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CHAPTER 1

INTRODUCTION

1.1 Motivation

Scattering occurs when an electromagnetic wave impinges on an object and creates
currents in that object which reradiate other electromagnetic waves. The electromagnetic
wave may be of any frequency, but most of our every day encounters with scattering involve
light. As technology advances, however, scattering from the invisible spectrum, particularly
microwaves, becomes more and more important. Already words such as microwave dish,
radar, and stealth airplane have become part of our evervday vocabulary. Microwaves have
invaded our lives by helping us cook, watch television, talk on the telephone, and detect the
launch of submarine ballistic missiles. Public concerns involving the impact of microwaves
on the environment and health, and military concerns involving very low sidelobe antennas
and targets with a low radar cross section (RCS) point to a need for controlling the scattering
of electromagnetic waves at microwave frequencies.

Currently, three primary methods exist to reduce microwave scattering from an object:
covering it with absorber, changing its shape, and detuning it through impedance loading.
Absorbers convert unwanted electromagnetic energy into heat. An example is lining an
anechoic chamber with absorbers. Changing its shape channels energy from one direction
to another, changes dominant scattering centers, or causes returns from various parts to
coherently add and cancel the total return. Examples include rounding sharp edges, making
an antenna conformal to the surface of an airplane, and serating the edges of a compact range
reflector. Impedance loading alters the resonant frequency of an object. Examples include

making a radome transparent to signals in the frequency band of the antenna and detuning




the support wires of a broadcast antenna. Often. a combination of these techmques is
necessary to reduce the scattering to an acceptable level. Although many scientific theories
are available for analyzing scattering from objects, the process of reducing the scattering is
presently as much an art as a science.

Of the three techrniques, abscrbers have the most attractive features. Theyv have a broad
bandwidth, attenuate the return in many directions. and may be used to reduce scattering
from an object after the object is designed. In contrast, shaping an object does not reduce
the scattering in all directions, may not even be possible once the object is past the design
stage, and may not reduce the scattering to desired levels. Impedance loading is inferior
because it has a narrow bandwidth, is not usually feasible past the design stage, and is not

practical for large reflecting surfaces.

Absorbers have low scattering levels because they convert most of the incident electro-
magnetic energy into heat and only a small percentage is reflected or transmitted. In the
absorber the amount of energy converted into heat (absorbed) depends on the size of the
imaginary part of the index of refraction. The higher the imaginary part, the more energy

the material absorbs.

An excellent example of absorption occurs in the heating of food in a microwave oven.
The incident microwave energy is absorbed by the water molecules in the food, and the focd
gets hot. Water absorbs the energy, because its permittivity has a large imaginary part at
microwave frequencies. Frozen food, however, heats slowly because the permittivity of ice

has a small imaginary part at microwave frequencies.’

1.2 Problem Statement

Before trying to control scattering from complex shapes, such as an antenna or airplane.
one should try to develop methods to control scattering from simple objects. A very sumple
object is a two dimensional strip. It is infinitely thin, has a finite width, and an infinite
length. The scattering pattern of the strip depends upon its width and material composition.
Varying these two factors provides a means for controlling the radar cross-section (RCS) of
the strip. The goal of this thesis is to synthesize resistive tapers for the strip that produce

desired bistatic scattering and backscattering patterns.

} For a molecular descniption of how & microwsve oven works, see the arucie by Walker 1987




1.3 Background

Many references report a variety of techniques for calculating the currents induced in
strips by incident plane waves and the corresponding scattered fields. Morse and Fesh-
bach{1953 express the scattered field of a perfectly conducting strip in terms of a Mathieu
eigenfunction expansion. A similar eigenfunction expansion is not available for resistive
strips, however. Seniori1979a; derives asymptotic expressions for the field scattered by a
strip with uniform resistivity. More recently, Richmond'1985! solves for the currents induced
in a thin dielectric strip using a Galerkin method. Unlike Senior’s approach, this approach
numerically solves for the currents in a strip that has a finite thickness. Butler/1985) ap-
proaches the problem by expanding the current in the integral equation using Chebychev
polynomials as basis functions, then solving the integral analytically.

Controlling the scattering patterns of strips has its roots in earlier studies of impedance
loading of objects. Chen and Liepa {1964} showed that a zero broadside return of a cylinder
less than two wavelengths long can be achieved by proper choice of a central impedance load.
Schindler, et al. [1963] extended this work to longer cylinders. They found that getting
zero backscattering from dipoles greater than one half wavelength long or at angles other
than broadside requires multiple passive loads. Harrington and Mautz [1972] take one
step fi rther by describing a reactive loading synthesis procedure for obtaining a current
that produces a far field pattern that is the least mean-square approximation to a desired
pattern. Resistive and impedance loading is also important in reducing the scattering from
the edges of reflector antennas to get low sidelobes '‘Bucci and Giorgio, 1980; Yazgan, 1987 .
Finally, Ray and Mittra have shown scattering results from conductive strips with resistive
loads [1983].

Attempts have been made to alter the scattering patterns of a strip by smoothly varying
its resistivity, rather than edge loading. Seniori1979b] discusses the possibility of reducing
the backscattering of a resistive strip at edge-on incidence. He states that the return at
edge-on incidence gets smaller as the strip’s resistivity gets larger. The return approaches
zero only when the strip resistivity approaches oo . When the strip resistivity equals 1885
f1/square, the edge-on return from the strip is 26.6dB below the value for a perfectly

conducting strip . Senior mentions that the return may be minimized by optimally tapering




the resistivity of the strip from a maximum value at the front edge to perfectly at the rear
edge. He does not suggest any possible resistive tapers for controlling scattering from the
strip, though. Ray and Mittra{1983] find that a resistive load on the edges of a metallic
strip reduces the induced edge currents for E-polarization, but causes current spikes at the
junction between the metal and resistive sections of the strip. They suggest eliminating
the discontinuity by smoothly tapering the current from a maximum at the metal to a
minimum at the highly resistive edges. Senior and Liepa 1984} show that a parabolic taper
on a resistive half plane significantly reduces edge scattering. This same principle may be
applied to both edges of a strip. Wang and Liepai1985, use a parabolic resistive taper on the
ground plane of a monopole antenna to reduce the effects of the ground plane edge on the
antenna pattern. The resulting radiation pattern and antenna impedance approaches those
of a monopole above a large ground plane. Haupt and Liepa (1987 describe the physical

optics (PO) resistivity synthesis technique presented in Chapter 3.

1.4 Overview

In order to improve upon these previous efforts of “guessing” a resistive taper that will
reduce the scattering pattern’s sidelobes, this thesis goes & step beyond by developing and
experimentally verifving synthesis techniques for specifying the level of the backscattering
and bistatic scattering patterns of a strip over a desired angular sector. The specifications
include relative sidelobe level, specular level, and nulls at designated locations.

Chapter 2 presents the necessary definitions and mathematical and numerical tech-
niques for analyzing the strip current density and scattering patterns of a strip due to an
incident plane wave. The integral and physical optics (PO) equations for the strip current
density are derived. Agreement between these two techniques increases as the strip resis-
tivity increases. A large part of the chapter concerns choosing an appropnate numerical
method for solving the integral equation approach. For the purposes of this thesis, colloca-
tion with pulse basis functions and PLU decomposition and back-substitution combine to
give accurate, yet computationally fast results.

Chapter 3 describes how to synthesize a resistive taper that produces a desired strip

current density that in turn produces a desired scattering pattern in the far field. The




(41]

resistive taper is derived from a given desired current distribution by substituting the de-
sired current distribution into either the integral equation or PO equation and solving for
the strip resistivity. Many current distributions have already been developed in antenna
theory to get desired far field antenna patterns. One of these current distributions can
be substituted for the strip current density in either the integral or PO equation to find
the strip resistivity. The strip resistivity derived in this manner does result in the desired
bistatic scattering or backscattering pattern. Low sidelobes are demonstratéd via the Tay-
lor current distribution and nulling is demonstrated via the Shore-Steyskal null synthesis
technique. The low sidelobe resistive taper derived through the integral equation approach
has real and imaginary parts, while the resistive taper derived through the PO approach
is real. Since PO also produces the desired low sidelobe scattering pattern with excellent
accuracy, the PO taper is more desirable. The integral equation approach is needed to
produce the proper complex resistive taper for nulling, though.

