, ,.I,]T,

for k -- 0,1, 2,.-.. (3.1a)

Then, we have

lim Xi(k)X4- 1 (k) = v"§ for n > 2 and i E [1,n - 1] (3.1b)
k -oo

where 1, denotes the identity matrix of dimension m x m, and H(k) E Cnm ×nm is
the tranpose of a block-K-circulant matrix with K = A [21], viz.,

Xi(k) AX,(k) AXn-,(k) ... AX3(k) AX2(k)

X2 (k) X, (k) AX,,(k) ... AA-,(k) AX3 (k)

X3 (k) X 2 (k) xi(k) ... AX5 (k) AX(k)

H(k) = C cm x 'i ,

X n _(k) X n _2(.'.) X'._3(k) .. x , (k) AX n(k)

xn(k) .\n-_(k) X-2(k) ... .X2 (k) x, (k)J
(3.1c)

X(k) = [xT(k),X2(k),. .. ,X(k)]T e C' × 'm , (3.1d)

Xj(k) E Cmnxm, for i = 1,2, . . ., n, are block elements, and r(> 2) is the convergence
rate of the algorithm in (3.1). Note that Xj(k) for i = 1,2,.. ,n commutes with
itself and with A.
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The solution X(k) of the block-state equation in (3.1) is the first block column
of H(k) in (3.1c). By taking the advantage of the K-circulant matrix, the algorithm
with the quadratic convergence rate (r = 2) for computing the principal nth root
of a complex matrix is given below.

Theorem 3.2.1 [21]
The solution of the block-state equation in (3.1) with the quadratic convergence

rate (r = 2) at the kth step is X(k), then we have

X(k) = [XT(k),XT(k), . . ,XT(k)] T , (3.2a)

where

XI(k) = E XA(k - 1)X,+,_i(k - 1) - A E Xi(k - 1)Xn-i+1+,(k - 1)
i=1 i=1+1

for 1 <I<n-1, (3.2b)

X,(k) = E Xi(k - 1)Xn+i.(k- 1) for k > 1. (3.2c)

Also, we obtain

lim Xi(k)X7'(k) = (vIIA)i for i > 1 and j < n (3.3a)

and

lim Xi(k)X-+1 (k) = vfui for 1 < i < n - 1. (3.3b)
k-c o

The principal nth root of a matrix is unique. E

When the matrix A consists of any negative real eigenvalue (i.e., any arg
(o(A)) = 7r), the algorithm in [211 cannot be directly applied to compute v""A.

The matrix A can be rotated by a small angle to give A = Ae - j "6 (where 60 is a

small positive real angle) so that (vXA/)P = ( -A)Pej P /
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3.3 Fast and Stable Algorithms for Finding the Principal nth Root of
a Matrix

The purpose of this chapter is to generalize the fast and stable algorithm in
[29 for computing the principal square root of a complex matrix to the fast and
stable algorithm for computing the principal nth root of a complex matrix.

Premultiplying both sides of the block-state equation in (3.1a) with a matrix,
block diag [X,"(k),X,'r(k),...,X r(k)]E Cf nlm nm , and defining X1r(k)Xi(k +
1) t X.(k + 1) for i = 1,2,...,n and X,(k)X21 (k) g R(k), we obtain the normal-
ized equivalent block-state equation in (3.1a) as

±(k + 1) = "-1 (k)X(k), (3.4a)

where

Im AR-'+I(k) AR-n+2(k) ... AR- 2 (k) AR-(k)

R-'(k) Im AR-n+'(k) ... AR-(k) AR- 2 (k)

R- 2 (k) R-1 (k) I'l ... AR- 4 (k) AR- 3 (k)
Ht(k)=

R-',+2(k) R--+3(k) R-n- 4(k) ... 1r,, AR-,,+I(k)

R-n+I(k) R-+ 2 (k) R-+ 3 (k) ... R- 1 (k) Im
(3.4b)

where I1(k) E Cnmx m,

XV(k + 1) = [ (k + (k + 1),.n ,.'(k + 1 )]T E C' m , (3.4c)

N'(k) -"[I,, (R-(k))T, (R-2(k))T, (R-n+(k))T]T E Cnn x m , (3.4d)

with R(k + 1) = Y,(k-:-1)Y2 1 (k + 1), and lira R(k) = :,A. (3.4e)

A recursive form can be obtained from (3.4a) by using the following definitions,

I,(k) =- kj-'(k)5±(k), (3.5a)

y _I,(k) a I -2(k)X'(k), (3.5b)

where

}(k) = [1'T(k), (R (k)1, (k))T,(R -(k)3,j (k)) ,...,(R- 4 ' (k)y,(lc)) r , I
(3.5c)
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the block vector Y(k) E C' m X m and the block elements Y]~j(k) E C,, x, for i =
1,2,... ,n. Note that the subscript j in (3.5) denotes the index of the convergence
rate. Then, from (3.5), we obtain the following recursive algorithm for j = 2,3,.-- , r
and any k,

Y-(k) = T(k)1)_,(k), Y,,(k) = I, for i= 1,2,-- .,n, (3.5d)

where

Tm AR-n(k) AR-n(k) ... AR-n(k)

Im I, AR--(k) ... AR- (k)

ITm Im I, ... AR -(k)
(k) E C m . (3.5e)

I. I., Im ... AR-n(k)

Im Im Tm .. I,

Substituting X1I(k + 1) = Y,r(k) and .1 2 (k + 1) = R-(k)Y,,(k) into (3.5e), we
have

R(k + 1)= R(k)1;y7(k)Y2,r(k) , R(O) = I, for k = 0,1,2,.. (3.6a)

Note that R(k), (k) and I ,,(k) commute with each other. Let us define G(k)
AR-"(k), and then frorh (3.6a), we obtain the following equation,

G(k + 1) = G(k)[,,.(k)Yf,r(k)], G(O) = A fork = 0,1,2,.... (3.6b)

Expanding the matrix equation in (3.5d), we have

,j(k) = )'.(j_)(k) + C(k)[Y, (J)(k) + Y3,(- + .-. + 1,,(.-)(k)],

1 2,(k) = Y,(._,l(k)+Y;..._)(k+ )+ j-1)'._(k)+. .+1Y,(,_,l)(k)],

Yin= ,(j_1)(k) + i ,(_ 1)(k) + + I (._,),(j,.)(k) + G(k)Y,( 1 _.)(k),

Y.,j(k) = Y',(,)(k) + 12,(J_)(k) + ... + ,,(u-1)(k), (3.7a)
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or, in general form,

i n

Y,,(k) = Y 1p,(j_,)(k) + G(k) -
p=1 t=i+l

for j=2,3,...,r, i=1,2,**,n, and k=0,1,2,.-.. (3.7b)

Combining the algorithms in (3.6a), (3.6b) and (3.7b), we obtain the desired algo-
rithm fork =0, 1, 2,... as follows,

i n

,,(k) = ~1~ J',,.-,)(k) + G(k) ,

P=1

for j = 2,3,... ,r, and i = 1,2,-..,n, (3.8a)

G(k + 1) = G(k) Y2,r(k)Yi-1(k) G(O) = A, lir G(k) I,, (3.8b)
I 'r k-0oo

R(k + 1) R(k) -'(k)Y,r(k), R(O) = I,, lim R(k) = >', (3.8c)

where n denotes the index of the nth root of a matrix and r is the order of the
desired convergence rate. Let r=2 and 3 in (3.8), respectively, we obtain the nth
root algorithms as shown below.

When r = 2, (3.8) becomes

G(k + 1) = G(k){ [21m + (n - 2)G(k)] [I + (n - 1)G(k)] - ' n

G(O) = A, lim G(k)= In, (3.9a)
k---oc

R(k + 1) = R(k)[2I, + (n - 2)G(k)] - ' [I, + (n- )G(k)],

R(O) = I,, lim R(k) = :'A. (3.9b)
k-00(39b

When r = 3, we obtain

G(k + 1) = G(k){ [3I, + n2 + 5n - 12 )G(k) + ( 2 +)2(k)]x
2 2

[,n 2 + + 3n - 4)G(k ) + ( 3  2)G2(k)i1 n
2 2
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G(O) = A, lir G(k) = Ir,, (3.9c)k--,o

R(k + 1) = R(k) 31n, + (n 2 n-1 Gk n25n 6)2 k x
12 2

[rIn + (n + 3n - 4)G(k) + (,_3n2 ) k)

2 2

R(O) = I,, lim R(k) = . (3.9d)

Now, we list some commonly used pairs as shown below.
When r = 2 and n = 2, we have

G(k + 1) = G(k){[21n[In + G(k)-' 1, G(O) = A, (3 10a)

R(k +1) = R(k)[2Im]-[Im+G(k)], R(O) = Im, (3.10b)

lir R(k) = YI'A. (3.10c)k--co

When r = 2 and n = 3, we have

G(k + 1) = G(k){[21m + G(k)][I, + 2G(k)-}, G(0) = A, (3 11a)

R(k+l) = R(k)[21m +G(k)]-'[Im +2G(k)], R(0) = Im, (3.11b)

lir R(k) = v*-A. (3 11c)
k-o

When r = 2 and n = 4, we have

G(k + 1) = G(k) 1[(21, + 2G(k)],(In + 3G(k)]-' , G(0) = A, (3 12a)

R(k + 1)= R(k)[21m + 2G(k)]-I, .4 3G(k)], R(0) = I,, (3 12b)

lim R(k) = v*"A. (3.12c)k--ao

When r = 3 and n = 2, we have

G(k+ 1) = G(k){[31m +G(k)][Im +3G(k)]-}, G(O) = A, (3 13a)
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R(k+1)=R(k)[31m+G(k)]-'[Im+3G(k)], R(O) = Im, (3.13b)

lim R(k) = (3.13c)k-.o

When r = 3 and n = 3, we have

G(k + 1) = G(k){[31m + 6G(k)I[I, + 7G(k) + G2(ck)} - ' , G(O)= A, (3.14a)

R(k + 1) - R(k)[31m + 6G(k)-1'[Im + 7G(k) + G2 (k)], R(0) = I., (3.14b)

lim R(k) = 4Yj. (3.14c)
k---oo

When r = 3 and n = 4, we have

G(k +1) =G(k){[31m + 12G(k) + G2 (k)][Im + 12G(k) + 3G2(k)]-1},

G(O) = A, (3.15a)

R(k + 1) = R(k)[31, + 12G(k) + G2 (k)]-'[Im + 12G(k) + 3G 2(k)],

R(o) = Im, (3.15b)

lim R(k) = yeA. (3.15c)
k-oo

Some other cases are listed below.
When r = 4 and n = 2, we have

G(k± 1) = G(k){[41m + 4G(k)][I, + 6G(k) + G2(k)]- 1 }2,

G(o) = A, (3.16a)

R(k + 1) = R(k)[41, + 4G(k)]' [I, + 6G(K) + G2 (k)],

R(0) = Im, (3.16b)

lrm R(k) = vYiri. (3.16c)

When r = 4 and n = 3, we have
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G(k + 1) = G(k){ [41, + 19G(k) + 4G2 (k)][Im + 16G(k)+ 10G(k)] - I I I

G(0) = A, (3.17a)

R(k + 1) = R(k)[41, + 19G(k) + 4G 2(K)]-[I,n + 16G(k) + 10G 2(k)],

R(O) = Im, (3.17b)

lim R(k) = YA. (3.17c)
k--co

When r = 4 and n = 4, we have

G(k+1) = G(k){ 41m + 40G(k) + 20G2(k)][Im + 31G(k)+ 31G2(K)+ GS(k)]-} 4,

G(0) = A, (3.18a)

R(K + 1) = R(k)[41m, + 40G(K) + 20G 2(k)]-L'[I + 31G(k) + 31G 2 (k) + G3 (k)],

R(0) = Im, (3.18b)

lir R(k) = iyA. (3.18c)

Theorem 3.3.1
The principal nth root algorithm in (3.8) with the r( 2)th-order convergence

rate is numerically stable in the sense that the perturbations arising from the round-
off errors at the kth iteration have only a bounded effect on succeeding iterates if
no new round-off errors are introduced on succeeding iterates.

Proof
The convergence rate of the algorithm in (3.8) is the same as that in (3.1)

because the algorithm in (3.8) is derived from the algorithm in (3.1). The numerical
stability of the algorithm in (3.8) can be analyzed below.

Consider the principal nth root algorithms in (3.9), which has quadratic con-
vergence rate (r = 2). Our objective is to show that the algorithm in (3.9) is
numerically stable in the sense that perturbations arising from the rounding errors
at the kth iteration do not lead to unbounded perturbations on succeeding iter-
ates. Let the perturbed models be d(k) and R(k) and the associated round-off
errors be E(k) and F(k), respectively. Hence by definition, G(k)=G(k)+E(k) and
R k) =R(k) + F(k). Our purpose is to analyze how the error matrices E(k) and
F k) propogate at the (k + 1)th stage. To simplify the analysis, we assume that
no round-off errors occur when we compute C(k + 1) and R(k + 1) in the following
equations,
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d(k+ 1) =d(k){ [21m + (n - 2)G(k)[Im + (n - 1)6(k)]- }, (3.19a)

A?(k + 1) = A(k)[21m + (n - 2)6(k))-'[Im + (n - 1)6(k)). (3.19b)

Substituting d(k)(= G(k) + E(k)) and R(k)(= R(k) + F(k)) into (3.19a) using the
perturbation formula, we have

(D +L)-' = D-' - D-A n, D -' + o(I A 11), (3.20)

where the D and /A are matrices and o(If 6 11) is the high order trivial term of
(ns 1 1I). Omitting the high order trivial terms of E(k) and F(k) results in

G(k + 1) + E(k + 1) = [G(k) + E(k)] {{21 + (n - 2)G(k) + (n - 2)E(k)}x

{[IM + (n - 1)(k)]- ' - [I,, + (n - 1)G(k)]-'(n - 1)E(k)[I,. + (n - 1)G(k)]- }}

(3.21a)

- [G(k) + E(k)] 1 [21,m + (n - 2)E(k)] [Im + (n - 1)G(k)] - [21, + (n - 2)G(k)] x

[I., + (n - 1)G(k)] (n- 1)E(k) [i'm + (n - 1)G(k)] + (n - 2)E(k)x

[I,, + (n - 1)G(k)] - 1 - (n - 2)E(k) [I, + (n - 1)G(k)] -1(n - 1)x

E(k)[Im + (n - 1)G(k)]1 }. (3.21b)

When k , oo, R(k) --- vA. Hence G(k)= AR-(k) - In. Thus, (3.21b) becomes

G(k + 1) + E(k + 1) = [Im + E(k)] {Im (n - 1)E(k) + (n -
2 )E(k) } (3.21c)

=[I, + E(k)]Im - E(k) n , (3.21d)
n

G(k + 1) ± E(k + 1) = [i, + E(k)] [1m - E(k)] = I,. (3.21e)

Substituting k - o to (3.9a), we obtain

G(k + 1) = im. (3.21f)

Thus, from (3.21e), we prove
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E(k + 1) = Om. (3.21g)

Similarily, substituting 6(k) and R(k) into (3.19b), we get

R(k + 1)+ F(k + 1)= (R(k)+ F(k)] (I, + (n- 1)G(k)+ (n- 1)E(k)] x

{ [21n + (n - 2)0(k)] [21, + (n - 2)0(k)] -'(n - 2)E(k) [21,, + (n - 2)G(k)] - ' }
(3.22a)

- [R(k) + F(k)] [i, + (n - 1)G(k)] [21, + (n - 2)G(k)] -- [I, + (n - 1)G(k)] x

[21mn + (n - 2)G(k)]-1(n - 2)E(k) [2I, + (n -2'+

(n - 1)E(k) [21 + (n - 2)G(k)]i }. (3.22b)

Subtracting (14b) from (27b) and substituting G(k) = Im for k -* oo into (3.22b),
we get

F(k + 1) = F(k) + R(k) [ - (n 2) E(k) + (nn )E(k)] (3.22c)

=F(k) + R(k) E(k) (3.22d)
n

The block-state equations in (3.21g) and (3.22d) with a null-system matrix and an
identity-system matrix, respectively, are stable because the eigenvalues of the system
matrices in (3.21g) and (3.22d) are zeros and ones, respectively. If we make a further
assumption that no new round-off errors are introduced at the (k + 2)th stage of the
iterations, then (3.22d) becomes F(k+2) = F(k+l)+R(k+1)E(k+l)/n = F(k+ 1).
This suggests that the perturbations arising from the round-off errors at the kth
iteration have only bounded effects on succeeding iterates. Thus, the algorithm in
(3.9) is numerically stable provided that the above assumptions hold. In a similar
manner, we can prove that the algorithm in (3.8) is numerically stable for r > 3. U

One of the applications of the principal nth root of a matrix is in the deriva-
tion of the matrix-sector algorithm which in turn has many applications in solving
control- system problems [26,271.
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3.4 Illustrative Example

Example 3.4.1
Given a stiff matrix [22,291,

.1 0 0 0

-1 0.01 0 0
-1 -1 100 100
-1 -1 -100 100

where o(A) = {0.01, 1, 100 ± jlO0}, it is desired to find the rtAY. The exact
solution is

1 0 0 0
_ -0.792481 0.215444 0 0

-0.013484 -0.013483 5.032481 1.348449
-0.048250 -0.048173 -1.348449 5.032481.

where each eigenvalue of ,VAi (= {0.215444, 1, 5.032481:±jl.3484491) is the princi-
pal cubic root of each a(A). Let us define the absolute error e.(k) ' IIR(k)-v'AII,
where R(k) is the computed cubic root of A at the kth iteration. For this example,
the upper limit for the iteration index k is taken as 30.

Applying the algorithm in [21] with n = 3 and r = 2 in (3.3), we have the
result as shown in Table 3.1. We find that this algorithm converges in the usual
sense at k = 6 with the e,(k) = 4.347 x 10-'; however, it diverges very quickly.
Therefore, this algorithm is numerically unstable.

Applying the algorithm with n = 3 and r = 2 in (3.11), we have the result as
shown in Table 3.2. This algorithm converges at k = 6 with the ea(k) = 2.387 x

1 0 i5, then it remains invariant for k > 6. Employing the algorithm with n = 2
and r = 3 in (3.13), we obtain the result as shown in Table 3.3. This algorithm
converges at k = 5 with the e8(k) = 6.610 x 10- 12, then it remains invariant at
ea(k) = 6.577x10 - 12 for k > 6. Using the algorithm with n = 3 and r = 4 in (3.17),
we have the result as shown in Table 3.4. This algorithm converges at k = 4 with
the e,(k) = 1.146 x 10- 12 . Also, the relative error, er(k) g !IR(k) - R(k 1)1I".,
remains invariant at 1.3877787807814457E - 16 for k > 5.

Therefore, the algorithms proposed in this chapter are numerically stable. Note
that a high convergence-rate algorithm may not necessarily give the faster compu-
tational time.

3.5 Conclusion
Rapidly convergent and more stable recursive algorithms for finding the princi-

pal nth root of a matrix have been developed. The developed recursive algorithms
can be applied to an ill-conditioned matrix containing large and small eigenvalues.
By means of a perturbation analysis with suitable assumptions, it is shown that the
p roposed recursive algorithms are numerically more stable than the algorithms in
20,21,26]. The analysis of absolute numerical stability of the proposed algorithms
as not been done in this chapter. The developed algorithms will enhance the ca-

pabilities of the existing computational algorithms such as the principal nth root
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algorithm, the matrix-sign algorithm and the matrix-sector algorithm which in turn
can be applied to many control-system problems.
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k e(k)

1 4.381223792317501
2 3.882609786095389
3 0.5926630610994657
4 0.1829671341223767
5 2.3013953289560130E-03
6 4.3471165761532760E-07
7 1.7435863254853623E-04
8 3.3132393959246582E-02
9 1.932622803044509
10 1202.571712161634
11 248467.2691452321
12 11959194.08924662
13 8210528857.322972
14 1837674003853.891
15 111162541995391.2
16 3.9045242057133462E+17
17 1.7048772918039683E±21
18 2.5431940655482168E+23
19 7.6820331894349227E+28

Table 3.1 Error analysis: the second-order numerically unstable algorithm
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ke(k)

1 4.381223792317501
2 2.424605807720003
3 0.2299970454407299
4 2.0625460001852391E-04

5 1.4119261315670428E-13

6 2.3869795029440866E-15
7 2.3869795029440866E-15
8 2.3869795029440866E-15
9 2.3869795029440866E-15
10 2.3869795029440866E-15
11 2.3869795029440866E- 15

12 2.3869795029440866E-15
13 2.3869795029440866E-15
14 2.3869795029440866E-15
15 2.3869795029440866E-15
16 2.3869795029440866E-15
17 2.3869795029440866E-15
18 2.3869795029440866E-15
19 2.3869795029440866E-15
20 2.3869795029440866E-15
21 2.3869795029440866E-15
22 2.3869795029440866E-15
23 2.3869795029440866E-15
24 2.3869795029440866E-15
25 2.3869795029440866E-15
26 2.3869795029440866E-15
27 2.3869795029440866E-15
28 2.3869795029440866E-15
29 2.3869795029440866E-15
30 2.3869795029440866E-15

Table 3.2 Error analysis: the second-order numerically stable algorithm
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k e(k)

1 28.03572760609522
2 5.136272016363972
3 0.4574895834797120
4 6.2643637102149929E-04
6 6.5773046731277780E-12
7 6.5773046731277780E-12
8 6.5773046731277780E-12
9 6.5773046731277780E-12

10 6.5773046731277780E-12
11 6.5773046731277780E-12
12 6.5773046731277780E-12
13 6.5773046731277780E-12
14 6.5773046731277780E-12
15 6.5773046731277780E-12
16 6.5773046731277780E-12
17 6.5773046731277780E-12
18 6.5773046731277780E-12
19 6.5773046731277780E-12
20 6.5773046731277780E-12
21 6.5773046731277780E-12
22 6.5773046731277780E-12
23 6.5773046731277780E-12
24 6.5773046731277780E-12
25 6.5773046731277780E-12
26 6.5773046731277780E-12
27 6.5773046731277780E-12
28 6.5773046731277780E-12
29 6.5773046731277780E-12
30 6.5773046731277780E-12

Table 3.3 Error analysis: the third-order numerically stable algorithm
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k e(k)

1 3.882609786095389
2 0.732680674532077
3 3.8011418337163816E-04
4 1.1456591751668466E-11
5 1.1456588715902383E-11
6 1.1456585896976734E-11
7 1.1456590016944990E-11
8 1.1456594136913245E-11
9 1.1456598255881501 E-11

10 1.1456602376849756E-11
11 1.1456606496818011E-11
12 1.1456610616786267E-11
13 1.1456614736754522E-11
14 1.1456618856722778E-11
15 1.1456622976691033E-11
16 1.1456627096659289E-11
17 1.1456631216627544E-11
18 1.1456635336595800E-11
19 1.1456639456564055E-11
20 1.1456643576532310E-11
21 1.1456647696500566E-11
22 1.1456651816468821E-11
23 1.1456655936437077E-11
24 1.1456660056405332E-11
25 1.1456664176373588E-11
26 1.1456668296341843E-11
27 1.1456672416310099E-11
28 1.1456676536278354E-11
29 1.1456680656246609E-11
30 1.1456684776214865E-11

Table 3.4 Error analysis: the fourth-order numerically stable algorithm
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Chapter 4
Fast and Stable Algorithms for Computing the Generalized Matrix-

sector Function and the Separation of Matrix Eigenvalues

The matrix-sector function of A has been generalized to the matrix-sector func-
tion of g(A), where the complex matrix A may have a real or complex characteristic
polynomial and g(A) is a matrix function of a conformal mapping. Based on the
computationally fast and numerically stable algorithm for computing the princi-
pal nth root of a complex matrix, rapidly convergent and more stable recursive
algorithms for finding the matrix-sector function and the generalized matrix-sector
function have been developed in this chapter. Moreover, the generalized matrix-
sector function of A is employed to separate the matrix eigenvalues relative to a
sector, a circle, and a sector of a circle in a complex plane without actually seeking
the characteristic polynomial and the matrix eigenvalues themselves. Also, the gen-
eralized matrix-sector function of A is utilized to carry out the block-diagonalization
and block-triangularization of a system matrix, which are useful in developing ap-
plications to mathematical science and control-system problems [27,61].

4.1 Introduction
The matrix-sign function introduced by Robert [17] has been successfully ap-

plied to solve systems science and engineering problems [1,9,17,30], [33]-[37] such
as the solutions of the matrix Lyapunov and Riccati equations and the separa-
tion of matrix eigenvalues relative to strips, trapezoids, and circles in the complex
plane without actually seeking the characteristic polynomial and matrix eigenvalues
themselves. The important features of the use of the matrix-sign function [9,17] to
systems science and engineering problems are: (a) the matrix-sign functions preserve
the eigenvectors of a complex matrix which may have a real or complex characteris-
tic polynomial; (b) the associated matrix-sign algorithms converge quickly and the
convergence speeds are independent of the dimension of the system.

The matrix-sign function of A, which may be considered as a matrix-2-sector
function of A and can be expressed as Sign(A) = A[.Ai2- ' where Y is the
principal square root of a complex matrix A2 , has been extened to the matrix-
sector function of A [26], which is a matrix-n-sector function of A and can be
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expressed by Sector,,(A) = A[ V/FA] -1 where V/I1 is the principal nth root of A'.
One of the applications of the principal nth root of a matrix is in the derivation of
the matrix-sector algorithm which in turn has many applications in solving control-
system problem. The matrix-sector function of A has been used for the separation
of the matrix eigenvalues relative to an open sector of a complex plane and for
block-diagonalization of a system matrix.

The purposes of this chapter are : (a) derive fast and stable algorithms for
computing the matrix-sector function; (b) the matrix-sector function of A is gener-
alized to the matrix-sector function of g(A) where g(A) is the matrix function of
a conformal mapping; (c) the generalized matrix-sector function of A is applied to
the system matrix A for the separation of matrix eigenvalues relative to a sector,
a circle, and a sector of a circle; (d) the generalized matrix-sector function of A is
utilized for block-diagonalization and bl,-ck-triangularization of the system matrix
A.

4.2 Definition and Properties of the Matrix-sector Function

To develop fast and stable algorithms for computing the matrix-sector function,
the generalized matrix-sector function and their associated functions with applica-
tions, we review the scalar- and matrix-sector functions in the following.

The scalar-n-sector function of A is defined as follows.
Definition 4.2.1 [261

Let A E C be expressed by A = IAle 9j , where A # 0, j = 0 e E [0, 27r) and
0 -27r(q + !)/n for q E [0, n - 1]. Then, the scalar-n-sector function of A, defined
as Sector,(A) or S,(A), is

Sectorn(Ah) Sn(h)

e 27rq/T = / for qE[0, n-11, (4.1)

where A lies inside the sector in C bounded by the sector angles 27r(q - !)/n and

27r(q - !)/n, and 0_n is the principal nth root of A'.When n=2, the scalar-sector
function of A becomes the sign function of A [9,171, i.e.,

Sector 2(A) 1 S2 (A) = e i r

= A/ v'2 = Sign(A) for q E [0, 1]. (4.2)

The matrix-sector function of A is defined as in the following.
Definition 4.2.2 [26,27]

Let A E Crnxrn,o(A) = {A,i = 1,2,...,m},Ai # 0 and arg(Ah) # 2,r(k
+1/2)/n for k E [0,n - 1]. In addition, let Al be a modal matrix of A, i.e.,
A = AIJAAI', where JA is a matrix containing Jordan blocks of A. Then the
matrix-sector function of A, denoted by Sectorn(A) or Sn(A), is defined as
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Sector,(A) = S,(A) = M[ S(Ai)]M-', (4.3)

where S,(Ai) is the scalar-n-sector function of Ai. 0

The matrix-sector function Sn(A) defined in Definition 4.2.2 can be expressed
as

Sn(A) = A(0'-) - ', (4.4a)

where V"A- is the principal nth root of An.Also, the associated matrix-sign func-
tion, denoted by Sign(A) [9,17], becomes

S2 (A) = A(v'AY-)-' = Sign(A). (4.4b)

Moreover, the partitioned matrix-sector function of A can be described as fol-
lows.
Definition 4.2.3 [26,27]

Let A E C"x',oa(A) = {A,,i = 1,2, .. ,m},Aj # 0, and arg(Ai) # 2ir(p
+1/2)n for p E [0,n - 1]. Also, let Al be a modal matrix of A . Then, the qth

matrix-n-sector function of A, denoted by S !)(A), is defined by

Sq)(A) = M[ S)(A)]M-l, (4.5)

i----1

where the qth scalar-n-sector function of A1, denoted by S )(Ai), is

S('))={ 1, when 2r(q - 1/2)/n < arg(A,) < 27r(q + 1/2)/n for q E [0, n - 1]
s0, otherwise.

The qth matrix-n-sector function of A can be obtained by the following equa-
tion,

)(A) = n [S(A)e- for q E [0,n - 1]. (4.6)

Separation of matrix eigenvalues is one of the applications of the matrix-sector
function in systems theory. For example, the number of eigenvalues of A E C " ' ,
which lie within the sector angles 27r(q - 1/2)/n and 27r(q + 1/2)/n, where q > 0

and n > 1, is trace(Sn (A)).
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4.3 Fast and Stable Algorithm for Computing the Matrix-sector Func-
tion

One of the applications of the principal nth root of a matrix is in the deriva-
tion of the matrix-sector algorithm which in turn has many applications in solving
control- system problems (26,27I. The fast and stable matrix-sector algorithm corre-
sponding to the fast and stable principal nth root algorithm in (3.8) can be obtained
by modifying (3.8), appropriately.

The direct use of the algorithm in (3.8) to compute vXAF and the matrix-
sector function in (4.4a) where A is an ill-conditioned matrix may give numerically
unstable results because it involves the computation of A' which may be numerically
unstable. To overcome this difficulty, we develop a fast and stable algorithm for
computing the matrix-sector function in the following.

Defining Q(k) - AR-(k) and G(k) - A'R-(k) = Qn(k), and using R(0) =
I, and G(0) = An, we obtain the simplied matrix-sector algorithm from the algo-
rithm in (3.8) for k = 0,1,2,.-- as follows,

i n

Y',A)= j(~)k) + Qn(k) Yj(~j()
p=1

Y,(k)=In for j=2,3,...,r, and i=1,2,...,n, (4.7a)

Q(k + 1) = Q(k),,(k)Y,.'(k), Q(o) = A,

lim Q(k) = S,(A), (4.7b)
k-o

where n denotes the index of the nth root of a matrix and r is the order of the
desired convergence rate.

Corollary 4.3.1
The algorithm in (4.7) with the r(> 2)th-order convergence rate is numerically

stable in the sense that at the kth iteration has only a bounded effect on succeeding
iterates if no new errors are introduced on succeeding iterates.

Proof
The proof of Corollary 4.3.1 is similar to that in Theorem 3.3.1. U

Some explicit forms of the algorithm in (4.7) are listed below.
When r = 2, (4.7) becomes

Q(k +1) = Q(k) [21m + (n - 2)Q (k)] [',n + (n - 1)Q (k)]

Q(o) = A, lim Q(k) = Sn(A). (4.8)
k-o

When r - 3, (4.7) becomes
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Q(k + 1) = Q(k) [31, + 2 Q(k) + - 6 Qn(k)] X

[ I± )2+n n2 -3n+2 ]-,k~2 2Im +, 2 +2n-4nk + n2-3+ 2Q "(k) ,

Q(O) = A, 1im Q(k) = Sn(A). (4.9)
k-00

Substituting n = 2,3 and 4 into (4.8) and (4.9), we obtain the following results.

When r = 2 and n = 2, we have

Q(k + 1) =M Q1)21m] [I.~ + Q2 (k)],

Q(O) = A, lir Q(k) = S2(A), (4.10a)
k-*c

or

Q(k± 1) [-'(k) + Q(k)]

Q(O) = A, Jim Q(k) = S2(A). (4.1Ob)
k co

Note that Q,(k) = Q- 1 (k) for n = 2 only.

When r = 2 and n = 3, we have

Q(k±+1) = Q(k)[21,n + Q3(k)] [,m+ 2Q3(k)]

Q(O) = A, nm Q(k) = S3(A). (4.11)

When r = 2 and n = 4, we have

Q(k + 1) = Q(k) [21, + 2Q4(k) Im + 3Q4(k)],

Q(O) = A, lir Q(k) = S4(A). (4.12)
k--co

When r = 3 and n = 2, we have

Q(k + 1) = Q(k) [31, + Q2(k)] II, + 3Q2(k)]
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Q(O) = A, lim Q(k) = S2 (A). (4.13)

When r = 3 and n = 3, we have

Q(k + 1) = Q(k) [31,, + 6Q3 (k)] [I,, + 7Q3 (k) +Q6()

Q(0) = A, lir Q(k) = S3 (A). (4.14)
k-oo

When r = 3 and n = 4, we have

Q(k + -=Q(k)[31+12Q4 (k)+ Q(k)][Im+12Q4(k)+3Q(k)II

Q(O) = A, lrn Q(k) = S4 (A). (4.15)
k-00

Note that the algorithm in (4.10b) is the commonly used matrix-sign algorithm
[1,9,17] for r = 2. Comparing the algorithm in (4.8) with that in (26,271 for deter-
mining the matrix-sector function, it can be noted that the proposed algorithms do
significantly improve the computational aspects of the existing algorithms.

4.4 Definition, Computational Algorithms and Applications of the
Generalized Matrix-sector Funcion

In this section, the matrix-sector function has been generalized to the matrix-
section function of g(A) where g(A) is the matrix function of a conformal mapping,
and the fast and stable algorithms for computing the matrix-sector function are
employed for finding the generalized matrix-sector function. Also, the generalized
matrix-sector function of A is applied to the system matrix A for the separation of
matrix eigenvalues relative to a sector, circle, and a sector of a circle. Furthermore,
the generalized matrix-sector function of A is utilized for block-diagonalization and
block-triangularization of the system matrix A.

The generalized scalar-n-sector function of A can be defined below.

Definition 4.4.1

Let the function of a conformal mapping be A . g(A) which maps simple closed
curves Lq in the A-plane onto the boundaries of the n minor sectors bounded by
sector angles 27r(q - !)/n and 27r(q + !)/n for q E [0, n - 1] in the g(A)-plane.
Thus, the whole A-plane is separated into open regions Cq by the Lq such that the
domains Cq for q E (0, n - 1] in the A-plane will be mapped into the domains Dq
bounded by the sector angles 27r(q - !)/n and 27r(q + !)/n for q E [0, n - 1] in
the g(A)-plane, respectively. Hence, the generalized scalar-sector function of A with
g(A) 3 0 and arg[g(A)] 5 27r(q + !)/n for q E (0, n - 1], denoted by Sector (g(A))
or Sn(g(A)), is

Sectorn(g(A)) - sn(g(A ))
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- ej 2 1q/n = g(A)/ V((A))- ,  (4.16)

where A lies within Cq and g(A) lies within bq bounded by the sector angles 27r(q -
')/n and 27r(q + !)/n for q E [0, n - 1], and V/(ig(A)) is the principal nth root of
(g(A))n. 0

When n = 2 and g(A) is the bilinear transformation, A '-4 g(A) = (A - p)
(A + p)-', then g(A) maps the origin-centred circle of radius p in the A-plane onto
the imaginary axis of the g(A)-plane. Also, g(A) maps CO, the exterior of the
circle in the A-plane, into the open right-half g(A)-plane D0 , which is the 0th sector
containing the set of sector angles (-7r/2, 7r/2). Moreover, g(A) maps C1 , the
interior of the circle in the A-plane, into the open left-half g(A)-plane D1 , which is
the lth sector containing the set of sector angles (7r/2, 37r/2).

The extension of the generalized scalar-sector function of A E C to the gen-
eralized matrix-sector function of A E Cm"m and its associated functions with
applications can be stated below.

Theorem 4.4.1

Let the matrix function of a conformal mapping be A -* g(A) where A E
C)r x m, o-(A) = A1,= 1,2,...,m}, g(A1 ) # 0, and arg[g(Ai)) # 21r(q + !)/n for
q E [0, n - 1]. Then, the generalized matrix-n-sector function of A, denoted by
Sector,(g(A)) or S,(g(A)), is

Sector(g(A)) S(g(A)) = Al [A Sn((Ai))]

= g(A)[ V/i((A))] - ', (4.17)

where the matrix A[ is the modal matrix of A, and S,(g(Ai)) is the generalized
scalar- sector function of Ai. Also, ?¢/gA 145}) is the principal nth root of (g(A)) n ,

which has the properties that ( _/f(g(A))n) = (g(A)) h and each eigenvalue of
V (g(A)) is the principal nth root of each (g(A))n.

The associated qth generalized matrix-sector function of A with arg(A1 ) # 0
and arg[g(Ai)] $ 27'(q + !)/n for q E [0, n - 1], denoted by Sn)(g(A)), is

S~q ((A) _ Al S(I s((Am] Iv-,1 -j ,,q]
n -[S,(g(A))e ,/ E Ctm ×m  for q E [0, n - 1], (4.18a)

i=1

where the qth generalized scalar-sector function of Ai is
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S~q(g(A,)) 1 whenAiE C!q for qE[O, n-1]

0 otherwise.

The complement of Sn")(g(A)), denoted by S )(g(A)), is

(g I - S)(g(A)) E C" 'rnx for q E [0, n - 1], (4.18b)

where I, designates the m x m identity matrix. 0

The number of eigenvalues of A lying inside the domain Cq, denoted by Nq, is

Nq = trace[Sq)(g(A))] for q E [0, n - 1], (4.19)

and the A-invariant subspace of S )(g(A)), denoted by S (q), is

S (q) ± ind[Sq)(g(A))] E C " xNq for q E [0, n - 1], (4.20)

where ind[.] in (4.20) designates the collection of the independent ( abbreviation as

ind ) column vectors of the matrix [.]. The matrices S (q) for q E [0, n-1] can be used
to construct a block-modal matrix, Als, for carrying out the block-diagonalization
of the system matrix A, i.e.,

M 'AM s = block diag[Ao,A1,...,A,- 1 J E Ct xm m , (4.21a)

where
aIs = [S ( ° ) , S ( I ) , . . . ,s(n - 1) ] E C' x m , (4.21b)

and
Aq = (S(q))+A(S(q)) E C N xN ,

(s(g)) + = [(s(q))(s(9))j-I((q))* E cNqxm

a(Aq) _ Cq for q E [0, n - 11. (4.21c)

The superscript * in (4.21c) designates the conjugate transpose.

The other A-invariant subspace of S )(g(A)), defined as V(q), can be con-

structed as the collection of the independent row vectors of Sn )(g(A)) and expressed
as

Vr ( q ) = find[(sq)(g(A)))TT E CN' x m  for q E [0, n - 1]. (4.22)

Hence, the associated block-modal matrix, Mv, can be constructed and used for

block-diagonalization of the system matrix A,

AIvAMV1 ' = block diag[Ao,,... ,A-] E Cm xT n, (4.23a)
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where
Mv = [(V(o))T,(V(1))T,... ,(V(n-1))T]T E C mxm, (4.23b)

and
Aq = (V(E))A(V(q)) +  CNqXN,

= (V(,))*[(V())(V())']-' C CxN I

or(Aq) _ Cq for q E [0, n - 1]. (4.23c)

Also, by combining the A-invariant subspaces of S n1)(g(A)) in (4.20) and (4.22), a
similarity transformation of the system matrix T can be constructed for block-
triangularization of the system matrix A so that each submatrix of the block.
triangularized system matrix contains the eigenvalues lying within each specified
region of the A-plane.

The similarity-transformation matrix and its inverse are

T E V) E C"

S(q) ind[I, - S )(k(A))] E C " x(m Nq) (4.24a)

and
T - 1 = [.(q) (V(q))+]. (4.24b)

The block-triangularized system matrix becomes

AT = TAT - = .. ... .j, (4.25)

0 AL

where AR = (9(q))+A( g(q)), a(AR) C the complement of Cq, AL = (V(q)) A
(V('))+, 0(AL) C Cq, and ARL = (.(q))+A(V(q)) + .

Proof
When g(A) = A, the various results in this theorem have been proved in

[9.26,35.36,37). The corresponding results for the generalized version of the matrix-
sector functions can be proven in a similar manner. U

Replacing A in (4.7) with g(A), we can obtain the fast and stable algorithm
for computing the generalized matrix-sector function Sn(g(A)) in (4.17). When
argfg(A2 )] = 27r(q + !)/n for q E [0, n - 1], the matrix g(A) shall be rotated by a

small positive real angle (A3) as g(A) = g(Ae' ), so that the algorithm in (4.7)
can still be applied to compute Sr,(g(A)).
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Corollary 4.4.1

Let g(A) = (A - pl,)(A + pl,) - ', where A E C " x ' , det(A + pl,) # 0, and

u(A) n C = 4 and C is a circle of radius p with center at the origin of the A-plane
The qth generalized matrix-sector function of A with n=2 and q=O becomes

S(g(A)) = 1[I, + s 2 (g(A))] (4.26a)

and the complement of S()(g(A)), denoted by 0 )(g(A)), is

S= I,. - O)(g(A)) S'gA))

= [Im - S2(g(A))]. (4.26b)

The number of eigenvalues of A lying in the exterior of the circle of radius p is No(0))
trace S°)(g(A))], and that in the interior of the circle is N, = trace[S) (g())]

"- - ¥0.

Proof
The bilinear transform (a conformal mapping), g(A) = (A - p)(A + p)-', maps

the circle of radius p in the A-plane onto the imaginary axis of the g(A)-plane and
the interior (exterior) of the circle into the open left-half (open right-half) g(A)-
plane. Hence, Corollary 4.4.1 can be proved using Definitions 4.2.1 and 4.4.1 and
Theorem 4.4.1. M

To determine the number of matrix eigenvalues lying inside the intersection of
two specific regions (&0 and C1) in a complex plane and to determine the associated
A-invariant subspace of the intersection region, we present the following important
result.

Corollary 4.4.2

Let Sn)(g1 (A)) and Sn 2 )(g 2(A)) be two associated generalized matrix-sector
functions of A which can be expressed as

S)((A)) = I[I, E 0m 2]M - 1 E C m m  (4.27a)

and
S(qn2)(92(A)) = AI[,, E Om,]A-1 E C" x' m , (4.27b)

then, we have

S S 2 )(g2 (A)) = A'[I. E 0m,]A - 1, (4.27c)

where wee= trace[S 1)(g 1 (A)) x S :3)(g 2 (A))], and m. = m - m..

Let
A 1 

- ind[Sn,)(g(A))] , M12  ind[.n,2)(g 2(A))]
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M + AM 1  A(, and M + AM 2 & A1

with o,(Ao) C Co and a(A1 ) C C1,

also let

ind S q)(g,(A)) X

Then, we have

M,+AI i. A, A,, (A) 0 n C1. (4.27d)

The number of eigenvalues lying within C!o n Z! is m,.

Proof
Corollary 4.4.2 can be proved by using the fact that the generalized matrix-

sector function of A preserves the eigenvectors of A. N

For engineering applications, we are often interested in selecting a sector of a
circle in the A-plane due to the consideration of damping ratio, damping frequency
and decaying rate, etc., of the system. The separation of matrix eigenvalues relative
to a sector of a circle can be stated below.

Corollary 4.4.3

Let A E C" '  and o(A) = {Ai, i = 1,2,...,m}. Also, let o-(A) n (I, 4+)
- 4' where Ii and eI+ 1 are two straight lines emanating from the original of the
A-plane at angles 27r(q - !)/n and 27r(q + 1)/n for,q E [0, n - 11. Moreover, let

c(A) nC = 4, where C is a circle of radius p centred at the origin. Then, the
generalized matrix-sector function of A with respect to this sector and the circle of

radius p, denoted by S"'P)(A), is

S(*"°)(A) S (q) (A) x S()(g(A)), (4.28a)

where
g2 (A) = (A - pI,)(A + pI,) - ' for q E [0, n - 1]. (4.28b)

The complement of S(O"')(A) is I, - S{"O)(.). The number of matrix eigenvalues
lying inside the closed sector is

Nq = trace[S ( ¢"P)(A)] (4.28c)

Proof
Corollary 4.4.3 can be proved by using Theorem 4.4.1, Corollaries 4.4.1 and

4.4.2. U
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4.5 Illustrative Example

Consider a system matrix A,

r10.5 - jl.5 -5.5 + jll.5 -3.5 - j4.5 -20.5 + jl.51

A= 5.5 - j8.0 1.5 + j11.0 -4.1 - jO.8 -11.0 + jll.5 (4.29)
21.5 + j3.0 -16.5 + j17.0 -4.5 - j8.0 -34.0 - j10.5

.12.5 -j2.5 -5.5 +j11.5 -3.5 -j4.5 -22.5 +j2.5

Find
(a) The number of matrix eigenvalues lying inside the sector of a circle with a

radius, p (=1 "' det(A) I for m = 4), and a sector angle, Oq E (37r/4, 5r/4).

(b) The block-triangularization of the system matrix A such that or(AL) lie inside
the sector of a circle and or(AR) lie outside the sector of a circle.

(c) The block-diagonalization of the system matrix A such that o'(Ao) lie inside
the sector of a circle and o'(Al) lie outside the sector of a circle.

Solution
To find the number of matrix eigenvalues lying within the closed sector, we use

Corollary 4.4.3. The geometric mean of the matrix eigenvalues is p = I VrA)I =
3.2517. Since the sector angle kq = 57r/4 - 37r/4 = 7r/2, we decompose the entire
A-plane into n (=27r/Oq=4) sectors. As a result, the number of the sector, q, equals
to two. Thus, the q(=2)th matrix-sector function of A is

(A4) = S42 (A)

1.0 + jO.0 0.0 + jO.0 0.0 + jO.0 0.0 +jO.0-
0.0 + jO.5 0.0 - jO.5 0.2 + jO.1 0.5 - jl.0

-1.0 + jO.5 0.0 - j2.5 1.0 + jO.5 2.5 + jO.0
0.0+jo.0 0.o+j0.0 0.0+j.0 .0

To use (4.28), we compute g 2(A) and S(2)(g 2 (A)) as

g2 (A) = (A - pm)(A + pI,)-'

[-7.1074 +j8.4017 -1.7329 -j7.4696 3.3344 +30.8008 9.0711 -. 8.4017

-0.0838 + j4.6235 -4.6659 - jO.6559 1.6462 - j1.2026 0.6559 - j6.6297
-9.3308 -j- j4.4560 3.8846 - j8.1785 1.8800 + j4.6235 13.9150 -J5.3180
-4.9359 -+ j5.8681 -1.7329 - j7.4696 3.3344 + j0.8008 6.8996 - j5.8681

and
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2.5- j0.5 -0.5+jl.5 -0.5-jO.5 -2.5+jO.51
0.5 - jl.0 1.5 + jl.0 -0.5+jO.0 -1.0+jl.5{

12.5 + j0.0 -1.5 + j2.0 0.5 - jl.0 -4.0- jO.5
L1.5 - j0.5 -0.5 + jl.5 -0.5 - jO.5 -1.5 + jo.5J

Thus, the desired S( (A) in (4.28a) becomes

() S4 (A) X S2 (92(A))

2.5- jO.5 -0.5+jl.5 -0.5- j0.5 -2.5 +jO.5]
0.5 - jO.5 0.5 + jO.5 -0.3 + jO.1 -0.5 + jO.5 (4.30)=1.5 + jO.5 -1.5 - 10.5 0.5 - jO.5 -1.5- jO.S]" (.0

1.5 - jO.5 -0.5 + jl.5 -0.5 - jO.5 -1.5 + jO.5

The number of eigenvalues lying within the sector of a circle is

Nq = trace [0""0) ( A ) ) ] = 2. (4.31)

It is interesting to note that o.(A) = {A, = A,2 = -2+jl, A3 = -10, A + 4 =
-1 + j2} and the repeated eigenvalues, {A,, A2 }, lie in the desirable sector. Since
the characteristic polynomial of A is a complex polynomial, the test procedures due
to Gutman and Jury [73] and Zeheb and Hertz [74] can not directly be applied to
determine the Nq in (4.31).

To find the block-triangularization of A, we use Theorem 4.4.1. The computed
AT in (4.25) is

AR: ARL

AT = TAT-'.

0 A L,

-16,25 -j3.75 13.75-j8.75 -7.292 - jl.875 8.375- j5.542

-0.75 - j7.25 5.25 + j5.75 -0.875 - j3.458 5.458 + j2.875
. ,.. . . ..°° ° . ° . .°. . ......... ..° , , o...... .... .. ... .... .. .... ..

0.00 + j0.00 0.00 + jO.00 -2.000 + jl.000 0.000 + j0.000

0.00 + jO.00 0.00 + j0.00 0.000 + jO.000 -2.000 + jO.000
(4.32)

where

(S(q))+
T=
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-0.25 + jO.25 -0.083 - j0.250 -0.417- j0.417 -0.25 + j0.251
-0.25 + j0.25 0.250 - jO.083 -0.083 - j0.583 -0.25 + jO.25

2.50 - jO.050 -0.500 + jl.500 -0.500 - j0.500 -2.50 + jO.50
0.50 - jO.50 0.500 + jO.500 -0.300 + jO.100 -0.50 + jO.50.

and

T-1 = [;(q) I (V(q))
+

-1.5 + jO.5 0.5 - jl.5 0.250 + jO.250 0.250 - j0.750

-0.5 + jO.5 0.5 - jO.5 -0.417 + jO.417 2.083 - jO.417

-1.5 - jO.5 1.5 + jO.5 0.250 + jO.083 -0.583 - jO.750

L-1.5 + jO.5 0.5 - j1.5 -0.250 - jO.250 -0.250 4 jO.750.

Note that a(AR) = {A3 , A41, and tr(AL) = {JA, A2 }.
The block-diagonalization of A in (4.21a) is

M;s1 AAs = block diag[Ao, A 1]

-2.0 + jl.0 0.0 + jO.0 0.0 + jO.0 0.0 + jO.0

0.0 + jO.0 -2.0 + jl.0 0.0 + jO.0 0.0 + jO.0
........................................................... (4 .33 )

0.0 + jO.0 0.0 + jO.0 -16.25 - j3.75 13.75 - j8.75

0.0 + jO.0 0.0 + j0.0 -0.75 - j7.25 5.25 + j5.75

where
Ms =[s ( ) , SO )]

2.5-jO.5 -0.54-jl.5 -1.5+jO.5 0.5-jl.5

0.5 - jO.5 0.5 + jO.5 -0.5 + jO.5 0.5 - jO.5

1.5 + jO.5 -1.5 - jO.5 -1.5 - jO.5 1.5 + jO.5

1.5 - 30.5 -0.5 + jl.5 -1.5 + jO.5 0.5 - jl.5

Note that ou(Ao) = {), A} and o-(A 1 ) ={A 3 A4 }.
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4.6 Conclusion

The matrix-sector function of A has been generalized to the matrix-sector func-
tion of g(A). Based on the computationally fast and numerically stable algorithms
for computing the principal nth root of a matrix, rapidly and stable algorithms for
computing the matrix-sector function and the generalized matrix-sector function
have beed developed. The generalized matrix-sector function of A has been utilized
to carry out the separation of matrix eigenvalues relative to a sector, circle and a
sector of a circle in the A-plane. Also, the generalized matrix-sector function of A
has been employed for block-diagonalization and block-triangularization of the sys-
tem matrix; these are are useful in developing applications to mathematical science
[32] and control-system problems [311.
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Chapter 5

Determining Continuous-time State Equations from Discrete-time
State Equations Via the Principal qth Root Method

Fast computational methods are developed for finding the equivalent continuous-
time state equations from discrete-time state equations. The computational meth-
ods utilize the direct-truncation method, the matrix continued-fraction method,
and the geometric-series method in conjunction with the principal qth root of
the discrete-time system matrix for quick determination of the approximants of
a matrix- logarithm function. It is shown that the use of the principal qth root
of a matrix enables us to enlarge the convergence region of the expansion of a
matrix-logarithm function and to improve the accuracy of the approximants of the
matrix-logarithm function [28].

5.1 Introduction
The identification [38] of a continuous-time system using the sampled input-

output data of the system often results in an equivalent discrete-time model. Hence,
the conversion of the obtained discrete-time model to the original continuous-time
system is necessary. Also, a given discrete-time system is often transformed into
an equivalent continuous-time model so that the well-developed continuous-time
approaches such as the frequency-domain techniques [39] can efficiently be applied
to the transformed model for analysis and design of sampled-data control systems
[40].

Let the discrete-time system be

x(kT + T) = Fx(kT) + Gu(kT),

y(kT) = Cx(kT), (5.1)

where x E R', u E Rn, y E RP, the constant matrices FG, and C are of
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appropriate dimensions, and T is the sampling period. The equivalent continuous-
time model is described by

i(t) = Az(t) + Bu(t),

y(t) = c(t), (5.2)

where _(t) x(kT), and u (t) = u(kT) for t = T.
The relationships [41]-[44] between the matrices A (B) and F (G) are

A= TIn(F) (5.3a)

and

B = A[F - I,]- G, (5.3b)

where I, denotes the n x n identity matrix.
The problem of finding the matrix A from the matrix F in (5.3a) has been

considered by several authors [43]-[46]. the most commonly used method is the
direct-truncation method. That is, the matrix-logarithm function in In(F) with
certain convergence conditions is expanded into a certain type of infinite power
series. Then, the matrix A is obtained by truncating the infinite power series.
The direct-truncation method is a simple method; however, the truncation error
depends heavily upon the type of power-series expansion used and the number of
terms taken. Harris [46] has proposed a method which converts a matrix-logarithm
function into a scalar-logarithm function via a modal-decomposition technique. The
nonuniqueness of the logarithm of complex ei genvalues and the requirements of the
complicated computations of eigenvectors and associated and/or repeated eigenval-
ues with unknown multiplicity limit the practical use of Harris' method. It seems
that other methods [431-[45] are more effective and straightforward than Harris'
method [46] when the matrix of interest is defective. Recently, Sinha and Lastman
[44] have proposed a fixed-point recursive algorithm for computing the matrix A
from the matrix F, which involves the approximation of theTaylor series expan-
sion of exp(AT) with lr(AT)I < 0.5, where o'(AT) denotes the eigenspectrum of
the matrix AT. Moreover, Puthenpura and Sinha [45] have proposed the matrix
Chebyshev method for the approximation of the shifted matrix-logarithm function
ln(In + X) with 0 < o(X) < 1, where the matrix X = F - I,,. Furthermore,
Shieh et al. [43] have proposed a direct-truncation method, a matrix continued-
fraction method and a geometric-series method for determining the matrix A from
the matrix F. The above three methods [43] can be summarized as follows.

