AD~A207 241

\J
Y > 1TU1
[ST
LR HiIN

Research Product 89-06

Human Operator Simulator (HOS) IV
Programmer’s Guide

~TI
DERLE

o CLECTE ER
APR2 5 1989 B

ﬂ%

[

January 1989

Manned Systems Group
Systems Research Laboratory

U.S. Army Research Institute for the Behavioral and Social Sciences

Approved for public release; distribution is unhmitod

T R
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE
Form Approved
REPORT DOCUMENTATION PAGE OMB N 0904 0188
13. REPORT SECURITY CLASSIE.CATION 1b. RESTRICTIVE MARKINGS
Unclassified -=
2a. SECURITY CLASSIFICATION AUTHO®ITY | 3. CSTRIBUTION/AVAILABILITY OF REPORT
25, DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release;
. distributicn unlimited.
4. PERFORMING ORGANIZATION REPORT MUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
- ARI Research Product 89-06
6a. NAME OF PERFQRMING QORG AMZATION 60. OFFICt fSYMﬁOL 7a. NAME OF MONITORING QRGANIZATION
P . (If applicable) U.S. Army Research Institute for the
halytics, lnc. - Behavioral and Social Sciences
6¢. ADDRESS (City. State, ang ZIP Coge) 7b. ADDRESS (City, State, and 2iP Code)
2500 Maryland Way 5001 Eisenhower Avenue
Willow Grove, PA 19090 Alexandria, VA 22333-5600
8a, NAME OF FUNDING / SPONSORING Bb OFFCE SYMBOL § 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
DRGANIZATION (if applicable) o0l 7
Same as 7a. PERI-SM F33615-86~C~b~
8¢ ADDRESS (Crty, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | nNO. NO. (121) JACCESSION NO.
Same as 7b. 62717 A790 1204 H.2

11, TITLE (Include Security Classification)

Human Operator Simulator (HOS) IV Progrimmer's Guide

12.PERSONAL AUTHOR(S) Harris, Regina (Analytics, Inc.); Kaplan, Jonathan (ARI); Bare,

Christopher,; Lavecchia, Helene, Ross, Lorna, Scolaro, Dan, and Wright, Douglas (Continued)

13a. TYPE CF REPORT “3b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT

Final FROM _1987 101988 1989, January 186

18. SUPPLEMENTARY NOTATION Mjchael Young, Contracting Officer's Representative., Research

Product prepared in cooperation with the U.S, Air Force Human Resources Laboratory,
ight-Patterson Ajr Force Base, Dayton, Ohio 45433,

17. COSATI CODES 18. SUBJECT TeRMS (Continue on reverse if necessary and identify by block number)
| FiELD GROUP SUB-GROUP Simulation Modeling Performance modeling
Human factors Interface
HOS Evaluation

13. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report is a guide to maintaining and updating the source code for the Human
Operator Simulator (HOS; 1V, which was develojed to aid in the design and evaluation of
interfaces betweecn operators or maintainers and weapon system hardware and software.

HOS IV creates simulations of manned systems on an IBM-AT PC or compatible. It does this
by using micromodels of basic human processes to produce both system and human performance
estimates. HOS 1V also includes a mechanism to aid in the creation of new micromodels.

20. OISTRIBUTION / AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
D unciassipenunumited U same as reT. O 0T USERS | Unclassified
222, NAME OF RESINSIELE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢c. OFFICE SYMEOL
Michael Young (5L3) £55-8229 AFHRL,/LRG
DDForm 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

ARI Research Product 89~06
12. PERSONAIL AUTHOR(S) (Continued)

(Analytics, Inc.)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Daia Entered)

il

U.S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction
of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON JON W, BLADES
Technical Director COL, IN
Commanding

Research accomplished under contract
for the Department of the Army

Analytics, Inc.

Accesion o
| o e e v e e p——
NTIS CRAd A
]) bnic i g
Technical review by Wiesisne, i o -
Juttic e -
Christine R. Hartel T T e
Michael Young / " By . —
A Distin: “n:)]
3 “:’;("I&L e e e am F T
- \‘:_(// Foo ity M eiisn
T T
st e lal
| .
| I
A-1]
: i

NOTICES

FINAL DISPOSITION: This Research Product may be destroyed when it is no longer needed.
Please do not return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: This Rescarch Product 1s not to be construcd as an officiai Department of the Army
document, unless so designated by other authorized documents,

§

Research Product 89-06

Human Operator Simulator (HOS) IV
Programmer’s Guide

Regina Harris
Analytics, Inc.

Jonathan Kaplan
Ariny Research Institute

Christopher Bare, Helene Lavecchia,
Lorna Ross, Dan Scolaro, Douglas Wright

Analytics, Inc.

Manned Systems Group
John F. Hayes, Chief

Systems Research Laboratory
Robin L. Keesee, Director

U.S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue, Alexandria, Virginia 22333-5600

Office, Deputy Chief of Staff for Personnel

Department of the Army
January 1989
L}
Arrr s Project Number Human Performance Effectiveness
20 " 2717A73%0 and Simulation

Appreved for public release; distribution is unlimited.

FOREWORD

The U.S. Army Research Institute for the Behavioral and Social Sciences
(ART) and the U.S. Air Force Human Resources Laboratory (AFHRL) have developed
a simulation technique for evaluating manned systems based on their design,
the performance of their operators, and the activities of their environment.
This method is called the Human Operator Simulator (HO0S) IV, which is a sub-
stantial alteration of the original version of HOS developed by the U.S. Navy.
This method runs on an IBM AT or equivalent personal computer. HOS IV can be
used at any stage of system development to model, and thus evaluate, manued
developmental or nondevelopmental items. The HOS IV development is one of a
number of programs with which ARI and AFHRL are advancing the state of the art
of manned system design and evaluation. This specific volume is the H(5 TV
Programmer’s Guide, which is to be used to help maintain and update source

gt Ao

EDGAR M. JOHNSON
Technical Director

HUMAN OPERATOR SIMULATOR (HOS) IV PROGRAMMER’S GUIDE

EXECUTIVE SUMMARY

The Human Operator Simulator (HOS) IV allows its users to create and run
computer-based simulations of manned systems in their operational environment.
It also allows the development of reusable micromodels of human and hardware
processes and the linking of these processes to more general system models to
predict operator and overall system performance.

HOS IV runs on an IBM AT or fully equivalent machine. Written in Micro-
soft C, it is wholly owned by the U.S. Department of Defense. Its source code
may be altered by any of its users, governmental or civilian. This report
provides the documentation that such source code alteration requires. It is
not a user’s guide to HOS IV, although users may find it interesting and use-
ful in understanding how HOS works.

vii

HUMAN OPERATOR SIMULATOR (HOS) IV PROGRAMMER’S GUIDE

CONTENTS

Page
1. INTRODUCTION & & & « v o o ¢ ¢ o o o o s 4 s o s + & « o & s o o o
1.1 Hardvare Environment . . . & ¢ ¢+ ¢ o ¢ o o « s o « s « o o o o » 1
1.2 Softvare Environment . « o o o o o o o ¢ o ¢ s s s & o s o o o s 2
1.3 HOS Components . .+ « + 4 o s o = o s o s o o o o o o o o » o o 2
1.4 About This DoCUMEIL . « o ¢ o « ¢ s o s o s o o o o o o o o = 3
2. USER INTERFACE & 4 4 ¢ ¢ o o o o o s o o 2 s o o o 2 « o s o o« o o 4

2,1 Input DeviCes . « ¢ ¢« v ¢ 4 & ¢ 4 4 e « 4 4 e e e e e e 0 4w
2.2 Screen Layout and Components . . + « « « o & ¢ o ¢ o » o o« o o 7
2.3 Skylights/GX USAZE « v v & 4 o ¢ v 4 & o o 4 o o o o o o s o o o 26

3. PROGRAM ORGANIZATION . . . « v v v v o 4 = 4 v v = s v o o s = « « 28

3.1 System Flowchart . . . « & ¢ & & ¢ ¢ v v v « o o o o v o o « o 23
3.2 HOS-IV ModuleS . ¢ ¢« ¢ & v v v o o o s o o s s o o « s o o o o = 29

4. HOS-IV FILES . 4 & ¢ ¢ 4o v o ¢ ¢ 4 o o o s v o s o o o o o o o + « « 109

4 - Direction/Subdirectory Organization « .« . ¢« + « 109
4.2 File Descriptions . . ¢ & ¢ v ¢ o v 4 v i s e e 4 e s e e .. 110

APPENDIX A. HOS-IV INDIVIDUAL PROGRAM UNIT DESCRIPTIONS A-l
B. HAL ERROR MESSAGES . + ¢ ¢ & ¢ o o v 4 ¢ ¢ « o o o o« o + « « B-1

C. HOS-IV FILE DESCRIPTIONS . . o ¢ ¢ & ¢ ¢« 4 ¢ 4 o o o« ¢« ¢ o« « C-1

LIST OF FIGURES
Figure 2-1. HOS screen components .« . o« « s o o s o o s + o o
2-2, HOS message window SCreem . « + 4 v ¢+ 2 o o s e e 0 e s . 13
2-3. HGS dialog window & screen COmpONENtsS .« o« « o o o o o o o 15
2-4, HOS information window screen « v 4 v 4 ¢ 4 0 o4 o. 17

2-5. List viewing DOX « &« « ¢ v ¢ o 4 4 v 4 ¢ 4 4 4 e e e v e v . 20

ix

CONTENTS (Cortinued)

Figure 3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.

3-10.
3-11.
3-12.
3-13.
3-14.
3-15.

3-17.
3-18.
3-19.
3-20.

Page
HOS-IV software flow chart » . . . « « &« & ¢ « &« &+ = « + « » 31
HOS-IV maln SCrEeN « & o o o o o o o o o « o o s o s 2 o o » 32
Select simulation window . . « ¢« « ¢ 4 v 4 4 ¢ o v e 4 0 .. 35
Simulation Setup SCFEEN « « « v + ¢« ¢ ¢« ot e - e e . e . e 41
Event editor screen .« o . « o ¢ ¢ 4o s o s 4 s e o s
Rule editor SCre@n . + « o « o = 2 s » o s » = o ¢ o « + « « 58
Action editor SCIEEN . v v ¢ 4 ¢ ¢ o o s o o 4 o & o & 4 4 67
Action editor functional diagram . . » « =« » « ¢ « « ¢« « . . 68
Object editor screen . « + + v « v« ¢ ¢ e v 4 e e e e e . B4
Alphabetic viewing window . . « . . . ¢ ¢ ¢ o 4 o ..
HPL translator flowchart« + ¢ ¢ ¢ v oo oo 9
Simlink functional diagram . . + « « + 4 ¢« &« ¢ ¢ 4 4 .
Link message window ¢ ¢ L. 4 4 e e e e e e e . 95
Link errors window . « . « ¢« « &+ ¢ o 4 . .
Beginning of simulation window « . 4 .+ 4 0 . . 98
Simulation window . « ¢« ¢ ¢« 4 ¢ 4 4 e e 0 e
Simulation paused window . . . « « . ¢ 4 4 ¢ ¢ o s e 100
Simulation complete window« . . . 101
Viev results functional diagram+ « .+ . . . 103

Viev results screem e e e 4 e s e « . 105

HUMAN OPERATOR SIMULATOR (HOS) IV PROGRAMMER'S GUIDE
1. INTRODUCTION '

This document describes the Human Operator Simulator (HOS-IV)
software and assumes that the reader is familiar with HOS-IV concepts and
terminology as described in the HOS-IV User's Guide (Harris, et al., 1988).

1.1 Hardware Environment

HOS-IV requires an IBM PC/AT (80286 microprocessor based) or fully
compatible (such as the Compaq 80286) with the following minimum
configuration:

« An Enhanced Graphics (EGA) monitor,
+ An Enhanced Graphics (EGA) card with 256 Kb of RAM,

« At least one 5 1/4" floppy diskette drive able to read 360 Kb
formatted floppy diskettes,

« A hard disk with at least 10 Mb of availabie storage,
« A minimum of 640 Kb of memory (RAM),

« A minimum of 1 Mb of extended RAM that conforms to the EMS
specification and functions as a RAM drive, and

« A mouse.

The optimal configuration for using HOS-IV requires the following
components:

+ 80287 math co-processor.

« A total of 4 Mb of RAM in the form of an additional 3.5 Mb of
RAM drive. The additional RAM must conform to the EMS
standard.

» Epson compatible dot matrix printer with graphics capability,
such as an Epson L.Q-1200.

* 40 Mb Bernoulli Box.

The HOS-IV software requires DOS 3.1 or higher version of the operatihg
system. A copy of Microsoft C Version 4.0 is required. The C language was
used to develop the HOS simulation software and HOS uses the C language
compiler and linker. Skylights software was used to develop the user interface
and therefore a copy of the Skylights software is required if any changes are

1.2 Software Environment

made to the HOS user-computer interface.

The HOS-IV software is split into nine major moaules; these modules

1.3 HOS Components

perform the following functions:

Simulation Selection — specifies whether a new simulation
is being developed or permits selection from list of existing
simulations.

Simulation Setup — specifies basic simulation parameters
such as simulation name, time units, simulation start time, and
maximum simulation time.

Event Editor — processes events including creation of new
events, modification of existing events, and deletion of existing
events.

Rule Editor - processes rules including creation of new
rules, modification of existing rules, and deletion of existing
rules.

Action Editor — processes actions including creation of new
actions, modification of existing actions, and deletion of
existing actions.

Object Editor — processes objects including creation of new
objects, modification of existing objects, and deletion of
existing objects. The Object Editor also maintains the list of
user-defined alphabetic and creates and maintains object s¢ s.

Simulation Creation — compiles the user's simulation code
and links it with the HOS-IV library code.

Simulation Execution — executes the user's simulation.

[4

o

+ Simulation Post- Procasslng—generates simulation
reports.

1.4 About This Document

Section 2 of this document describes the HOS-IV user-computer
interface and the use of Skylights. Section 3 presents details of the HOS-IV
modules. Section 4 describes the data organization and storage. Appendix A
contains detailed individual program unit descriptions organized by function;
Appendix B contains a description of the error messages generated by the HOS
action language translator.

R

2. USER INTERFACE

This section describes the user-computer intertace (UCI) for HOS-IV and
presents information about how the UCI was implemented using the Skylights
software sysiem.

2.1 input Devices

The UCI input devices consist of two complementary devices — &
keyboard and a mouse. The keyboard is used mainly for entering text and
numbers; while the mouse is used for specifving menu options, controlling the
cursor, selecting inforrnation, and specifying insertion points.

2.1.1 Keyboard

The keyboard is used to enter alphanumeric data and as an alternative to
the use of the mouse to move the text cursor hetween input fields on dialog
boxes. The keyboard consists of a standard typewriter keyboard, numeric
keypad overlaid with cursor move keypad, and a set of function keys.

The numeric keypad includes keys for the numbers zero through nine
arranged in an adding machine format; it also has keys for special functions
(such as a minus sign, equal sign, etc.) and is used to speed entry of numeric
information. The cursor movement keypad contains an up-arrow, dc'vn-arrow,
right-arrow, left-arrow, home, and end keys and is used to control cursor
movement within a window as an altemative to the use of the mouse. The user
controls the functioning of the keypad as either a numeric pad or cursor
movement pad through the use of the NUM LOCK key. Above the num lock
key is a small red dot light. If the light is lit, then the keypad is functioning as a
numeric pad, otherwise it functions as a cursor movement pad. The special
function keys are used to select menu options as an alternative to the use of the
mouse for experierced users with certain modules.

The following keys have special functions as described within the HOS
modules indicated in parentheses:

» Enter (J) is used for the following:

1. Move the text cursor and any subsequent text to the next
line (Action and Object Editor modules), and

2. Move the text cursor to the next data entry field in the dialog
window (All other modules).

- Backspace () deletes the character to the left ot the text
cursor, If the text cursor is positioned at the top, leftmost
character in a window, subsequent depressions of the
backspace key are ignored (All modules).

« Tab (j«) is used for the following:

1. Insert up to five blank characters in the text depending upon
the current cursor position. If the entry of the blank
characters causes the width of the line to exceed the screen
width, the text cursor and any subsequent text will be
moved to the next line (Action Editor module), and

2. Move the text cursor to the next input fneld in the dialog
window (All other editors).

+ /' key is used to geneiate the underscore character ___
regardless of the status of the shift and/or shift lock keys.

The foliowing keys on the cursor movemant pad have special functions
as described for the indicated HOS modules:

» HOME (above 7 key on numeric pad) is used for the following:

1. Move the text cursor to the lettmost character in the first
entry field in the dialog window (Object Editor modules) ,

2. Move the text cursor to first screen containing text (Action
Editor module) and maintain the relative position of the text
cursor, and

3. Move the text cursor 10 the leftmost character in a text entry
box (All other modules).

+ Up-arrow (T)— (above 8 key on numeric pad) moves the text
cursor up one line. f the current line is the top line on the
page, the depression of the up arrow scrolls the page. If the
current line is the first line then subsequent depressions of tha
up-arrow are ignored (Action Editor module).

+ PgUP (above 9 key on numeric pad) moves the text cursor to
the previous page of text and rnaintains the relative position of
the text cursor on the page. The top line of the previous page

5

becomes the bottom line of the current page (Action Editor
module).

+ Right-arrow (=) (above 6 key on numeric pad) moves the
text cursor one character to the right (All modules).

» Left-arrow (<) (above 4 key on numeric pad) moves the text
cursor one character to the left (All modules).

+ END (above 1 key on numaeric pad) is used for the following:

1. Move the text cursor to the rightmost character in the last
entry field in the dialcg window (Object Editor module),

2. Move the text cursor to last screen containing text and
maintain the relative position ot the cursor (Action Editor
module), and '

3. Move the text cursor to the right most character in a text
entry box (All other modules).

+ PgDN (above 3 key on numeric pad) moves the text cursor to
the next page of text and maintains the relative position of the
text cursor on the page. The bottom line of the previous page
becomes the top line of the current page (Action Editor
module). -

+ Down-arrow ({)— (above 2 key on numeric pad) moves the
text cursor down one line. |f the current line is the last line of
the page, the down-arrcw will scroll the text down one line. |f
the current line is the last text line, subsequent depressions of
the down-arrow will be ignored (Action Editor module).

The following functions keys are used for the indicated processes only
within the Action Editor:

+ F1 —- Begin text marking for cut/copy operation.
+ F2~End text marking for cut/copy operation.

+ F3—Cuttext.

* F4—Copy text.

« F5-—Paste text.

* F6~—Clear text.

2.1.2 Mouss

The mouse is used as a pointing device to select commands from menus,
to control cursor (pointer) movement and to manage file scrolling. In HOS-IV,
ihe standard pointer is an aiiow (). Lvsiy move of the mouse moves the

6 .

pointer in exactly the same way. The following {eims describe various actions
associated with mouse utilization:

+ Clizking — positioning the pointer with the mouse, briefly
pressing, and relensing the mouse button without moving the
mouse.

+ Pressing — positioning the pointer by holding down the
mouse button without moving the mouse.

* Dragging — positioning the pointer with the mouse, holding
down the mouse button, moving the mouse to a new position,
and then releasing the bution.
These terms will be used in subsequent sections to describe user interactions
with HOS-IV.

2.2 Screen Layout and Components

This section describes how information is arranged on the display and
how the user interacts with the particular component. The screen is arranged
into three main areas:

1. The title bar which is always on the top line of the display as
described in Section 2.2.1;

2. The menu bar which is always the second line of the display
as described in Section 2.2.2; and

3. The HOS window which occupies the remainder of the
screen. The HOS window is used to conduct a dialog with the
user. It will either display information to the user or display an
input form for the user to supply the information HOS requires.
The contents vary dependent upon the current function. The
windows are described in Sections 2.2.3 through 2.2.7.

Within the HOS window, a variety of components have been developed for the
user to specify particular simulation data items or supplying additional

information required before a system command can be processed. These
components include:

1. List Selection Box -— a scrollable list of available items for
the user to select from as described in Section 2.2.8;

2. List Viewing Box — a scrollable list of currently defined
terms for the user to view as described in Section 2.2.9;

7

3. Pushbutton — a distinct area of the screeh that is used to
specify actions as described in Section 2.2.10;

4. Click Boxes — a box containing the range of numeric values
that can be moditied by the user via mouse clicks as described
in Section 2.2.11; '

5. Text Entry Boxes -~ a rectangular box which allows the user
to enter textual data (numeric or alphanumeric) with the size of
the box indicating the maximum number of characters
permitted as described in Section 2.2.12;

6. Scroll Bar — a rectangular box that is used to modify the
current view of a window as described in Section 2.2.13; and

7. Labels — text descriptions used to indicate the type of
information to be entered by the user as described in Secticn
2.2.14.

HOS uses two distinct cursors to represent the fccus of attention for the
user and to point to a precise point on the screen. The mouse cursor is
controlled by the mouse and always represents' the last mouse screen location.
When the user moves the mouse, the mouse cursor moves proportionately. The
muouse cursor is described in Section 2.2.15. Additionally, a keyboard cursor
represents the location where any keyboard actions will occur and is described
in Section 2.2.16.-

In subsequent sections the following terminology is used to describe
various aspects of the screen components:

» Location — indicates where the component is placed on the
display. In some cases, the exact location will vary depending
upon the contents of the screen;

» Backaground Color — indicates the color t0 be used for the
screen background upon which text and/or graphics will
appear,

« Text Color — indicates the color to be used for all
alphanumerics and text symbols;

« QGraphics Color — indicates the color to be used for graphics
symbols,;

 Border — indicates the color to be used for the line border
enclosing a particular element of the screen;

+ Characters — indicates the case to be used for text, e.g., all
upper case, initial upper case, etc.; and

» User Action — describes how the user will interact with the
particular screen component.

2.2.1 Title Bar

The title bar presents information about the current HOS function to the
user; the user does not enter any information. The title bar is continuousiy
displayed and is illustrated in Figure 2-1. The title bar is split into three areas:

1) Current activity on left side of line, left justified with initial caps,

if required, (Currently used by Action Editor.)