Chapter 4 describes the four-point probe technique used to measure the resistivity of
a sheet. Expressions are derived for calculating the d¢ voltage and current density on the
sheet due to the outer current probes of a four-point probe. These equations are solved
numerically using finite elements and Successive Over Relaxation, and the results for a
constant resistive sheet are compared with analytical results. Since the analytical results
are confined to measuring the resistivity of a constant resistive sheet near the center of the
sheet, the numerical approach is used to investigate measuring tapered resistive sheets.

Chapter 5 describes the impact of errors in the resistive taper on the induced strip
current density and the scattering patterns. Resistive errors are assumed to be random
and/or correlated. These errors give rise to perturbations in the strip current density,
which inturn give rise to perturbations in the resulting scattering patterns. Expressions
for the current and scattering pattern perturbations are derived. The impact of the errors
is described in terms of the average rms error between the error and no-error current and
scattering patterns quantities and in terms of sidelobe level deviation between the error and
no-error scattering patterns.

Chapter 6 gives the experimental bistatic scattering measurement results on a tapered

resistive sheet. The experimental set-up, calibration, and measurement procedures are
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described. The experimental results are compared with numerical results and show good
agreement for the metal plate and a reasonably good agreement f-- the tapered sheet. The

discrepancies in the low sidelobe scattering measurements are due 0 a number of sources.




CHAPTER 11

CALCULATING THE FIELDS SCATTERED BY RESISTIVE STRIPS

This chapter presents several methods for calculating the strip current density and
scattered fields of a resistive strip due to plane wave incidence. These methods may be
divided into two approaches: 1) integral equation and 2) Physical Optics (PO). The integral
equation approach is the more accurate; however, PO has several attractive features. First,
it is simple to calculate cornpared to the integral equation approach. Second, it gives
excellent results for highly resistive or tapered resistive strips. Third, it is a possible seed
for iterative methods. Unfortunately, this application proved fruitless in the present study.
Fourth, it serves as a synthesis method for low sidelobe real valued resistive tapers as shown
in Chapter 3.

A large portion of this chapter concerns the numerical solution of the integral equations.
The first step is to convert the integral equations into matrix equations via the method of
collocation, then solve the matrix equation for the strip current density. Pulses and Cheby-
chev polynomials are the two types of basis functions used in the collocation technique.
Pulses proved faster and more accurate than Chebychev polynomials for the applications
in this thesis. Three matrix solving techniques for finding the coefficients of the basis func-
tions are presented: 1) PLU decomposition and back-substitution, which turned out to be
the best method for the problems in this thesis; 2) iterative methods including relaxation,
secant, and Steffensen’s; and 3) conjugate gradient. The advantages and disadvantages of
each method are presented.

The final step in the analysis involves calculating the two-dimensional bistatic scattering

and backscattering far field patterns.




2.1 Derivation of the Scattering Equations for a Resistive Strip

This section derives the field equations for calculating the strip current density induced
on a resistive strip by an incident plane wave. Two methods are considered. First. an inte-
gral formulation in terms of the current induced on a strip is derived from magnetic vector
potentials. This method is the more accurate and traditional approach to the problem.
Second, A PO formulation for the current is derived from Geometrical Optics. Although
less accurate than the integral equation approach, it serves as a seed for iterative methods,
gives very accurate results for resistive strips, and is simple to compute compared to the
integral equation approach.

2.1.1 Integral Equation Formulation
In scattering problems, the total electric field is the sum of the incident and scattered

electric fields.

E'=ET-% (2.1-1)

Superscripts indicate total field (T), incident field (i), and scattered field (s). Each term in
(2.1-1) is considered separately in the following pages.

The incident field is a plane wave of either E-polarization ?

E:’ =;E°ejl(zcon ®o--yun ¢o) (2.1-20)
H' =(-Zsin 6o+ §cos @) Hoe M= soryun éo) (21-2b)

or H-polarization
I’ =(Zsin ¢, - § cos §,) E e M *o sorvin e0) (2.1-3a)

where

2 An ¢ time dependence is assumed and suppressed.




®, = direction of incident plane wave relative to the x-axis

k = wave number = w /i€, = 2%
w = radial frequency = 2« f

f = frequency >f incident wave

A = wavelength of incident wave
i, = permeability of free space

€, = permittivity of free space

E, = constant amplitude of incident electric field
H, = constant amplitude of incident magnetic field
E o
2, = ==2='22
°T H, Ve

= characteristic impedance of free space

An E-polarized plane wave has £ perpendicular to the plane containing the propagation
vector and the normal to the interface (the x-y plane). Likewise, an H-polarized plane wave
has H perpendicular to the x-v plane. Figure 2.1 shows an E-polarized plane wave incident

at an angle ¢, on a strip of width 2a, where a is expressed in units of A.

Within a thin strip the total electric field is related to the total strip current density?

(J in amps/meter) by [Harrington and Mautz, 1975)

J, ,
o+ jw(e - €,)t

Efngent = (2.1-4)

where

3 The stng; i+ weumned to be made of materials that have the same permeability as free space (u = uo). Otherwise,
s magnetic current denaity term (U x M) should be included in the total current.
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N
X

Figure 2.1 — Model of a resistive strip 2a wide with an E-polarised plane wave incident

at an angle of ¢,
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J,=Js+ J. = total strip current density (Amps/m)

J, = induced total strip current density = octET
J, = polarization current density = jwt(e' — eo)ET
o = conductivity

o . . 54
¢ = permittivity of strip = ¢ — je" = ¢ - j—
[

-
|

thickness of strip

The strip resistivity 4, R(x), is assumed to vary only along its width (the x-direction) and

is constant along its length (the y-direction). In constituent form, R(x) is

1
R(z) = 2.1-5
() o+ jw(e' — € )t (2.1-5)
The normalized strip resistivity is given by
n(z) = k(z) = ! = .—-—'_1 (2.1-6)

Zo ‘we" + Jw(e' - €,)t jk(€, — €o)t
where ¢, is the relative complex dielectric constant.
The applications pursued in this thesis assume the strip consists of a metal deposited

on a thin dielectric substrate with € = ¢,. As a result, an excellent approximation to (2.1-6)

is

n(z) = lim lim ——— (2.1-7)

g—00 (=0 Zod(t)t
which is a real-valued strip resistivity. This equation for the strip resistivity is the same as
the equation for strip resistivity in statics. Thus, some credibility is given to dc measure-

ments of the resistive taper.

The final term in (2.1-1) is the scattered electric field, and it relates to the magnetic

vector potential via

4 In general, the sirip resistivity is complex. However, when o is large and ¢ = ¢, the resistivity is considered
real.

I—
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E'=z-jud-vv 1 (2.1-8)
T=uo [ TG/ (2.19)

where

J = J.z, H-polarization
*~ | J.2, E-polarization

7' = z2'Z = direction to source point on strip
. 1 ‘ ,
G(p/T') = Green function = 4—J¢H£2)(knﬁ -7')
p = direction to observation point = z¥ - yj

For E-polarization, V - 4,Z = 0 leaving

a
E'= 4“"/ J(EVE® (kip - 5)dz’ (2.1-10)

Now, ail the E-polarization components of (2.1-1) have been derived. Assembling (2.1-
2), (2.1-3), and (2.1-10) to make (2.1-1) produces

, k£ f°
HoeJkCCOO %o _ '7(1')]:(?-) - I/ J‘(z')H?)(k|z -z )d:’ (21~11)

Turning to H-polarization, the second term in (2.1-8) does not equal 0. Instead.

