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I. INTRODUCTION

Optical communications systems modeled by a Poisson channel (Fig. 1) are described in [6],

[10], [11], 1121, [13], and [15]. The noise intensity (shown) in the channel model represents, nomi-

nally, noise due to background radiation as seen by the receiver. In this role, modeling the noise

intensity by a real constant may not be adequate. For example, models in which the noise (-plus-

signal) intensity is the magnitude of a time-varying Gaussian vector appear in the literature [8],

[16].

NOISE INTENSTy, A t

ENCODER CHCANNEL OUTPUT
MESSAGE, Ot -b.~ sry Xj(0NYTENSITY,

N t ) Xt +At

FEEDBACK

Figure 1. Poisson channel model. -

Besides representing background radiation, the noise intensity in the channel model may be

used, also, to represent a variety of other features of the modeled optical system. Background

radiation will generally have a much wider spectrum than that of the channel source. Thus, the

optical filter used in the receiver to reduce the apparent background radiation may be factored

into the noise intensity. The dark current generated in the receiver photon detector adds to its

output current and is another source of noise. This noise, when referred back to the receiver

input, contributes to the channel noise intensity. The receiver may be illuminated by a jammer -

another noise source. Also, imperfect encoder modulation (where the encoder is never completely
on For

off or intersymbol interference is present) in effect contributes to the noise. &I-

For many optical systems, the encoder in the channel model is interpreted as modulating :(,

the envelope of the output of a photon source. The photon detector receiving the stream of pho- A' 1 on

tons operates with a certain efficiency q < 1; meaning an incident photon generates an electron-
itlo n/

hole carrier pair with probability q. Three types of photon detectors are commonly considered in it o

illity codes
'Al and/or

,I-A p'cial

.-1
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direct detection optical receivers 141: p-i-n photodiodes, avalanche photodiodes, and photoconduc-

tors. Most present fiber optic systems use the p-i-n photodiode; however, the internal gain of the

avalanche photodiode makes it an increasingly attractive choice. Carrier pairs generated in the

avalanche photodiode go on to generate additional pairs by a process of collision ionization

depending upon the type of carrier (hole or electron), the semiconductor material out of which the

device is constructed, and the voltage across the device. The current generated by collision ioniza-

tion has a message dependent noise component.

Background radiation, optical filtering, dark current, jamming, imperfect encoder modula-

tion, conversion efficiency, and collision ionization - because of these and other factors, the

engineer may, in the design and analysis of optical communications systems, endow the channel

noise intensity with a rather rich structure. Thus a complete theory of channel capacity for the

Poisson channel should address time-varying, random noise intensities dependent on the message

process 0. In this paper we take several steps in this direction and give channel capacity results

for time-varying noise intensity and time-varying encoder constraints. Results for jamming are

also given. To begin, we specify the channel model and recall some definitions from information

theory.

The Poisson channel model addressed in this paper is represented in Figure 1. The channel

output Y ={ Yt }o<# <r is a Poisson-type (simple) point process directed by the stochastic inten-

sity vt = Xt + At. Y and the message process =-{9 t }o<e<r are defined on a common probabil-

ity space (fl,F ,P) with respective completed natural histories Fte and Fty. The message 0 is

encoded into the channel encoder output via the encoder intensity Xt. Xt = Xt (0, Y) is required

to be an Fge Ft y -adapted encoding of the message process 0 and channel output Y permitting

causal message encoding and noiseless, nonanticipative, instantaneous feedback. The channel

noise process Nt is the Poisson-type point process directed by the intensity At. We take the

processes 0 and N to be independent and impose, on the encoder intensity, a time-varying peak

constraint

0 _ Xt ) (1)

for all f E [0, T[ where c (t ) is nonnegative, bounded, and Lebesgue-measurable or an average con-

straint
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T

E fXgd di :s koT (2)
0

for some positive constant ko. We treat the case in which the noise intensity is time-varying and

deterministic: At = X(t). Further discussion of the Poisson channel model can be found in [1], [3],

[71, and (15] and the references cited therein.