- 2) Function name centered in middle of line in uppercase white
letters on black background. (Required for all HOS modules.)

3) Status information on right side of line with initial caps, if
required. (Currently used by Action Editor to display line count
and column position.)

L.ocation: Top line of screer.

Background Color: White

Text Color: Black

Graphics Color: None

Border: None

Characters: Varies depending upon area.

User Action: Information only, no user response permitted in the

title bar area of the screen.

2.2.2 Menu Bar

The menu bar contains a list of the menu tities of the primary options that
are available for the current HOS function. The menu bar is continuously
displayed on the screen and is illustrated in Figure 2-1. The last two menu
options are always User Aids and Exit. Each menu title is separated from other
menu titles by one leading and twe trailing spaces.

Location: Second line on screen.
Background Color: Blue
Jext Color: » White
Graphics Color: None

Jeg ({0438

“u

sjuauodwon) uasdids SOH | -¢ 8inbi4

joRuU0)
jl0dog eun

jo5u0)
j10108 efed

10s1n) esnop
N

s0jeoipul
uoNsod ell4

L,

uonoeleS NUBN A
pewybiybiy

\

BiNnawwod

uesIOS
\. A3
9]

10

- J0sun9) e
oL

L YRS PR S

\r

nUB umoQ-jind

<4— Jeg nuep

A 2Inpadeid"MIN

40Liad ‘NOILOV

/ /!

oL nuayy AuAnoy uaung

A

BuwieN uopun4g

-~

UOIBULIOjU| SNIEIS

T

Jeg ajili

2.2.3 Pull-Down Merus

Border: None

Initial upper case only.

To select an option from the menu bar, the mouse is
used to position the mouse cursor anywhere on the
desired menu title. Without moving the mouse, any
mouse button is pressed and heid (clicking). Once
the mouse button is depressed, the selected menu
title will be shown in reverse video (white
background and blue foreground) and a box
containing the available commands (pull-down
menu) will appear immediately beneath it in a
separate window. The pull-down menu will
disappear as soon as the mouse button is released.
In order to view all the pull-down menus, the user
can drag the mouse across the menu bar and, as
each menu title-is selected, the accompanying puli-
down menu will be displayed.

The pull-down menu is a separate ractangular window displayed
beneath the menu bar containing the list of commands available for a particular
menu title on the menu bar. It is illustrated in Figure 2-1. It is displayed only
from the time the mouse button is held down and the mouse arrow is dragged
down through the menu options until the mouse button is released. The pull-
down menu window may obscure the previous contents of the screen while it is

active.

Location:

L 4

Background Color:

Text Color:

A separate rectangular window whose top is
immediately beneath the menu bar and upper left
corner is aligned with the selected menu title. The
menu text is indented two spaces to the left of the
selected menu title. The window Is one space wider
than the title of the longest command title.

Blue

White

11

2.2.4 Message Windows

None

None

initial upper case only,

To choose one of the listed commands in the pull-
down menu, the mouse is used to move the mouse
pointer to the displayed menu title on the menu bar.
While the mouse button is held down, the mouse is
used to move the mouse pointer to the desired
command (dragging). When the mouse pointer is
located over the selected command, the mouse
button is released. As the mouse pointer moves to
each command line, the currently selected command
is highlighted in reverse video (white foreground and
blue background). The command that is highlighted
when the mouse button is released is invoked and
the pull-down menu disappears. If the mouse cursor
is relocated within the menu bar line and the mouse
button released, no action will occur and the pull-
down menu will disappear. Similarly, if the mouse
cursor is dragged outside of the pull-down menu
window and released, the pull-down menu will
disappear and no command will be chosen.

A message window presents informative messages about the current

system action requesting

the user to indicate subsequent actions that should

occur or be cancelled. The options available to the user are displayed as
pushbuttons and one of the pushbuttons must contain a CANCEL option that
permits the user to cancel the current request and resume the previous activity.
The message window is illustrated in Figure 2-2.

Location:

Background Color:
Jext Color:

A separate rectangular window that is located in the
workspace beneath the menu bar.

Blue

White

MOPUIA

ommmmms_//

U9810S MOPU'M abessa SOH "2-¢ @inbid

>

v
v

[12oNv _ _ SO _

uo1ss3s Juryrpa uonde Mo pud J[Im sIyL

\ 8

ainpasoid MaN |

0D [ul] AOLIAT*NOILOV

13

2.2.5 Dialog Windows

White

Double Line

Message displayed in sentence format with initial
caps centered in window. Pushbutton labels follow
pushbutton format.

The mouse is used to move the mouse cursor to the
pushbutton containing the desired action and
depressed.

Dialog windows allow the user to enter necessary information in pre-
defined fields consisting of pushbuttons, click boxes, check boxes, text entry
boxes, labels, and scroli bars. An example is shown in Figure 2-3.

Location:

A separate rectangular window that is located in the
workspace beneath the menu bar.

. White

Black
Blue

: Blue

Double line

Title in upper case centered in top line of window.
The text cursor (cyan background, black foreground)
is initially piaced in the beginning of the first text entry
box for the user to enter the indicated information.
When the entry is completed, the user can depress
the return key to move the text cursor to the next item
in the sequence or, alternatively, use the mouse to
move the mouse pointer to the desired field and click
to obtain the text cursor in the desired location. In
addition, the tab key can be used to move forward to
the next text entry field.

sjuduodwio) uaslos B Bo_oc_>>_mo_m_o SOH ‘g-2 ainbiy

uoHnN(

| \ -ysn!

|

(eiqeyjos0g) — 1 _
(e1qe}j0195-uoh) <
sexog A3 xe)

g -
| 12Yy3r
| yry [y |

A | ' xog
MOPUIM YD W_ saqumN T ualoe|es
“ u 18N

——"! B! — == STINY ===

L #AOLIAI*IINUM J

15

2.2.6 Information Windows

An information window presents messages to the user about current
system activity and is illustrated in Figure 2-4. An information window differs
from a message window in that the user cannot make any responses.

Location:

2.2.7 Text Entry Screans

A seoparate rectangular window that is located in the
workspace beneath the menu bar.

Blue

White

White

Double line

Message displayed in sentence format with initial
caps centered in window.

information only, no user response permitted in the
information window area of the screen.

A text entry screen is a user scrollable window in which the user can
enter textual/numerical information in a free-format. A scroll bar is displayed on
the right side of the window and is illustrated in Figure 2-1.

A separate rectangular window that is located in the
workspace beneath the menu bar.

: White

Black

Blue

Double Line

Title in Upper Case; contents dependent upon user
entries.

N
‘ssaxdord w1 Gunuuyg
A
T L — Binawnod
uotjeusioju| | XA SPEY 3asf i _ SR i 1 98
L 8 ‘(0D [aurl AOLIAT*NOILDYV anpadoid maN

ser Acti

2.2.8 List Selection Box

The rectangular text cursor is initially placed at the
upper left corner of the window. The user can use
thie mouse or arrow keys (right, left, up, down, home,
page up, and page down) to position the text cursor
to the location whare the next keyboard entry is to be
placed. All key strokes are inserted at the current
location of the text cursor. If the entry causes the
length of the current line to exceed the display width,
all text following the previous delimiter (space) is
meved to the next line. The depression of a carriage
return moves the text cursor and any text after it to the
next line. The home key moves the text cursor to the
first window of text; the end key moves the text cursor
to the last window containing text.

A list selection box presents a list of all items available to the user for the
current function, e.g., list of rules for the Rule Editor, actions for the Action Editor,
objects for the Object Editor, etc. It requires a scroll bar on the right side of the
window to be used to alter the viewing area of the window. The list >ox window
may obscure the previous contents of the screen while it is active. It is

illustrated in Figure 2-3.

Location:

Eackground Color:

Text Color:
Graphics Color:
Border:
Characters:

User Adtion:

A separate rectangular window that is located in tto

workspace beneath the menu bar.

White

Black

Blue

Double Line

Title in upper case in center of top line of window;

pushbutton labels follow pushbutton format;

remainder dependent upon user inputs.

The mouse pointer is initially located on the first item

in the window. The mouse is used to move the
i8

2.2.9 List Viewing Box

mouse cursor so as to point to the name of the item to
be selected. The currently selected item is shown in
reverse video. If the desired item is not currently
displayed within the window, the user can move the
mouse cursor to the red triangles located at either
end of the scroll bar and then depress the mouse
button. Each click on the red triangle will display the
next set of iten:s in the window. If the user clicks on
the up (down) triangle and the pointer is already
located at the first (last) item, the contents of the
screen will remain identical. Once the desired item is
selected, the mouse cursor must be moved to the
apprepriate pushbutton to invoke the desired action.

The list viewing box displays a list of all defined items for the user to view,
e.g., list of alphabetic for the Object Editor, etc. It requires a scroll bar on the
right side of the window to be used to alter the viewing area of the window. The
list viewing box window may obscure the previous contents of the screen while
itis active. Itisillustrated in Figure 2-5. '

A separate rectangular window that is located in the
workspace beneath the menu bar.

. White

Black

Blue

Douila Line

Title in upper case in center of top line of window;,
pushbutton labels follow pushbutton format;
remainder dependent upon user inputs.

The mouse pointer is initially located on the first item
in the window. If the desired item is not currently
displayed within the window, the user can move the
mouse cursor to the red triangles located at either
end of the scroll bar and then depress the mouse

19

xog

Suimeip
ST —¢

pautjepun

opqeydpy

——

_ _ oD i
RqUNN

P2{qo

12380

NXd_ epiydas . o

.

Bl +u011a3*1D3lg0*

20

2.2.10 Push Buttons

butten. Each click on the red triangle will display the
next set of itams in the window. If the user clicks on
the up (down) triangle and the pointer is already
located at the first (last) item, the contents of the
screen will remain identical. Once the viewing of the
defined items is complete, the mouse cursor must be
moved to the appropriate pushbutton to invoke the
desired action.

Pushbuttons perform instantaneous action as described by the text label
with a mouse click anywhere within the button area. They are illustrated in

Figure 2-3.

Location:

Background Color:

raciers.

User Action:

A separate rectangular window that is located in the
workspace beneath the menu bar.

Assumes background color of item beneath,

Red .

Assumes foreground color of item beneath.
Rectangular box with double line on top and bottom;
single line on left and right. 1t is sized so that there
are at least two leading and trailing spaces around
the pushbutton legend.

Upper case button label ¢entared in box.

The mouse is used to move the mouse cursor so that
the pointer is located anywhere within the
rectanguiar area and then a rnouse button is clicked.
Once any mouse button is depressed, the button
label is shown in reverse video (red background and
white forepround) and the indicated function
immediate ~voked.

2.2.11 Click Boxes

Click boxes are used to specify numeric values and are illusirated in
Figure 2-3. It requires a scroll bar on the right side of the window to be used to
alter the numeric value currently displayed in the window.

Location:

Background Color:

Jext Coior:
Graphics Color:
Border:
Characters:
User Action:

2.2.12 Text Entry Boxes

Varies but always within a dialog window.
White '
Black
Blue
Rectangle with double line border.
Title in upper case in center of top line of window;.
The user can modify the currently displayed value by:
1. Moving the mouse pointer to the red
triangle located above the box to increase
the number shown in the box by 1 each
time a mouse button is depressed, or by
2. Moving the mouse pointer to the red
triangle located beneath the box to
decrease tne number shown in the box by
1 each time a mouse button is depressed.

Text entry boxes are fields where textual or numerical data are entered
and are iliustrated in Figure 2-3.

Background Color:

Text Color:
Graphics Color:

Varies but always within a dialeg window.

White

Black

Blue .

Rectangular box drawn with single blue line. If the
entry in the box can be bigger than the box size, a
double blue line is placed on the left and right to
indicate that ithe user ¢an scroll righi and left within
this beox.

22

2.2.13 Scroll Bar

Label with initial caps terminated with & colon to the
left of the box; entries in box are based upon user
actions.

The rectangular text cursor is initially placed at the
left side of the box. The user can use the mouse or
arrow keys (right and left) to position the text cursor to
the location where the next keyboard entry is to be
placed. All keyboard strokes are inseried at the
current location of the text cursor. If the entry causes
the length of the current line to exceed the display
width, either of the following will occur:

1. If the box is the exact size of the permitted
entry (i.e., the right and left side are single
lines), a beep will be sounded and future
keyboard entries (except backspace and
delete) will be ignored until a non-text key
is depressed or

2. If the entry can be larger than the box (i.e.,
the right and left sides are double lines),
the text will be scrolled to the left as
additional keys are depressed until the
maximum field size is reached.

The left and right arrow keys move the cursor one
space in the indicated direction within the text entry
box. The home key moves the text cursor to the first
character in the box; the end key moves the text
cursor to the last character in the box.

Scroll bars are used to change which part of a list of items (list window)
or contents of a file (text entry window) is shown the window. Double red scroll
arrows are used at the top and bottom of the scroll bar rectangle to indicate the
direction the viewing area is to be moved. The top arrow (A) is used to scroll up
one line at a time; the down arrow () is used to scroll down one line at a time.

23

The second up arrow (1) is used to scroll up one page at a time; likewise the top
down arrow (4) is used to scroll down one page at a time. The scroll bar is
illustrated in Figure 2-1. '

Location: Rectangular box shown on right side of text entry and
list boxes. '

Background Color: White

Text Color: None

raphi lor: Blue

Border: Double line. _

Characters: Graphics characters of ¥ and A.

User Action: The user uses the mouse to position the mouse

cursor at the desired scroll arrow and clicks to alter
the contents of the window. The content of the
window is moved in the opposite direction from the
arrow. For example, when the user clicks the top
scroll arrow, the contents move down, bringing the
view closer to the top of the list or document. Each
click of the single arrow moves the window contents
one line in the chosen direction; each click of the
double arrow moves the window contents one page
in the chosen direction. Continuous depression of
the mouse results in continuous movement in the
chosen direction. Once the top or bottom of the
window contents is reached, depression of the scroll
arrows in that direction are ignored.

2.2.14 Labels

A labe! is an alphanumeric description of the information to be entered
for a component of a dialog window and is illustrated in Figure 2-3.

Location: Varies
Background Color: White
Text Color: " Blue
Graphics Color: None

Border:
Characters:
User Action:

2.2.15 Mouse Cursor

None :
Initial upper case and terminated with a colon.
None

The mouse cursor is a pointing device used 1o selsct commands from
menus, to control cursor movement, and to manage file scrolling. It is illustrated

in Figure 2-1.

Varies

: Assumes background color of object beneath.

None.

Assumes foreground color of object beneath.

None

Arrow ()

The user moves the mouse cu-sor to the desired
location by moving the mouse in the desired
direction. Every mouse movement moves the mouse
cursor in exactly the same way. The following mouse
actions can be performed: ‘

- Clicking — positioning the mouse cursor
with the mouse, briefly pressing and
releasing the mouse button without moving
the mouse.

* Pressing — positioning the mouse cursor
with the mouse, holding down the mouse
button without moving the mouse.

» Dragging — positioning the mouse cursor
with the mouse, holding down the mouse
button, moving the mouse to a new
position, then releasing the button

2.2.16 Text Cursor

The text cursor indicates where next keyboard stroke will be entered and
is illustrated in Figure 2-1. '

Location: Varies
Background Color: Cyan
Text Color: Black
Graphics Color: Assumes foreground color of object beneath.
Border: None '
- Characters: Rectangle the size of a single character ().
User Action: The user can use the arrow keys or the mouse to

indicate where the text cursor should be positioned.
Each subsequent keyboard stroke will be inserted at
the location of the text cursor.

2.3 Skylights/GX Usage

Skylights provides two window editors — one alphanumeric and the
other graphic for building windows and defining “"touch zones." The graphics
editor was not used in this implementation of HOS-IV. The user interface was
written using alphanumeric windows because the speed of execution is much
greater. Touch zones are areas on the screen that cause the associated
function defined in the window editor ("demon") to be executed when the mouse
cursor moves over them or the user clicks on them. This allows the
development of an event driven user interface that is necessary for a
menu/mouse driven program. The alphanumeric window editors were used in
conjunction with a extensive library of C callable routines to develop the user
interface described in Section 2.

A key feature of Skylights is the ability to interactively define various
screen components and store them in a library. With other packages and tool
kits, common front end structures and visuals, such as windows, menus, icons,
boxes, and screen captions, are often implemented dynamically in the
application program. "Skylights uses a different approach. Most of the
necessary structures and visuals are created interactively with the Skylights

26

editor and saved in separate window catalog files. Low-level functions for
screen handling, drawing boxes, color definition, etc. are available.

The Skylights editor is used to create windows. A window is a fragment
of the screen which has a picture and imbedded active areas (touch 2zones),
menus, icons, etc. Windows are saved in a file caicd a wir ‘ow catalog. The
defined windows are loaded into an appiication at run time using library
tunctions calis.

Using a pointing device, a window is defined, character graphics are
drawn to create the screen display and shape, and touch zones are specified as
well as specitying how the application should respond to the touch event. In
addition, optional properties such as audio feedback, video feedback, and the
name of the routine responsible tor processing touch events in the zone can be
specified. The run time libraries contain window management functions, and a
touch events handler, as well as various screen, keyboard, and speaker
handling functions.

27

3. PROGRAM ORGANIZATION

This section presents a high-level functional description of each of the
main HOS system processes with the overall system organization described in
Section 3.1. Details of the individual program units for each module are
presented in Appendix A.

3.1 System flowchart

The HOS-IV software is split into the following maijor system modules as
described below: : -

+ HOS-IV: high-level system controller that manages the
: spawning processes for lower-level modules.

+ SELECT: determines which of the existing simulations is to
be used during the HOS simulation sessicn and permits the
user to define a new simulation.

+ SETUP: determines basic simulation parameters such as
simulation name, time units, simulation start time, and
maximum simulation time based upon.

+ EVE_EDIT: maintains the event data base for a simulation
including creation of new events, modification of existing
events, and deletion of existing events.

» RULEEDIT: maintains the rule data base for a simulation
creation of new rules, modification of existing rules, and
deletion of existing rules.

» ACTEDIT: maintains the action library and processes user
actions to create new actions, modify existing astions, and
deletes existing actions. In addition, ACTEDIT invokes the
action translator (HAL) that translates the action into C code
and determines if the action contains any errors.

» EDIT_OBJ: maintains the object and alphabetic libraries and
processes user actions to create new objects/alphabetics,
modify existing objects/alphabetics, and delete existing
objects/alphabetics.

+ HAL: evaluates the syntax of an action and if no errors are
detected translates the action into HOS C code.

» SIMLINK: integrates all the user's events, rules, actions, and
objects into files that are compiled using the Microsoft C
compiler and builds the simulation executable file.

+« SIMRUN: executes the user's simulation and creates files for
post-processing.

» RESULTS: generates simulation reports.

The organization of the HOS software is presented in Figure 3-1 with the left to
right progression showing the sequence in which the modules must be invoked
in order to properly construct and execute a simulation. The SELECT module
must always be selected at the beginning of each HOS session in order for the
user to specify which simulation is to be used during the session. The
sequence of the remainder of the modules is user-driven. All of the modules
use the User-Computer Interface (UCI) described in Section 2.

Certain conventions are used throughout the HOS modules. All names
are a maximum of 28 alphanumeric characters (a-z, 0-9). The first letter of each
name must be an alphabetic (a-z). The only special character that can be
included is an underscore (_). HOS is also case insensitive, that is upper and
lower case characters can be used interchangeably. All names are converted
by HOS into lower case for internal use. Examples of valid names are myname,
my_sim_variable_name, and abc123456.

Examples of invalid names are:

a$ Contains an invalid special character ($)
a-b Contains an invalid special character (-)
1gwerty First letter is not alphabetic

3.2 HOS-1IV Modules

3.2.1 HOS-IvV

HOS-IV is the main module in the system and is invoked when the
system is initiated. 1t is the top level module that controls interactions with all
other modules in the HOS system. Whenever the user terminates one of the

29

lower level modules, control is returned to HOS-IV for the selection of the next
module or to terminate the system.

3.2.1.1 Description

HOS-IV controls user access to all of the HOS modules. There are nine
commands which can be executed from the main screen of HOS-IV — Select
Simulation, Setup Simulation, Edit Events, Edit Rules, Edit Acticns, Edit Objscts,
Create Simulation, Run Simulation, and View Results. A pushbutton was
created for each function and the user invokes the desired function by moving
the mouse over the title of the selected pushbutton and clicking the mouse.
HOS-iV automatically initiates the Select Simulation command on start up (see
section 3.2.2). After the user has successfully completed the simulation select
step,.any of the other functions may be chosen. A high-level functional diagram
of HOS-IV is illustrated in Figure 3-1.

3.2.1.2 HOS-IV Screens

The HOS-IV screen contains a diagram of pushbuttons and arrows
indicating the functional flow of the steps involved in developing, executing, and
analyzing a HOS simulation.

Action Editor Title Bar. The title bar of HOS-IV contains the words '"HOS-
V' as the function name. HOS-IV does not use the current activity or status
information areas of the title bar. ~

HOS-1V Menu Bar. HOS-IV contains the following menu options on the
menu bar as illustrated in Figure 3-2:

« User Aids - provides the capabilities to view help filss.
« Exit - terminates HOS-IV and returns the user to the operating
system.

The User Aids pull down menu contains the Help commands that allow
the user to obtain help windows about the HOS-IV module.

30

F

GLLLL

LT}

Inii

Gmm

|

il]

Il

Il

=l

TRH

Figure 3-1. HOS-IV Software Flow Chart

07

31

u3919S UlRN AI-SOH "2-€ 4nbi4

ﬁ
SISy

. MEIA

NOLLVIN' {IS

32

|

A‘V NOLLVINNWIS | . | NOLLVINNIS
dNniis JOITAS

WE SpIVISq

\.

