
Research Product 89-06

N

Human Operator Simulator (HOS) IV

Programmer's Guide

S~ ELEO'Ti •

APR 2 5 1989

Dc-
-I-

January 1989

Manned Systems Group
Systems Research Laboratory

U.S. Army Research Institute for the Behavioral and Social Sciences

Approved for public reloas•o; distribution in unlimited

"CAN

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE Form Approved

la. REPORT SECURITY CLASSIF.CATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHO&IT'r 3. 1'.STRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADiNG SCHEDULE Approved for public release;
distribution unlimited.

4. PERFORMING ORGANiZkTION REPORT NuMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ARI Research Product 89-06

6a. NAME OF PERFORMING ORG,;-,ZATON 6o. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable) U.S. Army Research Institute for the

Analytics, Inc. Behavioral and Social Sciences

6C. ADDRESS (City. State, anu ZIP Code) 70. ADDRESS (City, State, and ZIP Code)

2500 Maryland Way 5001 Eisenhower Avenue
Willow Grove, PA 19090 Alexandria, VA 22333-5600

8a. NAME OF FUNDING I SPO1'SOR;;G Bb OFF:CE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFiCATION NUMBER
ORGANIZATION (if applicable) 001 C/

Sa.me as 7a. PERI-SM F33615-86-C--r•
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WOR N UNIT
ELEMENT NO. NO. NO. (121) ACCESSION NO.

Same as 7b. 62717 A790 1204 H.2
11. TITLE (Include Security Classification)

Ilmilan 0pekator Siriulator (11OS) IV Progrimmer's Guide
12.PEPRSONALAUTHOR(S) Harris, Regina (Analytics, Inc.); Kaplan, Jonathan (ARI); Bare,

Christopher.' Lavecchia, Helene, Ross, Lorna, Scolaro, Dan, and Wright, Douglas (Continued)
1 3 a. TYPE CF REPORT J"3b TIME COVERED 14. DATE OF REPORT (Year, Monrh, Day) 15. PAGE COUNT

Final FROM 1987 TO 1988 1989, January 186
16. SUPPLEMENTARY NOTATION Michael Young, Contracting Officer's Representative. Research

Product prepared in cooperation with the U.S. Air Force Human Resources Laboratory,

Rriuht- atteiron Air Forcy Base Dayton, Ohio 45433.
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

IELD GROUP SUBGROUP Simulation Modeling Performance modeling

Human factors Interface
HOS Evaluation

19. ABSTRACT (Continue on reverse if neces5ary and identify by block number)

This report is a guide to maintaining and updating the source code for the Human
Operator Simulator (HOS) IV, which was developed to aid in the design and evaluation of

interfaces between operators or maintainers and weapon system hardware and software.

HOS IV creates simu]ations of manned systems on an IBM-AT PC or compatible. It does this

by using nicroitiodels of basic human processes to produce both system and human performance

estimates. lIOS IV also includes a mechanism to aid in the creation of new micromodels.

20. DiSTRIBIJTIO I AVAILABILITY OF ABSTRACT j21 ABSTRACT SECURITY CLASSIFICATION
U UNCLASSIFiEnIUN.IMITED 0 SAME AS RPT. FE DTIC USERS Unri-]lassi fi ied

"22a, NAME OF PESf')NSIbLE INDIVIDUAL 122b TELEPHONE (Include Area Code) I22c. OFFICE SY'MBOL "l

L4.ichael Young (513) z5-8229 AFHRI,/LRC
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICAT;ON OF THIS PAGE

UNCLASSIFIED
i

UNCLAS SIFTED

SECURITY CLASSIFICATION OF THIS PAGE(Wh1.4, D.ta Ente..d)

ARI Research Product 89-06

12. PERSONAl. AUTHOR(S) (Continued)

(Analytics, Inc.)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(W he- D.I. Enewod)

i:

U.S. ARMY RESEARCH INSTITUTE

FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction
of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON JON W. BLADES
Technical Director COL, IN

Commanding

Research accomplished under contract
for the Department of the Army

Analytics, Inc.
Accesio• I-C`
NTIS CAll

DTIC i,
Technical review by U:.

Christine R. Hartel
Michael Young -..

-- __;-•

DIM

NOTICES

FINAL DISPOSITION: This Research Product may be destroyed when it is no longer needed.
Please do not return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: This Research Product is not to be construed as an officiai Department of the Army
document, unless so designated by other authorized documents.

Research Product 89-06

Human Operator Simulator (HOS) IV
Programmer's Guide

Regina Harris
Analytics, Inc.

Jonathan Kaplan
Ar,,y Research Institute

Christopher Bare, Helene Lavecchia,
Lorrna Ross, Dan Scolaro, Douglas Wright

Analytics, Inc.

Manned Systems Group
John F. Hayes, Chief

Systems Research Laboratory
Robin L. Keesee, Director

U.S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue, Alexandria, Virginia 22333-5600

Office, Deputy Chief of Staff for Personnel
Department of the Army

January 1989

Arrr ' Project Number Human Performance Effectiveness
2C 2717A790 and Simulation

Apprcved for public release; distribution is unlimited.

iii

FOREWORD

The U.S. Army Research Institute for the Behavioral and Social Sciences
(ARI) and the U.S. Air Force Human Resources Laboratory (AFHRL) have developed
a simulation technique for evaluating manned systems based on their design,
the performance of their operators, and the activities of their environment.
This method is called the Human Operator Simulator (HOS) IV, which is a sub--
stantial alteration of the original version of HQS developed by the U.S. Navy.
This method runs on an IBM AT or equivalent personal computer. HOS IV can be
used at any stage of system development to model, and thus evaluate, manned
developmental or nondevelopmental items. The HOS IV development is one of a
number of programs with which ARI and AFHRL are advancing the state of the art
of manned system design and evaluation. This specific volume is the HOS 7--
Programmer's Guide, which is to be used to help maintain and update source
code.

EDGAR M. JOHNSON
Technical Director

V

HUMAN OPERATOR SIMULATOR (HOS) IV PROGRAMMER'S GUIDE

EXECUTIVE SUMMARY

The Human Operator Simulator (HOS) IV allows its users to create and run
computer-based simulations of manned systems in their operational environment.
It also allows the development of reusable micromodels of human and hardware
processes and the linking of these processes to more general system models to
predict operator and overall system performance.

HOS IV runs on an IBM AT or fully equivalent machine. Written in Micro-
soft C, it is wholly owned by the U.S. Department of Defense. Its source code
may be altered by any of its users, governmental or civilian. This report
provides the documentation that such source code alteration requires. It is
not a user's guide to HOS IV, although users may find it interesting and use-
ful in understanding how H0S works.

vii

HUMAN OPERATOR SIMULATOR (HOS) IV PROGRAMMER'S GUIDE

CONTENT S

Page

1. INTRODUCTION 1

1.1 Hardware Environment 1
1.2 Software Environment 2
1.3 HOS Components 2
1.4 About This Document 3

2. USER INTERFACE 4

2.1 Input Devices 4
2.2 Screen Layout and Components 7
2.3 Skylights/GX Usage 26

3. PROGRAM ORGANIZATION 28

3.1 System Flowchart 28
3.2 HOS-IV Modules 29

4. HOS-IV FILES 109

Z Direction/Subdirectory Organization 109
4.2 File Descriptions 110

APPENDIX A. HOS-IV INDIVIDUAL PROGRAM UNIT DESCRIPTIONS A-i

B. HAL ERROR MESSAGES B-i

C. HOS-IV FILE DESCRIPTIONS C-i

LIST OF FIGURES

Figure 2-1. HOS screen components 10

2-2. HOS message window screen 13

2-3. HOS dialog window & screen components 15

2-4. H0S information window screen 17

2-5. List viewing box 20

ix

CONTENTS (Continued)

Page

Figure 3-1. HOS-IV software flow chart 31

3-2. HOS-IV main screen 32

3-3. Select simulation window 35

3-4. Simulation setup screen 41

3-5. Event editor screen 49

3-6. Rule editor screen 58

3-7. Action editor screen 67

3-8. Action editor functional diagram 68

3-9. Object editor screen 84

3-10. Alphabetic viewing window 87

3-11. HPL translator flowchart 91

3-12. Simlink functional diagram 94

3-13. Link message window 95

3-14. Link errors window 96

3-15. Beginning of simulation window 98

3-16. Simulation window 99

3-17. Simulation paused window 100

3-18. Simulation complete window 101

3-19. View results functional diagram 103

3-20. View results screen 105

HUMAN OPERATOR SIMULATOR (HOS) IV PROGRAMMER'S GUIDE

1. INTRODUCTION

This document describes the Human Operator Simulator (HOS-IV)

software and assumes that the reader is familiar with HOS-IV concepts and

terminology as described in the HOS-IV Userhs Guide (Harris, et al., 1988).

1.1 Hardware Environment

HOS-IV requires an IBM PC/AT (80286 microprocessor based) or fully

compatible (such as the Compaq 80286) with the following minimum

configuration:

"• An Enhanced Graphics (EGA) monitor,

"• An Enhanced Graphics (EGA) card with 256 Kb of RAM,

"• At least one 5 1/4" floppy diskette drive able to read 360 Kb
formatted floppy diskettes,

"* A hard disk with at least 10 Mb of available storage,

"* A minimum of 640 Kb of memory (RAM),

"* A minimum of 1 Mb of extended RAM that conforms to the EMS
specification and functions as a RAM drive, and

" A mouse.

The optimal configuration for using HOS-IV requires the following

components:

* 80287 math co-processor.

* A total of 4 Mb of RAM in the form of an additional 3.5 Mb of
RAM drive. The additional RAM must conform to the EMS
standard.

* Epson compatible dot matrix printer with graphics capability,
such as an Epson LQ-1200.

* 40 Mb Bernoulli Box.

1

1.2 Software Environment

The HOS-IV software requires DOS 3.1 or higher version of the operating

system. A copy of Microsoft C Version 4.0 is required. The C language was
used to develop the HOS simulation software and HOS uses the C language
compiler and linker. Skylights software was used to develop the user interface
and therefore a copy of the Skylights software is required if any changes are
made to the HOS user-computer interface.

1.3 HOS Components

The HOS-IV software is split into nine major mod-iles; these modules

perform the following functions:

"* Simulation Selection - specifies whether a new simulation
is being developed or permits selection from list of existing
simulations.

"* Simulation Setup - specifies basic simulation parameters
such as simulation name, time units, simulation start time, and
maximum simulation time.

"• Event Editor - processes events including creation of new
events, modification of existing events, and deletion of existing
events.

"* Rule Editor - processes rules including creation of new
rules, modification of existing rules, and deletion of existing
rules.

" Action Editor - processes actions including creation of new
actions, modification of existing actions, and deletion of
existing actions.

I

" Object Editor - processes objects including creation of new
objects, modification of existing objects, and deletion of
existing objects. The Object Editor also maintains the list of
user-defined alphabetic and creates and maintains object sc s.

" Simulation Creation - compiles the user's simulation code
and links it with the HOS-IV library code.

" Simulation Execution - executes the users simulation.

2

• Simulation Post-Processing -generates simulation

reports.

1.4 About This Document

Section 2 of this document describes the HOS-IV user-computer

interface and the use of Skylights. Section 3 presents details of the HOS-IV
modules. Section 4 describes the data organization and storage. Appendix A

contains detailed individual program unit descriptions organized by function;

Appendix B contains a description of the error messages generated by the HOS

action language translator.

3

2. USER INTERFACE

This section describes the user-computer interlace (UCI) for HOS-IV and
presents information about how the UCI was implemented using the Skylights

software system.

2.1 Input Devices

The UCI input devices consist of two complementary devices -- a

keyboard and a mouse. The keyboard is used mainly for entering text and
numbers; while the mouse is used for specifying menu options, controlling the
cursor, selecting information, and specifying insertion points.

2.1.1 Keyboard

The keyboard is used to enter alphanumeric data and as an afternalive to

the use of the mouse to move the text cursor between input fields on dialog
boxes. The keyboard consists of a standard typewriter keyboard, numeric
keypad overlaid with cursor move keypad, and a set of function keys.

The numeric keypad includes keys for the numbers zero through nine
arranged in an adding machine format; it also has keys for special functions
(such as a minus sign, equal sign, etc.) and is used to speed entry of numeric
information. The cursor movement keypad contains an up-arrow, dc",n--irrow,
rig ht-arrow, left-arrow, home, and end keys and is used to control cursor

movement within a window as an alternative to the use of the mouse. The user
controls the functioning of the keypad as either s. numeric pad or cursor
movement pad through the use of the NUM LOCK key. Above the num lock
key is a small red dot light. If the light is lit, then the keypad is functioning as a
numeric pad, otherwise it functions as a cursor movement pad. The special
function keys are used to select menu options as an alternative to the use of the
mouse for experienced users with certain modules.

4

The following keys have special functions as described within the HOS

modules indicated in parentheses:

Enter (.J) is used for the following:

1. Move the text cursor and any subsequent text to the next
line (Action and Object Editor modules), and

2. Move the text cursor to the next data entry field in the dialog
window (All other modules).

Backspace (--) deletes the character to the left of the text
cursor. If the text cursor Is positioned at the top, leftmost
character in a window, subsequent depressions of the
backspace key are ignored (All modules).

Tab (1--) is used for the following:.

1. Insert up to five blank characters in the text depending upon
the current cursor position. If the entry of the blank
characters causes the width of the line to exceed the screen
width, the text cursor and any subsequent text will be
moved to the next line (Action Editor module), and

2. Move the text cursor to the next input field in the dialog
window (All other editors).

~/' key is used to geneiate the underscore character
regardless of the status of the shift and/or shift lock keys.

The following keys on the cursor movement pad have special functions

as described for the indicated HOS modules:

" HOME (above 7 key on numeric pad) is used for the following:

1. Move the text cursor to the leftmost character in the first
entry field in the dialog window (Object Editor modules),

2. Move the text cursor to first screen containing text (Action
Editor module) and maintain the relative position of the text
cursor, and

3. Move the text cursor to the leftmost character in a text entry
box (All other modules).

" Up-arrow (t)-- (above 8 key on numeric pad) moves the text
cursor up one line. If the current line is the top line on the
page, the depression of the up arrow scrolls the page. If the
current line is the first line then subsequent depressions of the
up-arrow are ignored (Action Editor module).

" PgUP (above 9 key on numeric pad) moves the text cursor to
the previous page of text and maintains the relative position of
the text cursor on the page. The top line of the previous page

5

becomes the bottom line of the current page (Action Editor

module).

" Right-arrow (-4) (above 6 key on numeric pad) moves the
text cursor one character to the right (All modules).

" Left-arrow (+-) (above 4 key on numeric pad) moves the text
cursor one character to the left (All modules).

" END (above 1 key on numeric pad) is used for the following:
1. Move the text cursor to the rightmost character in the last

entry field in the dialog window (Object Editor module),
2. Move the text cursor to last screen containing text and

maintain the relative position of the cursor (Action Editor
module), and

3. Move the text cursor to the right most character in a text
entry box (All other modules).

" PgDN (above 3 key on numeric pad) moves the text cursor to
the next page of text and maintains the relative position of the
text cursor on the page. The bottom line of the previous page
becomes the top line of the current page (Action Editor
module).

" Down-arrow (I-)- (above 2 key on numeric pad) moves the
text cursor down one line. If the current line is the last line of
the page, the down-arrow will scroll the text down one line. If
the current line is the last text line, subsequent depressions of
the down-arrow will be ignored (Action Editor module).

The following functions kbys are used for the indicated processes only
within the Action Editor:

"• F1 -- Begin text marking for cut/copy operation.
"• F2-- End text marking for cut/copy operation.
"* F3- Cut text.
"* F4 - Copy text.
"* F5- Paste text.
"• F6- Clear text.

2.1.2 Mouse

The mouse is used as a pointing device to select commands from menus,
to control cursor (pointer) movement and to manage file scrolling. In HOS-IV,
mhe standard pointer iG an arrow (.9). Every move of tho mouse moves the

6

pointer in exactly the same way. The following •e;ms describe various actions
associated with mouse utilization:

" CItklng - positioning the pointer with the mouse, briefly
pressing, and relersirng the mouse button without moving the
mouse.

" Pressing - positioning the pointer by holding down the
mouse button without moving the mouse.

" Dragging - positioning the pointer with the mouse, holding
down the mouse button, moving the mouse to a new position,
and then releasing the button.

These terms will be used In subsequent sections to describe user interactions
with HOS-IV.

2.2 Screen Layout and Components

This section describes how information is arranged on the display and
how the user interacts with the particular component. The screen is arranged
into three main areas:

1. The title bar which is always on the top line of the display as
described in Section 2.2.1;

2. The menu bar which is always the second line of the display
as described in Section 2.2.2; and

3. The HOS window which occupies the remainder of the
screen. The HOS window is used to conduct a dialog with the
user. It will either display information to the user or display an
input form for the user to supply the information HOS requires.
The contents vary dependent upon the current function. The
windows are described in Sections 2.2.3 through 2.2.7.

Within the HOS window, a variety of components have been developed for the

user to specify particular simulation data items or supplying additional
information required before a system command can be processed. These
components include:

1. List Selection Box -- a scrollable list of available items for
the user to select from as described In Section 2.2.8;

2. List Vlewlnd Box - a scrollable list of currently defined
terms for the user to view as described in Section 2.2.9;

7

3. Pushbutton - a distinct area of the screen that is used to
specify actions as described in Section 2.2.10;

4. Click Boxes - a box containing the range of numeric values
that can be modified by the user via mouse clicks as described
in Section 2.2.11;

5. Text Entry Boxes - a rectangular box which allows the user
to enter textual data (numeric or alphanumeric) with the size of
the box indicating the maximum number of characters
permitted as described in Section 2.2.12;

6. Scroll Bar - a rectangular box that is used to modify the
current view of a window as described In Section 2.2.13; and

7. Labels - text descriptions used to indicate the type of
information to be entered by the user as described in Secticn.
2.2.14.

HOS uses two distinct cursors to represent the focus of attention for the
user and to point to a precise point on the screen. The mouse cursor is
controlled by the mouse and always represents the last mouse screen location.
When the user moves the mouse, the mouse cursor moves proportionately. The
m"ouse cursor is described in Section 2.2.15. Additionally, a keyboard cursor
represents the location where any keyboard actions will occur and is described
in Section 2.2.16.

In subsequent sections the following terminology is used to describe
various aspects of the screen components:

L octo - indicates where the component is placed on the
display. In some cases, the exact location will vary depending
upon the contents of the screen;

* Background Color - indicatos the color to be used for the
screen background upon which text and/or graphics will
appear;

T I p -l -- indicates the color to be used for all
alphanumerics and text symbols;

* Graphics Color - indicates the color to be used for graphics
symbols;

• rde- - Indicates the color to be used for the line border
enclosing a particular element of the screen;

* a - Indicates the case to be used for text, e.g., all
upper case, initial upper case, etc.; and

8

* Acti i -- describes how the user will interact with the

particular screen component.

2.2.1 Title Bar

The title bar presents information about the current HOS function to the

user; the user does not enter any information. The title bar is continuously
displayed and is illustrated in Figure 2-1. The title bar is split into three areas:

1) Current activity on left side of line, left justified with initial caps,
if required, (Currently used by Action Editor.)

2) Function name centered in middle of line in uppercase white
letters on black background. (Required for all HOS modules.)

3) Status information on right side of line with initial caps, if
required. (Currently used by Action Editor to display line count
and column position.)

Location: Top line of screen.
Vackaround Color. White
Tex Color: Black
Graphics Color: None

o~rJ.e : None
Characters: Varies depending upon area.

User Action: Information only, no user response permitted in the
title bar area of the screen.

2.2.2 Menu Bar

The menu bar contains a list of the menu titles of the primary options that

are available for the current HOS function. The menu bar is continuously
displayed on the screen and is illustrated in Figure 2-1. The last two menu
options are always User Aids and Exit. Each menu title is separated from other
menu titles by one leading and two trailing spaces.

L o: Second line on screen.

.Background Qolor: Blue
TX'Q• : -White
Grhico: None

9

.00 2 ~

.C C)0 b

CDC

00

EE
00

COC

CL

0

Li.

CD)

04

CIL

lua
.59

Border None
Chrctr: Initial upper case only.