To define channel capacity let po, p r, and per be the marginal and joint measures induced

by the message and output processes, 0 and Y, on the spaces So, Sy, and S#XSy where So and

Sr are the spaces of trajectories of 0 and Y on [0,T]. Write the induced product measure as

Pex y. Then, the average mutual information in 0 and Y over the interval [0, T] is

.IT [0, Y] =E [In d Po]

provided Pey <<pex y; otherwise IT [0, YJ=oo. The channel information capacity is

C- -sup sup IT [0, yJ0 x T

where 0 is any jointly measurable process on [0,TI and Xt = Xt(0,Y) is any Ft0-Fty -adapted

mapping. For the Poisson channel more revealing expressions for the average mutual information

are [Theorem 19.3, 9]:

rT1
IT (#',y] = E f(t, nrht - trh In0, ) dt (3)

and

IT [9, yI = E [(q, Inq, - it ln )dt] (4)

where E [q, I F1. These expressions are valid for nonrandom noise intensities.
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11. CHANNEL CAPACITY FOR TIMEVARYING NONRANDOM NoisE INTENSITY

The capacity of the Poisson channel is known for the case in which the noise intensity is a

real constant, At = X. For nontime-varying peak-constrained encoder intensity c (t) = c (no

average constraint imposed), Kabanov [7] showed the channel capacity to be

C = C(Xc) (5)

where

C(,)+ 1+""-x / +1)I 1 -1 (6)

We show by way of Lemmas 1, 2, and 3 and Theorem 4 that the approach taken by Kabanov can

be adapted to extend his result to the case in which the noise intensity is nonrandom and time-

varying: A, - X(t ) and in which the peak constraint is also time-varying. Lemma I treats the

case in which X(t), c (t) are simple functions. Lemma 2 goes on to treat extended real-valued sim-

ple functions X(t). Then in Theorem 4, for time-varying noise intensity X(t) and time-varying

peak-constrained encoder output, we obtain the general result

T

C = TfC(\(t),c (t))dt (7)
0

Note that when the noise intensity and peak constraint are constant, X(t) - X and c (t) - c, (7)

gives C = C(X, ) in accordance with (5).

In the proof of Lemma 1 a sequence of message processes 0(m) and an encoding scheme X are

introduced which give average mutual information in the channel arbitrarily close, as m -oo, to

the channel capacity. The encoding scheme there does not use feedback. So, for nonrandom time-

varying noise intensity, feedback does not increase channel capacity, i.e., the average mutual

information in the channel can be made arbitrarily close to the channel capacity without use of

feedback if the message process 0 and the encoding scheme X are appropriately chosen. This is so

when the encoder intensity is peak-constrained, average-constrained, or both.

Davis [31 extended Kabanov's result (5) to reflect the imposition of an average constraint on

the encoder output. Davis' reasoning applies as well to the case of time-varying noise intensity.



We find that, for nonrandom, time-varying noise intensity X(t) and an encoder intensity both

peak- and average-constrained as per (1) and (2) with c (t ) - c , the channel capacity is

f (t )) k o_-0(koX(t) dt ,fork 0  -

C= fC(X(t),Xo,c)dt , for < k0 <-- (8)
e 2

T

T ((it ),c )dt , for k0 2! -

02

where (t )X 0 is the minimum of X(t ) and X0,

0(-(, y )= ( x y)n(-+y)- y ny

and X0 is uniquely defined, for- < k0 < -, by
C 2

ko --- 1 + -Xo.

Of course, the average constraint is inoperative when k0 >: c ; now we see from (8) that the aver-

age constraint is inoperative even when k0 , c /2. (8) adjusts in the obvious way to accommodate

a time-varying peak constraint c (t).