HOS-1V Main Screen. The HOS-IV main screen is illustrated in Figure 3-2 and
contains the foliowing pushbuttons:

+ Select Simulation — calls the select simulation routine
+ Setup Simulation — spawns the setup simulation module
« Edit Event — spawns the Event Editor
« Edit Rule — spawns the Rule Editor
» Edit Action — spawns the Action Editor
+ Edit Object — spawns the Object Editor
» Create Simulation — spawns the simlink module
-+ Run Simulation — spawns the simulztion
+ View Results — spawns the view results module

3.2.1.3 Maintenance Procedures

HOS-IV source code (HOS-iV.c and hos_menu.c) is compiled using
Microsoft C version 4.0 with the large memory model switch (AL). It requires the
HOS-1V, SKYL, CT, and TE libraries in addition to the standard C libraries for
linking.

4.2.2 SELECT — Select Simulation

The SELECT module determines the simulation to be processed and
permits the user to define new simulations.

3.2.2.1 Description

The SELECT module is automatically executed whenever KOS is first
executed so that the user is forced to sslect a simulation before any other HOS
functions can be invoked. In addition, the user can depress the SELECT
pushbutton whenever the HOS main menu is displayed in order to switch to a
different simulation. If any simulations exist, SELECT displays a list selection
box which allows the user to scroll through the list of currently defined
simulations and select one of the listed simulations. The user can name a new
simulation or cancel thé select function. It no simulations exist, the user can
only enter a new simulation name or cancel. Whenever the user cancels

33

SELECT without selecting a simulation, an informative message is displayed
indicating that the HOS session cannot continue until a simulation is selected.
The response to thus message is to exit (terminate the HOS session) or continue
(return to SELECT) The name of a simulation can contain a maxin im of eigit
alphanumeric characters. The simulation nams cannot contain ny spacial
symbols except underscore (_). Examples of valid simulation names are
my_sim, teampack,etc. A high-level functional diagram of the SELECT process
is illustrated below.

Select Simulation

setup_simselect ();

1
1 I

Select Button | New Button

fprintf (stream, simname); setup_siminput ();

process_siminput ();

3.2.2.2 SELECT Screens

The SELECT simulation user windows overlay the main HOS simulation
flow screen and is illustrated in Figure 3-3.

Title Bar. The title bar of SELECT contains the words 'HOS-IV' as the
function name. SELECT does not use the current activity or status information
areas of the titie bar.

SELECT Menu Bar. SELECT contains the following menu options on the
menu bar as illustrated in Figure 3-3:

+ User Alds — provides the capability to print the simulation
names and obtain help messages; and

+ Exit — terminates SELECT and returns the user to the HOS-
IV screen.

34

MOPUIA UOIBINWAS 10919 "E-€ ainbiy

E
SLiNsay
M3IA

—t_

NOLLVIINIS
NOY

NOLLVIINIS

35

NOLLVINNIS)

g sprvaasn
.

WAT'SOH™

The User Alds pull-down menu contains commands that allow the user to print
the list of simulation names and obtain help messages. They are as follows:

» Print simulation names — allows the user to obtain a
printout of names of all defined simulations on the line printer.

+ Help — allows the user to obtain additional information about
using SELECT.

SELECT Windows. The main SELECT window is a dialog window for
entering object information. The SELECT dialog window, as iliustrated in
Figure 3-3, contains the following pushbuttons:

« SELECT — makes the current simulation the simulation name
selected in the list selection box and writes the name to the file
d\HOS-IV\currsim.dat ' '

« CANCEL — terminates the SELECT function and returns the

: user to the main HOS-IV window without changing the current

simulation. i no simulation has been selected during the
session, a warning message will be displayed.

» NEW — defines a new simulation name and generates the
new simulation dialog window.

The list selection box contains the list of currently defined simulation
names.

When the user selects the NEW button from the SELECT dialog window,
a new simulation window is displayed as shown in Figure 3-3. The user can
select from the following pushbuttons:

. CANCEL — cancels the new simulation function.

+ OKAY — validates the entered simulation name to ensure that
it does not contain any illegal characters and has not been
previously defined. |f the simulation name is valid, the
simulation name is added to the list and the simulation
directories are created.

The alphabetic dialog window also contains a text entry box for entry of the
simulation name.

36

SELECT Message windows. SELECT generates the following message

windows.

+« No simulation selected — informs the user that a
simulation must ba selected before HOS-1V can be run. The
user options are to continue and select a simulation or exit from
HOS-IV. '

*» Name eiready used — informs the user that the simulation
name just entered is not unique and must be re-entered. The
user must hit the okay button to return to the Define new
simuiation window.

+ Invalid character — informs the user that the simulation
name just entered contains an invalid character and must be
re-entered. The user must hit the okay butten to return to the
Define new simulation window.

3.2.2.3 Input/Output

The names of all existing simulations are stored in the file d:\HOS-
IV\all_sims.dat. SELECT first determines if this file exists. i it does, the list of
simulation names contained in the file are displayed in the list selection box;
otherwise it prompts the user to enter the name of a new simulation. The name
of the selected simulation is stored in the file d:\\HOS-IVicurrsim.dat. The
contents of these fiies are shown below:

d:\HOS-IV\all_sims.dat
This file contains a list of eight character simulation names with
each name in a separate record.
char name GIR

d:\HOS-IV\currsim.dat
This file contains the eight character simulation name of the
current simulation with the name stored in a separate record.
char name {8

3.2.2.4 Error handling

Message windows are generated for the following conditions:

1. Simulation name contains invalid characters.
2. Simulation name has been previously defined.

37

3. A simulation must be selected before any HOS processing can
occeur.

3.2.2.5 Maintenance Procedures

Select simulation is part of the d:\HOS-INHOS-IV.exe program. The
SELECT scurce code is contained in the files:

HOS-1V.c
hos_menu.c
In addition, the following files contain global and prototyping information:

HOS-1V.e
HOS-IV.1
hos_tmenu.e
hos_menu.i .
These C files must be compiled using the large model and then linked
with the following five libraries in order to produce the executable code:

skyllib
ct.lib

te.lib
Hibfp.lib
HOS-IV.lib

3.2.3 Setup Simulation

The Setup Simulation module of HOS maintains general information
needed to run each simulation. This information includes the minimum time
unit, start time, maximum simulation time, start action, and simulation
description. '

3.2.3.1 Description

The purpose of the Setup module is to define initialization information
needed to run each simulation. To execute the Setup Simulation module, the
user can depress the SETUP pushbutton from the main HOS-IV module. When
the Setup Simulation module is executed, a dialog window is created with entry

38

fields created for each required piece of information. These fields include the
minimum time unit, the simulation start and maximum times, the start action, and
the simulation description. The minimum time unit can be one of seven values:
days, hours, minutes, seconds, 0.1 seconds, 0.01 seconds, and 0.001 seconds.
The user scrolls through a list containing these choices. The maximum
simulation time and start simulation time consist of seven fields: days, hours,
minutes, seconds, tenths of seconds, hundredths of seconds, and thousandths
of seconds. Only those fields greater than or equal to the minimum time unit
can be accessed by the user. Invalid fields are blocked out by a blue box
covering the field. The user can enter any 80 character string for the simulation
description. The start action is any valid defined HOS action.

The high-level functional diagrams are organized by user actions and
are described below.

Save Button. When the user pushes the save button, the "save” function
is executed. The verifying consists of checking for a time error and an action
warning. The temporary simulation information record created by verifying
process is deleted and the new simulation information is inserted into the global
simulation record. This process is illustrated below: '

Save Button

save_siminfo();

window_to_siminfo();

Check_Time_error();

Check_Proc_error();

User Aids Menu: Print. When the user sslects print from the user aids
menu, the "print_sim_info" function is executed. It uses the current simulation
information for the printing. This function calls the "fputs” function for every line

»

39

that needs to be output such as the times and starn action. The procesé is
iliustrated below:

User Aids menu:
Print

print__sim_info();

fputs(*char,stdprn);

filush (stdprn);

It is possible that the user will enter a time that, when converted from a
long integer to a string, in terms of the minimum time unit, wili have more than
six characters. This may cause problems for other modules that expect the time
strings to be six characters leng. Consequently, a time cannot be greater than
999,999 in terms of the minimum time unit. For example, suppose that the
minimum time unit is thousandths of a second. If the user enters a 17 in the
minuies iield, this will be converted to the string '1020000".

3.2.3.2 SIMSET Scieens

Jitle Bar. The title bar of SIMSET contains the words 'Setup Simulation’
as the function name. SIMSET does not use the current activity or status
information areas of the title bar.

SIMSET Menu Bar. SIMSET contains the following menu options on the
menu bar as illustrated in Figure 3-4;

« User Alds — provides the capablhty to print the setup
information, view the contents of any action file, and obtain
help messages, and

+ Exit — terminates the setup simulation module and returns
the user to the HOS-IV screen.

uaalos dnjes uoienuis y-g a1nbi4

uorje[nuis STy} 10§ WL "Xe

238 utm s1y sAep

o | | | JUOYRMUIS STY) J0J U} Helg
000L/L 00W/I O 998 -unu ‘siy sdep
1 30jerado uone;IcM [OXJU0D :uondipsap uorjemung h
ApearT1ojerado worpe dnyes :ozu-:ﬁ_w

5

:ST UOLJe[MUILS SIY J0J JIUT WL} USMUITURE YL,

e e

"dNLISUNOILVINNIS

The User Alds pull-down menu contains commands that allow the user to view
other files, print current setup simulation information, and obtain help
messages. |t contains the following commands:

» View Files — allows the user to obtain a window that displays
currantly defined actions.

« Print — allows the user to obtain a printout of setup simulation
information.

. Help — allows the user to obtain addmonal mformatuon about
using the setup simulation module.

SIMSET Windows. The main SIMSET window is a dialog window for
entering setup simulation information. The SIMSET dialog window, as
illustrated in Figure 3-4, contains the following pushbutton:

« SAVE --saves the current setup simulation information as
- displayed on the screen. The following validation is performed
prior to the actual saving of the event definition:

1. The start time is compared to the maximum simulation time.
if tha start time is greater than the maximum simulation time,
an error message windew is displayed indicating that the
start tirne is too large.

2. The start action is evaluated to determine if the action name
is valid and has been defined. If it has not, a wariing
message window is displayed indicating that the action is
undefined.

The SIMSET dialog window contains the following text entry boxes:

« Description — entry of the simulation description as a
maximum of 80 characters.

» Startup action — entry of an action name.

+« Maximum Simulation Time — entry of the maximum
simulation time in the form of seven two digit numbers, one for
each time unit.

o Start Simulation Time — entry of the start simulation time in
the form of seven two digit numbers, one {or each time unit.

A list selection box showing the minimum time unit is displayed in the
upper right corner of the SIMSET dialog window as shown in Figure 3-4.

42

3.2.3.3 Input/Output

SIMSET uses the foliowing files:

currsim.dat — contains the current simulation name.

simname.dal — contains 'C' code to sst the minimum time
unit, maximum simulation time, start simulation time, simulation
description, and start action. This file is also used as input to
the Setup Simulation moduie to read in the current simulation
information.

simname.da2 — the first 1ecord contains an integer (0-7) to
indicate the minimum time unit; the second record coniains the
eighty character simulation description.

simname.da3 - the first record contains the start time in terms
of the minimum {ime unit; the second and third records contain
actual date and time that the simulation started running and
stopped running. These last two records are not currently
being used.

simname.da4 — contains the start simulation action name.

3.2.3.4 Error handling

When the user attempts to save the Setup Simulation intormation,
validation checking is performed on the times and start simuladon action name.
An error is generated if the start time is greater than the maximum simulation
time and a descriptive message is displayed in a message window indicating
that The start time, 00:00:00:00.000, is greater than the maximum simulation
time.! Errors must be corrected before a successful save can be accomplished.
A warning is generated if the entered action name is undefined. The warning

message window is displayed with the message, ‘The action
not been defined.’

3.2.3.5 Maintenance Actions

The SIMSET executable is called C:\HOS-IV\simset.exe. The main code

for this program is contained in two files:

simset.c
sim_menu.c.

One file is used for global and profotyping information:
simset.l

In addition, the two C files must be compiled using the large model, and
then linked with five libraries:

skyl.lib
ct.lib
te.lib
Hibfp.lib
HOS-IV.lib

The windows used by EVENTEDIT are stored in the file simset.cat.

3.2.4 EVENTEDIT — Edit Events

The EVENTEDIT module of HOS maintains information on all user-
defined events. Events are actions that are executed at a user defined time
during the simulation to execute some time dependent occurrence. An event
consists of an event description, the event action, and the event time at which
the event action should be executed.

3.2.4.1 Description

EVENTEDIT maintains the list of events for the simulation, permitting the
user to view, edit, delete, and create events. The data structure used to
maintain the events is a linked list of event records. Each record contains the
following elements: |

+ Event number — Used by the C cocde generated by HOS as an

index for an array of action pointers.
« Event action — A valid defined HOS action name.

+ Event time — Consists of a maximum of seven two character
strings, one for each time unit.

» Event description — An alphanumeric string containing a
maximum of 80 characters.

»

44

EVENTEDIT is executed from HOS-IV as a result of the user pressing the

push button 'Edit Events.' High-level functional diagrams of the EVENTEDIT
moduie are shown below.

Mew Button. When the user depresses the new push button, the function
"new" is sxecuted. It saves the current event, if needed, and then creates and
displays a new, blank event. The fiow is illustrated below:

New Button

new (int);

save_if_necessary (func_ptr);

init_ewvt ();

insert_ewvt (*event);

find_evt (),

delete_evt (*event);

evi_to_window ("event);

Save Button, When the user pushes the save button, the "save" function
is executed. The verify_evt function validates the entered event information
and reports any errors. The Save_evt function actually does the linked list
maintenance. The temporary event created by verify_evt is deleted and the
new event is inserted and then deleted from the linked list of events in order to

establish the pointers. Finally, the event is added to the listbox. This proceés is

illustrated below:

Save Button

verity_ewvt ();

save_evt ();

free(*event);

insert_evt (*avent);

delete_evt (*event);

update_list_entry (*char);

highlight_list_selection ();

Pelete Bution. When the user selects an event and then pushes the
delete button, the setup_delete function displays the current event and asks the
user to verify the delete. Process delete is called if the user verifies. The event
is deleted from the list displayed in the list selection box, delsted from the

46

internal list, and then freed. Finally, the display is returned to normal. This
process is illustrated below:

Delete Button

selup_delete ();

process_delate ();

delete_entry (int);

| free (*event);

init_evt (),

[_evt__to_window (*event);

update_list_display ();

highlight_list_selection ();

User Aids Menu: Print. When the user selects print from the usar aids
menu, the "print_evis” function ic executed. It inserts the current event into the

linked list of events, This function then calls the "print_one” function for every

event in tha list. After all of the events have been printed, the evant that was
insarted is deleted. The process is illustrated below:

Ussar Aids meny:
Print

print_evis ();

insert_evt (‘event), |

L_print__one(’event) |

fflush (stdprn);

delete_evt (*event);

3.2.4.2 EVENTEDIT Screens

Titie Bar. The title bar of EVENTEDIT contains the words 'Event Editor’
as the function name. EVENTEDIT does not use the current activity or status
information areas of the titie bar.

EVENTEDIT Menu Bar. EVENTEDIT contains the following menu
options on the menu bar as illustrated in Figure 3-5:

. User Alds — provides the capability to print the list of defined
events, view the contents of any action file, and obtain help
messages, and .

+ Exit — terminates the Event Editor and retumns the user to th
HOS-IV screen.
The User Alds pull-down menu contains commands that allow the user
to view other files, print all currently defined events, and obtain help messages.
It contains the following commands:

» View Flles — allows the user to obtain a window that displays
currently defined actions.

U8a.0S JOJP3 JudAg "G-g aundi4

\ . e -J
amjrej 1amod 0q “
a3eino Jamod (oI SISNED WI0)S ;Purep Juday
00 a0 00 1 4 00 00 00 PWILL IV

2001/T 00L/T OINT

D SupuremTwRisAS 000°00:5¥-00
. WLIOS [edNII[d 000°SH01:00
- g amrey wajsds (00°01°L0:0C
Vv Sunuzem waisds 000°50:00:00

Hxd SPIy Jasn) -

C PYOLIQI*INIATE

« Print Rules — allows the user to obtain a printout of all
defined events.

« Help — allows the user to obtain additional information about
using the Event Editor.
EVENTEDIT Windows. The main EVENTEDIT window is a dialog
window for entering event information. The event dialog window, as illustrated
in Figure 3-5, contains the foilowing pushbuttons:

» NEW — clears all input fields and places the text cursor in the
event name field.

. DELETE — deletes the currently selacted event.

+ SAVE — saves the current event as displayed on the screen.
The following validation is performed prior to the actual saving
of the event definition:

1. The event time is compared to the maximum simulation
time. If the event time is greater than the maximum
simulation time, an error message window is displayed
indicating that the event time is too large.

2. The Do action is evaluated to determine if the action name
is valid and has been defined. If it has not, a warning

message window is displayed indicating that the action is
undefined.

The rule dialog window contains the following text entry boxes:

« Event Name — entry of the event name as a maximum of 28
characters.

+ Do — entry of an action name.

+ At Time — entry of the time in the form of seven two digit
numbers, one for each time unit.

A list selection box showing the event time, description, and event action
of currently defined events is displayed in the upper left corner of the event
dialog window as shown in Figure 3-5.

3.2.4.3 Input/Output

EVENTEDIT uses the following files:

o simname.evl — used by EVENTEDIT to read in the current
defined events. This file is also output when the user quits.

gn
vV

Each record contains four fields separated by a space. A line

is in the following format:

three character avent number,

six character event time,

thirty-one character event action, and

eighty character description.

*+ simname.ev3 — output by EVENTEDIT. It contains the C
code for the array of event action pointers. Each record
contains a line in the following format:

- event _proc[xxx] = 2222227227,

- xxx is a number from O to number of events - 1. zzzzz2zzz is
the event action name.

+ simname.ev2 — output by EVENTEDIT. It contains a record
for each event consisting of only the event action name.

3.2.4.4 Error handling

When the user attempts to save an event, error checking is performed on
the event time and event action name entered. If the event time is greater than
the maximum simulation time, a message window is generated that displays the
stalement, 'The event time, 00:00:00:00.000 is greater than the maximum
simulation time'. Errors must be corrected before a successful save can be
accomplished.

If an action name is undefined, a warning message window is displayed
with the message, The action has not been defined.’

3.2.4.5 Maintenanrce Actions

The EVENTEDIT executable is called C:\\HOS-IV\edit_evt.exe. The main
code for this program is contained in two files:

edit_evt.c
evt_menu.c.

Two files are used for global and prototyping information:

edit_evt.l
event.h

51

in addition, the two C files must be compiled using the large model, 'and
then linked with five libraries: '

skyl.lib
ct.lib

te.lib
Itibtp.ilb
HOS-1V.lib

The windows used by EVENTEDIT are stored in the file edit_evt.cat.

3.2.5 RULEEDIT — Edit Rules

The RULEEDIT module of HOS maintains information for ali user-defined
simulation rules. Rules set up conditions that determine which actions wili be
executed at a particular simulation time snapshot. A rule is defined by a starting
and ending conditional, the name of the action to be invoked if the starting
conditional is trus, and a unique task number. If the starting conditional
statement is true, the named action will be invoked. The action will then
continue untii the ending conditional is true. Rules can be of three distinct
types: cperator, hardware, or environment. Each type of rule is grouped
separately but identical code is used to maintain the rules.

3.2.5.1 Description

RULEEDIT maintains the list of defined rules for a simulation and permits
the user to view, edit, delete, and create rules. There are three sets for rules for
each simulation: hardware, operator, and environment. A rule consists of the
following elements: |

1. Rule Number:

- Operator — a unique three digit number consisting of
a one digit priority assignment from 0O (lowest) to 9
(highest) and a two digit number 00 (lowest) to 99
(highest).

- Hardware/Environment — a two digit number 00
(lowest) to 99(highest).

2. Rule Name: An alphanumeric name containing a
maximum of 28 characters.

b2

3. If Clause: a starting condition consisting of a Boolean
statement utilizing characteristics of objects, constants, and
properties.

Do Clause: action name.

Until Clause: an ending condition consisting of a Boolean
statement utilizing characteristics of objects, constants, and
properties.

The same code performs operations on all three rule types.

o

In order to provide the combined files needed by other modules, the Rule
Editor combines the hardware, operator and environment files upon exiting.

The high-level functional diagrams are organized by user actions and
are described below. '

Print Button. When the user pushes the print push button, the function
"print" is executed. The write_tki function writes the current task to the printer
stream. The print function is shown below:

Print Button

print (int);

fields_to_task (task_type);

write_tk7 (task_type, stream);

fflush (stream);

New Button. When the user depresses the new push button, the function
"new" is executed. It saves the current task if needed and then creates and

[44]
(%

displays a new, blank task. The flow is illustrated below:

New Button

new (int);

save_if_necessary (func_ptr);

insert_old_task (task_type);

unhighlight__iist_smection ()

init_task ();

task_to_window (task_type);

Save Button. When the user pushes the save button, the "save" function
is executed. The verify_task function validates the entered task information and
reports any errors. Task_name creates the name to display in the list selection
box. The temporary task created by verify is deleted and the new task is
inserted and then deleted from the task list in order {o establish the pointers.

—

Finally, the task is added to the listbox. This process is illustrated below:

Save Button

verify_task ();

task_name ();

free_task (task_type);

insert_task (task_type);

delete_task (task_type);

update_list_entry (*char);

highlight_list_selection ();

D_ﬂQLe_m. When the user pushes the delete button, the setup_deiste
function displays the current ruie and asks the user to verify the delete. Process
delete is called it the user verifies. The rule is deleted from the list displayed in
the list selection box, deleted from the internal list, and then freed. Finally, the

display is retumed to normal. This process is illustrated below:

Delete Button

setup_delete ();

process_delete ();

delete_entry (int);

delete_task (task_type);

free_task (task_type);

task_to_window (task_type);

update_list_display ();

highlight_list_selection ();

User Aids Meny: Print. When the user seiects print tasks from the user

aids menu, the "print_tasks" function is executed. it opens a file on disk and
writes each task to it, formatting it for printing. it then sends the file to the printer.