.User Action: To select an option from the menu bar, the mouse is
used to position the mouse cursor anywhere on the
desired menu title. Without moving the mouse, any
mouse button is pressed and held (clicking). Once
the mouse button is depressed, the selected menu
title will be shown in reverse video (white
background and blue foreground) and a box
containing the available commands (pull-down
menu) will appear immediately beneath it in a
separate window. The pull-down menu will
disappear as soon as the mouse button is released.
In order to view all the pull-down menus, the user

can drag the mouse across the menu bar and, as
each menu title-is selected, the accompanying pull-
down menu will be displayed.

2.2.3 Pull-Down Menus

The pull-down menu is a separate r3ctangular window displayed
beneath the menu bar containing the list of commands available for a particular
menu title on the menu bar. It is illustrated in Figure 2-1. It is displayed only
from the time the mouse button is held down and the mouse arrow is dragged
down through the menu options until the mouse button is released. The pull-
down menu window may obscure the previous contents of the screen while it is
active.

L o: A separate rectangular window whose top is
Immediately beneath the menu bar and upper left
comer is aligned with the selected menu title. The
menu text is indented two spaces to the left of the
selected menu title. The window is one space wider
than the title of the longest command title.

Background Color: Blue
TexLQ=: White

11

Graohics Color: None

Border: None
Qharaters,•: Initial upper case only.
User. ion: To choose one of the listed commands in the pull-

down menu, the mouse is used to move the mouse
pointer to the displayed menu title on the menu bar.
While the mouse button is held down, the mouse is

used to move the mouse pointer to the desired
command (dragging). When the mouse pointer Is
located over the selected command, the mouse

button is released. As the mouse pointer moves to
each command line, the currently selected command
is highlighted in reverse video (white foreground and

blue background). The command that is highlighted
when the mouse button is released is invoked and

the pull-down menu disappears. If the mouse cursor
is relocated within the menu bar line and the mouse

button released, no action will occur and the pull-
down menu will disappear. Similarly, if the mouse

cursor is dragged outside of the pull-down menu
window and released, the pull-down menu will

disappear and no command will be chosen.

2.2.4 Message Windows

A message window presents informative messages about the current
system action requesting the user to indicate subsequent actions that should

occur or be cancelled. The options available to the user are displayed as
pushbuttons and one of the pushbuttons must contain a CANCEL option that

permits the user to cancel the current request and resume the previous activity.
The message window is illustrated in Figure 2-2.

Location: A separate rectangular window that is located in the
workspace beneath the menu bar.

gckaground Color: Blue
: CoWhite

12

44-rnr

Ct,

Cj

aa
zC

13,

Graphics Color: White
D e: Double Une
Characters: Message displayed in sentence format with initial

caps centered in window. Pushbutton labels follow
pushbutton format.

User Ation: The mouse is used to move the mouse cursor to the
pushbutton containing the desired action and
depressed.

2.2.5 Dialog Windows

Dialog windows allow the user to enter necessary information in pre-
defined fields consisting of pushbuttons, click boxes, check boxes, text entry
boxes, labels, and scroll bars. An example is shown in Figure 2-3.

Locin: A separate rectangular window that is located in the
workspace beneath the menu bar.

Background Color: White

Co:. Black
.Crahics Col: Blue
Foreground Color: Blue
B e: Double line

C e: Title in upper case centered in top line of window.
.Usert: The text cursor (cyan background, black foreground)

is initially placed in the beginning of the first text entry
box for the user to enter the indicated information.

When the entry is completed, the user can depress
the return key to move the text cursor to the next item
in the sequence or, alternatively, use the mouse to
move the mouse pointer to the desired field and click

to obtain the text cursor in the desired location. In
addition, the tab key can be used to move forward to
the next text entry field.

14

CDC
00

Co =
20

00 0ý
coc

co

> 0)

4) 0

Cl) I0

15B

2.2.6 Information Windows

An information window presents messages to the user about current

system activity and is illustrated in Figure 2-4. An information window differs
from a message window in that the user cannot make any responses.

Location: A separate rectangular window that is located in the
workspace beneath the menu bar.

Background Color: Blue

T lo : White

Graphics Color: White

Border: Double line

Cbaracite: Message displayed in sentence format with initial

caps centered in window.

User Action•: Information only, no user response permitted in the

information window area of the screen.

2.2.7 Text Entry Screens

A text entry screen is a user scrollable window in which the user can

enter textual/numerical information in a free-format. A scroll bar is displayed on

the right side of the window and is illustrated in Figure 2-1.

Location: A separate rectangular window that is located in the
workspace beneath the menu bar.

Backaround Color: White

T l: Black

Graphics Color: Blue
Border: Double Line

Charac,.t.s: Title in Upper Case; contents dependent upon user

entries.

16

tA

W4.

; ArCl)0

4 '7

U i: The rectangular text cursor is initially placed at the
upper left corner of the window. The user can use
the mouse or arrow keys (right, left, up, down, home,
page up, and page down) to position the text cursor
to the location where the next keyboard entry is to be
placed. All key strokes are inserted at the current
location of the text cursor. If the entry causes the
length of the current line to exceed the display width,

all text following the previous delimiter (space) is
moved to the next line. The depression of a carriage
return moves the text cursor and any text after it to the
next line. The home key moves the text cursor to the
first window of text; the end key moves the text cursor

to the last window containing text.

2.2.8 List Selection Box

A list selection box presents a list of all items available to the user for the
current function, e.g., list of rules for the Rule Editor, actions for the Action Editor,
objects for the Object Editor, etc. It requires a scroll bar on the right side of the
window to be used to after the viewing area of the window. The list)ox window
may obscure the previous contents of the screen while it is active. It is
illustrated in Figure 2-3.

Locaton: A separate rectangular window that is located in th.i
workspace beneath the menu bar.

Eackaround Color: White

le jCO: Black
Graphics olr: Blue
DDOdw Double Une
.hacte: Title In upper case In center of top line of window;

pushbutton labels follow pushbutton format;
remainder dependent upon user inputs.

Ike[Action" The mouse pointer is initially located on the first item

in the window. The mouse is used to move the

18

mouse cursor so as to point to the name of the item to
be selected. The currently selected item is shown in
reverse video. If the desired item is not currently
displayed within the window, the user can move the
mouse cursor to the red triangles located at either
end of the scroll bar and then depress the mouse
button. Each click on the red triangle will display the
next set of itens in the window. If the user clicks on
the up (down) triangle and the pointer is already
located at the first (last) Item, the contents of the

screen will remain identical. Once the desired item is
selected, the mouse cursor must be moved to the
appropriate pushbutton to invoke the desired action.

2.2.9 List Viewing Box

The list viewing box displays a list of all defined items for the user to view,
e.g., list of alphabetic for the Object Editor, etc. It requires a scroll bar on the
right side of the window to be used to alter the viewing area of the window. The
list viewing box window may obscure the previous contents of the screen while
it is active. It is illustrated in Figure 2-5.

Location: A separate rectangular window that is located in the
workspace beneath the menu bar.

Backaround Color: White

Text Colr: Black
•i•1Qo: Blue

B•..er: Douzle Line
Ch•l. Ljr: Title in upper case In center of top line of window;

pushbutton labels follow pushbutton format;
remainder dependent upon user inputs.

User Actim: The mouse pointer is initially located on the first item
in the window. If the desired item is not currently
displayed within the window, the user can move the
mouse cursor to the red triangles located at either
end of the scroll bar and then depress the mouse

19

S

00

Cý

02

button. Each click on the red triangle will display the
next set of items in the window. If the user clicks on
the up (down) triangle and the pointer Is already
located at the first (last) item, the contents of the
screen will remain identical. Once the viewing of the
defined items is complete, the mouse cursor must be
moved to the appropriate pushbutton to invoke the
desired action.

2.2.10 Push Buttons

Pushbuttons perform instantaneous action as described by the text label
with a mouse click anywhere within the button area. They are illustrated in
Figure 2-3.

Lor.Zion: A separate rectangular window that is located in the
workspace beneath the menu bar.

Background Color: Assumes background color of item beneath.
lext Color: Red
Graphics Color: Assumes foreground color of item beneath.
Qr. Rectangular box with double line on top and bottom;

single line on left and right. It is sized so that there
are at least two leading and trailing spaces around

the pushbutton legend.
Characters: Upper case button label centered in box.
U~ser The mouse is used to move the mouse cursor so that

the pointer Is located anywhere within the
rectanigular area and then a mouse button is clicked.
Once any mouse button is depressed, the button
label is shown In reverse video (red background and
white forepround) and the indicated function
immediate -,oked.

21

2.2.11 Click Boxes

Click boxes are used to specify numeric values and are illustrated in
Figure 2-3. It requires a scroll bar on the right side of the window to be used to
after the numeric value currently displayed in the window.

Lo g: Varies but always within a dialog window.
Background Color: White
T l: Black

Graphics Color: Blue
d Rectangle with double line border.

Ca r: Title in upper case in center of top line of window;.

User 6glign: The user can modify the currently displayed value by:
1. Moving the mouse pointer to the red

triangle located above the box to increase
the number shown in the box by 1 each
time a mouse button is depressed, or by

2. Moving the mouse pointer to the red
triangle located beneath the box to
decrease the number shown in the box by

1 each time a mouse button is depressed.

2.2.12 Text Entry Boxes

Text entry boxes are fields where textual or numerical data are entered
and are illustrated in Figure 2-3.

Loij.n: Varies but always within a dialog window.
Background Color: White

Cl: Black
Graphics Color: Blue
Bgrde• Rectangular box drawn with single blue line. If the

entry in the box can be bigger than the box size, a
double blue line is placed on the left and right to
indicate that 1he user can scroll right and left within
this box.

22

Characters: Label with initial caps terminated with a colon to the
left of the box; entries In box are based upon user
actions.

Uir Action: The rectangular text cursor is Initially placed at the
left side of the box. The user can use the mouse or
arrow keys (right and left) to position the text cursor to
the location where the next keyboard entry is to be
placed. All keyboard strokes are Inserted at the

current location of the text cursor. If the entry causes
the length of the current line to exceed the display
width, either of the following will occur:

1. If the box Is the exact size of the permitted
entry (i.e., the right and left side are single
lines), a beep will be sounded and future
keyboard entries (except backspace and

delete) will be ignored until a non-text key
is depressed or

2. If the entry can be larger than the box (i.e.,
the right and left sides are double lines),

the text will be scrolled to the left as
additional keys are depressed until the
maximum field size is reached.

The left and right arrow keys move the cursor one
space in the indicated direction within the text entry
box. The home key moves the text cursor to the first
character in the box; the end key moves the text
cursor to the last character in the box.

2.2.13 Scroll Bar

Scroll bars are used to change which part of a list of Items (list window)

or contents of a file (text entry window) is shown the window. Double red scroll
arrows are used at the top and bottom of the scroll bar rectangle to Indicate the

direction the viewing area is to be moved. The top arrow (A) is used to scroll up
one line at a time; the down arrow (V) is used to scroll down one line at a time.

23

The second up arrow (T) is used to scroll up one page at a time; likewise the top
down arrow (4) Is used to scroll down one page at a time. The scroll bar is
illustrated in Figure 2-1.

LocatlUn: Rectangular box shown on right side of text entry and
list boxes.

Background Color: White
ITxt Colo None

rahics Color: Blue
Border: Double line.
Characters: Graphics characters of Y and A.
U.ser..cto: The user uses the mouse to position the mouse

cursor at the desired scroll arrow and clicks to alter
the contents of the window. The content of the
window is moved in the opposite direction from the
arrow. For example, when the user clicks the top
scroll arrow, the contents move down, bringing the
view closer to the top of the list or document. Each
click of the single arrow moves the window contents
one line in the chosen direction; each click of the
double arrow moves the window contents one page
in the chosen direction. Continuous depression of

the mouse results in continuous movement in the
chosen direction. Once the top or bottom of the
window contents is reached, depression of the scroll
arrows in that direction are ignored.

2.2.14 Labels

A label Is an alphanumeric description of the information to be entered
for a component of a dialog window and is illustrated in Figure 2-3.

Loaion Varies
Backaround Color: White

Ttlo : Blue
Grahics Colo: None

24

Bord-er: None
Character,: Initial upper case and termbiatad with a colon.
User Action: None

2.2.15 Mouse Cursor

The mouse cursor is a pointing device used to select commands from
menus, to control cursor movement, and to manage file scrolling. It is illustrated
in Figure 2-1.

L o: Varies
Background Color: Assumes background color of object beneath.
Text Qo.: None.
Graohi.cs Color: Assumes foreground color of object beneath.
Border: None
Cacters: Arrow (•)
Ue. Acion: The user moves the mouse cu-sor to the desired

location by moving the mouse in the desired
direction. Every mouse movement moves the mouse
cursor in exactly the same Mway. The following mouse
actions can be performed:

" Clicking - positioning the mouse cursor
with the mouse, briefly pressing and
releasing the mouse button without moving
the mouse.

"• Pressing - positioning the mouse cursor
with the mouse, holding down the mouse

button without moving the mouse.
"* Dragging - positioning the mouse cursor

with the mouse, holding down the mouse
button, moving the mouse to a new
position, 1hen releasing the button

25

2.2.16 Text Cursor

The text cursor indicates where next keyboard stroke will be entered and
is illustrated in Figure 2-1.

Lggigon: Varies
Background Color: Cyan

TextColo: Black
Graphics Color: Assumes foreground color of object beneath.
Br.d.: None

C: Rectangle the size of a single character ().
UeAcin: The user can use the arrow keys or the mouse to

indicate where the text cursor should be positioned.
Each subsequent keyboard stroke will be inserted at
the location of the text cursor.

2.3 Skylights/GX Usage

Skylights provides two window editors - one alphanumeric and the
other graphic for building windows and defining 'touch zones," The graphics
editor was not used in this implementation of HOS-IV. The user interface was
written using alphanumeric windows because the speed of execution is much
greater. Touch zones are areas on the screen that cause the associated
function defined in the window editor ("demon") to be executed when the mouse

cursor moves over them or the user clicks on them. This allows the
development of an event driven user interface that is necessary for a
menu/mouse driven program. The alphanumeric window editors were used in
conjunction with a extensive library of C callable routines to develop the user
interface described in Section 2.

A key feature of Skylights is the ability to interactively define various

screen components and store them in a library. With other packages and tool
kits, common front end structures and visuals, such as windows, menus, icons,
boxes, and screen captions, are often implemented dynamically In the
application program. "Skylights uses a different approach. Most of the
necessary structures and visuals are created interactively with the Skylights

26

editor and saved in separate window catalog files. Low-level functions for
screen handling, drawing boxes, color definition, etc. are available.

The Skylights editor is used to create windows. A window is a fragment
of the screen which has a picture and imbedded active areas (touch zones),
menus, icons, etc. Windows are saved in a file cail,•d a wir !ow catalog. The
defined windows are loaded into an application at run time using library

functions calls.

Using a pointing device, a window is defined, character graphics are
drawn to create the screen display and shape, and touch zones are specified as
well as specifying how the application should respond to the touch event. In

addition, optional properties such as audio feedback, video feedback, and the
name of the routine responsible for processing touch events in the zone can be

specified. The run time libraries contain window management functions, and a
touch events handler, as well as various screen, keyboard, and speaker

handling functions.

27

3. PROGRAM ORGANIZATION

This section presents a high-level functional description of each of the

main HOS system processes with the overall system organization described in

Section 3.1. Details of the individual program units for each module are

presented in Appendix A.

3.1 System flowchart

The HOS-IV software is split into the following major system modules as

described below:

"• HOS-IV: high-level system controller that manages the
spawning processes for lower-level modules.

"* SELECT: determines which of the existing simulations is to
be used during the HOS simulation sessicn and permits the
user to define a new simulation.

"* SETUP: determines basic simulation parameters such as
simulation name, time units, simulation start time, and
maximum simulation time based upon.

"* EVEEDIT: maintains the event data base for a simulation
including creation of new events, modification of existing
events, and deletion of existing events.

" RULEEDIT: maintains the rule data base for a simulation
creation of new rules, modification of existing rules, and
deletion of existing rules.

" ACTEDIT: maintains the action library and processes user
actions to create new actions, modify existing actions, and
deletes existing actions. In addition, ACTEDIT invokes the
action translator (HAL) that translates the action into C code
and determines if the action contains any errors.

" EDITOBJ: maintains the object and alphabetic libraries and
processes user actions to create new objects/alphabetics,
modify existing objects/alphabetics, and delete existing
objects/alphabetics.

" HAL: evaluates the syntax of an action and if no errors are
detected translates the action into HOS C code.

28

" SIMLINK: integrates all the user's events, rules, actions, and
objects into files that are compiled using the Microsoft C
compiler and builds the simulation executable file.

" SIMRUN: executes the user's simulation and creates files for
post-processing.

" RESULTS: generates simulation reports.

The organization of the HOS software Is presented in Figure 3-1 with the left to
right progression showing the sequence in which the modules must be invoked
in order to properly construct and execute a simulation. The SELECT module
must always be selected at the beginning of each HOS session In order for the
user to specify which simulation Is to be used during the session. The
sequence of the remainder of the modules is user-driven. All of the modules
use the User-Computer Interface (UCI) described in Section 2.

Certain conventions are used throughout the HOS modules. All names
are a maximum of 28 alphanumeric characters (a-z, 0-9). The first letter of each
name must be an alphabetic (a-z). The only special character that can be
included is an underscore U. HOS is also case insensitive, that is upper and
lower case characters can be used interchangeably. All names are converted
by HOS into lower case for internal use. Examples of valid names are myname,
my_simvariablename, and abc123456.

Examples of invalid names are:
a$ Contains an invalid special character ($)

a-b Contains an invalid special character (-)
lqwerty First letter is not alphabetic

3.2 HOS-IV Modules

3.2.1 HOS-IV

HOS-IV is the main module in the system and is invoked when the
system is initiated. It is the top level module that controls interactions with all
other modules in the HOS system. Whenever the user terminates one of the

29

lower level modules, control is returned to HOS-IV for the selection of the next

module or to terminate the system.

3.2.1.1 Description

HOS-IV controls user access to all of the HOS modules. There are nine

commands which can be executed from the main screen of HOS-IV - Select

Simulation, Setup Simulation, Edit Events, Edit Rules, Edit Actions, Edit Objects,

Create Simulation, Run Simulation, and View Results. A pushbutton was

created for each function and the user invokes the desired function by moving

the mouse over the title of the selected pushbutton and clicking the mouse.

HOS-1V automatically initiates the Select Simulation command on start up (see

section 3.2.2). After the user has successfully completed the simulation select

step,.any of the other functions may be chosen. A high-level functional diagram

of HOS-IV is illustrated in Figure 3-1.

3.2.1.2 HOS-IV Screens

The HOS-IV screen contains a diagram of pushbuttons and arrows

indicating the functional flow of the steps involved in developing, executing, and

analyzing a HOS simulation.

Action Editor Title Bar. The title bar of HOS-IV contains the words 'HOS-

IV' as the function name. HOS-IV does not use the current activity or status

information areas of the title bar.

HOS-IV Menu Bar. HOS-IV contains the following menu options on the

menu bar as illustrated in Figure 3-2:

"* User Aids - provides the capabilities to view help files.

"* Exit - terminates HOS-IV and returns the user to the operating
system.

The User Aids pull down menu contains the Help commands that allow

the user to obtain help windows about the HOS-IV module.

30

U-

0

CTI

_____ LiL0

-2iT 31

00

0 Cl)

C)

32

]lOS-IV Main Screen. The HOS-IV main screen is illustrated In Figure 3-2 and

contains the following pushbuttons:

"• Select Simulat!on - calls the select simulation routine
"• Setup Simulation - spawns the setup simulation module
* Edit Event - spawns the Event Editor
* Edit Rule - spawns the Rule Editor
• Edit Action - spawns the Action Editor
• Edit Object - spawns the Object Editor
* Create Simulation - spawns the simlink module
• Run Simulation - spawns the simulation
• View Results - spawns the view results module

3.2.1.3 Maintenance Procedures

HOS-IV source code (HOS-IV.c and hos_menu.c) is compiled using
Microsoft C version 4.0 with the large memory model switch (/AL). It requires the
HOS-IV, SKYL, CT, and TE libraries in addition to the standard C libraries for
linking.

,j,2.2 SELECT - Select Simulation

The SELECT module determines the simulation to be processed and
permits the user to define new simulations.

