
The Parallel Decomposition and Implementationo TIC
N4 of an Integrated Circuit Global Router ELECTEI

Jonathan Rose APR2 8 1989

0Computer Systems Laboratory,
S.The Center for Integrated Systems, W L nl

Stanford University, Stanford, CA 94305

//-,'-
Abstract 71 7 ff The advent of usable commercial multiprocessors, with

potentially enormous aggregate computation power may
Better quality automatic layout of integrated circuits can change this view if automatic routing can be
be obtained by combining the placement and routing decomposed into tasks that can be efficiently run in
phases so that routing is used as the cost function for parallel. The aim of the Locus Project at Stanford
placement optimization. Conventional routers are too University is to combine placement and routing into one
slow to make this feasible, and so this papat presents a optimization process, and to do this by using
parallel decomposition and impleme 'tion of an multiprocessing to increase the speed of the routing.
integrated circuit global router. Ee Lo#6Route router is
divided into three orthogonal (-laxe of parallelism: This paper presents the parallel decomposition and
routing several wires at once, routing segments of a wire implementation of the LocusRoute global router for
in parallel, and dividing up the potential routes of a integrated circuits. The goal of the router is to make the
segment among different processors to be evaluated, average routing time for one wire close to the time that it
The implementation of two of these approaches achieve takes to recalculate more conventirnal cost functions.
significant speedup - wire-by-wire parallelism attns This means that the routing time mu be on the order of
speedups from 6.9 to 13.6 using sixteen processors, and one to five milliseconds per wire on a VAX 111780-class
route-by-route achieves up to 4.6 using eight processors. machine [Sech85]. The intention is for the global muter
When combined, these approaches can potentially to be invoked to rip-up and re-route wins whose end
provide speedups of as much as 55 times. points have changed when one or more cells are moved

in an iterative improvement placement scheme.

Introduction '" Prior work on parallel routing (see [Blan84] for a
survey) has been done in isolation from the placement

The task of automatic layout of integrated circuits problem and has generally focused on the Lee routing
has traditionally consisted of two parts: automatic algorithm [Lee61]. In most cases the algorithm has been
placement where the circuit modules are positioned and fixed in hardware and as such lacks the flexibility that is
automatic routing in which the paths of the connecting always required in practical CAD software such as the
wins are determined. The objective of both tasks is to global router described in [Yama85]. A far more
result in a layout with as little ma as possible. The best versatile approach is to ae general purpose parallel
way to evaluate the "goodness" of a placement is to processors, which alow an application to be tuned in a
route it and determine its final area. Up to now this has manner similar to uniprocesso. Using the flexibility of
not been feasible because routing itself is a difficult a general purpose mulfiproessor, several "axes" of
combiatorial optimization problem and common parallelism can be exploited. If these axes are
heuristics have been too slow to be used in this way. orthogonal to each other then when used together they

can provide significant speedup. Two approaches to
paMelhang an algorithm ar sad to be oribogool if,
when used together, the resulting is the product
of the speedup of the individual methods.

The basic idea of the LocusRoute algorithm is to
investigate a subset of the two-bend roues between pairs
of pins to be routed. The unipvcmor LocusRoute
program can route wires in average times from 45 ms to

l A,89 26 078
Dte!abo UW~mite

935 ms o n a DEC Micro Vax U1 depending on the size of "built-in feedthrough") is used.
t circuit. The routing speed is increased by
parallelizing the algorithm in three ways: routing several 2.1 Problem Definition
wires at once, routing several two-point segments
simultaneously, and evaluating possible two-bend routes Global routing for standard cells decides the
in parallel. The wire-by-wire parallel approach achieves following for each wire: Frst, for each pin cluster it
speedups ranging from 6.9 to 13.6 using sixteen decides which of the physical pins are actually to be
processor. The route-by-route approach achieves connected. Second, if there is no path between channels
speedups of up to 4.6 using eight processors. These two when one is required, it must decide either which built-in
axes of parallelism are orthogonal to each other. feedthrough to use or where to insert a feedthrough cell.