~_ 1 ° ' ap (2) ' '
V- AzZ= —4—1' _OJ,(z )a—z-}?1 (kp-2z')dz (2.1-12)

and

- _—k’z nr(2) 2 [
VA= /J,(z)Ho (kp—z')de
. —kZ n g (2) 3 1 )
- —F/J,(z VB kip - ) st (2.1-13)

Substituting (2.1-9) and (2.1-13) into (2.1-8) and solving for the scattered field gives
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= 2Z, [° ; 1 )/, N '
E = 3 /__a.l,(::);p_‘_',’H1 (klp - 2')dz (2.1-14)

Next, substitute the tangential components of (2.1-2), (2.1-5), and (2.1-14) into (2.1-1) to

get

. e k [° , 1
H,sin 6,7 % = n(z)J,(z) ~ Z/ Jo(z )E—

2 -
- :,iaf Ykz -2z’ (2.1-15)
Equations (2.1-11) and (2.1-13) relate the incident electric field to the induced strip current
density. These equations are exact only when n = 0, since the resistive boundary condition,

ET = RJ, is only an approximation. ®

Finding an accurate representation of J depends
upon a judicial choice of the numerical solution.

2.1.2 Physical Optics Formulation

Instead of numerically solving (2.1-11) and (2.1-15) for the strip current density, the
strip current density may be approximated with a PO formulation. The PO current expres-
sions are derived using geometric optics and relating the total tangential electric field to
the strip cusrrent density via the strip resistivity. Starting with E-polarization, the reflected

fields above the strip are

E™ = p,2E oM uc0r0o-yaine) (2.1-16)
H' = p,(Zsing, - gcosoo)Hoc?“(“owo-vuw.) (2.1-17)

and the transmitted fields below the strip are

E‘ = T?EoeJ“m'¢o‘V‘"‘0o) (2118)
B' = 1(-Zsing, ~ §c0sd ) H M 70s¢ o-ynins.) (2.1-19)
where the superscripts i. r, and t stand for incident, reflected, and transmitted fields respec-

tively, and p. and T are the reflection and transmission coefficients. The incident electnc

and magnetic fields are given by (2.1-2) and (2.1-3).

5 The approumation assumes that R approaches s finite value as ¢t — 0 and as 0 — oo.
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Three fiel! equations relate the three unknowns, p, 7, and J. The first equation savs

that the tangential components of the electric field are zero at the interface.

Fr  Ft

§x(E'~E -E)=0 (2.1-20)

Substituting (2.1-2), (2.1-16), and (2.1-18) into (2.1-20) gives the transmission coefficient

in terms or the reflection coefficient.

r=1-p, (2.1-21)

The next equation says that the tangential magnetic fields are discontinuous at the interface

by the strip current density.

Tt

ix(A'+H -H)=17, (2.1-22)

Substituting the magnetic field quantities into this equation relates J,, p,, and 7.

(1-p,- 7)sind H e*eco®e = J, (2.1-23)

Substituting (2.1-21) into (2.1-23) and solving for J, leaves

J, = —2p,sing H k=00 (2.1-24)

The final equation says that the total tangential electric field equals the strip current density

times the strip resistivity.

E‘'-E"=RJ, (2.1-25)
Ejgiteotbo . o Eelkxe0sée = R, (2.1-26)
Solving this equation for p, gives
-1
i (2.12-27)

= 1 - 2nsino,




Substituting (2.1-27) into (2.1-24) produces the final result with J in terms of the known

quantities 7, ¢,, H,, and k.

sing,

J. = Jhzcosd o 1-
(z) .3 + 7sin ¢,,H°e (2.1-28)
A similar procedure for H-polarization gives
’in¢° yh2cood
J2(z) = —————— H e I"=0®e (2.1-29)

T n+ 5sing,
Equations (2.1-28) and (2.1-29) provide simple, but powerful relationships between J
and n. These relationships are the key to synthesizing low sidelobe resistive tapers to control
the scattering patterns of strips in Chapter III.

2.1.3 Comparison of the Integral Equation_and Physical Optics Approaches

The PO derivation makes two approximations. First, the resistive sheet is assumed to
be infinite in the x-y plane. Therefore, all edges are ignored. Second. (2.1-25) applies to
an infinitely thin strip, just as in the integral equation approach. One can conclude that
the integral equation and PO approaches agree very well under any conditions when the
edge contribution is small compared to the total strip current. Examples of such conditions
include

1. Scattering angles near broadside of a large strip

2. Highly resistive strips

3. Tapered resistive strips
A major goal of this thesis is to emphasize the excellent agreement between the PO and
integral equation approaches under the above conditions [Haupt and Liepa, 1986}

Table 2.1 compares the two approaches for several types of resistive strips by listing
the computed average rms error between the integral equation and PO approaches. As
expected, the rms errors of the perfectly conducting strip ‘are much higher than that of the
resistive strip. The level of the errors change very little with increasing N (the number of
points on the strip at which the current is calculated), but a much smaller value of N for
a resistive strip will produce the same level of errors as a higher value of N for a perfectly

conducting strip of the same width. Another observation is that increasing the width of
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the strip decreases the level of the errors. This result is also : <-ted, since the interaction
between the edges gets less the farther apart they are. G ' of the resistive tapers,

currents, and scattering patterns similar to the examples in Ta: |. 2.1 appear in Chapter 3.

2.2 Solving the Integral Equations Using Collocation

One numerical method for solving (2.1-11) and (2.1-15) is collocation. The first step in
the method is to expand the strip current density as a sum of complete, orthogonal basis

functions.

J(z)= <:"'a,,.l,.(z:) (2.2-1)
where =
/a w(z)Jn(2)Im(z)dz =6mn
w(z) =weighting function
Ja =set of orthogonal basis functions
§ mn =Kronecker delta

a, =weighting coefficient

The infinite summation in (2.2-1) may be approximated by N terms.

N
Jiz) =Y anla(z) ~r(z) (222)

n=1

The residual error, r(z), approaches zero as N approaches x when J,(z) is a piecewise
continuous function.
After substituting the approximation of J, into (2.1-11) and matching the boundary

conditions at N collocation points on the surface of the strip, the following series of equations

results:
. N k a
H e 7kzmeosbe - Z a,,[r;(z,,.).],,(z,,,) ~ 4—/ In(zVHP (k2 - 2")d2’|,m=1,2. . N
n=1 -a

(2.2-3)




COMPARISON OF PO AND INTEGRAL EQUATION APPROACHES
—————————
2a=4) E-polarization H-polarization
n N Ocuram | Teurph b Thk Ceuram | Teurph Tbs Ohk
0.0 40 || 0.191 | 8.309 | 0.105 | 0.119 §| 0.335 | 15.757 | 0.104 | 0.106
60 || 0266 | 7.865 | 0.085 | 0.095 (| 0.382 | 15.085 | 0.088 { 0.091
20 40 {§ 0098 | 2.021 {0018 | 0.015 || 0.050 | 2.677 | 0.009 | 0.007
60 [ 0.031 | 1.912 { 0.014 | 0.011 || 0.025 | 3.278 | 0.007 | 0.005
3(E)? 40 || 0.037 | 1.504 | 0.048 | 0.016 |} 0.031 1.901 | 0.005 | 0.004
60 {| 0.036 | 1.339 | 0.039 | 0.013 | 0.025 | 2.379 | 0.003 | 0.003
40dB Taylor | 40 || 0.026 | 1.689 | 0.018 | 0.014 || 0.029 { 2.091 [ 0.025 | 0.014
n=12 60 { 0.023 | 1.312 | 0.014 | 0.011 || 0.022 | 1.835 | 0.013 | 0.007
v bt ———————————treheetst st et e ot e————— sl
Y ————————e
2a=61 E-polarization H-polarization
n N Teuram | Teurph Oh 4T} Teuram | Teurph T Thi
0.0 60 || 0.152 | 6.831 { 0.081 | 0.091 {| 0.270 | 13.685 | 0.088 | 0.081
90 | 0.216 | 6.439 | 0.066 | 0.073 | 0.319 | 12.910 | 0.073 | 0.070
20 60 K 0073 | 1.643 | 0.015 ) 0.012 |} 0.036 | 2.190 | 0.007 | 0.006
90 | 0022 | 1.558 | 0.012 { 0.010 }{ 0.018 | 2.674 | 0.005 | 0.004
3(&)? 60 | 0.022 | 1.308 | 0.022 | 0.011 || 0.019 | 1.551 | 0.004 | 0.003
90 }§ 0.020 | 1.123 | 0.018 | 0.008 | 0.015 | 1.939 | 0.003 | 0.002
40dB Taylor | 60 §§ 0.018 { 1.311 | 0.014 | 0.011 || 0.019 | 1.835 | 0.013 | 0.007
A=12 90 || 0.017 | 1.064 | 0.011 { 0.008 i 0.016 | 1.952 | 0.009 | 0.004
N = opumber of points at which the current is calculated
n = normalized strip resistivity
Ocuram = average rms current amplitude error
Ceurph = average rms current phase error
ow = average rms bistatic scattering error
oy = average rms backscattering error