(24
(o7}

The process is illustrated below:

User Aids menu:
Print

print_tasks ();

fopen (stream, “char);

write_tk1 (task_type, stréam)

fclose (stream);

print_tk1 ();

3.2.5.2 RULEEDIT Screens

Jitle Bar. The title bar of RULEEDIT contains the words ‘RULE EDITOR’
as the function name. RULEEDIT does not use the current activity or status
information areas of the title bar.

BULEEDIT Menu Bar. RULEEDIT contains the following menu options
on the menu bar as illustrated in Figure 3-6:

+ Rule Types — defines the rule type as environment,
hardware, or operator. When one of the type options is
selected, the current rules, if any, are saved and the ruies
associated with the selected type are loaded.

» Edit — provides copy and paste functions. Copy copies the
current rule intc an invisible clipboard buffer. Paste copies the
ciipboard buffer into the rule currently defined on the screen
only if the current rule is new.

« User Alds — provides the capability to print the list of defined
rules, view the contents of any action file, and obtain help
messages. :

+ Exit — terminates the Object Editor and returns the user to the
HOS-IV screen.

U9340S JONP3 8Ny "9-g ainbi4

= id 51vNOF M3 HETPI IO QEE& ‘qHun

e parssacord | 0Qq

_ﬁ ua[e par TVNO 39essowr 10 &ﬂ 3

H3je paz| BuweN
oIy

nwanmzz

PR Sl ol _u.ﬁu—d-to.—. NOwO .

J2[e MO[[2A P090
JIETUANZ FO ‘

STTINY e==—————

SN RO LY
IXT SRV I8N -

pa addy ey

58

The rule pull-down menu contains commands that allow tha user to define the
rule type. It contains the following commands:

» Environment — defines an environment type rule. All of the
data entry fields in the ule dialog window are blanked and the
text cursor is placed in the first character in the rule name field.
The rule dialog window is modified to remove the Rule Group
click box if present.

+ Hardware — defines a hardware type rule. All of the data
entry fields in the rule dialog window are blanked and the text
cursor is placed in the first character in the rule name field. The
rule dialog window is modified to remove the Rule Group click
box if present.

+ Operator — defines an operator type rule. All of the data
entry fields in the rule dialog window are blanked and the text
cursor is placed in the first character in the rule name field. The
rule dialog window is modified to add the Rule Group click box
if not present. '

The User Alds pull-down menu contains commands that allow the user

to view other files, print all currently defined tasks, and cbtain help messages. It
contains the following commands:

+ View Files — allows the user to obtain a window that displays
currently defined actions.

« Print rules — allows the user to obtain a printout of all
defined rules. !t first formats the rules and then prints it out on
the line printer.

» Help — allows the user to obtain additional information about
using the Rule Editor.

BULEEDIT Windows. The main RULEEDIT window is a dialog window
for entering rule information. The rule dialog window, as illustrated in Figure 3-
6, contains the following pushbuttons:

» NEW — clears all input fields and places the text cursor in the
rule name field.

+ DELETE — deletes the currently selected rule.

n
0

» SAVE — saves the current rule as displayed on the screen,
The tollowing validation is performed prior to the actual saving
of the rule definition:

1. The rule name is a valid name, i.@., it starts with an
alphabetic character (a-z), does not contain any illegal
characters, and is unique.

2. The If and Until clauses contain valid Boolean conditions. f
the Boolean operator or constant is invalid, an error
message window is displayed indicating that the clause
cannot be saved. If a characteristic-object pair is invalid, a
warning message window is displayed indicating that there
is a problem with the Boolean conditions.

3. The Do action is evaluated to determine if the aclion name
is valid and has been defined. If it has not, a warning
rmessage window is displayed indicating that the action is
undefined. '

+ PRINT — prints the current rule definition on the printer.
The rule dialog window contains the following text entry boxes:

« Rule Name —- entry of the ruie name as a maximum of 28
characters.

- It — entry of the if clause in the form value Boclean operator
value where value can be a characteristic of an object or a
constant and Boolean operator can be equals, not_equal,
less_than, less_or_equal. greater_than, or greater_oi_equal.

+ Do — entry of an action name.

+ Until — entry of the until clause in the form value Booclesan
operator value where value can be a characteristic of an object
or a constant and Boolean operator can be equals, not_equal,
less_than, less_or_ecqual, greater_than, or greater_or_egqual.

The rule dialog window contains a click tox for entry of the rule group
aumber 0-9 (operator rules only) and rule number 0-G9. A list selection box
showing the number and names of currently defined rules is displayed in the
upper left comer of the rule dialog windew as shown in Figure 3-6.

3.2.5.3 Input/Output

The files produced by RULEEDIT are described below:

simname.tko — stores the internal representation of the
operator rules and uses the following record structure for
each rule:

char description [35):
char if_cond f200};
char ifc . {300},
char procedure [35];
char until_cond [200);
char until_c [300};
int priority;

int sub_priority;
task_type *next;

task_type *last;

simname.tkh — stores the internal representation of the
hardware rules. It uses the same structure as operator rules.

simname.tke — stores the internal reprasentation of the
environment rules. It uses the same str :ture as operator
rules.

simname.toi — contains C ode to initialize the operator tasks.
simname.thi — contains C code to initialize the hardware tasks.

simname.tei — contains C code to initialize the envircnment
tasks.

simname.toc — contains C code t0 execute the operator tasks.

simname.thc — contains C code to execute the hardware
tasks.

simname.tec — contains C code to execute the environment
tasks.

simname.to1 — contains *he text version of the operator rules.
It is formatted for output t¢ he printer including form feeds.

simname.tht — conta ' . the text version of the hardware rules.
It is formatted for ouvtr ~ -u the printer including form feeds.

-

simname.tel — contains the text version of the envircnment
rules. It is formatted for output to the printer including form
feeds.

simname.to2 — contains a list of the procedures referenced in
the operator rules, each stcred in a separate record.

sirmname.th2 — contains a list of the procedures refersnced in
the hardware rules, each stored in a separate record.

simname.te2 — contains a list of the procedures referenced in
the environment rules, each stored in a separate record.

simname.tob — contains a list of characteristic object pairs
referenced in the operator rules. The characteristic names are
separatad from the object by a comma and a space and each
pair is stored in a separate record.

simname.thS — contains a list of characteristic object pairs
referenced in the hardware rules. The characteristic names are
separated from the object by a comma and a space and each
pair is stored in a separate record.

simname.te5 — contains a list of characteristic object pairs
referenced in the envircnment rules. The characteristic names
are separated from the cbject by a comma and a space and
each pair is stored in a separate record.

simname.to6 — contains a list of all a|phabetics referenced in
the operator rules; each alphabetic is stored in a separaie
record.

simname.thé — contains a list of all alphabetics referenced in
the hardware rules; each alphabetic is stored in a separate
record.

simname.te6 — coritains a list of all alphabetics referenced in
the environment rules; each alphabetic is stored in a separate
record.

simnarne.tk2 — contains a list of all procedures referénced in
all of the rules. It is a combination of the thres files:
d:\hosiviesimname.tec2, d:\hosivi.simname.th2, and
d:hosiviesimname.te2. .

simname.tk3 — contains the C code to initialize all of the rules.
it is a combination of the three files: d:\hosiviesimname.103,
dhosiviesimname.th3, and d:\hosiviesimname.te3.

simname.tk4 — contains the C codae to drive all of the rules. #t
is & combination of the three files: d:\hosiviesimname.to4,
d:\hosivissimname.th4, and d:\hosivissimname.ted.

» simname.tk5 — contains the list of all characteristic object pairs
referenced in the rules. It is a combination of the thrae files:
C:\hosiviesimname.to5, C:\hosiviesimname.th5, and
C:\hosiviesimname.te5.

+ simname.tk6 — contains the list of all alphabetics referericed in
the rules. It is a combination of the three files:
d:\hosiviesimname.to6, d:\hosiviesimname.th6, and
d\hosivi*simname.te6.

3.2.5.4 Error handling

When the user completes entering a task and depresses the save
pushbutton to save the rule, the entered fields are validated. Error messages
indicate errors that must be corrected before the rule can be saved; warning
messages are informative messages indicating that something suspect is
contained in the rule but it does not have to be corrected before the rule can be
saved. The following error messages are generated for If and Until statements:

A piece of the statement is missing.
Syntax error: (otfending token).
Undefined alphabetic or syntax error.
Syntax error.

. Atask with that number already exists.

S S R

Warning messages appear when undefined éntities (object,
characteristic, or action) are used in the rule definition. The window indicates
where the problem is, what type of entity is undefined, and what name the user
entered. '

63

3.2.5.5 Maintenance Procedures

The Rule Editor executable is called C:\hosiviedit_tsk.exe. The main
code for this program is contained in thg files:

edit_tsk.c
list_tsk.c
lo_tsk.c
err_tsk.c
tsk_menu.c
- The following files contain global and prototyping information:

edit_tsk.e

flist_tsk.e

fo_tsk.e

err_tsk.e

tsk_menu.e

edit_tsk.l

list_tsk.l

lo_tsk.|

err_tsk.l

tsk_menu.l

The five C files must be compiled using the large mode!, then linked with

the following five libraries to produce the executable code:

skyl.llb
ct.lib
te.llb
libfp.lib
hosiv.lib
The windows used by RULEEDIT are stored in the following file:

edit_tsk.cat

64

3.2.6. EDIT_ACT — Action Editor

The Action Editor is used to enter actions. Actions describe what will be
done by the operator, system, and environment at a given simulation snapshot if
the related rule is true. The steps to accomplish a task which must be
performed at a given mission time based on the current environmental and
system status are detailed in the action. Actions can inciude updates to the
values of object characteristics, invocation of other actions, and the initiation or
suspension of action rules. Actions are the only simulation mechanism which
can affect the values of the characteristics of objects.

Actions are defined using a smali set of standard verbs (e.g., PERFORM,
SET, SUSPEND) known as the HOS Action Language (HAL). A summary of
the current set of HOS verbs is shown below:

COMMENT <string> ENDCOMMENT
DEFINITIONS [<def-statement>] ENDDEFINITIONS
END_SIM

FILE [<print-value>] ENDFILE

GET <local> FROM <attribute> OF <object>

IF <boclean> THEN <statement-group> ENDIF {ELSE <statement-
group> ENDELSE)

PRINT [<print-value>] ENDPRINT

PUT <send-value> IN <attribute> OF <object>

RETRIEVE <local-object> FROM <set-keyword> <set-name>
SET <local> TO (<formula>)

START <rule numbers

STOP <rule number>

SUSPEND <rule number>

USING [<parameter>] DO <proc-name>

WHILE <boolean> THEN <statement-group> ENDWHILE

3.2.6.1 Description

EDIT_ACT is essentially a free format word processer with word
wrapping, cut and paste features, and mouse and keypad control of the text

€5

cursor. Once an action is entered, the user can specify that it be translated by
HAL for use in the simulation executabie. The status of the translation, whether
successful or errors were detected, is displayed in a message window. |f any
errors were detacted in the translator, the View File option can be used to create
a separate window containing the translator output and accompanying error
message.

The high-level functional diagrams organized by pull-down menu options
are shown in Figure 3-7.

3.2.6.2 EDIT_ACT Screens

The Action Editor consists of a title bar, a menu bar, a text editing window
with a scrollbar, and a number of dialog boxes used for program interaction with
the user. The Action Editor screen is illustrated in Figure 3-7.

Action Editor Title Bar, The Action Editor titie bar consists of a current
activity area on the left which displays the name of the current action, the words
‘ACTION EDITOR' in the center, and the current line and column position of the
text cursor on the right.

i itor . The menu bar for the Action Editor contains the
following menu options:

» File — file related commands such as saving, opsning, etc.
Edit — editing commands: cut, paste, etc.
Search — word and line search commands.

User Alds — provides the capabilities to view help files and
action files.

Exit — terminates Action Editor and returns the user to the
HOS-IV module.

The File pull down menu, illustrated in Figure 3-8, contains:

+ New — closes the current document after asking if changes
should be saved and then creates a new empty action.

» Open — closes the current document after asking if changes
should be saved and then opens the file selection dialog box.

66

U98I0g J0YP3 UoROY "/-¢ aInbiy

(N1
W31 WareTpaz 3O smeys NI passadoexd 1nd
ISTAANA
Jjo e WM} 0Q
s
: JIANT
passadord pageTpar ‘wnTuns INIId
ssaxard " page par O
NIHL 228uep §TvNO1 AejdsipTiia[e™par JO IOpes J]
Ae[dsipTpear O Le[dsipTiI21e"pa1 HNISN
YOLVIYAJO TIV ANAJSNS
INFNWODANA
PALIMY0 seY JUA (221D Jurjedrpuy sadessawr JIdfe pai ssad0ad |
INIWNNOD

umxm %ﬁa k@%: P

T aedg ipd Ay

£ 10D ¢

UL

UOLIA3 ‘NOILDV..

J3[e par ssadoly |

67

weiBeiq [euoioun4 Joip3 ooy 'g-¢ ainbig

meu%_%_n
8|l4 19D
a___u»ums 31 Aejdsip
exajdy umeds o::Ma.. IS o_zﬁ_c_

A

+

L)

eABS UBAUOD

Kiessaoau ™ jI” @Aes

A1esseoau jI oAes

Aiessedau)i eAes

ki

+

t

?

aAEeS

ele|suel

uado

MoU

nuew 8j!4

ad
€@

(panuyuod) wesbeiq feuotiound Joyp3 UOHOY ‘8- ainbi4

Js—elgjep It s uesul 31 1xa) oop 19b
xe} ybyybiyun ejsed op el ybyybiyun Jes|o_op
4 3 b 4 2
(o]
Jes|d” 0p leg|d op Adoo op Adoo op
es[d e|sed £doo no

nuaw 1P3

(panunuod) weibeiq reuonound Jojp3 UONDY '8-E ainbi4

sul_ojob . yoleas
lequinu suy 18b yoleas Buus yoseas 106 2
eul| 0} ob xau puy puy

nuapy Yyoseas

» Translate — asks if changes to the current document shouid
be saved and then spawns the HAL translator.

» Save — opens the save dialog box.

The Edit pull down menu, illustrated in Figure 3-8, contains:

« Cut — removes selected text from the current document and
stores it in the clipboard.

« Copy — copies selgcted text from the current document and
stores it in the clipboard.

« Paste — inserts the contents of the clipboard in the current
document at the insertion point.

~» Clear — deletes the selected text from the current document
and throws it away.
The Search pull down menu, itlustrated in Figure 3-8, contains:
» Find — opens the input search string dialog box for the user to
define a gearch string.

« Find Next — finds the next occurrence of the string defined in
the input search string dialog box.

+ Goto Line — opens the input line number dialog box for the
user to enter the number of the line to goto.
The User Alds pull down menu contains commands that allow the user
receive help on the current module and view action files:
» Help — allows the user to obtain additional information about
using ACTION EDITOR.

* Print — allows the user to get a formatted hardcopy on the
standard printer.

» View File — allows the user to view action files created using
the Action Editor.

Action Editor Text Editing Window. The text editing window ccnsists of
text area and a scrollbar. The text area is 23 rows by 77 columns. The scrollbar
is to the right of the text area and has four control buttons and a relative file
position indicator. The four controls on the scrollbar are:

+ Scroil Line Down —- displays a page of text starting from the

line before the current top line.

* Scroll Page Down — displays a page of text starting one
page before the current top line.

o

71

e — T ———

« Scroll Page Up — displays a page of text starting fror the
current bottom line.

= Scroll Line Up — displays a page of text starting from the
line after the current top iine.

Action Editor Dizlog Boxes. Dialog boxes contain text entry fields in

addition to pushbuttons, list boxes, and other message window components.
. File name — user can edit current action name and choose to
save or cancel the save operation.

» Search string — user can input string to search for and
choose to search or cancel. The search string can coatain only
alphanumeric characters and underscore (_). It cannot search
for control characters such as tabs.

* Line number — user can enter integer line number only and
choose to move the text cursor to that line or cancel the goto
operation.

Action Editor Message Windows. Message windows display information
which the user must acknowledge by hitting a pushbutton. Some message
windows may be cancelled.

« String not found — the search stnng was not found in the

document.

+ Translation successful — the action was successfully
translated.

« Translation unsuccessful — the action did not translate.

+ End editing sesslon — the user may confirm or cancel his
Quit selection from the Exit menu.

. Save changes — the user may confirm or cancel the saving
of the current action.

» Out of memory — the document is too large (actually if the
file is this big, the compiler won't accept it anyway).

» File selection — the user can select an action to open or
delete or choose to cancel his selection.

- Confirm delete — the user can confirm or cancel his
decision to delste an action.

» Can't delete current flle— the user attempted to delete the
currently opened file.

» Can't delete system file — the user attempted to delete the
TRANSLATOR OQUTPUT file or the SYMBOL TABLE file.

72

Action Editor Information Windows. Information windows do not require
any input from the user. They contain informative messages to let the user
know that selected commands ars being processed.

« Printing In progress — the printing of an action is

underway.

» Reading file — the file is being read.

« Translating — the HAL translator is running.

3.2.6.3 Input/Output

Files, EDIT_ACT references the following files:
« d:\sortproc.p$ — sorted list of action names.

« d:\htemp.txt — temporary file created for saving and printing
purposes.

« c:\hosivihoshplipnnnnnnn.hpl — actua! action files where
nnnnnnn is a seven digit sequential number assigned by the
EDIT_ACT to uniquely identify the file. When the translated
version of the action is store in the pnnnnnnn.c file, the same
seven digit identifier is used.

+ ¢:\hoslvihoshelp\prc_help.000 — list of help topics
specific to the Action Editor.
+ c:\hosivihoshelp\pre_help.nnn — help files (numbered

extension starting from 001)

User Actions, EDIT_ACT uses the following function keys:
* F1 - Begin Mark — sets beginning of text selection

* F2 - End Mark — sets end of text selection

* F3 - Cut — see section 3.2.6.1.2 under the Edit menu

« F4 - Copy — see section 3.2.6.1.2 under the Edit menu

* F5 - Paste — see section 3.2.6.1.2 under the Edit menu

+ F6 - Clear — see saction 3.2.6.1.2 under the Edit menu

* F7 - F10 — Not implemented |

3.2.6.4 Error handling
Errors generated by the HAL translator are available to the userin a

separate view window. An error flag is passed from HAL to indicate whether or
not any errors were detected in the translation process.

73

TRANSLATOR_OUTPUT contains the transiated action and descriptive errors
messages.

3.2.6.5 Maintenance Procedures

Action Editor source code (edit_pre.c and prec_menu.c) is compiled using
Microsoft C versicn 4.0 with the large memory model switch (/AL). It requires
the HOS-IV, SKYL, C7, and TE libraries in addition to the standard C libraries
for linking.

3.2.7. EDIT_CBJ — Objact Editor

All krow!edge about entities to be modeled in a simulation (e.g.,
dispiays, controis) are defined as ob; ts HOS utilizes an object-attribute
siructure to manage the object data. Each object has an associated list of
atributes (e.9., size, location) and each attribute is assigned a value. These
attributes describe the important features or charactsristics of an object. 'n
order 16 enhance the user's understanding of this structure, attributes are
referred to as characteristics in HOS Values indicate the state of the
characleristic al a particular point in the simuiation,

Objects «re stored in a library that is accessible to/from all simulations
developed on a particular microcomputer. This object library provides a
commoan fac ity for storing object knowledge and sharina object definitions

between simulations. Whenever an c¢bject is used ~r action, the
current object definiton is retrieved + cm the object libr . “zntto note
1t at the ouieci library can be shared by multiple - J is not
sirnulaticn cependent. This section describes the EC ouule ot HOS

which maintains the object and alphab: tic library.

3.2.7.1 Description

EDIT_CBJ processes ali user actions related to object dsfinitions and
their associated characteristics and values. Charact - .tics types are whole,

decimal, or alphabellc. Whele and dercima rec - 2 numeric values.
Alphaoetics are text strings and the list o1~ . .ned « udetics are stored in a

T A
T

separate alphabetics dictionary. EDIT_OBJ maintains the object and set
libraries and the alphabetics dictionary. An object definition consists of the
following information:

1. Object Name — an unique identifier of up to 28 characters.
The first character must be an alphabetic (a-z) and the
remainder can contain alphabetics (a-z), numbers (0-9), and
underscore (_); and

2. Characteristic List — list of characteristic names with
associated type and initial value. A maximum of 15
characieristics can be defined for an object. The characteristic
name can be a maximum of 28 characters including
alphabetics (a-z), numbers (0-8), and underscore ().

The characteristic type is automatically assigned based upon the contents of the
initial value. Type whole represents an integer number containing only the
digits 0-9 and an optiona! preceding plus (+) or minus (-) sign. Whole values
are saved as C type iong that are stored in 4 bytes. The valid range of values
for wholes is -2,147.483,648 to 2,147,483,647. Type decimal represents a
decimal number that contains only the digits 0-9, a single decimal paint (.), and
an optional precedidg plus (+) or minus (-) sign. Decimal values are saved as C
type double that are stored in 8 bytes. The valid range of values for decimals is
approximately 1.7E-308 to 1.7E+308. !f the value is neither whole nor decimal,
then EDIT_OBJ assurnes ttat it is an alphabetic value. Alphabetic values are
strings of up to 28 characters that can contain any symbol except space, single .
quote, or double quote. The strings are entered without any special enclosing
characters such as quotes. The alphabetic values are siored in & separate
alphabetic dictionary.

1. Simple, singular objects such as & s.ngle display; or
2. Sets of objects which represent multiple occurrences of
identically defined objects such as a list of 10 messages or a
se! of 530 emitters.
For object sets, the characteristic list must be identical but the value of a
characteristic can vary. The names of the members of objects in object sets are
constructed by EDIT_OBJ appending a sequent'al member nurnber, starling
with c:ne, to the ena of the object set narre. For example, the object set narre

75

EMITTER would contain objects named EMITTERO001, EMITTERO002,
EMITTEROQ0S, setc. Once a set has been defined, the number of members in the
set cannot be changed; i.e., no objects can be added or deleted from the set nor
can any characteristic be modified without resaving the entire set. The only item
that can be modified by the user is the value of a characteristic. When s2ts are
initially created, all members of the set have ‘e initial value assigned to the set
name.