1) The direct-truncation method is as follows:

A= In(F)
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[ R+ 'R 3 + 'RS+ . . + '-+ - R + (5.4.)Tr 3  5 n n + 2 1

2
2 R 

(5.4b)T

2R +4 1R3 
(5.4c)

2 R R + 1 R5 (5.4d)

where

R = [F - I,,[F + In]'. (5.4f)

2) The matrix continued-fraction method is as follows:

A =IIn(F)

_2 2 +i 1 iR I+ 3N + N + 7 N +.. (5.5a)

= TR[KI + N[K 2 + N[K 3 + N[K 4 + N[...]-j'J'-'-'j -  (5.5b)
T

2 TR[K 1 ]-' = TR 
(5.5c)

T T

2T_ 21 !R2V-R[K 1 + N[K 2 1'1-' = R [. - _R (5.5d)

T TI. 4 1 3R] ( e_2 R[K 1 + N[K 2 + N[K 3 -1-11 -1
T

2 ;R in- l±R] [In - 3 R2 (5.5e)

2 -R[K 1 + N[K 2 + N[K 3 -4-NK]'-
T

2 R [in- 11R 2]1 6i~ ~R2 + 3 R4]
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where N = R 2 , the matrix quotients Ki (= k 1In) is the ith diagonal matrix. The

ith scalar ki can be determined from the following Routh algorithm,

aai -" 1,
a1 2 =0 for j=2,3,...,

a2 ,j = 1/(2j- 1) for j-- 1,2,...,
aij -- a-2,j+1 - ki, 2aj-,j+1  for j = 1,2,... and i - 3,4,...,

and
ki = ai,1/ai+1,1 for i- 1,2.

3) The geometric-series method is as follows:

A I 1In(F)
T

[R 1Rn ... _R n+ 2 + Rn+2i" (5.6a)S+ 2 --i=2 n/+

2 r3 +2 1+R+ R +... + R + iR (5.6b)
2+ 2 i=2 n +

1rInRJ or 1 n=1 (5.6c)

2 R [I - 4 R 2  In - 3R2 for n =13 (5.6e)

- R In - - - R4 In - 5R2 for n = 5 (5.6f)
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The condition for the convergence [47] of the matrix series in (5.4a), (5.5a), and
(5.6a) is Re(o(F)) > 0. Note that the matrix A (- (2/T)R = (2/T) [F - I,][F +
]i) in (5.4b) and (5.5c) can be obtained by using the bilinear-transform method

or the Tustin method [42].
From (5.4c), we observe that if Re(o(F)) > 0, or all eigenvalues of the matrix

F lie in the right-half complex plane, then I,(R)I < 1 and Io(N)I = lo,(R 2) < 1.
As a result, the first few terms of the infinite power series in (5.4a), (5.5a), and
(5.6a) are dominant terms. The desirable matrix A can be obtained by taking the
first few dominant terms of the infinite power series in (5.4a), or can be determined
by taking the first few dominant matrix quotients (K) of the matrix continued-
fraction expansion in (5.5b). Moreover, the desirable matrix A can be obtained by
taking the first few dominant terms of the infinite power series and the associated
geometric-series R"[I,, - R 2 /(1 + 2/n)] - /n in (5.6c). However, in general, the
eigenvalues of the matrix F are not available and all eigenvalues of the matrix F
are not always lying in the right-half complex plane. Therefore, the use of the
above three methods is not always efficient. The purpose of this note is to develop
a computational method, which uses the principal qth root of a nonsingular matrix
F (or ! for q > 2) [61] together with the methods in (5.4), (5.5), and (5.6), for
placing all eigenvalues of the matrix : in the right half plane and for quickly
determining the matrix A from the matrix F.

5.2 Determining Continuous-time State Equations from Discrete-time
State Equations Via the Principal qth Root Method

The property of the matrix -/7F for q _> 2 can be utilized to derive the above
three approximation methods in the following.

Rewriting (5.3a) gives

A = Tin(F)
T

Tln(, )q (5. 7 a)

q I(5.7b)
T

T Al + (5.71c)

where the matrix V"F_ i t',e prneripcl qth root of the matrix F, and ? = [/F -
I,1[-ZI-+ I,]-'. Thus, (5.4),(5.5), and (5.6) can be rewritten as

2q 1 1Al + (5.8a)

qi

_ ? [R] (5.8b)
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___ A- + 1 3, (5.8c)

A L/l[K= + [IN[K 2 + N[K 3 + 1[... (5.9a)
T

-L R[Kj]- ' (5.9b)

T

R[Ki + N[K 2 f']' (5.9c)
T

where N -
2,

and

Tn31n-+

for n = 1,3,5,.. (5.10)

The condition for the convergence of the infinite power series in (5.7) becomes
arg(ou(F)) : 7r. The eigenvalues of the matrix F lying on the negative real axis in
the complex plane are excluded in the convergence condition due to nonuniqueness
of the logarithm of negative real eigenvalues. Note that the convergence region of
the modified infinite power series in (5.8), (5.9), and (5.10) has been greatly enlarged
from the original Re(o,(F)) > 0 in (5.4), (5.5), and (5.6) to arg(or(F)) $ 7r in (5.8),
(5.9), and (5.10). When q _> 2, all o,(iYF) lie inside the sector angle (-7r/q, +ir/q]
of the complex plane. Therefore, Re(o( /F)) > 0, ja(R)l < 1, o(RA2)1 < 1 and

Icr(R 2) < (1 + 2/n). If q > 2, then o'(R) < 1. Thus, the desired matrix A can
quickly be determined by taking the first few dominant terms of the righthand side
of the equations in (5.8),(5.9), and (5.10).

When the eigenvalues of the nonsin gular real matrix F, which may contain
negative real eigenvalues, are not available, we can employ the algorithm in (3.8)

with F := F = Fe - j "A to compute li. If V ej q is a complex matrix, then
there exist negative real eigenvalues. Thus, the desirable real matrix A cannot be
obtained by the proposed method. On the other hand, if /? eY, 9 / q is a real matrix,
then arg(o'(F)) :# 7r and the methods in (5.8), (5.9), and (5.10) can be applied to
obtain the desirable real matrix A.
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5.3 Illustrative Example

Let an unstable discrete-time system matrix F be

F =30 -100] and o'(F)={-20 ± j50}. (5.11)

150 -70]

The exactly equivalent continuous-time system matrix A is

[597 390261
A = 1.9513 2.0349J , with a(A) = {3.9862± j1.9513}, and T = 1. (5.12)

Since Re(or(F)) < 0, the desirable matrix A obtained from (5.4), (5.5), and (5.6)
results in poor approximations of 1/T ln(F). However, the desirable matrix A can
be obtained from (5.8), (5.9), and (5.10) as follows. The computed ViT with q=4 is

[3.6627 -2.5394 w1.2697 1.1233 wt r F 233 l29}

Note that arg(,(!"FT)) E (-7r/4, +7r/4), la( -FT)j > 1, and Re[u(iT)j > 0. The
approximations of q/T ln( 'FY) with q=4 in (5.8) obtained by taking the first N

dominant terms, defined as A(N ), are

V()= [5.4115 -3.0958]) 1.5479 2.3157 '

j(3) [5.9466 -3.89451

[1.9472 2.0521]

and

A(6 ) 5.9376 -3.90291
= 11.9514 2.0347 ]

The associated errors I1A -A (N)II/IIAII for N=1, 3, 6 are 1.4 x 10-1, 3.2 X 10-3, and
5.9 x 10- 1, rspectively. Also, the approximants of q/Tln(.Z-F) with q= 4 in (5.9)

obtained by taking the first N dominant quotients, defined as -(N ), are m A(),

(2) [5.9281 -3.8459]

m 1.9229 2.0823 j

,j(3) 5.9399 -3.90211
1.9510 2.0378]
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and

= r5.9378 -3.902911 1.9514 2.0349 j"

The associated errors IIA - AMV)Il/IBAIl for N = 1,2,3,4 are 1.4 x 10-1, 1.3 x 10-2,
4.4 x 10- 4, and 5.3 x 10-5, respectively. Moreover, the approximations of q/Tln(v'rF)
with q=4 in (5.10) obtained by taking the first N dominant terms, defined as A( N )?

=i A(2 (2_(
are A(') Ag2  = A) and

A(3) = 5.9380 -3.90301
1 1.9515 2.0350 j

The associated errors IIA - A(N)II /lAI for N=I, 2, 3 are 1.3 x 10- 2, 4.4 x 10-4, and
7.8 x 10--, respectively. From our experience, we have observed that the direct-
truncation method in (5.8) often gives satisfactory approximations when q is a large
number and the matrix continued-fraction method in (5.9) converges faster than the
geometric-series method in (5.10) and the direct-truncation method in (5.8) when
q is a small number.

5.4 Conclusion

New computational methods, which utilize the direct-truncation method, the
matrix continued-fraction method, and the geometrix-series method together with
the principal qth root of a discrete-time system matrix have been presented for quick
modeling of the equivalent continuous-time state equations from the discrete-time
state equations. The proposed method is useful for identifying a continuous-time
system based on the observation of sampled input-output data and for design of
sampled-data control systems.
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Chapter 6

Rectangular and Polar Representations of a Complex Matrix

This chapter presents some new definitions of the real and imaginary parts and
the associated amplitude and phase of a real or complex matrix. Computational
methods, which utilize the properties of the matrix-sign function and the principal
nth root of a complex matrix, are given for finding these quantities. A geometric-
series method is newly developed for finding the approximation of the matrix-valued
function of tan - (X), which is the principal branch of the arc tangent of the matrix
X. Several illustrative examples are presented [75].

6.1 Introduction
The definitions of the real and imaginary parts of a complex number in rectan-

gular coordinates and the associated amplitude and phase of the complex number
in polar coordinates are well known, and these have been commonly used in math-
ematical science and control system, such as complex variable analysis applied to
linear control system. However, extensions of these definitions for a complex matrix
(which may be defective) and their applications have not been generally investigated
by researchers.

For simplicity of notation through out this chapter, let the matrix Re(A) be a
real matrix which contains the real part of each element of the matrix A, and the
matrix Im(A) be a real matrix which consists of the imaginary part of each element
of the matrix A. Also, let the matrix denote the principal nth root of the
matrix A and the matrix tan-'(A) be the principal branch of the arc tangent of the
matrix A. The detailed definitions of the matrices V/i and tan-'(A) are reviewed
and stated, respectively, as follows.

Definition 6.1.1 [20,21]
Let the eigenspectrum of a nonsingular matrix A E Cmxm be o'(A) - {A1 , i =

1,2,... ,m}, Ai # 0, and arg(Ai) 0 7r.

(1) The principal nth root of A is denoted as E C ", where n is a
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positive integer and is such that ( V A) = A, and for every 6i = E
a,(/'A), i = 1,2,...,m, then arg(6i) E (-ir/n, r/n), where /X is the
principal nth root of Ai.

(2) The matrix tan-'(A) has the property that o'(tan-(A)) = {tan-1 (Im(Ai)/
Re(A))} = {arg(A,) E (-7r,7r), i= 1,2,...,m}.

Computational algorithms [21,61] are available for finding the principal nth
roots of complex matrices, and computational methods for determining the matrix
tan-'(A) are proposed in this chapter. Note that previous algorithms [4,18,49] for
finding the nth root of a matrix may not result in the principal nth root of the
matrix.

The straightforward extension of the definitions of the real and imaginary parts
and the amplititude and phase from a scalar to a matrix can be described as follows.

Let A E C' xm be a nonsingular matrix with o'(A) = {Ai = cai + j3i for i =
1,2,...,m} where j = V iT. Then the rectangular representation of a complex
matrix A would be

A = Re(A) + j Im(A), (6.1a)
and the polar representation of A would be

A = D exp(j,) (6.1b)
or

A = exp(jO)D. (6.1c)

where the matrix D = [(Re(A)) 2 + (Im(A)) 2 ]1/ 2 , and the matrix 0 is either
tan-'((Re(A)) '(Im(A))) or tan-((Im(A)(Re(A))-'). If the matrices Re(A) and
Im(A) in (6.1) do not contain the modal matrix of A, a(Re(A)) # Re(o'(A)) and
c,(Im(A)) # Im(ou(A)); then, in general, the representation in (6.1b) or (6.1c) is
not the polar representation of A because Ia(D) # loa(A)l and o"(O) 0 arg(o,(A)).
Another important consequence would be D exp(j) # exp(j¢)D. In other words,
the commutative property of matrix multiplication in the polar representation of
a matrix in (6.1) is not preserved because the matrices Re(A), Im(A), D and 0
do not contain the ;nodal matrix of A. As a result, it is difficult to generalize a
scalar-valued function to a matrix-valued function, and to develop complex variable
approaches to the analysis of linear multivariable control systems.

Another popular rectangular representation [521 of the matrix A is

A = (A + A*)/2 + j[(A - A*)/2j], (6.2)

where the asterisk superscript (for Hermitian) designates the conjugate transpose.
If the matrix A is not a normal matrix [48,511, then the real part, (A + A')/2, and
the imaginary part, (A - A*)/2j, do not contain the modal matrix of A, and they
do not commute. Therefore, the representation in (6.2) is not suitable to be used
for defining the amplitude and phase of A.

A formal polar representation 151] of a nonsingular matrix A is

A = HU, (6.3)
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where the matrix H is a square root of the symmetric matrix (AA*), and the matrix
U is a unitary matrix having U = H-'A = exp(jo) where 0 = -jln(U). If the
matrix A is not a normal matrix, then the matrices H and U do not contain the
modal matrix of A. Also, HU 5 UH, Iu(H)l # la(A)l and o(4) 6 arg(u(A)). As
a result, the representation in (6.3) is not suitable to be used for defining the real
and imaginary parts of A. Hence the application of the polar representation in (6.3)
to complex variable analysis and computational aspects is limited. For example, if
the matrix A is a defective matrix, then Iu(A)I $ lIt(H)I. As a result, the matrix
H cannot be utilized to normalize the amplitude of the matrix A for reducing the
computational error of Ak where k is a large positive integer. The need for the
computation of Ak and its applications can be found in [9,26,36].

This chapter presents some new definitions of the real and imaginary parts and
the amplitude and phase of a complex matrix. Procedures are given for comput-
ing these matrices, and several illustrative examples are presented. The aims of
this chapter are primarily to develop theoretical tools rather than highly efficient
computational algorithms.

This chapter is organized as follows: In Section 6.2, we define two different
r ctaugtjar and polar representations of a matrix, and give illustrative examples.
In Section 6.3, we develop computational procedures for finding the projected imag-
inary part (AI), the projected real part (AR), the amplitude (A,) and the phase
(Ae) of the matrix A. An illustrative example is shown 'n Section 6.4, and the
results are summarized in Section 6.5.

6.2 Rectangular and Polar Representations of a Matrix
Let us first define the rectangular and polar representations of a complex ma-

trix, which may be a defective matrix [54], in the following way.

Definition 6.2.1

Consider a matrix A E C " xm with eigenspectrum and associated modal ma-
trix,

a(A) = {Ai = ai + j~i, for i = 1,2,...,k

with multiplicity i, and m, = M, C1 # }
j=1 I

and Al E C " 'm, respectively. Then the complex matrix A, which may be a defec-
tive matrix with I arg(o(A))l # 7r/4 or 37r/4, can be described in the rectangular
coordinates as

A = AJM-' = M[Re(J)JA1-' + jM[Im(J)]M - = AR + jAr, (6.4a)

where the matrix J is of Jordan form, the matrices AR( J A[Re(J)]A - ') and Al-(
I[Im(J)]. -1 ) are the real and imaginary parts of the matrix A, respectively.

The polar representation of the complex matrix A is

A = A.4. 9 = -pexp(jAo) = exp(jAo)A,, (6.4b)
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where the matrix,

A, = (A + A 2) 1 /2 , (6.4c)

is defined as the amplitude of the matrix A, and the matrix,

A9 = tan-'(A A') = tan-'(A 'AI), (6.4d)

is defined as the phase of the matrix A.
The projected real and imaginary parts of the matrix A can be computed in

polar coordinates as

AR = Apcos(Ae) - cos(Ae)A,, (6.4e)

and

AI = Apsin(Ae) = sin(Ae)A,,. (6.4f)

Note that both matrices AR and A1 contain the same modal matrix of A;
therefore, the matrices AR and A, commute, and the matrices AP and exp (jAe) also
commute. When the matrix A is a defective matrix in which the nontrivial elements
on the super-diagonal line of the Jordan matrix J may be complex numbers, the
matrices Re(J) and Im(J) may not be diagonal matrices.

When the eigenvalues, associated eigenvectors and the structure of the Jordan
matrix J of a defective matrix A in (6.4) are known, the amplitude matrix A.,
in (6.4c) can be determined by finding the principal square root of the matrix,
A + Al, via the algorithms developed in Chapter 3. However, the determination
of the principal branch of tan-'(AR1 A) for the phase matrix A in (6.4d) is rather
more complicated than that of A. An illustrative example is shown as follows.

Example 6.2.1

Consider a defective complex matrix A,

A =[i 0 ~ ! with a#5O .

Following Definition 6.2.1 with A = J and Il = 12 where 12 is an 2 x 2 identity
matrix, we obtain

AR =Re(A)=[a 1]0 al

A1 = Im(A)= 0
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and
Ae = tan- (A,'Al) = tan-'(X),

where

X = A'Al c' ,]
0

Since the matrix X has Jordan canonical form, the matrix Ae can be determined
by using the standard formula [51] (Gantmacher 1959, p.98) as follows,

A9 = tan-'(X) = for Jo'(X) = _

0tni~ tan%]' <

where

Note that the evaluation of tan - ' (3/a) depends upon the signs of a and ,3 and the
determination of the infinite series z on the magnitude of 10/aI. For example, when
a = [1 or jarg(o-(A)) = ir/4, the infinite series z does not converge and becomes
null or -03/a 2. Hence, the matrix A# is not the desired phase matrix. Thus, we
conclude that when the matrix A is a defective matrix with any Iarg(o'(A))I = ir/4
or 37r/4 (i.e., 1a'(X)j = 1), and/or la(X)l > 1, the direct use of the standard formula
[51] (Gantmacher 1959, p. 98) for determining the above matrix-valued function of
tan-I(X) will not result in the desired phase matrix A. A computational method
will be developed in Section 6.3 to overcome the above difficulty and for determining
the desired A4,9.

Let us define an additional notation, which will be used throughout this chap-
ter.

Definition 6.2.2

Let the matrix J E Cyn 'rn be the Jordan matrix of a defective matrix A E
C"nXrn, and let the diagonal matrix A, E C" contain only the diagonal elements
of J, and cr(A) = c-(J) = o(A). Then, the matrix J, is defined as J - A, which is a
matrix containing only the elements on the super-diagonal line of J. The nontrivial
elements in J, may be complex numbers.

Definition 6.2.1 cannot be utilized for finding the rectangular and polar rep-
resentations of the matrix A when it is a defective matrix with larg(A)l = 7r/4 or
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31r/4. To relax the constraint in Definition 6.2.1 and to develop a computational
method for finding the rectangular and polar representations of the matrix A with-
out actualily knowing the eigenvalues, eigenvectors and the structure of the Jordan
form, we define alternative rectangular and polar representations of the matrix as
follows.

Definition 6.2.3

Let A E C" ' m be a matrix, and let its eigenspectrum and associated modal
matrix be a(A) = {jA = ci + j.3j for i = 1, 2,..., k with multiplicity mi, and

j=, rj = m, Oi } 0, and M E C"', respectively. Then, the matrix A can be
represented as

A = AIJAI - 1 = M[A + J,]M - 1

= (ARd + jAId) + Al = Aod exp(jAed) + A,, (6.5a)

where ARd ' M[Re(A)]Ai - ', A, = MJIM -1, AId A l[Im(A)]A - ' , Apd = (A d+

A2Id)" / 2 and Aed tan-'(A-A1d) 2- tan-'(AidA'), respectively. The polar and
rectangular representations of the matrix A can be efined as follows,

A = [Apd + A, exp(-jAOd)] exp(jAed)

= A. exp(jAo) = exp(jAe)A, = AR + jAr, (6.5b)

where

Ap 2 Apd + A, exp(-jAg) = (AR + AI) /2 ,

A6 = AOd = tan-'(AIdA-) = tan-'(A-'Ald)

= tan-'(A.A. 1 ) = tan-'(AR'AI),

AR Acos(Ae)= cos(Ae)Ap,

and

A Apsin(A0) = sin(Ae)A,

The matrices A., Ae, AR and AI are defined as the amplitude, phase, real
part and imaginary parts of the matrix A, respectively. Note that in general these
matrices are different from those defined earlier, indicated by an overbar.

Note also that any additional lower subscript d of a matrix shown in the above
definition denotes that the matrix is a nondefective matrix; also that AR # ARd+A]
and Al : Ald. A simple example follows.
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Example 6.2.2
Consider a defective complex matrix A with arg(or(A)) = 7r/4,

I +j 1 I
A=[1iA 0 1l+ jl

Following Definition 6.2.3 with A = J, M = 12, A = diag(1 + j1,1 + j1) and
J. = J - A, we obtain

ARd 1 , Ald= 10, A1 =J = 01,
0 1 0 100

Apd = (A~d + Ald) 1 / 2 [

The desired phase matrix A8 and amplitude matrix A. are

Ae = tan-(A A Id) = diag[tan-'(1),tan - '(1)] = diag[7r/4, r/4]
and

A= Apd + A, exp(-jAe) =Apd + A,1 diag lexp (-j 4),exp(-j )

v/2- exp-j

Also, the desired real matrix AR and imaginary matrix A1 are

[ (4)(4)]1 (1 -jl)/2

AR = A cos(Ae) = Ap diag cos( , cos =

and

A = AP sin(Ae) = Apiag [sin (),sin = (1

Note that Definition 6.2.1 cannot be applied directly to determine the phase of
A in Example 6.2.2 because arg(o'(A)) = 7r/4. Also, note that the matrices A.
and exp(jAq) commute, o(A,) = o(A)j, o,(A) = arg(o,(A)), u(AR) = Re(ou(A)),
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,(At) = Im(o(A)), and the matrices A,,, A9 , AR and AI contain the modal matrix
of A.

6.3 Computational Method for Determining the Amplitude and Phase
of a Matrix

The determination of the matrices A,, and A9 can be accomplished by finding
the eigenvalues and eigenvectors of the matrix A via high quality algorithms such as
the QR algorithm [54] and LINPACK [50], etc., and by using the definitions shown
in Section 6.2. In this section, a computational method is developed for finding the
matrices A. and A9 without directly involving the eigenvalues and eigenvectors of A
and the preknowledge of the structure of the Jordan matrix of A. The matrix-sign
function [9,26] of A, which preserves the eigenvectors of a complex matrix (which
may be defective), is used as a basis for the development. The (scalar-) sign function
of a complex variable A with Re(A) 0 0 is defined by

+1 when Re(A) > 0
Sign(A) = A/Vp' = ,(6.6)

-1 when Re(A) < 0

where v/' is the principal value of the square root of A2 .

Following the definition in (6.6), the matrix-sign function of the matrix A is
defined as Sign(A) = A( /Ai)-' with Re(o'(A)) $ 0, where the matrix -.V2i is
the principal square root of a matrix A2 . The computational algorithm for finding
Sign(A) can be found in Chapter 4.

It is well-known that the imaginary parts of the eigenvalues of A and the
associated eigenvectors of A are invariant under the horizontal translation of A
on the real axis with a real value -y, that is Im(o(A - -I,)), and A - yI, =
M[(Re(J) - 'yI-) + jlm(J)]M - where 1, is an m x m indentity matrix. When
the real value -y is selected so that Re(o-(A - yI,)) = 0, then the shifted matrix
A - AI 1(= ) contains only imaginary eigenvalues (j,3i,i = 1,2,... ,m) and A,.
Hence, the desired matrix ARd in (6.5) becomes A - Ai. The matrix-sign function
of A is utilized to determine the matrix Al and the desired matrix ARd in (6.5) as
A - Ai. In order to get the desired matrix Ad in (6.5), we multiply the matrix A
by j and repeat the above procedure to compute a new matrix Ai.

Thus, we have

Aid = Ai - jA, (6.7a)

and the desired matrix A1 in (6.5) becomes

A1 = .4 - (ARd + jAId). (6.7b)

An alternative representation of Aid is

AId = -jAId, (6.7c)

where Ald = jAId.
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Hence, the original matrix A can be represented as

A = (ARd + A,) + jAd, (6.7d)

and we have obtained the desired matrices ARd, A, and Aid for use in Definition
6.2.3.

The computaional algorithm for finding Aj(= A - 1i'm) is listed as follows.

Algorithm 6.3.1
Given that A is a complex matrix of dimension m x m with eigenvalues Ai =

ac + /i, i = 1,2,... ,m, 1,il 0 0; -y is a small positive value, -f e g where 9 is an
acceptable error tolerance, find Ai.

Algorithm:

Ao = A - {Re[trace(A)]/n} .I,

I,+ Sign(Ak -71m,

{ etrace'r 2 } 1

trae II,+ Sign(Ak - 'tI)

1,[I- Sign(Ak + -YIm)

= Re race - 2 , A]

trace[Im Sign(Ak + Y)

=k- Ak - -+ [Im + Sign(Ak, - Y m) - Im - Si gn(A k + -YIm-)]

for k =0,1,2,...,
until

trace [Im + Sign(Ak- yIm)] - trace[I,- Sign(A + -I,)] 0,2 1 1 20

where -y, y- and 7 are scalars chosen so that

0 < -y < min{IRe(A)j I A E a'(Ak),Re(A) # 0}.

Iy+ is the arithmetic mean of {Re(A) A E o,(Ak),Re(A) > 0} and -y is the arith-

metic mean of {Re(A) A E a(Ak), Re(A) < 0 }.
The amplitude of A can be represented in terms of ARd, AId and A1 as

AP = (ARd -Ald) '2 A, exp(-jAo) = A4pd + A, exp(-jAo). (6.8)

68

E42



Since all eigenvalues of Apd are positive real values, we can compute Apd via either
the algorithm in [61] or the Newton-Raphson algorithm due to [54].

As we have discussed in Example 6.2.1, the determination of the phase of A
with and/or without prior knowledge of the eigenvalues of A is not a simple matter.
Based on the property of the principal nth root of a matrix shown in Definition
6.1.1, we propose a new method for finding the approximation of Ae as follows.

Rewriting the matrix-valued function in (6.5) gives

A 9 = tan-'(A-Aid)

= tan I(A (-jAId)) = tan-'(-jA-Ard) = tan-'(-jX), (6.9)

where X = A-AId, and oa(X) = {A, = 0 + j(,i3/aj), for i = 1,2,... ,m}. The
matrix-valued function A0 in (6.8) can be represented by an infinte series as

A0 = tan- (-jX) = -j X + -+ - + -- +"
1 3 5 7 .

as I-(X) 5 1, and Re(u(A)) _> 0. (6.10a)

Thus, if jou(X) < 1 and Re(o(A)) > 0, the approximations of A 9 can be obtained
by taking only the first several terms as

Aq _ jX :_ -j X + X -3 .. (6. 10b)

Since not all lo-(X)I are less than or equal to unity and/or Re(o,(A)) _> 0, it is difficult
to obtain Ao via the direct-truncation method. To overcome the above difficulty
and to guarantee the convergence of the infinite series in (6.10a), we determine the

principal 4th root of A (denoted by A( 4)) and the associated matrices A(4) A(4)
• Rd r

and A( 4) as follows,

A (4) 
(4) ((4)

where the matrices A() and Aid can be obtained by Algorithm 6.3.1 having the

matrix A replaced by A (4 ) Thus, the matrix A(4) becomes

( (4))2 + A , (6.11b)

andthephae o , ( 4 ) dnedb (4)
and the phase of A0 denoted by Ae, can be fully represented by an infinite series
as
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A -4 tan-'(-j (A (4) 'A (4)) tan-'( (4)J

-j 1± + -- + -- + -7- + "" - ,() _ 1, and Re(o(A( 4"))) _ 0,

(6.12a)

where X ( A ') Ald . From Definition 6.1.1, we see that all eigenvalues of

A (4), or o'(A(4)), lie inside the sector in the A-plane with sector angles (7r/4, -7r/4);

therefore, the convergence conditions in (6.12a) are always satisfied. Hence, the
approximations of A9 can be obtained by truncating the infinite series in (6.12a) as

The desired matrices A. and A9 in (6.5) can be cbtained as

A, = (A ()) 4 + A, exp(-jAe)

[(A (4) 2 + (A (4)) 2- A, exp(-jAe) (6.13a)

and

A, = 4A (4 ), (6.13b)

(4 (4) 4

where A, = A- (A~d + jA /d)

It is well-known that the Taylor series for tan-'(z) converges too slowly to be
of much use in numerical computation when the argument z is close to unity. For
example, calculating tan-'(0.9) to five significant digits requires the first 29 terms
of the Taylor approximation. A more sophisticated approximation of A9 can be
obtained via the following geometric-series method.

Rewriting (6.12a) yields

A()n n -2 1 n 4- 1 tn4-6

--j 3 + 4..+- n n- 2.  + 4 n+ .1 1L n -- 2 n- 0 -n2

n n-2 i=2 n(1 + 2i

(6.14a)
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The weighting factor of the term ±-1+2i in the infinite series in (6.14a) can be
approximated by the following approximation,

1 1 (6.14b)n n

Thus, we have

4)t+.. 3 + 1^2-n.+2i± 1
3 + n ++' " + - x "( + 2 ) 

= + .:: r,,n + 2) 2_[Ifl( 2 )A (+ )2  ±.]
1 1 1]

n n-

A+ 3 3''1 n +
m 1 2)

for 0,(_1 2 )I < ( 2± ).

Note that t 2 - /(1 + 2/)3 - is a geometric-series and it converges when

10-(Xt
2 )1 < (1 + 2/n), where A (4)1A(4)

Some approximations of A(4) in (6.14c) for n = 1,3,5 are listed below,

j(4) im -±X 2 Y' 3- -- 1 ) (6.14d)

_~x(,,-L± 2 - ,-.7 4)(I, - (6.14e)

Smaller values of 1o(X)I result in better approximations of ,4). Since 1o(X)I <

1, the maximum error will occur when lo(.)I = 1. Let ± in (6.14e) be unity, then

4A (4 ) _j3.13333 (rad). Note that the exact solution of A0 is jir = j3.14159 (rad).
If we compute the principal square root of A(4 ) and use (6.14e), then we obtain

8,,(8) = j3.14157 (rad) which is close to the exact solution.
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The Taylor series of cos (4), sin A(4)) and exp (iA4)), which often give

good approximations, are listed as follows,

A .) [(4')]2 [A(4)] 4 [A(4)] s

COSkA =Im 2! + 4! 6! (6.15a)

s(A( a - 3! ± 5! 7!(61b

and

exp A(4)) = cos(g, 4 ) ) + j sin (A (4)). (6.15c)

To determine cos(Ae) and sin(Ae) from cos4(4)) and sinA(4)), we apply the

following formulas,

cos(nO) = (2cos(O)) - (2cos(O))'2 +n n 1 3 (2 cOs(0))n-4

- 4) ( 2 cos ( ,O) ) 'n - 6 +...} (6.16a)

and

sin(n4O) =sin(O){(2 COS(,O))n1- (n 2 2-S0)-

(n;2 3) (2 cos(O))~~ n-. (6.1 6b)

where 0b = (n)

If the fir9st four dominant terms are used to approximate the infinite series in
(6.15a) and (6.15b), we obtain

cos(Ae) 8 Cos(A ()) 8 (Cos(A,() + Im, (6.16c)

sin(Ae) 4 4sin (A84)) Cos(4) Ae 8(sin (A.)) c(A,4) (6.16d)

Hence, we have
exp(jAe) = cos(Ae) + j sin(Ae). (6.16e)

The maximum error will occur when 0 = 7r. In this case, we shall obtain the
approximations of cos(0), sin(6) and exp(jO) by the above procedure as cos(7r) = 1,
sin(7r) = 0 :-- 4.6 x 10-' and exp(j7r) = -1 -: -1 +j4.6 x 10". The approximations
are quite satisfactory. The procedures for determining the matrices A,, A8, AR and
AI are summarized in the following algorithm.
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Algorithm 6.3.2

Step 1.
Compute the principal qth (q ? 4) root of A, defined as A9), via the algorithms

in (3.9).

Step 2.

Find A(') via Algorithm 6.3.1 having the matrix A replaced by A( q ) to obtain
.A q) and A() via procedures derived in Section 6.3.Rd Id

Step 3.
Determine A,, AP and A9 as follows,

Ap = Apd + A, exp(-jAe) = A + A + Ai exp(-jAe),

where

A,=A- A ) + iAM j q

Ae = qA1 )

.13 -5 VT

A + 3 + 5 +  +

for a(.)j < 1, and Re(o(A(q))) 0

~ -23., 15 ,. -

_j, (i _L±.q2 4 .4)-4 Ij,)-l'
~ JY(I- 1 Y2 ) jY (I. - .iX2 (I -

21 - 0

where

A- ql) -,tjA(q) '

A= Rd ~1J Id)

exp(-jAq) = cos(Ae) - j sin(Ae).

The cos(Ae) and sin( A) can be obtained by using the approximations of the infinite
series in (6.15) and (6.16).

Step 4.
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Determine AR and Al as

AR = Apcos(Ae),
A I = A. sin(Ae).

8.4 Illustrative Example
Consider a defective real matrix A as

01 00

0 0 1 0
A= =MJM- 1,

0 0 0 1

-4 8 -8 4

where

A1  1 0 0 1 0 1 0

0 A1  0 0 A1  1 A2  1

0 A2  1 2,\ 1 2 2A2

0 0 2

A 1 =1+jl and \2 =1-il.

Find
A. the amplitude of A,
A9 the phase of A,

AR the projected real part of A, and
A1 the projected imaginary part of A.

Solution
From Step 1 in Algorithm 6.3.2, we use the algorithm in (3.9) to obtain

0.697246 0.424768 -0.132240 0.026230

-0.104920 0.907085 0.214929 -0.027320
A ( 4 ) =

0.109282 -0.323484 1.125649 0.105646

-0.422587 0.954456 -1.168657 1.548236

It might be interesting to note that o-(A (4 )) = {./ , i rKl, r 2 , r/\2} =
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{1.069554 + j0.2127475, 1.069554 + jO.2127475, 1.069554 - j0.2127475, 1.069554-
jO.2127475}, Re(o(A)) > 0, and IIm(ou(A))/ Re(o(A))j < 1. From Step 2 in Algo-
rithm 6.3.2, we use Algorithm 6.3.1 to obtain

A (4= diag[1.069554, 1.069554, 1.069554, 1.069554]
and

jO.425495 -jO.638243 j0.319121 -jO.106374"

(4)- jO.425495 -jO.425495 jO.212748 -jO.106374

jO.425495 -jO.425495 jO.425495 -jO.212748

jO.850990 -jl.276485 j1.276485 -jO.425495

Note that

'(A ) = {0.2127475, -0.2127475, 0.2127475, -0.2127475} C R.Id.

Thus, we obtain

Apd = [(A4) 2 + (A 4,) 2] 2 = diag[1.414214, 1.414214, 1.414214, 1.414214].

From Step 3, we can compute A9 with q = 4 and A = (A) ) (jA(q) as

"jl.570796 -j2.356194 j1.178097 -jO.392699

A 9  4A( 4 ) -j1.570796 
-jl.570796 jO.785398 -jO.392699

j1.570796 -jl.570796 jl.570796 -jO.785398

j3.141593 -j4.712389 j4.712389 -jl.570796

where

o(Ae) = {0.7853981, -0.7853981, 0.7853981, -0.7853981} C R.

Also, we get

1 -2 1.5 -0.5

2 -3 2 -0.5A=A- [ + Ji )] =

2 -2 1 0

L0 2 -2 1
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and

1.414214 -0.707107 0.707109 -0.353553'

1.414214 -1.414214 2.121320 -0.707109
A, = Apd ± A, exp(-jAe) =

2.828427 -4.242641 4.242641 -0.707109

2.828427 -2.828427 1.414213 1.414214

where

a(Ap) = {1.414214, 1.414214, 1.414214, 1.414214} C R.

From Step 4, we obtain

1 -0.5 0.5 -0.25

1 -1 1.5 -0.5
AR = A. cos(Ae) =

2 -3 3 -0.5

2 -2 1 1
with c-(,AR)= {1,1,1,1} C R, and

jl -jl.5 j0.5 -jo.25

jl -jl jo.5 -jO.5
AI = A.sin(Ae) =

j2 -j3 j3 -j1.5

j6 -j10 j9 -j3

with a(Aj) = {11,1,,-1} C R.

It can be shown that A = AR+jAI = Apexp(jAo), Ap = [A +A}]1 /2 , and A =

tan-(AR1 A1 ) = tan-'(AIAR').
Note that AR # Re(A) = A, AI - Im(A) = 04, Ap # [(Re(A)) 2 4- (Im(A)) 2]1 /2 =

[A2 4 0211/2 = A, and Ae : tan-' (Re(A))-'(Im(A))] = tan-'(A-'0 4 ) = 04.

6.5 Conclusion
The amplitude and phase of a complex matrix and the projected real and imag-

inary parts of the complex matrix have been defined and computational methods
for finding the above matrices have been proposed in this chapter. By utilizing
the important property of the matrix-sign function that the associated matrix-sign
functions of a shifted complex matrix preserve the eigenvectors of the original ma-
trix, the algorithm for finding the principal nth root of a complex matrix has been
employed for computing the amplitude and phase of the original complex matrix.
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The newly developed geometric-series method can be utilized for finding the approx-
imation of the matrix-valued function, tan-'(X), where X is a matrix. Questions
of computational cost have not, however, been considered in any detail. The ap-plications of the developed amplitude and phase of a complex matrix to systems
theory [32] are being investigated.
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Chapter 7

Application of the Principal nth Root Method to
Large-scale Discrete Systems Design

A multi-stage pseudo-continuous-time state-space method is developed for de-
signing large-scale discrete systems, which do not exhibit a two- or multi-time scale
structure explicity. The designed pseudo-continuous-time regulator places the eigen-
values of the closed-loop discrete system within the common region of a circle (con-
centric within the unit circle) and a logarithmic spiral in the complex z-plane, with-
out explicity utilizing the open-loop eigenvalues of the given system. The proposed
method requires the solution of small order Riccati equations only at each stage of
the design. An illustrative example is presented to demonstrate the effectiveness of
the proposed procedures [78].

7.1 Introduction
Physical realizations of engineering systems result, in general, in large-scale

models. In most cases, it is quite impractical to consider the analysis and design
of the large-scale system model itself. Therefore, a necessity arises for decomposing
the original system into decoupled subsystems, each with their own distinct char-
acteristics, so that the resulting model has a completely decoupled multi-time scale
structure. Some of the existing approaches for decomposition of large-scale systems
are aggregation [55], multi-time scales [56] and model analysis [571. However, most
of these appear to be restricted to the continuous-time systems. The corresponding
problem for large-scale discrete-time systems has received very little attention [5e-
60]. Mahmoud et a]. [581 derived a matrix-norm condition for separating large-scale
discrete-time systems into two-time scales without originally assuming the availabil-
ity of such a structure. However, computationally, it might not be always be feasible
to satisfy this condition. Shieh et a]. (53] have developed an algebraic method based
on the matrix-sign function [9] for separating the slow (dominant) modes from the
fast (nondominant) modes (two-time scale structure) of a large-scale multivariable
system (continuous and discrete). The matrix-sign function algorithm has been
used for the following: block-diagonalization and block-triangularization [37] of a
large-scale system, i.e., decomposing the system into parallel and cascaded struc-

78

852



tures; solving non-linear Riccati equations, which often appear in feedback design of
systems based on linear quadratic theory; and model conversions of systems via the
computation of the principal qth root of the system matrix (29,371. Recently, fast
and stable algorithms have been developed for the computation of the matrix-sign
function [29] and for the computation of the principal qth root of a complex matrix
[37] which in turn can be used for discrete-to-continuous model conversion. These
algorithms will be utilized in the development of our multi-stage design procedure
for designing discrete controllers with pole-assignment in a specified region of the
complex z- plane.

The optimal linear quadratic (LQ) design method has several good properties.
For instance, the closed-loop system is stable and has good robustness properties
provided the weighting matrices satisfy certain positivity conditions [62]. The tran-
sient behavior of the closed-loop system is, however, difficult to determine since
there is a complex relation between the weighting matrices and the closed-loop
poles. This implies that the weighting matrices have to be determined through trial
and error. Pole-placement methods have the advantage that the closed-loop poles
can be specified. The drawback is the nonuniqueness of choice of feedback for mul-
tivariable systems. Further, it is too restrictive to place the poles in pre-determined
locations [63], since for nonlinear systems the exact location of the closed-loop
poles might be difficult to attain for each operational condition. Hence, in general,
it would suffice to have the poles placed within a specified region. Also, the re-
gional pole-assignment method is suited for tradeoffs between eigenvalue locations,
actuator-signal magnitudes and requirements of robustness against large parameter
variations, sensor failures, implementation accuracies, gain reduction, etc. [13]. In
this chapter, we consider the common region of a circle and a logarithmic spiral in
the z-plane (Fig. 7.2) for pole-assignment. This is equivalent to the sector region
(hatched) in Fig. 7.1 in the s-plane. It is well-known that if the poles of a system
lie within the above mentioned region(s), then the system responses converge at
appropriate speed and any existing vibrating modes are well-damped.

The problem of designing feedback gains to optimally place all the poles of
a closed-loop system within a specified region was first studied by Anderson and
Moore [62], who used a shifted system matrix to obtain an optimal closed-loop
system with its eigenvalues lying in the open left-hand side of a vertical line on
the negative real axis. Shieh et al. [64,65] extended this idea to optimally place
the poles within a vertical strip as well as a horizontal strip in the left-half plane.
Kawasaki and Shimemura [66] propsed an iterative procedure to place the poles
inside a hyperbola in the left-half plane, which is actually an approximation of the
sector region shown in Fig. 7.1. In [67], a pseudo-continuous-time method has
been developed to place the eigenvalues of a discrete system within the hatched
region of Fig. 7.2. However, it involves the solution of full order Riccati equations,
which could be computationally difficult for large-scale systems. The Luenbeger
transformation, sometimes numerically unstable, is utilized to transform the full
order discrete-time system to its equivalent canonical form so as to determine the
pole-placement discrete-feedback gain. In this chapter, at each stage of the design.
only reduced order Riccati equations need to be solved and also, in most cases, the
transformation to the general canonical forms is avoided.

The material in this chapter is organized as follows: Section 7.2 contains a
review of the results associated with the design of a linear quadratic regulator which
would optimally place the closed-loop eigenvalues of a continuous-time system on or
within the hatched region of Fig. 7.1. In Section 7.3, the method, using the matrix-
sign function, for block -decomposing a large-scale discrete-time system into a multi-
time scale structure is introduced. Then. a brief review of the model-conversion
technqiues is given, following which a pseudo-continuous-time multi-stage design
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procedure is presented for designing large-scale discrete systems decomposed in a
multi-time scale structure, with pole-placement on or within the hatched region
of Fig. 7.2. An illustrative example is given in Section 7.4 to demonstrate the
effectiveness of the proposed design procedure and the conclusions are summarized
in Section 7.5. Some computational algorithms are given in Appendix A.

7.2 Continuous-time Optimal Quadratic Regulators with Pole-place-
ment

Consider the linear controllable continuous-time system described by

i(t) = Ax(t) + Bu(t), x(O), (7.1)

where x(t) and u(t) are the n x 1 state vector and the m x 1 input vector, respectively,
and A and B are constant matrices of appropriate dimensions. Let the quadratic
cost function for the system in (7.1) be

0S= 1(xT(t)Qx(t) + uT (t)Ru(t))dt, (7.2)

where the weighting matrices Q and R are n x n nonnegative-definite and m x m
positive-definite symmetric matrices, respectively. The feedback-control law that
minimizes the performance index in (7.2) is given by [62],

u(t) = -Kx(t) + (t) = -R -IBTPx(t) + f (t), (7.3)

where K is the feedback gain, v:(t) is a reference input and P, a n x n nonnegative-
definite symmetric matrix, is the solution of the Riccati equation,

PBR-lBTp - PA - ATp _ Q = On (7.4)

with (Q, A) detectable. The superscript T and the matrix On denote the transpose
and the n x n null matrix, respectively. Thus, the resulting closed-loop system
becomes

:(t) = (A - BK)x(f) + Bi(t). (7.5)

The eigenvalues of A - BK, denoted by o,(A - BK), lie in the open left-half plane
of the complex 8-plane. Our objective is to determine Q, R and K so that the
closed-loop system in (7.5) has its eigenvalues on or within the hatched region of
Fig. 7.1. The important results along with the design procedure to achieve the
desired design are presented in the following.

Lemma 7.2.1 [62,67]
Let (AB) be the pair of the given open-loop system in (7.1). Also, let h > 0

represent the prescribed degree of relative stability. Then, the eigenvalues of the
closed-loop system A - BR-'BTP lie to the left of the -h vertical line with the
matrix P being the solution of the Riccati equation,

PBR-1BTp - P(A - hI ) - (A - hIn)TP = U,, (7.6)

where the matrix I is an n x n identity matrix. U
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Theorem 7.2.1 [67]
Let the given stable system matrix A E R "' have eigenvalues A- (i =

1,...,n-) lying in the open sector of Fig. 7.1 and the eigenvalues A+ (i = 1,...,n + )

lying outside that sector, with n = n- + n+ .Now, consider the two Riccati equa-
tions,

QBR - BTQ - Q(-A 2 ) - (-A 2 )TQ = On (7.7a)

and

PBR-BTp - PA - ATp - -0. (7.7b)

Then, the closed-loop system,

A, = A - rBK = A - rBR-1 BTp, (7.8)

will enclose the invariant eigenvalues A7 (i = 1,...,n-), and at least one additional
pair of complex conjugate eigenvalues lying in the open sector of Fig. 7.1, for the
constant gain r in (7.8) satisfying

r > max{i1 b +, _ + ac  (7.9)

where a = tr[(BR-'B T p)2 ], b = tr[BR-'B TPA] and c = (1/2) tr[BR-'B TQ. U

Remark 7.2.1
The steady state solutions of the Riccati equations in (7.6) and (7.7) can be

found using the matrix-sign function techniques [9,23], and a brief review of this is
given in the Appendix. U

7.2.1 Continuous-time Design Procedure

Step 1.
Let the given continuous-time system be as in (7.1). Specify h so that the -h

vertical line on the negative real axis would represent the line beyond which the
eigenvalues have to be placed in the sector of Fig. 7.1. Also, assign A0 = A and the
positive-definite matrix R. Set i = 1. If the system is unstable, then solve (7.6) to
obtain the closed-loop system A 1 = A - roBR-BTpo = A - r0 BK 0 , with r0 = 1;
else (stable system) go to Step 2 with A, = A, P0 = 0, and r0 = 0.

Step 2.

Solve (7.7a) for 9i with A := Ai. Check if 1 tr[BR- 'B TQ, ] is zero? If it is
equal to zero, go to Step 4 with j = i; else, continue and go to Step 3. Note that
when 1 tr[BR-'BT Q ] = 0, all eigenvalues of the matrix Ai lie on or within the
open sector of Fig. 7.1.

Step 3.
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Solve (7.7b) for Pi with A := Ai and Q Q,. Then, the constant gain ri can

be evaluated using (7.9). The closed-loop system matrix is

Aj+j = Ai - riBR-'BTp = Ai - rjBKj. (7.10a)

Set i := i + 1, and go to Step 2.

Step 4.

Check if tr [(Aj + hI,,)]+ (sum of the eigenvalues to the right of the vertical
line at -h) is zero? If it is equal to zero, go to Step 5 with Pj+l = 0,, and
rjl = 0; else, solve (7.6) for P+1 with A := Aj and obtain the closed-loop system
A,--rj+IBR-BTPy+ = Aj-r+BKj+±, with ri+l = 1 and K+j - R-1BTPj+.

Stf p 5.
The designed closed-loop system is

j+1

Ao - BR-IBT E rkPk, (7.10b)
k=0

and its eigenvalues lie in the hatched region of Fig. 7.1. Note that the above system
matrix in (7.10b) is equal to the system matrix in (7.5), A - BR- 1 BTP, where 15
is the solution of the Riccati equation in (7.4) with

j
Q = 2h(Po + Pj+1 ) + _(Q, + ArjPBR-1BT P)rj. (7.10c)

i=l

In the above equation, Ar i = ri - 1, and the matrix R is as originally assigned.
Also, the optimal continuous-time regulator can be given as

j+1

u(t) = -(ZriKi)x(t) + i(t) = -Kx(t) + i(t), (7.10d)

where i(t) is any reference input and K is the desired state-feedback gain. U

7.3 Pseudo-continuous-time Pole-placement Regulators
In this section, the block decomposition of a large-scale discrete-time system is

considered first. In this context, the method based on the matrix-sign function [9]
for block-diagonalizing a large-scale discrete system into a multi-time scale struc-
ture is discussed. Then, some of the existing model-conversion methods [28,68] for
transforming a continuous-time (discrete-time) model to an equivalent discrete-time
(continuous-time) model are reviewed. Finally, a pseudo-continuous-time state-
space method for determining pole-placement digital regulators for eigenvalue-
placement in a specific region (Fig. 7.2) is considered.
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7.3.1 Block-diagonalization Via Matrix-sign Function
The definition of and an algorithm to compute the matrix-sign function are

given in the Chapter 4. In the following, the results leading to the decomposition
of a discrete system into a multi-time scale structure are presented.

Lemma 7.3.1 [531
Consider a discrete-time system matrix, G E R.x The mapping h(G) -

(G - pI,)(G + pI) - ', det [G + pIn] 0 0, maps the circle of radius p in the discrete
z-plane onto the imaginary axis of the h(z)-plane and the interior (exterior) of the
circle into the open left-half (open right-half) h(z)-plane. I

Definition 7.3.1 [53]
Let the eigenvalues of a discrete-time stable system matrix, G E 1Z,1 n , be

A,,i = 1,... ,n. The nondominant modes of this system are the modes with 1A11 < p,
where p is a positive real number, while the dominant modes are those having

A ~I > p, where I(.)l represents the absolute value of (.). If the eigenvalues of the
original system are unknown, as in the case of a large-scale system, the poitive real
number p can be chosen as p = I /det (G)f, which is the geomteric mean of the
eigenvalues of G. If the given system G is unstable, then we choose p = 1.

Theorem 7.3.1 [37]
Let C E Rn,'xf and I(a(G)) n f{Pi,i = 0,1,... ,k} = 0, where o-(G) represents

the eigenspectrum of G, pi E 1, i = 0, 1,..., k represent radii of circles concentric
with the unit circle. Let a set of matrix-sign functions (see Chapter 4) be

Sign(,,) (h(G)) ' Sign [(G - piI,,)(G - piI) -1] for i = 0,1,... ,k. (7.11a)

Define

S,=" ind [Sign(+,,_,,,,) (h(G))j E T nx n , 1 < i < k, (7.11b)

where ind(.) represents the collection of the linearly independent column vectors of
(.), and

Sign',_,) (h(G)) 2 [Sign(p,_,) (h(G)) - Sign(,,) (h(G))] (7.11c)

with po = 0, and sign(o) (h(G)) = In. Assume that ni $ 0 for 1 < i < k. Then, we
have

GR = AI-'GM = block diag [GR,GR(k-1),...,GRI], (7.12a)

where Al, is the right block-modal matrix given by

Al,= [SkSk.1, S11, (7.12b)

and

.GRi = SAGSiE r n'' for 1 < i < k. (7.12c)
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St E R ' ,'" is the left inverse of Si and is defined as St - (STSi)-'Sf.