Table 2.1 — Comparison of the integral equation and PO optics approaches.
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When (2.2-3) is put into the matrix form Ac = [~ it is written as

aii a2 R AN aiy v

a21 az Gaw az Vs
o ‘ A I (2.2-4)

\aN1 QN2 ... ONN/ anN vN

where
Upm =g kT meosdo
Smn =12 nlzm) = 3 [ In(e) B (kizm - 2" )z (2.2:3)
-a

The matrix equation is solved for the unknown coefficients, a,,, which are then substituted
into (2.2-1) to get an approximation of the current on the strip.

A similar equation for H-polarization 1s

N (2) '
X " — k a Ho k!:m‘z| ' '
Hoejkznco bo _ > an[ m)J ( )_,_ _/ kl(z m— )J,‘(t )dz]‘m = 1,2,.., N
n=1 -a m

(2.2-6)

When (2.2-6) is put into the matrix form of (2.2-4), the matrix elements are given by

Um :eghzucowosin ¢°

(2)
Gmn =2 m)dnl2 /J..( o Lom s

- z’l

=) g (2.2:7)

For the best results, the basis functions should be orthogonal, complete, easy to com-
pute, and be able to match the boundary conditions. The list of possible basis functions
is huge, and many trade-offs exist in selecting “the best ones” to use for a given problem.
The two basis functions chosen for this application are pulses and Chebychev polynomuals.
They represent two extremely different types of basis functions. The pulse basis functions
simplify the problem tremendously, are local (do not extend over the entire width of the
strip), and do not allow accurate interpolation between collocation points. On the other
hand, the Chebychev polynomial basis functions require more difficult numerical compu
tations, are global (extend from -a to a), and allow very accurate interpolation between

collocation points.
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2.2.1 Collocation with Pulse Basis Functions

Pulse basis functions are commonly used for solving collocation problems in electro-
magnetics because of their simplicity. The strip is divided into N segments of equal size
with the collocation points at the center of each segment. A pulse exists only over one of

these segments and is represented by

l, Zm-—2zn<2
J = ) m ni ] 9.
w(Zm) { 0, otherwise (2.2:8)

where A = z,,., — z,,. Substituting the pulses into (2.2-3) results in

N
HoeJh:mcowo = Z am[ém"n(zm).fn(tm)

n=1

k ~a+nd
'Z/ ( I)Ang)(kazm-z")dz'],m=1,2,..,N (2.2-9)

where

5 = l, m=n
™" T 10, otherwise

The integral in (2.2-9) is straight-forward to evaluate except at x=x'. At this point Hankel
function has a weak (logarithmic) singularity that requires a special integration procedure.

The off-diagonal elements of (2.2-4)are found using Gauss Chebychev Quadrature®

L
kAx 2 A, -
L 1 -y2H )(k:z,,,+ a-nd- 21~ y.-J:I‘), m#n  (2.2-10a)

This equation is valid for diagonal and off-diagonal elements of the matrix as long as one

QEmn —

of the quadrature points does not fall on one of the collocation points.

€ The Gauss Chebychev Quadrature integration formula is [Pearson, 1983

L
Ky _ x(b-a) b+a b-a
.\/El_f)_L 2 gl!( 2 2

where z, are the veros of the L'» order Chebychev polynomual given by

2)

S~ 05)'!

2, = cos| m=1.2 ..L
. J
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The diagonal elements of (2.2-10a) are very slowly convergent because of the singularity
in the integration interval. This singularity may be avoided by splitting the Hankel function
into its real and imaginary parts and making a simple transformation of variables {Bovd,

1986] for the Neumann function:

e’ = [ !

2 k(zm - z,), Ty > z’!
{k(z A i (2.2-11)

The diagonal elements now become

x ) , .
GEnn = N(Zn) + 3 Jo(klzm-z':)dz ~-J]=

—a+nA k In(zm+a-nd)
/ Yo (efle*dz (2.2-12a)
2 -a+(n-1)a 4

LL

where

J, =zero*® order Bessel function
Y, =zero'® order Neumann function

The exact transformation for the Neumann function integral has LL equal to —oc; however,
a much smaller negative value will produce excellent results. This form of the integral
converges much faster when evaluating the singularity than the integral (2.2-10a). If the
spacing between collocation points is < i% and the lower limit is approximated by -8,
then this integral is accurate to four decimal places when evaluated with a 10 point Gauss
Chebychev Quadrature rule.

When the incident field is H-polarized, the matrix elements are given by

Off-diagonal:

zZm+a-(n-~1)A
4z, +a-(n-1)Aj

Tm+a-nl (3 '
4|zm+a-nAiH1 (2%jzm + a = nA|)+

L .
S -0 $130)

1=1

8 Hmn(Zm) = B®(2xizm+a-(n-1)A)-

m#n m#n (2.2-13a)

Diagonal:
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x [-otnd 1 in(zm+a-nd)
G Hnn = n(zn) + —/ J1(ki2m - Zly)dtl - j— / Y;(e‘)e‘dz (2.2-140)
2 -a+(n-1)a 2 LL

Midpoint integration gives a cruder approximation to the integrals, but is accurate
enough for the applications considered. It assumes that the current and the Hankel function
are constant over the interval of integration. The Gauss-Chebychev quadrature integration
assumes that the current is constant over the interval, but not the Hankel function. Since
the Hankel function varies faster over the interval than the current, this method is more
accurate than midpoint integration.

Midpoint integration is attractive, though, because of its simplicity. It requires far
fewer function evaluations than the Gauss-Chebychev quadrature formula, which makes it

considerably faster. The midpoint integration formulas are given by

k. 2 .

@ Emm =7{(Zm) ~ 7301 - j=(0.0287983 + InA); (2.2-10b)
k

@ Emn :ZAHS,’)(I:.:,,, -zn) (2.2-125)

=n( kA" '1(00287983 FinA - L (2.2-13b
2 Hmm =1 zm)‘ 1 9 J1|' : +in 2r2A2 2) : )
:m - Ty SA 2 - 2 :

T z",. = HO(kizm - 20— 58)« H(kizpm - 20— 547+

;AHS,”(I:;:,,, -z, (2.2-14b)

A comparison of the two integration methods appears in Table 2.2. Generally, agree-
ment between the two integration techniques increases as the number of collocation points
increases, because the Hankel function variations are less for a smaller interval. Thus,
assuming the Hankel function is constant over the interval is a better approximation as
the interval gets smaller, and midpoint integration gets more accurate. The agreement
also increases as the strip resistivity increases, because the integral contribution in (2.2-11)
and (2.2-15) decreases relative to the contribution from the resistive term. Since the two
methods produce very similar results, midpoint integration is the best choice because it is

ccmputationally much faster.