The object library and alphabetic dictionary are accessed by other HOS
modules to check for the existence of an object, object/characteristic pair, or an
alphabetic valus.

A high-level functional diagram of EDIT_OBJ processes is presente.
below organized by pushbutton seiactions.

Mew Object, When the user depressed the pushbution iabeled "NEW",
all text entry boxes on the dialog window are cleared of any previously entered
information and the cursor is placed in the object name text entry box. Control
is returried to the Edit_driver (keyboard and mouse polling routine) as shown
below:

NEW_OBJECT

Clear_Fields

[current_field = ONAME |

Set_Field

View Cpojecl, The view object function displays & list of defined objects in
a list selection window and ailows the user to select and open or delete an
cbject. If the selected vbject is a set member, the user is not allowed fo delste it
or modity the characteristic names or types. For set objects, the user can only
chdnge the default values of the characteristics. When view object is

-

~J

completed, control is then returned to the Edit_driver. View object is illustrated
below:

VIEW OBJECT

DialogBox (FILEBOX)

Cist(FILEBOX)

Save Object, The save function performs error checking on the values -
entered by the user and is illustrated below. Any detected errors are displayed
in red and a message window is displayed to indicate the type of error. if the
item is a set member, a match is done against the set definition. If it matciies,
the object will be saved with its new set of values. If the definition has been
modified, it will display an error message telling the user that the entire set must
be resaved in order to change the set definition. The Read_Field routine
assigns one of three types (WHOLE, DECIMAL, or ALPHABETIC) to each
characteristic based upon the entered initial value.

if the object is new, the ramdrive directories are recreated and ontrol is
returned to the Edit_Driver.

77

SAVE_OBJECT

Read_Name]

find_object_offset

read_item

f object is
a set member, have fields
been redefined?

DialogBox YERRORBOX) ,

Read_Fields

} DialogBox (ERRORBOX)

add_object

Erdnt Object, The Print_Object function is shown below ard reads the
values i the edit fields and performs error checking.

if no errors are detected, the object definition will be formatted and sent to the
printer. Upon completion of the printing, control is returned to the Edit_Driver.

PRINT_OBJECT

Read_Fields

Format_Object_Values

Open Object, The OPEN function searches for the selected object in the
directory, reads the object definition, and formats and displays the information in
the appropriate field in the dialog window. 1t is illustrated below:

 Show_Fields

Delete Obiect, The DELETE option reads the object selected by the user
for deletion and displays an error if the object is a set member. Otherwise, the
object is marked for deletion.

A deletion from the object library is dons when the object editing function is
completed. DELETE is illustrated below:

DELETE

read_item |

is object 'yes
a set member?

DialogBox (ERRORBOX)

no
- Delete_Object

79

New Sel, The New_Set function clears edit fields of previous
information, sets the cursor in the object name text entry box, and returns contro!
to the Edit_Driver. It is illustrated below:

NEW _SET

N

Ciear_Fields

curreni_field = ONAME

Set_Field

View A Set. The view a set function displays a list of defined sets in a list
selection window and allows the user to select a set for opening or deletion.
Control is then returned to the Edit_Driver. ltis illustrated below:

VIEW_SET

DialogBox (SETBOX)

ListSets(SETBOX)

Save A Set, The save function performs error checking on the values
entered by the user. If the object values are deemed valid, an entry is made into
the set library. Copies of the objects (setname appended with a number from
'001' to '999') are added to the object library.

80

The appropriate ramdrive directories are updated and control is retumed to the
Edit_Driver. Save_Set is illustrated below:

SAVE_SET

Read_Name

find_object_offset

read_item

Read_Fields

ERRORS? DialogBox (ERRORBOX)

add_set_to_lib

add_setobjects_to_lib

Delete, The DELETE option reads the set name selected by the user for
deletion and marks it for deletion.

81

The actual delstion of the set information from the object and set libraries Is
performed upon termination of the object editing function. DELETE is illustrated
below:

DELETE

read_item

delete_set_item

delete_appropriate_objects

Open, The OPEN function searches for the selected set in the directory,
reads in the first object of the set, and then formats and displays the fields in the
dialog window. Control is then returned tc the Edit_Driver. OPEN is illustrated
below:

OPEN
|

Show_Fields

Prirt. The print object library function formats and prints the entire library
tc device stdprn. When the printing is compieted, control is returned to the
Edit_Driver. PRINT is illustrated below:

PRINT

Print_Object _Llibrary

Add _an Alphabetic, The 'Add alphabetic to dictionary' function
generates a dialog window with a scroilable list viewing window rontaining the

names of the currently defined alphabetics in sorted order. If insufficient
memory is availabie to sort the alphabetic names, the alphabetics are displayed
in random order. It provides a text entry window for entering a new alphabetic.
The user is allowed to CANCEL the function and return to Edit_Driver or SAVE

82

which adds the alphabetic to the end of the alphabetic dictionary.
Add_an_alphabetic is Hllustrated below: '

Add an

alphabetic

DialogBox (PROP80OX)

current_field = O_NAME

Set

_Field ()

sori_alphabetic_dictionary

ListProps(PROPBOX)

3.2.7.2 EDIT_OBJ Screens

. The title bar of EDIT_OBJ contains the words 'OBJECT
EDITOR' as the function name. EDIT_OBJ does not use the current
activity or status information areas of the title bar.

EDIT O Meny Bar. EDIT_OBJ contains the following menu optlons on

the menu bar as illustratea in Figure 3

9:

» Sets —- detines and manipulates object sets,

+ User Alds — provides the capability to add a value to the
alphabetic dictionary, print the object library, and obtain help

messages. and

+ Exit — terminates the Jbject Editor and returns the user to the

HOS-IV scraer.

The set pull-down menu contains commands that allow the user 1o
create, save, and view object sets. They are as follows:

» New set — defines a new object set. All of the data ertry
fields in the object dialog window are blanked and the text
cursor is placed in the first character in the objort name field.

+ Save e set — saves an object set and creates n objects in the
set where n is the number of items in the set specified in the
number field. An informative message window is displayed

83

u2a.og Joyp3J 13lqo "6-¢ ainbi

WJ 15590033
.ln 1s0g

6 YipImTIdpeIayd| M]
41 W3y ey M
o1 ydTjo ouim | dAVS _ -
6'7S uonesoj £)1 q ©
A8 uonedo X | A ‘
ain adAyAerdsip| v _
30 smeys| v MiIA
anjep wep dystiz)derey)) adly
M3AN '
328 up Wi pare pai| aureN .
T2quInN P3lq0 _
- 123{90
jxg spiydasy e - 8)ag
\ *WOLIaIfid31g0?

M

showing the object number being created ard the number in
the set.

« View & set— creates a list box containing the name of all
currently defined sets and permits the user to select a set by
pointing to the desired set name. The user has the option to
either (1) delete all members in the set and the object set itself
by depressing the Delete pushbutton, (2) open the set by
depressing the Open pushbutton, or (3) Cancel the view
operation. For the open set option, the contents of the firct
member of the set (i.e., object number 1 in the set) is displayed
in the object dialog window. ;

The User Alds pull-down menu contains commands that allow the user
to create, save, and view object sets. They are: : "

» Add an alphabetic — allows the user {0 add an alphabstic
to the alphabetic dictionary. New alphabetics are always
added at the end of the dictionary because the alphabetics are
implemented by using their position in the dictionary as the
value to be placed in the object. However, the alphabetics are
presented to the userin alphabetic order.

. Print the object library — allows the user to obtain a
printout of all objects in the object library. It first formats the
object library, and then prints it out on the line printer.

+ Help — allows the user to obtain additional information about
using the Object Editor.

EDIT_OBJ Windows. The main EDIT_OBJ window is a dialog window for
entering object information. The object dialog window, as illustrated in Figure
3.9, contains the following pushbuttons:

« NEW — clears all input fields and places the text cursor in the
object name field.

« VIEW —- displays a list selection box containing the names of
the currently defined obijects in the object liorary (in alphabetic
order), including members of cet objects. The user can then
use the point and click selection method to select an object
name. The currently selected object will be highlighted in
black. The following pushbuttons are functional in the view
window:

. OPEN — closes the view window and displays the current
definition of the selected object in the object dialog window.

- DELETE — deletes the object currentiy selected object. if
the object is a member of a set, a massage window is

85

created 10 inform the user that members of sets cannot be
delsted.
« SAVE — saves the current object as displayed on the screen.

The following validation Is performed prior to the actual saving
of the object definition:

1. The object and characteristic names are valid names, i.e.,
they start with an alphabetic characte/ (a-z) and do not
contain illegal characters.

2. The value of a characteristic must be one of tha following:

- Numeric: either real or integer (with values which can be
contained in a long or double precision); or

- Alphabetic: the value must be in the alphabstic dictionary.

3. The characteristic type is determined based upon the
entered value as described in Section 3.2.7.1. The first
letter of the type (W=whole, D=decimal; A=alphabstic) is
displayed in the type field of the appropriate characteristic.
The default type is WHOLE.

4. An initial value must be entered for every characteristic
name. .

5. For every entered value, a characieristic name was
supplied. :

6. If both the characteristic name and value fields are blank,
that row of information is ignored.

« PRINT — prints the current object definiticn on the printer.

The object dialog window contains the following text entry toxes:

» Object Name — entry of the object name &s a maximum of
28 characters.

* Number In Set — entry of the number of members in a set.
Used only when the user selects the Save a Set option from
the Sets menu bar. Valid entries are a number between 2 and
999.

« Characteristic Name/Value — entry of a maximum of 14
pairs of characteristic names and values. The type column is
automatically filled in by EDIT_OBJ during the SAVE operation.
When the user seiects the Add an alphabetic option from the User
Aids menu bar, an alphabetic dialog window is displayed as shown in Figure
3-10. The alphabetic dialog window contains & list viewing box that displays
the list of the currently defined alphabetic in alphabetic order.

»

<

|

anaqeydyy

L SETIR e Ol ek T

\.

|, 2
Jaqump 123{q0
1J3f90 - s——
uXq Spry ias(T _ RS
“NOLIA3 “IDHE0"

87

The user can select from the following pushbuttons:

» CANCEL — canceis the add an alphabetic function.

« SAVE — adds the entered alphabetic name to the alphabetic-
dictionary. ' '

The alphabetic dialog window also contains a text entry box for entry of the
alphabetic name.

3.2.7.3 input/Output

The files produced by EDIT_OBJ include the following and are iliustrated
below:

FILES

(if they exist)

HOSSET.S$ OBJECTS.O$ HOSPROP.P$
(object sets (object (alphabetic
library). library) dictionary)
EDIT_OBJ.EXE
HOSSET.S$ OBJECTS.03% HOSPROP.P$
(object sets (object (alphabetic
library) library) dictionary)

*

» Objects.0$ — Object library
66

» Hosprop.p$ — Alphabetic dictionary

» HOSSET.S$ — Set information file containing number of
members and Snnnannn.set (1 is between 0 and 9999999)
which will be created and used at simulation execution time to
contain set information.

Each defined object requiras 668 bytes in the objects.o$ file.
3.2.7.4 Error handling

OBJECT errors include the following :

» Failure to open a necessary file. This returns 10 the calling
procedure, but does not cause program failure.

¢ File read/write failure. Closes all files and returns but does not
cause program failure.

» File seek failure. Since random file access is used wheraver
possible, seek faults can occur. This error closes all files and
returns to the calling program, wiihout doing a read, but coes
not cause program failure.

» All user errors are displayed to the user in a8 message or
information window.

+ Memory allccation errors which are recoverable.
5.2.7.5 Maintenance Procedures
OBJECT source code is compiled using MSC Microsoft C version 4.0

with the large memory model switch {/AL). It requires the HOS-IV library and
SKYL. libraries in addition to the standard C libraries for compilation.

3.2.8. HAL — HOS Action Translator

HAL, the HOS Action translator, translates actions into C code. It is
invoked by the Action Editor, ACTEDIT, automatically when the user selects the
Translate option on the File pull-down menu as described in Section 3.2.6.

3.2.8.1 Description

The HAL ftranslator is a one pass translator using a forward-chaining
translation scheme. The user ACTION file (Pnninnnn.HPL) which is currantly
open within the Action Editor is input to HAL by EDIT_ACT. nnannnn

89

represents a unique seven-digit number assigned by the Action Editor to
translate the 28 character action name into a valid DOS file name. The
translator reads one token at a time. The token is read in as a string which is
isolated by valid delimiters such as the comma or a space. Each token is
analyzed to determins its type -- for example, it determines if the current token is
a HAL verb keyword, an object name, a characteristic name, or a local variable.
Depending on the type of token, the fransiator will analyze the following token
and determine if a statement is syntactically correct. A high-leve! functional
diagram of HAL is shown in Figure 3-11.

3.2.8.2 HAL Screens

HAL runs solsly as a batch precess with all input and ouipm controlled by
the Action Editor.

3.2.8.3 InpuvQutput

The HAL transiator produces four files:

» The SYMBOL TABLE file which lists the name and type of the
variables used by the action currently being translated. This
file is accessible to the user from the VIEW FILE option of the
User Aids pull-down menu and is named SYMBOL TABLE.

+ The TRANSLATOR OUTPUT file which lisis the HAL code and
the results of the HAL translation including appropriate syntax
error messages. This file is accessible to the user from the
VIEW FILE option of the User Aids puli-down menu and is
named TRANSLATOR OUTPUT.

- The C statement file which lists the translated HAL code
(simname\pnnnnnnn.c) where nnnnann is the same seven-
digit number assigned to the action name.

* The include file which contains local variable data definitions.

These files can by accesesd through (1) the Action Editor by using the
VIEW FILE option on the User Aids pull-down menu, (2) by opening the file
directly through the file menu in the Action Editor, or (3) by typing it using DOS
commands. The files are 'ncated in the \HOSIVV\HOSHPL subdirectory.

»

90

WeyoMmo(4 Jolejsuell TdH "} L-€ a4nbiy

edf) ejepdn
edA} 1eA u. euljsp op —
8j1yMm}ixa op —
ep02 2 cp —
paas op —
wiouad op —
eweujas™e |3l — eaouies op —
joquds ind op J buisn"op —
jeqoibInd op —~ JuBWIWGCD 0P —

juejsiioo nd op — 8j)) op —

jeoo]"ind op — Juud op — »
einquieind op —- nd op —
(e eI oI puedsns™op —
enjeA aud : dojs op —

swesed jo wnu 3O} Ixau I..—. Uejs op — .
(2)uuo) op —- ejnuuoy op — 189S Op —
luejsuod esied (1) 1060 —
anjeA” JAud H_.I enjeA _>....o Ixeu op H— anosd™ wb opyM=0p —
eu~op —— einquyeop ~- ued joog = uesiooq op 17op —L piomdexop — (1)wewerers — i op
n:lﬁww
sajy uado— uew

(penutuoo) HEYOMO|Z JojejSUELL TdH *}i-E @inBig

e|qe} oy ppe H—v .
a)qel"u} —-98jael elepdn —
jeqojd sy —
uonouNy” S| —

olBuwIIUETS| —

B[NWJOJPUS™ St —

BINWIOJ S) —

JUBISUO0D ™ S| —

jeaibof sy —

piomAdY S} —
enjea” Auedoid Jab — Auadoid s| — Jenwneps)
() —1 Jeyoixeu 1ab

ubis"eaiebeus| 1 ueNol sseo0id (E)uaxoy xeu 1ob

92

3.2.8.4 Error handling
The HAL error messages are described in Appendix B.

3.2.8.5 Maintenance Pmcedures

HAL source code is compiled using MSC Microsoft C version 4.0 with the
large memory model switch (/AL). It requires the HOS-IV library and SKYL
libraries in addition to the standard C libraries for compilation.

3.2.9 CREATE — Create Simulation

3.2.9.1 Description

The CREATE module constructs the HOS simulation based upon the
entered events, ruies, objects, and actions. It processed all the individual
definitions to ensure that each referenced item has been defined. These
checks include: '

+ Ensuring that all actions referenced in events have been

defined.

» Ensuring that all actions, alphabetics, and object-characteristic
pairs referenced in rules have been defined.

» Ensuring that all ~bject-characteristic pairs, alphabetics,‘
actions, and rules referenced in actions have been defined.
If all cross-references have been validated, then the C code generated
for each referenced action is compiled and linked with the HOS simulation C
code and produces the executable simulation file. A high-level functional
diagram of CREATE is shown in Figure 3-12.

3.2.9.2 CREATE Screens

Informative message windows, as illustrated in Figure 3-13, are
displayed to inform the user of the status of the simulation creation. If any errors
are detected, an error message screen, as illustrated in Figure 3-14, is
displayed that contains a pushbutton for the user to depress once the error
messages have been comprehended.

83

welbel([BuUolound YUllWiS Zi-E& a.nbi 4

saspedosd oayd

2

s100lqo~ %2ayd

L

WipHeA S| e Sja5409Yy2
sanjea Auedoid 106
Kuedoid sy saiedaid %o8Yd
ainquue prea”s] (¢ syoalqooayd
einpasoud op
uolisinoal +
8|y~ ol ppe
ey ooud l¢—— 20id dnX00]

so0sd 0aYd

e %08yd

3

AUlUS

94

i’

- MOpUIp 9bessap wur ‘g 1-¢€ a4nbiy

“upjuy] wopepmwis AISOH

[

85

MOPUIM, SI0113 YUl "y 1-€ anbi4

]

uoneMwLs 0L Ul 81013 JuUIMO[[0] Y} 031I0) Ise3[d

MUl uorenwig gt

96

3.2.10 RUNSIM — Run Simulation

3.2.10.1 Description

RUNSIM executes the selected simulation and generates the simulation
output files. It creates a screen showing the simulation status at each time
increment and the currently active event, rule, and action.

3.2.10.2 RUNSIM Screens

The screen shown in Figure 3-15 allows the user to indicate whether the
simulation is to start at the beginning, i.e., the start time specified in Simulation
Setup, or restart the simulation at the point where it was praviously terminated
through the use of a BEGINNING and RFSTART pushbutton. The run
simulation screen, shown in Figure 3-16, shows the current status of the
simulation through a serigs of labeled boxes as described below:

+ simname — name of currently executing simulation.

+ Current simulation time — the time of the current simulation in
the form dd hh:mm:ss.ttt where dd is days, hh is hours, mm is
minutes, ss is seconds and ttt is thousands of seconds.

* Action — the name of the action currently being processed by
the simulation and the time the action started.

» Rule — the name of the rule currently invoked and the time the
rule was triggered.

+ Event — the name of the current event and the time the event

started.
The screen also contains a PAUSE pushbutten that aliows the user to interrupt
the simulation. When the PAUSE button is depressed, the screen illustrated in
Figure 3-17 is displayed that allows the user to indicate whether the simulation
should continue or be terminated for later restart. If the user deprasses the
CONTINUE pushbutton, the simulation will resume execution; if the user
depresses the EXIT pushbutton, the simulation will terminate. When tha
normal end of the simulation is reactied, the screen displayed in Figure 3-18
will be displayed.

97

MOPUIAA UoieNWwS Jo Buluuibag "G -¢ ainbi4

ONINNIDI™

LAVILSTH

Jade[d Jurddogs 3sef ayy woiy jreysar 10

Sunundaq ayy wory uonemuuls uny

-
313} LOLRIAWIS JUALN))

WRBWIS

‘ss91302d Ut worlemuis A SOH

L R N G A5 I S —

LIL]

julag

oIny

uonpy

98

MGPUIA UchenwilS g1 -g a:nbig

i«h"l

000°00:00:00 00 Lo |
000°00:00-00 00 13
1 000°00-:00-:00 00 Y worpe
000°00:00:00 00
Jw} uonemuwIls JUdIND)
dJWeuwis
's53x304d uy uoepIs AT SOH

N ET:

Iy

uoppy

m_
]

99

MOPUIM POSNBd UOHEINWIS "/ }-€ ainbiy4

oo | | smmoo

‘pasned UOHE[RWIS

000°¢0-0C
000°G0-0C

000°01-00-00 00

W1} O[S JUILND)

2weuwIs

ss313c1d ur uogjenWIs AT SO
Llli

000°20:00 0000 | | 1 3u2s3 |

JuAAg

3y

uoipPv

100

MOPUIAA 218]dwioD uolelnwiS gi-¢ ainbiy

00020°00:00 00 | |

—— S —em e

0000£-00-:60 00

W) UoHeNWIS JUIIIND

Jwewiuls

‘ssaxdoxd up vonjenuns A SOH

1 JUdad

juaagy

101

3.2.11 RESLULTS — View Results

The View Results module is used {c examine data produced by running a
simulation. 1t is illustrated in Figure 3-19.

3.2.11.1 Description

RESULTS contains a series of standard reports that are used to assist in
* the analysis of simulation results. The available reports are the following:
+ Object Analysis — contains the value of each object-

characteristic pair at each time in the simulation when the
value of the characteristic of the object changed.

* Rule Analysis — generates rule usage statistics including
the number of times the rule was active and average duration
of the activity.

+ User Simulation Output — user-defined report produced by
using the FILE verbs contained in actions.

» Action Timeline — generates a timeline showing the name
of each active action at each time interval in the simulation.

+ Event Timeline ~— generates a timeline showing the
simulation time and event name of each active event.

» Full Timeline — combines the event, rule, action, and 6bject
timeline into one single report.

* QObject Timeline — generates a timeline showing the
simulation time when each characteristic of an object was
modified.

*+ Rule Timeline — generates a timeline showing the
simulation time and rule name of each active rule during the
simulation.

3.2.11.2 RESULTS Screens

The View Results module consists of a title bar, a menu bar, a text
viewing window with a scrollbar, and a number of dialog boxes used for
program interaction with the user as illustrated in Figure 3-20.