We close this section with one final result for the capacity of the Poisson channel. We still

suppose that the encoder intensity is peak-constrained 0 < Xt s c ( t ) but no longer take c (t) to

be a given function. Instead, we suppose c (t) may be chosen freely subject only to the constraint

T

for some given P > 0. Then for a known nonrandom noise intensity A, = X(t ) the channel capa-

city is found to be C = P /e. The proof of this result (Theorem 6) given in Section V recognizes

the need to concentrate the power c (t) available to the encoder into as short a time interval as

possible. Thus one obtains average mutual information in the channel closer and closer to P/C

by choosing

P 1A (t)JA)= - -I



and letting I A I "* 0. This is reminiscent of Davis' result [3] for polarization modulation. Davis

showed that channel capacity is maximized when encoder power is not distributed over two

orthogonally polarized, separately modulated channels but, instead, is concentrated solely in one

channel. This was because of the convexity of C(z ,y ) in y. For this same reason it is also better

not to distribute encoder power over time but, rather, to concentrate it into as short a time inter-

val as possible. Also, concentration of the encoder intensity into a short interval permits it to be

very large; swamping out whatever noise intensity may be present in that interval. Hence the

result that X(t ) does not appear in the expression for the capacity C = P/e.
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LI. JAMMING

In this section we present results for the Poisson channel subjected to jamming. We make

the presence of jamming explicit in the channel model by taking the channel intensity to be

'it = Xt +At +J(t ) where J(t ), the jamming intensity, is known, deterministic, nonnegative, and

Lebesgue-measurable. We do not consider stochastic jamming intensities. Restricting attention to

channels with nonrandom noise intensity, At - X(t ), we have

'it = Xt + X() + J(t). (9)

Then by Theorem 4, for a peak-constrained encoder, the channel capacity is

T

C fC(X(t) + J(t),c (t))dt
0

(If the encoder is also average-constrained we have the result analogous to (8)).

In general, the jammer seeks to minimize the channel capacity subject to constraints on the

jamming intensity. If the jamming intensity is peak-constrained, J(t) _ cj for some cj > 0, the

solution is immediate. The optimal choice of jamming intensity is

J.p (t) = cj a.e.

(becaue C(x,y) 4. positive and strictly decrensing in z). A more interesting problem arises when

the jamming intensity is average-constrained,

.T

f J(t)dt < PT
0

For this case (Theorem 5),

J (t)=[a-X(t )]I a.e.

where r is determined from

r

f[a - (t)]+dt PT (10)
0



and z + is the positive part of X -R. Of course, other constraints or combinations of constraints

may be imposed on the jamming intensity, leading to different forms for the optimal jamming

intensity.

IV. THINNNG

Signals transmitted through a Poisson channel can be viewed as a train of point events. The

Poisson channel noise process corrupts the signal by interjecting extra points into the train of sig-

nal points. One can just as well imagine the signal to be corrupted by removal of points. This

kind of signal corruption is called thinning. Thinning can be used to model an absorptive channel

medium, optical filters in the receiver, or conversion efficiency of the receiver detector. Thinning

may operate alone in a point process channel or in concert with some form of Poisson noise. The

case in which points are removed (or not) independent of the removal of other points is called

independent thinning.

Definition: Let C, be a point process with

cco, = E IjT*c)(t
k -0

where { Tk } is a sequence of stopping times. Let {(6k } be a sequence of i.i.d. Bernoulli r.v.s with

P{h = 1- p(T). Then

Ot= E2k1Jb,oc)(t
k -0

is a probability-p (t) independently thinned point process.

While many different types of thinning are conceivable, independent thinning is dis-

tinguished by being simple in concept, by being motivated by physical considerations and by

easily admitting results for channel capacity. In particular, probability-p (t) independent thinning

of a Poisson process with intensity i(t) produces a Poisson process with intensity p (t )i(t) 121.