Lastly, it must decide which channel to use in the route
This paper is organized as follows: Section 2 from a pad into the core cells. The objective is to

describes the standard cell layout methodology and minimize the sum of the maximum widths of each
defines the associated global routing problem. Section 3 routing channel (hereafter called the total density), and
describes the uniprocessor LocusRoute algorithm, in so doing minimize the final area.
Section 4 presents three approaches for speeding up the
router using parallel processing, and gives performance In this discussion of global routing there will be no
resus, differentiation between feedthrough cells and built-in

feedthroughs - they are referred to jointly as vertical
2 Standard Cell Layout hops. The decision to insert a feedthrough cell or use a

built-in feedthrough is deferred to a post-processing step
The standard cell-style layout is a common circuit [Rose88b].

design methodology in which all circuit modules are of
equal height and are "butted" together to form rows as 3 A Standard Cell Global Router
shown in Figure 1.

Standard Celt Pin Cluster This section gives a brief description of the
*To So Rote LocusRoute global router. A more complete discussion

can be found in [Rose88b].

,_ _ _ ___ 3.1 Routing Model

f The LocusRoute algorithm uses the following routing
model: Each possible routing position in a channel (also
called routing grid of that channel) is represented as one

Bulti Feamru element of an array as shown in Figure 2. The array,
S I called the Cost Array, has a vertical dimension of the

number of rows plus one, and a horizontal dimension of
the width of the placement in routing grids. Each
element of the Cost Army contains two values: Hi andFigure 1 - Standard Cell Layout Vi. Hij contains the number of of wire routes that pass

horizontally through the grid at channel i in position j.
Power and gmd wires rn horizontally through the V., is the cost, assigned by parameter, of traversing a
cells and are connected by abutmen Cells have row in travelling from channel i to channel i + I at grid
coinection points on their top and bottom and typically position j. The routing problem for a wire is
one logical pin has two physical pins on each. This represented as a list of (i , j) pairs of locations in the
group of pins is called a pn cluster. Connections Cost Array, corresponding to the locations of pins to be
between adjacent rows ame made by routing wires in the jod
hoizontal routing channels as shown in Figure 1. If a
connection is required between two non-adjacent rows Under this model, the objective is to find a
then either feedtbrough cells ame inserted in the minimum-cost path for each wire. The wire's cost is
intervening rows to make room for vertical connections given by the sum of all of the Hi and Vii that it
or = uncommitted path in an existing cell (called a traverses. After a wire is routed through location (i)

-2-

H V 5. Wire lay down. The presence of the newly routed
/ wire is put into the Cost Array by incrementing the

C . s "5 r/ array elements where the new wire resides. Once
H' ,there, other wires can take it into account.

C7i r .. L14 " - 3.3 Route Evaluation

,,__ I.[. LThe LocusRoute algorithm searches for a low-costn Ipath for a permutation by evaluating a number of
standard call PlaceMeni H1 V S A different routes. The idea is to determine the cost of a

Co Arsubset of all two-bend routes between the two pins, and
then choose the one with the lowest cost. Figure 3
illustrates three possible two-bend (or less) routes inside

Figure 2 - Routing Model a representation of the Cost Array as a small example.

its presence is recorded in the Cost Array (i.e. Hi, is
incremented, as is Vi if the direction is vertical) so that
subsequent wires can take it into account. Thus the more
wires going through a particular location in a channel,
the less likely it is that area will be used. U U U '
3.2 The Global Routing Algorithm 4i !,"

(a) (b) (C)

There are five main steps in the LocusRoute global
routing algorithm for standard cells. They are:

Figure 3 -Sample Two-Bend Routes
1. A multi-point wire is decomposed into two-point

segments, by finding its minimum spanning tree
using Kruskal's algorithm [Krus56]. If the horizontal distance between the two pins is H

routing grids, and the vertical difference in channels
2. The segments are further decomposed, if necessary, between the pins is C, then the total number of two-bend

into permutations, which are the set of possible routes is C+H. A parameter, called the two bend
routes between each pin in a pin cluster. There are percent (TBP) dictates the percentage of the total
four possible routes, one between each of the two number possible two-bend routes to be evaluated. Thus
physical pins in each pin cluster. It has been the total nmnber of routes evaluated is given by
experimentally determined that only when the TP-x (C + H). When TBP is less than 100, then t
clusters are greater than a certain horizontal distance Cl
apart (about 300 routing grids) is it necessary t routes ar evaluaed in a priority order [Rose88b].
evaluate all four permutations. Less than this Experimentally, it was determined that a TBP of 20%would result in a path as good as that found by andistance, only the closest pin pair need be evaluated. wudrsl napt sgo sta on yaexhaustive maze router, as compared on the basis of total

3. A low-cost path in the Cost Array is found for each density for the entire circuit.
permutation by evaluating a subset of the two-bend
routes between each pin pair. The permutation with The LhocsRoute algorithm makes use of a general Or

the best cost is selected as the route for that segmen iterative technique in ate ma er destbed in Nairs7].
Ths step is described in further detail below, in Briefly, this mea qn that afte the ts time all wires at e t
Section 3.3. ruted, each is squentially tipped up brn the Cost [

Array, and then re-routed. By routing each wire several - -
4. Traceback. Thnis is a deanup step that provides times (typically four is sufficient), the wire order-enough information for later detailed ruting. dependency is reduced anti the final answer is improved

by five to ten percent....
a/

Aval8ahility Codes

,OPY I . .val and/or
\!Cro Special

.3-

The uniprocessor LocusRoute algorithm compares the total routing time, so that some amount of speedup
favorably with a widely used placement and global from route-based parallelism can be expected.
routing package (Sech85I, and with a good quality
industrial global router [Rose88b]. To date, we have not considered pipelining as an axis

of parallelism. A pipeline implementation would have
4 Parallel Decomposition & Implementation the same stages as the basic algorithm described in

Section 3.2. To some extent, pipelining uses the same
In this section several ways of parallelizing the axis of parallelism as wire-based parallelism since it also

LocusRoute router are proposed and implemented. routes several wires at once. The best use of pipelining
Figure 4 illustrates several such axes of parallelism: would be to execute the first two stages, segment and

permutation decomposition, for all wires in parallel since
I. Wure-based Parallelism. Each processor is given an these stages have no data dependencies on the routing of

entire multi-point wire to route. other wires. In the context of iterative improvement
placement, however, the wire positions will not be

2. Segment-based Parallelism. Each two-point segment known in advance as they are when considering the
produced by the Kruskal decomposition can be routing problem in isolation.
routed in parallel.

Each of the following sections discusses the details
3. Permutation-based Parallelism. Each of the four of the axes of parallelism that have been implemented.

possible permutations, as discussed in Section 3.2, In the case where the quality of the answer of the
can be evaluated in parallel. parallel program is worse than the sequential program, a

quantitative measure of the amount of degradation is
4. Route-based Parallelism. Each of the possible two- given. This section is concluded by a discussion of the

bend routes for every permutation can be evaluated combination of two of the axes of parallelism. All
in parallel. decompositions assume a shared-memory

multiprocessor.
I Wire.Base" Paralleism

3) Permuat on 4.1 WIre-Based Parallelism
Parallelism

2)e"g ."" In WAre-Based parallelism, each multi-point wire is
Paralielism At A* .. 132 given to a separate processor, which runs the

A2" LocusRoute routing algorithm as described in Section 3:
prior to decomposition, if the iteration technique is used,

Athe wire must be "ripped up" out of the Cost Array.
Next, each wire is decomposed into two-point wires, and
possibly further into permutations. A subset of the

4) Rwe.Pa,,n.,,sm potential two-bend routes is generated, and then
evaluated by traversing the Cost Array. When a final
route is chosen, the Cost Array is updated to reflect the

Figure 4- Parallel Decomaposition of LocusRoute new presence of that route.