2.2.2 Collocation with Chebychev Polynomial Basis Functions
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e ——————————
— — — ———————————

AVERAGE RMS ERRORS BETWEEN INTEGRATING THE
MATRIX ELEMENTS WITH MIDPOINT INTEGRATION
VS. GAUSS-CHEBYCHEY QUADRATURE INTEGRATION

et st

T S
0 = 90° ¢, = 30°

n N T curamp Teurph Ty Teyramp Teurph T Thi

0.0 20 [} 0.02745 { 0.67735 | 0.03354 || 0.05728 | 1.12111 | 0.03046 |{ 0.03627
40 | 0.02297 | 0.60610 | 0.01014 {f 0.02624 | 0.51957 | 0.00346 |} 0.00830
60 ) 0.02311 | 0.45290 | 0.00749 | 0.02369 | 0.37244 | 0.00225 || 0.00582

2.0 20 || 0.00065 | 0.23010 | 0.00199 || 0.00542 | 0.36435 | 0.00177 || 0.00177
40 | 0.00023 | 0.12972 [ 0.00047 |} 0.00111 | 0.13954 | 0.00026 || 0.00038
60 || 0.00021 | 0.08735 { 0.00032 } 0.00032 ] 0.07776 | 0.00009 | 0.00024

3(})z 20 §| 0.00175 | 0.36399 | 0.00405 || 0.02513 } 0.82835 | 0.00121 || 0.00201
40 {| 0.00185 | 0.30643 | 0.00323 J| 0.00472 | 0.29316 | 0.00017 [f 0.00250
60 || 0.00218 { 0.21998 | 0.00311 |{ 0.00118 { 0.16022 | 0.00008 || 0.00230

40dB | 20 }} 0.00136 | 0.42698 | 0.00359 || 0.02875 | 0.84281 | 0.00073 || 0.00336
Taylor | 40 || 0.00254 | 0.35564 | 0.00446 || 0.00548 | 0.30659 | 0.00011 |i 0.00341

fi=12 | 60 || 0.00284 | 0.25493 | 0.00405 || 0.00141 | 0.17236 | 0.00004 || 0.00299

N = npumber of points at which the current is calculated
n = npormalized strip resistivity
Cecuram = Aaverage rms current amplitude error
Ccurph = Aaverage rms current phase error
oy = average rms bistatic scattering error
oy = average rms backscattering error

Table 2.2 — Comparison of the midpoint and Gauss-Chebychev quadrature

integration schemes for finding the elements in the collocation matrix.
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Another alternative to the basis functions in (2.2-1) is Chebychev polynomials:

Inz)=T _1(2) = cosi(n - 1)co,-l(§)] (2.2-15)

In this case, the optimum spacing of the collocation points are given by the zeros of the

Nth order Chebychev polvmomial:

L x(1 — 0.5)
_ z;== cos[ = ] (2.2-16)
the following equations result upon substituting (2.2-15) into (2.2-3) and (2.2-6):
E-polarization
. N z k a zl
H etz meosdo ; an[r)(zm)T,,_z(Tm) "3 /-GT —I(Z)Jc(kizm - z')dz’
k Zom [
-ig ) T A(E VY Skl — 2")d2’
—e a
k[ 2 o
35 [ TS ilblzm - 2")d2
F a
k e z’ ' ’
- JZ/ T "1(;)}’,,(1:{:,,‘ -z')z'|,m=1.2,..N (2.2-17)
Tm
H-polarization
xs N T, k [° L(kiz z'l) z’
IRE mco8Po __ —_—) - - m — !
He D annlemTans(22) - 5 [ A Sy
k [=m Yi(kizg - 2') z'
~j- — T ——Tp(=)d2’
14 - kizm - 2| 1(cz)
k [z Yi(klzpy - 2')) ., ,
-5 A Tm o ST (=
]4/; kizm — 2’| l(a)dz
k2 Yi(kizgy -2') ', _
,4/: et Tor(Z)e] m=12,, 8 (2219
- The integrals involving only the J, term are computed with an adaptive quadrature

integrator that uses 10-point Gauss-Legendre and 21-point Kronrod formulas on both halves
of a subinterval. This integration subroutine (QKSQ) inay be found in the NAAS library.
Before solving the Y, integral, however, it is split into three integrals. The two end

integrals do not contain any singularity and may be evaluated with the adaptive quadrature
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routine. On the other hand, the center integral does contain a singularity. When the interval
from z , to z, is small, then certain approximations aid in accurately evaluating the integral
over that interval. The first approximation replaces Y, and }; with their small argument

representation.

2. :z i
Yoz) = Zin(3) -+ (2.2:19)
. 2., 2 1. 2
Yi(2) = ;;1"(5) it Ay (2.2-20)

Next, the Chebychev polynomial is assumed to be constant over that interval. Now, a
simple transformation of variables and the formula fox In(z)dz =1 results in

E-polarization:

k[ z ., gt K Tom 2
"I/,; Tor(S)Vilkz - 2')de’ = FAT0(22) 1~ j(0.0287983 - In 4)] (2.2:21)

H-polarization:

,,;. /z"' Tn_l(g)%z%"—‘_——;:—f,—l)dz' - farn-l(%'"){_«.-j;(o.umou “inA- ;,13)]
(2.2-22)
One must be careful to choose a sufficiently small interval where this approximation
holds. When N is large the Chebychev polynomial oscillates very rapidly and the interval
should be quite small. A good size for the interval is twice the distance from the edge of
the strip to the first collocation point. This interval has the advantage of getting smaller
in size as N increases, and when m=n=1 or N, only two of the integrals over the Neumann
functions in (2.2-17) or (2.2-18) need to be performed.
2.2.3 _A Comparison of Collocation with Pulse and Chebychev Basis Functions
In the applications considered in this thesis, pulse basis functions produce better results
than the Chebychev basis functions for several reasons. First, the Chebychev polynomials

must be integrated over the entire interval length of 2a for each matrix element, whereas

the pulses are integrated over a length of 3{, In addition. as N increases, the Chebvchev
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polynomials require more integration points because of the higher oscillation frequency.
The integration is very time consuming due to the many function calls for the Hankel func-
tion. Thus, the major time factor when using Chebychev polynomials is not solving the
matrix equation, but setting-up the 4 matrix. Second, Chebychev basis functions promise
exponential convergence only when there are no singularities on the interval. The Hankel
function singularity when the source and observation points coincide slow down the conver-
gence speed of these basis functions. Third, the pulse basis function’s A matrix becomes
diagonally dominant as the strip resistivity of the strip increases, whereas the Chebychev
basis function’s A matrix does not. The diagonal dominance speeds the convergence of
iterative techniques. Fourth, the ultimate goal is to find the far field scattering patterns
and not the strip current. The Fourier Transform from the current to the far field tends to
smooth the errors. Hence, the calculation of the strip current does not require the accuracy
given by more sophisticated methods such as using chebychev polynomial basis functions.

As a result of the above discussion, pulse basis functions are used in this thesis and
the integral is evaluated with midpoint integration. This combination produces excellent
results while conserving computer time.

2.2.4 Choosing the Number of Basis Functions

It is important to choose enough basis functions to get an accurate result. However,
minimizing the number of basis functions reduces the amount of computer time. Is there a
good value for N so that computer time is minimized without sacrificing accuracy?

An answer to this question depends upon the desired output. An accurate representa-
tion of the strip current density requires more basis functions than an accurate representa-
tion of the scattering patterns. The far field calculations tend to average current errors, so
they have less of an impact on the scattering patterns.

Table 2.3 shows some interesting results with regards to choosing N. The average rms
bistatic scattering errors (o) and backscattering errors (o,,) are calculated by comparing
t he scattering patterns when N=20, 40, and 60 with the scattering patterns when N=100.
One striking observation is that far fewer basis functions are necessary to obtain an accurate
answer for a resistive strip than for a perfectly conducting strip. The resistive strip errors

when N=20 are at least as good as the perfectly conducting strip errors when N=60. When
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the scattering patterns for the cases in the table were graphed, thev were not noticabiv
different as N increased from 20 to 60. Although, graphs of the strip current were slightly
different as N increased. A sampling interval of 12 match points per wavelength is deemed

adequate for the examples presented later.