Consider the Poisson channel with noise intensity At = X(t) for 0<t <T and suppose the

noise is probability-p (t) independently thinned. Let the encoder intensity Xt be F,r' F,'



-adapted with peak constraint 0 S Xj -< c (t) and suppose the encoder output is probability-q (t)

independently thinned. Finally, suppose the thinnings of the encoder output and the noise are

independent. A probability-q (t) independently thinned encoder output with peak-constrained

intunsity 0 < X, < (t) is equivalent to an unthinned encoder output with intensity constraint

0 < Xt !5 c (t )q (t). Thus the channel capacity is

T

C + C(p t )X(t ),q (t)c (t ))dr
0

For p (t )--q (t )-p., thinning reduces the capacity by a factor of p.:

T

C= -. fC(,(t),c (t))dt
T 0

(Here we have used C(xz ,yz) zCz , I).)

umnnnini ~ m mm u ni~lliiniElai
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V. RESULTS AND PROOFS

Lemma 1: Let the Poisson-type point process Y = (Y }<, <T directed by the intensity

q, - (t ) + Xt be the output of the Poisson channel with noise intensity given by the simple

function

(t)= X i ,(t), t E[O,T ,
i-i

with 0 < Xj < oo for all j and such that {E,, I < j :s n < o), is a Lebesgue-measurable partition

of [0,T] (i.e. the E, are Lebesgue-measurable subsets of [0,T I and the union of the E, is [0,T ].)

Constrain the encoder xt = xt (0,Y) to be an F,,-Fty -adapted function of Y and the message

process 0 ={,O }O< <T" Further require that 0 < x, < i (t) where i (t) is the simple function

(t) = , .,(t), t EfO, T]
i-i

where {Fi, 1 < i < I<o) is a Lebesgue-measurable partition of [0, TI and 0< e, < 00 for all i.

Then

T

C = If c( (t),i (t))dt
T0

Proof First we show

TS< f C( (t),i (t))dt
0

t , (t) + Xt is bounded so by (4), applying Fubini's theorem,

T

0

-O, f [EI f [E [r( lnX)J- E ( Mh )n]l]d
o

-- f [E[0(X,,X;)]- E[0(j,,X;)]]dt
I i i IE I n F ,
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since(t)=X i for tEE,. >0 for z,y >0 so, by Jensen's inequality,

E [ O(kt ,Xj O]>(E % j,kX )

Using E [%s] = E [xt] and (z ) . ,X ) we get

IT[e,Y] __ f E[Oj(xt)]-Oj(E[×)]dt .
j- i-I nVrFv

We adopt a convenient notation: for a real measurable function, g,

i (t)

E (g (Xj = fg ( (w))P (dw)- f g (x)PoX,-'(dz) Q (g).
0 0

Q is indexed by the time t, or equivalently, by the probability measure PoXt- 1. In terms of Q,

IT[O,y] <5 t E_ f [Q(Oij)-O~j(Q(i))]dt

j-1 i-I EjnF,

where i is the identity function i(z = z. Let D, be the set of all probability measures on

([0,c, ],B ([o, c])). Then

ITr10,Y) j_ ,IEjnF, I su, [Q(0j) - Oj(Q(i))]
f-I i-I U

where I E nF I is the Lebesgue measure of the set E, nFi . Therefore

IMEnF , [ O(0i)-Oi (Q(i)) (1j-< T.i;=l

For the details of the calculation of the supremum on the right-hand side of (11) we refer to p.182

of [11. There the supremum is shown to be

C(xi ,¢ )

M EDI [QOjiQi)

where C(x ,c) C(z) given in (6). Hence

~ 1 ' T

c _ IEjNF, I C(-;)= fc(it),Z (t))dt .

Now we show
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T

C -fc(5t),~(t))dt

Our approach is to find a sequence of message processes (0(m)} and an encoding x such that
T

urn _LIT [0(-), y 1f- ( (t),Z (t))dt. (12)

To construct {0(')} first define a sequence {V(')} of i X n -dimensional matrices of independent

telegraph signals Vi,(), i 1,2,...,i, j = 1,2,...,n, i.e., right-continuous homogeneous Markov

jump processes with states {0,1} (Chapter 3 of [5J). We choose the processes V(J,), m > 1, to

have infinitesimal parameter matrices

Q(NL q 0 1 qo _mq 10 q1(1-p -m

where p = ki /e, with

k = -Xi I..