3.2.2.1 Description

The SELECT module is automatically executed whenever HOS is first
executed so that the user is forced to select a simulation before any other HOS
functions can be invoked. In addition, the user can depress the SELECT
pushbutton whenever the HOS main menu is displayed in order to switch to a
different simulation. If any simulations exist, SELECT displays a list selection
box which allows the user to scroll through the list of currently defined
simulations and select one of the listed simulations. The user can name a new
simulation or cancel th6 select function. Ift no simulations exist, the user can
only enter a new simulation name or cancel. Whenever the user cancels

33

SELECT without selecting a simulation, an informative message is displayed

indicating that the HOS session cannot continue until a simulation is selected.

The response to this message is to exit (terminate the HOS session) or continue
(return to SELECT). The name of a simulation can contain a maxin im of eignt

alphanumeric characters. The simulation name cannot contain ny special
symbols except underscore U. Examples of valid simulation names are

my sim, teampacketc. A high-level functional diagram of the SELECT process

is illustrated below.

Select Button NewmButto

fprintf (stream, simname); setupsiminput 0;

process siminput 0;

3.2.2.2 SELECT Screens

The SELECT simulation user windows overlay the main HOS simulation
flow screen and is illustrated in Figure 3-3.

Tit Bar. The title bar of SELECT contains the words 'HOS-IV' as the
function name. SELECT does not use the current activity or status information
areas of the title bar.

SELECTMenu _Br. SELECT contains the following menu options on the
menu bar as illustrated in Figure 3-3:

"User Aids - provides the capability to print the simulation
names and obtain help messages; and

" Exit - terminates SELECT and returns the user to the HOS-
IV screen.

34

7p z

00

CA z

CA 0
w 0

z C)

--

35

The User Aids pull-down menu contains commands that allow the user to print
the list of simulation names and obtain help messages. They are as follows:

, Print simulation names - allows the user to obtain a
printout of names of all defined simulations on the line printer.

0 Help - allows the user to obtain additional information about
using SELECT.

SELECT WindoWs. The main SELECT window is a dialog window for
entering object information. The SELECT dialog window, as illustrated in
Figure 3-3, contains the following pushbuttons:

" SELECT - makes the current simulation the simulation name
selected in the list selection box and writes the name to the file
d:\HOS-IVcurrsim.dat

" CANCEL - terminates the SELECT function and returns the
user to the main HOS-IV window without changing the current
simulation. if no simulation has been selected during the
session, a warning message will be displayed.

"* NEW - defines a new simulation name and generates the
new simulation dialog window.

The list selection box contains the list of currently defined simulation

names.

When the user selects the NEW button from the SELECT dialog window,
a new simulation window is displayed as shown in Figure 3-3. The user can

select from the following pushbuttons:

"* CANCEL - cancels the new simulation function.
"* OKAY - validates the entered simulation name to ensure that

it does not contain any illegal characters and has not been
previously defined. If the simulation name is valid, the
simulation name is added to the list and the simulation
directories are created.

The alphabetic dialog window also contains a text entry box for entry of the
simulation name.

36

SELECT Message windows. SELECT generates the following message
windows.

No simulation selected - Informs the user that a
simulation must be selected before HOS-IV can be run. The
user options are to continue and select a simulation or exit from
HOS-IV.
Name already used - informs the user that the simulation
name just entered is not unique and must be re-entered. The
user must hit the okay button to return to the Define new
simulation window.
Invalid character - informs the user that the simulation
name just entered contains an Invalid character and must be
re-entered. The user must hit the okay button to return to the
Define new simulatiun window.

3.2.2.3 Input/Output

The names of all existing simulations are stored in the file d:\HOS-
IV\allsims.dat. SELECT first determines if this file exists. If it does, the list of
simulation names contained in the file are displayed in the list selection box;
otherwise it prompts the user to enter the name of a new simulation. The name
of the selected simulation is stored in the file d:\HOS-IV'currsim.dat. The
contents of these files are shown below:

d:\HOS-IV\all sims.dat
This file contains a list of eight character simulation names with

each name in a separate record.
char name [8];

d-\HOS-IV\currsim.dat
This file contains the eight character simulation name of the
cuwrent simulation with the name stored in a separate record.
char name [8];

3.2.2.4 Error handling

Message windows are generated for the following conditions:

1. Simulation name contains Invalid characters.

2. Simulation name has been previously defined.

37

3. A simulation must be selected before any HOS processing can

occur.

3.2.2.5 Maintenance Procedures

Select simulation is part of the d:\HOS-IV\HOS-IV.exe program. The

SELECT source code is contained in the files:

HOS-IV.o

hos_menu.c

In addition, the following files contain global and prototyping information:

HOS-IV.e

HOS-IV.I
hos_menu.e

hos_menu.l
These C files must be compiled using the large model and then linked

with the following five libraries in order to produce the executable code:

skyl.llb
ct.lib

te.iib

Ilibfp.lib

HOS-IV.Iib

3.2.3 Setup Simulation

The Setup Simulation module of HOS maintains general information

needed to run each simulation. This information includes the minimum time

unit, start time, maximum simulation time, start action, and simulation

description.

3.2.3.1 Description

The purpose of the Setup module Is to define Initialization information

needed to run each simulation. To execute the Setup Simulation module, the

user can depress the SETUP pushbutton from the main HOS-IV module. When

the Setup Simulation mddule is executed, a dialog window is created with entry

38

fields created for each required piece of information. These fields include the
minimum time unit, the simulation start and maximum times, the start action, and
the simulation description. The minimum time unit can be one of seven values:
days, hours, minutes, seconds, 0.1 seconds, 0.01 seconds, and 0.001 seconds.
The user scrolls through a list containing these choices. The maximum
simulation time and start simulation time consist of seven fields: days, hours,
minutes, seconds, tenths of seconds, hundredths of seconds, and thousandths
of seconds. Only those fields greater than or equal to the minimum time unit
can be accessed by the user. Invalid fields are blocked out by a blue box
covering the field. The user can enter any 80 character string for the simulation
description. The start action is any valid defined HOS action.

The high-level functional diagrams are organized by user actions and
are described below.

Saye Button. When the user pushes the save button, the "save" function
is executed. The verifying consists of checking for a time error and an action
warning. The temporary simulation information record created by verifying
process is deleted and the new simulation information is inserted into the global
simulation record. This process is illustrated below:

ISave Buttoni

save...simintoo;I

window_to_siminfoO;
I

ECheckTime..errorO;

Check Proc.error(; y

User Aids Menu: Print. When the user selects print from the user aids
menu, the "print.simrinfo" function is executed. It uses the current simulation
information for the printing. This function calls the "fputs" function for every line

39

that needs to be output such as the times and start bction. The process is
illustrated below:

User Aids menu:
Print

print__sim-infoo;

fputs(*charstdprn);

Itlush (stdprn);

It is possible that the user will enter a time that, when converted !rom a
long integer to a string, in terms of the minimum time unit, will have more than
six characters. This may cause problems for other modules that expect the time
strings to be six characters long. Consequently, a time cannot be greater than
999,999 in terms of the minimum time unit. For example, suppose that the
minimum time unit is thousandths of a second. If the user enters a 17 in the
minmles l`,eld, this will be converted to the string '1020000'.

3.2.3.2 SIMSET Sci•eens

Title Bgr. The title bar of SIMSET contains the words 'Setup Simulation'
as the function name, SIMSET does not use the current activity or status
information areas of the title bar.

SIMSET Menu Bar. SIMSET contains the following menu options on the
menu bar as illustrated in Figure 3-4:

"* User Aids - provides the capability to print the setup
Information, view the contents of any action file, and obtain
help messages, and

"* Exit - terminates the setup simulation module and returns
the user to the HOS-IV screen.

40

CD

CC

In (

44-

The User Aids pull-down menu contains commands that allow the user to view
other files, print current setup simulation Information, and obtain help
messages. It contains the following commands:

View Files - allows the user to obtain a window that displays
curr'?ntly definer' actions.

Print - 31lows the user to obtain a printout of setup simulation
information.

Help - allows the user to obtain additional information about
using the setup simulation module.

SIMSET Windows. The main SIMSET window is a dialog window for
entering setup simulation information. The SIMSET dialog window, as

illustrated in Figure 3-4, contains the following pushbutton:

SAVE - saves the current setup simulation information as
displayed on the screen. The following validation is performed
prior to the actual saving of the event definition:

1. The start time is compared to the maximum simulation time.
if the start time is greater than the maximum simulation time,
an error messaae window is displayed indicating that the
start time is too large.

2. The start action is evaluated to determine if the action name
is valid and has been defined. If it has not, a warruing
message window is displayed indicating that the action is
undefined.

The SIMSET dialog window contains the following text entry boxes:

"* Description - entry of the simulation description as a
maximum of 80 characters.

"* Startup action - entry of an action name.

* Maximum Simulation Time - entry of the maximum
simulation time in the form of seven two digit numbers, one for
each time unit.

Start Simulation Time - entry of the start simulation time in
the form of seven two digit numbers, one fo" each time unit.

A list selection box showing the minimum time unit is displayed in the

upper right corner of the SIMSET dialog window as shown in Figure 3-4.

42

3.2.3.3 Input/Output

SIMSET uses the following files:

• currsim.dat - contains the current simulation name.
• simname.dal - contains C code to set the minimum time

unit, maximum simulation time, start simulation time, simulation
description, and start action. This file is also used as input to
the Setup Simulation module to read in the current simulation
information.

° simname.da2 - the first record contains an integer (0-7) to
indicate the minimum time unit; the second record contains the
eighty character simulation description.

• simname.da3 - the first record contains the start time in terms
of the minimum time unit; the second and third records contain
actual date and time that the simulation started running and
stopped running. These last two records are not currently
being used.

• simname.da4 - contains the start simulation action name.

3.2.3.4 Error handling

When the user attempts to save the Setup Simulation intormation,
validation checking is performed on the times and start simulation action name.

An error is generated if the start time is greater than the maximum simulation
time and a descriptive message is displayed in a message window indicating
that The start time, 00:00:00:00.000, is greater than the maximum simulation
time.' Errors must be corrected before a successful save can be accomplished.
A warning is generated if the entered action name is undefined. The warning
message window is displayed with the message, 'The action has
not been defined.'

3.2.3.5 Maintenance Actions

The SIMSET executable is called C:\HOS-IV\simset.exe. The main code

for this program is contained in two files:

slmset..c

sim-menu.c.

43

One file is used for global and prototyping information:

slmset.I

In addition, the two C files must be compiled using the large model, and
thpn linked with five libraries:

skylllb
ctilib

te.llb
Ilibfp.llb

HOS-IV.Ilb

The windows used by EVENTEDIT are stored in the file slmset.cat.

3.2.4 EVENTEDIT- Edit Events

The EVENTEDIT module of HOS maintains information on all user-
defined events. Events are actions that are executed at a user defined time
during the simulation to execute some time dependent occurrence. An event
consists of an event description, the event action, and the event time at which
the event action should be executed.

3.2.4.1 Description

EVENTEDIT maintains the list of events for the simulation, permitting the
user to view, edit, delete, and create events. The data structure used to
maintain the events is a linked list of event records. Each record contains the

following elements:

"o Event number - Used by the C code generated by HOS as an
index for an array of action pointers.

"* Event action - A valid defined HOS action name.
"* Event time - Consists of a maximum of seven two character

strings, one for each time unit.
• Event description - An alphanumeric string containing a

maximum of 80 characters.

44

EVENTEDIT is executed from HOS-IV as a result of the user pressing the
push button 'Edit Events.' High-level functional diagrams of the EVENTEDIT
module are shown below.

i_.e-w Button. When the user depresses the new push button, the function
"new" is executed. It saves the current event, if needed, and then creates and
displays a new, blank event. The flow is illustrated below:

New Button

rnew (int);

save.ifnecessary (func.,ptr);l

insert evt (*event);

Ifind_evt 0;

delete.evt (*event);

evttowindow (*event);

Sav Bii o When the user pushes the save button, the "save" function
is executed. The verify.evt function validates the entered event information
and reports any errors. The Save_evt function actually does the linked list
maintenance. The temporary event created by verify_.evt is deleted and the
new event is inserted and then deleted from the linked list of events in order to

45

establish the pointers. Finally, the event is added to the listbox. This process is

illustrated below:

Save Button

verifyevt 0;

save evt 0;

free(-event);

insert evt (*event);
T

delete_evt ('event);

update list entry ('char);

ihighlightlistselection 0;I

Delete ButtoQ When the user selects an event and then pushes the

delete button, the setupjdelete function displays the current event and asks the
user to verify the delete. Process delete is called if the user verifies. The event
is deleted from the list dis'played in the list selection box, deleted from the

46

internal list, and then freed. Finally, the display is returned to normal. This

process is illustrated below:

Delete Button

setu p-jelete 0;

process-delete 0;

delete-entry (int);

Ffree (vevent);

e, initsevt he c

[,evt to window (*event);

Supdatejlist-di splay0;

F ig hlight-list~selectionOi

U,ýger Aids Menu: Print. When the user selects print from the user aids

menu, the "print_.evts" function ir, executed. It inserts the current event into the

linked list of events, This function then calls the "print-one" function for every

47

event in tha list. After all of the events have been printed, the event that was
inserted is deleted. The process is illustrated below:

User Aids menu;:
Print

Iprint ,ets OD_

inserteverQL

printone(ievent))

I tlush (stdprnj; 1
-I-

Edelete-evt (*event);

3.2.4.2 EVENTEDIT Screens

Title.Ba . The title bar of EVENTEDIT contains the words 'Event Editor
as the function name. EVENTEDIT does not use the current activity or status
information areas of the title bar.

EVENTEDIT Menu Bar. EVENTEDIT contains the following menu

options on the menu bar as illustrated in Figure 3-5:

"User Aids - provides the capability to print the list of defined
events, view the contents of any action file, and obtain help
messages, and

" Exit , terminates the Event Editor and returns the user to the
HOS-IV screen.

The User Aids pull-down menu contains commands that allow the user
to view other files, print all currently defined events, and obtain help messages.
It contains the following commands:

° View Flies - allows the user to obtain a window that displays
currently defined actions.

48

r-4
C z

CD

goo

0 L

CD

c,-

49 .

" Print Rules - allows the user to obtain a printout of all
defined events.

" Help - allows the user to obtain additional information about
using the Event Editor.

EVENTEDIT Windows. The main EVENTEDIT window is a dialog

window for entering event information. The event dialog window, as illustrated

in Figure 3-5, contains the following pushbuttons:

a NEW - clears all input fields and places the text cursor int the
event name field.

* DELETE - deletes the currently selected event.

* SAVE - saves the current event as displayed on the screen.
The following validation is performed prior to the actual saving
of the event definition:

1. The event time is compared to the maximum simulation
time. If the event time is greater than the maximum
simulation time, an error message window is displayed
indicating that the event time is too large.

2. The Do action is evaluated to determine if the action name
is valid and has been defined. If it has not, a warning
message window is displayed indicating that the action is
undefined.

The rule dialog window contains the following text entry boxes:

" Event Name - entry of the event name as a maximum of 28
characters.

"* Do - entry of an action name.

"• At Time - entry of the time in the form of seven two digit
numbers, one for each time unit.

A list selection box showing the event time, description, and event action

of currently defined events is displayed in the upper left corner of the event

dialog window as shown in Figure 3-5.

3.2.4.3 Input/Output

EVENTEDIT uses the following files:

, slmname.evl - used by EVENTEDIT to read in the current
defined events. This file is also output when the user quits.

EL"fl,,V^

Each record contains four fields separated by a space. A line
is in the following format:
- three character event number,
- six character event time,
- thirty-one character event action, and
- eighty character description.

"• slmname.ev3 - output by EVENTEDIT. It contains the C
code for the array of event action pointers. Each record
contains a line in the following format:
- eventproc[xxx] = zzzzzzzzz;
- xxx isa number from 0 to number of events - 1. zzzzzzzzz is

the event action name.
"• simname.ev2 - output by EVENTEDIT. It contains a record

for each event consisting of only the event action name.

3.2.4.4 Error handling

When the user attempts to save an event, error checking is performed on
the event time and event action name entered. If the event time is greater than
the maximum simulation time, a message window is generated that displays the
statement, 'The event time, 00:00:00:00.000 is greater than the maximum
simulation time'. Errors must be corrected before a successful save can be
accomplished.

If an action name is undefined, a warning message window is displayed
with the message, 'The action has not been defined.'

3.2.4.5 Maintenance Actions

The EVENTEDIT executable is called C:\HOS-IV\editevt.exe. The main
code for this program is contained in two files:

editevt.c
evt menu.c.

Two files are used for global and prototyping information:

editoevt.I

event.h

51

In addition, the two C files must be compiled using the large model, and
then linked with five libraries:

skyl.llb
ct.llb

te.lib

Ilibfp.tlb

HOS-IV.Ilb

The windows used by EVENTEDIT are stored in the file edlt.evLcat.

3.2.5 RULEEDIT- Edit Rules

The RULEEDIT module of HOS maintains information for all user-defined
simulation rules. Rules set up conditions that determine which actions will be
executed at a particular simulation time snapshot. A rule is defined by a starting
and ending conditional, the name of the action to be invoked if the starting
conditional is trus, and - unique task number. If the starting conditional
statement is true, the named action will be invoked. The action will then
continue until the ending conditional is true. Rules can be of three distinct
types: operator, hardware, or environment. Each type of rule is grouped
separately but identical code is used to maintain the rules.

3.2.5.1 Description

RULEEDIT maintains the list of defined rules for a simulation and permits
the user to view, edit, delete, and create rules. There are three sets for rules for
each simulation: hardware, operator, and environment. A rule consists of the
following elements:

1. Rule Number:

Operator - a unique three digit number consisting of
a one digit priority assignment from 0 (lowest) to 9
(highest) and a two digit number 00 (lowest) to 99
(highest).

- Hardware/Environment - a two digit number 00
(lowest) to 99(highest).

2. Rule Name: An alphanumeric name containing a
maximum of 28 characters.

52

3. If Clause: a starting condition consisting of a Boolean
statement utilizing characteristics of objects, constants, and
properties.

4. Do Clause: action name.
5. Until Clause: an ending condition consisting of a Boolean

statement utilizing characteristics of objects, constants, and
properties.

The same code performs operations on all three rule types.

In order to provide the combined files needed by other modules, the Rule
Editor combines the hardware, operator and environment files upon exiting.

The high-level functional diagrams are organized by user actions and
are described below.

EP_d..•01Bua. When the user pushes the print push button, the function
"print" is executed. The writeJkl function writes the current task to the printer
stream. The print function is shown below:

Print Button

print (int);

EfielIds to task (taskjtype)I
Fwritejtk. (task type, stream);J

I
fflush (stream);

NwBt, When the user depresses the new push button, the function
"new" is executed. It saves the current task if needed and then creates and

53

displays a new, blank task. The flow Is illustrated below:

INew ButtonI

Inew (int);j

saveif_necessary (funcptr);

insertoldjtask (tasktype);

unhighlightlist-selection 0;

miit_task 0);

itask._towindow (task.type);

Sv. u When the user pushes the save button, the "save* function

is executed. The verifyjtask function validates the entered task information and
reports any errors. Task-name creates the name to display in the list selection
box. The temporary task created by verify is deleted and the new task is
inserted and then deleted from the task list in order to establish the pointers.

54

Finally, the task is added to the listbox. This process is illustrated below:

ISave, ButtonI

verifyjask 0

Ifreetask (task--type);

FTinsert-task (task'_type);

I delete_task (taskjtype);

7updatelistentry (*char);

highlight list selection 0;

122l.te .uttgn. When the user pushes the delete button, the setupdelete
function displays the current rule and asks the user to verify the delete. Process
delete is called if the user verifies. The rule is deleted from the list displayed in
the list selection box, deleted from the internal list, and then freed. Finally, the

55

display is returned to normal. This process is illustrated below:

Delete Button

Isetup-delete 0);

process.delete O;

deleteentry (int);

delete task (task type);

I-freetask (task_type);

[task_towindow (task type);

f update.ist-display 0:

Ehig hlig ht-list-selectiOn n;

User Aids Men•u Print. When the user selects print tasks from the user
aids menu, the "printtasks" function is executed. It opens a file on disk and
writes each task to it, formatting it for printing. It then sends the file to the printer.

56

The process is illustrated below:

User Aids menu:
Print

Ip rint_tasks 0;1

fopen (stream, -char);

nritejkl (taskjtype, stream)

fclose (stream).;

pdnttkl 0;

3.2.5.2 RULEEDIT Screens

Titlg,,_ . The title bar of RULEEDIT contains the words 'RULE EDITOR'
as the function name. RULEEDIT does not use the.current activity or status
information areas of the title bar.