7.3.2 Model Conversions
Consider the system governed by the continuous-time state equation (as in

(7.1)), i.e.,

i(t) = Ax(t) + Bu(t), z(O). (7.13)

If we approximate u(t) as a piecewise input function,

u(t) = u(kT) for kT < t < (k + 1)T, (7.14)

where T is the sampling period, then we can write the equivalent discrete-time
model as

x(k + 1) = G2(k) + Hu(k), z(O), (7.15a)

where

G = exp(AT) and H = [G - I]A-'B. (7.15b)

If the input function u(t) is not a piecewise constant, a better formulation of the
input matrix H can be obtained according to the nature of u(t). In general, the
matrices G and H can be determined exactly from the matrices A and B, and the
input function u(t) in (7.14) using the eigenvalue and eigenvector approach [68].
However, for computational purposes, approximations are required for obtaining G
and H matrices without involving the eigenvalues explicitly. There are a number
of methods available [18] to evaluate approximately G and H given in (7.15). The
simplest one of them is the truncation of the infinite series of exp(AT) (68) which
results in a good approximation when T < 1. A popular method for determining
G and H approximately is the Pade approximation method [28,68]. Some of the
approximations obtained using this method are listed below,

G [I -1AT]'[I, =" G 3  (7.16a)

1 1 1
S[ - - AT+ -- (AT) 2]-'[I. -AT + - (AT)']  G, (7.16b)

2 12 2 1

and

1
H T[I, - 2ATj-' B H3  (7.17a)

11 _B ,

TI, - 1AT + (.4T) 2 ]'B = Hs. (7.17b)
2 12

It can be noted that the matrices G3 in (7.16a) and H3 in (7.17a) correspond to
the popular Tustin approximation (bilinear transformation) [70]. The matrices G5
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and HS, when used with even large sampling periods, provide good approximations.
The use of scaling and squaring method [68] as shown below, along with one of the
above approximations, would result in better approximations,

G = [eAT/"]m, , m is a power of two. (7.18)

Now, given a discrete-time model as in (7.15), an equivalent continuous-time model
in (7.13) can be obtained by using the following equations,

1
A = y In (G), and B = A[G - I,]-'H. (7.19)

As before, the matrix A can be obtained from its discrete equivalent G exactly by
using the eigenvalue and eigenvector approach. It can also be obtained approxi-
mately by truncating the infinite power series of the matrix-logarithm function In(
G), subject to certain convergence conditions. Shieh et al. [28] have proposed a
direct-truncation method and a matrix continued-fraction method for determining
A from G. The commonly used approximation for I In (G), obtained using the
matrix continued-fraction method, is

A4 = 1In (G) -2 R[I, - R2][I - R21- 1,  (7.20)

where R = [G - I][G + I,]-'. The matrix-series approximations obtained from
truncation or continued fractions converge when Re (oa(G)) > 0, where o-(G) rep-
resents the eigenvalues of G. In general, the eigenvalues of the matrix G are not
available, and they do not always lie in the right-half of the complex z-plane. In
order to satisfy the convergence condition, the principal qth root of the matrix G
[28,29,61] can be made use of. Shieh et al. [29] and Tsai et al. [61] have recently de-
veloped a fast and stable algorithm for computing the principal qth root of a general
complex matrix. This is listed in Chapter 3. The eigenvalues of I lie in the right-
half of the complex z-plane, i.e., Re (o('v'G)) > 0, for q > 2. Therefore, instead of
G the principal qth root of G can be used in determining an approximation for A.
In this case, the matrix equation (7.19) becomes

A in (G) = qIn (i-). (7.21)
=T T

As a result, the matrix R in equation (7.20) would become R := ['G- +,,VG

I,]-', and the constant factor 2/T would be replaced by 2q/T. The condition for
the convergence of the power series of In (.vY_) becomes arg (o'(G)) - ,r and det
(G) 0 0, which is a much less restrictive condition.

7.3.3 Pseudo-continuous-time Multi-stage Design Procedure
Let the given large-scale discrete-time system with appropriate sampling period

T be

x(k + 1) = Ox(k) 4- ftu(k), x(O). (7.22)
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Also, let the dimension of the system be n and the number of inputs be m. The
objective is to first decompose the system into a multi-time scale structure, using
techniques based on the matrix-sign function, then design each decomposed subsys-
tem using model conversions and with eigenvalue placement in the hatched region
of Fig. 7.2, and finally determine the digital regulator for the whole large-scale
system.

Step 1.
Set i = 1, G := G, H := A and the feedback gain R = 0,,,,.

Step 2.
Now, specify a positive real scalar pi (see Definition 7.3.1) and find a trans-

formation matrix M(' ) such that the matrix G can be block-diagonalized into the
following form,

G:= (Ml(i))-GAl() = block diag [GcGj, (7 .23a)

where Gc E l(-,)x(n-,) represents a block, which has already been designed or
does not need to be designed, and the matrices di E Rfli xf-, and Oi E V.'i x ft, with
ni = ii + fii, contain eigenvalues less than and greater than (in absolute value) pi,
respectively. The transformation matrix Ag(j) is given by

M(') =block diag [If-,l,,(S2,S1)], (7.23b)

where Si E lZn'f t and S2 E lnxfti are as defined in (7.11) with respect to the
matrix-sign function of the matrix Gi, where Gi := block diag [6i, G], i > 1 and

Gi := G, i = 1. Using M( ) , transform H as

H := (All')-'H = [H/ ,2HT,.r]T. (7.23c)

The dimensions of the matrices Hc, Hi and fti are (n - ni) x m, fii x m and fi, x m,
respectively. Accumulate the transformations in M( MAi-1)M )

Step 3.
The subsystem considered for design at this stage is (0i, H,). Transform the

above discrete-time system into an equivalent continuous-time system, (Ai, 3i),
using the principal qth root techniques [29.61] and apply the design procedure given
in Section 7.2 to design this continuous-time system. Let the immmediate optimal
closed-loop continuous-time system be (A,,, B ).

Step 4.
Transform the designed continuous-time system into an equivalent discrete-

time system, (CC, 1 f), using techniques discussed earlier in this section.

Step 5.
If fti is invertible (nonsingular), then the discrete-time feedback gain for this

design stage is given by
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ki = (1)-i (0, - ,i). (7.24)

The dimension of kri is m x ni. When AH is non-square, then the feedback gain
Ri can be found through appropriate coordinate transformations [691 and other
manipulations [65,701.

Step 6.

Update the feedback gain Kf and the system matrix G, respectively, as

AT := + [O,nx(nt,),Ai](Ii))- 1 ,  (7.25)

G:G-H[Omx(,._,),Ai]=0,, (_,) ,-] , (7.26)

where C. = block diag [Gc, G1i, Iti = -[HT', jTI]Tk and the dimensions of the
matrices di and Ti are (n - fi) x (n - fii) and (n - nii) x nii, respectively.

Step 7.
Block-diagonalize the partially designed system G and move the last block of

G in (7.26) (viz., G,) to the first, via a transformation matrix M2 which is given
as

[L. (f)' f_. (7.27a)= I O 0 x,,(,,_t,) 2 . i,,-f,, -Li I"

The matrix Li (E jZ(n- ,)xft) can be solved from the following Lyapunov equation
[37], [58]-[60],

iL, - L1Ge, 4 "V' = 0(n-ft,)Xft,. (7.27b)

The transformed system is

G (Mi)IG I Of' x(n-ft,)] (7 .28a)2 2 O1(,n-ft)xf G i

H := (Alh'))-'H -[ i, (Hi - Lifl)TiT (7.28b)

where , = [HT,fHtT]T. Accumulate the transformations in Ai: M()M(1)

Step 8.
Set i i + 1. If i > k (k is the number of time-scales), then stop; else, go to

Step 2.

The digital regulator is

u(k) = -Kx(k) + r(k) (7.29)
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with r(k) as any reference input, would place the eigenvalues of the system in
(7.22) within the hatched region of Fig. 7.2. Also, when the sampling period T is
sufficiently small, the digital regulator can be considered as a suboptimal discrete-
time regulator because of the approximations'involved in the inputs and the various
model conversions, although the equivalent continuous-time regulator is optimal. U

7.4 Illustrative Example
Consider an unstable discrete-time system in (7.22) with

-0.357 -0.657 -0.146 0.119 -0.0411
1.675 -0.460 0.335 0.000 0.167

- -0.075 0.146 0.360 -0.593 0.009
0.376 0.263 0.518 0.280 0.016

-0.882 0.252 -0.176 0.000 -0.070]

(7.30a)

0.689 0.283
0.240 -0.387

S- -0.339 0.332
0.063 0.020

-0.126 0.2681

and or(G) = {-0.46 ± jl.005, 0.3276 ± jO.5103, 0.0179} for T = 0.5.
The location of the poles of G in the discrete z-plane are shown in Fig. 7.2

and it is seen that except for the one at 0.0179, which is to be kept invariant,
the rest of the poles lie outside the region of interest. The objective is to design
the discrete-time system in (7.30a) with multi-time scale decomposition and pole-
assignment within the specified region in the z-plane. The pseudo-continuous-time
design procedure given in Section 7.3.3 will be used to achieve the desired design.

Since the given system is unstable, the first step is to block decompose the
system into its stable and unstable parts. Assign p, = 1 (represents the unit circle).
The transformation matrix M I) , found using the matrix-sign function technique
given in Section 7.3.1, which block-diagonalizes G is given by

.m(' [S, , s]

-0.0464 -0.0551 -0.2090\ , 1.0463 0 .0 5 5 1N 1
0.03-0.0002 O.UUV.J -0.0003 1001

0.2325 0.0124 1.0464 -0.2325 -0.0124 (7.30b)
0.4189 0.0222 0.0837 -0.4189 -0.0222
0.0002 0.5269 0.0000 -0.0002 -0.5269]

where S2 E 7 53 and S1 E I52 can be found from (7.11). The transformed
matrices, using M, corresponding to G and R in (7 .30a), are

G := (MO))-AIGll) = block diag [GIG]
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[ /0.5827 -0.0002 1.1480
-0.0002 0.0179 -0.0001 02x3

-0.2835 0.0000 0.0726) ( 7 .31a)

03x2 (-0.4601 -0.6027
L k2 1.6744 -0.4601

H "(M('))-'fl H,

[ 0.8464 0.3328)

0.0007 0.1218
= -0.3739 0.3208 /(7.31b)

0.6087 0.3761'
0.2400 -0.3870 J

The eigenspectra of the diagonal blocks in (7.31a) are o-(d) = {0.3276 + jO.5103,
0.0179} and o'(O) = {-0.46 ± jl.005}. The unstable subsystem (01 l7 1 ) is to be
designed at this stage. The equivalent continuous-time subsystem is found using
the principal qth root of G, (q = 4) (the algorithm in Chapter 3). Note that since
the eigenvalues of 01 are in the right-half z-plane, the well-known bilinear trans-
formation for model conversion will not converge. The continuous-time subsystem
is

[0.1996 -2.4000 0.9993 -0.00031 (7.32a)

[6.6679 0.1997J 1 -1.6667 -1.6648J

with o-(A) {0.1996 ± 4.0006}. Assign h = 1.1, i.e., the eigenvalues of the closed-
loop system should lie to the left the vertical line at -1.1 on the negative real axis
in the a-plane, and R = 12. To achieve the necessary design, we follow the steps of
the continuous-time design procedure in Section 7.2.1. Let A = A, and B = B 1 .
Solving the Riccati equation in (7.6) with (A + h12 , B), we have

[" 2.250 -0.0381 K R...Dpo [2.311 -0.8871 73b
= [-0.038 0.509 ' K- = 0.062 -0.8481 (7.32b)

A1 = A - BKo= [-2.110 -1.5151 (7.32c)
10.623 -2.690 ]

and oa(A 1) {-2.3996 ±j4.0006}. Note that I(Re o,(A))I > 1.1. Now, solving the
Riccati equation in (7.7a) with (-A',B), we have

31.469 1.284 and (1/2) tr [BR-BQ 1 ] = 20.49 5 0. (7.32d)
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Solving the Riccati equation in (7.7b) with (A1 , B) and Q1, we obtain

[,=4.093 0.0731 K RI'BTP = [3.968 -0.471]1 73e
[0.073 0.326 ' -0.123 -0.543 "

From (7.9), the constant gain r, = 0.6385. Therefore, the closed-loop system is

A2 = A41 - rl BK [4.641 -1.2141

1  14.714 -3.768J -0,, (7.32f)

and oa(A 2 ) = {-4.2046±j4.2046}. Note that all the eigenvalues lie on the boundary
of the hatched region in Fig. 7.1, tr [(A2 +hI 2 )+ ] = 0 and (1/2) tr [BR-IBT0

2] = 0,
where Q2 solved from (7.7a) with respect to (-A2, B). This verifies that the desired
design has been achieved for the subsystem in (7.32a). Let us denote this closed-loop
subsystem by A, = A1 - R 1 (K0 + ri K1 ). Now, we transform this continuous-time
system into its equivalent discrete-time system, 0, 1 , given by

0 :, = [-0.0729 -0.0304 (7.33a)-0.3686 -0.0,510J " 73a

The eigenspectrum corresponding to this system matrix is a(0,1) = f-0.0619 ±
jO.1053}. Note that this complex conjugate pair is inside the hatched region of Fig.
7.2. The discrete-time feedback gain for this stage is

() ) = 1.047 -1.1521 (7.33b)K1 =R1) (¢ -ea) -2.725 0.343

Using this feedback gain, the updated system is given by

G:=G-H[02 , 3 ,i= [j IV,

0.827 -00002 1.1480) (0.0204 0.8610)-0.0002 0.0179 -0.0001 0.31 -001
- -0.2835 0.0000 0.0726 / 031 -. 40 . (7.33c)

02x(3-0.0729 -0.0304)
02x3 0.3686 -0.0510

The updated feedback gain f- is

gf :=/R"-+ 0K 3± R ]0M ))- l

1.047 -1.152 0.209 0.000 0.1041 (,.33d)
[-2.725 0.343 -0.544 0.000 -0.272J
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The solution of the Lyapunov equation in (7.27b) for i = 1 and fi = 2 is

2.893 -2.0291
L, -0.449 0.787|. (7.33e)

-2.322 0.293]

Thus the transformation matrix M21) that block-diagonalizes G in (7.33c) and swaps
the blocks Oc, and (c1 is given by

.M [ 0 1] (7.33f)2 12 02X3

The transformed system is now given by

G (Ml 1l)-'GMl 1 ) 
- [ Ge1  02X3] (7.34a)L 03x2 01 I

and

0.6087 0.3761 1
0.2400 -0.3870

H -=(A2l))-1H - -0.4280 -1.5404) (7.34b)
0.0853 0.5952

(0.9688 1.3074/]

The accumulated transformation becomes A 1 ) :=MI)MA ').

Now, we proceed to the second stage of design which consists of designing
the stable dominant poles of the original discrete-time system in (7.30a). Choose
P2 = e-hT = 0. 5 7 6 9 5 . The transformation matrix -II which block-diagonalizes the
block d 1 in (7.33c) while preserving the block Cc, is given by (as in (7.23b))

0) 12 02x3 (7.34c)= 3x2 (S2,9SO

with

[S2, S,] 1 0, (734d)

where S2 E RZ3X2 and S1 E 1Z3X1 can be found from (7.11) with respect to 6 1 and
P2. The transformed matrices G and H are

CG- := block diag [GcA,G 2 ]
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(-0.0729 -0.0304 02x1 OX2[ 0.3686 -0.0510
= 01x2 ( 0.0179 ) 01 X2 (7.35a)

I02X2 0 (0.58271.1480
L02x2 -0.2835 0.0726

(0.6087 _0.3761 1[ 0.2400 -0.3870)

- (0.0847 0.5943) (7.35b)
(-0.4279 -1.1540)

0.9687 1.3073)]

Again, the accumulated transformation becomes 1(2) := A1 ). The subsys-
tern to be designed in this stage is (G 2 ,Hf12 ). Following the same procedures as in
the first stage, we obtained the designed discrete subsystem as

2= [0.4272 1.12921 (7.35c)-0.1513 -0.1608]

with 0(Gc2) = {0.1332 ± jO.2905}. Again, note that these eigenvalues are within
the hatched region of Fig. 7.2. The discrete-time feedback gain for this stage is

r 0.0000 0.41171 (7.35d)

K2 = (a2)-/(¢2 - 2j = [-0.1008 -0.1265]

The updated feedback gain is

ff := ff + [03,2, 12( ) -

[ 2.000 -1.274 0.812 -0.229 0.199 (7.35e)
= -2.828 0.175 -0.671 -0.181 -0.272]

The eigenvalues of G - H[0 2 x3 , K 2], with G and H as in (7.35a) and (7.35b),
are {-0.0619.j0.1053, 0.1332+j0.2905, 0.0179}. Note that all of them are within
the hatched region of Fig. 7.2, and the nondominant eigenvalue of the open-loop
system at 0.0179 is not designed. Therefore, the closed-loop discrete-time system is

=G-H0k
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-0.9374 0.1709 -0.5157 0.3282 -0.1013'
0.0997 -0.0864 -0.1197 -0.0151 0.0139]

- 1.5432 -0.3440 0.8582 -0.6105 0.1669 (7.36a)
0.3063 0.3397 0.4803 0.2981 0.0089]
0.1284 0.0445 0.1062 0.0197 0.0280J

The pseudo-continuous-time pole-placement regulator is given by

u(k) = -kz(k) + r(k), (7.36b)

where Kf is the total feedback gain as in (7.35e) and r(k) is any reference input.

7.5 Conclusion
The design of large-scale discrete-time systems, which do not exhibit a two-

or multi-time scale structure explicitly, has been considered in this chapter. It has
been shown that a large-scale discrete system can be decomposed into a completely
decoupled multi-time scale structure (block-diagonalization) using the techniques
based on the matrix-sign function, without explicitly utilizing the open-loop eigen-
values of the given system. A pseudo-continuous-time state-space method, based on
model conversions, has been developed for methodically designing each subsystem
(corresponding to one-time scale), with eigenvalue-placement in a desired region of
the complex z-plane. The model conversions and various other computations can
be achieved using fast and stable algorithms based on the principal qth root of
the system matrix and the matrix-sign functions. When the sampling period T is
sufficiently small, the designed discrete controller is suboptimal while its associated
continuous-time controller is optimal with respect to certain weighting matrices.
The proposed method requires the solution of Riccati equations of small order only
at each stage of the design. Transformation to general canonical form so as to de-
termine the discrete feedback gain can be avoided in most cases. The developed
state-space method can be used to design multivariable digital control systems,
for determining the state-feedback pole-placement controllers; whereas, the exist-
ing pseudo-continuous-time frequency-domain method [71] can only be applied to
design single-variable digital control systems for obtaining the cascaded controllers.
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Chapter 8
Conclusions

A complete study of the principal nth root of a complex matrix and associated
matrix-valued functions is presented in this research monograph. This includes the
development of techniques to compute the principal nth root of a matrix, study of
associated matrix-valued functions, and their applications to mathematical sciences
and control systems.

In Chapter 2, the generalized continued-fraction method developed for finding
the nth roots of real numbers has been extended to determine the principal nth
roots of complex matrices. Computational algorithms with high order convergence
rates have been established for determination of the principal nth root and the
associated pth power of the principal nth root of a complex matrix. The global
convergence properties of the proposed algorithms have been investigated from the
viewpoint of systems theory.

Rapidly convergent and more stable recursive algorithms for finding the princi-
pal nth root of a matrix have been developed in Chapter 3. The developed recursive
algorithms can be applied to an ill-conditioned matrix containing large and small
eigenvalues. By means of a perturbation analysis with suitable assumptions, it is
shown that the proposed recursive algorithms are numerically more stable than the
algorithms in [20,21,261. The analysis of absolute numerical stability of the pro-
posed algorithms has not been done in this research monograph. The developed
algorithms will enhance the capabilities of the existing computational algorithms
such as the principal nth root algorithm, the matrix-sign algorithm and the matrix-
sector algorithm which in turn can be applied to many control-system problems.

In Chapter 4, the matrix-sector function of A has been generalized to the
matrix-sector function of g(A). Based on the computationally fast and numerically
stable algorithms for computing the principal nth root of a matrix, fast and stable
algorithms for computing the matrix-sector function and the generalized matrix-
sector function have beed developed. The generalized matrix-sector function of A
has been utilized to carry out the separation of matrix eigenvalues relative to a
sector, circle and a sector of a circle in the A-plane. Also, the generalized ma-
trix sector function of A has been employed for block-diagonalization and block-
triangularization of the system matrix, which are useful in developing applications
to mathematical science [32] and control-system problems [31].

New computational methods, which utilize the direct-truncation method, the
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matrix continued-fraction method, and the geometrix-series method together with
the principal qth root of a discrete-time system matrix have been presented in
Chapter 5 for quick modeling of the equivalent continuous-time state equations from
the discrete-time state equations. The proposed method is useful for identifying a
continuous-time system based on the observation of sampled input-output data and
for design of sampled-data control systems.

The amplitude and phase of a complex matrix and the projected real and imag-
inary parts of the complex matrix have been defined and computational methods for
finding the above matrices have been proposed in Chapter 6. By utilizing the impor-
tant property of the matrix-sign function that the associated matrix-sign functions
of a shifted complex matrix preserve the eigenvectors of the original matrix, the
algorithm for finding the principal nth root of a complex matrix has been employed
for computing the amplitude and phase of the original complex matrix. The newly
developed geometric-series method can be utilized for finding the approximation of
the matrix-valued function, tan-'(X), where X is a matrix. Questions of compu-
tational cost have not, however, been considered in any detail. The applications of
the developed amplitude and phase of a complex matrix to systems theory [32J are
being investigated.

The design of large-scale discrete-time systems, which do not exhibit a two-
or multi-time scale structure explicitly, has been considered in Chapter 7. It has
been shown that a large-scale discrete system can be decomposed into a completely
decoupled multi-time scale structure (block-diagonalization) using the techniques
based on the matrix-sign function, without explicitly utilizing the open-loop eigen-
values of the given system. A pseudo-continuous-time state-space method, based on
model conversions, has been developed for methodically designing each subsystem
(corresponding to one-time scale), with eigenvalue-placement in a desired region of
the complex z-plane. The model conversions and various other computations can
be achieved using fast and stable algorithms based on the principal qth root of
the system matrix and the matrix-sign functions. When the sampling period T is
sufficiently small, the designed discrete controller is suboptimal while its associated
continuous-time controller is optimal with respect to certain weighting matrices.
The proposed method requires the solution of Riccati equations of small order only
at each stage of the design. Transformation to general canonical form so as to de-
termine the discrete feedback gain can be avoided in most cases. The developed
state-space method can be used to design multivariable digital control systems,
for determining the state-feedback pole-placement controllers; whereas, the exist-
ing pseudo-continuous-time frequency-domain method [711 can only be applied to
design single-variable digital control systems for obtaining the cascaded controllers.
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Appendix A

Solution of Riccati Equation Via Matrix-sign Function

The Riccati equation for the controllable continuous-time system (A, B) with
weighting matrices Q( _ 0) and R(> 0) is given by

PBR-BTp - ATp - PA - Q = 0. (A.la)

The steady state solution of this Riccati equation, P( 0) with (Q, A) detectable,
can be easily computed using the properties of the matrix-sign function [9,23].
Consider the Hamiltonian associated with the given system,

[ A -BR-'BT (A.b)
H = QA T  I A

The following algorithm can be utilized to obtain the solution P,

Hk+l = (1/2) [Hk + Hk-'], Ho = H, and

lim Hk = Sign(H). (A.2a)

k--

Let
Sign + (H) (1/2)[I2n + Sign(H)]. (A.2b)

Construct a block-modal matrix X as

X = [ind (Sign + (H)), -d (12 - Sign + (H))] - [I2 X2 (A.3a)

where ind(.) represents the collection of the linearly independent column vectors of
(.). Then, we have

P = X 22 (X 12 )-  X 21(Xll) -
1 '. (A.3b)

To alleviate the problems of computing H 1 , the Hamiltonian can be transformed

into a symmetric form as follows [23],

k = JH= [n -I,] H- A BR (A.4a)In On I -B R-1 "
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Then, the algorithm in (A.2) becomes

Hk+l = (1/2) [Ik + jH- 'j], fto = JH, and

lir (-JHk) = Sign(H). (A.4b)

The computation of the inverse of the symmetric matrix #k is much simpler than
computing the inverse of Hk. The Riccati solution P is again given by (A.3).
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The HK Singular Value Decomposition

L. Magnus Ewerbring and Franklin T. Luk

School of Electrical Engineering
Phillips Hall
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Abstract

In this paper we consider a generalization of the singular value decompo-
sition (SVD) that involves three matrices. We show how the decomposition
can be used in important applications such as weighted least squares, and
present a new computational procedure based on an implicit SVD method for
a triple matrix product. Our algorithm is well suited for parallel implemen-
tation.

Keywords: Singular value decomposition, weighted least squares, Jacobi
methods, parallel computing

1. Introduction

In this paper we develop a new algorithm for computing the HK-singular
value decomposition (HK-SVD). The paper is organized as follows. Section 1
presents a description of the problem, its relation to the generalized singular
value decomposition (GSVD), and an application in which the HK-SVD pro-
vides a powerful solution. What follow in Section 2 are an implicit algorithm
for computing the SVD of a product of three matrices and a new HK-SVD
algorithm in which the implicit method is embedded. A summary and some
final remarks conclude the paper in Section 3.

Notations. We make the standard choice to represent column vectors
by bold lower case roman characters, matrices by upper case roman charac-
ters, and scalars by either greek letters or roman letters with subscripts, as
elements in vectors and matrices. In addition, the following notations are
used:
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0, p-- an n x p block matrix with all zero elements

IP -+ a p-dimensional identity matrix

Ai'+1-4 a 2 x 2 matrix formed by intersecting rows and columns i and i+1
of A

1.1. HK-SVD. Given three matrices A (n xp), H (n x n) and K
(p x p), where n >_ p and both H and K are symmetric positive definite, we
wish to find two transformations Y and Z such that

Y- 1AZ=D , (1.1)

where

yTHY = I, and ZTKZ = Ip

and D (n x p) is diagonal ( Van Loan [10] ). We say that the matrices Y and Z
are H-orthogonal and K-orthogonal, respectively.

A straightforward way [10] to compute the HK-SVD is to first determine
the Cholesky factorizations:

H = RRH ,K = RRK , (1.2)

where RH and RK are upper triangular matrices, and then find an SVD of the
product RHARi :

UT(RHAR )V = D , (1.3)

where U and V are orthogonal, and D is diagonal. The two transformations Y
and Z are given by

Y=RiIU , and Z=RRJV (1.4)

We will present a new algorithm for finding the HK-SVD via equation (1.3)
without any explicit matrix inversions or product formations.

1.2. Weighted Least Squares. The HK-SVD is useful in finding the
solution to a weighted least squares problem:
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IAx-bIIH=min s.t. IIXIIK=min . (1.5)

The M-vector norm is defined by

IIYl -YTMY

where M denotes a symmetric and positive definite matrix. We may reformu-
late the problem as

IlAx-bIH =IIRH(Ax-b)11 2 =llRHAR7 (RKx)-RHbl 2 =min ,

subject to

IIRKX112=min

The procedure is to compute an SVD:

UT(RHAR7)V =D , (1.6)

and solve the simple problem:

lJDw-f112 =min s.t. 1wI1 2 =min , (1.7)

where

w=VTRKx=Z-lx and f=UTRHb=y-lb

with Y and Z as defined in (1.4). We see that the HK-SVD provides an easy
solution to the weighted least squares problem (1.5).

1.3 Previous Work. Our new algorithm is based on an implicit GSVD
method (Paige [9] and Luk [5]), which computes an SVD of a p x p product
AB-1, without explicitly forming the product and without inverting B.

The SVD of a matrix product finds applications in many areas. For
instance, it can be used in control theory to compute system balancing
transformations (cf. Moore [8], Heath et al. [3] and Laub et al. [4]). That is,
we find a contragradient transformation P to diagonalize two given sym-

metric positive definite matrices A and B:

pTAp=p-1Bp-T=A

The transformation thus solves the generalized eigenvalue problem:
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ABx = X 2x

One way to find P is to compute the Cholesky decomposition of B, i.e.,
B = RLRB, and then calculate an eigenvalue decomposition of the symmetric
matrix

uT(RBARI)U = A2  (1.8)

We get the transformation as

P=RWUA- 1 / 2

Despite the similarity of equation (1.8) and (1.3), since A is symmetric posi-
tive definite here, we may compute the Cholesky decomposition of A = R3RA
and find an SVD Of RARL [3], [4]. For equation (1.3), however, A is not sym-
metric, and so we must consider an SVD of three matrices even when H = K.

2. New Algorithm

In this section we derive a new algorithm for finding the HK-SVD via
equation (1.3). First, we consider the special product:

EFG- 1 , (2.1)

where E, F and G are all p > p and upper triangular. We assume further
that G- 1 exists. The special case of (2.1) where E = IP reduces to the GSVD
problem for the two matrices F and G.

In a Jacobi SVD algorithm we solve a sequence of 2 x 2 problems by
finding rotation parameters to annihilate off-diagonal elements. An impor-
tant issue is the order of elimination. Luk [6] chooses the odd -even ordering
and outer-rotations for an efficient parallel implementation. The conver-
gence of this scheme has been proved (Luk and Park [7]), and the algorithm
implemented on a massively parallel machine (Ewerbring and Luk [1], [2]).
We define the odd and even index sets by

Odd-set --+ (1, 3, 5,. p- 1
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Even-set -- {2, 4, 6,"-,p- 2

assuming that p is even. For an oddp, we define

Odd-set -( {1,3,5,.,p-2)

Even-set - {2 , 4, 6, , p - ).

2.1. GSVD. The GSVD of F and G is computed via an SVD of the
matrix

C =FG-1 . (2.2)

The procedure [5], [9] determines orthogonal transformations U, V and Q so

that the two resulting matrices UTFQ and VTGQ have parallel rows, i.e.,

UTFQ =D. VTGQ,

where D is some diagonal matrix. We can easily check that
UT(FG- l)V =D , (2.3)

which is just an SVD of C.

The special advantage of Luk's approach [5] is that it preserves the
upper triangular structure of both F and G. Indeed, the two matrices G- 1

and C are also upper triangular. Consider a transformation in the (i,i+1)
plane, and denote by M/"' the 2 x 2 matrix formed by intersecting rows

i, i+1 and columns i, i +I of a p xp matrix M. Being triangular, the two

matrices G and C satisfy these special relations:
(G -1)i, i+l = (Gi,i+')- 1 ,

ci, i+l = fi, i+l(G-1)i,i+l "

The nonsingularity of G0'+1 follows trivially from the nonsingularity and the
triangularity of G. We have thus proved that

Ci,i+1 = Fi,i+l(Gi+l)- , (2.4)

the key condition for an implicit computation of an SVD of C. So, let U i'i+l

and V ' i,+l denote rotations for a 2 x 2 SVD•
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(Uii+l)TCi,i+lVi,i+l S,

where S is diagonal. We have

(Uii+I)TFi' i+l - S. (Vi'i+l)TGi'i+,

i.e., the two rows of (Uii+l)TF J +l and (Vii+l )TGi,i+ are parallel. Hence we
can find one single rotation, say Q' -+1, that will triangularize both 2 x 2
matrices Fi ',+' and G',+l [5], [9].

How do these transformations affect the p x p upper triangular matrices
F and G? We have

F- UTt, + F Qjj+j v

G TVl,+l G Qi,+ v

where Ui,i+l, Vi,i+ and Qij+l denote appropriate p xp rotations in the
i, i +1)-plane. Note that both p x p matrices UT.'+,F and VT'i+,G have only

one non-zero subdiagonal element each, in the (i+1, i)-position. These two
extraneous elements are annihilated by the same rotation Qj,j+1 .

2.2. Algorithm PSVD. We extend the GSVD algorithm to the general
case where E * Ip. First, consider the product (2.1). Define

C=EFG- 1  and H=EF , (2.5)

even though we never intend to explicitly form either product. Once again,
focus on a 2 x 2 problem that lies on the diagonal:

C ','+' = Ei,'i+1Fi0+1(G i,i+1)- 1
=CHi, +(G+1)- 1 .

We find two rotations, say Ui',i+l and Vi,i+l, to diagonalize the matrix C i,i+l.

The rotations are applied to H iL,+l and Gi ' +' :

Gi i+ l  (Vi,i+I)TGi,i+l

From previous discussions we learn that we can find one rotation Qii+1 to
restore both matrices to triangular forms:
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Hi,i +l ( (i,i+l)THi, i+lQi,i +l ,

Gi,i + l . (vi,i+l )TGi,i+lQi,i+l .

Naturally, we want to rotate E' i +' and F ' i,+l individually, and not their pro-
duct H i ' + l :

E i,i + 1 ( . (u i, +1)TE i, i +1 ,

Fi,i+l ...Fi, i+Qi,i +1 .

The fact that H i'i '+ stays upper triangular means that another single rota-
tion W','i + can be applied to maintain the triangularity of both E i '+l and

E i  4- (ui'i+1)TEii+l1Vi' i+l , (2.6)

and

Fiji +1 (i,i +1 )TFi,i +1 Q i,i +1

We summarize our algorithm as follows.

Algorithm PSVD.

do until convergence

alternate between i e Odd-set and Even-set
begin

( Uj,j+l and Vii+1 are "outer rotations" }
determine Ui,i+1 and Vi, j+1 to
annihilate ci,i+l and ci +!,i

E UT,,+,E; G Vi+- G;

U -- UUij+1; V - i, i+;

find Qij+j to zero out hi+l,i andgi+1 ,j

F +-FQi, i+; G -GQi,i+I;

find Wi,i+I to zero out ei+l,i and f+1,i;

E <- EWi,i+l; F +- wTi+IF;

end. 0
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By convergence we mean that the matrix C has converged to a diagonal form
D = diag(y), with

yi = eii ii/gii

The matrices of left and right singular vectors are given by U and V, respec-
tively.

2.3. Algorithm HK-SVD. As described in (1.3), for computing the

HK-SVD, we need to find an SVD of the matrix product

C = RHAR 1 . (2.7)

To make use of the implicit algorithms of Section 2.2, we must reduce C to a
product of upper triangular matrices. To accomplish this, compute the QR
decomposition (QRD) of A:

A=QARA

where

RA = O(n-p) x p

and iA denotes a p x p upper triangular matrix. We get

RHAR7 = (RHQA)RARk.

Another QRD is performed, this time on the matrix product RHQA:

RHQA = QARH (2.8)

Thus, the problem has been reduced to that of finding an SVD of the product

C= RRAR , (2.9)

where Rj /is n x n, RA is n x p and RK is p x p. So, we need to handle the dif-
ferent dimensions. For n > p, the last n - p rows and columns of Rjj can be
discarded because the last n - p rows of RA are zero. Hence, set

^ T *

where
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IP
P 0(n-p) x

and compute the diagonalization of the product EFG- 1 using Algorithm
PSVD. Finally, set the n x n matrix of left singular vectors to be

Qk[ OU px OP x(n-P)jQ O (n -p)×xp In -p I I

to account for the QRD of(2.8). We thus obtain our new algorithm:

Algorithm HK-SVD.

compute Cholesky factorizations:

H = RTRH; K = RJRK;

compute QR decomposition of A:

A =QARA;

transform the matrix RH:

RH * RHQA;

compute QR decomposition of RH:

RH=QjfRjf;

set

use Algorithm PSVD to find an SVD of EFG- 1. 0

3. Final Remarks

This paper presents an implicit algorithm for computing the SVD of a
product of three matrices. The algorithm plays an integral role in the new
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method in Section 2.3 for computing the HK-SVD. The applicability of the
algorithm was exemplified in the solution to a weighted least squares prob-
lem, which, for instance, arises in a specific aircraft problem.

All problems in the paper call for the diagonalization of a product of
three, not necessarily symmetric, matrices. The extension of our methods to a
product of more matrices is straightforward. Although we assume that the
inverses in (2.1) exist, our algorithms can easily be adapted for rank
deficiency by using matrix adjoints (cf. Paige [9]).

Our new algorithm was simulated on a VAX 11/750 using MATLAB. It
is well for a massively parallel computer; Ewerbring and Luk [1], [2],
presented implementations of the SVD and GSVD methods described in this
paper on the 65,536 processor Connection Machine.

Acknowledgements

This work was supported in part by the SDIO/IST and managed by the Army
Research Office under contract DAAL 03-86-KO109. L.M. Ewerbring ack-
nowledges travel support by the Mathematical Sciences Institute of Cornell
University.

References

[1] L. M. Ewerbring and F. T. Luk, Computing the singular value decompo-
sition on the Connection Machine, Proc. Internat. Workshop on SVD and
Signal Processing, Les Houches, France 1987.

[2] L. M. Ewerbring and F. T. Luk, Almost linear time matrix operations on
the Connection Machine, Proc. SPIE, High Speed Computing, vol. 880
(1988), pp. 198-205.

[3] M.T. Heath, A.J. Laub, C.C. Paige and R.C. Ward, Computing the singu-
lar value decomposition of a product of two matrices, SIAM J. Sci. Sta-
tist. Comput., vol. 7 (1986), pp. 1147-1159.

[4] A. J. Laub, M. T. Heath, C. C. Paige and R. C. Ward, Computation of sys-
tem balancing transformations and other applications of simultaneous

890



diagonalization algorithms, IEEE Trans. Automatic Control, vol. AC-32,
No. 2 (1987), pp. 115-122.

[5] F.T. Luk, A parallel algorithm for computing the generalized singular
value decomposition, J. Parallel Distrib. Comput., vol. 2 (1985), pp. 250-
260.

[6] F.T. Luk, A triangular processor array for computing singular values,
Lin. Alg. Applics., vol. 77, (1986), pp. 259-273.

[7] F.T. Luk and H. Park, A proof of convergence for two parallel Jacobi SVD
algorithms, IEEE Trans. Computers, vol. C-37 (1988), to appear.

[8] B. Moore, Principal component analysis in linear systems: controllability,
observability and model reduction, IEEE Trans. Automatic Control, vol.
AC-26, No. 1. (1981), pp. 17-32.

[9] C.C. Paige, Computing the generalized singular value decomposition,
SIAM J. Sci. Statist. Comput., vol. 7 (1986), pp. 1126-1146.

[10] C.F. Van Loan, Generalizing the singular value decomposition, SIAM J.
Numer. Anal., vol. 13 (1976), pp. 76-83.

8q1



THE ADMISSIBILITY OF A GENERALIZATION OF A

James W. Lark, III and Chelsea C. White, III
Department of Sysuems Engineering
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Charlottesville, Virginia 22901

ABSTRACT. We present an algorithm, called A G , for finding the least-
cost path from start node to goal node set in an OR-graph, where arc costs
are scalar-valued and the cost of each path is the sum of the concomitant
arc costs. Search is guided by a set, H, of real-valued functions on the

node set. If H - {h:1sh) for given function 1, then AG essentially becomes

A If H is bounded, then successors of the newly expanded node may not be
placed on OPEN. We address the issue of admissibility. A new concept, the
completeness of a heuristic set with respect to a path in the graph, is
introduced.

,
INTRODUCTION. In this paper, we present a generalization of A , which

G G*
we call AG . The key characteristic that distinguishes A from A is that

knowledge used to guide AG is represented by a set of heuristic functions,
or a heuristic set, rather than by a single heuristic function (or more
precisely, a specially structured heuristic set induced by a single
heuristic function). A key result of this characteristic is that it may not
be necessary to place on OPEN all the successor nodes of a node chosen for
expansion. A possible implication of this result is that the OPEN set will
tend to be smaller and hence easier to store and to sort.

There are at least three reasons for allowing knowledge to be
represented by a set of heuristic functions in order to guide search.
First, more information about the perfect heuristic may be available than
just a lower bound, and this information may be such that it can be
represented by set inclusion. Second, it seems reasonable that more (or
better) information for search guidance would not degrade the quality of the
search procedure, although this may not always be true in general (White and
Harringtcn, 1980). Third, upper and lower bound information has proven very
useful in action elimination algorithms for Markov decision processes (e.g.,
Puterman and Shin, 1982), a problem formulation of particular interest to
us.

The outline of this paper and its results follow the basic outline of
Section 3.1 (Pearl, 1984). We begin by defining the problem of interest and

Acknowledgement: This research has been supported by U.S. Army Research
Office and the National Science Foundation.
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setting terminology. The A algorithm is presented in Section 2.
Termination and the completeness of a heuristic set, a new concept, are the
topics of Section 3. Section 4 is concerned with admissibility.

Future research will involve comparing AG with different admissible

G
heuristic sets and investigating the computational significance of A

1. PROBLEM DEFINITION and TERMINOLOGY

Let N represent the countable set of nodes in the OR graph. The set A
C N x N is the set of directed arcs. Node s E N represents the start node;
the finite set r C N, having generic element -f, represents the goal node
set. We let G - (N,A,s,r) designate the graph under consideration.

Let SCS: N - 2N be the successor set function, where SCS(n) represents
the set of all nodes n' e N such that (n,n') E A. We assume throughout that
SCS(n) is finite for all n E N.

A path P - (nI ... ,nK) is a sequence of nodes such that nk+I e SCS(nk)

for all k - 1,...,K-1. Let P(n,S) be the set of all finite length, acyclic
paths from n E N to S C N. Notationally, if S is a singleton, i.e., if S -
{n'), then we will write P(n,S) - P(n,n').

The function c: A - R is the arc cost function; the cost assigned to a
path is assumed to be the sum of the concomitant arc costs. Throughout, we
assume that there is a constant 6 > 0 such that 6 s c(a) for all a E A.
Notationally, we will often replace c(a) with c(n,n'), where a - (n,n').

The problem objective is to find a minimum cost path in P(s,r). Let

P (n,S) C P(n,S) represent the set of all optimal, i.e., minimal cost, paths

from n E N to S C N. Thus, we seek a path in P (s,r).

Heuristic information will prove useful in meeting our objective. We
assume that this information is represented in set form. Specifically, let
H be the set of all real-valued functions on N. We call a given subset H C

H the heuristic set. We will assume that search for a path in P (s,r) is
guided by a given heuristic set. This is in contrast to the heuristic

,
search procedure A , which assumes that search is guided by a given
heuristic function, i.e., an element, rather than a subset, of H.

Several functions in H will prove to be important in developments to
follow. Let g be the current path cost function, where g(n) represents the

cost of the current path from s to n and where g(s) - 0. The function g is

such that g (n) represents the minimal cost of paths going from s to n. For
given heuristic set H, let 1. the lower bound function of H, be defined as
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2(n) - inf(h(n):hEH) for all n E N. Define f as f(n) - g(n) + 2(n) for all

n E N. Also, let h represent the perfect heuristic function, which must
satisfy the following dynamic program:

h (n) - min (c(n,n') + h (n'):n'ESCS(n))
*
h (y) - 0, - e r

h (n) - if SCS(n) is empty.

We let C represent the minimal cost of paths going from s to r. Thus, C -

*

h (s). Note that our objective is to determine a path in P(s,r) having cost

C

Let U: A x 2H _ R be called the node expansion function, which we
define as:

U(n,n',H) - sup {h(n) - h(n'):heH).

G2.( THE A- ALGORITHM

We now state the A algorithm:

0.1 Initialization. Set OPEN equal to the set containing only the start
node and set CLOSED to the empty set.

1.1  If OPEN is empty, then terminate with failure.

2.1 Remove from OPEN and place on CLOSED a node n for which f(n) - g(n) +
2(n) is minimum with respect to all nodes in OPEN.

3. If n is a goal node, then trace through backpointers from n to s to
determine the solution path and terminate successfully.

4. If n is not a goal node, generate its successors. If n has no
successors, then go to Step 5. Otherwise, for all successors n' of n,
ompute U(n,n',H).

a. If n' ( OPEN u CLOSED and U(n,n',H) > c(n,n'), then add n' to OPEN

and add a backpointer from n' to n.

b. If n' e OPEN u CLOSED and U(n,n',H) < c(n,n'), then go to Step 5.

c. If n' e OPEN u CLOSED and U(n,n',H) : c(n,n'), then direct its
pointers along the path yielding the lowest g(n') and put n' on
OPEN if pointer adjustment was required.
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d. If n' E OPEN u CLOSED and U(n,n',H) < c(n,n'), then go to Step 5.

5. Increment the iteration counter and go to Step 1.

G*Step 4b represents the major new feature of AG , relative to A

Justification for this step is as follows. Assume h E H, a condition on H
that we will later refer to as admissibility. Then, U(n,n',H) < c(n,n')

implies that h (n) - h (n') < c(n,n'), or equivalently

h (n) < c(n,n') + h (n').

*
It then follows from the dynamic programming equation describing h that n'
is not the minimizing element in SCS(n) and hence n' is not on an optimal

path from n to r. Thus, in searching for a path in P (s,r), it will never
be useful to consider a path in P(s,r) containing arc (n,n').

The heuristic function providing guidance to A is said to be
admissible if it represents a lower bound on the perfect heuristic. It is
therefore natural to think of heuristic functions and lower bound functions
as being analogous. Let H - (hEH:21h) be the heuristic set induced by the

lower bound function 2. Then U(n,n',H) ? c(n,n') for all (n,n') E A, and AG

*
essentially becomes A Thus, we consider the concept of a heuristic set to

be a generalization of the concept of a heuristic function and hence that AG

is a generalization of A

3. TERMINATION and COMPLETENESS

Assumptions on SCS and c insure the following result. Proof is a

straightforward adaptation of the concomitant result for A (see pp. 76-77
in Pearl, 1984).

THEOREM 1. AG terminates after a finite number of iterations.

We now present a sufficient condition for AG to be complete, i.e., to
terminate with a path in P(s,r), assuming P(s,r) is not empty.

DEFINITION. The heuristic set H is complete with respect to the path
(n I , .. ,nK ) if U(nk,nk+l,H) ! c(nk,nk+,) for all k - i....K-I.
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Let H be the heuristic set induced by the bounded lower bound function
1. Then U(n,n',H) c(n,n °) for all (n,n') e A, and hence the heuristic set
induced by any bounded lower bound function is trivially complete with
respect to any path in the graph. We remark that this fact eliminates the

need to define complete heuristic functions for the A algorithm.

THEOREM 2. For infinite graph G, assume that the heuristic set H is

complete with respect to a path in P(s,r). Then AG is complete on G.

Proof: The completeness of H insures that at least one node from at least
one solution path is always OPEN prior to termination. The result then

follows as for A ; e.g., see the proof of Theorem 1, p. 77, in Pearl, 1984.

0

4. ADMISSIBILITY

We now present a condition which will insure that AG  is admissible,

. AG * *
i.e., A will terminate with a path in P (sm), assuming P (s,r) is
nonempty.

DEFINITION: The heuristic set H is admissible if h E H.

Note that if H is admissible, then 2 < h where I is the lower bound
function induced by H. An important relationship between heuristic set
admissibility and completeness is now presented.

LEMMA 1. Assume that the heuristic set H is admissible. Then H is complete

with respect to every path in P (sr).

Proof: Let (n ...... nK ) E P (s,F). Then, there exists an h e H, namely h
such that:

h (nk) - c(nk,nk+l) + h (nk+)

for all k - 1,..., K - 1, and hence

h (nk) - h (nk+I ) - c(nknk+I )
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for all k - 1,.. ..K - 1. Therefore, for all k - 1, ....K - 1, U(nk,nk+l,H)

c(nknk+l). C

Let PC (n,S,H) be the set of all paths in P(n,S) for which H is
complete. The foliowing result is then a corollary to Lemma 1.

LEMMA 2. Assume H is admissible. Then, P *(s) P C(s,r,H) r P(sm).

We observe that if H - (heH:2:h) for some bounded heuristic 1, then

pC (s,r,H) - P(sr), and if H contains only the perfect heuristic, then

P C(s,r,H) - P (s,r).

LEMMA 3. Let H be complete with respect to path P E P (s,n"), where n" is
not necessarily a node in r.

(a) If there exists a shallowest node, n', on P in OPEN, then g(n') -

* a
g (n'). Furthermore, all ancestors, n , of n' on P are on CLOSED and

are such that g(na) - g*(n a).

(b) If there does not exist a shallowest node on P in OPEN, then all nodes,

n, on P are in CLOSED and are such that g(n) - g (n).

Lemma 3 indicates that AG has already found the optimal pointer-path to

n' (along the path in P (s,n")) and that this pointer-path will remain
unaltered throughout the search.

Proof: By induction. We will show that for all iterations, either

i. there exists a shallowest node, n', on P in OPEN, g(n') - g (n'), and

all ancestors of n' on P, n a , are on CLOSED and are such that g(n a )

g (n a), or

ii. there does not exist a shallowest node on P in OPEN.

We begin by proving an intermediate result: Assume P n OPEN - 4; then

P C CLOSED and g(n) - g (n) for all n e P. Note that P n) OPEN - 4 cannot

hold initially, since AG places s on OPEN at the beginning of iteration 1.
Observe, however, that at the beginning of iteration 2, s e CLOSED and g(s)
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- g (s) - 0. More generally, assume n r P n CLOSED, n is an ancestor of n",
*

and that g(n) - g (n). Since n is on CLOSED, n has been expanded. Since H
is complete with respect to P, n' E P n SCS(n) is placed on OPEN u CLOSED.
But since P r) OPEN - 4, n' E CLOSED. The optimality of P implies g(n') -

g(n) + c(n,n') - g (n) + c(n,n') - g (n'). The intermediate result then
follows by induction.

Consider iteration 1. Node s is the shallowest node on OPEN, g(s) -

g (s) - 0, and s has no ancestors. So the result holds at iteration 1.

Assume the result holds at iteration k. If there does not exist a
shallowest node on P in OPEN, then by the above intermediate result, all
nodes on P are on CLOSED and are not candidates for pointer path
readjustment. Therefore, all nodes on P will remain on CLOSED, and hence
there will continue to be no shallowest node on P n OPEN. Thus the result
holds for iteration k + 1.

Assume there does exist a shallowest node n r P in OPEN such that g(n)
*aa

- g*(n). Furthermore, assume all ancestors n of n on P are such that na E

CLOSED and g(na) - g*(n a). If n is not expanded, n remains the shallowest
node on P n OPEN, since all ancestors of n are not candidates for pointer
path readjustment. Hence, the result holds for iteration k + 1.

Assume n is expanded and n is an ancestor of n". (If n - n", then the
result holds trivially.) Since H is complete with respect to P, n' E P n
SCS(n) will be placed on OPEN U CLOSED. Prior to the expansion of n, three
cases are possible: (i) n' e OPEN u CLOSED, (ii) n'E OPEN, and (iii) n' e
CLOSED.

Assume n' ( OPEN U CLOSED. Then n' will be placed on OPEN, becoming

the new shallowest node on OPEN, and g(n') - g(n) + c(n,n') - g (n'). Hence
the result holds for iteration k + 1.

Assume n' e OPEN. Then n' will remain on OPEN, becoming the new
shallowest node on OPEN, and pointer path readjustment may have to take

*

place in order to insure that g(n') - g (n'). Hence the result holds for
iteration k + 1.

Assume n' E CLOSED. If pointer path readjustment is required, n' is
placed on OPEN, becoming the new shallowest node on OPEN, and g(n') -

g (n'). Hence the result holds for iteration k + 1.

If n' e CLOSED and pointer path readjustment is not required, then n'

remains on CLOSED and g(n') - g (n'). Since n' was on CLOSED, it has been
expanded. Use of induction, the completeness of H with respect to P, the
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finite length of P, and the optimality of P guarantees either (a) or (8),

where:

d d *(d )

(a) There is a descendant of n' on P r) OPEN, n , such that g(n d g*(n d

d +
and each ancestor of n on P that is a descendent of n', n , is such

that g(n+ ) - g (n+). Hence the result holds for iteration k + 1.

+ g+ )

() Each descendent of n' on P, n , is on CLOSED and is such that g(n +

g (n+). Hence P n OPEN - 4, and the result holds for iteration k + I.
0

The following example indicates that if H is not complete with respect

to a path in P (s,n"), n" not necessarily in r, then Lemma 3 may not hold,
even if H is admissible.

EXAMPLE 1: Let N - (s,nI .... n 5,) and r - (y}. The sets SCS(-), the cost

structure c(.,.), and the resulting function h*(.), are given in Table 1.
Lt hh* * h-4

Let H- (h,h ), where h(n) - h (n) for all n E N except n4. Let h(n4 ) - 0.

We note that H is admissible. Let OPENk and CLOSEDk be the OPEN and CLOSED

G
sets at the beginning of the kth iteration of AG . Then:

OPENI - {s) CLOSED1 - 0

OPEN2 - (n I  CLOSED 2 - (s)

OPEN3 - (n3) CLOSED 3 - (s,nI1

OPEN 4  (n4 ,n5  CLOSED4 - {s,nln 3).

Node n2 was not placed on OPEN during iteration I because U(s,n 2,H) <

c(s,n 2 ). We note that

g(n4) - c(s,n1 ) + c(n1,n3) + c(n3,n4) - 3,

whereas

g (n4) - c(s,n 2 ) + c(n2,n4 ) - 2. 0
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s n 1,n 2  9/2
n1 n 3 ) 7/2

n3 (n 4,n 5  5/2
n4 (n) 3

7V 0

\ n' c (n, n')
n i n 1 n2 n 3 n4 n 5 'y

s 1 1
n 11

"21
n3 1 3/2

n 4 2
n"5

TABLE 1: Data for Example 1.
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LEMMA 4. Assume H is admissible and that path P E P (s). Then at any

time before AG terminates, there exists an OPEN node n' on P such that g(n')

* *

- g (n') and f(n') _ C

Proof: The admissibility of H and Lemma I imply that H is complete with
respect to path P. Assume there does not exist a node n' E P n OPEN. Then
by Lemma 3b, all nodes on P are on CLOSED, including a goal node. But a

goal node on CLOSED implies that AG has terminated, which is a
contradiction. Therefore, there exists a shallowest node, n', on P in OPEN.

By Lemma 3a, g(n') - g (n'). Since P e P (s,r) and since H is admissible,

* * * *
f(n') - g(n') + 2(n') - g (n') + 1(n') < g (n') + h (n') 5 C . 0

THEOREM 3. Assume the heuristic set H is admissible. Then, AG  is
admissible.

Proof: Assume there exists an optimal path P E P (s,r) with cost C Since
H is admissible, then by Lemma 1 H is complete with respect to P. By Lemma

4, at any time before AG terminates there exists a node n' E OPEN n P such

* * G
that g(n') - g (n') and f(n') < C . Therefore, A cannot terminate until it
has expanded a goal node 7.

At the time AG selects 7 for expansion, there exists a node n' E OPEN n

P such that g(n') - g (n') and f(n') : C . Thus, for AG to choose 7 for

expansion, f(7) : f(n') 5 C*. Hence, f(7) - C , and so A has found an
optimal path. 0
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A QR Factorization Algorithm with Controlled Local
Pivoting*t

Christian H. Bischof

Department of Computer Science
Cornell University

Ithaca, New York 14853

Abstract. This paper presents a new parallel version of the Householder algorithm with
column pivoting for computing the QR factorization of a matrix. In contrast to the standard
algorithm we employ a local pivoting scheme that allows for efficient implementation of
the algorithm on a parallel machine, in particular one with a distributed architecture. An
inexpensive but reliable incremental condition estimator is used to control the selection of
pivot columns by obtaining cheap estimates for the smallest singular value of the currently
created upper triangular matrix R. Numerical experiments show that the local pivoting
strategy behaves about as well as the traditional global pivoting strategy. They also show
the advantages of incorporating the controlled pivoting strategy into the traditional QR

algorithm to guard against the known pathological cases.