2.3 Techniques for Solving the Matrix Equation

The matrix equation, (2.2-4), for the strip current density may be solved in one of several
ways. Of the techniques investigated, PLU decomposition and back-substitution is the
recommended approach in this thesis because the matrices are small and well-conditioned.
Another approach is iterative methods. Three tvpes of iterative methods are considered:
1) relaxation, 2) secant, and 3) Steffensen’s acceleration. The final approach is conjugate
gradient. This approach is currently receiving considerable attention in the literature. Often
Conjugate Gradient is considered an iterative method. Here, it is not for two reasons. First,
unlike the iterative methods mentioned, Conjugate Gradient is guaranteed to converge in
a finite number of steps if the A matrix is properly formed. Second, it does not require a
relaxation constant.

Iterative methods and conjugate gradient are generally only used for large, sparse. or
near singular matrices. The matrices in this thesis do not fall under any of these categories.
The motivation for trving these techniques is to use the PO current as a first guess to
speed the convergence of the algorithms. Unfortunately, the PO current failed to increase
convergence much faster than assuming an inititial guess for the current of 0.

2.3.1 PLU decomposition and back-substitution

PLU decomposition and back-substitution is a form of Gaussian elimination where the
lower diagonal matrix (L) contains the factors that converted the matrix A to an upper
triangular matrix (U) using Gaussian elimination. U and L replace the original A in the
computation. The P matrix is a partial pivoting matrix that muitiplies A in order to
interchange rows in the matrix to reduce numerical error.

The NAAS (Numerical Analysis and Applications Software) library has complex PLU
decomposition and back-substitution subroutines. Here, the subroutine CGECO forms the

PLU decomposition and the subroutine CGESL performs the back-substitution.




AVERAGE RMS SCATTERING PATTERN ERRORS!' AS
A FUNCTION OF N, THE NUMBER OF PULSES
—_——-—#"—_——_——*———_——
PULSE
BASIS FUNCTIONS E-polarization H-polarization
n N |l on (00 =90°) | om T (0, =90°) | ou
0.0 20 0.0552 0.0544 0.1131 0.1364
40 0.0198 0.0179 0.0242 0.0379
60 (.0085 0.0075 0.0096 0.0147
20 20 0.0039 0.0081 0.0040 0.0039
40 0.0008 0.0016 0.0021 0.0018
60 0.0003 0.0005 0.0011 0.0010
3(£)? 20 0.0026 0.0055 0.0020 0.0023
40 0.0005 0.0012 0.0017 0.0014
60 0.0001 0.0004 0.0006 0.0005
40dB Taylor =12 | 20 0.0066 0.0074 0.0240 0.0174
40 0.0014 0.0015 0.0035 0.0026
60 0.0005 0.0005 0.0011 0.0008

'o is the rms errror between the scattering patterns with
N=20, 40, and 60 and the scattering patterns with N=100

N = number of points at which the current is calculated
n = normalized strip resistivity
Ocuram = average rms current amplitude error
Ocurph = average rms current phase error
0w = average rms bistatic scattering error
ow = average rms backscattering error

Table 2.3 — The average rms error between scattering patterns with either

20, 40, or 60 basis functions and one with 100 basis functions is listed.
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A total of 3(4N3~6N?-10.V) real multiplications and 3 ¥3~8N?- 32 N real additions’
are required for PLU decomposition and back-substitution. Only 2N? ~ 2N real multipli-
cations and N? - N real additions are required for back-substitution alone. When the same
A matrix is used to solve for the current with a new right-hand-side, the U and L forms
remain the same. The new current is found by back-substitution. Thus. when calculating
backscattering patterns, only 2N 2% «~ 2N real multiplications and .V? — N real additions
are required for calculating the current at each backscattering angle once the ininal PLU
decomposition is done. Backsubstitution is much faster than a single step in any of the

iterative methods or conjugate gradient.
2.3.2 terative Methods

An iterative method for solving the matrix equations in section 2.2 begins with an
initial guess J(®) and computes a sequence of vectors (J° J!, .., J*) that converges to the
correct answer, J, , as k — 20. If one had an excellent first guess. the iterative method
may converge faster than a first guess of 0. Since the FO current is rather simple to
calculate and models the actual current reasonably well (especially for resistive strips), it
1s a good candidate for the first guess. As it turns out, however, PO does not substanually
improve the convergence of these algorithms. When calculating backscattering patterns,
a good first guess is the current from the previous backscattering angle. This guess does
significantly improve the convergence of the algorithms. When calcula . backscattering
currents with iterative methods, one should begir at ¢, = ¢ = 90° and .rocede to ¢ = 0°,
because convergence is much faster at @ = 90° than at ¢ = 0°. Having the current from the
previous angle as a first guess for the current at edge-on incidence substantially reduces the
convergence time.

Three iterative methods are presented in this section. The first method, relaxation.
appears again in Chapter 4 for the solution of a finite difference equation. The second
method. secant method, is a finite difference form of Newton's method. The third method,

Steffensen’s acceleration, has the greatest stability of the three methods.

2.3.2.1 Relaxation

7 Four resl multiplications constitute one complex muitiplicstion and two real additions constitute one compiex
sddition
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Relaxation 1s a modification to the Gauss-Seidel procedure. Its formula for a matrix

solution is given by Burden and Fares. 1985

JE = (=) - = - Y B - Y amJ&""’] (2.3-1)
where

m =row number in vector or matrix
n =column number in vector or matrix
k =iteration number
w =relaxation number
@mn =element of the matrix in (2.2-4) /

vy, =element of incident field vector in (2.2-4)

A starting value for the strip current density, J(©), is either the PO approximation or 0.
The relaxation constant determines the convergence speed of the algorithm. An opti-

mum value of w is Ferziger, 1981

2
@ ooy =
i 1.‘\/(1_'\37“::)

where A,... is the maximum eigenvalue or spectral radius of the A matrix. Rather than

(2.3-2)

calculating Ap,., One often plots w versus the number of iterations to convergence. A very
sharp dip in this graph occurs at the value of wope.

For the matrices in this thesis, w is less than 1, so the method is known as an under
relaxation method. This method requires 4N ? + 2N « 2 real multiplications and 2N? + 3N
real additions per iteration. If the relaxation method converges in 3N steps, then it is as
fast as PLU decomposition and back-substitution. However, even one iteration takes longer
than back-substitution alone.

2.3.2.2 Secant Method
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The secant method is Newton’s method with the derivative approximated by a firute
difference formula. This method searches for a J,(z) such that a function f(J.(z)):O.

Putting the E-polarized integral equation into this form gives

f(-’-(t)) = - Hpe?= % = n(z)J,(z) + ;/-“ J(z\HP (k2 — 2" )de' = 0

m-1 N
f(JS,{‘)) =tm < Y amad P = Y a7 (2.3-3)
n=1 n=m

where Jf,f) is the current update given by (2.3-1) and J,(,f'l) is the last update. The iterative

formula is given by

(k-1) [ple=1) _ jlk=2)
_]'(:)=J(k—1)__f(m )z‘,s:-l)_l"‘ m

m fl(JS:"l)) A
1_
Ao

(2.3-4)

Two inijtial guesses are necessary for starting the algorithm. For bistatic scattering and
backscattering at ¢, = 90°, the first guess is the PO approximation of the current. The
second guess comes from one iteration of the the relaxation algorithm. For the remaining
backscattering angles, the first guess is PO and the second guess is the current from the

previous angle,

This method requires 8N? ~ 4N real multiplications and 4N? ~ 9N real additions
per iteration. If the secant method converges in %N steps, then it is as fast as PLU
decomposition and back-substitution. However, even one iteration takes longer than back-

substitution alone.
2.3.2.3 Steffensen's Acceleration

Steffensen’s acceleration accelerates the convergence of an iterative technique, usually
fixed point iteration. Here it is used to accelerate relaxation. The formula for the algonthm

18 given by ‘Burden and Fares, 1985,
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J.2" =PO approximation or 0

w ° m-1 N

/ j (1) i

JV =1 - )@~ W — Z Gmnd o) - E am,,JS,?)} = relaxation
dmml- n=1 n=m~+1

m-1 N
J("‘t:) =(1 - w)Jf,t) .Y [vm - Z amn.lf;‘:) + Z amnlg)] = relaxation
n=1

L
mm n=m«+1

(- )’

IS -208) < IR

JR =70 _ = Steffensen’s acceleration
If Js.?) does not have the desired accuracy, then substitute J,(:) into J,(,?) and repeat the
steps.