Yiew Results Module Title Bar. The title bar contains the words ‘'VIEW
RESULTS' as the function name in the center. it does not use the current
activity or status information arsas of the title bar,

102

we.beiq |euonound sinsay MAIA '61-€ ainbi4

31 Aeydsip 31 Aedsip
4 / }
31 Aeydsip 31 Aeydsip CIERED) 84 199
3) — 3 3 __
ejt4189 8|14 189 m@mmwomc J exew ©SSa%0U §| exew %
/) _ [} 4 A -
auyawil uolldy mdino wis 19sn sisfjeuy 6Ny sisAjeuy 109lq0

nueyy 8dA) Hoday .

¥

(panunuod) weibeiq [euonound synsay MaIA ‘61-€ 24nbi4

34" Aedsip
’ —-—
31 Kejdsip 34 Aejdsip 8|14 18D 31 Aeydsip
A 4 4 _ 3
ed 109 o4 19D [aessaoeu”}i veu olld 199
A 4 A /'Y
eunawny einy uljew!| 199Iq0 oulawi) Ynd TETTRICE

nuapy edAL uoday

104

U9310G SHNSaY MaIA "02-€ ainbi4

105

-SLINSTY *MITA™

v

Yiew Resuylts Module Menu Bar. The menu bar for th'e' View Results

module contains the following menu options:

* Report Type — file related commands such as saving,
opening, etc.

+ User Alds — provides the capabnmes to view help files and
action files.

+ Exit — terminates View Results module and returns the user to
the HOS-IV module.
The Report Type pull down menu contains:

+ Object Analysis — opens the Object Analysis report; if it
' does not exist the create missing report message window is
displayed.

* Rule Analysis — opens the Rule Analysis report; if it does not
exist the create missing report message window is displayed.

+ User Simulation Output — opens the User Simulation
Output report; if it does not exist the report missing message
window is displayed.

+ Action Timeline — opens the Actlon Timeline report; if it
does not exist the report mnssmg message window is
displayed.

» Event Timeline — opens the Event Timeline report; if it does
not exist the report missing message window is displayed.

» Full Timeline — opens the Full Timeline reponr; if it does not'
exist the create missing report message window is displayed.

* Object Timeline — opens the Object Timeline report; if it
does not exist the report missing message window is
displayed.

+ Rule Timeline — opens the Rule Timeline report; if it does
not exist the report missing message window is displayed.
The User Aids pull down menu contains commands that aliow the user
to receive help on the current module and view action files.
* Help — allows the user to obtain additional information about
using View Results module.
+ View File — allows the user to view action files created using
the View Results module.
iew lts Module Text Viewing Window. The text viewing window
consists of text area and a scrollbar. The text area is 23 rows by 77 columns.
106

The scrolibar is to the right of the text area and has four control buttons and a
relative file position indicator. The four controls on the scrollbar are:
» Scroll Line Down — displays & page of text starting from the
line before the current top line.

« Scroll Page Down — displays a page of text starting one
page before the current top line.

» Scroll Page Up — displays a page of text starting from the
current bottom line. -

+ Scroll Line Up — displays a page of text starting from the
line after the current top line.

Yiew Results Moduie Dialog Boxes. If the selected report requires
additional information, text entry boxes are generated to request the appropriate
information.

View Besults Module Message Windows. Message windows display
information which the user must acknowledge by depressing one oi the
selected pushbutton. Some message windows may be cancelled.

+ File not found — the indicated file contains the simulation

results and couid not be located.

« Create missing report — the user is requesting output of a
report that has not yet been generated.

+ End viewing session — confirmation that the View Results
function is terminating.

Yiew Resutts Module Information Windows. Information windows require

no input from the user. They are informative messages indicating that the
system is carrying out the entered command and to let the user know the status
of the operation.

+ Reading fiie — the file is being read.
3.2.11.3 input/Output

RESULTS uses the following files:

+ d:\htemp.txt — temporary file created for saving and printing
purposes,

» c:\hosivihoshelp\vrt_help.000 — list of help topics specific
to the View Results module.

107

« c:\hosivihoshelp\vrt_help.nnn — help files (numbered
extension stanting from 001).

« ¢:\hosivicursim.dat — name of the currently selected
simulation.

e c:\hoslvicursim\cursim.dob — simulation log for object
activity.

« c:\hoslv\cursim\cursim.dpr — simulation log for actio
activity. : .

» c:\hosliv\cursim\cursim.dev — simulation log for event
activity.

- c:\hosivicursimicursim.dtk — simulation log for task activity.
+ c:\hosiv\cursim\cursimtim — simulation timeline.

« c:\hosivicursim\cursim.log — user-defined simulation output
generated from FILE verbs.

+ c:\hosiv\cursim\cursim.rul — simulation rule information.
» c:\hosivicursim\cursim.oba — simulation object information.

3.2.11.4 Maintenance Procedures

View Results module source ccde (viewrslt.c and vrt_menu.c) is
compiled using Miérosoft C version 4.0 with the large memory model switch
(/AL). It requires the HOS-IV, SKYL, CT, and TE libraries in addition to the
standard C libraries for linking. '

4. HOS-IV FILES

4.1 Direction/Subdirectory Organization

All HOS-IV files are stored in a separate subdirectory —HOSIV — under
the DOS root directory. The HOS-IV files are organized into the following
subdirectories under HOSIV: '

HOSC “Contains translated C code form action translator, the
action editor, HAL translator, and HOS_LINK.EXE,
and SIM.EXE.

HOSHPL Contains HAL action code entered by the user
through the action editor (EDIT__PRC.EXE). Used
by the action editor and the HAL translator.

HOSINC Contains one ‘#include’ file of definitions for each file
transiated by HAL. Used by the HOS_LINK an
Microsoft C compiler.

HOSOB Contains one file for each translated action which
lists the objects referenced in the action. Used by
HOS_LINK to check for the existence of referenced
objects in the object library.

HOSPRO Contains one file for each translated action which
lists the actions referenced by the action. Used by
the Microsoft C compiler, in conjunction with SIM.C to
produce the executable simulation code.

HOSPRP Contains one file for each transiated action which
lists the alphuhetics referenced in the action, Used
by HOS_LINK to verify the existence of the
alphabetics in the alphabetics library.

HOSSET Contains one file for each translated action which
lists the sets referenced within the action. Used by
HOS_LINK to check for the existence of referenced
sets in the object set library.

MSC Contains all of the Microsoft C V4.0 compiler files
and subdirectories. Used by HOS_LINK to create
the simulation runtime module.

< simname Directory of files asscciated with the simulation
named simname. Used by the rule editor, sim_set,
and event editor.

4.2 File Descriptions

Appendix C contains a list of the HOS-IV files arranged by executables,
data files, source code files, and batch files.

110

APPENDIX A
HOS-IV INDIVIDUAL PROGRAM UNIT DESCRIPTION

This appendix contains a listing of every function in ali of the HOS-
IV programs. The forma! C prototype is given, followed by a brief
description of what the function does. Functions are listed by
source file in alphabetical order.

CUT_COPY.C

void begin_mark ()

Sets the beginning of the selected text. If the end of the selacted text
has already been set, begin_mark calls highlight_text.
void clear_text ()

Actually carries out the dsletion of text. Called by do_clear.

int do_clear()
Deletes selected text from TE->text and throws it away.

int do_copy ()

Copies selected text from TE->text and stores it in the clipboard. Cld
contents of the clipboard are destroyed.
int do_cut()

Deletes selected text from TE->text and stores it in the clipboard.

int do_paste()

Calls paste text to insert contents of clipboard in TE->text. If text is
selected it first calls do_clear.

void end_mark ()

Sets the end of the selected text. If the beginning of the selected text
has already been set, end_mark calls highlight_text.
void exchange_pointers (numl, num2)

long *numl, *num?2;

Swaps ptr1 with ptr2,

void exchange_values (numl, num2)
int *numl, *num2;

Swaps numi Wwith num2.

void get_doc_text ()
Gets the text from TE->text for cut and copy.

void highlight_text ()
Highlights text selected by begin_mark and end_mark.

void init_clipboard()
Empties out the clipboard.

void paste_text ()
Inserts contents of clipboard at TE->insertion.

void unhighlight text ()
Unhighlights selected text.

DIALOG.C

void allocate_db_fields()

Walks the linked list of zones for the current window and allocates a
text_edit record for each zone whose mods is not equal to SCREEN. 1t
produces & circular linked list of text_edit records with the location of the
head stored in the giobal pointer db_edit.

int db mode (curx_zone)
20NE *curr_zone

Returns the mode of curr_2one based on the contents of curr_zone's
message field.

int db_touch (arg)

int &arg;

Walks the linked list of text_edit records to determine which field of a
dialog box was clicked in. '
TEType *deallocate_db_fields (temp)

TEType *temp;

This function deletes a circular linked list of text_edit records based
on the global pointer db_ediit. It is usually called with db_edit->next.
void Erase_db_field ()

This function erases all of tha text in the current TE->text.
int extent_compare (bl, b2)

box *bl, *b2;

Compares the size of b1 to b2 and retums TRUE if they are equal.
void extent_convert (temp)

BOX *temp;

Converts temp from the format that Skylights stores it in (measured in
hzalf characters) to whole characters.

void get_pad_str (curr_len, max_len, pad str, pad_char)
int curr_len, max_Jen;
char *pad_str, *pail char;

Pads pad_str with ¢t pies of pad_char from the current length to its
maximum length..

void print_db_str (my_num, max_len, row, col)
int my_num, max_len, row, col;

Prints a numaerical dialog box fieid string, max_len is the maximum
fength of the string field.

void str_to_db field (string)
char *string;

Inserts string in the text_edit record pointed to by the global pointer
TE. It then sets TE equal to to the next record in the linked list.

EDIT_EVT.C

void check _Time_error (evt)
event *evt;

This routine compares the event time of the event passed to
check_Time_error with the maximum simulation time. If the event time is
too large, trap_error is called, otherwise Proc_error is called.

void clean_up()

This routine starts with the first event in the linked list and traverses
the list filling in the event number field with successive integers.

char *cvt_evt _num(the evt)
event *the_evt;

This routine convents the event number to a three character leading
zero string which it retums.

char *cvt_evt_time(the evt)
event *the_evt;

This routine converts the event time record to a number in terms of the
minimum time unit. It then converts this number to a six chiaracter leading
zero string which it retumns.

void delete_evt (an_evt)
event *an_evt;

Removes an_evt from the linked list of events and stores it in curr_ewvt,
which is the event currently being worked on by the user.

void do_print ()

This routine prints the entire linked list of events in a user-friendly
format.
int evt_sel(line)

int line;

This routine prompts the user if the current evert has changed and
then finish_sel is called to actually update the display.
void evt_to_window (evt)

event *evt;

Displays the event passed to evt_to_window on the screen.

A-6

int explicit_save(arg)
int arg;

This demon initializes curr_save_destination to point to the procedure
is_varified and save_destination to point to finish_explicit_save. Then, it
calls verity_evt and returns ok to skylights.

void £ill_in_evt_rec(evt,line)
event *evt;
char line([120];

Fills in an element of the linked list of events.
event *find_evt (line_num)
int line_num;

This routine returns the address of an event in the linked list based on
its line number in the list box data structure. This is not a problem
because they are both sorted.

void finish_explicit_save()
This routine does the appropriate list box updating after a save.

void finish new_evt()

This routine does the linked list processing necessary for a new
event.
void finish_sel()

This routine updates the list box display and the linked list of events.

int finish_ setup_exit ()

This routine opens the 'Are you sure you want to exit...' window.
char *get_list_line(event_ptr)

event *event_ptr;

This routine returns the line that will appear in the lis box‘window
based on the event passed in. The line has the following format:
dd:hh:mm:ss.xxx procedure description

void get_sim info()

This function reads the simulation name, minimum time unit, and the
maximum time into the appropriate variables.

L4

event_time *get_pime_recoid(time)
char time(];

Inputs a time string of length 6 and outputs a time record pointer of
type *event_time. An event time record consists of seven string fields
(days, hours, minutes, seconds, tenths, hundredths, and thousandths).

char *get_time_ str (num)
int num;

This routine converts the number passed into a two character leading
zero string and returns it. '

void goto_save_destination() :

This routine calls the routine pointed to by save_destination if
~save_destination is not NULL.
int handle_error(axrg)

int arg; '

This routine closes the error window.

veid init_demons ()
initializes all of the demon function pointers for skylights.

event *init_evt ()
This function returns a new event properly initialized.

void init_general ()
This function initializes Text Edit globals.

void init_time_units()

Initializes time ratios array used to convert time in terms of the
minimum time unit.

void init_windows ()

Loads most of the windows used the in the Event Editor from the
catalog 'edit_evt.cat', also opens those that will be immer~4tely
displayed.

void initialize()

This function calls all initialization routines such as init_windows,
init_demons, init_time_units, get_sim_info, init_general,
turn_off_unused_zones, and load_events, as well as initializing global
variables.

A-8

void insert_evt (evt_to_insert)
event *evt_to_insert;

This routine inserts the event record passed to it into the linked list of
events.

void is_verified()

This routine sets curr_evt equal to the tamporary evt used for the error
checking now that it has bean verified. it then calls
goto_save_destination.

void load_events()

This function initializes the list box display with previously defined
events if the call to read_events is successful. Otherwise, the user is put
in ‘new event mode'.

void main ()

This function calls the main initialization routine and then staris the
demon watcher.

int new(arg)
int arg;

This demon calls save_if_necessary with the parameter
finish_new_evt, and then returns ok to skylights.

event *new_evt ()
This function attempts to return a pointer to an event record.

void Proc_erxor(evt)
event vevt;

This routine sets the verify destination to be the current save
destination and makes a call to Proc_file. |If the procedure is undefined,
setup_warning is called. Otherwise, the procedure pointed to by the
verify destination is called.

int process_delete(arg)
int arg;

This routine procasses the answer to the 'Are you sure you want to
delsts...' prompt. It updates the screen and linked list as required.

L 4

int process_exit (arxg)
int arg;

This routine processes the user's answer to the 'Are you sure you
want to exit...” prompt. If the answer is 'Yes', all of the necessary
terminating routines are called. Otherwise, nothing happens.

int process_warning(arg)
int arg;

This routine processes the answer to the wamning prompt. if the
answer is ‘Continue’, the procedure pointed to by verify destination is
called. If the answaer is ‘Cancel’, the event is not saved.

int read events(filename)
char filenamel[];

Attempts to open the file hosivisimname\simname.ev1. If it exists, it
reads in the previously defined events into a linked list data structure and
retums TRUE. If the file does not exist, it retums FALSE. '

int save_chg(arg)
int arg;

This routine responds to the ‘Save changes...' prompt. If the user
selected 'Yes', curr_save_destination is set to is_verified and verify_ewvt
is called. Otherwise, it calls goto_save_destination.

void save_ evt ()

This routine does the appropriate list box and linked list updating
needed to save an event.

int save_if necessary(function)
func_ptr function;

This routine displays the Save changes window if any changes have
occurred; otherwise, it calls goto_save_destination.

void set_save_destination(function)

int (*function) ():

Sets save_destination equal to parameter passed in.
int setup _delete(arq)

int arg;

If there are any events to delete, this routine displays the "Are you
sure you want to delete this event?” window.

A-10

int setup_exit ()

This routine calls save_if_necessary with the function name
finish_setup_exit.

void setup_warning(evt)
event *evi;

This routine loads the waming window and displays it wnth the
appropriate warning message.

void trap_error(evt)

event *evt;

This routine loads the error window and displays it with the
appropriate error message.
void turn_off unused_ zones({)

Permanently destroys skylights pointers to demons for time zones that
aren't needed hased on the minimum time unit.
void verify evt()

This routine gets the current event being displayed on the screen into
temp_verify_evt. Then check_Time_error is called with this parametar.

void write_evt_files()

This routine writes out three files: simname.EV1, simname. EV2 and
simname.EV3.

EDIT_PRC.C

int exit_editor (arg)
int arg;

Processes user input from the window which asks the users if they
actually wait to exit the Action Editor.

void goto_line {)

Finds the line specified in the find line number window. If the line

- number is greater than the total number of lines, the last line is found.
void goto_save_destination () |
¢ This function executes save_destination. Save destination is a

function pointer whose value depends on where the save was initiated.
void habort (message)

char *message;

Ends the skylights demons, closes the windows, prints the last
message, and spawns hosiv.exe.
void iniﬁ_ﬁemons

Sets up the demon pointers.

void init_general ()
Sets up general text_edit stuff.

void init_windows ()
Loads all the windows and opens the neaded ones.

void initialize()
Calis all the appropriate initialization routines.
int invalid_name (the_str)
char *the_str;
Checks the input action name for invalid characters and other emors.

void main ()

This function calls the main initialization routine, then starts the
Skylights demon waicher.

int process_del errl (arg)
int axg;

Processes user input from the window which says that you cannot
deleis a system file.

int process_del_err2 (arg)
int arg;

Processes user input from the window which says that you cannot
delete the current file.

int process_deletewin (argq)
int arg; :

Processes user input from the window which asks the user if the file
should actually be deleted.

int process_error (arg)
int arg;

Processes user input from the transiation error message window.
int process_find line (arq)

int arg;

Processes user input from the find line number window.
int process_inputwin (arg)

int arg;

Processes the user's response to the action name input window.
int process_inv_name_err (arg)

int arg;

Processes user input from the invalid action name message window.
int process_not_found (arg)

int arg;

Processes user input from the search string not found message
window.,

int process_ok (arg)
int arg;

Processes user input from the translation successful message
window. .

int process_search (arg)
int arg;

Processes user input from the input search string window.

int process_translator_feedback ()
Processes error messages and successtul returns from the translator.

int quit (arg)
int arg;

This function asks you if you want to save, then allows you to exit.

int read_file (arg)
int arg

Processes user input from the action name selection window.

int save_changes (arg)
int arg

Processes the user response to the dlalog which asks the user if the
changes should be saved.

int save_ if necessary (funct;on)
func_ptr “function;

if the file has been changed, it asks the user if they want to save the
last set of changes. :

void search ()

Searches TE->text for the string specified in the input search string
window, If the string is not found, it opens the string not found message
window.,

void set_save_destination {function)
func_ptr function;
Sets the destination for the goto_save_destination function.

int setup_del_errl ()

Opens the window which tells the user that he has tried to delete a file
needed by the system.

int setup_del err2 ()

Opens the window which tells the user that he has tried to delete the
current file.

int setup deletewin ()

Opens the window which asks the user if he actually wants to dalete
the file which they have selected.

int setup_end () :
Opens the window which asks the user if he actually wants to exit the
Action Editor.
int setup_filewin ()
Opens the action name selection window.

int setup_find line ()
Opens the find line number input window.

int setup_ inputwin ()
Open the window used to get action names from the user.

int setup_inv_name_err

Cpens the window which tells the user that there was an invalid name -
input and that he should try again.
int setup_printwin

Opens the printing in progress information window.

int setup_search ()
Opens the search string input window.

int translate ()
Spawns the HAL translator.

A-15

EDIT_TSK.C

void cleanup () _
This function calls save_if_necessary with a pointer te finish_claanup.
void fields_to task (task)
task type * task;
This function takes the DB fields from the active window and puts
them in the appropriate fields of the given task.
void finish _cleanup ()

This function writes, then deletes the task iist, closes the window
found in the global last_win, and deallocates the TextEdit records
associated with it.

void goto_save_destiation ()

This function executes the function pointed to by the global functlon
pointer save_destination after checking to be sure that save_ destmauon
is not NULL. .

void habort (message)

char *message;

This function exits the editor by spawning HOS-IV. It sends message
to stdout. If the spawn fails, it will exit o DOS.
void init_demons ()

This function sets up all skylights demon names.

void init_error_check ()
This function initializes Task_bool.

void init_general ()
This function initializes global variables used by TextEdit.

void init_windows ()

This function opens the catalog, loads all windows, and opens the
windows which are opened first.

veid initialize ()

This function sets global flags and calls specific initialization
functions.

void main ()

This function calls the main initialization routme then starts the
skylights demon watcher.

void make new _task ()
This function makes a blank task and displays it for the user to edit.

int new (arg)
int arg:;

This function is called when the user presses the new button. it calls
save_if_necessary with a pointer to make_new_task.

int print (arg)
int arg;
This function prints a single task when the print button is pressed.

int process_delete (arg)
int arg

This function processes the user's response to the question "do you
want to delete this task?” -

int process_exit (arg)
int arg;

This function processes the "do you want to exit?” wmdow

int save (arg)
int arg;

This function verifies and saves the task when the save button is
pressed.

int save_changes (arg)
int arg;

This function processes the user's response to the dialog which asks
if he wants tc save changes, by either verifying and saving the task or
ignoring the save.

int save_if necessary (function)
func_ptr function;

This function asks the user if he wants to save changes if FileChange
is TRUE, else it executes the function pointer.

void save_task ()

This function saves the valid task and updates the list box
appropriately.

void select_task ()
This function activates and displays the task selected by the user.

int set_priority (arg)
int arg:

This function processes the 4 buttons which allow the user to change
the group and number.

void set_save_destination (function)
int (*function) ()

This function sets the global function bointer equal to the function
pointer passed in.

int setup_delete (arg)
int exg

This fur. *taon displays the currem task in the list if necessary and asks *
the user if he wants to delete it.

void setup_exit ()
This function opens the "do you want to exit?" window.

void setup window (name)
char name{];

This function opens the operator, hardware, or environment window
based on name; then tries to read the associated file. It displays the first
task.

void- task_name (task, str)
task +ype *task;
char * str:;

This function creates the string to be displayed in list box based on
the given task.

void task_to_window (task)
task_type * task;

This function takes a task record and displays it in the acti: . window
for editing.

s

int tsk_sel (arg)

int arg; .

This function calls save_if_necessary with a pointer to select_task as
long as the user did not seiect the current task.