1 Introduction

One of the standard problems in numerical linear algebra is the solution of the linear
least squares problem

nin IIAz - b112  (1)

where A is an m x n (m > n) matrix. The common way to approach this problem [12,17,19]
is via a QR factorization

AP = QR (2)

of A. Here P is an n x n permutation matrix, Q is an m x n matrix with orthogonal columns
(i.e. QTQ = In) and R is an upper triangular n x n matrix. If A is a dense matrix, Q is

'This work was supported by the U.S. Army Research Office through the Mathematical Science Institute
of Cornell University, by the Office of Naval Research under contract N00014-83-K-0640 and by NSF contract
CCR 86-02310.

t A preliminary version of this paper was published in the proceedings of the 3rd International Conference
on Supercomputing, Steve and Lana Karthashev, Eds.
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/

usually computed by a sequence of Householder Tranformations

H = I - 2uuT.

Choosing

l Z + sign(z1 ) IzIl 2 e 1 (II: + Sign(ZI) JIM112 el 112(3

we can reduce a given vector z to a multiple of the canonical unit vector el since

(I - 2 uuT) z = -sign(zl) I11 a-2el.

If A has full rank, we can avoid exchanging columns when computing the QR factorization,
i.e. P in (2) will be the identity. If the rank of A is not known, we can employ column
pivoting [3]. The idea is to choose as next column always the one that has the highest
residual with respect to the subspace spanned by the columns that were selected before. The
hope is that in the resulting QR factorization (2) of A the ill-conditioning of A will reveal
itself by a small trailing subblock of R: if a, > > ...2> aa, are the singular values of A
and we partition R into

(Ri R0 R12) (4)

with an r x r lower right hand block R22 then it is easy to show [12, page 19] that

off._,+l (A4) :< 1IR22112.-

While there are counterexamples (see section 5) where the column pivoting strategy fails to
reveal ill-conditioning of A, it works well in practice.

Another alternative is to compute the Singular Value Decomposition (SVD)

A = UEVT (5)

of A. Here U and V are orthogonal matrices whose columns are the left- and right-singular
vectors of A, respectively. E = diag(or) contains the singular values of A. The SVD is at
least twice as expensive to compute as the QR factorization and for that reason the QR
factorization with column pivoting is usually preferred.

There is also a middle path between QR factorization and SVD. As was pointed out
originally in [11] we can use the singular vector corresponding to the smallest singular value
to find a permutation P that will guarantee a small r,, if ar(A) is small. Chan [4] and
Foster [9] extend this idea to higher dimensions. Their idea is to first compute any QR
factorization of A and then "peel off" the small singular values of R one after the other by
computing an appropriate singular vectors at each step. Let us from now on assume that A
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has r small singular values and that there is a well-defined gap between a,-, and a.-,+l.
It is shown in [11] that a well-defined gap is necessary to make a sensible decision on the
numerical rank of A. Then Chan proves that if r is not too large his algorithm will compute
a "rank-revealing QR factorization" in the sense that R22 in (4) is guaranteed to be small.

On a single processor the Householder QR factorization without pivoting requires 0(mn2)
flops, column pivoting requires an additional n 2 flops and the rank-revealing QR algorithm
requires an additional 3rn 2 flops on average [4]. So the computational complexity of these
algorithms is comparable on a single-processor machine.

The situation is quite different on a multiprocessor machine especially if it is based on
a distributed architecture. The Householder QR algorithm without pivoting can be very
efficiently parallelized simply by pipelining the computation [1,20]. So one processor can still
be busy finishing a previous update while another already computes the next Householder
vector. The introduction of column pivoting makes pipelining impossible since all processors
have to synchronize to select the next pivot column. Hence the Householder QR algorithm
essentially proceeds in a lockstep fashion which results in a serious loss of efficiency on
machines that previously could profit from the pipelining.

In Chan's algorithm the steps after the initial QR factorization are hard to parallelize.
For each of the r small singular values of A, the algorithm computes an approximate singular
vector via inverse iteration. On average this requires two iteration steps [4] and hence the
solution of four triangular equation systems per small singular value. Although much progress
has been made recently in solving triangular equation systems on distributed architectures [7,
14, 13, 18] this problem can by no means be parallelized as efficiently as the inital QR
factorization. In addition the permutation deduced from the singular vector destroys the
upper triangular shape of R which then has to be restored by a sequence of Givens rotations.
Again that is essentially a sequential process that is hard to parallelize [7]. Apart from their
sequential nature, an inherent difficulty in parallelizing the equation solving and QR update
steps is that the computational work is of the same order of magnitude as the amount of
data it involves. That is we have to perform 0(n 2 ) flops using 0(n 2) data. Since R is
distributed throughout the system it is hard to mask the communication overhead with the
little arithmetic work to be performed. So the post-processing of R can end up being a good
part of the overall computation time on a parallel machine.

In this paper we suggest a new QR decomposition algorithm that avoids these penalties
and can be efficiently parallelized. By using a local pivoting strategy we are able to pipeline
the computation and at the same time identify the set of columns of A responsible for its ill-
conditioning. In section 2 we outline the pipelined Householder QR algorithm and motivate
the local pivoting strategy. Section 3 introduces a condition estimator that allows us to
monitor the numerical soundness of the local pivoting strategy and presents numerical results
showing its robustness. Section 4 combines these ideas into an effective parallel algorithm
for determining the numerical rank of A and thus solving the linear least squares problem.
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Numerical results obtained by simulating the parallel algorithm are presented in section 5.
We summarize our results and outline possible directions of future research in section 6.

2 The Householder QR Algorithm with Local Column Pivoting

The Householder QR algorithm without pivoting processes the columns of A in their
natural order from left to right. If we have a parallel machine, it is natural to group the
processors into a logical ring and deal out columns in a round-robin fashion. This technique
staggers the computation across the processors and guarantees a load balanced computation.
It allows simple static assignment of data to processors and is for the most part synchronized
by the flow of data between processors. Due to these attractive characteristics, the pipelining
technique has been widely used [10,13,161. If special vector hardware can be exploited, several
Householder matrices can be bundled together by using the WY factorization [2,211 to arrive
at a block pipelined algorithm [1].

In contrast the QR algorithms with traditional column pivoting at each step chooses the
column that has the highest residual with respect to the subspace spanned by the columns
already selected. This residual is easy to compute and can be updated cheaply as new columns
are selected [8]. But in the parallel setting, the selection of the pivot column introduces a
synchronisation point. Each processor can easily choose its local candidate pivot column by
considering only the columns that are assigned to it. Choosing the global pivot column .,I
the other hand requires that each processor either makes its local pivot information knowr, co
all other processors or that a designated processor collects all the local pivot informations. So
global pivoting essentially forces the program into a lockstep mode that may severly curtail
performance.

The easiest way out of this dilemma is to forgo global pivoting altogether and content
oneself with local pivoting. A simplified version of the resulting algorithm for a ring of
processors is given in Figure 1. We distribute columns of A to processors in a round-robin
fashion. To be precise, let us assume that we have p processors proco,.. . , procql1 and that
aj is the jth column of A. Then processor proci receives columns aj where

i = (j - I)modp.

This is commonly referred to as the column wrap mapping. The array C is local to each
processor and contains the colsk columns assigned to processor pro4(-iT1 colsA, = n) . pl t
and Pght designate the left and right neighbour of prock, respectively.

u +- genhh(z)

returns u as defined by (3) and

A - apphh(u, A)
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processor PrrOCk

lent 4-- 0; {counter for HH vectors generated in procl,)
gent +- 0; {counter for HH vectors generated globally)
foreach i E {1, .. ., Coia,) do

permj +- (k + 1) + (i - l)p; { wrap mapping}
resi '- IIe(:,i)112;

end foreach
if (k = 0) then {determine first pivot column}

lent +- gent +- 1 ;
determine first pivot column, send it it prigh and
update all other columns as shown in main loop below.

end if
while (lent < cols,) do (main loop}

receive u from pi./t ; gent +- gent + 1;
if (u not generated by p,.dgh) then send u to p ight end if
if (k = gcnt modp) then { my turn to generate next HH vector }

lent*-- lent + 1;
{ complete enough of H(u) update to determine next pivot column }

z 4- C(gcnt: m, lent: colji.)T u;
e(gcnt + 1, lent: col,) 4-- c(gcnt + 1, lent: cols,) - 2 u(2: m - gent + 1) z;

resi +- Vres - C(gent, i)2, i E {lent, ... , olSh}

Let pvt E (lent, ... , cos,} be such that respg is maximal
{ guarded pivoting strategy will be inserted here }

c(gcnt:m, pvt) 4- c(gcnt:m, pvt) - 2u(l) zT;
fi 4- genhh(C(gent+ I :m, pvt)); gent 4- gcnt + 1;
if (gent < n) then send fi to p,.ig/ end if
c(gent: m, lent:pvt - 1) +- e(gent: m, lent: pvt - 1) - 2 u(2: m - gcnt + 2)z T ;

{ complete H(u) update }
e(gcnt:m,pvt+1: ColSe) --e(gent: m,pvt+1: eolsi,)-2 u(2:m-gent+2)zT ;

{ complete H(fi) update )
c(:,pvt) --. e(:, lent) ;permij, 4-+ permn,, ; respt 4--res-, ;
e(gcnt: m, lent + 1 : colsi) - apphh( i, c(gent, lent + 1 : clsk);

else { apply H(u) update }
c(gent: rn, lent + 1 : colas) +- apphh(u, C(gnt : m, lent + 1 : Cok));

end if

rei - res? - c(gcnt, j)2, i E (lent + 1, .... colsh)

end while

Figure 1: The Pipelined QR Aigorithm with Local Pivoting
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returns H(u) A. The vector perm is used to store the permutation matrix. If perm(i) = 1,
then the lth column of A has been permuted into the ith position. The vector res contains
the residuals that the columns not yet chosen have with respect to the other columns already
selected. To save space, "H'I" is used as an abbreviation for "Householder".

It is worth pointing out that a processor that has to generate a new pivot column com-
pletes only as much of the previous Householder update as is necessary to update res and to
determine the next pivot column. This is important since we want to avoid that other nodes
are idle waiting for a new Householder vector to arrive.

The problem with the strictly local pivoting strategy is obviously reliability. As a patho-
logical example, assume that all columns in processor 1 are nearly equal. As a result, pro-
cessor 1 will make bad choices after it has generated the very first Householder vector. The
resulting upper triangular matrix R will be very rl-conditioned but will not necessarily have
a small lower right hand block. So in order for the local pivoting strategy to be reliable, we
have to guard against choosing nearly dependent pivot columns.

3 An Incremental Estimator for the Smallest Singular Value of a Triangular
Matrix

To guard against choosing "bad" pivot columns, we have to monitor the smallest singular
value o',,(Ri) where Ri is the leading i x i upper triangular matrix generated after applying
i Householder transformations to A. The exact computation of ,min(Ri) by inverse iteration
for example is too expensive, especially since a good order-of-magnitude estimate suffices for
our purposes.

A common idea underlying condition estimators [5,6] is to exploit the implication

Rz = d 1 R - R 1112 _ IIRd112  -ll112
O'mn(R) j1dJ12  j~dI!2

by generating a large norm solution x to a moderately sized right hand side d and then to
use

&min(R) : - IdIZ12

as an estimate for o' ..,,,(R). The hope is that z will be an approximate singular vector
corresponding to the smallest singular value and that as a consequence &.,,,in(R) will not be
too much of an over-estimate of o'0in(R). Our choice of algorithms for an condition estimator
is severely restricted by the fact that it is not feasible to access the previously generated R
when we want to decide on the suitability of a new pivot column. To be more precise, given
a good estimate r,in(R) defined by a large norm solution x to Rz = d and a new column
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v ) of R, we want to obtain a large norm solution y to

R' y= (R Y)o - Y d

wiihout accessing R again. None of the condition estimators surveyed by Higham [151 has
that property, but the two-norm condition estimator suggested by Cline, Conn and Van
Loan [5] can be modified to conform to those restrictions. The idea then is the following:

Given z such that RTz = d with 11dI12 = 1, find s := sin p and c := cos , such that IIY112 is

maximized where y = ( solves

( R T 7 ) Y = c "(6)

We here exploit the fact that R' and RT' have identical singular values. An easy calculation
shows that maximizing I Y112 is equivalent to maximizing

1(O) = - 2(sc (7)

where
a=vTz and 2 zTz+a 2 -1.

Taking derivatives in (7) and setting 17 = 0/(2a) we find two possible solutions:

1
31,2=Sl'2 :V/i-+ I,2

where

IAI,2 = 7 1 2 .

The corresponding cosine values are

Cl, 2 = S1,2j/A,2.

To choose between the two possibilites, we compute 4(s) and 4(s2) and choose the sine/cosine
pair that results in the greater value for 4. For the special case a = 0 we obtain c, = 1, s =
0 and c2 = 0 s2 = 1. The new approximate singular vector y as defined by (6) is then given
by setting

z := sz and.- -- s

7
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The resulting estimate for the smallest singular value u,,,(R') of R' is

IIYI12

From this description it is clear that this condition estimator satisfies our algorithmic con-
straints. Given a current Ri we only need to save the current solution z and its norm 1zI12
to arrive at an estimate for o, Um(Ri+ ). Furthermore the calculation is inexpensive. For a
k x k matrix Ri we only need 2k flops to arrive at an estimate for 0,i,(R,+i). So altogether
it costs only n2 flops to run this condition estimator alongside the generation of an n x n
triangular matrix.

To assess the accuracy of our condition estimator, we performed the suite of tests sug-
gested by Higham [15]. Three different types of test matrices are employed. In each test,
upper triangular matrices R were generated by computing the QR factorization of various
n x n matrices A for n = 10, 25,50 both with and without column pivoting.

Test1 (see Table 1): The elements of A were chosen as random numbers from the uniform
distribution on [- 1, 1]. Fifty matrices were generated for each n. As observed by Higham, this
type of matrix usually is well-conditioned. Over the whole test the minimum, maximum and
average values of the two-norm condition number 2(A) = a,/o, were 21, 1.4-104 and 2.0.103

respectively.
Test2(see Tables 2 and 3) and Test 3: In these tests we used random matrices A with

preassigned singular value distributions ji). Random orthogonal matrices U and V were
generated using the method of Stewart [22] and then A was formed as in (5). For each value
of n and each singular value distribution, fifty matrices were generated by choosing different
matrices U and V. For test 2 we chose the exponential distribution

i =a' , l<i<n

where a is determined by 2(A). For test 3, we chose the sharp-break distribution

1a, = f= ' f=o,- I > On - 2(A )"

The figures given in Tables 1-3 are the ratios

& n()ni(R> 1

The first number in each pair is the maximum ratio over the fifty matrices and the second is
the average ratio. All results were rounded to two significant digits. For Test 3 we observed
a ratio of 1.0 (i.e. the estimate had at least two correct figures) in all cases. These results
show that our conditon estimator produces indeed good estimates. We overestimate a .. i,(R)
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Table 1: Results of Test 1

Table 2: Results of Test 2 without Pivoting

42 n =10 25 50
10 1.8/1.3 1.7/1.4 1.6/1.4
103 3.0/1.9 2.5/2.0 3.2/2.2
106 8.1/1.9 6.3/2.6 4.2/2.8
109 6.1/2.2 5.9/3.0 5.2/3.2

Table 3: Results of Test 2 with Pivoting

9 2  n =10 25 50
10 1.6/1.3 1.6/1.4 1.7/1.4
10 2.2/1.5 2.3/1.8 2.5/2.0
108 2.8/1.5 3.4/2.1 3.4/2.5
109__1 2.4/1.6 3.3/2.2 4.3/2.7
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only by a small factor and the results vary only little with condition number, matrix size
and singular value distribution. Pivoting increases the accuracy of the condition estimator
and we can confidently expect similar accuracy when applying this estimator to matrices R
generated by the local pivoting strategy.

4 The QR Algorithm with Controlled Local Pivoting

With the condition estimator we now have the tool to insure the numerical stability of the
local pivoting strategy. Using the same notation as in the algorithm of Figure 1 processor
k now can check whether c(:,j) is a reasonable choice for the next pivot column before
computing fi. Assuming that processor k knows the current estimate r as well as IIXI2 for
the current upper triangular matrix R..t, all that is needed for the next condition estimator

step is the last column (v ) of R9 t+1 . But

v = c(1 : gcnt, j)

has already been computed and from the definition of u and res it follows immediately that

- = -sign(c(gcnt + 1, j)) resi.

So all the information for the next condition estimator step is readily at hand and we can
compute a new approximate singular vector y for Rgcnt+ 1.

With
,a max haoul 2

I~i<n

being the norm of the largest column of A, we then take

1

&.i.(Rgcnt+i) = I12 (8)

as an estimate for the smallest singular value of Rgcnt+l and

(Rgnt+l) = 12 allYII12  (9)

as an estimate for the true condition number of Rget+l. The scaling factors 77 reflect the
trust we have in the accuracy of our estimates. Based on the numerical results of section 3
we recommend 'h = 3 and 7 = 10. The choice of 12 reflects the fact that in general the
norm of the largest column is a good estimator for the largest singular value of a matrix.

Comparing the estimates (8) or (9) against a chosen threshold we will then accept or
reject a candidate pivot column. The exact threshold depends heavily on the application, in
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particular the accuracy of the initial data. If the data is accurate to machine precision e, a
candidate pivot will in ge,,eral be rejected if ,,, (R9 c,,,+ 1) = O(1/,E).

If the candidate pivot column is rejected, processor k has exhausted its supply of "reason-
able" columns and from then on it will only apply Householder vectors generated by other
processors to its remaining columns. If on the other hand we accept the candidate pivot
column, then processor k will actually compute i, send (4, Y', 1 1I2) to its right neighbour and
then proceed as in Figure 1. It should be noted that y and IIYI12 have to be forwarded only
to the processor that will generate the next Householder vector, while fs will eventually be
known to all processors. So the propagation of the condition estimator results will result in
only a minor increase in data traffic.

This scheme continues until no processor has any acceptable pivot candidate left. As-
suming that altogether we generated i = n - i Householder vectors, we have at this point
computed the incomplete QR factorization

AP=(Ql Q2)(R11 R12) (10)

where Qi is m x ii, Q2 is m x (m - it + 1) and Q = [Q1,Q2] is orthogonal. R11 is upper
triangular of size i x ft and A is of size (m - f + 1) x f. Our controlled pivoting strategy gives
us an estimate for omin(Rli) and further we know that adding any of the leftover f columns
of AP would result in a decrease of the smallest singular value below our chosen threshold.
So we have good reason to assume that f is the dimension of the numerical null space of A.
Then we can set A in (10) to zero and use the resulting truncated QR factorization to solve
the least squares problem (1).

5 Numerical Experiments

To assess the numerical behavior of the proposed local pivoting scheme, we rimulated the
parallel algorithm using PRO-MATLAB and compared it with the traditional QR factoriza-
tion algorithm with global column pivoting. Various 50 x 50 matrices were generated and
the local pivoting strategy simulated on 8 processors.

For tests 1 to 3 we generated 50 random matrices for each singular value distribution
{ai}. For all matrices the largest and smallest singular values were 1 and 10-9 respectively.

Break 1 Distribution: a,1 = ... = a49 = 1; a0 = 10-9 .

Break 9 Distribution: 1 = ... = 0'41 = 1; 642 = ... = a50 = 10 - 9 .

Ezponential Distribution: oai = a'; a = (10-9)-
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Table 4: ,A,/avg/max Values of the CondiLion Numbers of R using Local and
Global Pivoting

Distribution break 1 break 9 exponential
r.,. ,(R) 2.8 /4.8 /9.5 4.0/12 /180 5.0e6 /8.8e7 /1.9e7
Xtrad(R) 2.1 /2.7 /3.6 3.4 /4.4 /6.1 4.2e6 /7.2e6 /1.3e7
Koot(R) 1.0 1.0 9.5e6

Setting the rejection threshold for the smallest singular value to 10- 7 and discounting the
estimate for the smallest singular value (8) by a factor of q, = 3 we reject a candidate pivot
column in the parallel algorithm if

1
Yl2 = &.i (Rg..,+i) K 3- 10- 7 .

For the traditional QR factorization algorithm we use the last diagonal entry of R 9 n+1 as
estimate and reject a candidate pivot column if

I rgc+1,cnt+1 I 3- 10- 7 .

Table 4 shows the condition number rc(R) of the upper triangular matrices R generated by
controlled local pivoting and by traditional column pivoting on those matrices. Letting ao,
be the smallest singular value greater than 10- 7 then the optimal value we can achieve for
ic(R) is icot(R) = 1/oc,. Furthermore let Xpr(R) be the condition number resulting form
the parallel scheme and xt,.d(R) the condition number resulting from the traditional column
pivoting scheme. For i, ,(R) and irtd(R) observed minimum, average and maximum values
are displayed. These results show that guarded local pivoting is about as effective as full
column pivoting in generating a well-conditoned R - even if the number of local columns is
fairly small.

For the sharp break distributions there is a well-defined gap between the singular val-
ues before and after the acceptance threshold and both local and global column pivoting
identify the numerical nullspace correctly in all cases. As already pointed out earlier, the
determination of numerical rank becomes problematic if there is no well-defined gap between
singular values that are considered "large" and "small". The exponential distribution is such
a problematic case. There are 39 singular values that are larger than 10- 7 but there is no
well-defined break. To be exact:

U3 7 = 2.4- 10- 7, Cr3s = 1.6. 10- 7, o,39 = 1.04. 10- 7 and cr40 = 6.8. 10- 8 .
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Table 5" Preqxency of Accepting Columns for the Exponential Distribution

No. of columns accepted 36 37 38
local pivoting 14 30 6
global pivoting 5 42 3

The column pivoting strategy reflects this difficulty in accepting less than 39 columns and the
observed results are displayed in Table 5. It shows that even for an ill-defined problem the
guarded local pivoting scheme is very reliable in that it leans towards a small underestimate
of the dimension of the range space of A.

Our last example shows the advantage resulting from integrating the incremental condi-
tion estimator with the global pivoting scheme. Let

1 -c ....... -c
0 1 "'

A, = diag(1,5s, 2,...,s' -') : . ".. ". + diag(ne,(n- 1),..., )
1 -c

0 ... ... 0 1

where c2 + S2 = 1 and e is the machine precision. An is very ill-conditioned, but although
each leading principal submatrix Ak(k < n) is also ill-conditioned, there is a well-defined gap
between an and an_. As an example we have a49 = 1.2- 10- 3 and ors = 3.7- 10-12 for
n = 50 and c = 0.5. This is a well-known example where the QR factorization with column
pivoting fails since even in floating point arithmetic the matrix is its own QR factorization
but no trailing block of R is small to reveal its ill-conditioning. In this example both the local
and global pivoting schemes select the the columns in their natural order. However the incre-
mental condition estimator integrated into the parallel scheme detects the ill-conditioning of
the leading principal submatrices Al - it never overestimates the smallest singular value by
a factor of more than 1.5. So while the column pivoting scheme fails the incremental condi-
tion estimator insures that failure will not go unnoticed. Given its negligible extra cost this
suggest the usefulness of incorporating the incremental condition estimator into the global
column pivoting scheme.

The matrix An is also an example where the local pivoting scheme performs better than
the global one. Let A50 be the same matrix as As 0 except that the order of columns has been
reversed. For the global column pivoting scheme this permutation is without consequences
and it fails. The parallel scheme simulated on 8 processors on the other hand correctly
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identifies the numerical nulispace of ir 0 . While this is an exceptional occurence due to the
special structure of A,,, it is nonetheless surprising since intuitively one would expect the
global pivoting strategy to always perform better than the local one.

6 Conclusions

This paper presented a new variant of the Householder QR algorithm with column piv-
oting. In that context we introduced a new incremental condition estimator that allowed us
to update the estimate for the smallest singular value of the upper triangular matrix R as
new columns were added to R. The update required only O(n) flops and the saving of O(n)
words between successive steps. Despite its small computational cost, experiments with a
variety of matrices demonstrated the reliability of the condition estimation algorithm. This
condition estimator made it possible to implement a strictly local pivoting scheme for the
QR factorization by guarding against an improper choice of pivot columns. Numerical exper-
iments show that the local pivoting scheme performs by and large as well as global pivoting.
There even exist cases where the local pivoting scheme succeeds while the global pivoting
scheme fails.

We also gave an example showing the usefulness of integrating the incremental condition
estimator with the traditional global column pivoting strategy. The n2 flops for the condition
estimator might be a worthwhile investment to guard against the pathological cases that are
not revealed by the traditional QR. factorization algorithm with column pivoting.

We are currently investigating the effect of a dynamic threshold for the acceptance or
rejection of a pivot column. Starting with a relative conservative threshold and relaxing it
as the computation proceeds is likely to result in better conditioned leading submatrices of
R. The penalty is a possible loss of effiency as processors might have to reconsider the same
column as pivoting candidate at a later stage of the algorithm.
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A Parallel Algorithm for Nonlinear Equations
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ABSTRACT

In this paper, we present a parallel algorithm for the solution of systems of non-
linear equations. The algorithm is primarily based on the serial nonlinear Jacobi algo-
rithm. Different parallel implementations are discussed. In particular, a block form is
presented for the case when the number of processors is small in comparison to the
number of variables. A straightforward implementation is given for the solution of un-
constrained minimization problems. Some numerical experiments run on an
Encore/Multimax with 20 processors are presented.
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1.Introduction. In this paper we present a parallel implementation of the serial

nonlinear Jacobi algorithm for the solution of systems of nonlinear equations. The serial

algorithm is a particular case of the more general SOR-Newton algorithms. The algo-

rithm is based on the same idea as the Jacobi algorithm for solving linear systems of

equations and thus, it suffcrq from the same drawback as its counterpart for linear sys-

tems, namely, its slow rate of convergence. The serial algorithm was first presented by

Wegge [231, later analyzed by Schechter [20,21] and Voigt [22] and the most recent imple-

mentation given by Dennis and Walker [6]. For a detailed overview of SOR-Newton

methods see Ortega and Rheinboldt [17].

The algorithm was discarded as a viable way of solving nonlinear systems of equa-

tions and replaced by more efficient methods such as Newton-like methods. However,

these latter methods do not lend themselves in a straightforward manner to a parallel

environment. Consider, for instance, Newton's method for solving

r7x) = 0 with F:R- - R (1.1)

The iterative scheme follows:

Step 0. Get x.. Set k=0.

Step 1. Solve F(xk)s = - Ftxk) (1.2.a)

Step 2. Update Xk+1 --- x + sk  (1.2.b)

Step 3. Set k=k+1. Go to step 1.

The linear system of equations (1.2.a) that arises at each iteration could be solved in

parallel; see for instance 191. However, the amount of message passing involved at each

iteration remains a bottleneck. Moreover, if the initial guess x, is far away from the solu-

tion, a globally convergent technique such a line search or a trust region must be imple-
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mented. Such global techniques must be run in parallel, otherwise several processors will

be idle while such computation occurs.

Other parallel algorithms have been proposed in the literature for solving (1.1). The

one dimensional case n= I have been analyzed in [7] and [14]. Different parallel methods

were proposed where the emphasis resided in doing concurrent function evaluations. In

[11, Baudet presents an excellent study of asynchronous iterative methods for multipro-

cessors. He uses the contraction mapping iteration and present the convergence criteria

for these methods. However, his numerical experiments were performed on linear func-

tions only. Bojanczyk in [2] uses an asynchronous Newton method where the function

F(x) and the Jacobian of F are calculated in parallel. Since the Jacobian evaluation takes

much longer than the function evaluation, Newton steps are taken using a fixed Jacobian

until the processor calculating the new Jacobian finishes. He shows that this parallel

method will be at most four times faster than the serial method no matter how many

processors are used in the computations. More recently, White [24] presented a parallel

nonlinear Newton-SOR algorithm. In there, the main iteration is the Newton iteration

for solving (1.1), then the linear system is solved using the Gauss-Seidel method with the

multi-splittings techniques developed in [151. He shows convergence of the method and

presents some numerical results on a serial computer.

The algorithm we are proposing lends itself in a straightforward fashion to a paral-

lel implementation. In particular, the bigger the dimension of the problem the higher the

speedup that can be attained. The main characteristics of the parallel algorithm are the

following. Firstly, one need not solve a linear system of equations at each iteration if the

dimension of the problem is less than or equal to the number of processors available. If

the dimension of the problem is bigger than the number of processors available, then
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small systems of linear equations are solved in each processor. In this way the message

passing is decreased considerably at each iteration. Secondly, a globally convergent tech-

nique can be easily implemented in parallel since each processor is solving a different sys-

tem of nonlinear equations. Moreover, such global procedure need not be the same in

each processor; a line search approach could run in certain processors while a trust region

could run on others. Another important feature of the parallel algorithm is that functions

evaluations are implicitly done in parallel. Thus, considerable savings are obtained over a

serial solver.

The main drawback of the serial algorithm is its slow rate of convergence, linearly

convergent. With the numerical results obtained we show that this drawback can be cir-

cumvented using a parallel implementation.

The work in this paper is presented in the following fashion. In Section 2, we

describe the serial algorithm along with its main convergence results. In Section 3 dif-

ferent parallel implementations of the serial algorithm are presented. Emphasis is given

to the case where the dimension of the problem is bigger than the number of processors

available. In Section 4, we briefly discuss the use of the parallel algorithm to solve uncon-

strained minimization problems. In Section 5 some numerical results obtained on the

Encorei Multimax located at Argonne National Laboratory are presented. Finally, in Sec-

tion 6 we present future work and draw some conclusions.

2. The serial nonlinear Jacobi algorithm. Consider the following system of

nonlinear equations

Frx) = 0 (2.1)

where F: R' -+ R' is a continuously differentiable function in an open subset Q of R'
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We will assume there exist xEf2 such that F(z.)=O and [F'(z°)1- exists.

The nonlinear Jacobi algorithm is a particular case of a more general clas of algo-

rithms, the nonlinear-SOR algorithms. These algorithms are based in the following idea.

A basic step of the nonlinear Gauss-Seidel iteration is to solve the ith equation

f Xk+ ).... , k t),z,x+)i,... ,z$")) . 0 (2.2)

for z, and to set

X (k+ 1) = Z (k)(23
M= (2.3)

where m i correspond to the number of inner steps performed in solving (2.2). Thus, in

order to obtain z(k+ 1) from X(k), we solve successively the n one-dimensional nonlinear

equations (2.2) for i= 1,...,n. More generally, we may set

(k+ 1) = X(k) + wk(z$- Z(k) ) (2.4)

in order to obtain a nonlinear SOR method where wi is a parameter varying with k.

In an analogous fashion, the kth stage of the nonlinear Jacobi iteration may be

defined by solving the equations

fi(Xj),.. ,(~k)I,Z,X~k)I, . ,X ( k )  0 i= I,-., n (2.5)

for z and setting x, 1)'+)= z(k) for i=-l,...n.

Notice that the above methods have meaning only if the equations (2.2) or (2.5)

have unique solutions in some specific domain under consideration. Conditions must be

given to ensure that this is true.

We now restrict ourselves to the nonlinear Jacobi iteration. The iterative method

used to solve (2.5) plays the role of a secondary iteration, while the .Jacobi (SOR) method

is the primary iteration. There are different ways of implementing the algorithm based
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on the number of inner steps mi taken to obtain the solution of (2.5) and the iterative

method used to solve (2.5). Namely, if m= 1, only one step is carried out to obtain xzk+ 1)

from x) and if Newton's method is used to solve (2.5), we get the one-step Jacobi-

Newton method. In this case, x4 k+ 1) is given by

(k+ 1) _ x(k) bXk )(
b() (2.6)

where b (x) and x()=(x i' ), . . . ,x(k)). Notice that the starting point foragxi, n

Newton's method, and for any other iterative method used to solve (2.5), is (k)--.)* It

is worth noticing that the one-step Jacobi-Newton method generates the same iterates as

the one-step Newton-Jacobi method in which Newton's method is used to solve (1.1) and

one step of the Jacobi algorithm is used to solve the linear system (1.2.a).

One can also use a secant method for solving (2.5) as suggested by Wegge [23 and

obtain the one-step Jacobi-secant iteration. We just substitute the partial derivative in

(2. 5) by

f,(X(k)- f(x(k) + ,X '(1- ,(k)]e,)b, (k) k- -) (2.7)

where e, denotes the ith column of the identity matrix. One could also use the more

recent secant implementation proposed by Dennis and Walker [61 in which bk) is allowed

to be equal to b(k-1) in some particular instances.

Theoretically, more than one inner step when solving (2.5) does not improve the

rate of convergence of the algorithm (see '221). Our numerical experiments show this is

the case in the majority of the test problems. However, for certain problems we obtained

faster convergence by using more than one inner step.
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We now present an informal view of two local convergence results for the serial non-

linear Jacobi algorithm. The first one can be found in [17, Theorem 10.3.5], the second

one is due to Dennis and Walker [6, Theorem 4.1]. For both we assume x is in a neigh-

borhood of x. and F satisfies the standard conditions stated at the beginning of this sec-

tion. Let

F(x) = D(x)- L(x) - x) (2.8)

be the decomposition of F'(x) into its diagonal, strictly lower-, and strictly upper-

triangular parts and assume that D.=D(x.) is nonsingular. Let U=jU(x.) and L.=L(x.).

The first result treats the general nonlinear Jacobi iteration where (2.5) is solved by no

specific method. The result says essentially that if p(I- D'F'(x.)) < 1, then the

sequence Xk converges to x. r-linearly. The second result, which deals with the one-step

Jacobi-secant iteration, states that if p(I- D, 1 F'(x.)) < 1, then the sequence xk con-

verges to x. q-linearly.

An important feature of the nonlinear Jacobi (SOR) method is that it can be

extended to block form. Partition x as x=(x',... ,x'), with x'ER 1, and group

correspondingly, the components f1 of F into mappings F: R"--+ R", for i= 1.m. Then

solving

r XI)k , ... ,(X-I)k,(z),(xi+ )k,  ... , ( m)k) = 0 i= 1,...,m

for (z) describes a nonlinear block Jacobi process in which a complete iteration requires

the solution of m nonlinear systems of dimension 1j, i=1,...,m. This approach will be used

extensively in the parallel implementation to follow.
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3. Parallel implementation. For the purpose of this presentation we can assume

a parallel computer with or without a shared memory, with p processors and each proces-

sor able to sustain a heavy load of floating point computations. Such is the case of the

most current parallel computers such as the N-Cube, Encore/Multimax, the

Sequent/Balance, the BBN Butterfly and the Alliant to name just a few. We must also

assume that a way of transferring data among processors exist, such as the Monitor Sys-

tem [121, the Domino System [16 or the DPUP System [10] among others.

The parallel implementation of the nonlinear Jacobi algorithm is straightforward

from (2.5). Each processor will be assigned an index i and for such index it will have the

task of computing the solution of (2.5). In this way, the parallel implementation allows

the user to work with a different iterative method to solve (2.5) on each processor; the

method may be a secant or a Newton method. Moreover, if in (2.5) we are solving a one-

dimensional problem, one may use a bisection method combined with Newton's.or secant

method, such as Brent's algorithm [31. The global technique to ensure convergence when

far away from the solution may also vary among processors and the number of inner

steps m used for each subproblem (2.5) may also vary. In this way, the parallel algo-

rithm gives the user great flexibility in deciding which implementation to use for a partic-

ular problem.

If we try to solve (2.5) on each processor to a given tolerance, we might get idle pro-

cessors waiting for the most nonlinear functions to converge. In order to deal with this

problem, a fixed number of inner steps is allowed in each processor. In this way, a proces-

sor stops computing if either a given tolerance is reached, or if the the given number of

inner steps is attained. It is worth noticing that in some of the test problems we obtained

better convergence results by using more than one inner step.
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The most interesting case to consider is when p < n. In this case we will solve (1.1)

by using the nonlinear block Jacobi algorithm as presented in the previous section. We

evenly load all the processors with a partition of the components f, of F (say F). In this

way, each processor will solve a nonlinear system of equations, thus diminishing the over-

head created by the communication among processors since each processor will perform a

considerable amount of floating point computation. The dimensions of each subsystem

may be different. At this point, one can use a standard serial nonlinear solver in each

processor (i.e., MIINPACK). Once more a fixed number of inner steps might be appropri-

ate to avoid having idle processors at each iteration.

4. Numerical experiments. All the experiments were performed in an Encore/

Multimax located at Argonne National Laboratory at the Advanced Computing Research

Facility. The Encore/Multimax has 20 processors with 20 Mbytes of memory. Each pro-

cessor is a National Semiconductor 32032 chip set running at 10 MHz. The processors are

connected via a 64-bit wide bus with a data transfer of 100 Mbytes per second. The

operating system is UNIXTM.

As a synchronization and communication system among processors we used the

FORTRAN version of the Monitors macros developed by Lusk and Overbeek [12]. This

system allows one to set up a pool of tasks which are solved in parallel by the processors.

The test problems we used were selected from the standard set of problems in Gar-

bow, Hillstrom and Mor6 [9]. There are fourteen problems which are systems of nonlinear

equations. They are presented with numbers from 1 to 14. We have kept the same

numeration to denote those problems. They are:
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1. Rosenbrock function 8. Brown almost-linear function

2. Powell singular function 9. Discrete boundary valued function

3. Powell badly scaled function 10. Discrete integral equation function

4. Wood function 11. Trigonometric function

5. Helical valley function 12. Variably dimensioned function

6. Watson function 13. Broyden tridiagonal function

7. Chebyquad function 14. Broyden banded function.

The first five test functions are of dimensions 2,4,2,4,3, respectively, while the

remaining test functions are of variable dimension. For more information on these prob-

lems see [9]. For problems with variable dimension we decided to run them with dimen-

sions 4, 8, 16, and 32. To problem number 5, the Helical valley function, we added one

extra function, f 4(X)=x 4 to get convergence with the nonlinear Jacobi method. The non-

linear Jacobi method was unable to solve problems 6,7,8 and 12.

We decided to compare the parallel nonlinear Jacobi algorithm with the best non-

linear equation solver, MINPACK. Minpack's algorithm is well suited for solving small

and medium size problems with expensive function evaluations. The set of test problems

chosen are of small and medium size, however, 'their functions are not expensive to evalu-

ate. On the other hand, the nonlinear Jacobi algorithm was designed for large problems

and therefore, its parallel implementation will not perform as well in this particular set of

problems. We must keep in mind that the main purpose of the numerical experiments is

to study different parallel implementations of a linearly convergent algorithm and the

comparison of its performance against a quadratically convergent algorithm such as the

one in WINPACK. It is not our intention to claim that our algorithm is superior to the

MINPACK algorithm. The numerical results will allow us to pinpoint synchronization
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bottlenecks in the parallel implementation, possible drawbacks due to a lack of reliabil-

ity, and the advantage of using this parallel algorithm in problems with a particular

structure.

We used MINPACK on the Encore/Multimax to solve the same set of problems. We

must emphasize that MINPACK was successful in all fourteen problems with all the dif-

ferent dimensions except number 11. In MINPACK we used the double precision version

of HYBRD which solves systems of nonlinear equations by a modification of Powell's

hybrid method. In this subroutine the Jacobian is approximated by a forward-difference

approximation. For all problems we used the same initial points as presented in Garbow,

Hillstrom and Mor6 [9]. The tolerance for convergence was set at 10- 8 and it was used to

check the stopping criteria. We stopped if either the maximum number of iterations (100)

was attained, or if the relative error between two consecutive iterates is less or equal than

the tolerance.

Let us now focus our attention on the implementation of the parallel algorithm and

the numerical results obtained in the set of problems mentioned above. We implemented

the nonlinear block Jacobi algorithm as presented in Section 2. Partition x as

Xfi(X1,... ,x'), with x'ER '. and group correspondingly, the components f, of F into

mappings Fi:R"--+ R", for i=1,...,m. Then solve

F,{(X 1 )k, .. (il)k(Z)(Zi+ 1)k . . . (O,)k) = 0 i= (4.1)

for (z). This requires the solution of m nonlinear systems of dimension 1j, i= 1,...,m at

each iteration. Each of these subsystems is solved by a different processor using the same

subroutine from MINPACK as mentioned above. As we pointed out in Section 3 in order

not to have idle processors during the computation a predetermined number of inner
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steps are allowed in each call to MINPACK. We did runs with 1, 5, and 10 inner steps.

We stopped solving the sub-problem if either the tolerance was achieved or if the max-

imum number of inner steps was performed. The dimensions of the subproblems were

equal; however, one can use different dimensions for different subproblems.

For a given dimension of a problem we experimented with different partitions. For

instance, for a problem of dimension 32 we ran 5 different partitions: with 2 blocks of

dimension 16; with 4 blocks of dimension 8; with 8 blocks of dimension 4; with 16 blocks

of dimension 2; with 32 one-dimensional blocks. For each given partition we used one

processor per block.

One additional advantage of the parallel algorithm is that function evaluations are

implicitly performed in parallel. This is because when solving (4.1) only the functions

involved in this group need to be evaluated. Therefore, great savings in time are obtained

over the serial algorithm and over 'vIINPACK.

For timing the experiments we used the FORTRAN function etime (UNIXTM)

which returns elapsed runtime in seconds. It has an array of two elcments as argument.

In the first element it returns user time and in the second element it returns system time.

In all the experiments we performed we only used the first element: the user time.

Let us now discuss the numerical results. The entire set of numerical results can be

found in [8]. We present here a sample of the most interesting problems. Each table

shows the following columns:
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NPRO number of processors

NBLK number of blocks used in the partition on subproblems

NSTP number of inner steps used to solve the subproblem

NFEV number of functions evaluations

INFO stopping message

TIME elapsed runtime. System time is not accounted for.

Sp speedup over the serial algorithm

S. speedup over MINPACK

Ep efficiency of the parallel implementation.

The number of processors in NPRO can vary from 1 (serial algorithm running) to 20

(maximum number of processors available on the Encore/Multimax). MINPACK results

are always located in the first row of each table: NPRO is one and NBLK is one. When

NPRO is equal to one and NBLK is different from one we are using the serial nonlinear

Jacobi algorithm. The number of inner steps NSTP can be either 1, or 5, or 10. We only

show the optimal case in the tables. NSTP= 1 is often enough to get good and fast con-

vergence, although for some problems more than one inner step was necessary. The

number of function evaluations are calculated by counting each function evaluation fi.

Thus, for MINPACK we multiplied the number of function evaluations by n (dimension

of the problem). There are several stopping messages in MINPACK; however, the only

two we came across were 1 for a successful run and 4 when the iteration is not making

good progress. We use INFO=2 whenever the maximum number of iterations is attained.

All timings are given in seconds in TIME. For any given parallel algorithm there are

three numbers which give an idea on how well the parallel algorithm is performing. The

speedup Sp is defined by
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= running time for the serial algorithm
S =running time for the parallel algorithm using p processors

where the serial algorithm is the nonlinear Jacobi method using different block-partitions

and the parallel algorithm is the parallel version of the Jacobi algorithm using the same

block-partition. Obviously this number can never be bigger than the number of proces-

sors used in the computation. In order to know how much faster is the parallel algorithm

via a vis the best serial algorithm we calculate S_ which is defined by

, running time of the best serial algorithm
SP = running time of the parallel algorithm using p processors

where the best serial algorithm is MINPACK. Whenever in this column we find a zero it

means that MINPACK was faster than the current combination of processor, blocks and

steps. Whenever we find in this column oo it means that MINPACK failed to converge

and the parallel algorithm was successful. This only occurs in problem 11.

In order to know the efficiency of our parallel implementation we calculate EP, the

efficiency of the algorithm, defined by

number of processors p

This number can never be bigger than one. Furthermore, the numbers in the last three

columns of tables I through III have been rounded to two decimal places.

On table IV we have summarized all the results of the parallel Jacobi algorithm and

the corresponding results from MNPACK. For each given problem we included the com-

bination of processors, number of blocks and steps that gave the best timing. In column

MPACK we present the MINPACK timing and in JAC-P we present the timing for the

parallel algorithm. In the last column we present the number S'. In table V we present

the analogous data for the serial nonlinear Jacobi algorithm. Columns JAC-S and JAC-
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P represent the timings for the serial and the parallel algorithms respectively. The last

column corresponds to the speedup obtained.

Problem: 9 Dimension: 8

NPRO NBLK NSTP NFEV INFO TIME E,

1 1 - 112 1 0.400 - - -

1 2 1 3424 1 5.400 - - -

1 4 1 4168 1 8.150 - - -

1 8 1 6184 1 17.300 - - -

2 2 1 3424 1 2.867 1.88 0. 0.94

2 4 1 4168 1 4.350 1.87 0. 0.94

2 8 1 6184 1 9.333 1.85 0. 0.93
4 4 1 4168 1 2.483 3.28 0. 0.82

4 8 1 6184 1 5.200 3.33 0. 0.83
8 8 1 6184 1 3.267 5.30 0. 0.66

Table I
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Problem: 10 Dimension: 32

NPRO NBLK NSTP NFEV INFO TIME Sp Ep

1 1 - 1216 1 12.783 -

1 2 1 6112 1 41.450 -

1 4 1 3552 1 22.317 -

1 8 1 2048 1 12.867 -

1 16 1 1632 1 10.967 -

1 32 1 1312 1 9.883 - - -

2 2 1 6112 1 21.017 1.97 0. 0.99

2 4 1 3552 1 11.233 1.99 1.14 0.99

2 8 1 2048 1 6.450 1.99 1.98 1.00

.2 16 1 1632 1 5.500 1.99 2.32 1.00

2 32 1 1312 1 5.033 1.96 2.54 0.98

4 4 1 3552 1 5.783 3.86 2.21 0.96

4 8 1 2048 1 3.317 3.88 3.85 0.97

4 16 1 1632 1 2.833 3.87 4.51 0.97

4 32 1 1312 1 2.617 3.78 4.88 0.94

8 8 1 2048 1 1.750 7.35 7.30 0.92

8 16 1 1632 1 1.500 7.31 8.52 0.91

8 32 1 1312 1 1.400 7.06 9.13 0.88

16 16 1 1632 1 0.917 11.96 13.94 0.75

16 32 1 1312 1 0.833 11.86 1.5.35 0.74

20 32 1 1312 1 1.117 8.85 11.44 0.44

Table 1
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Problem: 14 Dimension: 32

NPRO NBLK NSTP NFEV INFO TIME Sp Ep

1 I - 1632 1 16.850 -..

1 2 1 4896 1 10.250 - - -

1 4 1 2848 1 4.783 - - -

1 8 1 2048 1 3.417 - - -

1 16 1 1632 1 3.383 - - -

1 32 1 1440 1 4.400 - - -
2 2 1 4896 1 5.183 1.98 3.25 0.99

2 4 1 2848 1 2.417 1.98 6.97 0.99
2 8 1 '2048 1 1.767 1.93 9.54 0.97

2 16 1 1632 1 1.750 1.93 9.63 0.97

2 32 1 1440 1 2.317 1.90 7.27 0.95

4 4 1 2848 1 1.283 3.73 13.13 0.93

4 8 1 2048 1 0.950 3.60 17.74 0.90

4 16 1 1632 1 0.950 3.56 17.74 0.89

4 32 1 1440 1 1.233 3.57 13.67 0.89

8 8 1 2048 1 0.567 6.03 29.72 0.75

8 16 1 1632 1 0.567 5.97 29.72 0.75

8 32 1 1440 1 0.700 6.29 24.07 0.79

16 16 1 1632 1 0.367 9.22 45.91 0.58
16 32 1 1440 1 0.467 942 36.08 0.59

20 32 1 1440 1 0.850 5.18 19.82 0.26

Table iTM
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MINPACK Timing Table

PROB DIM NPRO NBLK NSTP MPACK JAC-P 5"

1 2 2 2 5 0.267 0.033 8.09
2 4 4 4 1 1.100 0.576 1.94

3 2 2 2 1 2.317 0.25 9.27
4 4 4 4 10 2.333 0.317 7.36

5 4 2 2 1 0.783 0.267 2.93

8 4 2 2 1 0.267 1.750 0.

9 4 2 2 1 0.133 0.783 0.
9 8 4 4 1 0.400 2.483 0.

9 16 4 4 1 1.483 9.633 0.
9 32 2 2 1 6.483 - -

10 4 4 4 1 0.167 0.167 1.
10 8 8 8 1 0.533 0.217 2.46

10 16 16 16 1 2.300 0.35 6.57

10 32 16 32 1 12.783 0.833 15.35
11 4 2 2 1 - 0.717 00

I1 8 8 8 1 - 0.717 00

11 16 16 16 1 - 0.783 00

11 32 16 32 1 - 2.000 00

13 4 4 4 1 0.267 0.317 0.
13 8 4 4 1 0.750 0.367 2.04

13 16 8 8 1 2.767 0.450 6.15

13 32 16 16 1 10.967 0.617 17.77
14 4 4 4 1 0.383 0.117 3.27

14 8 8 8 1 1.45 0.150 9.67

14 16 8 8 1 4.700 0.250 18.80

14 32 16 16 1 16.85 0.367 45.91

Table IV
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Jacobi Timing Table

PROB DIM NPRO NBLK NSTR JAC-S JAC-P SP

1 2 2 2 5 0.05 0.033 1.52
2 4 4 4 1 1.7 0.567 3.0
3 2 2 2 1 0.383 0.250 1.53
4 4 4 4 5 1.017 0.317 3.21

5 4 2 2 1 0.35 0.267 1.31
8 4 4 4 1 5.667 1.867 3.04
9 4 4 4 1 2.817 0.883 3.19

9 8 8 8 1 17.300 3.267 5.30
9 16 4 4 1 32.567 9.633 3.38

9 32 - - - -

10 4 4 4 1 0.517 0.167 3.10
10 8 8 8 1 1.100 0.217 5.07

10 16 16 16 1 3.267 0.350 9.33
10 32 16 16 1 10.967 0.917 11.96
11 4 2 2 1 1.350 0.717 1.88
11 8 8 8 1 4.250 0.717 5.93
11 16 16 16 1 8.350 0.783 10.66

11 32 16 32 1 25.417 2.000 12.71
13 4 4 4 1 0.933 0.317 2.94
13 8 8 8 1 2.05 0.417 4.92
13 16 8 16 1 4.400 0.617 7.13
13 32 16 32 1 10.083 1.117 9.03
14 4 4 4 1 0.350 0.117 2.99

14 8 8 8 1 0.700 0.150 4.67
14 16 16 16 1 1.850 0.283 6.54
14 32 16 32 1 4.4 0.467 9.42

Table V

We have added several figures to illustrate the behavior of the parallel algorithm.

The Figures are in logarithmic scale. In Figure 1, we notice that no matter how many

processors we use to solve Problem 9. n=8, MINPACIK is always faster than the parallel

algorithm. In Figure 2, Problem 10 with dimension 16, we notice that MINPACI' is fa-

ter than the serial algorithm but using two processors the parallel Jacobi becomes faster
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than IMINPACK. In Figures 3 and 4, a common paradigm in parallel computation occurs.

Once one starts using too many processors on a problem, one starts running slower. As

we see in Figures 3 and 4 the optimal number of processors seems to be around 15 on

Problems 13 and 14 with n=32; already using 16 processors represents a lost in speedup.

In Figure 5, we present for Problem 10 with n=32, the timings for all the different parti-

tions. We notice that using 16 or 32 block partitions we get almost identical results. In

all figures we notice the linear speedup characteristic of a parallel algorithm.

Prob 9 Dim 8 Nblocks 8

time(secs)

32.00'

16.00,

8.00
Parallel

4.00' Jacobi

2.00'

1.00'
Minpack

0.50'

1 2 4 8
nprocs

Figure 1. For this problem the parallel Jacobi algorithm is never faster than MINPACK. The higher speedup
is .5.3 using 8 processors.

938



A parallel algorithm for nonlinear equations

Prob 10 Dim 18 Nblocks 18

time(Secs)

4.00'

Parailet

2.00 / Jacobi
inpack

1.00,

0.50,

1 2 4 8 16
nprocs

Figure 2. For this problem the parallel Jacobi algorithm is 6.57 times faster than MIPACK. The higher
speedup is 9.33 using 18 processors.

Prob 13 Dim 32 Nblocks 32

timeqsecs)

16.00, Minpack

8.00,

4.00'

aParallel
Jacobi

2.00,

1 2 4 8 16 32
nprocs

Figure 3. For this problem the parallel Jacobi algorithm is 9.82 times faster than MINPACK. The higher
speedup is 9.03 using 16 processors.
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Prob 14 Dim 32 Nblocks 32

time(secs)
32.00' Minpack

16.00.

8.00,

4.00' Parallel

Jacobi
2.00'

1.00

0.501

1 2 4 8 16 32
2 procs

Figure 4. For this problem the parallel Jacobi algorithm is 38.08 times faster than MINPACK. The higher
speedup is 9.42 using 16 processors.

Prob 10 Dim 32

time(secs)

64.00' 32 blocks
S16 blocks,

8 8 blocks

32.00 .4 blocks
•2 blocks

a Minpack

16.00'

8.00,

4.00'

2.00'

1.00,

1 2 4 8 16 32
nprocs

Figure 5. We are using diferent set or block partitions with different number of processors.
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We were able to run 10 problems out of the standard 14 problems for nonlinear

equations in [9]. We can say that the nonlinear Jacobi algorithm is 71% reliable on this

set of test problems. In fact, this is the main disadvantage of the algorithm. On the other

hand, in most cases whenever the method converges, the parallel implementation outper-

forms MINPACK. As we pointed out earlier this is partly due to the fact that function

evaluations on this set of test problems are not expensive. As we can see in table 4 only

in problem 9 does MINPACK outperform the parallel algorithm. The parallel algorithm

is considerably faster than MINPACK; in particular, as the dimension increases the

parallel algorithm seems to work better. The outstanding performance of the parallel

Jacobi algorithm on problems 13 and 14 is due to the particular structure of the Jaco-

bian, tridiagonal and banded respectively. The nonlinear Jacobi performs extremely well

on problems whose Jacobians have a particular structure centered around the diagonal,

tridiagonal or banded Jacobians. Nevertheless, the performance in general is quite

interesting and extremely promising. On this set of problems we obtained on average an

speedup of 10. The speedups in table 5 show the considerable improvement that the

parallel implementation produced over the standard serial algorithm. We obtain a high of

11.96 using 16 processors in problem 10 with dimension 32.