RULEEDIT Menu Bar. RULEEDIT contains the following menu options
on the menu bar as illustrated in Figure 3-6:

"• Rule Types - defines the rule type as environment,
hardware, or operator. When one of the type options is
selected, the current rules, if any, are saved and the rules
associated with the selected type are loaded.

" Edit - provides copy and paste functions. Copy copies the
current rule into an invisible clipboard buffer. Paste copies the
clipboard buffer into the rule currently defined on the screen
only if the current rule is new.

"o User Aids - provides the capability to print the list of defined
rules, view the contents of any action file, and obtain help
messages.

"• Exit - terminates the Object Editor and returns the user to the
HOS-IV screen.

57

0 0.

(1)

000

58_ i

The rule pull-down menu contains commands that allow the user to define the

rule type. It contains the following commands:

" Environment - defines an environment type rule. All of the
data entry fields in the rule dialog window are blanked and the
text cursor is placed in the first character in the rule name field.
The rule dialog window is modified to remove the Rule Group
click box if present.

" Hardware - defines a hardware type rule. All of the data
entry fields in the rule dialog window are blanked and the text
cursor is placed in the first character in the rule name field. The
rule dialog window is modified to remove the Rule Group click
box if present.

" Operator - defines an operator type rule. All of the data
entry fields in the rule dialog window are blanked and the text
cursor is placed in the first character in the rule name field. The
rule dialog window is modified to add the Rule Group click box
if not present.

The User Aids pull-down menu contains commands that allow the user
to view other files, print all currently defined tasks, and Cobtall- help messages. It
contains the following commands:

0 View Files - allows the user to obtain a window that displays
currently defined actions.

0 Print rules - allows the user to obtain a printout of all
defined rules. It first formats the rules and then prints it out on
the line printer.

* Help - allows the user to obtain additional information about
using the Rule Editor.

RULEEDIT Windows. The main RULEEDIT window is a dialog window
for entering rule information. The rule dialog window, as illustrated in Figure 3-

6, contains the following pushbuttons:

" NEW - clears all input fields and places the text cursor in the
rule name field.

" DELETE - deletes the currently selected rule.

- I•%

" SAVE - saves the current rule as displayed on the screen.
The following validation is performed prior to the actual saving
of the rule definition:

1. The rule name is a valid name, i.e., It starts with an
alphabetic character (a-z), does not contain any illegal
characters, and is unique.

2. The If and Until clauses contain valid Boolean conditions. If
the Boolean operator or constant is Invalid, an error
message window is displayed indicating that the clause
cannot be saved. If a characteristic-object pair is invalid, a
warning message window is displayed indicating that there
is a problem with the Boolean conditions.

3. The Do action is evaluated to determine if the ac',ion name
is valid and has been defined. If it has not, a warning
message window is displayed indicating that the action is
undefined.

" PRINT - prints the current rule definition on the printer.

The rule dialog window contains the following text entry boxes:

Rule Name - entry of the ruie name as a maximum of 28
characters.

If - entry of the if clause in the form value Boolean operator
value where value can be a characteristic of an object or a
constant and Boolean operator can be equals, not-equal,
lessthan, lessor-equal. greater-than, or greater_o._equal.

* Do - entry of an action name.

• Until - entry of the until clause in the form value Boolean
operator value where value can be a characteristic of an object
or a constant and Boolean operator can be equals, notequal,
lessthan, lessor_equal, greaterthan, or greater-or equal.

The rule dialog window contains a click box for entry of the rule group

,iumber 0-9 (operator rules only) and rule number 0-09. A list selection box

showing the number and names of currently defined rules is displayed in the

upper left corner of the rule dialog windcw as shown in Figure 3-6.

60

3.2.5.3 Input/Output

The files produced by RULEEDIT are described below:

simname.tko - stores the Internal representation of the
operator rules and uses the following record structure for
each rule:

char description [35];

char ifcond [200];

char if_c [300,];

char procedure [35];

char untilcond [200];

char untilc [300];

int priority;
int sub..pdority;

task-type *next;

task-type *last;

simname.tkh - stores the internal representation of the
hardware rules. It uses the same structure as operator rules.

a sirnname.tke - stores the internal reprsentation of the
environment rules. It uses the same str ;ture as operator
rules.

• simname.toi - contains C ode to initialize the operator tasks.
* simname.thi - contains C code to initialize the hardware tasks.

* simname.tei - contains C code to initialize the environment
tasks.

* simname.toc - contains C code to execute the operator tasks.

• simname.thc - ccntains C code to execute the hardware
tasks.

* simname.tec - contains C code to execute the environment
tasks.

* simname.tol - contair•s he text version of the operator rules.
It is formatted for output ti, the printer including form feeds.

* simname.th' - conta : the text version of the hardware rules.
It is formatted for OLtr j the printer including form feeds.

61

" simnarne.tel - contains the text version of the environment
rules. It is formatted for output to the printer including form
feeds.

" simname.to2 - contains a list of the procedures referenced in
the operator rules, each stored in a separate record.

" sirnname.th2 - contains a list of the procedures referenced in
the hardware rules, each stored in a separate record.

" simname.te2 - contains a list of the procedures referenced in
the environment rules, each stored in a separate record.

" simname.to5 - contains a list of characteristic object pairs
referenced in the operator rules. The characteristic names are
separated from the object by a comma and a space and each
pair is stored in a separate record.

" simname.th5 - contains a list of characteristic object pairs
referenced in the hardware rules. The characteristic names are
separated from the object by a comma and a space and each
pair is stored in a separate record.

" simname.te5 - contains a list of characteristic object pairs
referenced in the envircnment rules. The characteristic names
are separated from the object by a comma and a space and
each pair is stored in a separate record.

" simname.to6 - contains a list of all alphabetics referenced in
the operator rules; each alphabetic is stored in a separate
record.

" simname.th6 - contains a list of all alphabetics referenced in
the hardware rules; each alphabetic is stored in a separate
record,

" simname.te6 - contains a list of all alphabetics referenced in
the environment rules; each alphabetic is stored in a separate
record.

" simname.tk2 - contains a list of all procedures referenced in
all of the rules. It is a combination of the three files:
d:\hosiv\,simname.tc2, d:\hosiv\'simname.th2, and
d :\hosiv\,sim name .te2.

" simname.tk3 - contains the C code to initialize all of the rules.
It is a combination of the three files: d:\hosiv\,simname.to3,
dAhosiv*simname.th3, and d:\hosiv\,simname.te3.

" simname.tk4 - contains the C code to drive all of the rules. It
is a combination of the three files: d:\hosiv\'simname.to4,
dAhosiv\'simname.th4, and d:\hosiv\,simname.te4.

62

* simname.tk5 - contains the list of all characteristic object pairs
referenced in the rules. It is a combination of the three files:
C:\hosiv\.simname.to5, C:\hosiv\.simname.th5, and
C:\hosiv*simname.te5.

• simname.tk6 - contains the list of all alphabetics referenced in
the rules. It is a combination of the three files:
d:\hosiv\ksimname.to6, d:\hosiv*simnarne.th6, atid
d :\hosiv\-si mname.te6.

3.2.5.4 Error handling

When the user completes entering a task and depresses the save

pushbutton to save the rule, the entered fields are validated. Error messages
indicate errors that must be corrected before the rule can be saved; warning

messages are informative messages indicating that something suspect is

contained in the rule but it does not have to be corrected before the rule can be

saved. The following error messages are generated for If and Until statements:

1. A piece of the statement is missing.

2. Syntax error: (offending token).

3. Undefined, alphabetic or syntax error.

4. Syntax error.

5. A task with that number already exists.

Warning messages appear when undefined entities (object,

characteristic, or action) are used in the rule definition. The window indicates
where the problem is, what type of entity is undefined, and what name the user
entered.

63

3.2.5.5 Maintenance Procedures

The Rule Editor executable is called C:\hosiv\edit tsk.exe. The main

code for this program is contained in the files:

edit tsk.c
Ilst.tsk.¢

lotsk.c

err tsk.c

tsk_menu.c

The following files contain global and prototyping information:

edit tsk.e

list tsk.e

io tsk.e

errtsk.e
tskmenu.e

edit tsk.t

JIs tjsk.1

Iojtsk. I
errtskol

tskmenu.l
The five C files must be compiled using the large model, then linked with

the following five libraries to produce the executable code:

skyllib

ct.lib
te.11b
Ilibfp.lib
hosiv.lib

"The windows used by RULEEDIT are stored in the following file:

edittsk.cet

64

3.2.6. EDITACT - Action Editor

The Action Editor is used to enter actions. Actions describe what will be
done by the operator, system, and environment at a given simulation snapshot if

the related rule is true. The steps to accomplish a task which must be

performed at a given mission time based on the current environmental and
system status are detailed in the action. Actions can include updates to the

values of object characteristics, invocation of other actions, and the initiation or
suspension of action rules. Actions are the only simulation mechanism which
can affect the values of the characteristics of objects.

Actions are defined using a small set of standard verbs (e.g., PERFORM,

SET, SUSPEND) known as the HOS Action Language (HAL). A summary of

the current set of HOS verbs is shown below:

COMMENT <string> ENDCOMMENT

DEFINITIONS [<def-statement>] ENDDEFINITIONS

ENDSIM

FILE [<print-value>] ENDFILE

GET <local> FROM <attribute> OF <object>

IF <boolean> THEN <statement-group> ENDIF (ELSE <statement-
group> ENDELSE)

PRINT [<prnt-value>] ENDPRINT

PUT <send-value> IN <attribute> OF <object>

RETRIEVE <local-object> FROM <set-keyword> <set-name>

SET <local> TO (<formula>)

START <rule number>

STOP <rule number>

SUSPEND <rule number>

USING [<parameter>] DO <proc-name>

WHILE <boolean> THEN <statement-group> ENDWHILE

3.2.6.1 Description

EDIT._ACT is essentially a free format word processor with word
wrapping, cut and past; features, and mouse and keypad control of the text

65

cursor. Once an action is entered, the user can specify that it be translated by
HAL for use in the simulation executable. The status of the translation, whether
successful or errors were detected, is displayed in a message window. If any
errors were detected in the translator, the View File option can be used to create

a separate window containing the translator output and accompanying error
message.

The high-level functional diagrams organized by pull-down menu options

are shown in Figure 3-7.

3.2.6.2 EDIT ACT Screens

The Action Editor consists of a title bar, a menu bar, a text editing window
with a scrollbar, and a number of dialog boxes used for program interaction with

the user. The Action Editor screen is illustrated in Figure 3-7.

Action Editor Title Bar. The Action Editor title bar consists of a current
activity area on the left which displays the name of the current action, the words

'ACTION EDITOR' in the center, and the current line and column position of the
text cursor on the right.

Action Editor Menu Bar. The menu bar for the Action Editor contains the
following menu options:

• File - file related commands such as saving, opening, etc.

Edit - editing commands: cut, paste, etc.

• Search - word and line search commands.

• User Aids - provides the capabilities to view help files and
action files.

* Exit - terminates Action Editor and returns the user to the
HOS-IV module.

"The File pull down menu, illustrated in Figure 3-8, contains:

" New - closes the current document after asking if changes
should be saved and then creates a new empty action.

" Open - closes the current document after asking if changes
should be saved and then opens the file selection dialog box.

66

UU

0~

IU L

4.0

LIL

C)Cw 0 "

w C1 PC

aw 0)6

U)~
ýa " w LL

~~67

cu 0 c

CD,

rE
00

W oi
CD CD CD

0) 00r

W 0.)

0 0C

Cot))

CDc

CDC

10
la)

Q E

C z C

.0

LUL

CL LL
00

:4-

LiU

P CL c

00

69'

CD

QaDr_ 0"0

cm

-- E

-CC

0 m

cr0)

C

I v

" Translate - asks if changes to the current document should

be saved and then spawns the HAL translator.
" Save - opens the save dialog box.

The Edit pull down menu, illustrated in Figure 3-8, contains:

* Cut - removes selected text from the current document and
stores it in the clipboard.

0 Copy - copies selected text from the current document and
stores it in the clipboard.

* Paste - inserts the contents of the clipboard in the current
document at the insertion point.

* Clear - deletes the selected text from the current document
and throws it away.

The Search pull down menu, illustrated in Figure 3-8, contains:

* Find - opens the input search string dialog box for the user to
define a search string.

* Find Next - finds the next occurrence of the string defined in
the input search string dialog box.

* Goto Line - opens the input line number dialog box for the
user to enter the number of the line to goto.

The User Aids pull down menu contains commands that allow the user

receive help on the current module and view action files:

" Help - allows the user to obtain additional information about
using ACTION EDITOR.

" Print - allows the user to get a formatted hardcopy on the
standard printer.

" View File - allows the user to view action files created using
the Action Editor.

Action Editor Text Editing Window. The text editing window consists of
text area and a scrollbar. The text area is 23 rows by 77 columns. The scrollbar
is to the right of the text area and has four control buttons and a relative file
position indicator. The four controls on the scrollbar are:

" Scroll Line Down - displays a page of text starting from the
line before the current top line.

" Scroll Page Down - displays a page of text starting one
page before the current top line.

" Scroll Page Up - displays a page of text starting from the
current bottom line.

" Scroll Line Up - displays a page of text starting from the
line after the current top line.

Action- Editor Dialog Boxes. Dialog boxes contain text entry fields in
addition to pushbuttons, list boxes, and other message window components.

* File name - user can edit current action name and choose to
save or cancel the save operation.

• Search string - user can input string to search for and
choose to search or cancel. The search string can coaitain only
alphanumeric characters and underscore U. It cannot search
for control characters such as tabs.

* Line number - user can enter integer line number only and
choose to mov'. the text cursor to that line or cancel the goto
operation.

Action Editor Message Windows. Message windows display information
which the user must acknowledge by hitting a pusnbutton. Some message
windows may be cancelled.

• String not found - the search string was not found in the
document.
T Translation successful - the action was successfully
translated.

• Translation unsuccessful - the action did not translate.
• End editing session - the user may confirm or cancel his

Quit selection from the Exit menu.
S save changes - the user may confirm or cancel the saving
of the current action.

° Out of memory - the document is too large (actually if the
file is this big, the compiler won't accept it anyway).

° File selection - the user can select an action to open or
delete or choose to cancel his selection,

o Confirm delete - the user can confirm or cancel his
decision to delete an action.
Can't delete current file- the user attempted to delete the
currently opened file.
Can't delete system file - the user attempted to delete the
TRANSLATOR OUTPUT file or the SYMBOL TABLE file.

72

Action Editor Information Windows. Information windows do not require

any input from the user. They contain informative messages to let the user

know that selected commands are being processed.

"• Printing In progress- the printing of an action is
underway.

"• Reading file - the file is being read.
"• Translating - the HAL translator Is running.

3.2.6.3 Input/Output

EiL.L EDITACT references the following files:
"° d:\sortproc.p$ - sorted list of action names.
"• d:\htemp.txt - temporary file created for saving and printing

purposes.
"* c:\hoslv\hoshpl\pnnnnnnn.hpl - actual action files where

nnnnnnn is a seven digit sequential number assigned by the
EDITACT to uniquely identify the file. When the translated
version of the action is store in the pnnnnnnn.c file, the same
seven digit identifier is used.

"• c:\hosiv~hosheIp\prchelp.000 - list of help topics
specific to the Action Editor.

" c:\hoslv\hoshelp\prc_help.nnn - help files (numbered
extension starting from 001)

User Actions. EDIT-ACT uses the following function keys:

"• F1 - Begin Mark - sets beginning of text selection

"* F2 - End Mark - sets end of text selection

"* F3 - Cut - see section 3.2.6.1.2 under the Edit menu

"* F4 - Copy - see section 3.2.6.1.2 under the Edit menu

* F5 - Paste - see section 3.2.6.1.2 under the Edit menu
* F6 - Clear - see section 3.2.6.1.2 under the Edit menu

• F7 - FIO - Not implemented

3.2.6.4 Error handling

Errors generated by the HAL translator are available to the user in a
separate view window. An error flag is passed from HAL to indicate whether or

not any errors were detected in the translation process.

73

I KANSLATOROUTPUT contains the translated action and descriptive errors

messages.

3.2.6.5 Maintenance Procedures

Action Editor source code (editrccadpmeu)isoplduig

Microsoft C version 4.0 with the largc memory model switch (/AL). It requires
the HOS-IV, SKYL, CTi. and TE libraries in adidition to the standard C libraries
for linking.

3.2.7. EDIT CGBJ - Oojact Editor

All knowledge about entities to be modeled in a simulation (e.g.,
displays, controis) are defined as ob* -ts HOS utilizes an object-attribute
strUcture to manage the object data. Each object has an associated list of
aviributes (e.g., size, locatio;-) and each attribute is assigned a value. These
attribute_. describe the important features or chatracte ristics of an object. In
order to enhance the user's understanding of this structure, attributes are
referred to as characteristics in HOS Values indicate the state of the
rha,,aCteriSti - a! a particular poiint in tne simuiation.

Obcjects L re stored in a library thai is accessible to/fromn all simulations
developed on a particular microcomputer. This object library provides a
rcommon fac. i'ty for storing object knowledge and sharino object definitions
beW~een simulations. Whenever an object is used 'raction, the
current obij7,zt definit~on is ietrieved I omn the object lib, -nt to note
tl at the oujeci library can be shared by multiple .Jis niot
simul~atio-, depende~nt. This sectior describes~ the EC .(.,,ule of Ht9S
which maintains the object and alphabý tic library.

3.2.7.1 Description"

EDIT -OBJ processes ahi user actions related to object definitions and
their associated characteristics and values. Charect -` t$cs types are whole,
decimal, or alphabetic. Whole and drý,imn-) rcý .- i numeric values.
Alphaoetic-s are text strings and the fist 01 ne ":elics ate stored in a

separate alphabetics dictionary. EDIT._OBJ maintains the object and set

libraries and the alphabetics dictionary. An object definition consists of the

following information:

1. Object Name - an unique identifier of up to 23 characters.
The first character must be an alphabetic (a-z) and the
remainder can contain alphabetics (a-z), numbers (0-9), and
underscore U; and

2. Characteristic List - list of characteristic names with
associated type and initial value. A maximum of 15
characteristics can be defined for an object. The characteristic
nain'e can be a maximum of 28 characters Including
alphabetics (a-z), numbers (0-9), and underscore U.

The characteristic type is automatically assigned based upon the contents of the

initial value. Type whole represents an integer number containing only the

digits 0-9 and an optional prb.,eding plus (+) or minus (-) sign. Whole values

are saved as C type iong that are stored in 4 bytes. The valid range of values

for wholes is -2,147.483,648 to 2,147,483,647. Type decimal represents a

decimal number that contains only the digits 0-9, a single decimal point (.), and

an optional precedirig p!us (+) or minus (-) sign. Decimal values are saved as C

type double that are stored in 8 bytes. The valid range of values for decimals is

approximately 1.7E-308 to 1.7E+308. If the value is neither whole nor decimal,

then EDIT_OBi assumes tl-.at it is an alphabetic value. Alphabetic values are

strings of up to 28 chara.ters that can contain any symbol except space, single

quote, or double quote. The strings are entered without any special enclosing

characters such as quotes. The alphabetic values are slored in A separate

alphabetic dictionary.

Objects can either be defined as:

1. Simple, singular objects such as a s:ngle display; or

2. Sets of objects which represent multiple occurrences of
identically derined objects such as a fist of 10 messages or a
set of 53) emitters.

For object sets, the characteristic list must be identical but the value of a

characteristic can vary. The name,. of the members of objects in object sets are

constructed by EDITCI3J appending a sequent~al member number, starting

with rme, to the eio of the object set narre. For example, the object set name

75

EMITTER would contain objects named EMITTER001, EMITTER002,

EMI fTER003, etc. Once: a set has been defined, the number of members in the

set cannot be changed; i.e., no objects can be added or deleted from the set nor

can any characteristic be modified without resaving the entire set. The only item

that can be modified by the user is the value of a characteristic. When scts are

initially created, all members of the set have the initial value assigned to the set
name.

The object library and alphabetic dictionary are accessed by other HOS

modules to check for the existence of an object, object/characteristic pair, or an
alphabetic value.

A high-level functional diagram of EDITOBJ processes is presentc

below organized by pushbutton selactions.

New Obiect, When the user depressed the pushbutton labeled "NEW',

all text entry boxes on the dialog window are cleared of any previously entered
information and the cursor is placed in the object name text entry box. Control

is returned to the Editdriver (keyboard and mouse polling routine) as shown

below:

NEWOBJECTI_
1.. ClearFields'

currentfield - ONAMED__~I
Set Field .]