Note that these are only potential axes of parallelism. The Cost Aay is a shared data structure to which all
It is possible to eliminate some of them as uneconomical processors have read and write access. Other than a task
by using statistical run-time measurements of the queue, the cost array is the only shared piece of data.
sequential router. For example, the number of two- This is an excellent axis of parallelism: if the sharing of
pont segments that actually need to have all four the Cost Array does not cause performance degradation
permutations evaluated is quite small with respect to the due to memory contention, the speedup should simply be
total. Thus, permutation-based parllelism is not gaing the nber of wires that are routed in parallel. The
to provide significant speedup and isn't worth the time it resulting parallel answer, however, will not necessarily
requires to develop. On the other hand, other be the same as the sequential answer. The problem is the
measurements show that the time spent evaluating the sequential router has complete knowledge of all Wires
cost of two-bend routes ranges from 50 to 90 percent of that have already been routed, by virtue of their presence

-4-

in the cost array. The parallel router has less the wires. The speedup ranges from 5.4 for a smaller
information because it doesn't see the wires that are circuit to 7.6 for the largest, using 8 processors. It
being routed simultaneously. The more wires routed in ranges from 6.9 to 13.6 using 15 processors. The
parallel, the less information each processor has to speedup is less for smaller circuits because they are done
choose good routes that avoid congestion and hence the in such a short time. and the startup overhead becomes a
total density increases. Thus the total density will factor.
increase as the number of processors increases. The
measured effect on total density is discussed below, in Crc # I rPr i Pr
Section 4.1.1. Nane Wire T (a) T() T () Spdup Spdup

4.1.1 Wire-Based Parallel Results BNRE 420 I 70.0 13.0 10.2 S4 63
Figure 5 is a plot of the speedup versus number of MDC 575 79.3 14.3 1-.2 s. 7.1

processors for a 3029-wire example running on an BNRD 774 139 21.0 16.0 6A S.7
sixteen-processor shared-memory Encore MULTIMAX. Primaryj 904 1 279 43.4 33.6 6A .3
The Encore uses National 32032 chip sets which, in our
benchmarks, timed out slightly faster than a DEC Micro BNRC 937 198 30.5 21.4 6.5 9.3
Vax II. The speedup for p processors, Sp is calculated t V -9
as ,where T1 is the execution time on one processor BNRA 1634 725 112 77.8 6.5 9.3

and T. is the execution time using p processors. The12
execution time measured does not include the time for TggtO6 1673 5684 797 465 7.1 12.2
input of the circuit, only the actual routing computation Prmay 3029 3950 517 290 7.6 13.6
time. For this circuit the increase in total density due to
the missing 'knowledge" effect described in Section 4.1
from 1 to 16 processors is 6%, and the number of Table 2- Peformance ofWire-BasedParalelism
vertical hops increases 2%.18- Table 3 gives the total density and vertical hop

6 counts using 1, 8 and 15 processors. The increase in
14. . e """"total density ranges between 1% to 7% for 15
12-- meur.ed processors. The increase in vertical hops is ranges from

Speed 10 1% to 9% but is generally less than 4%. In the
Up 8- placement context this level of degradation is tolerable.

6- In the future, however, on machines with more
4- processors, it will likely become more of a problem. We
2- have considered three ways of reducing the effect of the

SI I missing knowledge due to simultaneous routing of wires.
2 4 6 8 10 12 14 16 Thefirstistotrytoensurethatthedifferentprocessors

Number of Processors only deal with wires that are in distinct physical areas, so
that the wires routed simultaneously do not interact. The

Figure 5 - Wire-Based Speedup for 3029-Wire Circuit second way to reduce processor interference is not to rip
up a route until the new route is determined. In this way
there is a much shorter period of time in which the cost