In only two problems we set the parameter wk, as defined in (2.4), to a value dif-

ferent from 1.0 in order to get faster convergence. On Problem 8, Wk=0.6 and on Prob-

lem 10, wk=0.9 . In table 6 we present the results of problem 10 with dimension 32 using

the standard value wk= 1.0. We notice there is a considerable gain on speedup for a small

change on this parameter.
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Problem: 10 Dimension: 32

NPRO NBLK NSTP NFEV INFO TIME Sp

1 1 - 1216 1 12.783 - -

1 2 i 5504 1 37.683 - -

1 4 1 3904 1 24.683 - -

1 8 1 2944 1 18.450 - -

1 16 1 2272 1 15.050 - -

1 32 1 1952 1 14.817 - - -

2 2 1 5504 1 18.967 1.99 0. 0.99

2 4 1 3904 1 12.383 1.99 1.03 1.00

2 8 1 2944 1 9.300 1.98 1.37 0.99

2 16 1 2272 1 7.650 1.97 1.67 0.98

2 32 1 1952 1 7.567 1.96 1.69 0.98

4 4 1 3904 1 6.383 3.87 2.00 0.97

4 8 1 2944 1 4.783 3.86 2.67 0.96

4 16 1 2272 1 3.950 3.81 3.24 0.95

4 32 1 1952 1 3.917 3.78 3.26 0.95

8 8 1 2944 1 2.550 7.24 5.01 0.90

8 16 1 2272 1 2.117 7.11 6.04 0.89

8 32 1 1952 1 2.133 6.95 5.99 0.87

16 16 1 2272 1 1.217 12.37 10.50 0.77

16 32 1 1952 1 1.217 12.18 10.50 0.76

20 32 1 1952 1 1.283 11.55 9.96 0.58

Table 8

Additional experiments.

We try to make the method more robust and reliable by using multi-splitting tech-

niques such as the ones developed by O'Leary and White [15] for linear systems. The

main idea behind this approach is to be able to use more information from the Jacobian

at each iteration by using more processors to perform additional computations.

One idea is to use a card-dealer technique to assign each function f, to each proces-

sor. In this way. we will be able to use part of the Jacobian matrix which lies outside the

diagonal. This particular block- partition could be used concurrently with other block-
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partitions. Such partitions could be made of blocks with different dimensions. At each

iteration we get several solution vectors depending on the number of Partitions we have

used. In order to use all this information we take as our next iterate a convex combina-

tion of all the solution vectors at each iteration. In the following figure we show two dif-

ferent partitions running concurrently on a Jacobian of dimension six using three proces-

sors for each partition. Let us say that at the kth iteration partition one gives the solu-

k k, k+ I k/2+X 2
tion vector xi and partition two gives x2 , then our next iterate x = x 1/2 + x/2.

i~~~~..... ... ............. ..... .. .......... ....................... ...... .. ......... ........ ......... ... ....... ,. ....x .. .........,-- --- --
.................. .... .... ............................... ...... ..... .........!Z ~ i .ii .... ............
.. ..... ....... ...... ........ ....... .......3 ...- .. ....... ......... ......... ......... ......... .... ....

612 233

343
3 3 2 2

Three processors Three processors

Figure S. D,.fterent partitions running concurrently at each iteration.

We decided to test this idea on problem 9 with dimension 16. We decided to use a

standard partition of 4 blocks each of dimension 4 and a second partition of 4 blocks

with dimensions 5, 53, 5 and 1.
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Problem: 9 Dimension: 16

NPRO NBLK NSTP NFEV INFO TIME S S E

1 8 1 14576 1 47.183 - - -

2 8 1 14576 1 27.083 1.74 0. 0.87
4 8 1 14576 1 14.233 3.32 0. 0.83

8 8 1 14576 I 9.017 5.23 0. 0.65

Table 7

The method is still slower than MINPACK. However, if we compare the results of

table 7 above and table 9 in [81 we notice that we succeed in getting convergence using 8

processors and the method performs faster than the best case in [8].

We have also experimented with the following idea. Every other iteration we use a

different partition with the same number of processors. We may also choose to do this

every two or five iterations. One of the partitions may use only one block in which case

we will be doing a MINPACK step every other iteration. We tried out this idea on prob-

lem 9 with dimension 8. One partition has 8 blocks with dimension 1 each, the other par-

tition has 2 blocks with dimensions 7 and 1. We change partitions every five iterations.

The results follow.

Problem: 9 Dimension: 8

NPRO NBLK NSTP NFEV INFO TIME S S( E,

1 8 1 2255 1 4.700 - - -

2 8 1 2255 1 2.967 1.58 0. 0.79

4 8 1 2255 1 2.200 2.14 0. 0.53

S 8 1 2255 1 1.800 2.61 0. 0.33

Table 8

We also tried a partition of 8 blocks with dimension 1 each and a partition of one

block with dimension S. Hence, we are doing a MINPACI( step every five iterations.

944



A parallel algorithm for nonlinear equations

Problem: 9 Dimension: 8

NPRO NBLK NSTP NFEV INFO TIME Sp c Ep

1 8 1 702 1 1.25 - - -
2 8 1 702 1 0.867 1.44 0. 0.72
4 8 1 702 1 0.683 1.83 0. 0.46

8 8 1 702 1 0.583 2.14 0. 0.27

Table 9

With this technique we are able to perform more than 4 times faster than using the

standard partition procedure (see 18]). Although MINPACK is still faster (0.400 secs) we

have decreased considerably the execution time. It is interesting to note in tables 8 and 9

that the speedups SP are not as big as in [81. This was predictable since every five itera-

tions we can have up to seven processors idling.

5. Conclusions and future work. The parallel implementation of the block non-

linear Jacobi algorithm has given us better results than we expected. It has given us a

way to solve systems of nonlinear equations in parallel. To our knowledge this is the first

time a parallel algorithm for solving this type of problems has had such a performance in

a real parallel computer.

It is interesting to notice that the main idea behind the algorithm is the fundamen-

tal idea behind some powerful parallel algorithms, namely, divide and conquer. Further-

more, it is worth noticing that although the algorithm is only linearly convergent it per-

forms faster than a quadratically convergent algorithm on certain problems with a partic-

ular structure and on certain other problems where the function evaluations are not

expensive.
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The main disadvantage of the algorithm is its lack of reliability. With only a 71%

of success rate it cannot be thbught as a way of solving nonlinear equations. However,

there are several ways of improving the convergence of the method at no additional cost.

Along these lines some preliminary tests were presented at the end of the previous sec-

tion. Other approaches are currently being tested and will be part of a future report.

Some more testing is certainly necessary. In particular, we will try to study the

behavior of the algorithm using initial points that are farther away from the solution. We

will also implement the algorithm to solve unconstrained minimization problems.

One of the advantages of using the Monitors macros is that they are portable and

therefore, the code which is running on the Encore/ Multimax will run on any other

parallel computer where the macros have been installed. This is the case, for instance, for

the Alliant FX/8 located at Argonne National Laboratory. The Alliant is a machine

which is more suitable for numerical computations because it allows one to use con-

currency and vectorization in each processor. We decided to start our experiments on the

Encore/Multimax because this machine has 20 processors in contrast with the Alliant

which has only 8 processors. The numerical results of these experiments on the Alliant

will appear on a forthcoming report.
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1.0 ABSTRACT

This paper discusses the work jointly performed by the U.S. Army Material Systems
Analysis Activity, the Computational Engineering Company and the Ballistic Research
Laboratory in the application of time series analysis and modern control theory to
characterize armored vehicle weapon tube flexure. The motivation for performing this
work stems from th- fact that gun bend related errors have a significant affect on fire-
on-the-move delivery accuracy. Hence the ability to predict the precise location of the
weapon's muzzle as a function of time in terms of it's past and current history as well as
other sensor measurements could significantly enhance weapon system accuracy.

Previous efforts to develop muzzle flexure prediction algorithms have generally
relied on purely deterministic techniques. That is gun flexure was mathematically
characterized by deterministic differential equations that were a funct;on of such param-
eters as weapon angle position, rate and acceleration, linear acceleration, and bending of
the gun tube. In the case of gun dynamics this approach tended to be unsuitable for
practical implementation because:

o mathematically they may be extremely complicated,

o they do not account for modeling and measurement uncertainties, and

o they lack the robustness of being adaptive.

This study discusses the preliminary work that has been performed to develop practical
algorithms that address the above problems. The overall approach was to:
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o apply time series analysis techniques to strain gage and other test data
obtained from the M1 Combat Tank mounting a 105mm weapon system and tested over
a special Aberdeen Proving Ground Test Course,

o develop auto-regression/moving average (AR/MA) models of the test data to
characterize dynamic weapon flexure, and

o convert the AR/MA models to adaptive Kalman filter prediction algorithms.

The paper concludes with a discussion of future modeling and field testing necessary
to refine the existing Kalman filter/predictor algorithms and to incorporated a physical
model into the filter structure.

2.0 INTRODUCTION

Since gun barrel bending contributes significantly to the total projectile error
budget, efforts to predict the precise location of the gun muzzle as a function of time in
terms of its past history could significantly improve the accuracy of the weapon system.
Previous efforts by the U.S. Army Ballistic Research Lab (BRL) to develop precision aim
techniques (PAT) have used a deterministic approach. Specifically, the gun motion was
assumed to be described as a function of gun turret angles, angular rates and accelera-
tions. tank vertical acceleration and bending (and bending rates) of the gun tube. The
differential equation used to predict the position of the gun muzzle at projectile exit was
derived using simple geometry and the equation for the fundamental bending mode.
Although the deterministic approach is promising, it has not performed well in field tests
at longer (e.g., 20 milliseconds) in-bore times.

An alternate approach is to use only strain gauge (gun tube deflection) and servo
error data and model the gun deflection as a Markov process: a linear system driven by
white noise. It is this stochastic approach which was investigated here.

In this paper we describe an adaptive model identification algorithm for predicting
gun deflection as the projectile leaves the tube. The adaptability is necessary because of
the potential great variability in the gun motion due to tank velocity or variation in ter-
rain (e.g., surfaced road to rough ground). Efficient operation is desirable as the algo-
rithm could possibly serve as the basis of a real-time gun inhibit algorithm.

The paper is in six sections. In Section 3, a discussion of the data utilized for
modeling is given. In Section 4, the technical approach is outlined and the method used
for evaluating the algorithm is described in Section 5. The paper is concluded in Section
6 by a brief discussion and suggestions for future investigations.

3.0 TEST DATA

The available data was obtained from strain gauge and digital control transformer
(DCT) sensors mounted on the gun tube of a heavy tank in wide use by the Army. The
strain gauge measured the gun tube deflection while the DCT measured the angle of the
gun tube with respect to the turret (see Figure 1). Both sensors were sampled at 250 Hz.
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criterion of minimizing the prediction error. A good summary of ARMA modeling tech-

niques can be found in [1].

4.1 Data Analysis

The data was first carefully examined to determine general characteristics and to
identify statistically (locally) stationary segments. By comparing the data to a schematic
of the bump course, segments representative of various physical situations or environ-
ments could be selected. These segments provided the means to investigate the spectral
content as well as evaluate the eventual design (see Section 4).

Computation of data power spectra using the periodogram and the maximum
entropy method (MEM) was performed to identify the dominant spectral bands and the
bandwidth of these spectra. This analysis proved useful in relating the observed spectral
content to the physical effects as well as ii the determination of the appropriate model
and approximate model order. Further, an important conclusion based on the spectral
analysis is that tank speed had little effect on observed spectral frequencies. An estimate
of the power spectrum of the muzzle error using MEM for a segment consisting primarily
of small bumps is given Figure 2.

4.2 Identification

It is assumed that an ARMA (p,q) model is sufficiently general to model both the
DCT and strain gauge data. In equation (1), a , i=1,2,...,p and b , i=1,2,...,q denote
respectively the autoregressive (AR) and moving average (MA) coefficients, p and q
are the AR and MA orders, and w(k) is a zero mean, unit variance Gaussian white noise
sequence.

p q

z(k) az(k-i) + Eb~ (k-i) + bo w(k) (1)
i-1 i-I

The use of the model for prediction therefore initially requires estimation of the
orders and coefficients. The autoregressive order (p) was estimated using a technique
due to Cadzow 121 based on determining the effective rank of an associated overdeter-
mined ARMA autocorrelation matrix. (The term overdetermined refers to AR and MA
orders selected for estimation which are much larger than the true unknown orders.) As
far as could be determined, no similar technique is available for estimating the MA order
and for this reason, Cadzow's suggestion of simply setting the MA order equal to AR
order was implemented.

As is well known [3]-[4], estimation of the AR coefficients under a least squares cri-
terion results in a linear system of equations to be solved. However, the MA estimation
is a nonlinear system. For this reason, the basic approach to coefficient estimation was
to approximate the ARMA process by a large order autoregression. (Note that any
ARMA process can be represented by an AR process of possibly infinite forder.) This
viewpoint was adopted due to the severe computational constraints. The technique

954



(4 milliseconds).

GUN REFERENCE

(STRAIN GAUG MUZZLE

GUN TUBE

TANK

TURRET HORIZONTAL

Figure 1. Geometry of Gun Tube Deflection

There were four tests available for analysis. Each test was conducted on the Profile
IV bump course at Aberdeen Proving Ground at speeds of 5, 15, 22, and 30 miles per
hour (one test at each speed). The course consists of approximately 460 feet of triangu-
lar and small wooden bumps up to 12 inches high with gravel lead-in and exit areas.
The Profile lV course is considered to be one of the most severe tests of a tank's ability
to point the gun accurately while traversing rough terrain.

4.0 TECHNICAL APPROACH

We next describe the technical approach implemented for strain gauge, DCT, and
resultant muzzle error identification and prediction. The basic approach was to model
the data as a Gauss-Markov process. Specifically, based on the spectral analysis (dis-
cussed in 4.1), it was assumed that the data was best modeled as an autoregressive mov-
ing average (ARMA) model (defined below) whose parameters are selected under the
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implemented essentially follows an approach described by Graupe et al. [5 which
involves estimating the coefficients of a high-order AR model and transforming it to a
lower order ARMA Model. The AR coefficients were computed from MEM utilizing
Burg's algorithm [6].

4.3 Prediction.

As discussed, accurate firing of the tank requires prediction of the muzzle error at
some future time instant. The length of prediction step is dependent on, for example,
the type of round, and the length of the gun, etc. This problem can be stated more for-
mally as the optimal prediction of the ARMA process at step k + n based on data up
to step k.

Because of its many desirable features, the prediction method employed was the
Kalman filter [7]. To utilize the Kalman filter, it was first necessary to convert the
.AR.\L-X process to state space form. By defining the state equation

x(k + 1) = A x(k) + B w(k) (2)

where

-a l 1 0 - a l b 0

-a 2  0 1 b2 _ a2 bo

A: : B 2
* I

L -a p 0 *.0

then the observation equation

z(k) -- [1, 0, ... , 0] x(k) + bo w(k) (3)

describes the ARMA process. In the above, the estimated orders and coefficients are util-
ized. Note that from (3-2)-(3-3), the process noise is correlated with the observation
noise. In order to avoid the increased complexity incurred in the correlated noise case,
an equivalent augmented system was implemented which removed the "measurement"
noise. In any case, the Kalman filter recursively computes the conditional expectation:

i(k 1k) = E[x(k) Jz(O),...,z(k)]

which is the minimum variance estimate (the estimate which produces the smallest
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variance of the difference of the state and the estimate based on the observations). The
ARMA estimate is immediate from (3-3)

i(klk) - [1,0,...,0] x(klk)

and because the state matrix A does not depend on time, it can be shown that

i(k + n 1k) = A" -i(k1k) (4)

The methodology was applied to the cases n = 3 (12 ms) and n = 5 (20 ms) . It is
important to emphasize that while equation 4 is optimal, the quality of the estimate
deteriorates as n grows large.

4.4 Adaptive Estimation

Implementation of the prediction algorithm, shown in Figure 3 consists of estimat-
ing the ARMA order and coefficients using data during a "training" interval followed by
prediction for a short interval following the training. By training continuously, the algo-
rithm provides an adaptive algorithm for prediction. The approach was considered not
only for its simplicity, but also for its (comparatively) small computational burden. An
estimate of the computational burden was made for a simplified (reduced order) version
of the algorithm and it appears that it can operate in real-time on a DEC MicroVax II.
However, to realistically measure the true computational requirements, the algorithm
was extensively evaluated.

DATA ARMA PARAMETER
- IDENTIFICATION

__soKALMAN FILTER PREDICTOR . i+k

Figure 3. Adaptive Filtering Prediction Method
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5.0 ALGORITIM EVALUATION

The implementation of the algorithm required selection of certain "variables" such
as the number of autoregression coefficients (N) to use in the approximation or the
length of the training interval. Due to the requirement of computational efficiency, it
was of interest to set variables providing acceptable performance while yielding the shor-
test possible run-time. Initially, values which resulted in good identification and predic-
tion were chosen, then the values were altered in a systematic manner until a "minimal"
set was obtained.

5.1 Experimental Baseline

To evaluate the performance as well as the limitations of the ARMA approach, the
methodology was applied to a variety of representative data segments from the four
tests. The segments were selected to provide typical (modeling and prediction over simi-
lar data), as well as atypical (modeling and prediction over different data) conditions.
To be more precise, by choosing a variety of training and prediction interval combina-
tions, the approach was tested under different physical "scenarios" associated with the
tank traversing different portions of the track. Since the track is composed of regions
consisting of primarily small bumps or large bumps, six different combinations were
identified. For example, one combination resulting in a typical condition is training and
prediction over data consisting primarily of large bumps. An atypical condition would
result from training over large bumps and prediction over a segment consisting of small
bumps. The ability of the algorithm to predict the data for a typical case is shown in
figure 4.

To evaluate the quality of the muzzle pointing error, the sample standard deviation
(RNMS) of the error residual sequence e(k),

e(k): = z(k) - z(klk-n)

was computed. The error RMS was computed both over the entire segment and data
and only over the zero crossings: the points at which the prediction is within 1/10 mil-
liradian band of zero. This latter statistic is important, as only at the predicted zero
crossing will the gunner will be allowed to fire. For comparison, the RMS of the data
over the entire segment was also computed.

Results for the baseline set of experiments show that the algorithm provides an
average error reduction of 32% for the typical and 23% for the atypical segments. The
most dramatic reductions often occur at the higher speeds.

5.2 Reduction of Algorithm Run Time

Since the algorithm achieved suitable performance on the baseline segments. values
of the algorithm were next individually varied to result in shorter run times.
Specifically, the effect of reducing the training interval, the order of the autoregressive
approximation (N), and the estimated AR and L orders was measured. In order to
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quantify the effect of the various changes, the run time of each subroutine of the algo-
rithm was calculated with a timing program. Execution time is most sensitive to ARMA
order as it is directly related to the Kalman filter computation, often the most numeri-
cally expensive portion of the algorithm. Examples of results utilizing reduced values
are given in Table 1. A typical run which used two seconds of data to establish the
model followed by prediction over one second of data required approximately 4 to 5.5
seconds on a DEC MicroVax II.

Table 1. Results of Variable Testing (2 sec training)

SPEED BEST MODEL REDUCED ORDER
MPG CASE* RAW DATA RMS PREDICTION ERROR PREDICTION ERROR

A 0.3mr 0.2mr (15) 0.2m4 (3)

5 B 0.3 0.2 (1) 0.2 (1)

C 0.2 0.2 (7) 0.2 (1)

A 0.3 0.3 (1) 0.3 (1)

15 B 0.7 0.3 (4) 0.3 (1)

C 0.5 0.4 (1) 0.4 (1)

A 0.6 0.4 (17) 0.4 (8)

30 B 1.0 0.3 (9) 0.3 (4)

C 0.9 0.4 (3) 0.4 (3)

* Cases:

A: Train on Small Bumps. Predict on Small Bumps
B: Train on Large Bumps, Predict on Large Bumps
C: Train on Small Bumps, Predict on Large Bumps

6.0 DISCUSSION AND FUTURE WORK

Considering the limited scope of this study (restriction of ARMA models and lim-
ited data types), the results are quite encouraging. For the baseline, the adaptive 20
millisecond ARvLk predictor was able to reduce the total muzzle pointing error usually
from 20% to 60% for the expected operational conditions (typical scenarios) and even
for the atypical case- there was often a small to moderately large reduction. Usually,
errors are between 0.1 and 0.4 mil!iradians. By reducing the training interval and forci-
bly decreasing the order of the model, a version of the algorithm with comparable per-
formance was obtained which appears capable of real-time operation on commercially
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available microprocessors. It is almost certain that VHSIC technology will make real-
time operation feasible.

Since the ARMA work was completed an alternative technique, Canonical Variate
Analysis (CVA), was applied to the strain gage test data. The CVA approach is a
method for identifying the observable dynamics, or states, from empirical data. The
algorithm is automatic and completely "data driven" no apriori modeling is required. A
brief overview of the method is provided here.

The CVA algorithm provides directly from the data a state-space representation of
the underling system generating the data. That is, CVA estimates all relevant quantities
of a system of the form:

x(k + 1) = Tx(k) + G u(k) + w(k) (5)

y(k) = H x(k) + A u(k) + B w(k) + v(k)

Where:

y(k) = is the output,
x(k) = is the state of the system
T = is the system transition matrix,
u(k) = is an input vector, and

w(k) and v(k) are independent white noise processes with covariance matrices Q and R,
and G, H, A, & B are dynamic matrices. The salient difference between thc ARMA
modeling and CVA is that both plant, w(k), and measurement ,v(k), noise sources are
estimated.

Figure 5 depicts the CVA modeling and prediction process. The model obtained
through CVA techniques is inherently adaptive and robust in that as changes occur in
the driving forces, a new model, very possibly of different order can be determined.
Under the assumption the modeling procedure can be performed quickly and frequently,
a very accurate representation of the observable dynamics is consistently available. As
previously shown in section 1. an optimal (minimum mean square error) prediction of
the state is immediate from the Kalman Filter.
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PROCESS MODEL

PLANT
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SYSTEM KALMAN REDICTIONSENSOR- . IDENTIFI- =ieFILTER-

DATA CATION

IDISTURBANCE
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Figure 5. Dynamic Modeling and Prediction Using CVA

Figure 6 depicts a comparison of CVA prediction versus that of the optimum
ARM1A model. Also shown is the actual muzzle motion. The superior prediction capabil-
ity of the CVA is evident.

Although the ARMA and CVA approaches show real promise, further work is
required to refine the techniques and to investigate alternate forms of the adaptive filter.
In particular, there is potential for great improvement if the ARMA or CVA modeling is
augmented with physical modeling of the gun tube/turret and if additional data such as
accelerometer/gyro or gunner servo error is
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A NON-RECTANGULAR SAMPLING PLAN FOR
ESTIMATING STEADY-STATE MEANS

Peter W. Glynn
Department of Operations Research

Stanford University
Stanford, CA 94305

Abstract
The method of multiple replicates is frequently used by simulators to estimate the

steady-state mean of a stochastic simulation. One important advantage of this approach
is that it is easily adapted to a parallel computer. Unfortunately, the method of multiple
replicates is quite sensitive to contamination by "initial bias." In this paper, a new type of
sampling plan is described. It retains the replication flavor, yet attenuates the bias prob-
lem. It is shown that the new method reduces mean square error relative to conventional
multiple replicates for problems in which the "initial transient" decays slowly.

Keywords: Simulation, replication, mean square error, parallel computation.
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Introduction

Let Y = (Y(n) : n > 0) be a real-valued stochastic sequence corresponding to the output

of a stochastic simulation. We assume that Y is ergodic, in the sense that there exists a

finite (deterministic) constant r such that

n Y(i) =,r

as n - o. The steady-state simulation problem concerns the question of estimating the

parameter r efficiently, and providing confidence intervals for r.

Basically, two alternative approaches for dealing with this problem have been studied
in the literature. One approach is known as the method of multiple replicates. The idea

here is to generate m independent replicates of the process Y. Each replicate is simulated

for t time units. The advantage of this method is that it gives rise to independent ob-

servations; this significantly simplifies the problem of producing confidence intervals for
r. Furthermore, given access to a parallel computing environment, one can assign each
independent replicate to a different processor. Thus, the method of multiple replicates is

well suited to parallel computation.

A disadvantage of this approach is that each of the m independent replicates is con-
taminated by initia bias. This initial bias arises from the fact that each of the m replicates
is initiated with an initial condition that is atypical of the steady-state of the system. If
we view the first a time units of each replicate as representing an "initial transient" for the

system, this analysis suggests that ma time units of the total time simulated are contami-

nated by initial bias. If m is large, we find that the method of multiple replicates devotes

a significant amount of computation to generation of highly biased observations. This is,

of course, undesirable.

In response to this, we can consider sampling plans in which only one observation of
Y is generated. Such a strategy is known in the literature as a single replication method.

Here, only the first s time units of the simulation are significantly biased, and there is no

magnification effect by the parameter m. On the other hand, construction of confidence

intervals for r is now complicated by the fact that all the observations collected are au-

tocorrelated. Furthermore, it is now a non-trivial task to make an assignment of parallel

processors that will significantly speed up the simulation.

Note that the method of multiple replicates involves factoring a computer time budget

T into m replicates, each of length t = T/m. If we view the data of the i'th replicate as being

assigned to the i'th row of a matrix, we obtain a rectangular m x t matrix which summarizes

the data generated by the simulation. Consequently, we refer to the method of multiple
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replicates as a rectangular sampling Dlan for estimating steady-state means (see Figure 1).

Of course, a single replicate method is the special case of a rectangular scheme in which

the data corresponds to a 1 x T row vector.

In this paper, we consider these rectangular methods in greater detail. We also pro-

pose and analyze a new non-rectangular sampling scheme, which attempts to offer an

advantageous compromise between the methods of single and multiple replicates.

The organization of this paper is as follows. Section 2 provides reasonably complete

mean square error analysis of conventional rectangular sampling plans. In Section 3, the

non-rectangular plan is introduced and studied. Section 4 offers some conclusions.

2. Rectangular Sampling Plans

We start by describing the traditional method of replication for solving the steady-

state simulation problem. To simplify the discussion that follows, we will assume that in

x units of computer time, precisely x time units of the process Y can be simulated. Thus,

given a total computer time budget of size T, we can implement a rectangular sampling

plan in the following way:

1.) Choose the number m of independent replicates. (If m = 1, this is a single replication

method.)

2.) Choose the (deletion) parameter s, from the interval [0, T/m]. (The first a time units of

each replication will be deleted from the set of observations.)

3.) Generate m independent copies Y1, Y2,..., Y,, of the process Y. Each copy is simulated

over the interval [0, T/m].

4.) Set t = [T/mJ and compute the estimator

i= j8+1

We will now consider the mean square error (MSE) of the estimator F(m, s, T). The

MSE criterion is often viewed as the most important quantitative measure of the quality

of an estimator. We start with the well known MSE decomposition formula

(2.1) MSE({(m, s, T)) = var ?(m, s, T) + (bias ?(m, s, T) 2 .

By using the independence of the replicates, we observe that

t

(2.2) var ? (m, a, T) - Ivar 1 Y ,mn t-a

1 t

(2.3) bias ?(m, a, T) = - 1 EY~j) -.
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A Rectangular Sampling Plan

t

Replication 1

Replication 2

Replication m ,

deleted
observations

Figure 1

The Non-rectangular Sampling Plan

Replication 0

Replication 1

Replication 2

Replication m.

Figure 2
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In order to analyze the terms appearing on the right-hand sides of (2.2) and (2.3), we

will assume that Y(n) can be expressed as a real-valued functional of a time-homogeneous

Markov chain X(n), so that Y(n) = f(X(n)) for some real-valued f defined on the state space

S of X. The set S may be discrete or continuous. Continuous state space is particularly

convenient in analysis of discrete-event simulations. The generalized semi-Markov process

(GSMP) view of discrete-event systems shows that very general discrete-event simulations

may be expressed in the form Y(n) = f(X(n)) with X Markov, provided that we permit

continuous state space.

For xeS, u >_ 1, let v(x, u) be the conditional variance defined by

v(Xu) = E { ,- (- 
IY (O) = } (E { =-I

U YE y UX0 -- , Y(j)IX(0) -

Similarly, let b(z, u) be the conditional bias given by

b(z,u) = E r

Let u(.) = P{X(O)e.} be the initial distribution of X. The Markov property permits us to

re-express (2.3) as

(2.4) bias ?(m, s, T) = Eb(X(s + 1), t - s),

where E,(.) denotes the expectation operator conditional on X(O) having distribution a.

To obtain a similar expression for the variance term (2.2) requires more care. We first

apply the well known variance decomposition formula

var Y(j) = Evar Y X 1)?

(2.5) 1 i- _

+varE { E. Y(j)IX(8+1)}.

Clearly, we have

var { E Y()IX(s + 1) =(X(a + ),t - a),

IY=8+1I=

Plugging these expressions into (2.5) yields

I t

(2.6) var -L F Y(y) = Ev(X(s + 1), t - a) + varb(X(s + 1), t - a),
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where var,(.) denotes the variance operator conditional on X(O) having distribution ".

Suppose that X is a positive recurrent Markov chain possessing a unique invariant

probability distribution r. A large class of such chains has the property that under suitable

regularity conditions,

$up JE.h(X(a)) - E.h(X(O))I = 0(e-*°)
heM

for some a > 0, where X is some appropriately defined family of real-valued functions

h: S - JR. (See NUMMELIN (1984), p. 120, for an example of such a theorem.) Assuming

that the functions v(-,u), b(.,u), b2 (.',u)C for all u > 1, we obtain the relations

(2.7) Evo(X(a + 1), t- a) = EV(X(O), t - s) + O(- ),

(2.8) E0 b6(X( + 1), t - s) = Eb(X(O), t - a) + O(-"),

(2.9) Eb 2 (X(a + 1),t - ) = Eb 2(X(O), t -,) + Oe-a),

where the constants implicit in each of the "big Oh" terms are independent of t.

Furthermore, for such a recurrent Markov chain, it is typically the case that the steady-

state mean r can be expressed in the form r = Ef(X(O)). As a consequence of the station-

arity of X under initial distribution r, it is evident that EY(n) = r for ni> 0 and hence

Eb(X(O),t - a) = 0. Thus, (2.8) can be simplified to

(2.10) Ejb(X(, + 1), t - a) = 0(e-).

Combining (2.9) and (2.10), we obtain

(2.11) varb(X(a + 1), t - a) = E b2(X(o), t - ) + O(C-*,).

(Again, the constants implicit in (2.10) and (2.11) are independent of t.)
Combining (2.6), (2.7), and (2.11), we obtain the expression

1 t
Vat - Y(j) = E.v(X(o), t - a) + Eb 2 (X(O), t - a) + O(-a).

j=5+1

Repeating the variance decomposition (2.6) under var.(.), we find that

1a-, Y(j) = Ev(X(O),t - a) + E.b2(X(o),t - a)
J=8+1

and hence

1 t t

(2.12) var t- Y()=var--L Y(j)+°(e-*')
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To simplify (2.12), we again use the fact that X is stationary under initial distribution

r. Set Y,(n) = Y(n) - r,

a2 = E,,Y(O)2 + 2 EY(O)Y(k)

11=1
00

' = 2 kE.Y(O)Y(k).
k=1

Under appropriate summability hypotheses (see, for example, p. 172 of BILLINGSLEY

(1968)), we can use the stationarity to write

(2.13) vars cY3 -2 (1- L EY{O()Y(k).
. -a (t- s)2 t - t- ,

Note that

(2.14) IE,. Y.(0) Y.(k) 1< !5 ff(x) I E. (k)l I, r(dz),

where E.(.) is the expectation operator conditional on X(o) = X. We now observe that

E.Y(k) = E=f(X(k)) - E.f(X(O)). Appropriate regularity hypotheses on X permit us to assert

that

(2.15) sup IEf (X(k)) - E,!(X(O))I = 0{, -- k)

2 *S

for some fl > 0. (See p. 122 of NUMMELIN (1984) for a typical such result.) Substituting

this relation in (2.14) yields

E,,Y(O)Y(k) - O(e-k).

We may therefore conclude that

(2.16) (1 I- A:) E.Y.(O)Y(k) = O(, - Pl )

k=u

for 0 < R' < 8. Substitution of (2.16) into (2.13) shows that

(2.17) var. Y(j)= t- (_)2 +

Combining (2.1), (2.2), (2.4), (2.10), (2.12), and (2.17), we obtain the important rela-

tionship

(2.18) MSE(F(m, a, T)) a2 ( )+ O(C-) +1M --V s (t j

where the implicit constants appearing in the "big OH" terms are independent of m, q, and

T.
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To gain further insight into (2.18), we consider the typical situation, in which the
deletion point a is small relative to the length t of each replicate. Furthermore, in order to

simplify the discussion, we assume that mt = T (exactly). Then,

1 r 2 a 2 1a2  m ,2  and
(2.19) .i= ~ ) and -!+ 1

1- T/ I r T ( _)

(2.20) 1m t1 =  "M

M (t- ) 2  
T 

2
T

Combining (2.18) through (2.20), we obtain the approximation

(2.21) MSE((,, a, T)) ft E- a2 M ,.

Viewing a and mn as design parameters for the simulation, we see that (2.21) suggests

that the deletion parameter s should be small. On the other hand, if a is chosen too small,

difficulties can arise in the "big Oh" terms appearing in (2.18). This recommendation

corresponds to intuition.

As for the number of replications m,m should be chosen small (for example, a single
replicate method should be considered) whenever a2s > q. For reasonable values of s, this

inequality will typically be valid. Thus, mean square error favors using a small number of

replicates. This differs from the conclusion reached by KELTON (1986) in his analysis of
"replication splitting" schemes for simulation of autoregressive sequences. The arguments

there show that using a large number of replicates can reduce the variance of the steady-

state estimator when the autoregressive sequence is positively correlated (i.e. ,i > o).
In our current setting, we judge our estimators via mean square error (as opposed to

variance). Since our error criterion explicitly considers the loss in estimator efficiency due

to bias (variance does not measure bias), it is not surprising that our conclusions differ.

Of course, if s is small (i.e. bias is not a major problem), (2.21) supports using a large

number of replicates when , > 0,

To illustrate the above points, we calculate the mean square error of ?(m, 3, T) when

m = TP(0< p < 1) and a = Tq(0 < q < 1-p), in which case t = T*, where r = i -p. We find that
£.2 a 2 7 O-3)

(2.22) MSE(?(m,s, T)) = + 2  P T_,+ .-2

Assuming that p + q < 1/2, (so that the "big oh" term is small) we find that relation (2.17)

confirms the previous discussion. Both p and q should be chosen small, in accordance with

our previous recommendations.

3. A Non-Rectangular Sampling Plan

The idea behind the sampling plan to be described in this section is that we try

to avoid expending a significant fraction of the computer time budget on generation of
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highly biased observations. As discussed in the Introduction, the initial bias problem is
of particular concern when the method of multiple replicates is used, since the amount of

contaminated data is proportional to the number of replicates. On the other hand, the

method of multiple replicates enjoys several significant advantages: ease of construction
of confidence intervals and development of parallel simulation schemes. Our goal here is
to develop a method that has a multiple replicate flavor and yet avoids the initial bias
difficulties that are associated with conventional multiple replicate methods.

As in Section 2, we assume that the output sequence Y takes the form Y(n) = f(X(n))
for some time-homogeneous Markov chain X, and real-valued function f. The following

algorithm employs one simulation of length . to generate an initial condition which is

reasonably typical of the steady-state. This initial condition is then used to generate m
conditionally independent replicates (each of length t) from the output sequence Y. Thus,
the effort to generate a "good" initial condition is amortized over the m replicates. In

terms of observations generated, this sampling plan is non-rectangular (see Figure 2).

The non-rectangular sampling plan can be summarized as follows.

1.) Given the computer time budget T, choose the number m of (conditionally independent)

replicates, and the deletion parameter s (0 5 s<5 T).

2.) Generate one copy Yo of the sequence Y to time s.

3.) Using the initial condition Xo(s) (X0 is the Markov chain corresponding to Y0), generate

copies V,..., Y,, of Y to time t - 1, where t = f(T -
4.) Compute the estimator

?(m,,,T)-=

i=1 ==0

We now turn to computing the mean square error of k'(m, s, T). As in Sectien 2,

(3.1) MSE(2f(m,a , T)) = var k(m, e, T) + (bias f(m, s, T))2 .

Using the fact that Y,()Y(. + a) (I denotes equality in distribution), we find that

bias Y(m, 3, T) = Eob(X(s), t).

From (2.8), it therefore follows that

(3.2) bias '(m, s, T) = O(e-*').

To handle the variance term appearing on the right-hand side of (3.1), we again use the

variance decomposition method:

(3.3) va I (m, 3, T) = var E(Y(m, a, T)IX0(s)} + Evar(m, a, T)IXo(s)}.
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It is easily seen (use the fact that Y,,. .. , Ym are independent and identically distributed,

conditional on Xo(s)) that

(3.4) E{?(m,,T)Xo(s)} = b(Xo(a),t) a.s.,

(3.5) var{Y(msT)IXo(a)}= -(Xo(s),t) a.s.

Combining (3.3) through (3.5), we get

(3.6) var f(lm, , T) = -E,,,(X(s), t) + var,,b(X(), t).

As in Section 2, we obtain

(3.7) var k(m, a, T) = -E.,(X(O), t) + Eb 2 (X(O), t) + O({-"G)m

(use (2.7), (2.8), and (2.9)). Recall that
lt-I

%Wit t Y(j ) = E,,V(X(O), t) + E.62 (X(O), t).
j=0

(see Section 2). Plugging into (3.7), we get

(3.8) var if(mosT) = 1 -!ZY(j) + E.b2 (X(O),t).
j=0

The first term on the right-hand side of (3.8) was analyzed in (2.17). For the second term,

note that

b(x,t) = lb(x)- 1 (E.Y(k) -
t k=t

where

b(Z) = Z(EY(k) - r).
k=O

From (2.15), it is evident that

(3.9) sup lb(z, t) - -b()I -O(et).
ZeS t

Consequently, we obtain the inequality

(3.10) b(X(O), t) <_ -b(X(0)) + O(e$t).
-t

Since EY(k) = r, the expectations E,,b(X(O),t) and Eb(X(O)) both vanish. From (3.10),

we therefore get

E,b 2 (X(),t) 5 ,LEb2(X(O)) + O(e-8t)EIb(X(O))l + O(e 2 0t).
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A similarly derived lower bound yields the formula

(3.11) EP(X(O), t) = 4E~b2(X(O)) + O(,t).

Let b = Eb 2 (X(O)). To simplify the following discussion, assume t = (T - s)/m (exactly).
Combining (2.13), (3.8), and (3.11), we obtain the important relationship

(3.12) MSE(i '(m,,T)) = I + (..) + ") +m 17 -1 + (M ). + o(C- )+o-',

where -y = min(/, ') and the (implicit) constants in the "big oh" terms are independent of
m, a, and T. Expressing t in terms of m, a, and T, we get

(3.13) a2 a2 + a 2 s 1 (_ 2
;;. = 7y +- T Vo

(3.13) 1 + 0 , and

(3.15)) = (-)mb + M(

assuming that a is small relative to T. Combining (3.12) through (3.15), we obtain the
approximation

(2 a 2a mv7 m(n- 1)b(3.6) SE( ( '4 -f + TF iT +  
7T
2

We now compare the mean square error of our non-rectangular sampling plan with that
of a rectangular plan having the same computer time budget T, number of replications
m, and deletion parameter a. Comparing (3.16) to (2.21), we see that MSE(k(m,s, T)) <

MSE( (m,aT)) when

O2  > 2 a + b(m 2 _ in).

We shall shortly show that b > 0 2. Thus, f"(m, a, T) beats ?(m, a, T) when am> > + m 2 . This
will typically occur when a is large relative to m. Thus, we can expect k(m, a, T) to have

smaller MSE than ?(m, a, T) whenever a must be chosen relatively large, in order to remove

initial bias.
We can illustrate this point when m = TP (0 < p < 1) and a = T' (0 <q < I). Then, if

p + q < 1/2,

(3.17) MSE((, ,, T)) = + Z 02 b O .
T+ T-q -- T- - 2 p T

Comparing (3.17) to (2.22), we find that MSE(f'(m, a, T)) _ MSE(F(m, a, T)) when p < q,

as was suggested above.
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We conclude this section by showing b > q2. We first observe that b(z) solves Poissn'

b(z) - Eb(X(1)) = f (z),

where f,(z) = f(z) - r. Additionally, E,,b(X(O)) = 0. Then,

fl-I n+1

E fc(X(k)) = E Dk + b(X(O)) - b(X(n + 1))
k=O k=1

where Dh = b(X(k)) - E{b(X(k))IX(k - 1)} are martingale differences. Note that if X(o)k=w, we

can apply the martingale central limit theorem (see p. 205 of BILLINGSLEY (1968)) to

conclude that

n-1(3.18) n-12 o(x(k)) =o N(o, 1)
k=O

where A2 = EWD2. (The function b(.) is bounded under (2.15).) If the left-hand side of (3.18)

is appropriately uniformly integrable, then

----
Onn-i' _ A

k=O

as n - oo. But
n-1 n-1

var y, f (X(k)) = n var - Y(j).
k=0 n

From (2.17) and (3.19), it follows that A2 = EWD2 = . But D, is orthogonal to bX(O)),

being a martingale difference, and hence

Eb(X(1)) 2 = E,,D,2 + E,(E{b(X(1))jX(O)} 2).

Since b = E~b(X(O))2 , it is evident that b > a2.

4. Conclusions

The non-rectangular sampling plan introduced in this paper has a lower mean square
error than that of the corresponding rectangular plan that involves an equivalent amount of

computer time, when the "initial transient" decays slowly. This, of course, is precisely the

setting in which the method of multiple replicates exhibits its poorest behavior (relative to

a single replicate method). Thus, the non-rectangular plan described here is most beneficial

in precisely those problems for which multiple replicates is typically most ineffective.

It should be clear that the replication component of this non-rectangular plan is wel!-

suited to parallel computation. However, the generation of the initial condition Xo(3) is
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not easily adapted to the parallel setting. This aspect of the sampling plan described here

deserves further attention.

Finally, it should be mentioned that a great deal of empirical work remains to be done
in understanding the advantages and limitations of this non-rectangular method, when
applied to "real world" problems.
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Covariance Analysis for Split Plot and Split

Block Designs and Computer Packages

Walter T. Federer and Michael P. Meredith

Mathematical Sciences Institute

Cornell University, Ithaca, N.Y. 14853

ABSTRACT. Covariance analysis for data from experiments designed in a split

plot or split block design is mostly ignored in statistical literature.

When it is considered, it is often done incorrectly and/or incompletely.

This is especially true for computer packages. A discussion of what should

be done, what is or can be done with computer packages, and a possible

solution to the problems is given. The proposed solution is to obtain

computer output for a particular package such as SAS, GENSTAT, BMDP, etc.

and to annotate the output explaining which computations have been

performed, which have not, and which are still needed. If an incorrect or

useless procedure has been given, it is so stated. A short description of

annotated computer outputs prepared to date is given. Annotated computer

outputs for five packages for principal component analyses, and for three

packages for covariance in a split plot design have been prepared. Two

technical reports and an annotated computer output have been written for

cluster analysis. Copies of these reports are available from the

Mathematical Sciences Institute.
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COVARIANCE ANALYSIS FOR SPLIT PLOT AND

SPLIT BLOCK DESIGNS AND COMPUTER PACKAGES

Walter T. Federer and Michael P. Meredith
337 Warren Hall, Biometrics Unit

Cornell University
Ithaca, NY 14853

BU-974-M May, 1988

1. INTRODUCTION. Split plot and split block designs appear to be

rather mystifying to many individuals. They apparently are not cognizant

of the many and varied forms these designs may take, the philosophical

nature, concepts, and usage of the several error mean squares that are

required, and the nature and use of covariance analyses for these designs.

Since the computational procedure for an analysis of variance (ANOVA) for

orthogonal split plot and split block designs are trivial, many individuals

feel that the concepts are also simple. Computational procedures for an

ANOVA do not explain concepts contrary to some opinions.

Yates (1937) described one type of split plot design as an example of

a class of designs. Unfortunately this one type of split plot design is

described as THE split plot design in almost all of statistical literature,

especially in textbooks. Federer (1955, 1975, 1977) described some

variations, some misconceptions, and possible population structures for

these designs. With regard to the last point, a glaring omission in

statistics textbooks is the failure to include any discussion of population

structure for even the simplest of experiment designs. This necessarily

raises the question about meaningful inferences when the population is

undefined and undescribed.

In the Technical Report Series of the Biometrics Unit, Cornell
University, Ithaca, N.Y. 14853.
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When analyses of covariance (ANCOVA) are attempted, the confusion

continues. This becomes strikingly evident in outputs for computer

packages purporting to give such analyses for any but the simplest of

experiment designs (See, e.g., Federer, 1955, Federer et al. 1979, 1987a,

1987b, 1987c, and Searle et al. 1982a, 1982b, 1982c). The concept of a

separate regression for each error mean square is lacking in a number of

computer packages. Hence, if a package does supply output for means

adjusted for a covariate, the adjusted means given are often incorrect.

The fact that there may be as many regression coefficients as there are

error mean squares appears not to be understood. Since many regression

coefficients can be and are computed in an ANCOVA, it is important to

understand which ones are to be used for adjusting means for covariates and

why.

Herein we shall discuss only ANCOVA for three specific designs, i.e.

(i) the standard split plot design where the whole plot treatments are

in a randomized complete block design and split plot treatments are

randomized within each whole plot,

(ii) a split-split plot design which is the one in (i) except that the

split plot is further split to have whole plot treatments, split plot

treatments, and split-split plot treatments, and

(iii) a split block design or two-way whole plot design where each set

of treatments are in a randodmized complete block design arrangement.

In addition, a list of available annotated computer outputs (ACOs) is given

in the last section.

2. Split Plot Experiment Designs. The almost universal split plot

experiment design discussed in statistics textbooks is the one wherein the

whole plot treatments are in a randomized complete block design and the

split plots are completely randomized within each whole plot. Denote this

as the standard design. However, Federer (1955, 1975) has pointed out

that there is a vast variety of split plot experiment designs which are

used in practice. There are many different experiment designs for whole

plot treatments as well as for split plot treatments. Also, almost all

statistics textbooks confine their discussion to an ANOVA for the standard

split plot design with no discussion of an ANCOVA or of an ANOVA for

nonorthogonal situations. Computer packages such as SAS, GENSTAT, BMDP,
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and others are set up to provide computations for nonorthogonal situations

but a full description and use of computer output computations is lacking,

resulting in a need for annotating computer output (ACO). S. R. Searle and

several co-workers have been very active in this area. A list of ACOs

prepared by this group is given later in the paper. It should be noted

that Searle is currently updating a number of previously prepared ACOs.

In order to keep this paper relatively short, only the standard (or

usual) split plot experiment design will be considered in detail. Many

response models may be used for the vast variety of experiments designed as

a split plot but we shall confine ourselves to the linear model in Federer

(1955). Let the ijkth observation Y ik with an associated covariate Zijk

be represented as follows:
- - (1)

Yijk =  + Pi + Ti+ 6 j + ak + CTik +  i.Z...) + 02(Zijk-Zij . + Cijk,

where V is an overall mean effect, Ti is the effect of the ith whole plot
treatment, ak is the effect of the kth subplot treatment, aik is the

interaction effect for the ikth combination of whole plot treatment i and

split plot treatment k, p is a random block effect distributed with mean

zero and variance a2 , a is a random whole plot error effect distributed
0' ij

with mean zero and variance o2, Eijk is a random split plot error effect

distributed with mean zero and variance oz. z is the mean of the
, ij t

covariate for the ijth whole plot, Z... is the over-all mean of the

covariate (i.e., the usual dot and bar notation), i - 1,..., a, j 1 1, ...,

r, k - 1, ... , s, Bi is a whole plot linear regression coeficient of the Y

whole plot residuals on the Z whole plot residuals, and 82 is a split plot

linear regression of the Y split plot residuals on the Z split plot

residuals. Note that using estimates of 81 and 82, i.e, i1 and j2' to

adjust means is the correct thing to do. The purpose of using covariates

is to reduce the variation in observed Y variable means by measuring and

using an associated covariate. The reduction must then occur in the error

or residual line in the ANOVA. We have encountered individuals who did not

use this regression to adjust treatment means but used another regression,

e.g., on the total line in the ANCOVA. This is incorrect and possible with

present computer packages by eliminating the effect of the covariate first.

In some situations, the formulation of the response model as in (1) is

inappropriate. Although (1) could be appropriate for one variable or for
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one investigation it may not be for another. Also, as formulated (1) has

two error effects, the 4ij and c ijk  When the whole plot treatments, e.g.,

represent a random sample of treatments from a population, then the Ti are

distributed with mean zero and variance a2 . An appropriate error term

for the fixed split plot treatment effects ak would be the whole plot by

split plot treatment interaction mean square. The aT ik would have

E alik 0 and variance a 2. Likewise in an ANCOVA, the appropriatei,k kU
regression for split plot treatment means would be computed from the

interaction line rather than the error (b) line (see Table 1). In other

situations, the split plot treatments or both split plot and whole plot

treatments could be considered as a random sample of treatments and the

effects would be random rather than fixed effects. Appropriate

modifications in ANOVA and ANCOVA would be required for both situations.

A response model for variable Y is formulated and then an ANCOVA as in

Table 1 is appropriate for a single covariate Z related to the variable Y

in a linear manner. Note that the relation between Y and Z could be

polynomial or nonlinear in nature. The number of covariates, say c, may

exceed one. This situation may be handled as a straight-forward extension

but we shall not consider these additional complexities. For response

model equation (1), the ANCOVA is given in Table 1. The sums of products

are computed in the usual manner. For example, Tyz = M Jk ZIjk,
ijk

Ayz = 9 iyj z where 9yij is the residual for the variable Y alone
ijand 9zij is the residual for the variable Z alone, and B yz i

i j k ikEj,

where the 9hijk are the computed split plot residuals for variable h - y, z.

The above computations would still hold even for non-orthogonal experiment

designs. The mean squares in ANCOVA are obtained by dividing by the appro-

priate degrees of freedom. If, in addition to an ANCOVA, it is desired to

obtain F-statistics, the ratios W;y(ar-r-a) / A'Y(a-i), S'y[a(r-1)(s-1)-l1

/ B (S-1), and IV [a(r-1)(s-l)-l] / B'y(a-1)(s-1) may be computed. Given
Wy yy y

that the A1j and eiJk are NIID, the probability of obtaining a larger

F-statistic may be obtained from prepared tables or computer programs. Even

if normality does not hold, the probabilities will be approximately correct

for most situations.
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Table 1. ANCOVA for equation (1) for a split plot experiment design 1

Sums of
Source of Degrees of Products Adjusted Sums
Variation Freedom (df) YY YZ ZZ df Of Squares

Total ars T T Tyy yz ZE

Correction
for Mean 1 M M Myy yE zz

Block (r-1) R R Ryy yE ZZ

Whole Plot - W (a-i) W W W

Error (a) (a-1)(r-1) A A A (ar-a-r) A -A2  I A = Atyy YE zz yy yz Zz yy

Split Plot - S (s-i) S S S
yy Yz zz

S X W (a-1)(s-1) I I I (as-a-s) I -Iz  / 1 I
yy yz zz yy Yz zz yy

Error (b) a(r-i)(s-i) Byy Byz Bzz a(r-i)(s-)-I B yy-B2 z zz B
____________ V YZ ZE y Y ZZ y)y

Whole Plot (a-1) (W + A )2 A2

W - Az YZ . WI
(adj. for yy Wzz +A A yy

Split Plot (s-i) (Syz + ByZ )2 B2

S - YE - Z.S
(Adj. for B2) yy S + B B yy

2zz zz zz

~(I yz + B yzZ B2zS X W (a-1)(s-l) I - 'I, + B ) -- ziI
(Adj. for 2) yY Izz +Bzz Bzz yy

The various mean squares may be obtained by dividing by the appropriate

degrees of freedom.

The various Y means adjusted for the covariate Z are:

Yi..(adJ.) - i - AI(I - ..

k(adJ.) o Y.. - 2( I..k - z . . ) U Y'

and

Y i.k(adJ.) - Yi.k - I(Z.. -... ) - B2(Zi.k - I.. ) - Yi.k

where 1 . Ayz / A B2 " Byz / Bzz, and the usual dot notation is used

for the various means.

Estimated variances of a difference between two adjusted means for

i # i' and k - k' are:
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Variance of a difference between two adjusted whole plot treatment means

v - , ) - (V + Sa2) 2 + ( .. - 1

i.. .. &[sr Azz

Variance of a difference between two adjusted split plot treatment means

-i - )V ( .k Y1.' M 82 [ 2  + k .. Zk')

. Bzz

Variance of a difference between two adjusted split plot treatment means
for the same whole plot treatment

(Z -z )2

v- .,) - 82 + i.k i.k 1
ikI r B zz

Variance of a difference between two adjusted whole plot treatment means
for the same split plot treatment

(Z i.- zi,..)z

v .k '.k r2 + 8) + (82 + sa2) .;k-Y'k r C A
tz

82 (Zi.k - Zi'.k - *i.. + i...)I+ B
zz

(82 + s82 ) A' / (ar-a-r), 82 - B' a(r-)(s-l)-]'

and 8 (82 + s2) - 82 / s

6 C£

82 is associated with a(r-1)(s-l)-l degrees of freedom, (a2 + s82 ) is assoc-

iated with ar-r-a degrees of freedom, and the degrees of freedom for the last

variance above are approximated as the ,degrees of freedom f associated with

(s-1)(82 + sa 2 ) t (ar-r-a) + 82t [a(r-1)(s-l)-l]t ( f )  -- , a

(s-1) (82 + s82 ) + 82
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where t (f) is the tabulated value of the t-statistic at the a percentage

level for f degrees of freedom. This approximation underestimates the

degrees of freedom for this variance (see Cochran and Cox, 1950, and

Grimes and Federer, 1984).