Y I The view object function displays a list of defined objects in
a list selection window and allows the user to select and open or delete an
objqct. If the selected ubjeci is a set member, the user is not allowed to delete it
or modify the characteristic names or types. For set objects, the user can only
change the default values of the characteristics. When view object is

completed, control is then returned to the Edit.driver. View object is illustrated

below:

VIEW-OBJECT

SDialogBox (FILEBOX)

Listlt(FILEBOX) J

5gve QbiecL The save ftnction performs error checking on the values

entered by the user and is illustrated below. Any detected errors are displayed

in red and a message window is displayed to indicate the type of error. If the

item is a set member, a match is done against the set definition. If it matcihes,

the. object will be saved with its new set of values. If the definition has been

modified, it will display an error message telling the user that the entire set must

be resaved in order to change the set definition. The ReadField routine

assigns one of three types (WHOLE, DECIMAL, or ALPHABETIC) to each

characteristic based upon the entered initial value.

If the object is new, the ramdrive directories are recreated and o'ontrol is

returned to the EditDriver.

77

I .SAVE-OBJECTI

[~ReadNameI

I
find_objectLoffset

read_item

tobjetLI

been redefined

! Read-Fields

RRORSDiaogBox (eRRORBOX)

Print ObLjet. The Print Object function is shown below and reads the
values in the edit fields and performs error checking.

78

If no errors are detected, the object definition will be formatted and sent to the

printer. Upon completion of the printing, control Is returned to the EditDriver.

PRINT'_OBJECT

Read-Fields

FFormatObject Values

O The OPEN function searches for the selected object in the

directory, reads the object definition, and formats and displays the information in

the appropriate field in the dialog window. It is illustrated below:

F~ OPENJ

ShowFields

PI...Qlt . The DELETE option reads the object selected by the user

for deletion and displays an error if the object is a set member. Otherwise, the
object is marked for deletion.

A deletion from the object library is dons when the object editing function is

completed. DELETE is illustrated below:

DELETE-I
meaditem

< a set mem ? > DialogBox (ERRORBOX)

no

Delete Object

79

g The New-Set function clears edit fields of previous

information, sets the cursor in the object name text entry box, and returns control
to the EditDriver. It is illustrated below:

SNEW-SET !

ClearFields

Ecurrentfield - ONAMEi

Set-Field

.ie.A..QL The view a set function displays a list of defined sets in a list

selection window and allows the user to select a set for opening or deletion.

Control is then returned to the EditDriver. It Is illustrated below:

VIEWSET

r DialogBox (SETIBOX)_I
ListSets(S ETBOX)

S The save function performs error checking on the values
entered by the user. If the object values are deemed valid, an entry is made into
the set library. Copies of the objects (setname appended with a number from
'001' to '999') are added to the object library.

80

The appropriate ramdrive directories are updated and control is returned to the

EditDriver. Save-Set is illustrated below:

SAVE_ SET

Read-Name

findobjectoffset

readitem

F- ReadFields

yes DiaiogBox (ERRORBOX)

no

I •addset tolib

add_.setobjects-toiib j

Delete. The DELETE option reads the set name selected by the user for

deletion and marks it for deletion.

81

The actual deletion of the set information from the object and set libraries Is

performed upon termination of the object editing function. DELETE is illustrated

below:

DELETE

readitem

F delete set-item

Sdelete appropriate objects

Open. The OPEN function searches for the selecied set in the directory,
reads in the first object of the set, and then formats and displays the fields in th';
dialog window, Control is then returned to the EditDriver. OPEN is illustrated
below:

!' Show Fie!ds

Print. The print object library function formats and prints the entire library
to device stdprn. When the printing is completed, control is returned to the

EditDriver. PRINT is illustrated below:

PRINT

ElPrint Object._Llbrary

Add an Alphabetic. The 'Add alphabetic to dictionary' function

generates a dialog window with a scroilable list viewing window lWontaining the
names of the currently defined alphabetics in sorted order. If insufficient

memory is available to sort the alphabetic names, the alphabelics are displayed

in random order. It provides a text entry window for entering a new alphabetic.

The user is allowed to CANCEL the function and return to Edit Dnver or SAVE

82

which adds the alphabetic to the end of the alphabetic dictionary.

Addanalphabetic is illustrated below:

Add an alphabetic
T

D[ialogBox (PROPBOX)

C urronjLfeld CL0NAME

I_ "SetField ()

F-sort-alphabefticdictionary

F_ . I
ListProps(PROPBOX) I

3.2.7.2 EDIT._OBJ Screens

Iie Bar. The title bar of EDIT_OBJ contains the words 'OBJECT
EDITOR' as the function name. EDIT OBJ does not use the current
activity or status information areas of the title bar.

EQIT iDBJ Menu Bar. EDIT_OBJ contains the following menu options on

the menu bar as iPlustrated in Figure 3-9:

SSets -- defines and manipulates object sets,

* User Aids - provides the capability to add a value to the
alphabetic dictionary, print the object library, and obtain help
messages. and

* Exit - terminates the Object Editor and returns the user to the
HOS-IV screen.

The set pull-down menu contains commands that allow the user to

create, save, and view object sets. They are as follows:

" New set - defines a new object set. All of the data entry
fields in the object dialog window are blanked and the text
cursor is placed in the first character In the object name field.

" Save a set - saves an object set and creates n objects In the
sot where n is the number of items in the set specified in the
number field. An informative message window is displayed

83

4C.)

C')

LL

00 0

z .

Uo

-~ 4-84

showing the object number being created ard the number in

the set.

View a set- creates a list box containing the name of all

currently defined sets and permits the user to select a set by

pointing to the desired set name. The user has the option to

either (1) delete all members in the set and the object set itself

by depressing the Delete pushbutton, (2) open the set by

depressing the Open pushbutton, or (3) Cancel the view

operation. For the open set option, the contents of the firt "-

member of the set (i.e., object number 1 in the set) Is displayed

in the object dialog window.

The User Aids pull-down menu contains commands that allow the user

to create, save, and view object sets. They are:

* Add an alphabetic - allows the user to add an alphabetic

to the alphabetic dictionary. New alphabetics are always

added at the end of the dictionary because the alphabetics are

implemented by using their position in the dictionary as the

value to be placed in the object. However, the alphabetics are

presented to the user in alphabetic order.

• Print the object library - allows the user to obtain a

printout of all objects in the object library. It first formats the

object library, and then prints it out on the line printer.

* Help - allows the user to obtain additional information about

using the Object Editor.

EDIT OBJ Windows. The main EDITOBJ window is a dialog window for

entering object information. The object dialog window, as illustrated in Figure

3-9, contains the following pushbuttons:

" NEW - clears all input fields and places the text cureor in the

object name field.

" VIEW -- displays a list selection box containing the names of

the currently defined objects in the object liDrary (in alphabetic

order), including members of Cet objects. The user can then

use the point and click selection method to select an object

name. The currently selected object will be highlighted in

black. The following pushbuttons are functional in the view

window:

- OPEN - closes the view window and displays the current

definition of the selected object in the object dialog window.

- DELETE - deletes the object currently selected object. If

the objet is a member of a set, a message window is

85

created to inform the user that members of sets cannot be
deleted.

SAVE - saves the current object as displayed on the screen.
The following validation Is periormed prior to the actual saving
of the object definition:
1. The object and characteristic names are valid names, i.e.,

they start with an alphabetic characte- (a-z) and do not
contain illegal characters.

2. The value of a characteristic must be one of the following:
- Numeric: either roal or integer (with values which can be

contained in a long or double precision); or
. Alphabetic: the value must be in the alphabetic dictionary.
3. The characteristic type is determined based upon the

entered value as described in Section 3.2.7.1. The first
letter of the type (W-whole, D=decimal; A=alphabetic) is
displayed in the type field of the appropriate characteristic.
The default type is WHOLE.

4. An initial value must be entered for every characteristic
name.

5. For every entered value, a characteristic name was
supplied.

6. If both the characteristic name and value fields are blank,
that row of information is ignored.

* PRINT - prints the current object definition on the printer.

The object dialog window contains the following text entry Loxes:

" Object Name - entry of the object name as a maximum of
28 characters.

" Number In Set - entry of the number of members in a set.
Used only when the user selects the Save a Set option from
the Sets menu bar. Valid entries are a number between 2 and
999.

" Characteristic Name/Value - entry of a maximum of 14
pairs of characteristic names and values. The type column is
automatically filled in by EDIT OBJ during the SAVE operation.

When the user selects the Add an alphabetic option from the User
Aids menu bar, an alphabetic dialog window Is displayed as shown in Figure
3-10. The alphabetic dialog window contains a list viewing box that displays
the list of the currently defined alphabetic in alphabetic order.

86

CL

0r)

C).

U P. I

o ~ 87

The user can select from the following pushbuttons:

• CANCEL - cancels the add an alphabetic function.
9 SAVE - adds the entered alphabetic name to the alphabetic
dictionary.

The alphabetic dialog window also contains a text entry box for entry of the

alphabetic name.

3.2.7.3 Input/Output

The files produced by EDIT OBJ include the following and are illustrated

below:

FILES

.(if they exist)

HOSSET.S$ O°JECTS.O$ HOSPROP.P$
(object sets (object (alphabetic
library) library) dictionary)

EDIT OBJ.EXE

HOSSET.S$ OBJECTS.O$ HOSPROP.P$
(object sets (object (alphabetic
library) library) dictionary)

* Objects.o$ - Object library

68

"* Hospropp$ - Alphabetic dictionary
"* HOSSET.S$ - Set information file containing number of

members and Snnnnnn.set (0 is between 0 and 9999999)
which will be created and used at simulation execution time to
contain set information.

Each defined object requiras 668 bytes in the objects.o$ file.

3.2.7.4 Error handling

OBJECT errors include the following:
"o Failure to open a necessary file. This returns to the calling

procedure, but does not cause program failure.
"* File read/write failure. Closes all files and returns but does not

cause program failure.
"° File seek failure. Since random file access is used wherever

possible, seek faults can occur. This error closes all files and
returns to the calling program, without doing a read, but does
not cause program failure.

* All user errors are displayed to the user in a message or
information window.

* Memory allceation errors which are recoverable.

3.2.7.5 Maintenance Procedures

OBJECT source code is compiled using MSC Microsoft C version 4.0
with the large Memory model switch (/AL). It requires the HOS-IV library and
SKYL libraries in addition to the standard C libraries for compilation.

3.2.8. HAL - HOS Action Translator

HAL, the HOS Action translator, translates actions into C code. It is
invoked by the Action Editor, ACTEDIT, automatically when the user selects the
Translate option on the File pull-down menu as described in Section 3.2.6.

3.2.8.1 Description

The HAL translator Is a one pass translator using a forward-chaining
translation scheme. The user ACTION file (Pnrinnnn.HPL) which Is curr(-Intly
open within the Actibn Editor is input to HAL by EDIT_ACT. nn.-innnn

89

represents a unique seven-digit number assigned by the Action Editor to
translate the 28 character action name into a valid DOS file name. The
translator reads one token at a time. The token is read In as a string which is
isolated by valid delimiters such as the comma or a space. Each token is
analyzed to determine its type -- for example, it determines If the current token is
a HAL verb keyword, an object name, a characteristic name, or a local variable.
Depending on the type of token, the translator will analyze the following token
and determine If a statement is syntactically correct. A high-level functional
diagram of HAL is shown in Figure 3-11.

3.2.8.2 HAL Screens

HAL runs solely as a batch process with all input and output controlled by

'the Action Editcr.

3.2.8.3 Input/Output

The HAL translator produces four files:

The SYMBOL TABLE file which lists the name and type of the
variables used by the action currently being translated. This
file is accessible to the user from the VIEW FILE option of the
User Aids pull-down menu and is named SYMBOL TABLE.
The TRANSLATOR OUTPUT file which lisis the HAL code and
the results of the HAL translation including appropriate syntax
error messages. This file is accessible to the user from the
VIEW FILE option of the User Aids pull-down menu and is
named TRANSLATOR OLUTPUT.

* The C statement file which lists the translated HAL code
(simname\pnnnnnnn.c) where nnnnnnn is the same seven-
digit number assigned to the action name.

* The include file which contains local variable data definitions.

These files can be accessed through (1) the Action Editor by using the
VIEW FILE option)n the User Aids pull-down menu, (2) by opening the file
directly through the fiie menu in the Action Editor, or (3) by typing it using DOS
commands. The files are !ocated In the \HOSIV\HOSHPL subdirectory.

90
j °°

0 CD E
.0 ccu 0 CC C

I CD

Ic(c

I-i 0
aI Q cuo

0 C e c -o c

CC

0 0 0000 000 cc 5, l
0 ID V tv .

-421 >

4-E B -0CD 0 m *r

0

CL

E 91

ca I

o co

tu

cm C

a 0ý - m-
CLL

0 0)

_ (

~WJWWLI92

3.2.8.4 Error handling

The HAL error messages are described in Appendix B.

3.2.8.5 Maintenance Procedures

HAL source code is compiled using MSC Microsoft C version 4.0 with the

large memory model switch (/AL). It requires the HOS-IV library and SKYL

libraries in addition to the standard C libraries for compilation.

3.2.9 CREATE - Create Simulation

3.2.9.1 Description

The CREATE module constructs the HOS simulation based upon the

entered events, rules, objects, and actions. It processed all the individual

definitions to ensure that each referenced item has been defined. These
checks include:

" Ensuring that all actions referenced in events have been
defined.

" Ensuring that all actions, alphabetics, and object-characteristic
pairs referenced in rules have been defined.

" Ensuring that al! rbject-characteristic pairs, alphabetics,
actions, and rules (aferenced in actinns have been defined.

If all cross-references have been validated, then the C code generated

for each referenced action is compiled and linked with the HOS simulation C

code and produces the executable simulation file. A high-level functional

diagram of CREATE is shown in Figure 3-12.

3.2.9.2 CREATE Screens

Informative message windows, as illustrated in Figure 3-13, are

displayed to inform the user of the status of the simulation creation. If any errors

are detected, an error message screen, as illustrated in Figure 3-14, is

displayed that contains a pushbutton for the user to depress once the error

messages have been comprehended.

93

CD)

CD,

00

C). I >

C.==) o.a..

. .. - E
"6--

CrD

PW 0 -E
0 ccU

o 0

-o ca) 0)0

o 01

o o

L1L

li

E
Cj

CVC.)
0~ 0)

0)C.

CD.

94

0

-Y.

c-;

95

'II

o-o

o 9=

3.2.10 RUNSIM - Run Simulation

3.2.10.1 Description

RUNSIM executes the selected simulation and generates the simulation
output files. It creates a screen showing the simulrbtion status at each time
increment and the currently active event, rule, and action.

3.2.10.2 RUNSIM Screens

The screen shown in Figure 3-15 allows the user to indicate whether the

simulation is to start at the beginning, i.e., the start time specified in Simulation
Setup, or restart the simulation at the point where it was previously terminated
through the use of a BEGINNING and RFSTART pushbutton. The run
simulation screen, shown in Figure 3-16, shows the current status of the
simulation through a series of labeled boxes as described below:

• simname - name of currently executing simulation.
* Current simulation time - the time of the current simulation in

the form rid hh:mm:ss.ttt where dd is days, hh is hours, mm is
minutes, ss is seconds and ttt is thousands of seconds.

* Action - the name of the action currently being processed by
the simulation and the time the action started.

Rule - the name of the rule currently invoked and the time the
rule was triggered.

Event - the name of the current event and the time the event
started.

The screen also contains a PAUSE pushbuttcn that allows the user to interrupt

the simulation. When the PAUSE button is depressed, the screen illustrated' in
Figure 3-17 is displayed that allows the user to indicate whether the simulation
should continue or be terminated for later restart. If the user depresses the

CONTINUE pushbutton, the simulation will resume execution; if the user
depresses the EXIT pushbutton, the simulation will terminate. When this
normal end of the simulation is reached, the screen displayed in Figure 3-18
will be displayed.

97

isemflF]Ftvj,
OJz

tzu

'-4 Lr

0 U 98

CD C)

0. 0. .. 00

Ri0

.9 C)L

ý*o C)

C) <

99

CD o

C)'

CdC)
U a)

OL

r--4

U3

100

0 C)
C) 0:

~~0

CY)

101)

3.2.11 RESULTS - View Results

The View Results module is used to examine data produced by running a
simulation. It is illustrated in Figure 3-19.

3.2.11.1 Description

RESULTS contains a series of standard reports that are used to assist in
the analysis of simulation results. The available reports are the following:

"* Object Analysis - contains the value of each object-
characteristic pair at each time in the simulation when the
value of the characteristic of the object changed.

" Rule Analysis - generates rule usage statistics including
the number of times the rule was active and average duration
of the activity.

" User Simulation Output - user-defined report produced by
using the FILE verbs contained in actions.

" Action Timeline - generates a timeline showing the name
of each active action at each time interval in the simulation.

"• Event Timellne - generates a timeline showing the
simulation time and event name of each active event.

"* Full Timeline - combines the event, rule, action, and object
timeline into one single report.

"* Object Timeline - generates a timeline showing the
simulation time when each characteristic of an object was
modified.

4 Rule Timeline - generates a timeline showing the
simulation time and rule name of each active rule during the
simulation.

3.2.11.2 RESULTS Screens

The View Results module consists of a title bar, a menu bar, a text
viewing window with a scrollbar, and a number of dialog boxes used for
program interaction with the user as illustrated in Figure 3-20.

Y.iew Results Module Title Bar. The title bar contains the words 'VIEW
RESULTS' as the fun6tion name in the center. it does not use the current
activity or status information aroas of the title bar,

102

c 0) CL

0 0

-0,

V) LL
ZD

m50.h
4-cc

CD '0

E I a

0 0

CC

0D 0 v
CD,

0 coo

0)103

CD CD

Em
E LA.. cc

7&

0

CD E

C CD

o .o

U Li~

0
CL

j

r) U- 1
w 0L

CD 1

cc M)

0) 0

REI
a) C.

104

U

0)

C
C,
C)
I.-
C.)

Cl)
U,
-3
C,,
a,

0)

6
C�J
c�)
C)
I-

0)
LJ�

4k)

I-I

0
4,

105

View ResUlts Module Menu Bar. The menu bar for the View Results
module contains the following menu options:

* Report Type - file related commands such as saving,
opening, etc.

= User Aids - provides the capabilities to view help files and
action files.

• Exit - terminates View Results module and returns the user to
tho HOS-IV module.

The Report Type pull down menu contains:

• Object Analysis - opens the Object Analysis report; if it
does not exist the create missing report message window is
displayed.

* Rule Analysis - opens the Rule Analysis report; if it does not
exist the create missing report message window is displayed.

• User Simulation Output - opens the User Simulation
Output report; if it does not exist the report missing message
window is displayed.

• Action Timellne - opens the Action Timeline report; if it
does not exist the report missing message window is
displayed.

• Event Timeline - opens the Event Timeline report; if it does
not exist the report missing message window is displayed.

• Full Timeline - opens the Full Timeline report; if it does not
exist the create missing report message window is displayed.

* Object Timellne - opens the Object Timeline report; if it
does not exist the report missing message window is
displayed.

* Rule Timellne - opens the Rule Timeline report; if it does
not exist the report missing message window is displayed.

The User Aids pull down menu contains commands that allow the user
to receive help on the current module and view action files.

"• Help - allows the user to obtain additional information about
using View Results module.

"* View File - allows the user to view action files created using
the View Results module.

View Results Module Text Viewina Window. The text viewing window
consists of text area and a scrollbar. The text area is 23 rows by 77 columns.

106

The scrollbar is to the right of the text area and has four control buttons and a
relative file position Indicator. The four controls on the scrollbar are:

* Scroll Line Down - displays a page of text starting from the
line before the current top line.

0 Scroll Page Down - displays a page of text starting one
page before the current top line.

* Scroll Page Up - displays a page of text starting from the
current bottom line.

* Scroll Line Up - displays a page of text starting from the
line after the current top line.

View Results Module Dialog Soxes. If the selected report requires
additional information, text entry boxes are generated to request the appropriate
information.

View Results Module Message Windows. Message windows display
information which the user must acknowledge by depressing one oi the
selected pushbutton. Some message windows may be cancelled.

"* File not found - the indicated file contains the simulation
results and could not be located.

" Create missing report - the user is requesting output of a
report that has not yet been generated.

" End viewing session - confirmation that the View Results
function is terminating.

View Results Module Information Windows. Information windowsrequire
no input from the user. They are informative messages indicating that the
system is carrying out the entered command and to let the user know the status
of the operation.