=Y

ERR_TSK.C

void check_if ()

This function checks the syntax of the if statement. ifit finds an error
or warning, it calls trap_error, else it calls the next error checking routine:
check_proc.

void check_num ()

This function checks for a conflict in task numbers. if it finds one, it
calls trap_error, else it calls the next error checking routine: check_if.

void check_proc ()

This function checks to see if the procedure sxists. If it does not, it
calls trap_error, else it calls the next error checking routine: check_until.

void number_exists (task)
task_type *task;

This function checks the given task against the task list to see if one
with that number is a.ready in it. If the number exists, it sets errnum to €
and returns TRUE.

void print_where ()

This function prints where a warning or error came from, either the if
or the until condition.

int process_error (arg)
int arg:;

This function closes the error window when the user presses the
button.

int process_warning (arg)
int arg;

This function closes the warning window when the user presses a
button, then continues the save if the user pressed continue.

void setup_error ()

This function loads the error window, puts the appropriate maessage in
it, then displays it.

void setup_ﬁ%rning 0

This function loads the warning window, puts the appropriate
message in it, then displays it.

A-20

void trap_error ()
This function displays problems as errors or warnings as appropriate.

void verify_task ()
This function copies the current window fields to a temp task, then
calls the first of a series of verification routines.

A-21

FILE_IO.C

void Get_File (f_name, proc_name)
char *f_name, *proc_name

Reads a file frori the hard drive, converts all carriags returns and
tabs.
char *get r block({start_pos, request_bytes)

long start_pos, request_bytes;

Gets a block of text from the ramdrive starting from start_pos up to

and returns a pointer to it.

void init_file ()
Initializes a new TextEdit record and resets the file change flag.

int new_file ()
Czletes the current TextEdit record and calls init_file.
void replace_chl_ch2 (the_str, search chars,

replace_char)
char *the str, *search_chars, *replace_char

Replaces every occurrence search_chars in the_str with
replace_char.
vold Update _Ram Drive ()

Updates the ramdrive file with changes to TE->text.

void Update_Text ()
Gets a screenful of text from the ramdrive.

void Write_file (f_name)
char £ name[]);

Writes out TE->text to §_name.

reguest_bytes or EOF whichever comes first. Mallocs space for the string

HOSPROC.C

int add proc_to_lib (item)
PROCLIB *item;

Takes a procedure name, and adds it to the procedure library if it is
new.

int Create_Proc_Item (item)
PROCLIB *item'

Gives the procedurg name, if it doesn't already exist. This routine wiil
call the routine to create a new filename and add the item to the library in
the appropriate place.

int Delete_Proc_File (name)
char *name;

If the procedure is defined in the library, it is rewritten and marked for
deletion. The item is not actually deleted until a Reorganize_Proc_Lib is
done.

int get_next proc_file (newfilename)
char newfilename();

Looks to see which file number in the sequence is next, and takes fill
in numbers before going to the end of the list.

int insert_proclib_record (item)
PROCLIB *item;

Called by add_proc_to_lib.

int is_wvalid_proc (name)
char name(];

Returns true if the procedure has been defined - used in the link hos
utility.

int Proc_File (name, file)
char namel]);
char filel];

If the procedure is defined, Proc_File returns the filename in the file
parameter. It returns SUCCESS or FAILURE depending on whather the
procedure has bgen defined.

int Ramdrive_Proc_File ()

Creates the ramdrive version of the procedure library used for actuai
processing during run time. -

A-23

int Reorganize_Proc_Lib ()
Deletes records deleted by the user.

int Rewrite_Proclib ()

This procedure is called during the reorganization process to write the
new procedure library from the temporary file to the permanent file.
int sort_alphabetic proc (flag)

int flag;

Sorts the procedure library by proc name and puts it on the ramdrive.
int write_proc_item (item)

PROCLIB *item;

Does the actual write the end of the file.

A-24

IO_TSK.C

void close_files ()
This function closes all 7 output files.

void consolidate_files ()

This function combines 5 sets of operator, hardware, and environment
files into a single file.
void open_task_files ()

This function opens all 7 output files with paranoid error checking.

void print_tasks ()
This function steps through the task list, writes tk1, then prints it.

void print_tki ()
This function opens the file *.tk1 and prints it.

int read_tasks {(filename)
char *filename;

This function reads the editor's task file. It returns FALSE if the file is
not found. :

void three_files to_one (one, two, three, target)
char *one, *two, *three, *target;

This function take the three given files and puts them one after the
other into the target file.

void write_c (task, stream)
task_type *task;
FILE *stream;

This function writes the actual C code for each task.
void write_environ_init (task, stream)

task_type *task;
FILE *stream;

This function writes the C file which initializes the environment tasks.
void write_hardware_init (task, stream)

task_type *task;
FILE *strecam;

This function writes the C file which initializes the hardware tasks.

A-25

void write_header (stream)
- FILE *stream;

This function writes a HPL format header for the text only file.
void write_init (task, stream)

task_type *task;
FILE *stream;

This function calls the appropriate function to write operator,
hardware, or environment initialization files.

void write_operator_init (task, stream)
task_type *task:
FILE *streanm;

This function writes the C file which initiaiizes the operator tasks.

void write_task_list ()

This function steps through the task list, writes the task to the editor's
tile and calls the other output routines.

void write_tasks ()
This function is the top level output routine.
void write tkl (task, stream)

task_type *task;
FILE *stream;

This function writes the task in HPL format.

LIBRARY.C

int copy_attr(source_attr, source obj, dest_attr,
dest obj, obj_. file, SIM | TIME)
char *source attr, *gsource _obj;
char *dest_attr, *dest obj.
FILE *obj_file;
long SIM _TIME;

int copy_const (value, attribute, object, obj_ file,
SIM_TIME)
double value;
char *attribute;
char *object;
FILE *obj_file;
long SIM_TIME;

int copy_local (local, attribute, object, obj_file,
SIM_TIME)
LOCAL *local;
char *attribute;
char *object;
FILE *obj_file;
long SIM TIME,

int get (local, attribute, object)
LOCAL *local;
char *attribute;
char *object;

int Set (local)
LOCAL *local;

LIST_TSK.C
void delete_task (task)
task_type *task;
This function deletes the given task from the list after first making sure
the given task is valid.
void delete_task_list ()
This function deletes the entire list of tasks.
task_type* find_task (count)
int count;
This function steps down the task list count times and returns that task.
veid free_task (task)
task_type *task;
This function frees the memory used by the given task.

task_type* find task ()

This function creates a new task and sets each field to a default value.
void insert_task (task)

task_type *task;

This function inserts the given task in the task list based on the string
created by task_name.

task_type *new_task ()

This function allocates memory for a new task, sets the memory space
10 zeros and sets the pointers to NULL.,

LOWLEVDB.C

double attfloat (attribute, object)
char *attribute, *object;

Returns the value of a characteristic of an object as a double.

long attint (attribute, object)
char *attribute, *object;

Returns the long value of the characteristic of the object passed in.

char *attrstr(attribute, object)
char *attribute, *object;

Returns the string value of the characteristic of the object passed in.

int Close_and_Save_Object_File (filename)
char *filename;

Closes and saves the ramdrive runtime version of a simulation
objects library to the name in filename.

LOCAL *const (type)
int type;

Places the constant of type ‘type' into a local variable which it creates
and returns a pointer to the variable. The LOCAL * is global and is
reused.

LOCAL *Create_Local Variable (Type, local)
unsigned char Type;
LOCAL *local;

If previously uninitialized, it creates a local variable of type Type.

int Get_Attribute (attribute, object, local)
char *attribute;
OBJECTE *object:
LOCAL *local;

Gets the value of the indicated characteristic (attribute) of the object
and passes it back in local.

int Get_Object (object_name, object)
char *object_name;
CBJECTS *ebject;

Reads the directory, finds the object, reads the library and returns the
cbject in object.

int Init_Object_File ()
) Checks for the existence of the object file and opens it.
int is_valid_attribute (attribute, object)
char *attribute, *obiject;
Returns TRUE or FALSE depending on whether the characteristic
exists in the object.
int is_valid_object (object)
char object;

Returns TRUE or FALSE depending on whether the object has been
defined.

int Kill Local_Variable (local)

LOCAL *local;

Frees memory allocated for a focal variable - currently not being
used. :
double locfloat (local)

LOCAL *1local;

Returns the value of iocal as a double.
long locint (local)

LOCAL *local;

Returns the long value of the local passed int.
int log_err (string)

char *string;

Used for error reporting - can receive any permissible format string
allowed in printf, including variables.

int rewrite_item (position, item)
int position;
OBJECTS *item;

Rewrites an item that already exists.

int Set_Attribute(object, attribute, local, obj,
obj_file, SIM TIME)
OBJECTS *object;
char *attribute;
LOCAL *local:;
int obj;
FILE *obj_file;
long SIM TIME;

Sets the characteristic of the object to the value in local.

int Set_Attribute_To_Const (object, attribute, value,
obj, obj_file, SIM TIME)
OBJECTS *obiject;
char *attribute;
double value;
int obj:
FILE *obj_ file;
long SIM TIME;

Sets an attribute to the value contained in «he double value.
unsigned int typeatt (attribute, object)

char *attribute, *object;

Returns the type of the given characteristic.

double V(local)
LOCAL *local;

Unused currently.

int write_item (item)
OBJECTS *item;

Writes the item at the end of the file.

(3]

OBJDIR.C

int add_object_to_llb (item, flag)
OBJECT *item;
int flag;

Adds object to end of libiary.

int compare obj(stringl, string2)
char *stringl, string2;

Used by the sort_alphabetic_obj routine.

int create_cbject_directory (from_file)
char *from file;

Reads objects library and creates a ramdrive directory of object
names.

int find duplicats_object (item)
char *item;

Returns SUCCESS if the object already exists, FAILURE if it doesn't.

int find_object_offset (item)
char *item;

Given the name of the object, it returns the offset for seeking in the
library.

int get_object_name (positicn, item)
int position;
char *item;

Returns the object name given the position.
int get_object_name_sorted (position, item)

long position;
char *item;

Returns the ‘positionth’ name from the sorted library listing.

int reorganize ();
Rewrites the objects library, deleting items deleted by the user.

int sort_alphabetic_obj (flag)
int flag; *

Sorts the directory onto the ramdrive.

OBJPROP.C

int aud_item to_dictionary (item)
MEMBER *item;

Adds an alphabetic to \he end of the dictionary.

char *build property dictionary (fromfile)
char *fromfile;

Builds the ramdrive alphabetics dictionary.

int compare_prop (stringl, string2)
char *stringl, *string2?;

Used by the sort_alphabetic_dictionary for sorting.
int find duplicate_property (item)
char *item;
Checks to see if the property is already defined.
int get_next_name_sorted (pousition, yourstring)

int position;
char *yourstring;

Returns the ‘position' name off the ramdrive file and retumns it.

int get_property name (position, yourstring)
int positien;
chhar *yourstring;

Given the numeric value of the property, returns the name.
int. get_; roperty_value (item)

char *item;

Given the string eqguivalent, raturns the numeric value.
char *loc char (local, yourstring)

LOCAL *local;
char *yourstring;

Returns the name of a property contained in a local variable.

int sort_alphabetic_proc (flag)
int flag;

Sorts the alphabetics and puts them in a ramdrive file.

OBJSET.C

SET *Define Object_ Set (Set, setname)
SET *Set;
char *setname;

Assign the setname to variable Set and return pointer tc Set.

int get_current_member (Seti, member)
SET *Set;
char *mcmber;

Returns name of the current member of set Set.

int get_first_member (Set, member)
SET *Set;
char *member;

Returns name of first member of Set.

int get_last_member (Set,member)
SET *Set;
char *member;

Returns name of the last member of set Set.

char *Get_Member (filename, which)
char *filename;
int which;

Actually reads the name of the member which.

int get_next_member (Set, member)
SET *Set;
char *member;

Returns next member of set.

int get_previous_member (Set, member)
SET *Set;
char *member;

Gets the member just before the current member.
int get_this member (Set, member, this)
SET *Set; .

char *member;
int this; *

Returns the ‘this’ member of the set.

A-34

int is_end_of_set (Set)
SET *Set;

Returns TRUE if no more members sequentially in set, and FALSE
otherwise.

char *make_member_name (name, which)
char *name;
int which;

Creates member name given number and sethame.
int valid_member (member)
char *member;

Returns TRUE if the set exists, FALSE if not.

int add_set_to_lib (SETLIB *)
Adds set to library.
int count_items_in set (setname)
char setnamel]};
Returris number of members in set.
int Create_Set_Item
SETLIB *item;

If a setitem is new, it creates the file name and inserts it into the
library, else simply returns the set's information.

int delete_appropriate_objects (setname, number)
char setname[];
int number:;

Atter marking the setlib record for deletion, goes and marks the sets
objects for deletion.
int Delete_Set_File (name)

char name([];

Deletes a setfile entry and its associated objects.
int get_next_set_file(newfilename)

char newfilename[];

Creates a unique runtime file name for the set.

A-35

int get_set name (which, name)
int which;
char namel];

Returns the nth set name.

int is_valid set (name)
char name[];

Returns TRUE for a valid set, FALSE for an invalid set name, where
invalid is undefined.

int Reorganize_Set_Lib ()

Deletes records marked for deletion, and writes out the new set
library.
int Rewrite_Setlib ()

Rewrites an existing entry in the set library.

Ramdrive_Set_File ()

Creates the setfile library ("HOSSET.S$) on the ramdrive for use in
the Object Editor.

int Set_Entry Position (name, file, items)
char namel);
char filel):
int *items;

Returns Fseek position.
Set_File (name, file, items)
char namel();

char filel]:;
int *items;

If the set exists, this routine returns the filename designation and
number of members.
int write_set_item (item)

SETLIB *item;

Appends a set entry to the end of the library.

A-386

ral
k4

TSK_MENU.C

int menu (arg)
int arg;
This function dispatches all menu selections base

A-37

d on arg.

APPENDIX B
HAL ERROR MESSAGES
Error Module
Message Name Rescription
. -2 BOOL_PART Incomplete Boolean clause.

-1 GET_NEXT_TOKEN Adtion is not terminated with an END statement,

0 DO_GROUP Normal EOF reached.

1 ADD_TO _TABLE internal HOS error. Dynamic memory requirements
exceed those available. Consult HOS expesrt.

5 DO_KEYWORD Looking for a HOS keyword and none was found.

6 po_Ir invalid HOS statement.
7 DO_IF IF statement contains an invalid Boolean clause.
7 DO_IF IF statement must be foliowed by THEN. ’
8 DO_IF Invalid IF group block of statements. An IF block must
F contain an IF Boolean condition THEN ENDIF,

10 DO_IF tnvalid ELSE group block of statements. An ELSE block
must follow an IF — ENDIF block. An ELSE statement
must be terminated with an ENDELSE.

12 DO_GROUP An IF, WHILE, or ELSE group contains an Invalid
slatement.

18 DO_DEFINE The define block contains an invalid type.

18 ANEXT_TOK SET statement contains an invalid formula.

19 ANEXT_TOK SET statement contains an invalid mathematical function.

22 BOCL_PART invalid Boolean clause.

24 STATEMENT HOS statements must being with a HOS verb.

30 DO_WHILE A WHILE statement contains an invalid Boolean clause.

30 UPDATE_TYPE internal HOS error in DEFINE — Number of defined
variables exceeds maximurn permitted in program. See
HOS expent.

31 DO_WHILE TWHILE statement must be terminated with the word

HEN.

31 UPDATE_TYPE internal HOS error in DEFINE ~ Problem with token —
consult an HOS expent.

32 DO_WHILE Invalid WHILE group of statements. A WHILE Is in the
form WHILE Boolean condition THEN ... ENDWHILE.

32 UPDATE_TYPE Internal HOS error in DEFINE — invalid type. Consuft an
HOS exper.

a3 DO_GROUP An IF, WHILE, or ELSE group of statements is not
terminated correctly with ENDIF (for IF block), ENDWHILE
{for WHILE block), or ENDELSE (for ELSE block).

87 DO_C_CODE END_C_CODE does not start in column one 10 terminate
a block of user C code.

58 DO_C_CODE - END_C_CODE does not start in column ong to terminate
a block of user C code.

59 DO_C_CODE A block of user dofined C code must be terminated with

M

an END_C_CODE staternent. None was found.
B-1

Eror Module
Message Name
€5 CNVT_VALUE
66 CNVT_VALUE
67 CNVT_VALUE
68 CNVT_VALUE
70 DQ_NEXT
71 DO_NEXT
72 DO_NEXT
72 DO_NEXT
73 DO_NEXT
73 DO_NEXT
78 DO_NEXT
79 CNVT_VALUE
B2 BOOL_PART
93 NEXT_TOK
100 DO_FORM
100 NEXT_TOK
101 NEXT_TOK
103 DO_FORM
154 DO_FORMULA
155 DO_FORMULA
200 CNVT_VALUE
210 DO_FORMULA
300 DO_START
300 DO_STOP

Descrio]

Intemal HOS error — Unable to determine variable type.
Consutt an HOS expen.

SET formula contains an alphabetic variable. Only
WHOLE and DECIMAL variables can be used in
formulas.

SET statement cannot contain a object set name.

SET formula cannot contain the name of a local cbject.
Invalid token type.

Invalid token type.

Invaiig or unexpected HOS keyword.

Undefined ERROR code *

Undefined variable. All local variables must be defined in
the DEFINITIONS block.

A local variable must be a WHOLE, DECIMAL, or
ALPHABETIC.,

Unable to bocate an object or local object name.

Invalid constamt. Constants must be either WHOLE or
DECIMAL number.

A Boolean clause contains a variable which is not an
ATTRIBUTE, WHOLE, DECIMAL, or ALPHABETIC.

SET statement formula contains a local variable that has
not a WHOLE or DECIMAL variable,

SET statement contains an incomplete formula. Check
to make sure all parentheses are paired correctly.

SET statement contains an incomplete formula. Check
to make sure all parentheses are paired correctly.

SET statement formula contains an undefined variable.

SET statement formula contains an invalid operator,
variable, or mathematical function.

SET statement contains invalid or missing parenthesis.

A SET statement contains unmatched or missing
parenthesis.

Undefined local variable.

SET statement contains different number of right and
feft parenthesis,

invalid START statement. START verb must be followed
by task number, group name, or the words:
HARDWARE, OPERATOR, ENVIRONMENT, or ALL.

Invalid STOP statement. STOP verb must be followed
by task number, group name, or the words:
HARDWARE, OPERATOR, ENVIRONMENT, or ALL.

B-2

Error

Module

Message ~ HName

301

302
302
302
303

330
331

378
379
450

451
451
4£1
501
502
503
503

550
550
551
551
551
555

555
563
565
566

587

WHICH_TASK

DO_START
DO_STOP
DO_SUSPEND
WHICH_TASK

DO_PUT
DO_PUT

WHICK-TASK
WHICH_TASK
DO_PRINT

DO_FILE
DO_FILE
DO_PRINT
DO_DEFINE
DO_DEFINE
DO_RECEIVE
DO_USING

DO_RECEIVE
DO_USING
DO_RECEIVE
DO_RECEIVF
DO_USING
DO_RECEIVE

DO_USING

DO_RECEIVE
DO_RECEIVE
DO_RECEIVE

DO_SEED

Rescription

START, STOP, or SUSPEND verb contains an invalid
task number.

START statement is invalid.
STOP statement s invalid.
SUSPEND statement is invalid.

START, STOP, or SUSPEND verb contains an invalid
task number.

PUT statement is invalid.

PUT statemeni contains a variable that is not an
ATTRIBUTE, WHOLE, DECIMAL, or ALPHABETIC.

START, STOP, or SUSPEND statement contains an
invalid group number.

START, STOP, or SUSPEND statement contains a
group number that is less than 0 or greater than 9.

PRINT statement contains an invalid operator or is
improperly formed.

FILE staternent is invalid.

FILE statement contains a reserved HOS keyword.

PRINT statement contains a reserved HOS keyword.

DEFINE statemeni group contains an invalid keyword.
DEFINE block contains an invalid operator.

RECEIVE statement is invalid.

tLlSlNG. statement contains an invalid operator or invaiid
ype.

RECEIVE verb contains a reserved HOS keyword.
USING statement contains a HOS keyword,

RECEIVE verb contains an invalid operator or variabie.
RETRIEVE verb can only be used for SET objects.

USING statement contains an undefined variable.

RECEIVE verb parameters must be defined as either
WHOLE, DECIMAL, LOC_OBJECT, or ALPHABETIC.

USING statement contains 2 paramefer that is not a
WHOLE, DECIMAL, OBJECT, LOC_OBJECT, or
ALPHABETIC.

RETRIEVE stalement contains an invalid variable.

RETRIEVE verb object set pointer must be defined as
etther a WHOLE or DECIMAL local variable.

RETRIEVE verb object set keyword must be either
FIRST, LAST, NEXT, PREVIOUS, or CURRENT.

SEED statement contains an undefined local variable,

B-3

Error Module
Message Name Description
588 DO_SEED SEED statement argument must be defined as either a
WHOLE or DECIMAL variable or & numeric value.
589 DO_SEED SEED statement is invalid.
610 DO_ATTRIBUTE imemal HOS error — unable to determine attribute type.
Consult an HOS expert.
610 DO_FILE internal HOS error in FILE statement — unable to
determine local variable type. Consult an HOS expert.
610 DO_GET irdernal HOS error in GET statement -—— unable to
determine focal variable type. Consult an HOS expent.
610 DO_PRINT internal HOS error in PRINT statement — unable to
determine local variable type. Consult an HOS expert.
610 DO_PUT frtemmal M0OS error with PUT statement —~ unable to
determine local variable type. Consult an HOS expert.
610 DO_RETRIEVE Intemal BDS ermor ir RETRIEVE statementi — unable to
determine local variabie type. Consult an HOS expert.
610 DO_SET Internal HOS error in SET statement — unable to
determine local variable type. Consult an HOS expent,
610 DO_SET internal HOS error in SET statement— unable to
determine variable type. Consult an HOS expen.
611 DO_SET A SET statement contains a variable/value that is not
WHOLE, DECIMAL, or ALPHABETIC.,
700 DO_COMMENT COMMENT statement contains a alphanumeric string
that causes the HAL program to abnormally terminate.
789 PROCESS_TOKEN Invalid use ot hyphen/minus sign.
800 DO_RETRIEVE RETRIEVE verb must contain the name of an object that
has been defined as an LOC_OBJECT.
1000 HAL Unable to open error.ist file.
1000 HAL internal HOS error — unable to open error.lst file.
Consult an HOS expent.
1001 OPEN_FILE Internal HOS error — unable 1o open input HAL file.
Consult an HOS expent.
1002 OPEN_FILE intermal HOS error — unable to open C file. Consult an
. HOS expert.
1003 OPEN_FILE interna! HOS error — unable to open fily containing
action names. Consult an HOS expen.
1004 OPEN_FILE Intemal HOS error — unable to open file containing
names of aphabetics. Consult an HOS expent.
1005 OPEN_FILE internal HOS error — unable to open file containing .
object names. Consult an HOS expert.
1006 OPEN_FILE internal HOS error — unable to open file containing
. names of vapable definitions. Consult an HOS expert.
1007 OPEN_FILE internal HOS error -~ unable to cpen file containing set
names. Consult an HOS expert.
B-4

Ji_-_——.M

Error Moduie

Message Name Rescription
1008 HAL Internal HOS error — cannot create symbol table.
Consult an HOS expenrt.
2001 HAL Invalid HAL keyword (NOTENDOFSET, ENDOFSET) Ina

conditional statement.