Given the above variances, one may now use a multiple range procedure

to compare individual pairs of means. Some authors (e.g. Cochran and Cox,

1950) consider that there is a correlation between the split plot

experimental units. Hence, the whole plot expected error mean square would

be given as a2 and the split plot error would be written as

02 (1-p) - a2 where the correlation p is equal to s02 / a2. Although

this formulation is useful for many situations it is not of universal

application; e.g. when measurement error or competition exists between

split plot experimental units but not between whole plot experimental

units. Statistical modeling for any investigation should be carefully

considered.

3. Split-Split Plot Experiment Designs. For this class of designs,

various experiment designs may be used for whole plot treatments, for split

plot treatments, and for split-split plot treatments. However, we shall

confine our remarks to a single member of this class, i.e., the whole plot

treatments are arranged in a randomized complete blocks design, the split

plot treatments are randomly allocated to the split plot experimental units

within each whole plot unit, and the split-split plot treatments are

randomly assigned to the split-split plot experimental units within each

split plot experimental unit. There will be r randomizations for the a

whole plot treatments, ra randomizations for the s split plot treatments,

and ras randomizations for the p split-split plot treatments. The
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treatment design considered here is a three factor factorial with asp

combinations, but it should be noted that other treatment designs are

possible. The factors are assumed to be fixed effects to simplify

presentation.

One possible response model for the above experiment and treatment

design for a variable Y with a covariate Z is:

Y + 2 - ) +c C, U + C
hijk - ' + 9h i +hi + hi.. . . . .  j ij hij

+ 82 (2hij. - Zhi..) + Yk + Yik + a'7 jk + a*7ijk + hijk

+ 83 (Zhijk - Zhij.) , (2)

where the first nine effects are as defined for equation (1), yk is the

effect of the kth split-split plot treatment, Y.rik is a two-factor

interaction effect for combination ik, a7 jk is a two-factor interaction

effect for combination jk, a7T jk is a three-factor interaction effect for

combination ijk, i is a random error effect associated with split-split

plot experimental unit hijk and distributed with mean zero and variance

2 , 3 is a linear regression coefficient of the split-split plot Y

residuals on the corresponding Z residuals, h - 1, ..., r, i - 1, ..., a, j

- 1, ... , s, and k - 1, ... , p. An ANCOVA for this design and response

model is given in Table 2.

The various adjusted means are computed as:

. (adj.) - 1' - 82(Z i - Z* Y

S(adJ.) -- ) Y

k (adj.) - k - .3 ( k- ).... ...k

iJ.(adj.) .ij. - I ( .i. . - .  - 2 ( .ij .
- Zi..) ij.

Y.i.k (adj.) - Y " - ) -3 ( .i.k - i ) Yi k
.ia I 1. 3 i, i. i •• •k

.Jk ..Jk - 2 - z ) - 3( .jk .) - .Jk
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Table 2. ANCOVA for equation (2) for a split-split plot experiment design1

Sums of
Source of Products 1Adjusted Sums
Variation df Yy YZ zz df Of Squares

Total rasp T yyT YZT

Correction
for Mean 1 M M

yy YZ zz

Block (r-1) R yy R YZR

Whole Plot -W (a-i) W yyW YZW

Error (a) (a-i)(r-i) A A A (ar-r-a) A -A' I A -A'
yy yz zz yy yz zz yy

Split Plot - S (S-i) S yy S YZS

yy yz zz

Error (b) a(r-1)(s-1) B B B a(r-i)(s-l)-i B -B2  /B -B'
yy YZ zz yy yz zz yy

Split-Split
Plot P (p-i) P py P Zp

w XP (-1)p-1 Qyy Qyz Qzz

SXP(p-i)(3-l) Uy UZ U

yy Xy zz

Error (c) as(r-i)(p-i) C C zC zz as(r-i)(p-i)-i C -C2  /C C1
yy yz z yy YZ zz yy

W(adj. for ~) (a-i) W - (W yz+ A yz)2 / (W z + A zz) + A2 z/ A -z0w

YZYZZ yz z yy

S(adJ. for 82) (s-i) S - (S yz+ B yz)2 / (S z + B z)+ B2 z/ B -zaS

yy y yzyz z yy

SXW(adj. for 2 (a-i)(s-i) I - (I yz+ B yz)2 / (I z+ B zz) + B2 z/ B -z ait
yy yz y z yz z yy

P(adj. for 3) (p-i) P - (p + C )2 1 (p + C ) + C2  / C a PI
3yy yz yz zz zz yz zz yy

WXP(adj. for 3) (a-i)(p-1) Q - (Q + C )2 / (Q + C )+ C2  / C - Q
yy yz yz zz zz yz zz y

SXP(adj. for 3) (p-l)(s-l) U - (U yz+ C yz)2 / (U zz + C )z + C2  / C -z U1
yy yz y z yz z yy

WXSXP(adj. for 3 )(a-1)(p-1)(s-1) V yy- (V yz+ C yz)2 / (V~ 4z C )z + CZ I C -z VI
yy yz yz zz yz z yy

The various mean squares may be obtained by dividing by the appropriate
degrees of freedom.
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and

Y.ijk (adJ.) - Y.ijk - il(I.i..- i 2(i. j .-  . i . .

- 03(. ijk - Z.J) - Y'ijk

where 1 Ayz /Azz? 92 = Byz / Bzz, and A3 = Cyz / Czz*

Estimated variances of a difference between two means adjusted for a

covariate for i # i', j # J', E a A' / (ar-r-a), Eb - B'y / fa(r-)(s-)-11,
a yy y

and 82  C' / (as(r-l)(p-)-l] are given below:
1yy

Variance of a difference between two whole plot treatment adjusted means

V(Y' - i..i.. - li'..) - E [ 2  +- . . ..
sa rap Azz

Variance of a difference between two split plot treatment adjusted means

[(- -- ap (_ BJ-Z"' :1

.'..j. Eb a B zz

Variance of a difference between two split-split plot treatment adjusted means

2..k ~ -+ (z.,k - Zk')z

V(y' . - ' .,) _2 + ._.. k .. . ars Czz

Variance of a difference between two adjusted means for combinations ij and ii'

z zzf(V 2 +

.ij. Ej. r B,
Variance of a difference between two adjusted means for combinations ij and ijt

.ij. . ',j. rp 6 E a A .

( Z i. - .i .. - Z .i ']. + Z . ) 
2

b B
zz

Variance of a difference between two adjusted means for combinations ik and ik'

ik - w[ 2 (Z"i.k-. Z i.kU) z 1
V(Y'i~ - Yf k 2 + i k + 9
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Variance of a difference between two adjusted means for combinations ik and i'k

( a2 + a2 + a2) ( -
2I + E a i. Z • il..

.i.k Yi'.k rs A
zz

a2 ( - -)2
+ i.k .i.. i'.k ..

C
zz

Variance of a difference between two adjusted means for combinations ijk and ijk'

V(Y' _ ) 2 (a2) + a2 (2 i-ik C Z i~kI)I
.ijk Y.ijk' r 1 11 zz

Variance of a difference between two adjusted means for combinations ijk and ij'k

Eb (z .l . Z .'2

- 2 ( 2 2) +- bV(Y .ijk -Yj'k )  - r C B
zz

+ (.ijk .i j . .ij'k + e.i )
Czz

Variance of a difference between two adjusted means for combinations ijk and i'Jk

2 zE ( Z i . - z i . ) 2
V(Y' - 2'. ) -+ ( 2 + 2 + S) .(-i - .

.ijk (.ikjk -r S C I A .

zza2b (. -Z -Z + Z,)

+ 2 W .ijk ij. - Zi jk + 'j

zz

Note that V (Y'ijk - Yijk - V(Y' - Y' k V -

V(Y' k i',,) and that V(Y' - V V(Y'. - .ij'

.ijk .ij'k' ijk .ijk .ijk .j

Most variances above without the covariate were given by Federer (1955).

Also, the expected values of Ea and Eb are a2 + pU2 + psO and q2 + pq2a W E a I

respectively. Estimates of variance components a 02 and E(02) - 02
6' ' W

are needed to compute the fifth, seventh, ninth, and tenth variances above.
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The degrees of freedom for these variances need to be approximated as they

were in the previous section. Also note that ps(a2 + a2 ) =

s(p-) 2 + (s-)Eb + E and p(52 + 52) - (p-l)& 2 + E
I a I PE Ir b.

4. Split Block Experiment Design. The experiment design considered

here is denoted as a split block design. It has also been called a two-way

whole plot and a strip trial design. This design has received no attention

in statistical textbooks with an exception- being Federer (1955). It does

occur frequently in practice but sometimes is not analyzed correctly as a

split block design. The member of this class of designs we shall discuss

will be for a two-factor factorial treatment design with the levels of one

factor being applied perpendicularly across all levels of the second factor

within each replicate or complete block. The levels of each factor will

have the same design for our example, that is a randomized complete block

design. (The levels of one factor could be in a randomized complete block

design and the levels of the second factor could be in a latin square,

balanced incomplete block, or other experiment design.) Note that there

will be r separate randomizations for the levels of each of the factors.

The number of levels of factor one is a and the number of levels of the

second factor is b, resulting in an a x b factorial treatment design.

A response model equation as given in Federer (1955) for a variable Y

and a covariate Z is:

Yhij + Ph + i + hi + 7j + Wkj + +ij + hij + 81(Zhi. -

(3)

+ B2(Zh.j - Z..-) + B3(Zhij - Zhi- - Zhj + Z .)

where p is a general mean effect, ph is the hth block effect, which has

mean zero and variance a 2 , a is the effect of the ith level of factor1

one, say A, y. is the effect of the jth level of factor two, say B, 6hi is

a random error effect for the hith whole plot for factor A and has mean

zero and variance , Whi is a random error effect for the hjth whole

plot for factor B and has mean zero and variance a2, ay is the

interaction effect for the ijth combination of levels of factors A and B,

£hiJ is a random error effect associated with the hijth subplot for the
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A x B interaction and has mean zero and variance al , 1 is the linear
regression of Y whole plot residuals on the Z whole plot residuals for

factor A, 82 is the linear regression of the Y whole plot residuals on the

Z whole plot residuals for factor B, and 83 is the linear regression of Y

subplot residuals on 2 subplot residuals.

An ANCOVA for response model (3) is given in Table 3. For this design

and for fixed effects for the a x b factorial, there are three error

variances and three error regressions. Given that the error effects are

NIID, the usual F statistics may be used if desired. The adjusted means

are given by:

Y i-(adjusted) = Y. - 0i(Z- . - Z...) =Yi

Y.. (adjusted) - Y.. 2

and
Y.ij (adjusted) - - 8l(Z•. -Z*..) - 82 (Z..j - ...) -

3(Zij-  -i - Z + Z) =

where the as are defined in Table 3.

Estimated variances of a difference between adjusted means are given

below for i * i', j 0 j':

V(Y- Y' oit) - E[ ( -Z

zz

F2 +(Z ...J )2

V(Y'.- t.j ,) - Eb + " B
zz

E J+E
V( -= (a2+82) + -( _ ) + E -. ( )
V( ij Y ij')  r it C B z "J ..it + zz ( -j z i ..j .. J

V(Y' .') ( + 82) + a ( _v* lj - ij r 'S .i.A-Z)
zz

E

.ij i'J i- il.)2
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and

) (82 + 2 + &2 + .a. - Zi,)z + i.- ( -)2
v(1EiAzz - Z-it, B zz

E+ C (Z. ij- Z i'j'" Z. i - + Z.'i'. - Z. -+ Z .j )z

zz .

where E a A' /(ar-a-r) - 62 + b8 21 - B' /(br-b-r) - a2 + aa2 ,a yy C 6 yy

and E - C' /[(a-1)(b-)(r-)-] - 32
c yy

The degrees of freedom for the last three variances need to be approximated

by the method previously given or by some other appropriate approximation

(See e.g., Grimes and Federer, 1984).

Table 3. ANCOVA for equation (3) for a split block experiment design.

Source of variation df Sum of products I df Adjusted sums of squares

Total rab T T Tyy yz zz

Correction for mean 1 M M M
yy yz zz

Replicate - R (r-l) R R Ryy yz zz

Whole plot A (a-) W W Wyy yz zz A2

Error (a) (r-1)(a-l) A A A (ra-a-r)A - Yz - A'
yy yz zz yy A zz yy

(W Y+ A Z) 2 A2  WWhole A adjusted for 8 A yz/Azz (a-1)W - W + Az + A Y W'
zz zz zz

Whole plot B (b-I) S S Syy yz zzB 2

Error (b) (b-1)(r-l) B B B (rb-b-r)B -y B'
yy YZ zz yy B zz

(S +B )Z B2

Whole plot B adjusted for 2 B/B (b-1)S - + " Sy2 yz zz yy Sz + B zz B zz yy

A X B (a-l)(b-l) I I I
yy yz zz CZ

Error (ab) (r-)(a-l)(b-l) C C C (r-l)(a-)(b-l)-1 C - yz . C'
yy yz zz yy C yy

(I +C )2 C2

Interaction adjusted for C /C (a-ib-OI - -Z-Y- + -Z I3 yz zz yy I + C + C yy
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5. Some Comments. Since formulas for many of the above adjusted

means and variances do not appear in statistical literature, it was deemed

appropriate to include them here. As can be seen from the analyses for

relatively simple designs from each of the three classes, there arc a

variety of formulas for adjusted means and variances of differences between

two adjusted means. The more complex members of each class may have 5, 10,

15, or 20 error mean squares and the same number of regression

coefficients. Experiments are conducted wherein some of the factors are

arranged in split blocks and others in split plot arrangements. Many

different designs may be used for the different factors (See e.g., Federer,

1955, 1975). The most complex experiment design encountered is described

by Fede-rer and Farden (1955), where there are several split plot and

several split block arrangements with a total of 75 error mean squares and

203 lines In the ANOVA.

One method of aiding investigators with ANOVAs and ANCOVAs of

complexly designed experiments is to ascertain how much of a statistical

analysis can be obtained with computer packages such as SAS, BMDP, GENSTAT,

SPSS, and others. Then, the output can be annotated, i.e. an explanation

is appended to the computer output describing what has been computed and

how to use the results. Annotated computer outputs for two different split

plot designs with a covariate have been completed for SAS, BMDP, and

GENSTAT (see Federer et &I. 1987a, 1987b, 1987c). In addition to these

covariance analyses, annotated computer outputs have been prepared for

principal component analysis from five computer packages and the mixture

method of cluster analysis on SAS. A listing of these is given in

Appendix A. A second list of material available from the Biometrics Unit

is given in Appendix B.

The analyses have been described for a single covariate. Noting that

A - A2 /A  A (1-r2 z) u A' one may simply use A (1-R2 ) a

yy yz zz U yy yz ;y1 yy
A' when there are several covariates and where RZ is the squared
yy

multiple correlation coefficient computed on the error line. If the

relationship between a covariate Z and Y is curvilinear, it may be possible

to use some function of Z, e.g. log Z, 4Z, l/Z, which makes the relation

linear. If this can be accomplished both computations and interpretations

are simplified.

A simplification of the estimated variances for differences of means

has been given by Yates (1934) and Finney (1946). Instead of computing the
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quantities ( A and/ B e.g, for eachqunttis Z.i.- .i .)z/ zz an (Z. ..J1) zz'

pair of means, one may compute a single variance by using W xx/(a-1)Azz and

S xx/(s-1)B z, respectively. The quantity Wxx/(a-1) is an average of all

pairs ii' of (I - ) This simplication and approximation consid-

erably reduces the number of computations for large a and/or s. For the

quantities (Z - Z - Z + )2 and (Z - Z - Z + . )

it is suggested that Ixx/ (a-1)(s-l)Bzz be used if it is desired to compute

only a single variance.
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Appendix A HSI ANNOTATED COMPUTER OUTPUT

ORDER FORM

1. COVARIANCE ANALYSIS FOR SPLIT PLOT DESIGN Office Ref.

SAS ......................................... ACO #87-8.. copies at $ 5 each + $
BMDP 2V .................................... ACO #87-5.. copies at $ 5 each+$

GENSTAT .................................... ACO #87-4.. copies at $ 5 each $

2. PRINCIPAL COMPONENT ANALYSIS

SAST ....................................... ACO #87-6.. copies at $ 5 each +

SA........................................ ACO #87-6.. copies at $ 5 each + $
SPSS ....................................... ACO #87-7.. copies at $ 5 each + $
BP......................................... ACO #87-2.. copies at $ 5 each + $

GENSTAT....................................AGO #87-3. copies at $ 5 each$

3. CLUSTER ANALYSIS (Mixture Method)

TEXT ........................................ TR #86-38. copies at $ 5 each +  $TEX.......................................... TR #87-5.. copies at $ 5 each + $

(Comparing 2 Clustering Methods
to the Mixture Model Method)

SAS......................................... ACO #87-1.. copies at $ 5 each
+ $

(Annotated Computer Output for SAS, above)

TOTAL ........... $

+One copy is free for U.S. Army Personnel upon request.

Send Check (payable to Cornell University) to:
Mathematical Consulting Liaison Group

Mathematical Sciences Institute
294 Caldwell Hall
Cornell University
Ithaca, New York, 14853, U.S.A.

The above order is to be sent to:

(please print)

NOTE: Orders will be mailed only after funds are received. This is our only invoice.
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Appendix B ANNOTATED COMPUTER OUTPUT (ACO)
ORDER FORM

Second Iditiem: ACO , 1988-9

(il Analysis of Variance Office Reference

BHDP2V................. (due Aug.'88) ..... ........ copies at $12 each $
GUNSTAT-ANOVA ........... (due Apr.'88) .... 962 ........ copies at $12 each $_
SAS GL ................................. 949 ........ -copies at $12 each $
SAS HARVEY.(First Edition) ............... 659 ........ .copies at $ 5 each $
SPSSX ANOVA .............................. 955 ........ -copies at $12 each $____

fiil Variance Component Estimation

ACOwg: BNDP-V .... ....... (due Feb.'89) .... ........ -copies at $12 each $
ACO': SAS MARVEY.(First Edition) ........ 723 ........ copies at $ 5 each $___
ACO#: SAS LMDOK ....... (due June'88) ..... ........ _copies at $12 each $_
ACO.': SAS GLX VARCOHP..(due June'88) .............. .copies at $12 each $

Frst Edition: ACO COY 1982

(iiij Analysis of Covarlance

Text ...................................... 780 ........ .. copies at $20 each $
BMD(PIV, P2V, AV) ........................ 781 ........ copies at $ 5 each $
GENSTAT (ANOVA) ........................... 782 ......... copies at $ 5 each $_
SAS (GLM and HARVEY) ...................... 783 ........ -copies at $10 each $_
SPSS (ANOVA, NANOVA) ....................... 784 ........ copies at $10 each $

Other Publications Available

1. SOLUTIONS AKAUAL to Searle's £ YL4R OAZWS ............ copies at $ 7 each $

2. SOLUTIONS MANUAL to Searle's MAYXWALCEM L5ZMP.L
FOR SATsr"c.s ......... copies at $ 7 each $_

3. NOTES O9 VARIANCE COMPONENTS by S.R. Searle ............ .. copies at $ 7 each $

4. PROCEEDINGS: SZrST7 CALAffV.S 2YIMR" PRACT=CZ,..... ._copies at $20 each $__
iA Z~EX rAr At*R OF otr. JF.aWf , 1986

5. EXERCISES FOR SIMPLE REGRESSION
Proglrau RXGDTA .................................... copies at $ 5 each $_
List of 100 Data Sets ............................... copies at $ 5 each $_

6. 1rFIrL4UPBT OATw zRL AAF rATA4MAT O2SrrV -
pR-1Y96 by V.T. Federer and L.N. Balsa ............. copies at $10 each $_

TOTAL ..............$___

7. LYPU FTvAZJ A.WJ.J'Vby W.T. Federer .................... _copies at $13 each $

(check payable to W.T. Federer)

Send check (payable to Cornell University) to:
Biometrics Unit
336 Warren Hall
Cornell University
Ithaca, New York, 14853, U.S.A.

The above order is to be sent to:

(please print)

NOTE: Orders will be smailed only after funds are received. This is our only invoice.

3/88 
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ALTERNATIVES TO HYPOTHESIS TESTING

INCLUDING A MAXIMUM LIKELIHOOD ESTIMATE TECHNIQUE

NATHANAEL ROMAN

ARMY MATERIEL TEST AND EVALUATION DIRECTORATE

WHITE SANDS MISSILE RANGE, NEW MEXICO

1. ABSTRACT

Hypothesis testing is often used to make decisions with respect to random

data.

In Army air defense system specifications, criteria for hypothesis testing

are rarely defined. Therefore, selection of pass/fail and risk criteria is
arbitrary. Criteria are oTten chosen that tend to minimize the contractor's

or developer's risk and to maximize the system user's risk. Hence, selection

of hypothesis test criteria may compromise specification performance standards

and the system user's interests during the test and evaluation process.

Alternatives to hypothesis testing are provided that use the specification

performance standard itself as the pass/fail criterion for decision making and

that directly indicate the risk associated with any resulting conclusion. The

alternative approach includes a maximum likelihood estimate technique that

compares two random variables.

2. CONTRACTOR'S VIEWPOINT

The contractor asserts or assumes that the system was built such that the

population mean equals the requirement. Hence, the system was neither over-
designed nor underdesigned. The sample distribution of sample means f(i)

would then be as illustrated in Figure 1. In this approach, the contractor

accepts a risk a that potentially maximizes the system user's risk. The

contractor's risk is the probability of rejecting a system that meets the
requirement, a Type I error. Typical values of a range from 0.10 through

0.01. If the contractor's assertion is accepted, then a one-sided hypothesis
test based on this approach would accept the null hypothesis that u >R for

any R and would reject the null hypothesis for any wx < R .
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Sample Distribution R = Requirement
of Sample Means

N = Sample Size

up = Population Mean

pi = Mean Value of Sample Means (x)

a p = Population Standard Deviation

a- = Standard Deviation of Sample Means
-a p IN_= p

a = Level of Significance (one-sided)

CC R
_--=-- f(i) di = F(R )

R C = A Sample Mean Determined by a

f(i) = power density function in

Figure 1

3. SYSTEM USER'S VIEWPOINT

However, if the contractor's assertion is incorrect (i.e., up < R), and if

the sample mean distribution based on actual data represents the actual popu-

lation (i.e., u =p < R and a = aop/ N-), then the user's risk is:

f (x) dx for R Cu- up <
R a X p

For the conditions given, the user's risk is the probability of accepting a

system that does not meet the requirement, a Type II error. The smaller the

a, the smaller the R a, and the greater the user's risk. The user's risk

ranges between 0.5 and 1.0 minus a.
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IIR

Figure 2

4. RECOMMENDED ANALYTICAL ALTERNATIVE FOR ASSESSING REQUIREMENT

System performance analysts must assess whether the specification require-

ment was met or not met. If the analyst assumes that the data are representa-

tive of the population (i.e., u = v and o- = a /N), then from Figure 2
P x p

and for uR < R, the probability of i < R is:

fR f(i) di = Probability or confidence of (2)
not meeting the requirement

The user's risk is:

R
f f(i) di = 1- f f(i) di (3)

Probability of i meeting or
- exceeding the requirement

This approach of using R itself as the basis for pass or fail decisions,
and therefore as an integration limit, resembles the approach from the
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contractor's viewpoint in Figure 1 for a = 0.5. The underlying assumptions in

each approach, however, are different. In the recommended approach, the

user's risk will be between 0.5 (i.e., ui = up just below R) and 0.0 (i.e., w
= (p << R) when pj < R. When vj = up > R, the contractor's risk will be

between 0.5 (i.e., u =p = R) and 0.0 (i.e., 1 = up >> R). See Figure 3.

R

Figure 3

For ui= vp >R and a- = ap/l-N,

P {x R} = 1 f(x) di (4)

R

Probability of meeting or
exceeding the requirement

R
Contractor's Risk = f f(i) di (5)

-00

When pass/fail criteria are not completely specified in a specification,

the hypothesis test approach to decision making usually puts the system user

at a severe disadvantage with respect to risk, since a is usually chosen

arbitrarily small. If the hypothesis test technique is applied using the

contractor's assumption that up = R, then the corresponding user's risk

[equation (1)] and the probability of not meeting the requirement [equation

(2)] should be quantified as well when u < R.
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5. HYPOTHESIS TEST FOR COMPARING TWO SAMPLE MEANS

Two sets of data for two independent random variables are often compared

to decide whether their sample means the same or whether there is a trend.

Hypothesis testing is often used to make this decision. A sample distribution

of sample means may also be compared with the contractor's assumed distribu-

tion of Figure 1 where the variances are equal.

Null Hypothesis: P =5

Alternate Hypothesis: p U P

Al P2 l 2

1 2

-R C/2 0 +R a/2

Figure 4

a 2 a 
2

2 2 2 PI p2For U' - i - OR and O i O +2 . +

1 2x 1 2 1Z2 1l N1  N2

if - ul" R 1R 1, then accept the null hypothesis; otherwise, reject it

and accept the alternate hypothesis. As before, the choice of critical region

size is entirely arbitrary, since it is not usually contained in a system

specification. Hence, a more direct approach for comparing the two random

variables is desired.
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6. FIRST ALTERNATIVE FOR COMPARING TWO SAMPLE DISTRIBUTIONS

OF SAMPLE MEANS

From Figure 5, a measure of the dissimilarity of f(Ri) and f(' 2), where wx >

2 ,is:

f f(R I- x 2 ) d(i - x2 ) (6)
0

The above equation provides the probability that R i 2. The risk in this

conclusion is:

0 o

f f(xi - i2) d(i- '2) 1 - " f ( - i 2 ) d(ij - ' 2 ) (7)

- 0z

Figure 5

7. SECOND ALTERNATIVE FOR COMPARING TWO SAMPLE DISTRIBUTIONS OF SAMPLE MEANS

USING A MAXIMUM LIKELIHOOD ESTIMATE TECHNIQUE.

Another method for comparing two random variables involves finding a real

value c such that the joint probability that Ri > c and i2 e c is maximum.
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The maximized joint probability then becomes a measure of the similarity or

dissimilarity of RI and i2 , The maximized joint probability will typically

range from 0.25 when - = i - through 1.0 when l- >> Pi
x 1  X2  i 2'

Figure 6

Find the value of c such that P{I1 
> c, x 2  c} is maximum:

P{A} :P(x > c) f f f1(i1) dxi  = 1 - F1(c) (8)
C

C

P{B} = P(i 2  2 c) = " f 2 (i 2 ) dx 2 = F 2(c) (9)

P{AB} = P{A} • P{B} (10)

(i.e., A and B are independent).

Let x be a binary random variable where:

p = P {AB}

q = 1-p

: P JAB + Ad + A9}
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x 1-x
L = f [x; p(c)] = p (1- p) where x= 0, 1

Ln L = x Ln p + (1 - x) Ln (1 - p)

d(Ln L) dp/dc dp/dc
- x ( - x) - 0

dc p (I - p)

dp
.edc

p =P(x > c, R2 c c) = [1 - FI(c)] * [F2(c)]

dp dFI(c) dF2(c)- F 2(C) + [1 - F 1(c) ]  d = 0
dc dc dc

f2(c) " f f(i1) dR1
C

-1 (11)
C

f1(c) "I f2(R2) di2

This equation is solved for c which maximizes p.

The second derivative of p with respect ta c is found to determine whether

a relative maximum or minimumn is obtained.

d2p df2(c) += df 1(c) c
- • fl~t) xI -2 ftc) f2() -f f2(i2) di2  (12)

d dc c 1 i)d 1 -2 1 c 2 c dc - =

c is substituted into this equation to confirm a maximumi if (d2pldc 2) < 0, or

a minimum if (d2p/dc 2) > 0. Note that in equation (12) the integrals, f 1(c)

and f2(c) are always positive.
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8. EXAMPLE 1 FOR COMPARING TWO SAMPLE DISTRIBUTIONS OF SAMPLE MEANS

f1(91) = b -1 - 5 1  b1b-az B I

= elsewhere

2( 2) a2 2 2 
< b2

IE..., X = 0 elsewhere

Figure 7

Find c:

f b2 f1i) RIc
f2(c) "f f( 1) c 1 = f1(c) f f 2(R2) dR2

c al

-. (b2 - C) . (c - a)
82 1 B B2

b2+ a,
C

2

d2p 2

dc 2 B 1B 2

This value of c maximizes

P{R i > C, x2 4 c} P[R i > c} - P{ 2 c}

(b,- c) (c - a2)

(bi- a,) (b2 - a2 )"
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9. EXAMPLE 2 FOR COMPARING TWO SAMPLE DISTRIBUTIONS OF SAMPLE MEANS

2 2

B1  b 1 - a1

2 2
h2  b - aL mB 2  b2-a

f f(R1) and f 2( 2) are isosceles.

Figure 8

For h,= h2 and a2 <a 1 4b 2, find c.

c b

f 1 (c) f 02(x2) dx 2 = f 2 (c) * f 2f 1 (x 1) dx I

a 1  c

al + b2  UR + I&
C = 1 2 2

(d2p/dc 2) < 0 from inspection of equation 12. This value of c maximizes

PIR1 > c, 2 c} = P{FI > c} SPI2 
< c}

f - 1(c). (c - ) a]2 h (c ( -ai)]2

f 1 2 (C) (b 2 - ) 'I j[1 2h ( b C) ] 2

since fI(c) = f2 (c) and (c - a1) = (b2 - c).
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10. EXAMPLE 3 FOR COMPARING TWO SAMPLE DISTRIBUTIONS OF SAMPLE MEANS

Figure 9

f2 (R2) = G (i2, 2, a Gaussian power density function.

For aR = a2, solve for c:

C -0

f1(c) f I f2 (R2) dx2 = f2(c) " f fI (R ) d!1
-0o C

C= 1 2 maximizes P {R > C, x2 < c} = P{X1 > c} • P{x2  }2

since (d2p/dc 2) < 0 from inspection of equation 12.

P{ R > c, i2 < c} = f fI (R) d 1  f f f 2 (22) dR2
c ~

For ai * a , a trial-and-error method may be used to estimate c to the

accuracy desired such that equation 11 is satisfied. Once c is known, the

values of P {i 1 > C}, P {x2 <c}, and P {i1> C, x2 <c}maybe calculated.
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11. SL14MARY

This paper reviews the limitations of hypothesis testing in that the

system specification requirements may be compromised and the system user may

be required to take an inordinate risk. It provides an analytical procedure

that permits direct comparison of data with specification requirements, the

probability associated with a conclusion, and the risk in making the conclu-

sion where the risk is more equitably distributed between the contractor and

the system user. This technique is developed further to include comparison of

two distributions of sample means. The latter includes a maximum likelihood

estimate of the joint probability that one random variable is greater than

some value c and the second random variable less than c, and the risk associ-

ated with the conclusion.
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New Sequential and Parallel Methods for Unconstrained Optimization 1

Robert B. Schnabel
Department of Computer Science

University of Colorado
Boulder, Colorado 80309

Extended Abstract. We give an overview of our recent research on several topics in uncon-
strained optimization. First we discuss methods for "orthogonal distance regression", data fitting when
the measure of the distance from the data points to the fitted curve is the Euclidean distance rather than
the standard vertical distance. We describe an efficient algorithm for this problem, and experience with
its use. Second we summarize our research into "tensor methods" for nonlinear equations and optimiza-
tion. These methods use higher order Taylor series information in a way that appears to significantly
improve the performance of standard methods without significantly adding to their storage requirements
or arithmetic cost per iteration. Finally we describe our research into parallel methods for optimization
problems.

One of the most widely used methodologies in scientific and engineering research is the fitting of
equations to data by least squares. In cases where significant observation errors exist in all data variables,
however, the ordinary least squares approach, where all errors are attributed to the observation variable, is
often inappropriate. An alternative approach, suggested by several researchers, involves minimizing the
sum of squared orthogonal distances between each data point and the curve described by the model equa-
tion. We refer to this as orthogonal distance data fitting. We have developed a method for solving the
orthogonal distance fitting problem that is a direct analog of the trust region Levenberg-Marquardt algo-
rithm. The number of unknowns involved is the number of model parameters plus the number of data
points, often a very large number. By exploiting sparcity, however, our algorithm has a computational
effort per step which is of the same order as required for the Levenberg-Marquardt method for ordinary
least squares. The description of this algorithm, an analysis of its mathematical properties, and the results
of computational tests on some examples that illustrate some differences between the two approaches are
given in Boggs, Byrd, and Schnabel [1987]. A software package that implements this approach is
described in Boggs, Byrd, Donaldson, and Schnabel [1987], and is available from the authors.

Tensor methods are a new class of methods for solving systems of nonlinear equations and uncon-
strained optimization problems. Standard methods for nonlinear equations are related to Newton's
method, and use a linear model of the nonlinear functions at each iteration. While they are effective on
most problems, they are slow if the first derivative matrix at the root is singular or nearly singular. Ten-
sor methods augment the standard linear model with a simple, low rank second order term, in a way that
makes the method require no more function and derivative evaluations per iteration, and hardly more
storage or arithmetic operations per iteration, than standard methods. In our tests, tensor methods are
significantly more efficient than standard methods on both nonsingular and singular problems. This
research is described in Schnabel and Frank [1984, 1987]. More recently we have developed tensor
methods for unconstrained optimization. These methods augment the quadratic model, upon which stan-
dard optimization methods are based, with low rank third and fourth order terms. Again, the costs per
iteration of the tensor method are hardly more than for the standard method, and the method requires sub-
stantially fewer total iterations and function evaluations in our tests. This research is described in

t SuppoTted by he U.S. Army Research Office
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Schnabel and Chow [1988].

Parallel optimization research at the University of Colorado has focused upon designing and imple-
menting parallel algorithms for two optimization problems. One of these is the global optimization prob-
lem, which is to find the lowest minimizer of a nonlinear function of multiple variables that has multiple
local minimizers. We have developed two types of parallel algorithms for this problem, both based on
the stochastic approach of Rinnooy Kan and co-workers. The first is a rather straightforward paralleliza-
tion of the sequential algorithm, while the second is a new, adaptive, dynamic method that is suggested
by considerations of parallelism. Some of this research is described in Byrd, Dert, Rinnooy Kan, and
Schnabel [1986]. The second optimization problem we have investigated is the standard local uncon-
strained optimization problem. We have studied new parallel optimization algorithms that use speculative
function evaluations to evaluate part, but not all, of the Hessian matrix at each iteration. We have also
analyzed alternatives for parallelizing the matrix updating calculations that constitute the main linear
algebra cost of these methods. This research is described in Schnabel [1987] and Byrd, Schnabel, and
Schultz [1988].
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1 Abstract

In studying the refraction of the helicopter sound field from a shear layer, we face

the problem of interaction of the sound field with another body (shear layer). In

this interaction, we need the induced velocity in addition to the pressure since

the boundary condition at the foreign body (shear layer) surface is with respect

to the normal velocity. Therefore, a formula in terms of the sound pressure only

is not sufficient. We need both pressure and velocity expressions so that we can

invoke the interface conditions (continuity of the pressure and continuity of the

normal velocity).

We are, therefore, motivated to find two equations in terms of two acoustic

fields ; pressure fluctuation and velocity fluctuation.

In this paper, by defining two generalized functions , we develop an approach

which yields two field equations. We suggest to use these two equations in any

interaction problem of the helicopter sound field and in particular, in studying

the refraction from a shear layer for all frequency ranges.

It is also found that the spectral methods seem to be more efficient in re-

fraction problems.

2 Introduction

We present an alternate analytical description of the acoustic field of a moving

body in a uniform flow.
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Instead of using Ffowcs Williams- Hawkings [1] version of acoustic analogy,

we formulate sources on a surface enclosing the moving body and its adjacent

nonlinear flow field.

This approach avoids the laborious work of quadrupole terms and can be

considered as a generalization of the Kirchhoff-Helmholts theorem of acoustics.

In helicopter acoustics community, it has become a tradition to take FW-

H extension of Lighthill's acoustic analogy concept (2] as the starting point.

In this general formulation the acoustic field of a body, moving in a locally

nonuniform, unsteady flow field, is expressed in terms of a monopole and a dipole

source distribution over the body surface and a quadrupole source distribution

over the volume containing the non-uniform, unsteady field in which the body

moves.

Here the quadrupole source terms correspond to the nonlinearities in the

flow equations.

At large distance the medium is at rest, apart from perturbations of acoustic

order. Thus, in order to evaluate the quadrupole source terms, it is in principle

necessary to know the complete flow field external to the body in advance.

3 An Alternate Formulation

Our alternate formulation is as follows :

The acoustic field is described in terms of the flow variables at the outer

boundary of the volume containing the quadrupole distribution. In this sense
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we can call it a generalisation of the Kirchoff-Helmholtz theorem [3). Some of

the salient features of our formulation are:

" a surface integral has to be evaluated instead of a volume integral.

" laborious calculation of the complicated quadrupole terms are avoided.

" we have expressions for both pressure and velocity fluctuations to be used

in solving interaction problems of the sound field with other bodies.

We consider a uniform flow in the fluid since we are interested in uniform

forward motions of the body. But for an arbitrary motion of the body, an

arbitrary flow can be taken and the method allows this. In a uniform flow, we

show that not only an acoustic field is generated at the boundary but also a

hydrodynamic, vortical velocity field naturally emerges.

4 What is the relation to FW-H ?

The two methods do coincide when the induced velocity perturbations are small

which in turn implies that quadrupole field is relatively weak and therefore can

be neglected. The methods converge to each other since volume sources in FW-

H vanish and in our formulation, the source surface shrinks to the actual body

(blade) surface.

For conditions with a non-negligible quadrupole source field, it is straightfor-

ward to apply the present method with source surfaces (S = 0) at some distance

from the blade surface provided that the aerodynamic field is given.
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Contrary to this situation, the inclusion of the quadrupole source srength in

a FW-H implies considerable analytical and numerical efforts.

5 Governing Equations

Let S(x, t) = 0 describe a surface enclosing a body moving in a flow such that

outside S = 0, the field is, to leading order, governed by the linearized flow

equations for the pressure and velocity fluctuations induced by the body (p, v).

We denote by S < 0 the inside of the surface and by S > 0 the outside of the

surface.

We can make the linearized flow equations formally valid throughout the

space by multiplying them with H(S), the Heaviside function of S[4,51.

H(S)[(p+ Vov] =0 (1)

D

H(S)[HRv + Vp = 0 (2)
Dt

where

D 8 a
-- = +3- (3)

We nondimensionalize the equations by using a characteristic length, the mass

density and the speed of sound in the fluid at infinity.

We have the following equations for the generalized pressure and generalized

velocity outside S = 0.

D
-(pH(S) + Vo (YH(S)] = Q6(S) (4)
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i 1 [vH(S)] + V[pH(S)] = F6(S) (5)

where

DS

DS
F =V- + VS (7)

Elimination of vH(S) results in convected wave equation for the sound pres-

sure field outside S = 0, driven by a surface source distribution at S = 0.

(2 D 2  D
(V2 - - )[pH(S) -- V o [F6(S)] - T[Q6(S) (8)

(V2 _ D2-i + V x Vx)[vH(S)] = VQ6(S) - Fb(S) (9)

Green's function, which is defined as the acoustic field of an impulsive point

source, has to satisfy

(v2 - jb) = -6(x - C)6(t - r) (10)

hence the generalized pressure fluctuation becomes

pH(S) = jf J[Voc o F- L-Q]6(S)drd(1

what we have here is the expression for the acoustic pressure of a source region

in a uniform mean flow.

Note that we did not assume an irrotational velocity fluctuation

field.
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6 Green's Function Formalism

Green's functions are very instrumental in bringing in other boundaries in the

fluid (such as wind tunnel walls, shear layers or other foreign bodies). There

are two ways to introduce the Green's function: the traditional way and the less

traditional spectral way. We think the spectral way is more advantageous as it

will be shown later.

" The traditional Green's function:

=6 (T - R) (2~(12)

where

T = ,3(t - r") + M (13)4~(13)

= (1 _ M 2)1/2  (14)

and R is the distance between the source and the observer. This form of

the Green's function is the most appealing as it clearly describes the spher-

ical propagation of an acoustic pulse modified by mean flow convection.

In the literature, the use of this form resulted in time-domain methods [6].

Farassat's method [5] is a modern version of time-domain method.

" The spectral Green's function : If we take a Fourier-Hankel transform, we

obtain a frequency domain result. In the literature, the use of this form

resulted in frequency methods [6].

S0 e-'(nO+wt+aN)rJn(yr) 0 drdzdtdO (15)
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In wave number space, our alternate form of Green's function becomes

J. (-f P) (16)e-'( l"'+=) 2 + a2 - (W + Ma) 2

where t is the axial source coordinate, p is the radial source coordinate, r

is the source time, 0 is the angular source coordinate.

The advantage of spectral Green's function is that the final solution of the

acoustic field automatically yields an expansion in time-space harmonics.

It is also important to notice that since our approach includes the possi-

bility of a non-uniform incident field ( and since sound field is significantly

affected by assymmetries in the flow) we should be able to describe the

acoustic field well.

7 An Application: Refraction from a Shear

Layer

To compute the interaction of the sound field with another body, we need

the induced velocity in addition to the pressure since the boundary con-

dition at the foreign body surface is w.r.t. the normal velocity.

We shall use spectral analysis to obtain an expression for the generalized

velocity fluctuations.

i = f j ei(Ot+aZ)(vH(s)Idxdt (17)
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and similarly

P= f/ e-(w +)[pH(S)]dzdt (18)

=1 : ~i~I~a)F6(S) (19)

Let us take the Fourier transform of the momentum equation in time and

axial direction,

1ipH(s)] + V o [vH(S)] = Q6(S) (20)

DFt-[vH(S)] + V[pH(S)] = Fb(S) (21)

='P I [k - (iai. +if )i'p (22)
i(w + Ma) Or +  869

1 . .

V'Q - i(w +Ma)(i + - +i- ';pQ (23)

We should observe here that the velocity is exclusively in (S = 0) surface

quantities.

The velocity in physical space and time can be obtained by inverse trans-

forming :

vpH(S) = //J e'(wt+a=)V4(a,r,0,w)ddw (24)

vqH(S) = I e'(wt+a-)V (a, r, 0, w)dtdw (25)

We can interpret this equation as a generalized theorem for the generalized

velocity fluctuations.

Shear layer refraction problem is reduced to a boundary-value problem

of the governing equations with additional boundary conditions coming
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from the shear layer model. We have introduced four different shear layer

model [Unal, Tung, 7] the simplest one is a vortex sheet. The boundary

conditions on the vortex sheet are :

- Continuity of the normal velocity

- Continuity of the pressure

We end our paper by stating that the shear layer refraction of the heli-

copter sound is a boundary-value problem defined on our two field equa-

tions.

We intend to solve this boundary-value problem for different configura-

tions and conditions numerically.
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INVERSE SOURCE MODELING IN HELICOPTER ACOUSTICS

A. Unal I and C. Tung
2

1 Abstract

In our efforts to compute the sound created by a moving body (helicopter), we

face the evaluation of the near field either numerically or experimentally which

are both difficult tasks and could easily lack precision.

To circumvent these difficulties we recast the governing equations into non-

linear integral equations and define the helicopter source sound characterization

as an inverse problem using the far field computations or measurements.

The logic of the approach lies in the fact that it is both easier to compute

or to measure the far field.

Like any other inverse problem, the helicopter source characterization also

faces the problem of multiple solutions.

We claim and later demonstrate that to the benefit of the helicopter research,

the form of the kernel of the integral equation eliminates the problem of non-

uniqueness.

Hence, we can use the inverse source modeling concept to obtain an equiv-

alent source characterization using the far field data and then propagating the

fields according to the governing equations for evaluation of the acoustic pres-

sure fluctuations at an arbitrary observer.

'Dept. of Aero. and Astro., Stanford University, Stanford, California, 94305.
2 Research scientist, US Army Aviation Research and Technology Activity, Moffett

Field, CA 94035.
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2 Mathematical Analysis

We have formulated the helicopter acoustics problem in terms of two generalized

functions and two field equations in [1].

These equations are :

[V2 - [ LH(S)]
D D DS

S-i DS + Vs]6(s) - D[ - + o VS]6(s) (1)

Yt +  i 0, V ~)]v - S

v2 2 Vx V iHS]= VL6DS + ir o VS]6(s)

D('-i + vVS]6(S) (2)
Dt DS

Once we have the governing field equations in hand, we can proceed via two

approaches:

" Approach I : Inject the numerically simulated pressure and velocity fields

on a chosen surface (a computational surface or an airfoil) into the right-

hand-side source terms and solve the partial differential equations numer-

ically.

* Approach II : Use the far field data and the concept of inverse source

modeling to replace the right-hand-side of the field equations by equivalent

sources then propagate the fields to an arbitrary observer location through

the equations.

The difference between these two approaches lies in whether we are using
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near field data (for the first approach) or far field data (for the second

approach).

Since it is always difficult to take near-field measurements pre-

cisely and it is always more costly to compute the near-field precisely

compared to far field measurements or far field computations, there

is a good reason to introduce the inverse source modeling notions in

helicopter acoustics.

Our approach-will consist of two parts

" Part I . Solve an inverse problem.

* Part II : Use the inverse source modeling of Part I. solve the

direct problem.

3 Statement of the Problem

What is an equivalent source for our helicopter in its arbitrary motion

and what about its uniqueness?

4 Mathematical Analysis

Let us say that the bource., are disfr;blited within a region S of space

with intensity Q(r, t) and let us say that we have the governing equa-
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tion (1) for what we named a generalized acoustic pressure fluctuation

V -b7,,I [PH(SI] = Q(r, t) (3)

which is an inhomogeneous convected scalar wave equation.

Let us say that we have an unbounded fluid medium with zero

initial conditions, namely ;

OH(S) = aidH(S)] (4)

=0 (5)

for t <0.

Using the Green's function formalism and generalized function

theory [21,, we can write down the solution as

- G(r, t; p, t') = -6(r - p)&(t - t') (6)

thus

PH(S) - dt' dpG(r, t; p, t')Q(p, i') (7)

Here the integrations are taken over the entire space-time domain.

The causality property of G precludes integration over times t' that

are later than t, while the spatial integration is extended only through

the region S where Q(r,t) is nonzero.

Let us interpret the integral equation:

* If Q(p, f') is known, then we solve the direct problem and deter-

mine H(S).
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* If, however, Q(p, t') is the unknown quantity, then the integral

equation is a linear integral equation for Q(p, t') with kernel G.

For any finite source distribution Q, the wave function PH(S) must

fall off sufficiently rapidly as r approaches infinity.

pH(S) =- Jdt'dpG(r~t;p~')Q(p~t?)(8
f f

(1) is a known quantity and (2) is an unknown quantity.

The integral equation is a Fredholm equation of the first kind.

Usually the solution of this type of equation is not a simple matter

but in this case the kernel G is a Green's function. For such kernels, it

is well known that a solution can be obtained if the Green's function

can be expanded in a series of orthonormal functions.

However, there remains a problem of nonuniqueness which we shall

discuss thoroughly under the section of nonuniqueness.

a We can consider the integral equation as a description of yH(S):

fH(S) is the integral transform of Q(p, t') with kernel G. Then the

inverse transform will yield Q in terms of PH(S). This will work

in cases where G has the form of known integral transforms.

Let us pose the problem as follows : If we know the far field

values of H(S) at a finite number of locations, can we solve for

Q?

Answer: Yes, if we discretize the integrations as well as truncate
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any resulting infinite sums, and if we overcome the nonunique-

ness.

From a physical point of view, it is clear that in order to obtain

Q from the inverse transformation, it is necessary to know fH(S)

over the entire domain of space and time. This seems to be an

impossible problem at first sight but as we shall see it is possible

to attack this problem as follows :

1. To invert the integral equation, solving for Q, we must sat-

isfy the Green's function G. The form of G depends on

the properties of the unbounded medium that supports the

acoustic waves propagating away from the source region S.

For scalar waves, the /H(S) profile appearing in the govern-

ing equation varies in time and space, in which case, it is

generally difficult to solve explicitly for G. But if the ve-

locity of sound (c) is constant, then the Green's function is

well-known:

I ~ Ir-PI(~r,t; p, 41r I r - p 1 (9)

We can change the convected wave operator into Helmholtz

operator by using a transformation of moving coordinates.

Let us then follow the analysis on this transformed equation.
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The Helmholtz equation is given by

[V2 + k 2 ] PH(r, w) = Q(r, w) (10)

which is a Fourier transform of the original equation with

respect to time. Here, k W . The Green's function for thisC*

case is

1 e, skI
r - r

(l

G(r,p)=(-
41r jr-pl

The equivalent integral equation is then

1 / etIr -pI

PH (S)(r,u) = -- I dpekp1  Q(p, w) (12)

The most crucial observation here is that the relation be-

tween Q(p, w) and PH(S)(r, u') is linear. This, in turn means

that we can use various approximate methods to solve for

Q in terms of PH(S)(r, u)). The position vector r is entirely

arbitrary. Hence, if 7 H(S) is known or measured at a suffi-

ciently large number of arbitrary locations, an attempt can

be made to solve for Q. In practice only two possibilities

are of interest :

(a) when pH(S) is measured in the proximity of the heli-

copter,

(b) when 15H(S) is measured far away from the helicopter,

the far field case.
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We shall concentrate on the second case. Par field assump.

tion implies immediately that

r = )i3ma, I (13)

in the support of Q i.e. in the region where Q is nonsero:

namely

S> p., (14)
A

If we use the inequality to expand the kernel,

[OR~ ~ ~ ii (Si&Irk el'de-

(S)Irr(r k)= - -- 1 d rQ(p.k) (15)

but the integrand is nothing other than the Fourier Trans-

form of the source distribution. The point in the trans-

formed space being given by the values of the vector

r
I=k- (16)

With the foregoing interpretation, it would seem a simple

matter of taking the inverse Fourier transform and thus solv-

ing explicitly for Q(r). But actually, the situation is some-

what more complicated since the wave vector k r , which

of necessity becomes the integration variable in the three-

dimensional integral defining the inverse Fourier transform.

is limited by the condition

. r
1(07)
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k

(19)

C

Let us denote the Fourier transform of Q by Q(K, k), then

Q(Kk) = f dpe.K.PQ(p, k) (20)

The restriction on (k4) vector can be accounted for by defin-

ing a generalized source (which is also an effective source)

that is given in Fourier space by

Q. = O(K,k)6(K - k) (21)

Now, Qe is defined for all possible K. This is indeed the

definition of our third generalized function which in turn

defines the generalized effective source. Note that it might

be mathematically more proper if we call

Qe = (22)

the Fourier transform of the generalized source function or

the generalized equivalent source function in the K space.

This multiplication in K space will result in a convolution

in real space. Note also that the physical dimensions of

the generalized effective source is different from those of Q

because the delta function 6(K - k) has dimensions of length.
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Inverse Fourier transform yields

Q.(K, k) = Q(K - k) (23)

=[f dpeKpQ(p, k)] 6(K - k) (24)

- k) dpe'KPQ(p, k)6(K - k) (25)

Q(rk)= ( dKeK rQ(K,k)6(K - k) (26)

k df QPksink Jr-pl
k dpQ(p,k) ir-p (27)

k = F(k,8,0) (28)

Qe(r,k) = -k 2Ae - 
7r

02 1rdO ' desin(ff(S)FF(.A,,o 0ekor (29)

The right-hand-side integrals represent the angular Fourier

transform of the values measured.

A=cT (30)

A is the point in the far field where measurements are taken.

c is the speed of propagation of sound waves and T is the

travel time of the wave from the actual source to the point.

k 3r = krcosO (31)

where

r = rfsinOcos6k, sin~sinO, cos9 (32)
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Equation (29) can be considered as an algorithm that yields

the effective source distribution at any point r in terms of

the measured values of the pressure in the far field.

5 Equivalent Source Distribution at a Point

Let

Q(r) = pfo6(r) (33)

Delta function will be imaged as distributions that are smeared

out in space. The extent of smearing depends on the reso-

lution of the imaging process.

Let us write the expansion for the point equivalent source

in terms of spherical harmonics as

f = foPocosO (34)

PO is zero-order Legendre polynomial.

P0 = 1 (35)

f = focosO (36)

fo is the value of the form function.

QeN(r) = 2 E i' f,(k)j,,(kr)PcosO (37)
n=0

QeN = 2fojo(kr) (38)
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where jo is the zero-order spherical Bessel function which is

the sinc function. Its first zero occurs at kr 0 = r or in terms

of wave lengths of
A

r0 -(39)2

6 Non-Uniqueness

It is now a well-established fact that the Fredholm integral

equations of the first kind do not always possess unique

solutions. Solutions depend on arbitrary constants, which

must ultimately be determined from criteria not given in

the original problem.

For certain kernels, such as Fourier, Laplace, Mellin, and

others, it is well known that the appropriate integral equa-

tions have unique solutions with only mild restrictions im-

posed on the allowed class of functions.

Effective source distribution in Fourier space is

Qe(K, k) =Q(K, k) A (K, k) (40)

A(K,k) = 6(I K - k) (41)

although Q(K, k) was known only on the spherical shell K =

k, the choice of A, albeit arbitrary, extends the definition
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of the function Q to all points of K space. This extension

modifies the integral equation into one with an unrestricted

Fourier kernel and thus into one with a unique solution.

In other words, the introduction of the generalized func-

tion (also named filter function) in the integral equation

is a mathematical device that removes the "defect" in the

kernel. In the present case, this defect is the restriction of

the kernel to the shell K = k which is responsible of non-

uniqueness. The price paid for regaining uniqueness is that

instead of the original quantity of interest, a related quan-

tity is obtained. The latter may be viewed a filter version

of the original quantity in the physical space.