* Reading file - the file is being read.

3.2.11.3 Input/Output

RESULTS uses the following files:
o d:\htemp.txt - temporary file created for saving and printing

purposes.
* c:\hoslv\hoshelp\vrt help.000 - list of help topics specific

to the View Results module.

107

0 c:\hoslv\hoshelp\vrt help.nnn - help files (numbered
extension starting from 001).

* c:\hoslv\curslm.dat - name of the currently selected
simulation.

* c:\hosiv\cursim\cursim.dob - simulation log for object
activity.

* c:\hoslv\cursim\cursim.dpr - simulation log for action
activity.

• c:\hoslv\cursim\cursim.dev - simulation log for event
activity.

* c:\hoslv\cursirncursim.dtk - simulation log for task activity.
• c:\hoslv\cursim\cursimr.tim - simulation timeline.

c:\hoslv\cursim\cursim.log - user-defined simulation output
generated from FILE verbs.

c:\hoslv\cursim\cursim.rul - simulation rule information.
• c:hoslv\cursim\cursim.oba - simulation object information.

3.2.11.4 Maintenance Procedures

View Results module source code (viewrslt.c and vrt-menu.c) is
compiled using Microsoft C version 4.0 with the large memory model switch
(/AL). It requires the HOS-IV, SKYL, CT, and TE libraries in addition to the
standard C libraries for linking.

108

4. HOS-IV FILES

4.1 Direction/Subdirectory Organization

All HOS-IV files are stored in a separate subdirectory -HOSIV - under

the DOS root directory. The HOS-IV files are organized into the following
subdirectories under HOSIV:

HOSC Contains translated C code form action translator, the
action editor, HAL translator, and HOS_LINK.EXE,
and SIM.EXE.

HOSHPL Contains HAL action code entered by the user
through the action editor (EDIT._PRC.EXE). Used
by the action editor and the HAL translator.

HOSINC Contains one '#include' file of definitions for each file
translated by HAL. Used by the HOSLINK and
Microsoft C compiler.

HOSOB Contains one file for each translated action which
-lists the objects referenced in the action. Used by
HOSLINK to check for the existence of referenced
objects in the object library.

HOSPRO Contains one file for each translated action which
lists the actions referenced by the action. Used by
the Microsoft C compiler, in conjunction with SIM.C to
produce the executable simulation code.

HOSPRP Contains one file for each translated action which
lists the alph.'_,hetics referenced in the action. Used
by HOSLINK to verify the existence of the
alphabetics in the alphabetics library.

HOSSET Contains one file for each translated action which
lists the sets referenced within the action. Used by
HOSLINK to check for the existence of referenced
sets in the object set library.

MSC Contains all of the Microsoft C V4.0 compiler files
and subdirectories. Used by HOSLINK to create
the simulation runtime module.

simname Directory of files associated with the simulation
named simname. Used by the rule editor, siset,
andevent editor.

10J9

4.2 Hie Descriptions

Appendix C contains a list of the HOS-IV files arranged by executables,
data files, source code files, and batch files.

110

APPENDIX A
HOS-IV INDIVIDUAL PROGRAM UNIT DESCRIPTION

This appendix contains a listing of every function in all of the HOS-
IV programs. The formal C prototype is given, followed by a brief
description of what the function does. Functions are listed by
source file in alphabetical order.

CUTCOPY.C

void beginmark()

Sets the beginning of the selected text. If the end of the selected text
has already been set, begin-mark calls highlightjtext.

void clear text()

Actually carries out the deletion of text. Called by doclear.

int do clear()

Deletes selected text from TE->text and throws it away.

int do-copy()
Copies selected text from TE->text and stores it in the clipboard. Old

contents of the clipboard are destroyed.

int do cut()

Deletes selected text from TE->text and stores it in the clipboard.

int d,ý_yaste()

Calls paste text to insert contents of clipboard in TE->text. If text is
selected it first calls doclear.

void end mark()

Sets the end of the selected text. If the beginning of the selected text
has already been set, end-mark calls highlight text.

void exchangeyointers (numl, num2)
long *numl, *num2;

Swaps ptrl with ptr2.

void exchange_values (numl, num2)
int *numl, *num2;
Swaps numl with num2.

A-1

void getdoctexto(

Gets the text from TE->text for cut and copy.

void highlighttext()
Highlights text selected by begin-mark and endmark.

void initclipboard()

Empties out the clipboard.

void paste text()

Inserts contents of clipboard at TE->insertion.

void unhighlighttext()

Unhighlights selected text.

A-2

DIALOG.C

void allocate db fields()

Walks the linked list of zones for the current window and allocates a
textedit record for each zone whose mode is not equal to SCREEN. It
produces a circular linked list of text_edit records with the location of the
head stored in the global pointer db_.edit.

int db mode (currzone)
ZONE _*curtzone
Returns the mode of currzone based on the contents of currzone's

message field.

int db touch (arg)
int arg;

Walks the linked list of textedit records to determine which field of a
dialog box was clicked in.

TEType *deallocatedbfields (temp)
TiEType *temp;
This function deletes a circular linked list of text-edit records based

on the global pointer db..edit. It is usually called with db edit->next.

void Erase db field)

This function erases all of the text in the current TE->text.

int extent_compare (bl, b2)
box *bl, *b2;

Compares the size of bl to b2 and returns TRUE if they are equal.

void extent-convert (temp)
BOX *temp;

Converts temp from the format that Skylights stores it in (measured in
half characters) to whole characters,

void get_pad str (curr len, maxlen, pad str, pad-char)
int curr len, max- en;
char *pad_str, *pal-char;

Pads pad str with cc pies of pad..char from the current length to its
maximum length.

A-3

void print dbstr (my_num, maxlen, row, col)
int my_umrn, max_len, row, col;
Prints a numerical dialog box field string, max-en is the maximum

length of the string field.

void str todbfield (string)
char *string;
Inserts string in the textedit record pointed to by the global pointer

TE. It then sets TE equal to to the next record in the linked list.

A-4

EDIT_EVT.C

void checkTimeerror(evt)
event *evt;
This routine compares the event time of the event passed to

checkTime-error with the maximum simulation time. If the event time is
too large, trap__error is called, otherwise Proc._error is called.

void cleanup()
This routine starts with the first event in the linked list and traverses

the list filling in the event number field with successive integers.

char *cvt evt num(tbe_evt)
event *the_-evt;
This routine converts the event number to a three character leading

zero string which it returns.
char *cvt evt time (the evt)

event *the-evt;

This routine converts the event time record to a number in terms of the
minimum time unit. It then converts this number to a six character leading
zero sting which ft returns.
void delete_evt (an evt)

event *an_evt;

Removes anevt from the linked list of events and stores it in curr evt,
which is the event currently being worked on by the ,ser.

void do-print()
This routine prints the entire linked list of events in a user-friendly

format.

int evt sel (line)
int line;
This routine prompts the user if the current eveirt has changed and

then finish_sel is called to actually update the display.

void evt to window(evt)
event *evt;
Displays the event passed to evt.to window on the screen.

A-6

int explicitsave (arg)
int arg;
This demon initializes currsave destination to point to the procedure

isverified and savedestination to point to finishexplicitsave. Then, it
calls veify.evt and returns ok to skylights.

void fillin evt rec(evt,line)
event *evt;
char line[120];
Fills in an element of the linked list of events.

event *findevt (linenum)
int linenum;

This routine returns the address of an event in the linked list based on
its line number in the list box data structure. This is not a problem
because they are both sorted.

void finishexplicit_save()

This routine does the appropriate list box updating after a save.

void finish new evt()

This routine does the linked list processing necessary for a new
event.

void finish sel()

This routine updates the list box display and the linked list of events.

int finish-setup__exit()

This routine opens the 'Are you sure you want to exit...' window.

char *getlistline(eventyPtr)
event *event ytr;
This routine returns the line that will appear in the list box window

based on the event passed in. The line has the following format:
dd:hh:mm:ss.xxx procedure description

void get siminfo()

This function reads the simulation name, minimum time unit, and the
maximum time Into the appropriate variables.

A-7

event time *gettimereco rd(time)

char time[];
Inputs a time string of length 6 and outputs a time record pointer of

type *eventtime. An event time record consists of seven string fields
(days, hours, minutes, seconds, tenths, hundredths, and thousandths).

char *gettimestr(num)
int num;
This routine converts the number passed into a two character leading

zero string and returns it.

void gotosave destination()
This routine calls the routine pointed to by savedestination if

savedestination is not NULL.

int handleerror(azg)
int arg;
This routine closes the error window.

void init demons()

initializes all of the demon function pointers for skylights.

event *init evt()

This function returns a new event properly initialized.

void initgeneral()

This function initializes Text Edit globals.

void init time units ()

Initializes time ratios array used to convert time in terms of the
minimum time unt.

void initwindows()

Loads most of the windows used the in the Event Editor from the
catalog 'editevt.cat', also opens those that will be lmmer",tely
displayed.

void initialize()
This function calls all initialization routines such as init_windows,

initdemons, initWime units, get.sim..info, initgeneral,
turn off unused-zones, and load events, as well as initializing global
variables.

A-8

void insert evt (evt to insert)

event *evt to insert;

This routine inserts the event record passed to it into the linked list of
events.

void is verified()

This routine sets curr._evt equal to the temporary evt used for the error
checking now that it has been verified. It then calls
gotosavedesti nation.

void load events()
This function initializes the list box display with previously defined

events if the call to readevents is successful. Otherwise, the user is put
in 'new event mode'.

void main()

This function calls the main initialization routine and then starts the
demon watcher.

I

int new(arg)
int arg;
This demon calls save.if-necessary with the parameter

finishnewevt, and then returns ok to skylights.

event *new evt()

This function attempts to return a pointer to an event record.

void. Proc error(evt)
event e-vt;

This routine sets the verify destination to be the current save
destination and makes a call to Proc_file. If the procedure is undefined,
setupwarning Is called. Otherwise, the procedure pointed to by the
verify destination is called.

int processdelete(arg)
int arg;
This routine processes the answer to the 'Are you sure you want to

delete...' prompt. It updates the screen and linked list as required.

A-9

int processexit (arg)
int arg;

This routine processes the user's answer to the 'Are you sure you
want to exit...' prompt. If the answer is 'Yes', all of the necessary
terminating routines are called. Otherwise, nothing happens.

int processwarning(arg)
int arg;
This routine processes the answer to the warning prompt. If the

answer is 'Continue', the procedure pointed to by verify destination is
called. If the answer is 'Cancel', the event is not saved.

int read events (filename)
char filenamel];
Attempts to open the file hosiv\simname\simname.evl. If it exists, It

reads in the previously defined events into a linked list data structure and
returns TRUE. If the file does not exist, it returns FALSE.

int save_cbig(arg)
int arg;
This routine responds to the 'Save changes...' prompt. If the user

selected 'Yes', curr.save.destination is set to isverified and verify_evt
is called. Otherwise, it calls gotosave_destination.

void save"evt()
This routine does the appropriate list box and linked list updating

needed to save an event.
int save if necessary(function)

funcyptr function;

This routine displays the Save changes window if any changes have
occurred; otherwise, it calls gotosave_destination.

void set save destination(function)
int (*function) ();
Sets save..destination equal to parameter passed in.

int setup_delete (arg)

int arg;

If there are any events to delete, this routine displays the "Are you
sure you want to delete this event?" window.

A-10

int setup exit()

This routine calls saveif necessary with the function name
finish setup exit.

void setupwarning (evt)
event *evt;

This routine loads the warning window and displays it with the
appropriate warning message.

void trap_error (evt)
event *evt;
This routine loads the error window and displays it with the

appropriate error message.

void turn-off unusedzories()

Permanently destroys skylights pointers to demons for time zones that
aren't needed based on the minimum time unit.

void verify_.evt()

This routine gets the current event being displayed on the screen into
temp.vedfyevt. Then checkTime-error is called with this parameter.

void write evt files()

This routine writes out three files: simname.EV1, simname.EV2, and
simname.EV3.

A-1I

EDITPRC.C

int exit editor (arg)
int arg;
Processes user input from the window which asks the users if they

actually want to exit the Action Editor.

void gotoline ()
Finds the line specified in the find line number window, If the line

number is greater than the total number of lines, the last line is found.

void gotosavedestination ()

This function executes savejdestination. Save destination is a
function pointer whose value depends on where the save was initiated.

void habort (message)
char *message;
Ends the skylights demons, closes the windows, prints the last

message, and spawns hosiv.exe.

void init demons

Sets up the demon pointers.

void init general ()

Sets up general text_edit stuff.

void init windows()

Loads all the windows and opens the needed ones.

void initialize()
Calls all the appropriate initialization routines.

int invalid name (the str)
char *the_str;

Checks the input action name for Invalid characters and other errors.

void main ()
This function calls the main initialization routine, then starts the

Skylights demon watcher.

A-12

int processdelerrl (arg)
int arg;
Processes user input from the window which says that you cannot

delete a system file.

int processdelerr2 (arg)
int arg;
Processes user input from the window which says that you cannot

delete the current file.

int processdeletewin (arg)
int arg;
Processes user input from the window which asks the user if the file

should actually be deleted.

int process error (arg)
int arg;
Processes user input from the translation error message window.

int processfindline (arg)

int arg;
Processes user input from the find line number window.

int processinputwin (arg)
int arg;
Processes the user's response to the action name input window.

int processminvname err (arg)
int arg;
Processes user Input from the invalid action name message window.

int process notfound (arg)
int arg;
Processes user input from the search string not found message

window.

int processok (arg)
int arg;

Processes user input from the translation successful message
window.

A-13

int processsearch (arg)
int arg;
Processes user input from the input search string window.

int processtranslator-feedback ()
Processes error messages and successful returns from the translator.

int quit (arg)
int arg;

This function asks you if you want to save, then allows you to exit.
int read file (arg)

int arg

Processes user input from the action name selection window.

int save_changes (arg)
int arg
Processes the user response to the dialog which asks the user if the

changes should be saved.

int save if necessary (function)

func__ptr function;

If the file has been changed, it asks the user if they want to save the
last set of changes.

void search ()

Searches TE->text for the string specified in the input search string
window. If the string is not found, it opens the string not found message
window.

void set save destination (function)
funcjtr fu-nction;

Sets the destination for the goto savejdestination function.

int setup_delerrl ()

Opens the window which tells the user that he has tried to delete a file
needed by the system.

int setup_delerr2 ()

Opens the window which tells the user that he has tried to delete the
current file.

A-14

int setup deletewin ()
Opens the window which asks the user if he actually wants to delete

the file which they have selected.

int setupend ()
Opens the window which asks the user if he actually wants to exit the

Action Editor.

int setupf.lewin ()

Opens the action name selection window.

int setup_findline ()

Opens the find line number input window.

int setupinputwin ()

Open the window used to get action names from the user.

int setup inv_nameerr

Opens the window which tells the user that there was an invalid name
input and that he should try again.

int setupprintwin

Opens the printing in progress information window.

int setup_search ()

Opens the search string input window.

int translate ()
Spawns the HAL translator.

A-15

EDITTSK.C

void cleanup ()

This function calls save.ILnecessary with a pointer to finish_claanup.

void fields to task (task)
tasktype" * -task;

This function takes the DB fields from the active window and puts
them in the appropriate fields of the given task.

void finish-cleanup ()

This function writes, then deletes the task list, closes the window
found in the global last_win, and deallocates the TextEdit records
associated with it.

void gotosavedestiation ()

This function executes the function pointed to by the global function
pointer save destination after checking to be sure that save-destination
is not NULL..

void habort (message)
char *message;

This function exits the editor by spawning HOS-IV. It sends message
to stdout. If the spawn fails, it will exit to DOS.

void init demons 0)

This function sets up all skylights demon names.

void initerror check ()

This function initializes Taskbool.

void init-general ()

This function initializes global variables used by TextEdit.

void init windows ()

This function opens the catalog, loads all windows, and opens the
windows which are opened first.

void initialize ()

This function sets global flags and calls specific initialization
functions.

A-16

void main ()

This function calls the main initialization routine, then starts the
skylights demon watcher.

void make-new-task C

This function makes a blank task and displays it for the user to edit.

int new (arg)
int arg;
This function is called when the user presses the new button. It calls

saveifnecessary with a pointer to makenewtask.

int print (arg)
int arg;
This function prints a single task when the print button is pressed.

int processdelete (arg)
int arg
This function processes the user's response to the question "do you

want to delete this task?"

int process_exit (arg)
int arg;

This function processes the "do you want to exit?" window.
int save (arg)

int arg;

This function verifies and saves the task when the save button is
pressed.

int save changes (arg)
int arg;

This function processes the user's response to the dialog which asks
if he wants to save changes, by either verifying and saving the task or
ignoring the save.

int save if necessary (function)
func__ptr function;
This function asks the user if he wants to save changes if FileChange

is TRUE, else it executes the function pointer.

A-17

void save-task ()

This function saves the valid task and updates the list box
appropriately.

void select-task ()

This function activates and displays the task selected by the user.

int set_priority (arg)
int arg;

This function processes the 4 buttons which allow the user to change
the group and number.

void set save destination (function)
int (*function) 0;
This function sets the global function pointer equal to the function

pointer passed in.

int setupdelete (arg)
int arg

This fur.tion displays the current task in the list it necessary and asks
the user if he wants to delete it.

void setupexit ()

This function opens the "do you want to exit?" window.

void setupwindow (name)
char name U3;
This function opens the operator, hardware, o," environment window

based on name; then tries to read the associated file. It displays the first
task.

void task naone (task, str)
task_type *task;
char * str;

This function creates the string to be displayed in list box based on
the given task.

void task to window (task)
task_type * task;
This function takes a task record and displays it in the acti,h, window

fur editing.

A-18

int tsksel (arg)
int arg;
This function calls saveIf_necessary with a pointer to selecttask as

long as the user did not select the current task.

A 19

ERR.TSK.C

void check if ()

This function checks the syntax of the if statement. If it finds an error
or warning, it calls trap__error, else it calls the next error checking routine:
check proc.

void check num ()

This function checks for a conflict in task numbers. If it finds one, It
calls trap. error, else it calls the next error checking routine: check_if.

void checkyProc ()

This function checks to see if the procedure 6:.sts. If it does not, it
calls trap__error, else it calls the next error checking routine: check_until.

void number-exists (task)
tasktype *task;
This function checks the given task against the task list to see if one

with that number is aready in it. If the number exists, it sets errnum to 6
and returns TRUE

void print-where ()

This function prints where a warning or error came from, either the if
or the until condition.

int processerror (arg)
int arg;
This function closes the error window when the user presses the

button,

int processwarning (arg)
int arg;
This function closes the warning window when the user presses a

button, then continues the save if the user pressed continue.

void setuperror ()

This function loads the error w;ndow, puts the appropriate message In
it, then displays it.

void setupwarning ()

This function loads the warning window, puts the appropriate
message in it, then displays It.

A-20

void traperror ()

This function displays problems as errors or warnings as appropripte.

void verifytask ()

This function copies the current window fields to a temp task, then

calls the first of a series of verification routines.

A-21

FILEIO.C
void GetFile (fname, procname)

char ;-f_name, *procname
Reads a file from the hard drive, converts all cardage returns and

tabs.

char *getZ rblock(start_pos, request bytes)
long start_pos, request-bytes;
Gets a block of text from the ramdrive starting from startpos up to

request bytes or EOF whichever comes first. Mallocs space for the string
and returns a pointer to it.

void init file ()

Initializes a new TextEdit record and resets the file change flag.

int newfile ()

Dz-.etes the current TextEdit record and calls initfile.

void replace chlch2 (the_str, searchchars,
replace char)
char *thestr, *search-chars, *replacechar

Replaces every occurrence search chars in the.str with
replacechar.

void UpdateRamDrive ()

Updates the ramdrive file with changes to TE->text.

void UpdateText ()

Gets a screenful of text from the ramdrive.

void Writefile (fname)
char fjname[];
Writes out TE->text to f-name.