APPENDIX C
HOS-IV FILE DESCRIPTIONS

This appendix contains an alphabetical listing of all files used in
HOS-IV. It is divided into three sections: Executables, Cataiogs, and

data files.
EXECUTABLES
EDIT_EVT.EXE
Location; C:\HOSIV
Spawned by: HOESIV.EXE
Event Editor executable code.
EDIT_OBJ.EXE
Location: C:\HOSIV
Spawned by: HOSIV.EXE
Object Editor executable code.
EDIT_PRC.EXE
Locaticn: CAHOSIV
Spawried by: HOSIV.EXE
Action Editor executable code.
EDIT_TSK.EXE
Location: CAHOSIV
Spawned by: HOSIV.EXE
Rule Editor executabla code.
HOS_LINK.EXE
Location: CA\HOSIV
Spawned by: HOSIV.EXE
Create simulation executable code.
HOSIV.EXE
Location: CAHOSIV
Spawned by: RUNHOS.BAT

Main HOS executable.

HPLEXE
Location: CAHOSIV

Spawned by: EDIT_PRC.EXE
Action translator executabie code.

OBJANAL.EXE
Location: C\HOSIV

Spawned by: VIEWRSLT.EXE

Obiject analysis report program.

SETUPSYS.EXE
Location: C\HOSIV

Spawned by: INSTALL.BAT

System setup executable.

SIM.EXE
Location: C:\HOSIV

HOSIV.EXE

Spawned by:
executable code.

The current simulation’s

SIMSET.EXE
Location: CA\HOSIV

Spawned by: HOSIV.EXE
Simulation setup executable code.

TASKANAL.EXE
Location: CAHOSIV

Spawned by: VIEWRSLT.EXE

Rule analysis report program.

TIMELINE EXE
Location: CAHOSIY

VIEWRSLT EXE

Spawned Dy:
Timeline analysis report program.

C-2

VIEWRSLT.EXE
Location: C:\HOSIV

Spawned by: HOSIV.EXE
Simulation result analysis program exacutable code.

C-3

"

CATALOGS

EDIT_EVT.CAT
Location: CA\HOSIV

Usedby: EDIT_EVT.EXE
Catalog of windows used by the Evant Editor executable.

EDIT _OBJ.CAT
Location: CA\HOSIV

Used by: EDIT_OBJ.EXE
Catalog of windows used by the Object Editor executable.

EDIT_PRC.CAT
Location: CAHOSIV

Used by: EDIT_PRC.EXE
Catalog of windows used by the Action Editor executable.

EDIT_TSK.CAT
Location: CAHOSIV

Used by: EDIT_TSK.EXE
Catalog of windows used by the Rule Editor executable.

HOSIV.CAT
Location: CA\HOSIV

Used by: HOSIV.EXE
Catalog of windows used by the HOS-IV executable.

LINK.CAT
Location: CAHOSIV

Used by: HOS_LINK.E'E

Catalog of windows used by the Simulation Linker executable.

”

C-4

SIMSET.CAT
Location: C:AHOSIV

U edby: SIMSET.EXE
Catalog of windows used by the Simulatior Setiup executable.

SIMULA.CAT
Location: CA\HOSIV

Used by: SIM.EXE
Catalog of windows used by the Simulation executable.

VIEWRSLT.CAT
Location: CAHOSIV

Used by: VIEWRSLT.EXE
Catalog of windows used by the View Results executable.

2]

DATA FILES

HOSSYS.DAT
Location: CA\HQSIV

Created by: SETUPSYS.EXE

Used by: SIM.EXE

HOS system setup parameters
Mass storage device: EXTERNAL for Bernoulli boxes; INTERNAL for
internal hard disks.

integer loop counter for controlling screen scrolls: 100 for bus mouse; 1
for serial mouse.

SIMNAME.DA1
Location: C:\HOSIWSIMNAME

Created by: Simset.exe

Used tv: HOS_LINK.EXE

C language inciude file for SIM.C containing basic parameters for
simulation.

TIME_UNITS = UNIT; where unit is one of the following units:
thousandths, hundredths, tenths, seconds, minutes, hours, days.

MAX_SIM_TIME = n; where n is a 6 character long unsigned indicating
the maximum simulation time in terms of the minimum time unit.

strepy (SIM_DESCRIPTION, "xxxxx"); where xxxxx is a maximum o7 80
characters containing simulation description.

strepy (SIM_NAME, "xxxxxxxx"); where xxxxrxxx is the 8 character
simulation name.

start_sim_func = function_name; where functic ~ ame is the name of the
action that is to be invoked at the start of the simulation.

SIM_START_(IME = n; where n is a long unsigned integer containing
the simulation start time.

C-6

SIMNAME.DA2
Location: CA\HOSIWSIMNAME

Created by: Simset.exe

Used by: HOS_LINK.EXE
Contains basic simulation information.
xxxxxxxx where xxxxxxxx is the eight-character simulation name.

n where n is an integer (0-6) indicating the minimum time unit as follows:
O=thousandths
1=hundredths
2=tenths
3=seconds
4=minutes
5=hours
6=days

80 character simulation description.

Date and time that simulation was last executed from SIM.EXE.

SIMNAME.DA3
Location: C:HOSIMSIMNAME

Created by: Simset.exe

Used by: HOS_LINK.EXE

Contains basic simulation information.
Simulation stant time in minimum time units.

Actual date and time that the simulation started running.

Actual date and time that the simulation stopped running.

Daie and time that simulation was last executed from SIM.EXE.

ALL_SIMS.DAT
Location: C:AHOSIV

Created by: HOSIV.EXE

Usedby: HOSIV.EXE

List of all simulations that have been created.
char sim_name(8];

HOSERROR.ERR
Location: C:AHOSIV
Created by: All Modules
Used by: All Modules

Used by all modules to report system related errors, like failure on file
access, and memory usage.

QUT.OUT
Location: C:AHOSIV

Created by: Any executable
Used by: All modules

Redirected output from all executables in HOS.

HOSIV.LIB
L.ocation: CA\HOSIV

Created by: N/A

Used by: EDIT_TSK.EXE; EDIT_OBJ.EXE; HPLEXE

Data base procedures. Runtime library of calls for maintaining the Objoct
data base, procedure and set libraries, and alphavetics dictionary.

C-8

Includes the following object modules:
setlib.obj -- set library creation and maintenance procedures.
lowlevdb.obj - object data base access routines.
objdir.obj - object directory routines that provides search.
capability for object names.
objset.obj -- runtime set manipulations used by HAL procedures.
dumpout.obj -- formats and prints the object data base.
hosproc.obj -- creates and maintai'ns the action library data base.
objprop.obj -- maintains and uses the alphabetics dictionary.

library.ohj -- the routines which are the translation result of the Hal
translator. These are the simulation runtime routines for object data
base manipulation.

HOSOBJ.H
Location: HOSIV

Created by: LORNA
Used by: HOSIV.LIB

Used only for compilation. HOSIV library header file. Used by all code
modules included in the library. Needed only if recompiling one of
the HOS executable modules.

HOSPROC.P$
Location: C:A\HOSIV
Created by: Action Editor

Used by: HOSIV.LIB and most of the editors including the HOS_LINK
process.

Action library data base. Library where the actions and their
corresponaing files (pnnnnnnn.fin],[c],(hpl]) are stered.

C-9

“

-y

typedet struct {
char name[31); Mprocedure name®*/
char file[9); /* filename (pnnnnnnn.??7? */
int status;/* deletion status */

} PROCLIBy/* procedure library record structure

HOSPROP.P$
Location: C:AHOSIV

Created by: Obiject Editor

Used by: HOSIV.LIB/ and user created simulations as well as the
HOS_LINK process.

Alphabetic dictionary.
31 character records, nonvariable iength records written to a binary file.
Can use random access within the file for reading and writing.

HOSSET.S$
Location: CAHOSIV

Created by:

Used by: HOSIV.LIB

Object set library data file. Contains all the set names defined, and
the temporary file name to used during execution,

typedef struct {
char name[31]; /*set name*/
char file[9]; /* temporary file name snnnnnnn*/
int status; /*deletion status®/
int members; /*number of members in set*/

} SETLIB; -

C-10

INSTALL.BAT
Location: C:A\HOSIV

Created by:
Used by: SETUPSYS.EXE

Installation batch file.

OBJECTS.0%
Location: CA\HOSIV

Created by: Object Editor T

Used by: HOSIV.LIB - used be some editors and user created
simulations

Object library data file
typedet struct{

char a_name[32]; /*characteristic name*/

char type; /* characteristic type*/

union {
long i; /* slorage space for value -- long or double*/
double f;
} val;

} FIELD; /* one field declaration*/

typedef struct {

char name[32); /object name*/

int retrieved; /*reserved for iater use®/ j
unsigned int d_status; /"delete status®*/

int set_status; /* set membership indicator®/

FIELD f[15); /*characteristics - 14 actual, one NIL*/

} OBJECTS;

C-11

SIM.C
Location: CA\HOSIV

Created by:

Usedby: HOS_LINK.EXE

Portion of the source code required to compile SIM.EXE. Used with
SIMULA.C.

This is the actual simulation driver. It processes all the events, rules and
associated procedures, as well as outputing all the simulation
information.

SIMULA.C
Location: CA\HOSIV

Created by:
Used by: Linkad in with sim.c when creating a simulator
Used with SIM.C to compile SIM.EXE.

This is the user interface part of the simulator.

SIMNAME.DEV
Location: C:\HOSIWSIMNAME\F or F:\

Created by: SIM.C
Used by: SIM.EXE; TIMELINE.EXE and view results

Simulation event data output file.

SIMNAME.DOB
Location- CAHOSIV\SIMNAME\E or E:\

Created by: SIM.C
g Used by: SIM.EXE; TIMELINE.EXE; object analysis and view results

Simulation object data output file.

SIMULATI.EV1
Location: CAHOSIV

Created by: SIM.EXE
Used by: SIM.EXE

Temporary event data file used in simulation compilation.

SIMNAME.DTK
Location: C:\HOSIWSIMNAME\F or F:\

Created by: SIM.EXE
Used by: SIM.EXE; TIMELINE.EXE; TASKANALEXE and view results

Simulation rule data output file.

SIMNAME.LOG
Location: CAHOSIWSIMNAME\F or F:\

Created by: SIM.EXE
Used by: SIM.EXE

Simulation log file created from user-defined FILE statements contained
in actions.

SIMULATI.TK2
Location: C:\HOSIV

Created by: Task Editor
Used by: HOSIV.LIB

Actions referenced in rules.

SIMNAME.TK3
Location: C:AHOSIVW\SIMNAME

Created by: edit_tsk.exe
Usedby: SIM.C

This file contains the C code to initialize all of the rules. 1t is a
combination of the three files: C:\hosivisimname.to3,
C:\hosivisimname.te3, and C:\hosivisimname.th3.

SIMULATLTKA4
Location: CAHOSIV

Created by: Task Editor
Used by: SIM.C

C code to drive tasks.

SIMULATITKS
Location: CAHOSIV

Created by: Task Editor {task_bool)
Used by: HOS_LINK.EXE

List of all objects and characteristics used in rules.

SIMULATI.TKS
Location: CAHOSIV

Created by: Task Editor (task_bool)
Used by: HOS_LINK.EXE

List of all aiphabetics used in rules.

TASKANAL.RPT :
Location: CAHOSIVSIMNAME

Created by: TASKANAL.EXE
Used by: View results

Tasks analysis report.

TIMELINE.RPT
Location: CA\HOSIWSIMNAME

Created by: TIMELINE.EXE
Used by: View results

Timeline report.

SIMNAME.EV1
' Location: CAHCSIVSIMNAME

Created by: edit_evi.exe

Used by: HOS_LINKEXE

Event data file.
Each record is in the following format:

XXX_YYYYYY_2222222222222222222222222222222_2

xxx is three digit event number; yyyyyy is a 6 digit event time zzzzz... is
the 31 character event procedure; a... is the 40 character event
description.

SIMNAME.EV2
Location: C:AHOSIV\SIMNAME
Created by: edit_svt.exe

Used by: - HOS_LINK.EXE
Actions referanced in events.

C-15

Every record contains the following format:
zz272.

where zzzzz... is a 31 character action referenced in an event.

SIMNAME.EV3 .
Location: C\HOSIV\SIMNAME

Created by: edit_evt.exe

Used by: HOS_LINK.EXE

C include file with pointers to event actions.
Every record is in the following format:

event_proc[xxx] = 222222222,
where xxx is a three digit event number

22z22z2227... is the action.

SIMNAME.OB
Location: CAHOSIV\SIMNAME

Created by:
Used by:

SIMNAME.OBS
Location: C\HOSIW\SIMNAME -

Created by:
Used by: HOSIV.LIB

Object library file with object information at conclusion of simulation.

»

SIMNAME.PRP
Location: C\HOSIWSIMNAME

Created by: Action Editor and maybe Task Editor
Usedby: HOS_LINK.EXE

Alphabetics referenced in the simulation.

SIMNAME.TK2
Location: CAHOSIM\SIMNAME

Created by: edit_tsk.exe

Used by: HOS_LINK.EXE

This file contains a list of all procedures referenced in all of the rules. Itis
a combination of the three files: C:\hosivisimname.to2,
C:hosivisimname.te2, and C:'i..sivisimname.th2.

There is one action name per line separated from the next by a carriage
return linefeed combination.

SIMNAME.TK4
Location: CAHOSIW\SIMNAME

Created by: edit_tsk.exe
Used by: HOS_LINK.EXE

This file contains the C code to drive all ot the rules. 1t is a combination of
the three files: C:hosivisimname.to4, C:\hosivisimname.te4, and
C:\hosivisimname.th4.

SIMNAME.TE1
Location: C:\HOSIV\SIMNAME

Created by: edit_tsk.exe
Used by: edit_tsk.exe

This file contains the text version of the environment rules. 1t is formatted
{or outout to the printer including form feeds.

C-17

SIMNAME. TH1
Location: CAHOSIVSIMNAME

Created by: edit_tsk.exe
Used by: edit_tsk.exe

This file contains the text version of the hardware rules. it is formatted tor
output to the printer including form teads.

SIMNAME.TO1
Location: CAHOSIV\SIMNAME

Created by: edit_tsk.exe
Used by: edit_tsk.exe

This file contains the text version of the operator rules. it is formatted for
output to the printer including form feeds.

SIMNAME.TKO'
Location: C:\HOSIV\SIMNAME

Croated by: edit_tsk.exe

Used by: edit_tsk.exe

This file is used by the Rule Editor to store its internal representation of
tha operator rules. The program uses an twrite to put the structure on
the disk once for each rule.

Cc-18

char description[35);
char if_cond[200},
char if_c[300]);
char procedure[3&];
char until_cond[200);
char until_c[300]
char priority;
char sub_pnority;
task_type *next
task_type ‘last;
SIMNAME . TKH
Location: CAHOSIVVSIMNAME
Created by: edit_tsk.exe
Used by: edit_t=k.exe

This file is used by the Rule Editor to store its internal representation of
the hardware rules. The program uses an twrite to put the structure on
the disk ance for each rule.

char description[35];
char if_cond[200};
char if ¢cl3)
char procedure[SS]:
char until_cond{200};
char until_c{300};

- char pricrity;

char sub_priority;
task_type ‘next
task_type “last;

SIMNAME.TKE
Location: C:\HOSIV\SIMNAME
Created by: edit_{sk.exe

Used by: edit_tsk.exe

This file is used by the Rule Editor 1o store its internal representation of
the environment rules. The program uses an twrite fo put the structure
on the disk once for each rule.

char description[35),
char if_cond[200];

char if_c[300];

char procedure[35);
char until_cond[200];
char until_c[300);
char priority;

char sub_priority,
task_type *next;

task_type *last;
SIMNAME.TOI
Location: CAHOSIV\SIMNAME
Created by: edit_tsk.exe
Used by: sim.c

This file contains the C code to initialize the operator tasks.

SIMNAME.TE!
Location: C\HOSIWSIMMNAME

Created by: edit_tsk.exe

Usedby: sim.c

This file contains the C code to inilialize the environment tasks.

SIMNAME.THt
Location: C\HOSIWSIMNAME

Created by: edit_tsk.exe

Used by: sim.c

This file contains the C code to initialize the hardware tasks.

SIMNAME.TOC
Lozation: CAHOSIWSIMNAME -

Created by: edit_tsk.exe
Used by: sim.c

This file contains the C code to execute the operator tasks.

SIMNAME.THC
Location: C:\HOSWSIMNAME

Created by: edit_tsk.exe
Used by: sim.c

This file contains the C code to executse the hardware tasks.

SIMNAME.TEC
Location: CAHOSIVWSIMNAME

Crealed by: edil_tsk.exe

Usedby: sim.c

This file contains the C code to execute the environment tasks.
SIMNAME.TO2

Location: CAHOSIV\SIMNAME

Created by: edit_tsk.exe

USGO' bj: :108 L”‘!c\- \E

[

This file contains e list of all procedures referericed in the operator rules.

C-22

There is one action name per line separated from the next by a carriage
return linefeed combination.

* SIMNAME.TE2

Location:. C:AHO'3IVWSIMNAME
Created by: edit_tsk.exe

Used by: HOGS_LINK.EXE

This file contains a list of all procedures referenced in the environment
rules.

There is one action name per line separated from the next by a carriage
return linefeed combination.

SIMNAME.TH2

SIMN

Location: C:\HOSIVWSIMNAME
Created by: edit_tsk.exe

Used by: HOS_LINK.EXE

This file coniains a list of all procedures referenced in the hardware rules.
There is one action narmne per line separated from the next by a carriage
return linefeed combination. '

AME.TKS

- Location: C:\HOSIV\SIMNAME

Created by: edit_tsk.exe

Used by: HOS_LINK.EXE f]

This file contains the list of all attribute object pairs referenced in the
rules. it is a combination of the three files: C:\hosivisimname.to5,
C:\hosivisimname.te5, and C:\hosivisimname.th5.

attribute, object ,

The attribute is separated from the ohiect by 2 comma and a epace. Each

fet e g b

pair is separated by a carriage return linefeed combination.

SIMNAME.TO5
Location: CA\HOSIWSIMNAME

Created by: edit_tsk.exe

Used by: HOS_LINK.EXE

This file contains the list of all attribute object pairs referenced in the
operator ruies.

attribute, object

The attribute is separated from the object by a comma and a space. Each
pair is separated by a carriage retumn linefeed combination.

¢
SIMNAME.TES
Location: CAHOSIWSIMNAME

Created by: edit_tsk.exe

Used by: HOS_LINK.EXE

This file contains the list of all attribute object pairs referenced in the
environment rules.

attribute, object

The atiribute is separated from the object by a comma and a space. Each
pair is separated by a carriage retumn linefeed combination.

SIMNAME.TH5
Location: CAHOSIV\SIMNAME

Created by: edit_tsk.exe

Used by: HOS_LINK.EXE

This file contains the iist of all attribute object pairs referenced in the
hardware rules.

attribute, object

The attribute is separated from the object by a comma and a space. Each
pair is separated by a carriage retumn linefeed combination.

C-24

SIMNAME.TK6
Location: CAHOSIV\SIMNAME

Created by: edit_tsk.exe

Usedby: HOS_LINK.EXE

This file contains the list of all alphabetics referenced in all of the rules. It
is a combination of the three files : C:\hosivisimname.to8,
C:\hosivisimname.te6, and C:\hosivisimname.th6.

alphabetic

Alphabetics are separated by carriage return linefeed combinations.

SIMNAME.TO6
Location: CAHOSIWSIMNAME

Created by: edit_tsk.exe

Usedby: HOS_LINK.EXE

This file contains the list of all alphabetics referenced in the operator
rules.

alphabetic

Alphabetics are separated by carriage return linefeed combinations.
SIMNAME.TES

Location: CAHOSIV\SIMNAME

Created by: edit_tsk.exe

Used by: HOS_LINK.EXE

This file contains the list of all alphabetics referenced in the environment
rules.

alphabetic

Alphabetics are separated by carriage return linefeed combinations.

C-25

SIMNAME.THS6
Location: CA\HOSIWSIMNAME

Created by: edit_tsk.exe

Used by: HOS_LINK.EXE

This file contains the list of all alphabetics referenced in the hardware
rules.

alphabetic

Alphabetics are separated by carriage return linefeed combinations.

SIMNAME.DA4
Location: C:\HOSIVW\SIMNAME

Created by: simset.exe

Used by: HosLink.exe

Contains the simulation start action.
Sirnulation start action, 31 character maximum.

SEGLOAD.DAT
Location: CAHOSIV

Created by: VIEWRSLT.EXE

Used by: OBJANAL.C

Temporary file used to pass an object name to the object analysis
program.
char name[32]; /'name of the object to look for*/