The program was run on several other circuits, which array does not contain the presence of the wire. This
are from several sources: The standard cell benchmark severely degrades the new route of the wire itself,
suite (Primaryl, Primary2, TestO6 [Prea87]), Bell- however, since it sees the old copy of itself while
Northern Research Ltd. (BNRA-BNRE), and the evaluating potential routes. Experimentally, the
University of Toronto Microelectronic Development degradation was sufficient to nullify any gain from the
Centre (MDC). The placement for all of the circuits was approach. A third method not yet implemented is to
done by the ALTOR standard cell placement program route the wires in a different order for each iteration,
[Rose85,Rose88a]. Table 2 gives the execution time and (iteration is described in Section 3.3) so that the
speedup using 1, 8 and 15 processors, for all the test knowledge missing in one iteration is different from that
circuits. The execution time is for four iterations over all in another.

-5"

quality in both cases is very nearly the same. Note that

Circuit Total Densty o Verticl Hope in a placement context in which many more wires will
Stbe ripped up and re-routed, the effect of these small

Pr15Pr I% ore errors would be cumulative and so an occasional

NRE 130 134 9 90 correction step may be necessary if locks am not used.
MDc I1341 1421 6, 24l 243 1%

MD 13 14I1 41 23 1 Circuit & Avg Dersity Vertical Hops
BNRD 176 181 3% 530 572 8% LockType T(e) Avg. SD Avg SD

Primary1 262 2,69 3% 940 I 966 3% kayL , 3S 291 6 .
Prler116226l 3 9Q 1 ~" ____Primaryl Lockge 43.8 269 2.0 62 4.9

BNRC 191 193 1% 739 j 772 4% Primaryl NO Lock 33.7 272 30 9643

BNRB 307 325 6% 1904 1974 4% Prkiny2 Locke 325 591 1.9 3126 7.5

BNRA 298 320 7% 2106 2197 4% Prlrnry2 NO Locks 303 591 4.9_ 3122 4.0

Ta16 318! 338r 6% 32361 2%
1132212 Table I. Speed & Quality Using and Not Using Locks

Primary2 560 592 6% 3053 31

Table 3 - Quality of Wire-Based Parallelism 4.2 Segment-Based Parallelism

In segment-based parallelism, each two-point

4.1.2 Gain Due to Removal of Locks segment of a wire is given to a different processor to
route. This is the stage following the Kruskal

An interesting issue is whether or not each processor decomposition, but prior to the evaluation of different

should lock the Cost Amy as it both rips up and re- two-bend routes. Measurements of the sequential router

routes wires in the Cost Array. The act of ripping up a showed that about 60% of the routing time was spent on
route is essentially a decrement, and re-routing is an wires with mor than one segment. On the surface this
increment on a set of cells in the Cost Array. Locing implies that a speedup of about two could be achieved
the Cost Array during these operations ensures that two using three processors. Unfortunately, this is not the
simultaneous operations on the same element does not case. Even though there are many wires that provide
prevent one of the operations from being lost. It does, two or three-way parallel tasks, the size of those tasks
however, cause a significant performance degradation. are not necessarily equal. The amount of time taken by
For example, for the Primaryl circuit the speedup LocusRoute to route two points is proportional to the
decreased from 8.3 to 6.4 using 15 processors when Cost manhattan distance between the two points. If, in a
Array locking was used. For the Primary2 circuit the three-point wire, two of the points are close together and
speedup for 15 processors was reduced to 12.1 from 13.0 the third is far away, it will then take much longer to
due to locking, route one segment than the other. Thus the processor

assigned to the short segment will be idle while the

The final routing quality, however, does not decrease longer one is being routed. This unequal load prevents a
when locking is omitted. The mason for this is that the reasonable speedup. On the test circuits a speedup of
probability of two processors accessing the same Cost about 1.1 using two processors was measured.
Array element (of which there are on the order of 10000) It i fay cear, owever, that an eiU processor
at the same instant is very low. Even if very few ct be aig tea hoeer that ar
increment or decrement operations are lost, the effect on could ig aer of l oely that a e
final quality is negligible since only a few elements routing different wires. It is likely that at any given
would be wrong by a small amount. This was shown time, one of them will be able to use the extr processor
experimentally by performing ten rum with 15 to route multiple segments. Though eveiy processor
processors on each of the above circuits, for both the won't e able to use second processor all the time,
locking and non-locking cases. Table I gives for the two some number of processors can be used in this way.
circuits the average running time, and the average and p technie would become essential if many
standard deviation of the total density and number of processors were used in wie-based paralelism, at the
vertical hops. From this table it can be seen that the point wher the number of processos was close to the