A-22

HOSPROC.C

int addjProctolib (item)
PROCLIB *item;

Takes a procedure name, and adds It to the procedure library if it is
new.

int CreateProcItem (item)
PROCLIB *item;
Gives the procedure name, if it doesn't already exist. This routine wiai

call the routine to create a new filename and add the item to the library in
the appropriate place.

int Delete Proc File (name)
char *name;
If the procedure is defined in the library, it is rewritten and marked for

deletion. The item is not actually deleted until a Reorganize _ProcLib is
done.

int getnext_proc file (newfilename)
char newfilename]);
Looks to see which file number in the sequence is next, and takes fill

in numbers before going to the end of the list.

int insertyproclibrecord (item)
PROCLIB * item;

Called by add..proctojlib.

int is_valid_proc (name)
char name[];
Returns true if the procedure has been defined - used in the link hos

utility.

int ProcFile (name, file)
char name[];
char file[];

If the procedure is defined, Proc_File returns the filename In the file
parameter. It returns SUCCESS or FAILURE, depending on whether the
procedure has been defined.

int RamdriveProcFile ()

Creates the ramdrive version of the procedure library used for actual
processing during run time.

A-23

int ReorganizeProc_Lib ()

Deletes records deleted by the user.

int RewriteProclib ()
This procedure is called during the reorganization process to write the

new procedure library from the temporary file to the permanent file.

int sortalphabeticyroc (flag)
int flag;
Sorts the procedure library by proc name and puts it on the ramdrive.

int write proc item (item)
PROCLIB *item;

Does the actual write the end of the file.

A-24

10_TSK.C

void close-files ()

This function closes all 7 output files.

void consolidatefiles ()
This function combines 5 sets of operator, hardware, and environment

files into a single file.

void open taskfiles ()
This function opens all 7 output files with paranoid error checking.

void printtasks ()

This function steps through the task list, writes tkl, then prints it.

void printtk. ()

This function opens the file ".tkl and prints it.

int read tasks (filename)
char * filename;

This function reads the editor's task file. It returns FALSE if the file is
not found.

void threefiles to one (one, two, three, target)
char *one, *two, *three, *target;
This function take the three given files and puts them one after the

other into the target file.

void write c (task, stream)
task type *task;
FILE *stream;

This function writes the actual C code for each task.

void write environ knit (task, stream)
task type *task;
FILE *stream;
"This function writes the C file which initializes the environment tasks.

void write ha'rdware init (task, stream)
tasktype *task;
FILE *strcam;
This function writes the C file which initializes the hardware tasks.

A-25

void writeheader (stream)

FILE *stream;

This function writes a HPL format header for the text only file.

void write init (task, stream)
tasktype *task;
FILE *stream;

This function calls the appropriate function to write operator,
hardware, or environment initialization files.

void write operator init (task, stream)
task type *task;
FILE *stream;

This function writes the C file which initializes the operator tasks.

void write task list ()

This function steps through the task list, writes the task to the editor's
file and calls the other output routines.

void write-tasks 0

This function is the top level output routine.

void write tkl (task, stream)
task type *task;
FILE *stream;

This function writes the task in HPL format.

A-26

LIBRARY.C

int copyattr(sourceattr, source obj, destattr,
dest obj, obJ file, SIMTIME)

char *sourceattr, *sourceobj;
char *dest attr, *dest obj;
FILE *obJfile;
long SIMTIME;

int copy_const (value, attribute, object, obj_file,
SIM TIME)
double value;
char *attribute;
char *object;
FILE *obj_file;
long SIMTIME;

int copylocal (local, attribute, object, obj_file,
SIM TIME)
LOCAL *local;
char *attribute;
char *object;
FILE *obj-file;
long SIM TIME;

int get (local, attribute, object)
LOCAL *local;
char *attribute;
char *object;

int Set (local)
LOCAL *local;

A-27

LISTTSK.C

void delete-task (task)
task-type *task;

This function deletes the given task from the list after first making sure
the given task is valid.

void delete task-list ()

This function delete3 the entire list of tasks.

task type* find task (count)
iit- count;
This function steps down the task list count times and returns that task.

void free task (task)
task-type *task;

This function frees the memory used by the given task.

tasktype* findtask ()
This function creates a new task and sets each field to a default vqlue.

void insert-task (task)
task-type *task;
This function inserts the given task in the task list based on the string

created by task-name.

task-type *new-task ()
This function allocates memory for a new task, sets the memory space

to zeros and sets the pointers to NULL.

A-28

LOWLEVDB.C

double attfloat (attribute, object)
char *attribute, *object;
Returns the value of a characteristic of an object as a double.

long attint (attribute, object)
char *attribute, *object;

Returns the long value of the characteristic of the object passed in.

char *attrstr(attribute, object)
char *attribute, *object;

Returns the string value of the characteristic of the object passed in.

int Close and Save ObjectFile (filename)
char *filename;
Closes and saves the ramdrive runtime version of a simulation

objects library to the name in filename.

LOCAL *const (type)
int type;

Places the constant of type type' into a local variable which it creates
and returns a pointer to the variable. The LOCAL * is global and is
reused.

LOCAL '*CreateLocalVariable (Type, local)
unsigned char Type;
LOCAL *local;
If previously uninitialized, it creates a local variable of type Type.

int Get Attribute (attribute, object, local)
char *attribute;
OBJECTS *object;
LOCAL *local;

Gets the value of the indicated characteristic (attribute) of the object
and passes it back in local.

int GetObject (object _name, object)
char *object name;

OBJECTS *ebject;

Reads the directory, finds the object, reads the library and returns the
object in object.

A-29

tnt Init_ObjectFile ()

Checks for the existence of the object file and opens it.

int is valid-attribute (attribute, object)
char *attribute, *object;

Returns TRUE or FALSE depending on whether the characteristic

exists in the object.

int is valid object (object)
char object;

Returns TRUE or FALSE depending on whether the object has been

defined.

int KillLocalVariable (local)

LOCAL *local;

Frees memory allocated for a local variable -- currently not being

used.

double locfloat (local)
LOCAL *local;

Returns the value of local as a double.

long locint (local)
LOCAL *local;

Returns the long value of the local passed int.

int log err (string)

char *string;

Used for error reporting - can receive any permissible format string

allowed in printf, including variables.

int rewriteitem (position, item)
int position;
OBJECTS *item;

Rewrites an item that already exists.

A-30

int Set Attribute(object, attribute, local, obj,
obj file, SIM TIME)
OBJECTS *object;
char *attribute;
LOCAL *local;
int obJ;
FILE *obj_file;
long SIM TIME;

Sets the characteristic of the object to the value in local.

int Set Attribute To Const (object, attribute, value,
obj, obj file, SIMTIME)
OBJECTS *object;
char *attribute;
double value;
int obj;
FILE *obj file;
long SIMTIME;

Sets an attribute to the value contained in the double value.

unsigned .rnt typeatt (attribute, object)
char *attribute, *object;

Returns the type of the given characteristic.

double V (local)
LOCAL *local;

Unused currently.

int write item (item)
OBJECTS *item;

Writes the item at the end of the file.

A-31

OBJDIR.C

int addobject to lib (item, flag)
OBJECT *item;
int flag;
Adds object to end of library.

int compa-e obj(stringl, string2)
char *stringl, string2;

Used by the sortalphabetic*..obj routine.

int createobjectdirectory (from file)

char *froui-file;

Reads objects library and creates a ramdrive directory of object
names.

int findduplicata object (item)
char *item;

Returns SUCCESS if the object already exists, FAILURE it it doesn't.
int find object offset (item)

char *item;

Given the name of the object, it returns the offset for seeking in the
library.

int get_object_name (position, item)
int position;
char *item;
Returns the object name given the position.

int get_object namesorted (position, item)
long position;
char *item;
Returns the 'positionth' name from the sorted library listing.

int reorganize ();
Rewrites the objects library, deleting items deleted by the user.

int sortalphabeticobj (flag)
int flag; '

Sorts the directory onto the ramdrive.

A-32

OBJPF,DP.C

int aud item to dictionary (item)
MEMBER *item;

Adds an alphabetic to the end of the dictionary.

char *build_property_dictionary (fromfile)
char *fromfile;

Builds the ramdrive alphabetics dictionary.

int compareprop (string1, string2)
char *stringl, *string2;

Used by the sort.alphabetic...dictionary for sorting.
int find duplicateproperty (item)

char *item;

Checks to see if the property is already defined.

int getnext name sorted (position, yourstring)
int position; -
char *yourstring;
Returns the 'position' name off the rarndrive file and returns it.

int get_property_name (position, yourstring)
int position;
char *yourstring;
Given the numeric value of the property, returns the name.

int. get_,ropertyvalue (item)

char *item;

Given the string equivalent, r3turns the numedc value.

char *loc char (local, yourstring)
LOCAL -local;
char *yourstring;
Returns the name of a property contained in a local variable.

int sort_alphabeticproc (flag)
int flag;

Sorts the alphabetics and puts them in a ramdrive file.

A-33

OBJSET.C

SET *Deflne._Object_Set (Set, setname)
SET *Set;
char *setname;
Assign the setname to variable Set and return pointer to Set.

int get currentmember (Set, member)
SET *Set;
char *mcmber;
Returns name of the current member of set Set.

int get_first member (Set, member)
SET *Seft;
char *member;

Returns name of first member of Set.

int getlastmember (Set,member)
SET *Set-;
char *member;
Returns name of the last member of set Set.

char *Get Member (filename, which)
char *filename;
int which;
Actually reads the name of the member which.

int getnextmember (Set, member)
SET *Set;
char *member;
Returns next member of set.

int getyprevious__member (Set, member)
SET *Set;
char *member;

Gets the member just before the current member.

int get_this member (Set, member, this)
SET *Set;
char *member;
int this; "

Returns the 'this' member of the set.

A-34

int is endof set (Set)
SET *Set;

Returns TRUE if no more members sequentially in set, and FALSE
otherwise.

char *make member-name (name, which)
char *name;
mnt which;
Creates member name given number and setname.

int valid member (member)
char *member;

Returns TRUE if the set exists, FALSE if not.

int add set to lib (SETLIB *)

Adds set to library.

int count items in set (setname)
char setname[];
Returns number of members in set.

int Create Set Item

SETLIB ;item;

If a set item is new, it creates the file name and inserts it into the
library, else simply returns the set's information.

int delete_appropriate objects (setname, number)
char setname[];
int number;

After marking the setlib record for deletion, goes and marks the sets
objects for deletion.

int DeleteSetFile (name)
char name[];

Deletes a setfile entry and its associated objects.

int get next set file(newfilename)
char newfilename [);

Creates a unique runtime file name for the set.

A-35

int getset name (which, name)
int which;
char name [];
Returns the nth set name.

int is valid set (name)

char name [;
Returns TRUE for a valid set, FALSE for an invalid set name, where

invalid is undefined.

int Reorganize_SetLib ()
Deletes records marked for deletion, and writes out the new set

library.

int RewriteSetlib ()

Rewrites an existing entry in the set library.

RamdriveSetFile ()

Creates the setfile library ("HOSSET.S$) on the ramdrive for use in
the Object Editor.

int SetEntry Position (name, file, items)
char name[];
char file[];
int *items;
Returns Fseek position.

Set File (name, file, items)
char name[];
char file[];
int *items;
If the set exists, this routine returns the filename designation and

number of members.

int write set item (item)
SETLIB *itgem;

Appends a set entry to the end of the library.

A-36

TSKMENU.C

int menu (arg)
int arg;

This tunction dispatches all menu selections based on arg.

A-37

APPENDIX B
HAL ERROR MESSAGES

Error Module
Mesg Name 1ecito

-2 BOOLPART Incomplete Boolean clause.
-1 GETNEXTTOKEN Action Is not terminated with an END statement.
0 DOGROUP Normal EOF reached.
1 ADDjOQ.TABLE Internal HOS error. Dynamic memory requirements

exceed those available. Consult HOS expert.
5 DOKEYWORD Looking for a HOS keyword and none was found.
6 DOJT Invalid HOS statement.
7 DOJF IF statement contains an Invalid Boolean clause.
7 DOJF IF statement must be followed by THEN.
8 DOjF Invalid IF group block of statements. An IF block must

contain an IF Boolean condition THEN ENDIF.
10 DO-IF Invalid ELSE group block of statements. An ELSE block

must follow an IF - ENDIF block. An ELSE statement
must be terminated with an ENDELSE.

12 DOQGROUP An IF. WHILE, or ELSE group contains an Invalid
statement.

18 DODEFINE The define block contains an invalid type.
18 A NEXT_TOK SET statement contains an invalid formula.
19 A NEXTTOK SET statement contains an Invalid mathematical function.
22 BOOLPART Invalid Boolean clause.
24 STATEMENT HOS statements must being with a HOS verb.
30 DOWHILE A WHILE statement contains an invalid Boolean clause.
30 UPDATETYPE Internal HOS error In DEFINE - Number of defined

variables exceeds maximurn permitted in program, See
HOS expert,

31 DOWHILE WHILE statement must be terminated with the word
THEN.

31 UPDATE-TYPE Internal HOS error In DEFINE - Problem with token -
consult an HOS expert.

32 DOWHILE Invalid WHILE group of statements. A WHILE Is In the
form WHILE Boolean condition THEN ... ENDWHILE.

32 UPDATEJYPE Internal HOS error in DEFINE - Invalid type. Consult an
HOS expert.

33 DOGROUP An IF, WHILE, or ELSE group of statements Is not
terminated correctly with ENDIF (for IF block), ENDWHILE
(for WHILE block), or ENDELSE (for ELSE block).

57 DOCCODE END_CCODE does not start in column one to terminate
a block of user C code.

58 DO_C_CODE END_C_CODE does not start in column one to terminate
a block of user C code.

59 DDC _CODE A block of usar dofincd C code must be terminated with
an ENDCCODE statement. None was found.

B-1

Error Module

65 CNVT._VALUE Internal HOS error - Unable to determine variable type.
Consult an HOS expert.

66 CNVTVALUE SET formula contains an alphabetic variable. Only
WHOLE and DECIMAL variables can be used In
formulas.

67 CNV'_LVALUE SET statement cannot our,-tain a object set name.
68 CNVT VALUE SET formula cannot contain the name of a local object.
70 DONEXT Invalid token type.
71 DO-NEXT Invalid token type.
72 D0NEXT Invaiid or unexpected HOS keyword.
72 DONEXT *"Undefiried ERROR code **"
73 DONEXT Undefined variable. All local variables must be defined In

the DEFINITIONS block.
73 DO_NEXT A local variable must be a WHOLE, DECIMAL, or

ALPHABETIC.
78 DONEXT Unable to locate an object or local object name.
79 CNVTVALUE Invalid constant. Constants must be either WHOLE or

DECIMAL number.
82 BOOL..PART A Boolean clause contains a variable which Is not an

ATTRIBUTE, WHOLE, DECIMAL, or ALPHABETIC.
93 NEXTLTOK SET statement formula contains a local variable that has

not a WHOLE or DECIMAL variable,
100 DOJORM SET statement contains an Incomplete formula. Check

to make sure all parentheses are paired correctly.
100 NEXT..OK SET statement contains an Incomplete formula. Check

to make sure all parentheses are paired correctly.
101 NEXTTOK SET statement formula contains an undefined variable.
103 DO-FORM SET statement formula contains an Invalid operator,

variable, or mathematical function.
154 DOJORMULA SET statement contains invalid or missing parenthesis.
155 DOJORMULA A SET statement contains unmatched or missing

parenthesis.
200 CNVTVALUE Undefined local variable.
210 DOFORMULA SET statement contains different number of right and

left parenthesis.
300 DO._START Invalid START statement. START verb must be followed

by task number, group name, or the words:
HARDWARE, OPERATOR, ENVIRONMENT, or ALL

300 DOSTOP Invalid STOP statement. STOP verb must be followed
by task number, group name, or the words:
HARDWARE, OPERATOR, ENVIRONMENT, or ALL.

15-2

Error Module

301 WHICH_TASK START, STOP, or SUSPEND verb contains an Invalid
task number.

302 DOSTART START slatement Is Invalid.

302 DOSTOP STOP statement is Invalid.
302 DO_SUSPEND SUSPEND statement is invalid.

303 WHICHTASK START, STOP, or SUSPEND verb contains an Invalid
task number.

330 DO_PUT PUT statement Is Invalid.

331 DO_PUT PUT statement contains a variable that is not an
ATTRIBUTE, WHOLE, DECIMAL, or ALPHABETIC.

378 WHICK-TASK START, STOP, or SUSPEND statement contains an
invalid group number.

379 WHICH_TASK START, STOP, or SUSPEND statement contains a
group number that is less than 0 or greater than 9.

450 DOPRINT PRINT statement contains an Invalid operator or is
improperly formed.

451 DOFILE FILE statement Is invalid.

451 D0_FILE FILE statement contains a reserved HOS keyword.
451 DO_PRINT PRINT statement contains a reserved HOS keyword.

501 DODEFINE DEFINE statement group contains an Invalid keyword.
502 DODEFINE DEFINE block contains an Invalid operator.

503 DO_RECEIVE RECEIVE statement is Invalid.
503 DOUSING USING statement contains an Invalid operator or invaiid

type.
550 DO_RECEIVE RECEIVE verb contains a reserved HOS keyword.
550 DO_USING USING statement contains a HOS keyword.

551 D0_RECEIVE RECEIVE verb contains an invalid operator or variable.
551 DORE'-I!VF RETRIEVE verb can only be used for SET objects.
551 DQUSING USING statement contains an undefined variable.

555 DORECEIVE RECEIVE verb parameters must be defined as either
WHOLE, DECIMAL, LOC..OBJECT, or ALPHABETIC.

555 DO_USING USING statement contains a parameter that Is not a
WHOLE, DECIMAL, OBJECT, LOCQOBJECT, or
ALPHABETIC.

563 D0_RECEIVE RETRIEVE statement contains an invalid variable.

565 DQRECEIVE RETRIEVE verb object set pointer must be defined as
either a WHOLE or DECIMAL local variable.

566 DO_RECEIVE RETRIEVE verb object set keyword must be either
FIRST, LAST, NEXT, PREVIOUS, or CURRENT.

587 DOSEED SEED statement contains an undefined local variable.

B-3

Error Module

588 DO_SEED SEED statement argument must be defined as either a
WHOLE or DECIMAL variable or a numeric value.

589 DO_SEED SEED statement is invalid.
610 DOATTRIBUTE Antemal HOS error - unable to determine attribute type.

Consult an HOS expert.
610 DOFILE Internal HOS error in FILE statement - unable to

determine local variable type. Consult an HOS expert.
610 DOGET internal HOS error in GET statement - unable to

determine local variable type. Consult an HOS expert.
610 DO PRINT Internal KOS error In PRINT statement - unable to

determine local variable type. Consult an HOS expert.
610 DOPUT Internal HOS error with PUT statement - unable to

delermire, local variable type. Consult an HOS expert.
610 DORETRIEVE internal I-,OS error ir PIETRIEVE statement - unable to

determine local variable type. Consult an HOS expert.
610 DOSET Internal HOS error In SET statement - unable to

determine local variable type. Consult an HOS expert.
610 DOSET Internal HOS error In SET statement- unable to

determine variable type. Consult an HOS expert.
611 DO_SET A SET statement contains a variable/value that is not

WHOLE, DECIMAL, or ALPHABETIC.
700 DOCOMMENT COMMENT statement contains a alphanumeric string

that causes the HAL program to abnormally terminate.
789 PROCESS TOKEN Invalid use of hyphen/minus sign.
800 DORETRIEVE RETRIEVE verb must contain the name of an object that

has been defined as an LOQC BJECT.
1000 HAL Unable to open error.Ist file.
1000 HAL Internal HOS error - unable to open error.lst file.

Consult an iHOS expert.
1001 OPENFILE Internal HOS error - unable to open Input HAL file.

Consult an HOS expert.
1002 OPEN_FILE Internal HOS error - unable to open C file. Consult an

HOS expert.
1003 OPENFILE Internal HOS error - unable to open fiks containing

action names. Consult an HOS expert.
1004 OPEN-FILE Internal HOS error - unable to open file containing

names oa alphabetics. Consult an HOS expert.
1005 OPEN-FILE internal HOS error - unable to open file containing

object names. Consult an HOS expert.
1006 OPEN_FILE Internal NO0S error - unable to open file containing

narmes of variable definitions. Consult an HOS expert.

1007 OPENFILE Internal HOS error -unable to open file containing set
names. Consult an HOS expert.

8-4

Error Moduie

1008 HAL Internal HOS error - cannot create symbol table.
Consult an HOS expert.

2001 HAL Invalid HAL keyword (NOTENDOFSET, ENDOFSET) In a
conditional statement.

B-5

APPENDIX C

HOS-IV FILE DESCRIPTIONS

This appendix contains an alphabetical listing of all files used in

HOS-IV. It is divided into three sections: Executables, Catalogs, and

data files.