This method requires 8 N2 < 8 NV ~ 4 real multiplications and 4N? + 10N real additions
per iteration. If Steffensen’s acceleration converges in gN steps, then it is as fast as PLU
decomposition and back-substitution. However, even one iteration takes longer than back-
substitution alone.

2.3.3 Conjugate Gradient

The conjugate gradient algorithm combines some of the major advantages of PLU de-
composition and back-substitution, and iterative methods. First, as in iterative methods,
the round-off and truncation errors are limited to the final step. Thus, this method pro-
duces more accurate results for near singular matrices than does PLU decomposition and
back-substitution. Second, as in PLU decomposition and back-substitution, this algorithm
converges to the answer in a finite number of steps. Thus, this method converges in N steps,
whereas iterative methods do not.

The conjugate gradient algorithm is described below [Sarkar and Arvas, 1985

Initialization:

J(® =PO approximation
r0 =1 = 400

P = 4120)
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The following steps are repeated until some tolerance is achieved or the number of

iterations=N:

_'p(k) 2

JUe1) = 7 _ (R ()
Plind) =plR) _ o) 450

“r(b*l).‘iz

k _
8% = cp(k) )2

ptee1) = Atpllr) _ gkip(h)

The norm of a vector is given by

N

idepl =, ral
\Z

=1
where r; is the complex conjugate of vector element r,.

This method requires 8N? ~ 16N real multiplications and 10N? real additions per
iteration plus 8N¥? real multiplications and 2N rea! additions in the initialization. If the
conjugate gradient method converges in gN steps, then it is as fast as PLU decomposition
and back-substitution. However, even one iteration is slower than back-substitution alone
2.3.4 _A Comparison of the Matrix-Solving Techniques

The two criteria for choosing a matrix solving technique are accuracy and speed. with
accuracy being the more important. Accuracy is checked by determining if a techruque
converges to the correct answer and if the numerical errors are tolerable. Speed is checked
by counting the total number of floating point operation (FLOPS) - mulitiplicauors and
additions.

Tables 2.4 to 2.7 help compare the five choices of matrix solving routines. labies 2 4
to 2.6 show the number of iterations needed for one of the iterative methods or ( .. ugate
Gradient to converge to the correct answer (rms error of .01) when calculating tne stnp
current for an incident plane wave at 90°. An “*” means the mcthod diverges and an

”

“s” means it slowly converges (more than 100 iterations). There are four resistive :apers
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n =0,1,2, and z2: two polarizations: E- and H- polarization; two sizes of strips: 2a=2\
and 8A or matrices that are 24 x 24 and 96 x 96, respectively; and two choices of an initial
guess: PO current and 0.

Table 2.7a lists the number of real FLOPS for a single iteration. The numbers from
Tables 2.4 to 2.6 may be substituted into the formulas to determine the total length of time
taken by one of the techniques. If the total number of FLOPS is less than the number in the
last column, then the technique is faster than PLU decomposition and back-substitution.
The number of FLOPS in a single iteration for any of the iterative methods or conjugate
gradient is slower than back-substitution alone.

The number of FLOPS for PO is listed for two reasons. First, to show how fast this
method is compared to all the other methods. Second, to show how much longer an initial
guess of the PO current takes to calculate. If PO reduces the number of iterations by 1,
it is worth using. The hope is that it will substantially reduce the number of iterations,
especially for resistive strips.

The first check for accuracy is to determine whether the methods converge to the correct
answer after a reasonable time. Tables 2.4 to 2.6 show that only the secant method refuses
to converge for all resistive tapers. A value for w is listed for the secant method because
the second guess is found from the relaxation formula. It is also quite slow for the tapered
resistive strips. The relaxation method did not converge for perfectly conducting strips
when w > 1. Thus, only the secant method is discarded as a potential candidate.

As for numerical errors, all the methods provide an adequate representation of the
current for the cases in this thesis. The iterative methods have the advantage of limiting
numerical errors to only the last iteration. Accuracy in all the methods may be improved
by using double precision, if necessary.

The speed of the algorithms are measured by counting the total number of FLOPS
(Floating point Operations) needed to find the strip current for one angle of incidence. For
the iterative methods, the total number of FLOPS = number of iterations to convergence
times the number of FLOPS per iteration. Table 2.7 gives that type of information. Plug-
ging the numbers from Tables 2.4 to 2.6 into the formulas in Table 2.7 result in a good idea
of how fast these algorithms are.
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Number of Iterations to Convergence -

— e ———
e —— _—

E-polarization. initial guess is 0, strip is 2\ wide, matrix has 24x 24 elements

Secant Steffensen’s Conjugate
Resistive taper Relaxation Method Iteration Gradient
w=10|w=0S|w=10]|w=05}w=10|w=05

n=0 15 113 171 10 9 12
n=1 8 7 7 3 3 5
n=2 5 7 4 4 2 2 4
5=z 22 9 24 26 5 4 7

E-polarization, initial guess is PO, strip is 2\ wide. matrix has 24 x 24 elements

Secant Steffensen’s Conjugate
Resistive taper Relaxation Method Iteration Gradient
w=10lw=05|w=10]|]w=05|w=10|w=05

n=0 ¢ 14 227 113 9 8 10
n=1 6 H) 6 6 3 4 4
n=2 4 4 4 4 2 2 3
n=z? 20 8 48 48 5 5 i

w is the relaxation constant for relaxation
* means the method diverges

Table 2.4 — The number of iterations until convergence is listed for the iterative methods
and conjugate gradient when the incident field is E-polarised and the matrix has 24 x 24

elements.
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e e e ——————— e ———————————— et et e el
B e SS e ——— ——

H-polarization, initial guess is 0, strip is 2X wide

Secant Steffensen’s Conjugate
Resistive taper SOR Method Iteration Gradient
w=10|lw=05]w=10]w=05|w=10!w=05
n=20 298 49 87 13
n=1 8 13 6 6 4 4 6
n=2 5 9 4 4 2 2 4
n=az? 160 87 95 49 11 10 13

H-polarization, initial guess is PO, strip is 2\ wide

Secant Steflensen’s Conjugate

Resistive taper SOR Method Iteration Gradient
w=10jw=05|w=10]w=05|w=10|w=05
n=0 * 159 * 39 69 13
n=1 6 8 6 4 6 5
n=2 3 5 4 4 2 2 3
n=1z2 107 38 188 71 5 5 10

w is the relaxation constant for SOR
* means the method did not converge

Table 2.5 — The number of iterations until convergence is listed for the iterative methods
and conjugate gradient when the incident field is H-polarised and the matrix has 24 x24

elanents.
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Number of Iterations to Convergence

E-polarization, initial guess is 0, strip is 81 wide, matrix has 96 x 96 elements

relaxation Secant | Steffensen’s | Conjugate
Resistive taper | constant | Relaxation | Method Iteration Gradient
n=20 w=.32 22 8 16 26
n=1 w=.6 8 14 3 7
n="2 w=.8 5 6 3 5
n=2z? w=.45 14 61 6 12
| N DR R S S R

E-polarization. initial guess is PO, strip is 81 wide, matrix has 96 x96 elements

relaxation Secant | Steflensen’s | Conjugate

Resistive taper | constant | Relaxation | Method Iteration Gradient
n=20 w=.32 20 s 13 26
n=1 w=.6 7 10 4 7
n=2 w=.8 4 2 5
n=1z32 w=.6 18 s 8 12

w is the relaxation constant for relaxation
» means the method converges very slowly (>100 iterations)

Table 2.6 — The number of iterations untll convergence are listed for the iterative
methods and conjugate gradient when the incident field is E-polarised and the matrix has

96 x 96 elements.
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Number of iterations needed to
make the total number of FLOPS
for each technique equal to
the total number of FLOPS for
PLU decomposition and

Technique FLOPS per iteration back-substitution
Relaxation 6N +5N +2 N
Secant 12N% + 13N N
Steffensen's 12N% + 8N + 4 N
Conjugate gradient I8N2 + 16N N

a. The technique is listed in the first column, the number of FLOPS per iteration
is listed in the second column, and column 2 times column 3 approximatelly
equals the total number of FLOPS in PLU decomposition and back-substitution.