-6-

number of wires. In that case the load balance would and the fact that some segments ha', only a "-w
become a problem in wire-based parallelism because potential routes.
wires with many segments take much longer than wires
with few segments. Hence segment-based parallelism CrcUM Ru
could be used to speed up the routing of the larger wires. Nmt SpeiepfoeProe

4.3 Route-Based Parallelism sNRE IX

In route-based parallelism all of the two-bend routes MDC 1.3 2

to be evaluated are divided among separate processors. 84RO 1.4/2
Each finds the lowest-cost path among the set of two-
bend routes that it is assigned. When all processors I
finish, the route with the best overall cost is selected. In mamc 1.6/3
this case the processor loads will be well-balanced
because the routes are all of the same length, and the SNAB 2.1/4
number of routes is evenly divided among the IMRA 2.0/4
processors. To"06 4.6/4

Figure 6 is a plot of the speedup versus number of Prmamry2 3-3f5
processors for the circuit Test06, a large circuit. It
achieves a speedup of 4.6 using 8 processors. Table 4- Performance of Route-Based Parallelism

8-
7- kwei 4.4 Combining Two Axes of Parallelism
6- mmsumd

Speed 5- The wire-based parallel and route-based parallel
Up 4- approaches are perfectly orthogonal; hence their

3 speedups should multiply. Assume, for a given cir-uit
2- that a speedup of S,, is achieved using wire-baed
1- parallelism on W processors, and a speedup of S, is

achieved using route-based parallelism on R processors.
1 2 3 4 5 6 7 8 Then, because the two approaches are orthogonal, the

Number of Processors resulting speedup when they are used together should be
S, x S, using W x R processors. This model neglects

Figure 6- Route-Based Speedup for Circuit TestO6 the effect of memory contention that may occur when
the number of processors is increased dramatically.
Table 5 shows the best predicted speedup for the test

Table 4 gives the best speedup achieved for all of the circuits. Combined speedup ranges from 8.3 using 30
test circuits, ranging from 1.2 using 2 processors to 4.6 processors to 55 using 120 processors. The mualler
using 8 processors. The number of processors given for circuits re routed very quickly and so it is difficult to
each ciruit in the table are chosen by eye as to which get speedups greater than 10 due to the startup overhead.
number gives reasonable efficiency. It is clear that only The larger cimuits benefit greatly from the combination
the larger circuits benefit from more processors. The of the approaches.
principal reason for the limitation in speedup is the
sequemial portion of the routing: the wir Table 5 also contains the average routing time per
decomposition and the post-route processing that places wir on one processor, A, and what the the average
the peseoce of the route into the Cost Army. O the routing time per wire would be under t maximum
small circuits that have lesser speedup, the sequntil speedup, Aw. That is, A 1 , _ A, . The
portion is about 50% of the total routing time, while on
the larger crmuits which have better speedup the routing times for all circuits, under the vaious speedups

sequential portion ranges from 10-15%. Other minor range from 4.0ms to 17ms, and appraches our goal of
effects which degrade performance me the imbalance of one to five mflliseconds per wire. It is interstin to note
processor task sizes due to integral numbers of routes that even though the uniprocessor times ae widely

-7-

parallelism will be investigated. We are also looking at

Circut W , S x S. A, implementing a parallel version of the LocusRoute
Cr__t _ W_ " -R" WxR ARw algorithm on a message passing architecture, such as an

BNRE 6.9 1.2 8.3 46 S N-Cube [Haye86], and a massively parallel SIMD
__NRE I 1 r _____I_______ machine such as the Connection Machine [Thin87]. In