J dpeKOPQo(P) (42)

for I K 1= k. Choose a QO(p) such that its Fourier transform

vanishes for I K J= k.

Q°(K) = (K - k)e - *K (43)

= (K - k)e - aK (44)

These are spherically symmetric distributions in K space

which, in turn, yield spherically symmetric distributions in

physical space given by

Q0 (r) = 1
2ir2
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6 6 1 2 6 1
. 2(45)

7 An Example

If for example we know a priori that the source is impulsive

i.e.

F(r,t) = Fo(r)6(t) (46)

and we wish to determine Fo, we can proceed as follows

f(r, u) - e tFo(r)6(t)dt (47)

f(r, w) = Fo(r) (48)

Fo(k) = uo (k, ck) (49)

FO(r)= f/fe uo(kck)dk (50)

If the actual source were

F(r, t) = 6(r - ro)6(1) (51)

u(r, w) :g(i r-ro 1,w) (52)

47rr

Thus ideally, on 6D, we would observe,

uo(k.c k) =e - ' kor, (54)
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inserting back,

Fo(r) (2k)J (r-r)d3k (55)

= 6(r - ro) (56)

which is indeed the correct source.
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Diagonal Implicit Multigrid Solution

Diagonal Implicit Multigrid Solution
of the

Three-Dimensional Euler Equations

Yoram Yadlin and D. A. Caughey

Sibley School of Mechanical and Aerospace Engineering
Cornell University

Ithaca, New York 14853

I. Abstract

A Multigrid Alternating Direction Implicit Scheme has been developed to solve the
Euler equations of inviscid, compressible flow in three dimensions. The scheme
is an extension of the two-dimensional scheme developed by Caughey [1] to treat
three-dimensional problems. The multigrid method is an efficient technique for
accelerating the convergence of iterative methods; the Alternating Direction Im-
plicit scheme holds the promise of rapid convergence characteristics, especially on
the highly-stretched meshes required to resolve the thin shear layers appearing
in high Reynolds number flows; and the diagonalization procedure results in a
computationally-efficient implementation of the ADI scheme. The scheme is ap-
plied to compute the transonic flow past a swept wing, and results are presented
to confirm the accuracy of the method and illustrate the efficiency of the iterative
algorithm.
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II. Analysis

The Euler equations of inviscid, compressible flow can be written in three space
dimensions as

aaI/t + a/X + 8aa/OY + 8f 3 /Cz = 0 (1)

where
w/ = {p,U/, PU2, iPU 3, e} T  (2a)

is the vector of conserved dependent variables, and

-- {pui, 2 +rptIuU2 , PTt U3, tI(eJp)}T  (2b)

f2 = {pU2 ,P.U. ,pu, + p,.' 2U3, 2(e+p) T  (2c)

= {PU3 ,PU3U 1 , PU3U2 ,PU3 + p,U 3 (e + p)}T (2d)

are the flux vectors in the z, y, and z coordinates respectively. The pressure p is
related to the total energy e by the equation of state

e = P/(y- 1) + p(u2 + U2 + u2)/2 - pHo, (3)

where -y is the ratio of specific heats and H 0 is the total enthalpy.
In order to allow for the treatment of arbitrary geometries, the algorithm is

implemented within the framework of a finite volume approximation [2]. The equa-
tions under an arbitrary transformation of independent variables to a new curvilinear
coordinate system can be written as

,9'7VlOt + 9AF/lO + OaP2In,7 + 8F319C = 0, (4)

where W hiD is the vector of transformed dependent variables, and

P, = h{pU,, pu , + C&p, pu2U, + CPp, PU3U1 + Gp,U (e + p)}T (5a)

P2 = h{pU2, pu U2 + p,pu 2 U2 + pp PU3U 2 + 77.p, U2(e + p)}T (5b)

P3 = h{pU3 , pul U3 + .P, pu2 U3 + .p, pu 3 U3 + P, U3 (e + P)}T (5c)

are the transformed flux vectors. Here, h is the determinant of the Jacobian of the
transformation (which corresponds to the cell volume), and U1 , U2 , and U3 are the
contravariant components of the velocity given by

U2 77 77Y 77 U/ 2 •(6)

U,~ ~~1 'I yI_
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Artificial dissipation is added as a blend of second and fourth differences of the
solution. The fourth differences are necessary to insure convergence to a steady state,
while the second differences are necessary to prevent excessive oscillations of the so-
lution in the vicinity of shock waves. Following the two-dimensional implementation
of Caughey [1), these dissipation terms are scaled to stabilize the one-dimensional
problems in each coordinate direction.

Following Briley and McDonald [3], and Beam and Warming [4], the tme lin-
earized implicit operator is approximated as the product of three one-dimensional
factors, resulting in a scheme of the form

n e_ 'E2( +C b

{I + OAt[Ali,j,k k 1i,/k(l/h) + e (11,k6(lIh)}

f4 8 4 f ,{I+Gt~fA~~6~-8,70'6
2 (11h) +E,,6 l1h)I}

{I + OAt[A;,,_,k C2 2 E~k(11h) + C4 b46 ( 1/h)]}AW,,Vk

- {t6CAFh,j,k + 6,A4,31h + 6~~~
+ E()+ 6b)ti;b,+,b + c( 4  + b4 + 4 (7)

whereA,i,j, = {1/&I,},,j,k are the Jacobians of the transformed flux vectors
with respect to the solution and C(2)and C(4) are the dissipation coefficients. For
computational efficiency, each factor in Eq. (7) is diagonalized by a local similarity
transformation, yielding a decoupled set of equations which can be solved using
a scalar pentadiagonal solver. The diagonalization is performed using the modal
matrices of the Jacobians Al (I = 1,2,3). Thus, if Qj is the modal matrix of A,
then Q 1 AjQj = Al is a diagonal matrix whose non-zero elements are the eigenvalues
of Al. Applying this transformation at each mesh point, the resulting equations are:

{I + GAi[A' ,,,k6 - C, ,k5dl/h) +C kj,5 6(I/ h)]}Q1,s,j,k
Q,j { ~[~~~k, e)(1/) ) E6(1/h)}Q ,,, -1Q ,3 ,k{I + OAt[A-,,,k - b2,S, (1/h) + C,,6(1/h@)}Q,

- i At~j,k6~f Ifjok +t 7 F,,~ +4 6cF3 ~jjk

2i(6 +jkj + ~ + 6[A)i~j ~ ,3, + S4)(6 + ? 2,+ i),j,k, 8

Q n(E2) 52 + (4 64 "

3i ,j,I { ! + OA t[A , j,k6( - 4,j, (11 h ) 1 ,7,A C /h )] i ,j,k

where At,,= Q,. A ,'i,k" The elements of Q1, Qf- and Al can be expressed

w ihee i tm 3,jk i
explicitly in terms of Z and the elements of the Jacobian matrix of the coordinate
transformations, and are given by Chaussee and Pulliam [5]. The solution of Eqs. (8)
is performed sequentially by solving five scalar-pentadiagonal systems along each line
in each of the three mesh directions for each time step. The scheme is incorporated
within the multigrid algorithm following the procedure developed by Jameson [61.
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The treatment of the explicit boundary conditions in the far field is based on
the Riemann invariants of the one-dimensional problem normal to the boundary. On
the wing surface and on the symmetry plane, the pressure is interpolated from the
interior of the field using the normal momentum equation. The implicit boundary
conditions are treated in a manner consistent with the characteristic theory; this
is relatively easy to implement since the corrections (or intermediate corrections)
determined in each step are approximations to the changes in the characteristic
variables in the coordinate direction along which the equations are being solved [1].

III. Results
The algorithm described above has been applied to the problem of transonic flow
past a swept wing mounted on a vertical wall, or symmetry plane. The results
presented here have been calculated for the ONERA wing M-6 [7] on a C-grid con-
taining 192 x 32 x 32 mesh cells, in the wraparound, normal and spanwise directions,
respectively. The grid has been generated by a weak shearing of a square root trans-
formation about a point just inside the leading edge of the wing surface in each plane
of constant z.

Figures 1(a) and 1(b) illustrate the general nature of the grid system. Figure
1(a) presents the distribution of cells on the wing planform (x - z plane), while
Figure 1(b) presents a perspective view of the wing mounted on the wall; the C-grid
shown in the symmetry plane is typical of the mesh in each x - y plane. The far
field boundaries are located approximately 10 chords upstream and downstream of
the wing, approximately 19 chords laterally from the wing, and at approximately
3.5 semispans from the plane of symmetry in the z direction.

Results have been calculated for a free stream Mach number of 0.839 and 3.06
degrees angle of attack in order to allow comparison with existing wind-tunnel test
data [7]. Figure 2 presents the streamwise pressure distribution at each of the
computational stations on the upper and lower surfaces of the wing, and Figures 3(a)
and 3(b) present contours of constant pfpoo on the upper and lower surfaces of the
wing. The development of the "Lambda" shock pattern on the wing upper surface,
characteristic of supercritical flows past swept wings, is clearly visible. Figures 4(a)
and 4(b) present a comparison with wind-tunnel data [7] at two spanwise stations.
The calculated results predict quite accurately the strengths and the locations of
the shocks, in spite of the neglect of viscous effects in the calculation.

Figure 5 presents contours maps of entropy in several y - z planes, starting
at the leading edge and moving downstream. Since the entropy is constant along
streamlines for a steady, inviscid flow, these plots can be viewed as representing
cuts through stream surfaces, and reveal the generation and evolution of the wing-
tip vortex. It is clear that the vortex center moves up and inboard as it develops
downstream, as is observed in experiment.
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Figure 6 presents convergence histories for the Diagonal ADI scheme on a single
grid, and when 5 levels of multigrid are used. The logarithm of the average resid-
ual, the drag coefficient, and the number of cells in which the local Mach number
is supersonic are plotted as a function of computational work, measured in Work
Units. One Work Unit corresponds to the computational labor required for a single
time step on the fine grid. For both calculations, local time stepping is used at a
Courant Number of C = 16. The figure illustrates two points: (1) the Diagonal
ADI scheme itself is a reasonably efficient time-stepping algorithm; and (2) an ap-
preciable increase in the convergence rate is achieved when multigrid is used. The
aerodynamic force coefficients have converged to within plottable accuracy in about
200 time steps for the single-grid calculation, and in the equivalent of about 30 time
steps for the 5-level multigrid calculation.

The calculations were performed on an IBM 3090-600E, and required about
24 minutes of CPU time for 30 Work Units, which is equivalent to approximately
2.4x 10- 4 s per mesh cell per Work Unit. This is comparable to the time required for
the explicit multi-stage (Runge-Kutta) scheme of Jameson et al [2], when applied to
three-dimensional problems (see, e.g., Jameson z Baker [8]). The efficiency gained
by the diagonalization procedure is compounded by the fact that the additional
work required to compute the elements of the modal matrices is vectorizable, and
thus is efficiently performed on computers with vector capabilities.
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(a) (b)

Figure 1. Mesh cell distribution for calculation of flow past swept wing.

Figure 2. Streamwise distributions of pressure coefficient at computational stations
on upper and lower wing surfaces.
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(a) (b)

Figure 3. Plan views of constant pressure contours on upper and lower wing surfaces.
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Figure 4. Comparisons of measured and computed pressure coefficients at selected
span locations of ONERA Wing M6. Free stream Mach number is Al"' = 0.839 and
angle of attack is a = 3.060.
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Figure 5. Contours of constant entropy contours in selected cross planes.
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Figure 6. Convergence histories for single-grid and 5-level rnultigrid schemes.
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ABSTRACT. We discuss experiments conducted on mesh moving and local mesh
refinement algorithms that are used with a finite difference scheme to solve
initial-boundary value problems for vector systems of hyperbolic partial differential
equations in one dimension. The mesh moving algorithms move a coarse base mesh by
a mesh movement function so as to follow and isolate spatially distinct phenomena.
The local mesh refinement method recursively divides the time step and spatial cells in
regions where error indicators are high until a prescribed error tolerance is satisfied.

The adaptive mesh algorithms are implemented in a code with an initial mesh
generator, a MacCormack finite difference scheme, and an error estimator.
Experiments are conducted for several different problems to determine the efficiency of
the adaptive methods and their combinations and to gauge their effectiveness in solving
one-dimensional problems.

1. INTRODUCTION. Our goal is to develop expert systems software for solving
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time-dependent partial differential equations. The software should allow users to
describe problems in a natural language, have a convenient geometric description
interface, and not require knowledge of sophisticated numerical analysts. The systems
should be intelligent, efficient, reliable, robust and able to solve a large class of
problems to prescribed error tolerances.

The power of adaptive techniques is that they are capable of making decisions
that change the computational environment. This significantly minimizes the number of
a priori decisions demanded of the user and provides dramatic savings in the cost of the
computation. This capability is performed by procedures that monitor intermediate
results and feed back this data to a control mechanism that modifies the solution
strategy. Three popular adaptive techniques for solving partial differential equations
are mesh moving or rezoning (r-refinement), mesh refinement (h-refinement), and order
enrichment (p-refinement). In r-refinement, the mesh is moved either continuously or
statically at discrete times in order to resolve nonuniformities and reduce errors.
H-refmement involves the addition or deletion of computational cells to the mesh and
p-ref nement involves increasing or decreasing the order of a method in different
portions of the domain. All strategies attempt to organize the computation so that little
effort is expended in regions where the solution is smooth and a much greater effort is
devoted to regions where the solution is more difficult to compute.

The different refinement strategies are being combined to yield remarkable
results. Babuska and Szabo [8] showed that an hp-refinement scheme produced an
exponential rate of convergence on a singular elasticity problem. Arney and
Flaherty [6] developed an hr-refinement scheme that moved a 'base' coarse mesh so as
to follow important dynamic structures of the solution and recursively refined the base
mesh to improve resolution. They found that mesh motion was inexpensive relative to
mesh refinement and reduced dispersive errors associated with wave motion but did not
always accurately follow structures, especially when interactions occurred, and could not
dependably satisfy prescribed tolerances. Recursive mesh refinement can satisfy
prescribed tolerances but involves more complicated data structures and greater care at
coarse-fine mesh interfaces than r-refinement.

There are numerous other variations of the three adaptive strategies for
time-dependent problems. For example, temporal refinement can be done globally to
produce an adaptive method of lines strategy [1,13] or locally in combination with the
spatial refinement strategy [7,16].

Accurate a posteriori error estimation is essential for codes that strive to satisfy
user-prescribed error tolerances. Error estimation is often the most expensive part of
an adaptive algorithm. Arney and Flaherty [6] calculated the local discretization error
at nodes of the mesh using an algorithm based on Richardson [221 extrapolation. This
pointwise estimate can then be used to construct several global measures of the
discretization error. The advantage of this method is that it can be used to find error
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estimates for any numerical scheme without explicitly knowing the exact form of the
error. Details of this error estimate and its implementation on a moving mesh are
discussed in Arney [33 and Arney et al. [4].

In this paper, we apply Arney and Flaherty's [6] adaptive mesh moving and
refinement technique to one-dimensional hyperbolic systems. As described in Section 2,
their approach consists of moving a base mesh of quadrilateral cells so as to isolate
important spatial structures of the solution. Refinement, when needed, is performed
within cells of coarser meshes. Solutions are generated by a MacCormack [19] finite
difference scheme and local error estimates, that are used to control mesh motion and
refinement, are computed by Richardson [22] extrapolation. Our goal is to quantify the
relative costs and benefits of mesh motion and local mesh refinement. In Section 3, we
report the results of computational experiments performed on three one-dimensional
problems using several conventional and adaptive numerical procedures. The results
obtained demonstrate both the potential and limitations of the adaptive algorithm. We
have mixed results showing that the effects of mesh moving can be problem-dependent.
Generally, mesh motion is effective for following an isolated structure, but much less so
when structures interact. In Section 4, we discuss the utility of our methods, the
computational results, and future work.

2. ALGORITHM. We consider an application of Arney and Flaherty's [6] adaptive
procedure to one-dimensional vector systems of hyperbolic conservation laws having the
form

(1) ut + (x,u,t) = O, x e D, t > 0

(2) U(x, 0) = uo(x), x e D U aD,

with appropriate well-posed conditions on the boundary a D of a domain D. Like them,
we discretize Eqs. 1 and 2 using a MacCormack [19] finite difference scheme because of
its general applicability [20]. Although this scheme suffers a reduction in order on a
moving nonuniform grid, our computations show that proper mesh moving can provide
enough efficiency and accuracy to compensate for this order reduction.

The MacCormack scheme produces spurious oscillations near discontinuities
because it is a centered scheme with second order accuracy on a uniform mesh. The
use of artificial viscosity to make this scheme total variation diminishing (TVD) makes
it attractive as a general solver for problems with discontinuities and we use a model
due to Davis [12]. The artificial viscosity terms are calculated from the solution data at
the beginning of each time step and are added to the solution oPter the MacCormack
solution has been calculated.

Arney and Flaherty's [53 mesh moving procedure is based on an intuitive
approach that allows nodes to follow local nonuniformities rather than the more analytic
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approaches of equidistribution of error [13] or the solving of variational problems to
minimize some given functional [14], which can be expensive and problem-dependent.
They derive equations for the nodal velocities so that the mesh moves to follow the
geometric propagation of some local nonuniformity. This generally reduces dispersive
errors and allows the use of larger time steps while maintaining accuracy and stability.
Important factors for mesh moving are to maintain mesh smoothness by controlling
adjacent cell ratios, to keep nodes within the domain boundaries, and to move nodes
with a velocity that reduces discretization error. In order to prevent mesh distortion
that can lead to increased discretization error of the solver, mesh points cannot move
independently but must be coupled to at least some of their neighbors.

Some schemes do this coupling by attraction and repulsion of nodes (cf., Rai and
Anderson [21]). In these algorithms, the coupling is done globally, where each node
influences the velocity of all other nodes in the mesh. Attempting to equidistribute
errors can lead to problems where nodes move incorrectly in some regions. This occurs,
for example, when a mesh that is following one structure must react to another
nonuniformity that arises in another part of the domain. An abrupt grid adjustment
can be eliminated if the influence is more local and the movement algorithm is combined
with a mesh refinement scheme to add the necessary nodes in the region of the new
structure.

At each time step, the selection mechanism of Arney and Flaherty's [6] mesh
moving algorithm uses as feedback the current node locations and the nodal values of a
mesh movement indicator at the independent moving nodes of a coarse mesh. The local
error estimates are used as the mesh movement indicators. Nodes with 'significant
error' are grouped into error clusters. This clustering separates the important spatially
distinct phenomena of the solution. As time evolves, the clusters can move, change
size, collide, or separate. At each time step, new clusters can be created and old ones
can vanish.

Mesh movement is then determined by each node's relationship to its nearest
error cluster and the propagation velocity of the center of error mass of the cluster.
Therefore, the nodal influence is regional. The amount of movement is determined by a
movement function which insures that the center of error of the cluster moves according
to a differential equation suggested by Coyle et al. [11]

(3) i+ ),r = 0,

where r(t) is the position of the center of error mass of a cluster and C) = d( )/dt.
Additionally, this movement function smoothes the mesh motion and prevents nodes
from moving outside the domain boundary. The distance a node moves is reduced near
boundaries in order to prevent it from leaving the domain. Nodes on the domain
boundaries are not allowed to move.
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Arney and Flaherty [63 perform static rezoning whenever computation with the
current mesh would be counterproductive or when the current mesh suffers from poor
mesh ratios. There are sophisticated algorithms to check mesh condition and to verify
the validity of the mesh (cf., Babuska and Szabo [83 and Simpson [23]). These
algorithms can check for gaps between cells and overlapping cells. Since moving
meshes can only develop such severe problems over time, mesh degradation can be
discovered before it develops complete invalidity. This mesh degradation or
ill-conditioning occurs when the mesh angles are severe, the mesh contains poor mesh
ratios or poor aspect ratios, or the time step is too restrictive because of the crowding of
nodes. Nodes of the coarse mesh can become too crowded when error clusters pass
through boundaries or when two or more error clusters converge and trap nodes
k etween them. Static rezoning is performed only when absolutely necessary due to the
nigh cost in accurately interpolating the solution from the existing mesh onto a new one.
It was not done in any of the examples presented in this paper.

Arney and Flaherty [6] used local mesh refinement to insure that the
user-prescribed error tolerance were satisfied. This was done by recursively introducing
fimer meshes by binary refinement of space-time cells in regions where nodes with
unacceptable error have formed clusters (cf., Berger [9], Flaherty and Moore [16] and
Gropp [17)). The clustering algorithm used for refinement is the same as the one used
for mesh movement. The clusters are buffered so that high error nodes are in the
interior of the refined region. The problem is recursively solved on these fine meshes
until the error is within the specified tolerance. The refined subgrids that are
adaptively created by the local refinement algorithm, overlay the coarser grids. Each of
these subgrids is independently defined. Figure 1 shows a coarse grid with portions
overlayed by two fine grids and three finer grids.

Arney and Flaherty's [73 mesh refinement strategy suggests the use of a tree
data structure for its description and implementation. In this tree structure, the
coarsest grid is the root node and defined as level 0 in the tree. The subgrids of the
coarse grid are its offspring in the tree and are defined as level 1. A grid at level t is
properly nested in the tree between its parent at level I - 1 and its offspring (if any) at
level I + 1. Grids at the same level are given an arbitrary ordering. Due to the
clustering and buffering of error regions, grids at the same level of a two-dimensional
problem can intersect and overlap. Figure 1 depicts an example of a sequence of
meshes that might be produced by our refinement procedure for a coarse grid
refinement step. The numbers next to the grids indicate the order in which the solution
is computed on each grid.

Such tree data structures are commonly used in adaptive mesh refinement
procedures (cf., Berger and Oliger £10] and Flaherty and Moore [16]). Additionally, we
use a stack to implement the recursive algorithm (cf., Aho et al. £23 and Horowitz and
Sahni [183).
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Figure 1. Typical set of local refinement grids for one coarse time step. The
numbers indicate the order in which the solution is computed on
each grid.

The solution vectors, error estimates, and nodal information are all stored in a
dynamic storage area with pointers from the tree to this storage area for each mesh in
the tree. For each grid, we store its level in the tree and the number of nodes it
contains. The dynamic storage area contains the solution vector and the error estimate
at each node, and nodal information for use in the solver and grid interface procedures.
Since old mesh data is saved to obtain initial data for the newly refined grids and nodes
of the parent grids are updated from the fine grid solutions, nodal relationships between
meshes are stored directly in the nodal vector.
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3. COMPUTATIONAL RESULTS. We conducted experiments of Arney and
Flaherty's [6] adaptive mesh strategy using three problems and our results follow. In
each case, errors are measured in the L norm and the CPU times are normalized to
unity. All calculations were performed on an IBM 3081D computer.

Example 1. Consider the scalar hyperbolic differential equation

(4) ut + (cos t)u = 0, t > 0, -0.4 x 1.4,

with initial conditions

{ 1, if 0.4 < x !0.6
(5) u(x, 0) =

0, otherwise,

and boundary conditions

(6) u(-0.4, t) = u(1.4, t) = 0.

The exact solution to this problem is

/1, if 0.4 x - (sin rt)/ r S 0.6
(7) u(x, t)=(7)

0, otherwise,

which is a square pulse of unit amplitude that oscillates sinusoidally about the center of
the domain. Artificial viscosity was added to eliminate oscillations in the solution;
however, this resulted in an attenuation and spreading of the square pulse.

Four different adaptive strategies were used to solve this problem for
0 : t % 2.5. The solations at several times, the mesh trajectories, and the time step
profile for the various strategies are shown in Figures 2, 3, 4, and 5. Table 1
summarizes the computational cost and accuracy of the four strategies.

With a stationary uniform mesh, we find that the square pulse is rapidly
attenuated and diffused. The time step profile shows how the Courant number is
utilized to maintain maximum step sizes without loss of stability. From Figure 3, it is
apparent that the results improve when the mesh is allowed to move. The pulse is
attenuated less, the error is reduced, but more time steps are needed to complete the
computation. The mesh trajectories in Figure 3 demonstrate how well the nodes track
the square pulse as it oscillates. Figures 4 and 5, depicting the results of Strategies 3
and 4, respectively, show remarkable improvement when adaptive mesh refinement is
used. In both cases, the local error tolerance was specified as 0.001. Errors are
reduced and the attenuation of the pulse is almost negligible but shape distortion is still
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Number of Normalized
Adaptive Strategy eJ] Space-time Cells CPU Time Attenuation

1. Stationary
uniform mesh 0.1090 774 1.000 0.545

2. Moving mesh 0.0903 1134 1.452 0.730

3. Stationary
uniform mesh
with refimement 0.0614 15718 8.761 0.969

4. Moving mesh with
refinement 0.0395 16554 10.069 0.994

Table 1. Comparison of the different adaptive strategies for Example 1.

significant. Notice how well the refinement procedure tracks the pulse; however, the
cost of computation increases by almost an order of magnitude. When moving and
refinement are combined, the results are even more remarkable. The pulse is
attenuated by a factor of only 0.6 percent.
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Figure 3. Solution at t = 0, 0.87, 1.42, 1.88, and 2.37, mesh trajectories,
and time step profile for Strategy 2 of Examnple 1.
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and time step profile for Strategy 3 of Example 1
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Example 2. Consider the linear uncoupled system

u + (cos Ir t) u = 0,
(8) t > 0, -0. 4 5 x :5 1. 4,

v - (cos lrt) v" 0,

with initial conditions

1, if 0.4 S x < 0.6
(9) U(x 0)=v(x 0)

0, otherwise,

and boundary conditions

(10) u(-0.4, t) = u(1.4, t) = v(-0.4, t) = v(1.4, t) = 0.

The exact solution to this problem is

1, if 0.4--;x -(sin 7rt)/ i1 5 0.6
Uii) u(x, t)=

0, otherwise,

1, if 0.4 5 x + (sin rt) / w !s 0.6
(12) V(X, t)

0, otherwise.

The first component u is the same as Example 1, and the second component v
moves symmetrically with u. Four different adaptive strategies were used to solve this
problem for 0 ! t s 1.5. Table 2 summarizes the computational cost and accuracy of
the four strategies. The solutions at several times, the mesh trajectories, and the time
step profile for mesh strategies 3 and 4 are shown in Figures 6 and 7, respectively.

It is clear that mesh moving does not provide the expected improvement in the
results for this problem. In fact, we can see from Table 2 that each time the mesh is
moved, the error in the computed solution increases. This is because two identical error
regions moving symmetrically about the center of the domain do not contribute equally
to the mesh motion due to asymmetries in their error estimates. As a result, the mesh
moves incorrectly and the solution deteriorates. This, in turn, leads to further
imbalance of the error clusters and subsequently causes catastrophic effects.
Comparing Figures 6 and 7, we see how bad the solution is attenuated due to incorrect
mesh motion. Improper mesh motion has also lead to refinement in some regions of the
mesh where it should not have been necessary. In both cases, the local error tolerance
was specified to be 0.005.
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Number of Normalized

Adaptive Strategy ej Space-time Cells CPU Time

1. Stationary uniform mesh 0.1145 1650 1.000

2. Moving mesh 0.1221 5640 3.386

3. Stationary uniform mesh with
refinement 0.0541 20828 6.926

4. Moving mesh with refinement 0.0583 48954 18.667

Table 2. Comparison of the different adaptive strategies for Example 2.
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Figure 6. Solutions for u at t =0, 0. 17, 0.48, 0.96, and 1. 38, mesh
trajectories, and time step profile for Strategy 3 of Example 2.
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Figure 7. Solutions for u at t =0, 0.76, 0.95, 1.17, and 1.49, mesh
trajectories, and time step profile for Strategy 4 of Example 2.
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Example 3. Consider the coupled hyperbolic system from the wave equation

ut- v = 0,
(13) t > 0, -0.3 < x ! 1.4,

Vt - U =0,

with initial conditions

= 1l' if 0.4 <x! 0.6

(14) U(x, 0)
0, otherwise,

/1, if 0.5 ! x ! 0.7
(15) v(x, 0)

0, otherwise,

and boundary conditions satisfying the exact solution

(16) u(x, t) = (p(x + t) + q(x - t)) / 2.0

(17) v(x, t) = (p(x + t) - q(x - t))/ 2.0,

where

2, if 0. 5 <0.6
(18) p() = 1, if 0.4 :9 < 0.5 or 0.6 < 0.7

0, otherwise,

and

1, if 0.4 ! !0.5

(19) q(t) = -, if 0.6 :; t 0.7
0, otherwise.

Four different adaptive strategies were used to solve this problem for
0 s t s 0.6. Table 3 summarizes the computational cost and accuracy of the four
strategies. The solutions at several times, the mesh trajectories, and the time step
profile for mesh strategies 3 and 4 are shown in Figures 8 and 9, respectively.

Once again, mesh motion does not appear to result in the desired improvement
in the solution. In this case, there are two error regions moving away with unit speed
in opposite directions from the center of the domain. However, the error regions are not
identical as was the case in Example 2. With a moving mesh, the solution is
attenuated and consequently, the error measure in the L, norm increases.
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Number of Normalized
Adaptive Strategy J Space-time Cells CPU Time

1. Stationary uniform mesh 0.1141 930 1.000

2. Moving mesh 0.1057 3180 3.454

3. Stationary uniform mesh with
refinement 0.0527 23236 11.493

4. Moving mesh with refinement 0.0552 39234 20.232

Table 3. Comparison of the different adaptive strategies for Example 3.
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Figure S. Solutions for u at t =0, 0.20, and 0.58, mesh trajectories, and
time step profile for Strategy 3 in Example 3 with error
tolerance -- 0.005.
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4. CONCLUSION. We have experimented with the adaptive mesh method of Arney
and Flaherty [6). Our results indicate that proper mesh moving can efficiently reduce
errors. However, their mesh moving is not effective for problems that have more than
one moving structure. We find that whenever there are two error regions, the mesh
moving strategy is unable to make an accurate decision. This occurs particularly during
the time when the two structures have not completely separated but still form one large
error cluster. Results of tests of local refimement show that it can efficiently reduce
errors. The most powerful method was the combination of both mesh moving and mesh
refinement. Results obtained for Example 1 show that a totally adaptive mesh strategy
can be extremely effective. The overhead associated with the clustering and dynamic
data structures is only about 5 percent of the time needed to calculate a comparable
solution on a uniform mesh.

Additional computation is needed to verify the generality of these conclusions. It
is also not clear how much of the difficulties were due to MacCormack's [19] fimite
difference scheme or the Richardson's [22) extrapolation-based error estimate. A TVD
scheme would greatly improve performance near discontinuities.

We are re-examining the entire process in order to determine an effective mesh
motion procedure. Future computations will be performed using more advanced shock
capturing difference schemes (e.g., Engquist and Osher [15)).
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ABSTRACT

The determination of aerodynamic coefficients by shell designers is a
critical step in the development of any new projectile design. Of particular
interest is the determination of the aerodynamic coefficients at transonic

speeds. It is in this speed regime that the critical aerodynamic behavior
occurs and a rapid increase in the aerodynamic coefficients is observed. The
three-dimensional transonic flowfield computations over projectiles have been
made using an implicit, approximately factored, partially flux-split
algorithm. Use of a composite grid scheme has been made to provide the
increased grid resolution needed for accurate numerical simulation of three-
dimensional transonic flows. Details of the asymmetrically located shockwaves
on the projectiles have been determined. Computed surface pressures have been
compared with experimental data and are found to be in good agreement. The
pitching moment coefficient, determined from the computed flowfields, shows
the critical aerodynamic behavior observed in free flights.

I. INTRODUCTION

The flight of projectiles covers a wide range of speeds. The accurate
prediction of projectile aerodynamic at these speeds is of significant impor-
tance in the early design stage of a projectile. The critical aerodynamic
behavior occurs in the transonic speed regime, 0.9 < M < 1.1 where the aerody-
namic coefficients have been found to increase by as much as 100%. Of parti-
cular interest is the determination of the pitching moment coefficient since
it determines the static stability of the flight of the projectile. The
critical behavior in this case is usually characterized by a rapid increase in
the coefficient followed by a sharp drop. This rapid change in the pitching
moment coefficient can be attributed in part to the complex flow structure and
in particular, to the asymmetrically located shock waves that exist on the
projectiles flying at transonic speeds at angle of attack. Computations of
three-dimensional flowfields at transonic speeds are thus needed to predict
the critical aerodynamic behavior.

In recent years a considerable research effort has been focused on the
development of modern predictive capabilities for determining projectile
aerodynamics. Numerical capabilities have been developed primarily using
Navier-Stokes 1 - " computational technique and used to compute flow over slender
bodies of revolution at transonic speeds. Flowfield computations included
both axisymmetric 3 and three-dimensional situations. '2'4  References I and 2
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did not include the computations in the wake or base region of a projectile
and thus, ignored the upstream effect of the base region flow on the afterbody
flowfield and the asymmetrical locations of the shock wave. An axisymmetric
base flow code 3 was developed to compute the entire projectile flowfield
including the base region using a flowfield segmentation procedure. This
technique was later extended4 into three dimensions to calculate the pitch
plane aerodynamics at transonic speeds. Due to lack of computer resources,
only one solution was obtained and reported in Reference 4. In addition, the
calculations in References 1, 2, and 4 generally did not have sufficient grid
resolution due to lack of adequate computer resources. Due to the avail-
ability of supercomputers such as Cray X-MP/48 and Cray 2, it is now possible
to provide the increased grid resolution needed for accurate computations of
three-dimensional transonic flows. 5

The numerical scheme plays an equally important role for accurate predic-
tions of transonic flows. All the calculationes in Reference 1-4 were made
using the compressible, thin-layer Navier-Stokes equations which were solved
using the implicit Beam and Warming central finite difference scheme. 6- Such
schemes require artificial dissipation to be added to control numerical oscil-
lations. Upwind schemes can have several advantages over central difference
schemes including natural numerical dissipation and better stability proper-
ties. The numerical scheme used here is an implicit scheme based on flux-
splitting 9 and upwind spatial differencing in the streamwise direction.

Other factors that have direct impact on the 3-D numerical simulation are
the geometric complexity and efficient management of large 3-D data sets.
These factors make it necessary to develop zonal or patched methods where a
large 3-D problem is divided into a number of smaller problems. Each smaller
piece is then solved separately. The break-up of the large data base can be
achieved in various ways. 1 0- 13 Reference 10 and 11 are earlier applications
where the data base structure follows a pencil format. These numerical
calculations, although promising, were based on limited computer resources.
Reference 12 shows the development of a chimera grid scheme. This scheme
provides multiple regions where communications between grids are done by
interpolating in regions of overlap. The blocked grid approach 1 3 does not
require interpolations at the interfaces. The schemes in References 12 and 13
are generally complicated since they allow to embed a block or zone into
another. Recently, a simple composite grid scheme14 has been developed where
a large single grid was partitioned into smaller grids so that each of the
smaller problem could be solved separately with simple data transfers at the
interfaces. The initial results obtained were very promising. The present
effort extends the use of this composite grid scheme to include the correct
modeling of the base region of a projectile. Three-dimensional flowfields
have been computed for two different projectiles at various transonic speeds
0.8 < M < 1.2 in order to determine the critical aerodynamic behavior.

II. NUMERICAL METHOD

1. GOVERNING EQUATIONS

The three-dimensional Navier-Stokes conservation equations of mass,
momentum, and energy can be represented in flux vector form as:
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T Q +a(f+FF) +3(G+G) +aC(H + H) = 0(1

where the independent variable T is the time and the spatial variables , n,
are chosen to map a curvilinear body conforming discretization into a uniform

A A A

computational space. Here Q contains all the dependent variables and F, G

and H are the inviscid fluxes. The flux terms Fv , G v and Hv contain viscous

derivatives and throughout a nondimensional form of the equations is used.
The conservative form of the equations is maintained mainly to capture the
Rankine Hugoniot shock jump relations as accurately as possible.

For body conforming coordinates and high Reynolds number flow where is
the coordinate away from the surface, the thin layer approximation can be made
in the direction and the governing equations can be written as:

aQ + a F + a G + a H = Re-a S . (2)

Here the viscous terms in have been collected into the vector S and the
nondimensional reciprocal Reynolds number is extracted to indicate a viscous
flux term.

In differencing these equations it is often advantageous to difference
about a known base solution denoted by subscript o as:

6(Q- Q0) + 6 (F- F0) + 6 n(6 - 0) + 6(4 - H0)

(3)

- Re' 1 6;(S . so) = -aTQo  - aF o  - anGo  - a4H o  + Re'
1 a3 o

where 6 indicates a general difference operator, and a is the differential
operator. If the base state can be properly chosen, the differenced quantita-
tives can have smaller and smoother variation and therefore less differencing
error. The freestream is used as a base solution in the present formulation.

2. IMPLICIT FINITE DIFFERENCE ALGORITHM

The implicit approximately factored scheme for the thin layer Navier-
Stokes equations that uses central differencing in the n and directions and
upwinding in & is written in the form:
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[I + h6 (A+)n + h6Cn - hRelJ-MnJ - D in]
f : _ ^ f )n.

[I + h6 &(A-) + h6nBn DinJAQn -0At{6](F+)n F+  + 6FI(.- F] (4)

'- ) + 6 - H ) - Re (in  J D e(Q n - Q.)

where h = At and the freestream base solution is used. Here 6 is typically a

three point second order accurate central difference operator, T is the mid-

point operator used with the viscous terms, and the operators 6 and 6 are

backward and forward three-point difference operators. The flux F has been

split into F+ and F, according to its positive and negative eigenvalues and

the matrices A, B, C and M result from local linearization of the fluxes
about the previous time level. Here J denotes the Jacobian of the coordinate
transformation. Dissipation operators, De and Di are used in the central

space differencing directions.5 The factored left hand side operators can be
readily inverted by sweeping and inversion of tridiagonal matrices with 5 x 5
blocks. This two factor implicit scheme is readily vectorized or multi-tasked
in planes of = constant.

3. COMPOSITE GRID SCHEME

In the present work, a composite grid scheme 14 has been used where a large
single grid is split into a number of smaller grids so that computations can
be performed on each of these grids separately. Each of tnese grids use the
available core memory in turn, while the rest are stored on an external disk
storage device such as the SSD of the Cray X-MP/48 computer. On Cray 2 super-
computer, large in core memory is available to fit the large single grid.
However, for accurate geometric modeling of complex projectile configurations
that include blunt nose, sharp base corner and base cavities etc., it is also
desirable to split the large data base into few smaller zones on Cray 2 as
well.

A code developed for a single grid can be made to work for a block grid
structure by: 1) mapping and storing the information for each grid onto a
large memory; and 2) supplying interface boundary arrays, pointers and
updating procedures. Consider the situation in Figure 1 in which the single
grid from J = 1, Jmax is partitioned into four grids, G1 through G4. The base

region of the projectile is included by adding another zone G5. This pro-
cedure preserves the actual base corner and no approximation is made. This
zonal scheme has been modified to allow more than one zone in the wake for
accurate modeling of other complicated base configurations including cavities,
etc.

The use of a composite or blocked grid scheme requires special care in
storing and fetching the interface boundary data, i.e., the communication
between the various zones. For the simple partitioning shown in Figure 1, all
subgrid points are members of the original grid. There is no mismatch of the
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grid points at the interface boundaries and no interpolations are required.
This procedure thus, has the advantage over-patched or overset grid schemes
which do need interpolations. The partitioned grid has six interface bound-
aries, J1 = J1max  J2 = 1, J2 = J2ma x ' J3 = 1, J3 = J3ma x and J4 = 1 in the

streamwise direction and two interface boundaries in the normal direction
between grids G4 and G5. Data for these planes are to be supplied from the
other grids by injecting interior values of the other grid onto the interface
boundaries. The details of the data storage, transfer and other pertinent
informations such as metric and differencing accuracy can be found in
Reference 14.

The differencing accuracy near the interfaces is quite important. Three
point backward and forward difference operators are used at the interior
points. Near the interface, for example, at J2 = 12ma x  1 1 three point for-

ward difference operator cannot be used with one grid point overlap as shown
in Figure 1. The differencing accuracy can be dropped from second order to
first order; however, this leads to inaccuracies in the flowfield solution
near the interfaces. 14 To maintain second order accuracy near the interfaces,

we difference, for example, _F at J2 = J2 - 1 as,
gmax

where a is the usual three point backward difference operator and f is now a

central difference operator, i.e.,
3F +- 4F_ 1 + F 2 + F-

a 2& 24E

Near the other interface of grid 2 (J = 2), the a operator is corresponding-

ly replaced by a central difference operator while 3 E is a usual three point

forward difference operator. The planes J2 = 1 and J2 = J2ma are, of course,mx

boundaries for grid 2 and get their data from interior flowfield solutions
from neighboring grids. Second order accuracy at and near the interfaces is
thus maintained. Partial use of central differencing near the interfaces has
not adversely affected the stability of. the scheme.

Il1. MODEL AND COMPUTATIONAL GRIDS

The first model used for the experiment and computational study presented
here is an idealization of a realistic artillery projectile geometry. The
experimental model shown in Figure 2 is a secant-ogive-cylinder-boattail
(SOCBT) projectile. It consists of a three-caliber (one-caliber = maximum
body diameter), sharp, secant-ogive nose, a two-caliber cylindrical mid-
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section and a one-caliber 70 conical afterbody or boattail. A similar model
was used for the computational studies with the only difference being a five
percent rounding of the nose tip. The nose tip rounding was done for computa-
tional efficiency and is considered to have little impact on the final
integrated forces. Experimental pressure data 15 are available for this shape
and were obtained in the NASA Langley eight foot Pressure Tunnel using a sting
mounted model. The test conditions of 1 atm supply pressure and 320 K supply
temperature resulted in a Reynolds number of 4.5 x 106 based on model length.

The computational grid used for this computation is shown in Figure 3.
Figure 3a shows the longitudinal cross section of the 3D grid while Figure 3b
shows an expanded view of the three-dimensional base region grid. As shown in
Figure 3a, the clustering of grid points near the body surface is done to
resolve the viscous boundary layer near the body surface. Grid clustering has
also been used in the longitudinal direction near the boattail and the base
corners where large gradients in the flow variables are expected. In addi-
tion, the composite grid scheme preserves the sharp base corner. The grid
consists of 202 points in the streamwise direction, 36 points in the circum-
ferential direction and 50 points in the normal direction. This amounts to
about 16 million words of storage for the code on the Cray X-MP/48. Only up
to 4 Mw of central core memory was easily accessible; therefore, the full grid
was partitioned into five smaller grids (including a base region grid) each of
which would use the core memory in turn while the rest is stored on the SSD
device. These computations were performed on the Cray X-MP/48 at the US Army
Ballistic Research Laboratory (BRL). Each numerical simulation (includes all
partitioned grids) took over 20 hours of computer time.

Another grid shown in Figure 4 was obtained to simulate the model with the
sting in the base region again for the SOCBT projectile. This is again a
longitudinal cross-section of the 3-D grid. The grid is wrapped around the
base corner in this case. It consists of 238 points in the axial direction,
39 points in the circumferential direction and 50 points in the normal direc-
tion. Computations on this grid were performed on the Cray 2 computer at BRL
using the same code. The computing time for these simulations was comparable
to that on the Cray X-MP/48.

The second projectile under consideration is the M549 projectile shown in
Figure 5. This projectile has a short boattail of about 1/2 a caliber in
length. For simplicity, the flat nose was again modeled with nose tip round-
ing and the rotating band was eliminated. Experimental aerodynamic coeffi-
cient data are available for this configuration which is a compilation of the
wind tunnel and free flight range data. 16  Computations for this projectile
have been made for atmospheric conditions. Figure 6 shows an expanded view of
the grid around this projectile and shows both the wind side and lee side
planes. The full grid consists of 298 points in the axial direction, 39
points in the circumferential direction and 50 points in the normal direction.
Calculations for this projectile were performed on the Cray 2 computer at BRL.
Each of these calculations took over 30 hours of computer time.

IV. RESULTS

The implicit time marching procedure was used to obtain the desired steady
state result starting from initial freestream conditions everywhere. Boundary
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conditions were updated explicitly at each time step. The solution residual
dropped at least three orders of magnitude before converged solutions were
obtained. In addition, the surface pressure distribution was checked for time
invariance. For the computation of turbulent flow, a turbulence model must be
supplied. In the present calculation, a two layer algebraic eddy viscosity
model due to Baldwin and Lomax 1 7 was used. Results are now presented for two
cases: (1) SOCBT projectile with and without sting; and (2) M549 projectile.

1. SOCBT PROJECTILE, 0.9 < M. < 1.2, a = 4

Results have been obtained at various transonic speeds for both cases with
and without modeling of the sting. Figures 7-10 show the Mach contours for
the projectile in the windward and leeward planes. These figures show the
expansions at the ogive-cylinder and cylinder-boattail corners. These figures
indicate the presence of shock waves on the cylinder and also on the boattail
which typically occur on the projectile at transonic speeds. Sharp shocks are
clearly observed on the boattail flowfield which are asymmetrically located
(the one on the wind side being closer to the base than its counterpart on the
lee side). The asymmetry can also be seen in the wake flow behind the bluff
base. As the Mach number is increased from 0.94 to 0.96 and then to 0.98, the
shocks become stronger and move towards the base of the projectile. At higher
transonic speeds past the speed of sound (see Figure 10), these shocks become
weak; however, a bow shock forms in front of the nose of the projectile.

Computations have also been made to investigate the effect of the sting on
transonic projectile aerodynamics. A typical plot of Mach contours for this
simulation is shown in Figure Ila for M. = 0.96 and a = 4*. As expected, the
sting has a large effect on the qualitative features of the wakefield which in
turn has moved the boattail shocks further upstream from the base corner.
Experimentally obtained shadowgraph picture at the same Mach number and flow
conditions is shown in Figure 1ib. As shown in Figures Ila and lb, the
agreement of the shock wave positions between the computation and experiment
is very good. Figures 12a and 12b shows the velocity vectors in the base
region for both windside and leeside. Figure 12a is for the case with no
sting whereas Figure 12b includes the sting in the base region. In both
cases, asymmetry in the flowfield can be observed between the windside and
leeside. Three pairs of separated flow bubbles can be seen in the near wake
for the case of no sting (Figure 12a). For the case with sting (Figure 12b),
one can see the large primary bubble along with a counter rotating small
bubble near the junction of sting and the base. The primary bubble is more
elongated on the windside and the flow reattaches further downstream of the
base.

Figures 13-15 show the surface pressure distributions as a function of the
longitudinal position and are compared with experimental data.1 5 Figures 13a
and 13b show the comparison at M. = 0.96 for windside and leeside, respective-
ly. Computed results are shown for two grids, one which wrapped around the
base corner and the other which did not. As shown in these figures, the
computed results are virtually the same for both computations except near the
base corner where a small difference can be noticed. The agreement with
experimental data however, is very good for both windside and leeside. The
expansions and recompressions near the ogive-cylinder and cylinder-boattail
junctions are captured very accurately. Figures 14a and 14b shows the surface
pressure distribution for M, = 0.98. Computed results are shown for both
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cases with and without sting for turbulent flow. In the experiment, 15 the
model was sting mounted and no boundary layer trip was used. Therefore, it is
not clear if the flow was laminar or turbulent. Computed results were
obtained for the sting mounted case for laminar flow condition and is also
included in the comparison with experimental data. Comparison of pressure on
the windside (Figure 14a) shows generally good agreement of the computed
pressures with the experimental data. The largest differences between the
computed results are seen on the rear part of the boattail where no experi-
mental results are available. The comparison on the leeside (Figure 14b)
again shows good agreement of the computed results with experimental data for
most of the projectile except on the second half of the boattail. As
expected, the computed result with no sting has the largest discrepancy.
Computed results with sting simulation compare well with experimental data
especially for laminar flow conditions. A typical result at a high transonic
speed M. = 1.1 is shown in Figure 15. The agreement of the computed surface
pressures with experiment is very good. At this high transonic Mach number,
the shocks on the cylinder as well as on the boattail are very weak as
evidenced by the absence of sharp rise in pressure in those areas. The expan-
sions and recompressions near the ogive-cylinder and cylinder-boattail junc-
tions can be clearly observed in Figure 15.

The computed surface pressures have been integrated to obtain the aerody-
namic forces and moments. The slope of the pitching moment coefficient (Cm )

aL
is generally of greater concern in projectile aerodynamics since it is the
parameter that determines the static stability of the projectile. Figure 16
shows the variation of the slope of the pitching moment coefficient with Mach
number. It clearly shows the critical aerodynamic behavior in the transonic
speed regime, i.e., the sharp rise in the coefficient between M = 0.92 and
0.96 and its subsequent sharp drop. This is followed by a smooth decrease in
the coefficient as Mach number is increased further. The increase in Cm

between M = 0.92 and 0.96 is of the order of 20% which is a typical value
obtained from a number of range tests for similar projectiles.

2. M549 PROJECTILE, 0.7 < M. < 1.5, a = 2

Numerical computations were made for the M549 projectile at various
transonic speeds 0.7 M. 4 1.5 and at angle of attack, a = 20. Qualitative
features of the flowfield obtained from some of these calculations are shown
in Figures 17-21 where Mach number contours have been plotted for M = 0.85,
0.90, 0.92, 0.94, and 0.98 for both windward and leeward planes. The asym-
metry in the wake region flow is obvious from these figures. These figures
indicate the development and asymmetric locations of shock waves on the
projectile at transonic speeds. At low transonic speeds, for example, at M =
0.85 (Figure 17) the shock waves are just beginning to form especially near
the boattail junction. As Mach number is increased to M = 0.90, the shocks
are already formed on the projectile both near the cylinder as well as boat-
tail junctions. The flow expansions at these junctions can also be clearly
seen in this figure. The small asymmetry in shockwave locations can be
observed particularly with the boattail shocks. The shockwave on the boattail
in the windside is a little closer to the base than its counterpart in the
leeside. In addition, these shocks have moved little downstream from the
boattail junction. As shown in Figures 19-21, witri further increase in Mach
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number to 0.92, 0.94, and 0.98, the shockwaves (both on the cylinder and the
boattail) become stronger and gradually move downstream. The asymmetry in the
location of the shock waves can be seen more and more clearly. As seen in
Figure 21 for M = 0.98, the shockwaves pattern is complicated and the boattail
shocks are located very close to the base corners.

The static aerodynamic coefficients have been obtained from the computed
flowfields. As pointed out earlier, the slope of moment coefficient (Cm ) is

ci

of greater concern. Figure 22 shows the development of Cm over the projectile

for various transonic speeds. Actually, it is the accumulative moment coeffi-
cient referenced to the nose and thus, the value at the end (X/D = 5.645) is
the final result. The difference in this coefficient over the nose portion is
practically negligible for all transonic Mach numbers. The largest effect is
seen on the cylinder and boattail sections. The boattail has a dramatic
effect as evidenced by the sharp rise in all the curves. Figure 23 shows the
Cm comparison for the computation and the experimental data. 16  Here Cm is

referenced to center of gravity (C.G.) of the projectile. One can clearly see
the sharp rise in Cm between M = 0.8 to 0.94 which is followed by the sharp

ai

drop with further increase in Mach number in both the computation and the
experimental data. This critical aerodynamic behavior observed in the experi-
mental data is clearly predicted in the computations and good agreement has
been obtained between the computed result and the data.

V. CONCLUDING REMARKS

In conjunction with a new Navier-Stokes code, a simple composite grid
scheme has been developed which allows fine computational grids needed for
accurate transonic flow computations to be obtained on CRAY X-MP/48 or Cray 2
computers. The numerical method uses an implicit, approximately factored,
partially upwind (flux-split) algorithm.

The three dimensional transonic flowfield computations have been made over
two projectiles for different flow conditions and angle of attack. The
computed flowfields show the development of the asymmetrically located shock-
waves on the projectile at various transonic speeds. For the SOCBT projec-
tile, computed surface pressures have been compared with experimental data and
are found to be in good agreement. The slope of the pitching moment coeffi-
cient (Cm ), determined from the computed flowfields, shows the critical aero-

dynamic behavior. For M549 projectile, computed Cm has been compared with

experimental data. It shows the same critical behavior in the data and the
agreement between the computed result and experimental data is good.

The results of this research provide the basis for a new capability to
compute three dimensional transonic flowfields over projectiles. This capa-
bility in conjunction with the supercomputers at the US Army Ballistic
Research Laboratory has led to the first successful prediction of the critical
aerodynamic behavior in Cm of artillery shell at transonic speeds. The next

c 1
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step is the numerical prediction of magnus force and moment for spinning
projectiles at angle of attack which involves calculations of the full three
dimensional transonic flowfields.
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Figure 2. Model geometry of the SOCBT projectile.
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Figure 3a. Longitudinal cross-section of the 3D grid.

Figure 3b. Expanded view of the base region grid.
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Figure 4. Grid for the sting mounted SOCBT projectile.

1088



0..519

T~* 0.99



Figure 7. Mach contours, SOCBT projectile, M,.= 0.94, a 4'.

Figure 8. Mach contours, S0CBT projectile, M,, 0 .96, a=4'.
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Figure 9. Mach contours, SOCBT projectile, M,, 0 .98~, 40.

Figure 10. Mach contours, SOCBT projectile, M. 1.1, ai = V
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Figure 11a. Computed Mach contours, M. 0.96, a 4*
SOCBT projectile (with sting).

"on

Figure 11b. Experimental shadowgraph, M. = 0.96, a V 4,
SOCBT projectile (with sting).
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Figure 13a. Longitudinal surface pressure distribution, SOCBT projectile,
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Figure 14a. Longitudinal surface pressure distribution, SOCBT projectile,
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Figure 14b. Longitudinal surface pressure distribution, SOCBT projectile,

M, 0.98, a=40, leeside.

1095



Comp. (leeside)
o Exp. (leeside)
....Comp,. . .(idi

0.4 AExp. (windside)"

0.0

-0.