EXECUTABLES

EDITEVT.EXE
Location: C:\HOSIV

Spawned by: HOSIV.EXE

Event Editor executable code.

EDIT_OBJ.EXE
Location: C:\HOSIV

Spawned by: HOSIV.EXE

Object Editor executable code.

EDIT_PRC.EXE
Location: ,C,\HOSIV

Spawned by: HOSIV.EXE

Action Editor executable code.

EDITJTSK.EXE
Location: C:\HOSIV

Spawned by: HOSIV.EXE

Rule Editor executable code.

HOS LINK.EXE

Location: C:\HOSIV

Spawned by: HOSIV.EXE

Create simulation executable code.

HOSIV.EXE
Location: C:\HOSIV

Spawned by: RUNHOS.BAT

Main HOS executable.

C-1

HPL.EXE
Location: C:\HOSIV

Spawned by: EDITPRC.EXE

Action translator executable code.

OBJANAL.EXE

Location: C:\HOSIV

Spawned by: VIEWRSLT.EXE

Object analysis report program.

SETUPSYS.EXE

Location: C:\HOSIV

Spawned by: INSTALL.BAT

System setup executable.

SIM.EXE

Location: C:\HOSIV

Spawned by: HOSIV.EXE

The current simulation's executable code.

SIMSET.EXE
Location- C:\HOSIV

Spawned by: HOSIV.EXE

Simulation setup executable code.

TASKANAL.EXE
Location. C:\HOSIV

Spawned by: VIEWRSLT.EXE

Rule analysis report program.

TIMELINE.EXE
Location: C0\HOSIV

Spawned by: VlEWA2RS-T.'EXE

Timeiline analysis report program.

C-2

VIEWRSLT.EXE

Location: C:\HOSIV

Spawned by: HOSIV.EXE

Simulation result analysis program executable code.

C-3

CATALOGS

EDITEVT.CAT
Location: C:\-HSIV

Used by: EDITLEVT.FXE

Catalog of windows used by the Evqnt Editor executable.

EDIT.OBJ.CAT

Location: C:\HOSIV

Used by: EDIT_OBJ.EXE

Catalog of windows used by the Object Editor executable.

EDITPRC.CAT

Location: C:\HOSIV

Used by: EDIT_PRC.EXE

Catalog of windows used by the Action Editor executable.

EDIT.TSK.CAT

Location: C:\HOSIV

Used by: EDITTSK.EXE

Catalog of windows used by the Rule Editor executable.

HOSIV.CAT
Location: C:\HOSIV

Used by: HOSIV.EXE

Catalog of windows used by the HOS-IV executable.

LINK.CAT

Location: C:\HOSIV

Used by: HOS.LINK.E'tE

Catalog of windows used by the Simulation Linker executable.

0-4

S!MSET.CAT
Location: C:\HOSIV

U ed by: SIMSET.EXE

Catalog of windows used by the Simulatior Setup executable.

SIMULA.CAT
Location: C:\HOSIV

Used by: SIM.EXE

Catalog of windows used by the Simulation executable.

VIEWRSLT.CAT

Location: C:\HOSIV

Used by: VIEWRSLT.EXE

Catalog of windows used by the View Results executable.

C-5

DATA FILES

HOSSYS.DAT

Location: C:\HOSIV

Created by: SETUPSYS.EXE

Used by: SIM.EXE

HOS system setup parameters

Mass storage device: EXTERNAL for Bernoulli boxes; INTERNAL for

internal hard disks.

Integer loop counter for controlling screen scrolls: 100 for bus mouse; 1

for serial mouse.

SIMNAME.DA1

Location: C:\%HOSIV\SIMNAME

Created by: Simset.exe

Used t,: HOSLINK.EXE

C language include file for SIM.C containing basic parameters for
simulation.

TIMEUNITS - UNIT; where unit is one of the following units:

thousandths, hundredths, tenths, seconds, minutes, hours, days.

MAXSIMTIME - n; where n is a 6 character long unsigned indicating

the maximum simulation time in terms of thE minimum time unit.

strcpy (SIMDESCRIPTION, "xxxxx"); where xxxxx is a maximum ol 80

characters containing simulation description.

strcpy (SIM_NAME, "xxxxxxxx"); where xxxxxxxx is the 8 character

simulation name.

start_simfunc = functionname; whbre functic .me is the name of the

action that is tu be invoked at the start of the simulation.

SIMSTART-_IIME n; where n is a long unsigned integer containing

the simulation start time.

C-6

SIMNAME.DA2

Location: C:\HOSiV\SIMNAME

Created by: Simset.exe

Used by: HOSLINK.EXE

Contains basic simulation information.

xxxxxxxx where xxxxxxxx is the eight-character simulation name.

ri where n is an Integer (0-6) indicating the minimum time unit as follows:

O=thousandths
I =hundredths

2=tenths

3=seconds

4=minutes

5=hours

6=days

80 character simulation description.

Date and time that simulation was last executed from SIM.EXE.

SIMNAME.DA3

Location: C:\HOSIV\SIMNAME

Created by: Simsetexe

Used by: HOSLINKEXE

Contains basic simulation information.

Simulation start time in minimum time units,

Actual date and time that the simulation started running.

Actual date and time that the simulation stopped running.

Date and time that simulation was last executed from SIM.EXE.

C-7

ALLSIMS.DAT

Location: C:\HOSIV

Created by: HOSIV.EXE

Used by: HOSIV.EXE

List of all simulations that have been created.
char simname[8];

HOSERROR.ERR

Location: C:\HOSIV

Created by: All Modules

Used by: All Modules

Used by all modules to report system related errors, like failure on file

access, and memory usage.

OUT.OUT

Location: C:\HOSIV

Created by: Any executable

Used by: All modules

Redirected output from all executables in HOS.

HOSIV.IB

Location: C:\HOSIV

Created by: N/A

Used by: EDITTSK.EXE; EDIT.OBJ.EXE; HPLEXE

Data base procedures, Runtime library of calls for maintaining the Object
data base, procedure and set libraries, and alphauetics dictionary.

C-8

Includes the following object modules:

setlib.obj - set library creation and maintenance procedures.

lowlevdb.obj - object data base access routines.

objdir.obj - object directory routines that provides search.

capability for object names.

objset.obj -- runtime set manipulations used by HAL procedures.

dumpout.obj -- formats and prints the object data base.

hosproc.obj -- creates and maintains the action library data base.

objprop.obj -- maintains and uses the alphabetics dictionary.

library.ohj -- the routines which are the translation result of the Hal
translator. These are the simulation runtime routines for object data

base manipulation.

HOSOBJ.H

Location: HOSIV

Created by: LORNA

Used by: HOSIV.LIB

Used only for compilation. HOSIV library header file. Used by all code

modules included in the library. Needed only if recompiling one of
the HOS executable modules.

HOSPROC.P$

Location: C:\HOSIV

Created by: Action Editor

Used by: HOSIV.LIB and most of the editors Including the HOS_.LINK
process.

Action library data base. Library where the actions and their
corresponding files (pnnnrinnnn.[i ,[c],[hp!]) are stored.

0-9

typedef struct {

char name[31]; fprocedure name*/

char file[9]; I' filename (pnnnnnnn.??? *I

int status;f deletion status */

) PROCLIBVr procedure library record structure

HOSPROP.P$

Location: C:\HOSIV

Created by: Object Editor

Used by: HOSIV.LIB/ and user created simulations as well as the
HOSLINK process.

Alphabetic dictionary.

31 character records, nonvariable length records written to a binary file.

Can use random access within the file for reading and writing.

HOSSET.S$

Location: C:\HOSIV

Created by:

Used by: HOSIV.LIB

Object set library data file. Contains all the set names defined, and
the temporary file name to used during execution.

typedef struct (

char name[31]; /*set name*/

char file[9]; r temporary file name snnnnnnn*/

int status; rdeletion status*/

int members; /number of members in set*/

}SETLIB;

C-10

IN STALL.BAT

Location: C:\HOSIV

Created by:

Used by: SETUPSYS.EXE

Installation batch file.

OBJECTS.O$

Location: C:\HOSIV

Created by: Object Editor

Used by: HOSIV.LIB - used be some editors and user created
simulations

Object library data file

typedef structl

char aname[32]; rcharacteristic name*/

char type; r characteristic type*/

union {

long i; r s4orage space for value -- long or double*/

double f;

) val;

} FIELD; * one field declaration*/

typedef struct {

char name[32]; /*object name*/

int retrieved; /*reserved for later use*/

unsigned int d.status; Pdelete status*/

int set-statu% /' set membership indicator*/

FIELD f1 5]; rcharacteristics - 14 actual, one NIL*/

} OBJECTS;

C-ll

SIM.C

Location: C:\HOSIV

Created by:

Used by: HOSLINK.EXE

Portion of the source code required to compile SlM.EXE. Used with
SIMULA.C.

This is the actual simulation driver. It processes all the events, rules and

associated procedures, as well as outputing all the simulation

information.

SIMULA.C

Location: C:\HOSIV

Created by:

Used by: Linked in with sim.c when creating a simulator

Used with SIM.C to compile SIM.EXE.

This is the user interface part of the simulator.

SIMNAME.DEV

Location: C:\HOSIV\SIMNAME\F or F:\

Created by: SIM.C

Used by: SIM.EXE; TIMELINE.EXE and view results

Simulation event data output file.

SIMNAME.DOB

Location C:\HOSlIVSIMNAME\E or E:\

Created by: SIM.C

Used by: SIM.EXE; TIMELINE.EXE; object analysis and view results

Simulation object data output file.

C-12

SIMULATI.EV1

Location: C:\HOSIV

Created by: SIM.EXE

Used by: SIM.EXE

Temporary event data file used in simulation compilation.

SIMNAME.DTK

Location: C:-\HOSIV\SIMNAME\F or F:\

Created by: SIM.EXE

Used by: SIM.EXE; TIMELINE.EXE; TASKANAI.EXE and view results

Simulation rule data output file.

SIMNAME.LOG

Location: C:\HOSIV\SIMNAME\F or F:\

Created by: SIMEXE

Used by: SIM.EXE

Simulation log file created from user-defined FILE statements contained

in actions.

SIMULATI.TK2

Location: C:\HOSIV

Created by: Task Editor

Used by: HOSIV.LIB

Actions referenced in ,ules.

C-13

SIMNAME.TK3

Location: C:\HOSIV\SIMNAME

Created by: edittsk.exe

Used by: SIM.C

This file contains the C code to Initialize all of the rules. It is a

combination of the three files: C:\hosiv\simname.to3,
C:\hosiv\simname.te3, and C :\hosiv\simname.th3.

SIMULATI.TK4
Location: C:\HOSIV

Created by: Task Editor

Used by: SIM.C

C code to drive tasks.

SIMULATI.TK5

Location: C:\HOSIV

Created by: Task Editor (task.bool)

Used by: HOS_LINK.EXE

List of atl objects and characteristics used in rules.

SIMULATI.TK6

Location: C:\HOSIV

Created by: Task Editor (task-bool)

Used by: HOS LINK.EXE

List of all alphabetics used in rules.

C-14

TASKANAL.RPT

Location: C:HOSIV\SIMNAME

Created by; TASKANALEXE

Used by: View resutts

Tasks analysis report.

TIMELINE.RPT

Location: C:\HOSIV\SIMNAME

Created by: TIMELINE.EXE

Used by: View results

Timeline report.

SIMNAME.EV1

Location: C:\HOSIV\SIMNAME

Created by: edit evt.exe

Used by: HOSLINK.EXE

Event data file.

Each record is in the following format:

xxx .yyyyyy-zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz.a

xxx is three digit event number; yyyyyy is a 6 digit event time zzzzz... is

the 31 character event procedure; a... is the 40 character event

description.

SIMNAME.EV2

Location: CAHOSIV\SIMNAME

Created by: edit evt.exe

Used by: - HOS_LINK.EXE

Actions referenced in events.

C-15

Every record contains the following format:

ZZZZZ.

where zzzzz... is a 31 character action referenced in an event.

SIMNAME.EV3

Location: C:\HOSIVASIMNAME

Created by: edit.evt.exe

Used by: HOS_LINK.EXE

C include file with pointers to event actions.
Every record is in the following format:

event.proclxxx] - zzzzzzzzz;

where xxx is a three digit event number

zzzzzzzzz... is the action.

SIMNAME.OB

Location: C:\HOSIV\SIMNAME

Created by:

Used by:

SIMNAME.OBS

Location: C:\HOSIVASIMNAME

Created by:

Used by: HOSIV.LIB

Object library file with object information at conclusion of simulation.

C-16

SIMNAME.PRP
Location: C*.\HOSIV'\SIMNAME

Created by: Action Editor and maybe Task Editor

Used by: HOSWINK.EXE

Alphabetics referenced in the simulation.

SIMNAME.TK2
Location: C:\HQSIV\SIMNAME

Created by: edit tsk.exe

Used by: HOS_..LINK.EXE
This file contains a list of all procedures referenced in all of the rules. It is

a combination of the three files: C:\hosiv\simnamP.to2,
C:\hosiv\simnnamne.te2, and C:1'i ,.jsiv\simname.th2.

There is one action name per line separated from the next by a carriage
return linefeed comb'Ination.

SIMNAME.TK4

Location: C:\HOSlVASIMNAME

Created by: edijtjsk.exe

Used by: HOSLINK.EXE

This file contains the C code to drive all of the rulesq. It is a combination of
the three files: C-:\hosiv\simname~to4, C:\hosiv\sirnname.te4, and
C :\hosiv\simnamne.th4.

SIMNAME.TE1

Location: C:\HOSIV\SIMNAME

Created by: editjtsk.exe

Used by: editjtsk.exe

This file contain6 the text version of the environment rules. It is formatted
4-t iupt In theA peinter including form feeds.

c-17,

SIMNAME.TH1

Location: C:\HOSIV\SIMNAME

Created by: editjsk.exe

Used by: edittsi.Oexe

This file contains the text version of the hardware rules. It is formatted for

output to the printer including form feeds.

SIMNAME.TO1

Location: C:\HOSIV\SIMNAME

Created by: editjtsk.exe

Used by: edittsk.exe

This file contains the text version of the operator rules. It is formatted for

output to the printer including form feeds.

SIMNAME.TKO'

Location: C:\HOSIV\SIMNAME

Created by: edittsk.exe

Used by: edittsk.exe

This file is used by the Rule Editor to store its internal representation of

tha operator rules. The program uses an iwrite to put the structure on

the disk once for each rule.

C-18

char description[351;

char if.cond[200];

char if.c[300l;

char procedureI351;

char untilcondld2001;

char until-ce3001;

char priofityl

char subpfiOritY;

task.type *next;

taskjype *last;

S)MNAME,TKH

Location: C:\HOSIVSIMNAME

Created by: edit tsk.exe

Used by: edit._týk.exe

This file is used by the Rule Editor to store its internal representation of

the hardware rules. The program uses an fwrte to put the structure on

the disk once for each rule.

C-19

char descriptionf3 5];

char iLcondj200];

char ifct3)];

char procedure[3 5];

char untiLcondI2001;

char until~c3 0 0);

char prftity;

char sub.priority;

tasktype *next;

taskjtype ('last;

SIMNAME.TKE
Location: C:\HOSIVSIMNAME

Created by: ediUskeXe

Used by: edit_Iskexe

This file is used by the Rule Editor to store its internal representation ol

the environment rules, The program uses an fwrite to put the structure

on the disk once for each rule.

C-20

char description[35);

char ifcond[200];

char if..t300];

char procedure[35];

char until-cond[200];

char until-c[300];

char priority;

char subpriority;

task.type *next;

task.type *last;

SIMNAMETOI

Location: C:\HOSIVMSIMNAME

Created by: edittsk.exe

Used by: sim.c

This file contairs the C code to initialize the operator tasks.

SIMNAME.TEI

Location: O:\HOSIV\SIMNAME

Created by: edittsk.exe

Used by: sim.c

This fiVe contains the C code to initiafize the environment tasks.

0-21

SIMNAME.THI

Location: C:\HOSIV\SIMNAME

Created by: edittsk.exe

Used by: sim.c

"This file contains the C code to initialize the hardware tasks.

SIMNAME.TOC

Lo'.ation: C:\HOSIW\SIMNAME

Created by: edit tsk.exe

Used by: sim.c

This file contains the C code to execute the operator tasks.

SIMNAME.THC

Location: C:\HOSIV\SIMNAME

Created by: edittsk.exe

Used by: sim.c

This file contains the C code to execute the hardware tasks.

SIMNAME.TEC

Location: C:\HOSIV\SIMNAME

Created by: edit..tsk.exe

Used by: sim.c

This file contains the C code to execute the environment tasks.

SIMNAME.TO2

Location: C:\HOSIV\SIMNAME

Created by: edit.tsk.exe

se-d by: ; -.0 _N KI E.X

This file contains P list of all procedures referenced in the operator rules.

C-22

There is one action name per line separated from the next by a cardage
return linefeed combination.

SIMNAME.TE2

Location: C:\HO'SIV\SIMNAME

Created by: edit.tsk.exe

Used by: HOS_LINK.EXE

This file contains a list of all procedures referenced in the environment
rules.

There is one action name per line separated from the next by a carriage
return linefeed combination.

SIMNAME.TH2

Location: C:\HOSIV\SIMNAME

Created by: edittsk.exe

Used by: HOS_LINK.EXE

This file contains a list of all procedures referenced in the hardware rules.
There is one action name per line separated from the next by a carriage

return linefeed combination.

SIMNAME.TK5

Location: C:\HOSIV\SIMNAME

Created by: edit..sk.exe

Used by: HOS_LINK.EXE

This file contains the list of all attribute object pairs referenced in the
rules, it is a combination of the three files: C:\hosiv\simname.to5,
C:\hosiv\simname.teS, and C:\hosiv\simname.th5.

attribute, object 0
The attribute is separated from the object by a comma and a space. Each

pair is separated by a carriage return linefeed combination.

C-23

SIRNAME.T05

Location: C:\HOSIWSIMNAME

Created by: edit tsk.exe

Used by: HOS._LINK.EXE

This file contains the list of all attribute object pairs referenced in the
operator rules.

attribute, object

The attribute is separated from the object by a comma and a space. Each

pair is separated by a carriage return linefeed combination.

SIMNAME.TE5

Location: C.\HOSIlWSIMNAME

Created by: edittsk.exe

Used by: HOSLINK.EXE

This file contains the list of all attribute object pairs referenced in the
environment rules.

attribute, object

The attribute is separated from the object by a comma and a space. Each

pair is separated by a carriage return linefeed combination.

SIMNAME.TH5
Location: C:\HOSIV\SIMNAME

Created by: edittsk.exe

Used by: HOSLINK.EXE

This file contains the list of all attribute object pairs referenced in the
hardware rules.

attribute, object

The attribute is separated from the object by a comma and a space. Each

pair is separated by a carriage return linefeed combination.

C-24

SIMNAME.TK6

Location: C:\HOSIVSIMNAME

Created by: edit tsk.exe

Used by: HOSLINK.EXE
This file contai ns the list of all alphabetics referenced in all of the rules. It

is a combination of the three files : C:\hosiv\simname.to6,
C:\hosiv\simnam-e.teG, and C :\hosiv\simname.th6.

alphabetic

Alphabetics are separated by carnage, return linefeed combinations.

SI MNAME.T06
Location: C:\HOSIV\SIMNAME

Created by: edit~sk.exe

Used by: HOSLINK.EXE
This file contains the list of all alphabetics referenced in the operator

rules.
alphabetic

Alphabetics are separated by carriage return linefeed Combinations.

SIMNAME.TE6

Location: C:\HQSIV\SIMNAME

Created by: edit-tsk.exe

Used by: HOSLINK.EXE
This file contains the list of all alphabetics referenced in the environment

rules.
alphabetic

Alphabetics are separated by carriage return linefeed combinations.

C-25

SIMNAME.TH6

Location: C:\HOSIV\SIMNAME

Created by: ediUsk.exe

Used by: HOSLINKEXE

This file contains the list of all alphabetics referenced in the hardware
rules.

alphabetic

Alphabetics are separated by carriage return linefeed combinations.

SIMNAME.DA4

Location: C:\HOSIVASIMNAME

Created by: simset.exe

Used by: HosLink.exe

Contains the simulation start action.
Simulation start action, 31 character maximum.

SEGLOADDAT

Location: C:\HOSIV

Created by: VIEWRSLT.EXE

Used by: OBJANAL.C

Temporary file used to pass an object name to the object analysis
program.

char namel32]; /'name of the object to look for*/

C-26