Also, for m > 1, let P (vJ"'n) - 1} =p so that V(,") is stationary. Then define p4') for all m > 1

as

where

(t)=f EnF ( )do
0

Also, let Xt (0,Y) = (t )O . Then

T

jT [94m), yj f [E [O(i (t)~m, t) t)~m~( )]dt

= E f [E [€(e V,;,g) ,X'i)] -E [,(c€V l ,XA)] dt

S! E nF,

= E f

j-i-I 0
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Now

E[.; (, Vj())] = Oj(O)P{V, '=0} + O.(c,)P{Vj" =i1} = poi(e,)

since Oj(0) =0 and P{V('.)=1} = p. p @i€) -j (Pei) = C N , ) so,

j-1 i-I 0

Thus to show (12) and complete the proof, it only remains to show

lir E [O (ci 4,H - (pei)
M -00

The derivative of Oj is bounded on [0, c ], say by a constant M, so

[i (i,(, - , < ) ( :s MeI j4'A")- p J Then

< M E V[ I;, ) - ]

_< M, [E[[ ij)-P 2]]/2

Beginning on p. 184 of [1] it is shown that lim E [ ) ] = p2 so the proof is completed.
in -0

Lcmma 2: C(z ,c) -- 0 as z - oo so C(oo,c ) - 0. Then, with the encoder intensity peak-

constrained by the nonnegative simple function Z (t),

T

C = 7fc(£ (t), (t))dt
0

for all nonnegative extended real-valued simple functions

i(t)= X l £, ( t

w-I

where 0 _<X < co.
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Proof: We need only consider

.1I, (t) = t 1: Xj EJ(t)

where X. = oo and 0< X < co for j< n. Define

f (z;Y) = (z+Y)ln +-- .+Y

Then, using (3),

T
IT [0,Y] fE If ( (t);xt)]dt

0

t , fEjf (U,;x,)dt
j-1 E,

-IfE[f (j;xt)dt (13)

j-I Ej

since f (z ;X) Xt -*t as z - oo so that

f E[f 0,. ;x, )]dt -=-f E[x, -*,]dr =0i .

IT [O,Y] is given by (13) for any choice of 0 and X so

1-1

l a"fi i-IEfFjc(X 1 ,cj).
TEIl i-1

C(X. ,C;) - C(oo,Cj) = o so

Ej _ ,- ~ nFI c (.\ , c,) f C (i(t ), i(t ))dt
Ti-I i-i 0

Lemma 8:. Let the channel noise intensity X(t) be a nonnegative extended real-valued Lebes-

gue measurable function and define L to be the set of all simple nonnegative extended real-valued

Lebesgue measurable functions. Write C = 0(X) to show the dependence of the channel capa-

city on X(t). Then
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.Pup infX 2X {(): C c(X) 5 1 < X { ).
S -EL XEL

Proof. We prove only the first inequality; the second is shown similarly. Write

IT [, yI =I T [a, Y;X\ to show the dependence of the average mutual information on X(t).

According to (3),

T
I T [0, Y;X] =f fE If ()X(t);Xt )]dt.

0

f (z ;X ) is a nonincreasing function of z since

eaf (z;xg) ( + In forg a !049 2 x + it I - + i t 1) : 0

Consequently IT[e, y;] > IT [9, y5 I for any i e L with 5 > X on [0,T]. Therefore

T [0, Yi ;I

and

OAXT s'U T[

.Pupx >x SUP I T [of y;x

EL O,XT

.Pup

X EL

Theorem 4: Let the output Y =Yt < < T of a Poisson channel be directed by

i = X(t ) + Xt where the channel noise intensity X(t) is deterministic, nonnegative, and Lebes-

gue measurable and where X = X (9, Y) is F,'- Ft y -adapted. Suppose, for some Lebesgue-

measurable function c(t), 0 < X, :5 e(t) s Af for all t [O,T] and some M<oo. Then

T

C f - C(X(t ),e (t))dt
0
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Proof: Write C - C(X,c) to make explicit the dependence of C on X(t) and c (t). By Lem-

mas 2 and 3,

inf
C(X,c ) !5 <SX C(X ,)

- EL

inf inf
< X <X i 2C C(X ,3 )

XZL ZEL

inf inf T

iEL EL To

C is bounded so C( (t),Z (t)) is a bounded simple function if i e L and c L. Also C(z ,y )is

strictly decreasing in z and strictly increasing in y so X < , i c implies C(X ,3 ) i C(X,c).