-0.4

0 1 2 3 4 5 6 7

X/D
Figure 15. Longitudinal surface pressure distribution,

SOCBT projectile, M,- 1.1, a = 4%*

6.5

0 Comnputotion
6

5.5

C MC 5

4.5

4

3.5
0.8 0.9 1 1.1 1.2

M
Figure 16. Slope of pitching moment coefficient, Cm ,vs Mach number,

SOCBT projectile.-

1096



Figure 17. Mach contours, M549 projectile, M., 0 .85, a 2%.
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Figure 18. Mach contours, M549 projectile, M. 0.90, a =20.
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Figure 19. Mach contours, M549 projectile, M, 0.92, =20.
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Figure 20. Mach contours, M549 projectile, M. 0.94, a 20.
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Figure 21. Mach contours, M549 projectile, M,, 0.98, a =201.
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DYNAMIC RESPONSE OF RECTANGULAR STEEL PLATES OBLIQUELY IMPACTING A
RIGID TARGET

Aaron Das Gupta
US Army Ballistic Research Laboratory, US Army Laboratory Command

Aberdeen Proving Ground, Maryland 21005

ABSTRACT. Dynamic response of rectangular steel plates of two different
thicknesses obliquely impacting a rigid semi-infinite target was modeled
using the STEALTH-3D hydrodynamic code based on an explicit Lagrangian finite-
difference formulation for solids, structural and thermo-hydraulic analysis.
Motivation for this analysis arises from the need to assess transient loads
and deformation in the contact zone due to impact of plates of various
materials, geometry, initial velocity and angle of obliquity in order to
assure structural integrity and avoid premature failure. The STEALTH code was
developed by Science Applications Inc. and a DOD solids and structural
version without the thermo-hydraulic analysis capability has been employed
for this investigation.

The plates were impulsively driven to a high velocity prior to oblique
impact upon a rigid wall and were modeled using a three-dimensional 11*11*3
mesh configuration. Only one-half of the plates were modeled by virtue of
their lateral symmetry. The Mie-Gruneisen equation of state for steel under
hydrostatic compression and elastic perfectly-plastic behavior for deviatoric
material strength were included for the material model. Initially a very
small time step two orders of magnitude below the Courant stability criteria
for the smallest mesh was used to stabilize the explicit integration
calculations near the impacted region.

The results indicate large hydrostatic pressure rise at the initial
contact zone resulting in severe elasto-plastic deformation and plate bending
causing seperation of the leading edge while the trailing zone ontacts the
rigid surface as the plate continues to slide along the rigid ,411 for the
relatively thick plate impact problem. For the thin plate, occurrence of a
plastic hinge, localized bending near the leading edge and sliding along the
target surface are observed. Hourglassing instabilty along the boundary did
not adversely affect computation near the leading edge and a major portion of
the impulse occurred during the initial 40-50 microseconds. The computations
indicate that impact loading upon the wall can be accurately estimated using a
refined mesh near the leading edge of the plate.

1. INTRODUCTION. The capability to predict the effect of hypervelocity
plate impact on a rigid structure is a necessity as a first step towards the
design and safe operation of protective enclosures (1,2) commonly used in
nuclear power plants. This problem is also of interest to the Ballistic
Research Laboratory due to the possibility of fragment induced damage (3) to
target enclosures in the terminal ballistics test facilities which might
result in catastrophic rupture when the blast loading is applied.

A number of studies have been performed and damage data obtained (4-7)
over the years. However, most data available are in the form of impulse
correlation curves and crater shapes in plates due to slender rods while
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relatively little has been reported in plate impact upon walls involving
contact, sliding and seperation.

Recently, computation using hydrodynamic codes (8-10) has been reported.
This paper documents numerical studies conducted using the explicit finite-
difference computer code, STEALTH (11) to simulate and predict the transient
nonlinear behavior resulting from the oblique impact of a plate on a rigid
surface. The goals of this numerical simulation were to aid in understanding
the process by which fragments impact and deform prior to seperation as well
as to demonstrate the applicability of the code in obtaining loading functions
in the contact region.

2. IMPACT CONDITION. The flyer plate is assumed to be a 60 cm * 35 cm*
2.54 cm rectangular steel plate impacting a rigid surface at an inclination of
20 degrees to the horizontal surface for the thick plate problem. The plate is
assumed to be accelerated to a constant velocity of 200 m/s prior to impact.

For the second case involving the thin plate impact problem the plate
which is only 1.6 mm in thickness, impacts a rigid surface at an angle of
obliquity of 60 degrees. The plate is assumed to be 31 cm in length and 22
cm in width. The initial contact occurs along the length of the plate at the
bottom edge. The plate is assumed to have an initial velocity of 900 m/s
prior to impact.

3. MATERIAL MODEL. Computation of stresses and strains in the STEALTH
code involves calculation of deviatoric components which depend upon shear
strength characteristics as well as hydrostatic components which are governed
by high pressure equation of state of the deformable material.

For the thick plate problem quasi-static properties of mild steel and
an elastic perfectly-plastic representation of the constitutive relationship
was employed for the deviatoric strength of the plate material. This model
is available in the standard material library in the computational code.
The yield strength was 3.0 KBar and the shear modulus was approximately
0.82 MBar. The shear modulus G was calculated from the Young's modulus E
using the relationship

G = E /(2 (0 + v))

where v is Poisson's ratio which was found to be 0.29.

For the hydrostatic compression, a modified form of the Mie-Gruneisen
equation of state for shock propagation in solids was available in the code
and could be described as

P(A,E) = A/ B/A C+hA + U (D + F + H )

where A, B, C and D, F, H are material constants determined experimentally
from Hugoniot pressure-volume states obtained in shock transitions and A is a
ratio of the specific volume change and the initial volume. U is the internal
energy density. Material parameters are available in the standard material
library in the STEALTH code for a variety of solids.

The bulk modulus, K, was calculated from the relationship
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K = E / [3 (0 - 2 v)]

The shear modulus, G, is related to the bulk modulus for both loading and
unloading phases as

G = 3 K (- 2 v) / [2 I + v)]

The sound speed, c, in the parent material could be obtained from the
deviatoric and hydrostatic compression behavior as

c A + 2BA + 3CpI+ U (F + 2Hi) + (P/Va)(D + FA + H ) + 1.333 G

where V is specific volume and P is the hydrostatic pressure.

Artificial viscosity parameters for both linear and quadratic damping
were employed to damp out spurious oscillations. However, zero energy modes
due to hourglassing at the boundary could not be damped out due to lack of
an appropriate tensorial hourglass viscosity parameter. This was not
considered to be a significant problem since the instability did not appear
to grow with time and did not seem to affect the contact zone near the
leading edge.

In the second case for the thin plate impact problem an AISI 304 grade
steel already available in the standard material library was considered.
For the deviatoric strength an elastic strain-hardening model representation
was used. The yield strength was 20.0 KBar and a hardening exponent of 0.035
was employed. The shear modulus was 0.77 MBar while the spallation threshhold
was -0.02. The model also included thermal softening capability.

For the hydrostatic compression part a Gruneisen volume coefficient of
1.4753 and an energy coefficient of 2.17 were employed in the Mie-Gruneisen
Equation of State for the 304 Grade steel as opposed to null values used in
the earlier case for the low carbon steel. Additionally, a hardening
coefficient of 40.0 and a corresponding hardening exponent of 0.35 was used
to model the strain hardening part of the deviatoric strength behaviour in
contrast with perfectly-plastic assumptions in the thick plate problem. The
initial bulk modulus was approximately 1.648 MBar.

4. COMPUTATIONAL ALGORITHM. The STEALTH code was used to simulate the
dynamic response due to impact in both cases. The code (11,12) solves the
partial differential equations of continuum mechanics using an explicit
finite-difference method formulated in a Lagrangian moving coordinate frame.

In the Lagrange system, fixed mass units translate, rotate, compress,
expand and distort. Momentum is associated with the motion of the mass and
internal energy is fixed to the mass unit. The STEALTH solutions are second-
order accurate in space and time. A complete description of the Lagrangian
equations solved by the STEALTH code is given in the user's manual (11).

Several rezoning options are available in the program for updating grid
point locations and variables in case of large mesh distortion or grid
entanglement. Pressure discontinuities are handled by smearing out the dis-
continuity with a von Neumann quadratic artificial viscosity. Zone to zone
oscillations are damped out by means of a linear artificial viscosity.
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Stability of the differential equations is automatically regulated by the
Courant stability criterion which can be described as

Atc aLmin
at = - = ..

n nV/Eymax/p

where .Atc is the minimum Courant stability step size,

ALmin is the distance of the two closest mesh points in the system,

Eymax is the Young's modulus for the stiffest material,

p is the density of the material, and

n is the number of time steps with which we wish to represent the
shock wave in passing through the distance aL

5. NUMERICAL MODELING. In both cases only one-half of each plate was
modeled by virtue of its lateral symmetry. For the first problem the generic
three-dimensional computational model has 11 meshes along the length and an
equal number along the width as well as 3 rows of mesh through the thickness
of the flyer plate segment. An isometric view of initial configuration of the
undeformed mesh is shown in Figure 1.

In the second case the entire plate was modeled using a somewhat refined
mesh with 14 rows of mesh along length and width as well as 4 rows through
the thickness of 0.16 cm. Because of this narrow thickness an initial time
step an order of magnitude lower than in the previous case was required in
order to avoid a violation of the stability criteria in the explicit integ-
ration scheme at the outset. A refined mesh in the contact region is expected
to result in a more accurate description of the impact forces. However, a
very small time step approximately 1% of the wave speed transit time to
traverse the smallest mesh was needed to stabilze the computation in the
impacted region.

The computational procedure used in modeling the angular impact process

can be summarized as follows :

a. The rigid surface acts as a fixed boundary for the finite-difference grid.

b. The forces acting on the rigid surface in the impacted region is calculated
by STEALTH from the stresses developed in the deformable plate and summed to
give the resultant cell averaged contact pressure. Frictionless contact is
assumed between the plate and the rigid surface.

c. Additionally STEALTH computes the new grid point positions due to sliding
upon impact. These updated locations are then used as input for the next
computational cycle. No rezoning is used in this calculation.

6. DYNAMIC RESPONSE COMPUTATION. The entire bottom and front surfaces
of the plate was designated as a wall interaction boundary to allow initial
contact and subsequent interaction with the rigid surface. Dynamic response
calculations were initially performed for 40 microseconds upon impact and was
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later extended upto 0.3 ms to monitor the post-impact response which should
show sliding and seperation in addition to transverse bending effects.

The dynamic response of the relatively thick plate is shown in Figures
2a-2e which describes the behavior from 10-300 microseconds after impact.
After initial contact along the leading edge, surface contact at the bottom
frontal element is visible in Figure 2a at an elapsed time of 10
microseconds signalling the onset of bending. Significant amount of bending
is visible in Figure 2b at 125 microseconds beyond impact at the first two
rows of elements at the forward end of the plate while the contact area has
increased beyond the first set of elements at the bottom surface.

At an increased response time of 200 microseconds after impact bending
appears to propagate and affect the first three rows of elements while the

contact area has progressed to the first tw' rows of elements at the forward
bottom location of the plate as shown in Figure 2c. Initial compression of
the leading edge resulting in development of compressive stresses near the

forward end are significantly altered by the onset of bending causing
compressive stresses in the top fibers and tensile stresses in the bottom
fibers.

With further increase in response times bending stress wave propagates
towards the rear of the plate. At 250 microseconds lifting of the forward
edge and seperation from the rigid surface are indicated as shown in Figure
2d. This is accompanied by a backward shift of the contact region as the
third row of elements at the bottom comes in contact with the rigid wall
boundary. Bending has now progressed beyond the first three rows of elements
at the forward end.

At an extended response time of 300 microseconds the post-impact
process continues causing further seperation and upward bending of the
leading edge and the forward end while the contact zone shifts backward

indicating partial contact of the second and fourth rows of elements at the
bottom surface and complete contact with the third rows of elements as shown
in Figure 2e. This process of deformation is realistic in the sense that
significant bending and seperation of the forward end is expected at a
shallow angle of attack.

For the thin plate problem dynamic response studies were conducted
upto 700 cycles corresponding to an elapsed time of 40 dicroseconds only.
This is because the automatically adjusted time steps were an order of

magnitude lower than those for the previous case due to very small thickness

of the plate and the use of a refined mesh scheme for this model.

Typical deformation patterns at 20 and 40 microseconds are shown in
in Figures 3a and 3b respectively. Due to lack of sufficient resolution the

grid appears as a dark band in the end view. The onset of bending is clearly
visible in Figure 3a. Comparison of the two figures indicate sliding along
the rigid surface in a direction along the horizontal component of the
initial velocity vector. This is expected since a zero friction coefficient
has been imposed along the interacting boundary. Additionally, evidence Cf
thin plate buckling and formation of a plastic hinge approximately two mesh

points away from the leading edge can be observed in Figure 3b. These
phenomena create severe compression of elements near the leading edge along
the thickness direction requiring further drop in the allowable computational
time step to avoid instability problem. At longer time steps spurious
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oscillations throughout the plate and grid instability is observed due to
hourglassing and consequent zero energy modes which may be controlled by a
tensor-triangle artificial viscosity.

A typical forcing function for the thick plate problem generated by the
STEALTH code is shown in Figure 4. The forcing function is computed as a cell
averaged pressure at the center of the bottom mesh near the leading edge
where initial contact occurs. Since the contact zone propagates along this
bottom mesh surface, the cell averaged pressure can be a reasonably
acceptable measure of the impact load in the contact zone. The accuracy of
the measure in representing the actual contact load can be improved upon by
refining the grid particularly near the impacted region of the plate.

As depicted in Figure 4 the impact pressure has a rather steep climb and
a sharp peak of 2.5 KBar at an early time of 4.0 microseconds after impact.
This is followed by an equally steep drop between 4.0 and 12.0 microseconds
unloading to zero. Subequently the plate reloads to approximately 6.0 KBar
at 46.0 microseconds and oscillates about the 3.0 KBar level for a rather
extended period of time beyond 46.0 microseconds. This wringing behavior of
the plate is probably due to reflection of stress waves from the top and
bottom surfaces near the forward end of the plate and it appears to gradually
decay in amplitude with time. Beyond 40 microseconds seperation of the
leading edge and the forward bottom mesh from the rigid surface causes a drop
in the impact load to the fully unloaded level.

The contact pressure-time history due to oblique impact of a flyer plate
for the thin plate problem shows a similar trend although a peak pressure of
7.5 KBar occurs early with a considerably smaller duration and the subsequent
oscillation is rather noisy due to propagation of stress waves through the
plate material. Hourglassing instability did not affect the contact zone ad-
versely and the contact pressure could be monitored until step instability or
tip seperation takes place. However, a major part of the total impulse is
contained in the first 40-50 microseconds and further computation does not
contribute significantly to the forcing function.

7. CONCLUSION. Results from numerical simulation of a thick as well as
a thin plate on a rigid surface are presented. Realistically these results are
conservative in the sense that peak pressures and deformation from impact
on a rigid surface should be higher than those due to impact on a deformable
surface. If the forcing function from a nonresponding surface is applied to
drive a responding model in a structural response code, a small error in
terms of somewhat higher displacements and stress levels should be expected.
In some cases this may be desirable since the margin of safety from a
structural integrity standpoint could be enhanced using this procedure.

In the absence of any experimental data, the deformation patterns
ensure increased confidence in the predicted results from the STEALTH code
which yield valuable insight into the post-impact response behavior of
plates. The complex phenomena of sliding and seperation are demonstrated
using the 3-D computational model. Inspite of simplistic assumptions of
frictionless sliding, nonresponding surface and quasi-static idealized
materials data, useful data for plates of varying thickness, initial velocity
and inclination could be generated in a cost-effective and efficient manner
using the STEALTH code.
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Figure 1: Initial configuration of the undeformed mesh for the

plate mnodel.
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ABSTRACT. We discuss mesh moving and local mesh refinement that are used with
MacCormack's scheme to solve the Euler equations for inviscid c-mpressible
flow in two space dimensions. A coarse base mesh of quadrilateral cells is
moved by an algebraic mesh movement function so as to follow and isolate
distinct phenomena. The local mesh refinement algorithm recursively divides
the time step and spatial cells of the moving base mesh in regions where the
error indicators are high. A mesh generation procedure is used to create the
initial base mesh. MacCormack's scheme is given total variation diminishing
(TVD) artificial viscosity in order to compute shocks and discontinuities.
The time step is adjusted automatically to maintain stable computation by
calculating the maximum eigenvalues of the Euler Equations on the computational
mesh. Results are presented for computational examples involving planar and
cylindrical blasts.

1. INTRODUCTION. The numerical solution of the Euler equations is often
difficult because the nature, location, and duration of fine-scale structures
is often not known in advance. Thus calculation on a uniform or prescribed
mesh can fail to adequately resolve the fine-scale phenomena or have excessive
computational costs. Adaptive mesh procedures that evolve with the solution
offer a robust, reliable, and efficient alternative. Such techniques for
time-dependent problems are either capable of creating finer meshes in regions
of excessive error [1,2,3,4,5J or moving meshes to follow isolated dynamic
phenomena [1,2,5,6,7,8,91. The use of these techniques is enhanced when they
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are capable of providing an accurate error estimate for the computed solution

[1,2,4,10,11,12].

Our procedure solves the two-dimensional Euler equations

+ 4 4 +

ut + fx(u) + gy(u) - 0,

[P [U p 1[Pu 1
+ Pu + +' * u2+p IIPUV

V f(u) puv I' |pv2+p , (1)
Le ILu(e+p)J ve+pJ

on a rectangular domain Q with well-posed initial and boundary conditions.
Here, u and v are the velocity components of the fluid in the x and y
directions, p is the fluid density, e is the total energy of the fluid per
unit volume, and p is the fluid pressure. For an ideal gas the equation of
state is

p = (Y - 1) [e - p(u 2 + v2 )/2], (2)

where y is the ratio of the specific heats.

We use MacCormack's [131 explicit finite difference scheme with Davis's
[141 artificial viscosity to calculate solutions of (1) at each node of a
moving mesh of quadrilateral cells. We use a density switch (gradient) to
to estimate error at the nodes of the mesh and a procedure to select the
proper time step size.

Our adaptive mesh algorithm was modified from a general-purpose scheme
and consists of three main parts (i) movement of a coarse base mesh (cf. Arney
and Flaherty [61), (ii) local refinement of the base mesh in regions where the
resolution is inadequate (cf. Arney and Flaherty [3]), and (iii) regeneration
of the base mesh when it becomes too distorted and unsuitable for further
computation (cf. Arney and Flaherty [15]). Proper mesh motion can reduce
errors; however, mesh motion alone cannot produce solutions that satisfy
prescribed error tolerances. Therefore, local mesh refinement is added to
recursively solve local problems in regions where error tolerances are not
satisfied. If the base mesh becomes too distorted a mesh regeneration
procedure is used to produce a better base mesh. The combination of our
solution method, error estimation, and adaptive mesh techniques creates a
powerful algorithm since the solution method provides robustness, the error
estimation and mesh refinement provide accuracy, and the mesh moving, mesh
regeneration, and time step selection provide efficiency.

We briefly explain the various parts of our algorithm in Sections 2 and
3. The results of their use on an example problem are given in Section 4.
The status of our algorithm and future considerations of adaptive methods for
the Euler equations are discussed in Section 5.
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2. SOLUTION SCHEME AND ERROR ESTIMATION ON A MOVING NONUNIFORM MESH.
MacCormack's scheme has had wide use in solving Euler equations. The use of
artificial viscosity to make this scheme total variation diminishing (TVD)
makes it more attractive to solve problems with discontinuities. Our
Richardson's extrapolation-based error estimation produces a pointwise
approximation of the local discretization error which can be used to construct
global or local measures of the error.

a. MacCormack's Scheme. In order to discretize (1) on a moving nonuniform
mesh, we introduce a transformation

= - (x,y,t), n - n(x,y,t), T = t, (3)

from the physical (x,y,t) domain to the computational (E,n,T) domain where a
uniform rectangular grid is used. Under this transformation (1) becomes

U+ U t+ un + t~ex + t~lrlx + Wy+ g = 0. (4)

The two-step MacCormack's scheme [131 then uses first-order forward temporal
and spatial difference approximations in the predictor step and first-order
backward differences in the corrector step to solve (4). Hindman [16] showed
that proper differencing of this chain-rule form (4) with its metrics produces
a consistent approximation. Arney and Flaherty [10] showed that conservation
is also maintained. We have also used the finite-difference method of Harten
(171 in this adaptive mesh algorithm. However, because of flux splitting the
mesh must be constrained to remain rectangular. This constraint limits the
benefits of mesh moving but does not affect the mesh refinement.

The explicit MacCormack's scheme has a stability restriction that limits
the time step allowed for a given spatial mesh. For efficient computation, we
choose the next time step adaptively to be close to the maximum allowed by the
Courant, Friedrichs, Lewy theorem.

b. Davis's Artificial Viscosity. MacCormack's scheme, being a second-
order accurate centered scheme, produces spurious oscillations near
discontinuities. In order to eliminate or reduce these oscillations,
artificial viscosity is added to the solution to diffuse the discontinuity.
We use an artificial viscosity model due to Davis [14] which is not problem
dependent and only requires knowledge of the maximum eigenvalues. This
artificial viscosity model is designed to convert MacCormack's scheme into a
TVD scheme in one dimension. There are other artificial viscosity models for
the Euler equations that produce TVD schemes (cf. Pulliam [18]).

Davis's artificial viscosity is based on a flux limiter that does not
depend on explicitly determining the upwind direction and, with a modification
by Roe [191, does not affect the region of stability of MacCormack's scheme.
Because MacCormack's scheme does not determine the upwind direction, the
combined use of MacCormack's scheme and Davis's artificial viscosity is
computationally simple. The artificial viscosity terms are calculated from
the solution data at the beginning of the time step. The maximum absolute
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eigenvalues for the Euler equations on the computational mesh are computed
from the maximum absolute values of

t + Exu + EyV - -(5)

and

nt + j +nY ±V(?Y) /n T- +n y
x y p y

in the E and n directions, respectively (18]. For two-dimensional problems
separate dissipative terms are computed in the t and n directions. However,
this scheme is not TVD in two dimensions.

c. Error Estimation. A posteriori error estimation is an integral part
of our adptNve system. The general-purpose scheme we modified estimated the
local temporal and spatial portions of the discretization error on a moving
mesh using an algorithm based on Richardson's extrapolation (cf. Arney and
Flaherty [10]). Flaherty and Moore [20] and Berger and Oliger [4] used a
similar form of Richardson's extrapolation to estimate error on uniform
meshes.

The Richardson's extrapolation error estimation procedure is expensive,
costing up to four times more to compute than the solution, and is based on
the assumption of a smooth solution, which is not the case for blast problems

k
(cf. Section 4). Therefore, we use a less expensive error indicator (ei ,j)

called the density switch which is computed as

F k k k k 1
k 0.5 i,j I -* +..(6)e. 0.5 k k k k (6

Pl ij + -1,j Pi lj + ~ -

using one-sided differences. We also used a form with centered differences.
However, this error indicator may not coverge to zero as the mesh is refined
in blast problems and therefore, a maximum level of refinement must be used in
connection with the error tolerance to control mesh refinement.

3. ADAPTIVE MESH PROCEDURES. An algorithm of our adaptive procedure is
presented in Figure 1. This procedure integrates the Euler equations from
time (tint) to (tfinal) while keeping the local error estimates below a
tolerance of (tol). The base level time step At is initially specified, but
is changed during the solution to maintain stability.
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procedure adaptivePDE solver(tinit, At, tfinal, tol: real; M, N: integer);

begin
Generate an initial base mesh;
t :- tinit;

while t < tfinal do
begin
mesh move(M, N, At, tol);
locaT refine(O, t, At, tol);
t :- T + At;
Select an appropriate At;
if base mesh is too distorted then regenerate a base mesh

end
end 7adaptivePDE solver };

Figure 1. Description of our adaptive algorithm to solve (1) to within a
tolerance of (tol).

The rectangular domain Q is initially discretized into a coarse moving
spatial grid of M x N quadrilateral cells. The base mesh is moved for each
base time step At and (1) is solved on this mesh. This is followed by
recursive local mesh refinement. The value of At is calculated from the
eigenvalues (5) and the Courant-Friedrichs-Lewy condition to maintain
stability for the next time step. Finally, a new base mesh is generated if
necessary. The solution, error estimation, mesh moving, local refinement, and
mesh regeneration procedures are explicit and uncoupled from one another
reducing their computational cost and providing flexibility. Therefore, the
solution and error estimation procedures could be replaced with ones suitable
for the Navier-Stokes equations.

a. Mesh Moving. Our mesh moving procedure is based on an intuitive
approach. The essential idea is that the mesh moves to follow isolated
nonuniformities, such as wave fronts and shocks, which manifest themselves
with high error estimates. Proper mesh movement generally reduces dispersive
errors and can allow the use of larger time steps if the eigenvalues are
reduced in the Courant-Friedrichs-Lewy condition while maintaining accuracy
and stability.

The algorithm for our mesh moving procedure mesh move is presented in
Figure 2. At each base time, we scan the base mesh and locate significant-
error nodes as those having error indicator greater than twice the mean nodal
error estimate and also greater than ten percent of tol. This strategy avoids
having the mesh respond to fluctuations with too small an error estimate, yet
is sensitive enough to avoid missing significant dynamic phenomena. If there
are no significant-error nodes, computation proceeds on a stationary mesh.
The nearest neighbor clustering algorithm of Berger and Oliger [4] is used to
gather the significant error nodes into rectangular error clusters.
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procedure mesh move (M, N: integer; At, tol: real);
begin

for j :1 to M x N do
compile-list of significant error nodes using tol;

if no significant error nodes then no mesh movement
else cluster significant error nodes into k error clusters.

for m:- 1 to k do
calculate propagation of error cluster from At;

for j :- 1 to M x N do
move nodes based on function of the velocity of
the nearest error clusters;

smooth the node movement to reduce deformation;
end {.mesh move };

Figure 2. Pseudo-PASCAL description of mesh moving algorithm to move mesh for
one base time step (At).

We determine individual node movement from the velocity of propagation,
the orientation, and the size of the error clusters. We assume that nodes in
the same cluster have related solution characteristics, so that we determine
individual node movement from the propagation of the center of the nearest
error cluster.

b. Local Mesh Refinement. The local refinement procedure is invoked
after the base mesh has moved. Our refinement strategy consists of first
calculating the solution and error estimates on the base mesh. Finer grids are
created in untolerable-error regions by locally bisecting the time steps and
the sides of the quadrilateral cells of the base grid. The solution and error
estimates are computed on the finer grids. The refinement scheme is
recursive; thus, fine grids may be refined to create finer grids.

This grid relationship leads to a tree data structure. Information
regarding the base grid is stored in the root node or level 0 of the tree.
Subgrids of the base grid are stored in level 1 of the tree. The structure
continues, with a grid at level . having subgrids at level X+l. Grids at
level X are given arbitrary ordering and we denote them by G[g,j].

Our recursive local mesh refinement algorithm local-refine is presented
in Figure 3. The procedure integrates (1) from time tinit to tinit + dt,
attempting to satisfy the error tolerance tol.

Our technique for introducing finer subgrids consists of four steps: (i)
scanning level t grids to locate untolerable-error nodes, (ii) clustering
those nodes into rectangular regions [4], (iii) buffering the regions in order
to reduce problems associated with prescribing initial and boundary conditions
at coarse/fine grid interfaces, and (iv) cellularly refining the level 2
meshes and time steps inside the buffered clusters. Base mesh motion is
maintained on the refined subgrids to insure proper nesting in their parent
grid. If there are no untolerable-error nodes, the solution is acceptable and
no further refinement is necessary.
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procedure local refine(t: integer; tinit, At, tol: real);
be in
Iorj :- 1 to N[£] do

begin
Integrate the partial differential system from tinit to tinit + At
on grid G[,j];

Calculate error indicators at tinit + At at all nodes of grid
G[t,jl;

if any error indicators > tol then introduce level X + I subgrids
of G[LjI

end { for }

if any error indicators > tol then
begin

local refine(I + 1, tinit, At/2, tol/2);
local-refine(t + 1, tinit + At/2, At/2, tol/2)

end
end'Tlocal refine };

Figure 3. Pseudo-PASCAL description of a recursive local refinement procedure
to find a solution of the partial differential system (1) on all grids at
level £ of the tree.

c. Generation and Regeneration of the Base Mesh. The efficiency of our
adaptive strategies depends on the ability to generate a suitable initial base
mesh and to regenerate a new base mesh should it become distorted. The two
essential elements of mesh generation or regeneration are determination of the
number of nodes and their optimal location. A base mesh with too few nodes
will result in excessive refinement or may completely miss a fine structure
while one having too many nodes will reduce efficiency. Our approach is to
use the error estimation of a trial solution for one on a K x L mesh time step
to determine the number of nodes (M x N) and their placement in the initial
mesh that approximately equidistributes the error estimates.

The node placement algorithm for the base mesh is similar to the mesh
moving algorithm except that nodes are moved toward the center of the nearest
error cluster. Nodes nearly equidistant from two or more error clusters are
moved by a weighted average toward those nearest error clusters to maintain a
smooth mesh. Nodes on D9 remain on 3Q, and nodes near the boundary are moved
a reduced distance in order to prevent the formation of large aspect ratios.
This construction generates a base mesh that depends on the solution of (I) as
well as the initial conditions. The mesh generation algorithm is presented in
Figure 4.

The base mesh can become distorted by mesh motion for some problems. We
regenerate a new base mesh whenever this happens. The mesh regeneration or
static rezone procedure consists of three steps: (i) determining the need for
a new base mesh, (ii) creating the new mesh, and (iii) interpolating the
solution from the old base mesh to the new base mesh.
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procedure mesh generation (K,L,M,N: integer; At, tol: real);
begin

solve (1) using At on K x L uniform test mesh;
determine new mesh spacing M and N from error estimation;

for j : I to K x L do
compiTe list o-error nodes exceeding tol;

if no error nodes then use uniform mesh
else cluster error nodes into P clusters;

for j :- 1 to M x N do
begin -
move nodes toward center of nearest error cluster,
smooth node spacing near boundaries of domain and between clusters;

end {for}
end'--meshgeneration 1;

Figure 4. Pseudo-PASCAL description of mesh generation algorithm.

The base mesh is regenerated whenever any interior angle of a cell is
less than 40 degrees or more than 140 degrees or the aspect ratio for any cell
is greater than 15. A new base mesh is generated using the same procedure
used to generate the initial one. The error clusters used for regeneration
are those already determined in the mesh moving step. Once the new base mesh
has been constructed, the solution on the old one is interpolated to the new
one using bilinear interpolation.

4. COMPUTATIONAL EXAMPLES.

EXAMPLE 1. Consider (1) where a planar Mach 10 shock in air moves down a
channel containing a wedge with a half-angle of thirty degrees. This problem
was used as a test problem by Woodward and Collela [211. Like them, we orient
a rectangular computational domain, -0.3 < x < 3.2, 0 < y < 1, so that the top
edge of the wedge is is on the bottom of the domain in-the-interval y - 0.
Thus, in the computational domain it appears like a Mach 10 shock is impinging
on a flat plate at an angle of sixty degrees. The initial conditions are

P - 8.0, p = 116.5, e - 563.5, u - 4.125/r, v = -4.125,

if y < /V(x-1/6), (7)
and

p - 1.4, p - 1.0, e - 2.5, u - 0, v - 0,

if y > v3(x-I/6).

Along the left boundary and bottom boundary left of the wedge, we
prescribe Dirichlet conditions of (7). Along the top boundary we prescribe
the exact motion of a Mach 10 shock. Along the right boundary, all normal
derivatives are set to 0. Along the wedge reflecting boundary conditions are
used.

The solution of this problem is a self-similar structure called a
double-Mach reflection [22]. The geometries of the structures are very fine.
The interesting structures are primarily confined to a small region that moves
along the wedge behind the incident shock.
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We calculate a solution for 0 < t < 0.19. Refinement was restricted to
a maximum of two levels and a tolerance level of 0.6 in the maximum norm was
prescribed. This is necessary because our pointwise error estimate based on
the assumption of smooth solutions is not appropriate for problems having
discontinuities. Without restricting the maximum level of refinement, we
could refine excessively in the vicinity of a discontinuity and exhaust the
available storage. Our base mesh generation procedure provided a 29 x II
discretization of the domain.

The sequence of meshes in Figure 5 shows that the coarse mesh is able to
follow the dynamic structures and that refinement is performed in the vicinity
of discontinuities. The density obtained from the adaptive mesh calculation,
which used a range of nodes from 960 on the first time step to 3450 on the
last time step, is shown in Figure 6 (top). The adaptive solution compares
favorably with the solution computed on a 120 x 40 uniform mesh shown in
Figure 6 (bottom).

Severe distortion of the mesh in the reflected shock region caused a
static mesh regeneration to occur at t - 0.162. The overhead of mesh moving
for this problem is approximately five percent in terms of total computational
time. The CPU time for the adaptive solution using 94 coarse mesh time steps
was 51 percent of the time for the stationary uniform mesh solution using
200 coarse mesh time steps.

EXAMPLE 2. Consider (1) where an infinite cylindrical piston is expanding
radialy creating a radially expanding shock. We orient the computational
domain, 0 < x < 0.05, 0 < y < 0.05, to solve in one quadrant of the expansion.
The initiaT conditions were -computed by solving the following ordinary differ-
ential equations from [23,24,25]:

dv -jv (1 - L(u r* - v)2)-l
dr* r* a2  p (8)

da v- - U pr* - v 1 - v)2) "l

dr* r* 2a a2

where Up is the piston velocity, v is the fluid velocity, a is the acoustic
speed, r* is a nondimensional variable defined as r/Upt, and j is a dimensional
parameter which is one for a cylindrical piston. These same equations apply
to an expanding plane (j 0) and an expanding sphere (j - 2). r is the
radial distance from the center of the cylinder. The expanding sphere problem
is an axi-symmetric two-dimensional problem which can be solved with our code
by adding the appropriate forcing terms to (1) found in Carofano [261.

The initial conditions and shock Mach number (M) can be determined by a
bisection method for a given piston velocity by matching the fluid velocity.
Tables of initial values, Mach number, and shock locations have been assembled
in Brantley [251 allowing us to use a Runge-Kutta scheme to solve (8) directly.
The parameter values chosen for this problem are M - 1.7752 and Up = 1.6185.
The solution computed with (8) for three different times is shown in Figure 7.
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Figure 5. Grids created for the adaptive mesh solution at t =.038, 0.076,
0.1.14, 0.152, and 0.19 (top to bottom). The rectangular boxes represent the
error clusters used to move the mesh for the current time step.
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Figure 6. Contours of the density at t = 0.9 for an adaptive solution on a
29 x 11 base mesh (top) and for a uniform stationary 120 x 40 base mesh
(bottom).

8.17
1

a S.17 0.33 O.S

X C 1 t9" 3

Figure 7. Contours of the density for cylindrical piston using Equation (8).
The three separate contour profiles are for t 0 0, 0.007, and 0.0128.
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Figure 8. Contours of the density at t = 0.0096 using a uniform, stationary
26 x 26 mesh.

Our adaptive method was used to solve this problem. For comparison, the
density computed for t - 0.0096 on a uniform stationary mesh is shown in
Figure 8. The meshes at a sequence of four time steps and the density
solution for t - 0.0096 using mesh refinement only are shown in Figures 9 and
10, respectively. Four adaptive meshes at different times and the density
solution for t - 0.0096 using both mesh moving and refinement are shown in
Figures 11 and 12. The algorithm performed a static mesh regeneration at
t - 0.0085. Dirichlet boundary conditions were used on the left boundary
(x = 0), and a reflective symmetry boundary was implemented on the bottom
boundary (y - 0). The results in Figure 12 show the refinement and boundary
conditions on the bottom boundary to have performed better than those on the
left boundary. Due to memory restrictions on a PRIME 850 minicomputer
refinement was restricted to one level and a tolerance of 0.05 was prescribed.
A base mesh of 26 x 26 was used for all the computations.
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Figure 9. Grids created for the mesh refinement method at t -0 (upper left),

t - 0.0032 (upper right), t -0.0064 (lower left), and t -0.0096 (lower right).

1127



6.5

0.88

T
a

X

1.17

6 .17 83 8.s

X C 3g Is 3

Figure 10. Contours of the density at t = 0.0096 using one-level of mesh
refinement on a 26 x 26 base mesh.

5. DISCUSSION. We have described an adaptive procedure for solving the Euler
equations in two-space dimensions that combines both mesh moving and local
mesh refinement techniques. The algorithm also contains procedures for
initial mesh generation and mesh regeneration. We used MacCormack's scheme
with Davis's artificial viscosity and a density switch error indicator. This
combination of techniques provided good results on example problems while
costing less than a comparable uniform mesh calculation or calculation of a
comparable solution using mesh refinement only (cf., Arney and Flaherty [3J).

There is still work to be done ih order to make use of the power of
adaptive methods. Better error estimation is needed so that accurate error
can be obtained near discontinuities to avoid excessive mesh refinement. The
algorithm must be interfaced with a grid generation package for general domain
geometry. The greater efficiency of adaptive techniques will be most
beneficial in three dimensions. Therefore, our techniques must be able to take
advantage of the latest advances in vector and parallel computing. The tree
is a highly parallel structure and we hope to develop a procedure to exploit
our mesh refinement data structure on a parallel computing environment. This
process will probably include both static and dynamic allocation of multiple
processors.
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Figure 11. Grids created for the adaptive mesh solution at t 0 (upper left),

t - 0.0032 (upper right), t - 0.00064 (lower left), and t = 0.0096(lower right).
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HOW TO DESCRIBE OSCILLATIONS OF SOLUTIONS OF
NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Luc TARTAR
Carnegie Mellon University

I want to describe here some developments in progress concerning the
mathematical tools used to describe the relations between microscopic
and macroscopic levels. Before describing the new approach, I will first
sketch what was my preceding point of view on that question, in order to
list the defects of the old classical approach so that one can see which
defects will be corrected by the new approach and which one do remain.

A Classical ApDroach
There are different mathematical models used for the purpose of

describing the relations between microscopic and macroscopic levels and
the more common one is to use a probabilistic framework : o denoting the
generic point of a probability space 1" and E denoting the expectation (i.e.
the integration on rI) one can say that if a microscopic variable is denoted
by U(x,o), then E(U(x,.)) will be the associated macroscopic variable.

Another fashionable model is the periodic modulation setting where
one deals with functions defined on flxRN and periodic in y with unit cell Y.
In that model if a microscopic variable is denoted by U(x,y) then the
corresponding macroscopic variable is JyU(x,y)dy/meas(Y).

The model that I have been advocating for more than 15 years (which
initiated in joint work with F. MURAT) is based on the use of weak
convergence : one considers a sequence U. of functions defined on an open

set Q of RN and taking values in RP; one says that this sequence shows
oscillations if it converges weakly but not strongly. Generally if a
sequence V. converges weakly to V0 as e - 0, then one calls V. a

microscopic variable and Vo the corresponding macroscopic variable. This

framework extends the periodic setting; indeed if one sets U,(x) = U(x,x/e),

then as e -+ 0, U . converges weakly to U0 given by U0 (x) a

fyU(x,y)dy/meas(Y) (assuming that U is periodic in y and satisfies some
regularity hypotheses in (x,y)).

I do not want to go into the technical details of functional analysis
involved in the definition of weak and weak* topologies, but it is worth
noticing that this point of view is the one used by physicists when they
replace a discrete distribution of point masses by a smooth density. The
fact that for every continuous function f on [O,L] one has
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L

L=1 JfLx)dx as m -+
0

is equivalent to a weak* convergence of measures, namely

2i.lSiL --- X01weakly * as m---
i=1 m

where Ba denotes the Dirac mass at the point a (it acts on f by evaluating f

at a) and ZO,L] is the characteristic function of the interval (O,L).

Roughly speaking a sequence of functions U. converges weakly to U0 if

Jfm(Ue(x)-Uo(x))dx - 0 for any measurable set co while it converges strongly

if J,IU,(x) - Uo(x)ldx --* 0.

With these definitions one sees easily that sin(x/e) -4 0 weakly while
sin 2 (x/e) -+ 1/2 weakly. A similar example, with a simple physical
interpretation is the following : if U,(x) r R3 denotes the microscopic

velocity which means the exact velocity for a particle at a point x, then
the macroscopic velocity Uo(x) is the average velocity near the point x; the
microscopic kinetic energy is k,(x) = U,(x)12 /2 while the macroscopic

total energy is ko(x) . IUo(x)12/2 + e(x) where e(x) : 0 denotes the internal
energy which is then a macroscopic quantity without analog at the
microscopic level.

These examples show that constitutive relations, which are of the
form Ue(x) e closed set K of RP, will not always be satisfied by the

macroscopic quantities; indeed one can only say in general that Uo(x) will
belong to the closed convex hull of K.

A natural question is then to describe the weak limits of F(L;F) for any

continuous function F and the answer is given by Young measures : if K is
closed and bounded (and after extracting a subsequence) there are
probability measures vx living on K and depending in a measurable way of x

in Q such that for every continuous function F, F(U.) converges weakly to a

limit IF given by !F(X) - JKF(k)dvx(k). Roughly speaking, making a

measurement of the values of F(Ue) near x will give a random answer

following the probability measure vx.
Following this definition one sees that if U(x,y) is periodic in y and

we consider U,(x) a U(x,x/e) then, under some regularity hypotheses, the

Young measures are defined by JKF(k)dvx(k) a JyF(x,y)dy/meas(Y).
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Another natural question consists in taking into account the fact that
the functions that we study (which are related to problems in continuum
mechanics or physics) satisfy some differential equations, namely some
balance equations

N U

i -Aijk "± = f -- f "strongly" for i = 1,..,q
j=1 k

where Aijk are real constants (usually U. will converge weakly in (L2 (C))P,

and "strongly" will mean (H1'i 0 c(Q))P strong, which is implied by (L2(0))p

weak).

As the balance equations are taken in the sense of distributions the
functions U. may have jumps accross smooth hypersurfaces; if there is a

jump X in Ue at a point where the normal is 4 then (X,4) must belong to the

following characteristic set V
N

V = ((X,4) e RPxSN-1 such that XA ijkXk = 0 for i = 1,..,q)
j=1 k-1

The set of possible jumps compatible with the balance equations
written in the sense of distributions is then the following characteristic
set A

A= { . R such that there exists 4 e SN -I with ijkk = 0 for 1,..,q)
j=1 k-1

Using this characteristic set (which has taken into account some
information on the balance equations) one can obtain some new
information on limits of quadratic quantities : assume that U. converges

weakly to U0 in (L2(f))P and UEiU~j converges weakly to UoiUoj + Rij as

measures, then one has the following
Theorem: If U. satisfy the balance equations and if Q(X) a_.ijqij.i X j

satisfies Q(X) __ 0 for all X e A, then ,.jqiRij : 0.
It means that R, which is always a (measured valued) nonnegative

symmetric matrix is constrained by the balance equations through the
characteristic set A : it must belong to the convex hull of {X@X I X e Al.

This theorem, obtained in 1977, extends some results of F. MURAT
called compensated compactness, a generalization of a useful remark that
we had made in 1974 in our joint work on homogenization, the div-curl
lemma.

Although the characteristic set A does not contain as much
information as the characteristic set V, this theorem led me to a useful
("classical") approach for studying oscillations in the nonlinear partial
differential equations of continuum mechanics

1135



Oscillations are described by the Young measures vx constrained by

1. Constitutive relations : the support of vx lies on K

2. Balance equations : JQ(k)dvx(k) t Q(Jkdvx(k)) for every quadratic 0 such

that Q() 2 0 on A.
3. Entropy conditions : one adds any other equations (or inequalities,
similar to entropy conditions) implied by constitutive relations and
balance equations and apply the two preceding points to the new setting.

One important idea was to show that oscillations were impossible in
some situations; indeed if one can show that the only possible Young
measures satisfying these constraints were Dirac measures then one
would deduce that the subsequence was converging strongly.

I was succesful with this approach for studying a scalar hyperbolic
equation and the extension to some hyperbolic systems of conservation
laws was made by R. DIPERNA. It covered some cases where other methods
were not powerful enough and (although the amount of technical work
associated with this method is very important) this approach was
followed in subsequent work of D. SERRE, M. RASCLE, C. MORAWETZ, C. DAFERMOS,
J. NOHEL among others.

If one could not preclude oscillations, the next question was to study
their propagation and interaction, and this required characterizing the
structure of the Young measures. I developed such an application to
semilinear hyperbolic systems in one space dimension but found that in
general one needed to use correlations (which cannot be seen by the Young
measures) and did some work in that direction with G. PAPANICOLAOU.

There has been some extensions of these ideas for computing the
propagation and interaction of oscillations in linear or semilinear
hyperbolic systems by B. ENGQUIST and it has also been extended to some
quasilinear hyperbolic systems which are linearly degenerate by D. SERRE
and M. BONNEFILLE.

Defects of the Classical Agoroach
When working on question related to nonlinear partial differential

equations of continuum mechanics or physics, it is useful to describe the
achievements of a given method but also important to list its limitations.
Some of the limitations will be overcome by the new approach, but not all
of them.

The real interrelation of the characteristic set V and the constitutive
manifold K have not been understood; more differential geometry seems
necessary in order to clarify this question, which unfortunately still
remains open at the moment.
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Oscillations are not the only difficulties encountered in nonlinear
partial differential equations and one should also consider the
complementary question of concentration, as studied in the work of P.L.
LIONS and of R. DIPERNA & A. MAJDA. The new approach will treat oscillations
and concentration in a more unified way.

If weak convergence appears to be natural for quantities which can be
added (they are usually coefficients of differential forms) there are other
quantities for which something different has to be used and for these the
adjective averaged should be replaced by effective. This point of view has
been developed in the theory of homogenization whose purpose is to
understand effective properties of mixtures (periodicity assumptions
should be avoided in this context) and it was in connection with
homogenization that most of my preceding ideas had been developed. The
simple question of computing effective coefficients for layered media
(which is well understood) shows the importance of adding to the
preceding description at least one geometric parameter for showing the
orientation of the layers. Apart from the technical question of finding
optimal bounds for effective coefficients (and compensated compactness
does play an important role for that purpose) one goal to keep in mind is
that one needs to understand the evolution of mixtures. The preceding
mathematical tools could not see both the x and the variables and take
advantage of the complete characteristic set V; the new one will be able
to correct this defect and enable us to address some of the open questions
(but obviously not all of them).

Propagation of oscillations and concentration (which is a different
matter than the propagation of singularities studied by specialists of
linear partial differential equations) cannot be seen by the Young measures
vx and one idea (which I tried for a long time, without success) is to split

the Young measures in directions 4, so that one could write some kind of
transport equation. The new tool will construct a similar object, but not
from the Young measures and so will contain a different information, but a
compensation for this loss of information will be the useful properties of
the new measures, which I have called H-measures in order to remind of
their origin in homogenization theory.

A New Mathematical Tool : H-Measure2s
For a subsequence UE converging weakly to 0 in (L2 (f2))P we will

define a family of measures ix,4 indexed by x e D and , e SN'1. They will
give a better description of the oscillations and their propagation through
some kind of microlocal H-calculus enabling us to use in a better way the
balance equations. They do not contain all the information of the Young
measures based on the constitutive relations, but they will improve the
compensated compactness theorem.
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For #1 and #2 in D(D)) and V in D(SN I ) one defines the H-measure p

with entries gij by computing the following limits as e -+ 0 (after

extracting some subsequence)

- Umit )F"*(k)dk as e -+ 0
e

a

where F denotes Fourier transform (Ff(k) - Jf(x)e21,X'dx) and z* denotes
the complex conjugate of z.

Note that there is indeed something to prove here so that the above
definition makes sense, namely that if *, and 02 have disjoint support then

the above limit is 0; this is the reason why the H-measures are only
defined for sequences converging weakly to 0.

Although there is some analogy with the definition of the wave front
set of a distribution as it was given by HORMANDER, the framework here is
entirely different : we deal with sequences and are interested in the
difference between weak convergence and strong convergence (which is
the case where the H-measure is 0).

Because the function N' are homogeneous of degree 0, the H-measures
cannot distinguish between different frequencies for propagation in some
direction, which they will be able to describe.

The H-measures will give us some results in small amplitude
homogenization which were traditionnally obtained using 2-point
correlations (which can be easily defined both in a periodic or in a random
setting, but not in a general case without the use of a characteristic
length); the H-measures do not contain the information on 2-point
correlations, but can be deduced from them by a singular integral, as was
pointed out to me at a later meeting by M. AVELLANEDA who had worked in
the random case. At the same time G. MILTON pointed out that one could not
expect to find results about scattering unless constructing similar
measures using 3-point correlations, but it is not clear if such measures
can be constructed that would also retain the other properties that I
wanted, namely the use of balance equations to give some information on
propagation.

Example 1: Periodic modulation.
If UF(x) - V(x,x/e) with V(x,y) having period 1 in each y coordinate, then

(under some regularity hypothesis) V admits a Fourier decomposition
V(xy) - Vm vm(x)e2 i-m'Y and the H-measure is equal to V'mlvm(x)128m/m1

where the sum is taken over m e ZN\0 (v0 = 0 by hypothesis).

Example 2: Concentration effects.
If U,(x) - e'N/ 2 f(x/e) for an L2 function f, then the H-measure is equal to

80®v where v has a surface density v(4) - fo0 IFf(t )12tNldt"
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Localization Property : Balance equations restrict the H-measures gx,4 to

be a combination of hermitian nonnegative matrices of the form ;.®&X* with
X e CP such that (X,4) e characteristic set V.

Propagation Property : One assumes that U. -4 0 in (L2(!.))P weak and

SAb k = vEi -4 0 in L() weak

j.k k

then, in some cases, one can obtain some differential equations satisfied
by the H-measure gx,4 describing the oscillations of U.. It involves a

creation term using another H-measure Vx,4 describing the joint

oscillations of Ue and ve.
I have not elucidated yet what are the algebraic computations to

perform in the general case, but in classical examples it does give what
the intuition suggests (based on physics or linear theory). If dealing with
the wave equation one does obtain the expected transport equation for the
H-measures gx, ; however one does not find here any role for caustics

because the H-measures describing only the amplitude and the direction of
propagation of both oscillations and concentration effects cannot feel the
changes of phase that happen when crossing caustics.

In the case of a scalar equation one can see more easily the
difference between the static localization property and the dynamic
propagation property. It is worth pointing out that our test function j or

can be chosen to be only continuous and that enable us to derive some kind
of pseudo-differential calculus with zero order operators having only a
continuous symbol. Let us consider a simple linear equation

a,(~xau. + b(x)u ' =0

where the coefficients ai are of class C1 while b is of class CO.

On one hand the localization property says that the H-measure g' for ue

(assuming that ue converges weakly to 0) will be supported by the zero set
of the function P defined by P(x,t) - jaj(x),j.
On the other hand the propagation property states that for every test
function 0(x,) of class C1 on f xSN' I with compact support in x, one has

< Ak'Z . 0DP d- a P

R--> + RgbO>= 0
k=k X: ak

(0 is extended as an homogeneous function of degree 0 in 4); it implies
that oscillations and concentration effects do propagate along
bicharacteristic rays.
When ue is solution of different first order equations then the H-measure
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is supported by the intersection of the zero sets of the symbols of the
first order operators and satisfies different equations which may happen
to be incompatible constraints forcing g to be 0 and thus precluding
oscillations.

Applications to Homogenization
Effective properties of mixtures cannot be obtained from the

knowledge of averages or weak limits (except in special situations like
layered materials) and it cannot be deduced from H-measures either. In
some cases however the introduction of H-measures can help reformulate
the problem. For example H-measures are useful in deriving good bounds
for effective coefficients, but my results in this direction are too
fragmentary at the moment to explain what is the best way to use them.

H-measures are the right mathematical tool for studying small
amplitude homogenization; the formula obtained are analog to some that
were known to specialists in a periodic or in a random setting. If one
considers the diffusion (of electricity or heat) in a mixture of materials
of near by conductivities

-div(A'(x;y)gradUe(x;y)) = pl in Q

where
AE(x;) = A°(x) + yB'(x) + y2CE(x) + o(y) with Br -+ B° and Ce -+ C' weakly

then the effective conductivity has the form

Aeff(x;) = A (x) + B°(x) + 72{C (x)- M(x) + ( 2 )

where the correction term M(x) (which is nonnegative) can be computed
from the H-measure associated to the sequence (BF - B0} by a specific

integration in 4 on SN-i; for example asssuming that B E is isotropic so that

we have only one scalar H-measure gx,4, the formula is

M(x) =dg
s J(Ao(XA). )  , "

This procedure extends to other models like linear elasticity and can
give relations between different effective properties of a given mixture.

H-measures can also give the exact answer for the effective
behaviour in some cases where the oscillating coefficients do not appear
in the highest order terms. The following example, which has some
similarities with stationary Navier-Stokes equations, is instructive : if uE
is n vc!:city field solution of

-AuC + uex[curlv'] + gradp' = f and divu = 0 in Q

where v. - vo weakly; then the effective equation is
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-AU0 + ux[curlv ] + Mu0 + gradp0 f and divu =O infi

and the correction term MO can be computed from the H-measure
associated to the sequence {ve - vo) by a specific integration on SN-i; the

formula is

M(X) - f (Y d k ---- k~ldlkI

SN.1 k k.1

Such formulas should be useful in order to understand turbulence
effects, at least at their onset.

There are many other areas where I plan to use this simple new
approach based on H-measures, and stability questions in continuum
mechanics is one of them, but I have a bolder conjecture, i.e. that
H-measures may be one of the missing mathematical tools necessary to
explain why some rules invented by physicists work so well, in spite of
their irrational derivations (it was for understanding situations obviously
related to the difficult homogenization problem of propagation of waves in
mixtures that physicists have invented quantum mechanics). The
computation of the correction terms that have appeared in some of the
examples which I have described above present striking analogies with
some which are done by following some dogmatic rules of quantum
mechanics; those that I have made were entirely deductive and part of a
general program of study of nonlinear partial differential equations.

More detailed proofs of the constructions sketched here will appear
elsewhere.
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