MDC 7.2 1.3 9.4 addition the Locus placement environment is currently
MD___ r 1 r 8sW .0 being developed, and will be combined with the

.7 1.4 12.2 4 LocusRoute global router. Our aim is to achieve smaller
FN_-_ I _ 5Y.- area by using routing as a measure of each placement.Primaryl T 3 14.9 89s 6.
8.3 14.9References

BNC 9.3 1.6 14.9BNRC -3- -4 59,m, 4.0w
~. Blan84

BNRB 8.9 2.1 18.7 127ms 6Ak= T. Blank,"A Survey of Hardware Accelerators Used In Computer-
__ _ 24 7_W Aided Design." IEEE Design and Test, Vol. 1 No. 3, August 1984,

BNRA 2.0 18.6 pp. 21-39.
S134ms 7.2s Haye6

12.0 4.6 55 J.P. Hayes. CL sl, "A Microprocessor-based Hypercube
TOWt06 i - r- 935ms 17=, Supercomputer," EEEMicro, Vol. 6. No. 5. OcL 1986. pp. 6-17.

1 , T KrIs56
PrimerY2 13.6 3.3m 45@m J.. KruskAL "On The Shortest Spanning Subtree of a grah and

the Traveling Salesman Problem." Proc. Amer. Math. Soc. 7. 1956
pp. 48-50.

Table 5. Predicted Combined Performance Lf61
CY. Lee, "An Algorithm for Path Coonwaion OW Its
Applications," IRE Trans. on Elecironic Computer., Vol EC-10. pp

varying, the best combined speedup results in average 346-365, 1961.
routing times that are all very close. This is because Nairi7
circuits with routes that take the longest have more R. Nair,"A Simple Yet Effective Technique for Global Wiring,"

parallelism. IEE Trans. on CAD, Vol CAD-6. No. 2. March 1987, pp. 165-172.
I Pfe87

B.T. Pre s, "Benchmarks for Cell-Based Layout Systems." Proc.
Note that combining the two orthogonal axes of 24rd Design Automation Conference, June 1967, pp. 319-320.

parallelism in the obvious way produces an obvious RoeS5
scheduling strategy: Each wire is assigned a constant I.S. Rose, W.M. Snelgrove, Z.G. Vranesic, "ALTOR. An
number of processors to "help" in the route evaluation. Automatic Standard Cell Layout Program" Proc. Canadian Conf.

on VLSI, Nov. 1985, pp. 168-173.
While this static scheduling strategy has low overhead, it RoseSSa
is clear that a dynamic approach that only assigns JS. Rose. W.M. Snelgrove, 7-0. Vranesic, "Parael Standard CCU
processors to wires when they really need it would be Placement Algorithms with Quality Equivalent to Simulated
more processor-efficieni. In this case wires that have Annealing," IEEE Trans. on CAD, Vol. 7 No. 3. March 1988, pp.

many routes to be enumerated would use more 397-396.Rowegb
processors, and those with less routes would use fewer IS. Rome. "Leculouic: A Parallel Global Router for Standd

processors. Cells." to appear in the 19M Deign Automtion Conference.
Sechi5

4.5 Conclusions C Seclhi A. Sagiovanni-Vmntei. "The tuberwoif
Placement and Routing Packag." IEEE JSSC, Vol. SC-20. No. 2.

The parallel implementation of an integrated circuit ThAi87

global routing algorithm has been presented Two of the Thiking Mwhines Corp, "Connection Machine Model CM-2
three axes of paraelism that were implemented Tedinucal Summary." Technical Report # HA27-4, April 1987.
achieved significant speedup - up to 13.6 using sixteen Yam"M5
processo and 4.6 using eight processors. They should K Yamada, T. HiwStahi, Cel MiaUm. i, L Yshida. "A Multi-.
produce combined speedups of up to 55 times.

In the future, the combined approach will
implemented with several scheduling sategies.
Methods of reducing quality degradation in wire-based

.--