Define h (t) C (X(t ),c (t )) and A C({ (t),Z (t )). Then

inf T

CG\,c) A 2:ii A (t)dt
h EL 0

h =C (X,c ) is Lebesgue-measurable and bounded so
inf1T

A>A -fA '(t)dt o (t)d-t

(p. 79 of [14]). Thus

T

C < ±lfC(x(t))dt-T
o

Likewise, starting with the first inequality in Lemma 3 it can be shown that

T

C >-I f C ((t))dt
T0

and the result follows.
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Theorem 5: Let the noise and jamming intensities of a Poisson channel be deterministic,

nonnegative, and Lebesgue measurable: Al = X(t) and Jt = J(t) as in (9). Let the channel

encoder output be peak-constrained and let the jamming intensity be average-constrained,

T

-fJ(t)dt < P , (14)
0

P > 0. Then the optimal choice of jamming intensity is J. t) J. (t) a.e. for

J. (t) = [ - Mt )]+

(with a defined as in (10).)

Proof: Write C = C(X+J) to show the dependence of the channel capacity on X(t) + J(t).

We shall show that

C(X+J) < CX+J)(15)

for all deterministic, nonnegative, Lebesgue measurable J satisfying (14).

In showing (15), only J satisfying

7f J(t )dt =- P (6

0

need be considered. This is so since if

T
ffJ(t)dt <P

0

then there exists a jamming intensity JI(t) with

Tf f .J,(t)d, = P

such that J, ?! J on [0,T] giving C(X+Jl) :5 C(X+J). So we take (16) to hold.

Let f 1, f 2 be nonnegative extended real-valued Lebesgue measurable functions on [0,T]

such that f 52 and f 1, /2 are real-valued on {t: / (t) <f (t)}. Define

A - {(t ,z ): f I(t ) < z < f 2(t )). Define the set function C such that f(A) = C(f 1) - C(f 2).
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9

extends to a measure on (X,S) where X = [0, T] X [O,oo) and S is the a-field of two-dimensional

Lebesgue-measurable subsets of X. f hereafter denotes this extension.

Define x (t) = [X(t )+J. (t)] [X(t )+J(t ). Also define

A. = {(t,z): x(t) < z X(t)+J(t)},

Ab = {(t,z): z(t) <z X(t )+So (t )) .

Let m be two-dimensional Lebesgue measure on (X,S) and let M, be the restrictions of m, ,

respectively, to A. UAb . ff and are then equivalent finite measures. Also

0(,\+J) = c{ ) - (a, ),

C(X+J.)= C() - (Ab).

To complete the proof we show (A. ) < "(Ab

By the Approximation Theorem, there are finite sequences

{R ,',R 2 ,• .. .R .

{Rb,Rb , ,Rb, }

of disjoint closed rectangles, all identically sized,

Ri= [ti,t,'+ At]X[zi',zi'+ A. ,

R)= [tt,'.+ A,]×X[z,,z + A.., (17)

At > 0, A, > 0, with R' C A., R.b CAb for all i, j such that

5' +

(Ab E (Rt) +b
-I

for 6 > 0 as small as desired. iff is finite and X << 4 so, for 6 small enough,

4'
I-I

fi(6) iRb )

i--

" • a l l I l
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for any e > 0. Let n n. ^nb . Then

C(A. ) - b. - (Rj) = , (j (18)
i-a+1 i-i

Z(Ab ) - 6., - Z(R) I (R I)()
j-S+1 J-1

where 0 < b. < 8, 0 < 6.. < 6, and
S4

9 (A.)- - r(R,')= X (R'), (20)

'-.I a--
j-m+1j-1

where 0:e. < e,O< C" <0 .

With the rectangles Ri', Rb, 1 <_ i < n., 1 < j <_ nb, given as in (17), we can write

aRj,) = At, [C(z.,j - C(z,"' + ,A.,c ]

(RP) = At [C(z') - C(z,' + A, ,c

Also, by the form of J, (t),

essinf{z: (t,z) E A.} > esssup{z: (t,z) E Ab}

so that zh, + A < zi' for all i, j. The partial derivative of C(z ,c ) w.r.t. z is strictly increasing

so

C(z,c ) - C(zJ+A ,c ) > C(z,,C ) - C(z,'+A, ,c

Thus, for all i, j,

(Rjb) , (R').

Thus (18) and (19) can be combined:

(A6 6(A. ., -8o + E(RP)- , (R') (22)
j', a+1 isa+l
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Or (R.s) = ff(RI) for all i, j so from (20) and (21) comes

~ig(A& 9(A= - + , ff (Rp- i

Also rn (A.) i (Ab ) since

T T

f J(f)dt -fJ. (t)d
0 0

So

ig(RIO) - r, ff(Rill) = E. - e..
j-x+1 i-S+1

Suppose n 1-n.. Then

F (R ,i) = 0 , (R j) -= 0
iam+l i-am+l

so that

SbE f (R,.P --- e . ,
7i- +1

Then, for any -y > 0, by making e small enough,

S

since is finite and << .Then (22) becomes

-(Ab )-(A > 6., -. 6 -

6, b, -y may all be made arbitrarily small so (Ab) > T(A).

Now suppose n -- nb. Then

ob
Z (R' = 0
E 3+0

and

Sa.
" Ab) "(A )>_6,. -, + " (R,') > 6,, -6,o

-3,+1



- 21 -

Again, (Ab) 2! Z(A.).

Theorem 6: Suppose the encoder intensity Xt of a Poisson channel is Ft'- FtlYadapted and

peak-constrained 0 < Xt :s c (t) with C (t) E r where

Tr (t : o: T (t)dt <_ P}

He0

Also suppose the channel noise intensity is nonrandom At = X(t). Then the channel capacity is

P
C

Proof. By Theorem 4,

T
C , oC(,(t },€ (t))dt.

Define

= {(t)>o:-I c(t)dt = P
T0

Since C(x ,y) is increasing in y,

T
C su I()d

= ,-TfC(>(t ),(c

C(z,y) is decreasing in z and C(O,y) y e/ so

su1T 1T

< , -fc(o,(t)dt f c-- r---dt -

< E 1 T T 0  ec

Next we show C > P/e to complete the proof. Choose L> 0 and let

={tE[O,T]:X(t)<L}. Define \L(t)=L on G and X\L(t)=oo on [,T]/G. Then

C(X(t ), (t)) C(XL (t ),C (t)) so

TUC sp UP (X L(t ), c(t)) dt
C > e L O

- • •| | | || !0
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- r ,.> C(Lc(t))dt

G

Let S be the set of all nonnegative (Lebesgue-measurable) simple functions on (0, TI. Then

su p I fC(L , Z (t))dt

= L >0 M>fUP i Serpris I LZ(t)

C (z ,)as a function of y is strictly convex and strictly increasing for z > 0 so

i'rs If C (L , (t )) dt = If C(L , M ,(t))dt

_ <M TG s
T

where ZM(t)=MIAMt with I A I =IG I . Then

sup supI C(L, (t))d

C L>OM> -fr'L ,c

Ta

sup sup I
- L >0 M>P rLM)L I G I

- 7 _<

rr CL,0 T - 1 C(L ,M)

T -

-P

SLs sup G pim C(L/M,I)
T M-oo

s up G.J._J C (0, 1)
T

C(0,I1---/c and JG I -. T asL -* oo so the proof is complete.
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