Technique

Total number of FLOPS

PLU Decomposition
Back-substitution

PO

L(8N? 4+ 30N? + 38N)
N2 4

9N + 4 + 4 Trig. function evaluations

N

b. Number of FLOPS for PLU decomposition, back-substitution, and PO are listed.

Table 2.7 — The number of Floating Point Operations (FLOPS) are listed for

the various methods given a matrix with N xN elements.




38

PLU decomposition and back-substitution produces the fastest results for the matrices
encountered in this thesis for two reasons. First, the matrices are generally small (less
than 100 x100 elements). The total number of real multiplications for PLU decomposition
and back-substitution and the iterative methods and conjugate gradient are equal at about
100 x 100 elements. Below this point PLU decomposition and back-substitution is fastest
and above this point iterative methods and conjugate gradient are the fastest. Second, the
PLU decomposition and back-substitution only has to be calculated for one angle when
solving for the backscattering pattern. The remaining angles only require backsubstitution.
which takes far less time than a single step in any of the iterative methods.

Table 2.7a compares the number of real operations required for the iterative methods
and conjugate gradient. It also shows the number of iterations that will produce the same
number of total operations as PLU decomposition and back-substitution, back-substitution
alone, and PO. Using the PO current as an initial guess adds a very small number of
multiplications to the iterative methods. Although the total number of multiplications
for PLU decomposition and back-substitution is large, the number of multiplications for
backsubstitution alone is very small. This feature makes PLU decomposition and back-
substitution attractive for calculating backscattering patterns.

The main motivation for trying iterative methods in this thesis is to find out if the PO
current results in a good first guess. Tables 2.4 to 2.6 compare the methods for convergence
speed. The results indicate that PO contributes little to speeding the convergence of the
algorithms compared to using 0 as the first guess. PO fails to be an excellent first guess. be-
cause it models only the real part of the current and not the imaginary part. Consequently.
approximately the same number of steps are needed to converge for the imaginary part as
for the real part with an initial guess of 0. Perhaps some good guess for the imaginary part
of the current would possibly speed up the iteration.

As already mentioned, the current from the previous backscattering angle is an excellent
first guess of the current at the angle presently being calculated. This guess gets better
as the increment between angles gets smaller. For one degree increments, this first guess
results in a 3 to 4 fold savings in the number of iterations to convergence, compared to

starting with 0 as the initial guess.




39

If the matrix were large enough to justify using a technique other than PLU decom-
position and back-substitution, then one of the other techniques must be decided upon.
Relaxation 1s the fastest of the remaining techniques, but is very sensitive to the value of
w. The sensitivity seems to increase as the size of the matrix increases and as the strip
resistivity decreases. If the maximum eigenvalue is known, then wop can be calculated, oth-
erwise calculating the maximum eigenvalue is not worth the trouble and one of the other
techniques should be used.

Steffensen’s acceleration also relies upon the value of w, but as can be inferred from
Tables 2.4 to 2.6, is far less sensitive to this value than relaxation. When the strip resistivity
1s close to 0, then w should be small. As the strip resistivity increases, then the value of
« should also increase. Some approximate formula for finding a good value for w given
the strip resistivity of the strip and the size of the matrix could probably be found, but is
not pursued here. This method is more stable than relaxation and faster than conjugate
gradient, but still requires calculating a value for w.

Conjugate gradient is slower than relaxation or Steffensen’s acceleration, but is guar-
enteed to converge In N steps and does not require the calculation of w. A conjugate
gradient FFT method 'Sarkar, Arvas, and Rao, 1986, is very attractive for large matrices,
because it has all the advantages of conjugate gradient plus significant savings in storage

requirements.

2.4 Calculating the Radar Cross-Section (RCS) of a Strip

The scattering patterns of the current distributions are found from (2.1-10) and (2.1-
14). In the far field (p >> z'), the Hankel functions in these equations may be replaced by

the following large argument approximations ‘Abramowitz and Stegen, 1972):

H(kip - 2") = 33 (5mklp - z')"1 edklo== (2.4-1)

e
L}

HOkp - 2%) = 7% (5mkip — 2'])"Teime=" (2.4-2)

A two-dimensional bistatic radar cross section is calculated from
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E*(o) 2
= lim 2 2.4-3
o(¢) = lim 2mp Fo,) (2.4-3)
which for E- and H-polarizations are
o (¢)=-__'° /nJ (z')e e conegz’ * (2.4-4)
B¥ =sme | °F :

f [} . , 2

7a(0) = g 9iné [ Iz s (24

Backscattering RCS assumes ¢ = ¢, in these equations. Consequently. a new strip current
density is calculated at every angle.

Ordinarily, RCS is given in units of dBsm (decibels above one square meter) or in the
case of a 2-dimensional RCS in dBm (decibels above one meter). Throughout the following
chapters the units of RCS for the strip are given in terms of dBA (decibels above one
wavelength). This type of designation keeps the RCS independent of frequency. Since the
RCS is independent of the magnitude of the incident field, H, is given the value of 1.0. As

a result, the RCS equations in dBA are given by

a , 2
a5(¢)=1.961+1ozog”/ J(z")e k= °°'°dz"] dB) (2.4-6)

. a , 2
og(¢) =1.961 ~ 10!og[;ain¢°/ Jo(z')e?kx cootdy! ] dBA (2.4-7)
k ~a




CHAPTER III

SYNTHESIS OF RESISTIVE TAPERS

The major goal of this thesis is to develop a method of synthesizing resistive tapers that
produce desired scattering patterns from strips. Only simple tapers, such as parabolic and
edge loading, have been reported in the past. Although these simple tapers do lower the
scattering pattern sidelobes, they do not provide precise control over the scattering patterns
as antenna aperture tapers provide over an antenna’s far field pattern.

An extremely effective synthesis procedure for resistive tapers comes from solving the
integral and PO equations for n. Values for 7 is calculated by substituting a current distri-
bution with known far field pattern characteristics into the equations. The integral equation
approach is very accurate, but is complicated to generate and requires a complex strip re-
sistivity. The PO approach is not as accurate, but is relatively fast and produces a real
strip resistivity.

This chapter begins with an analysis of simple resistive tapers then moves on to de-
scribe the integral equation and PO synthesis techniques for resistive tapers. Next, the
Taylor current taper that results in a far field pattern with low sidelobes at desired levels
is presented. Finally, the Steyskal-Shore null synthesis technijue is presented in a form
that generates a current distribution that produces nulls in the scattering pattern. This
current distribution is related to a resistive taper via the integral equation method, since
the resistive taper has real and imaginary parts. The resistive tapers derived from these
current tapers produce the desired far field scattering patterns from a strip.

The figures throughout this chapter contain four graphs: 1) normalized strip resistivity

on the strip. 2) strip current density. 3) bistatic scattering pattern for ¢, = 90°, and 4)

41
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backscattering pattern. When appropriate. each graph has two plots: one for PO and
one for the integral equation approach. The close correspondence between the two plots

demonstrates the validity of the PO synthesis technique.

3.1 Tapering the Strip Resistivity for Low Sidelobes

Past attempts at controlling the scattering patterns from resistive strips include con-
stant and parabolic resistive tapers and edge loading. These forms of resistive tapers do
not provide precise control over the sidelobe level or null locations of far field scattering
patterns. Although superior techniques are presented later. the tapers presented in this
section are the state-of-the-art.

3.1.1 Resistive_Tapers

A strip with a uniform resistive taper

R(z)=r (3.1-1)

has a Jower over-all scattering pattern than a perfectly conducting strip, because some of
the incident field energy is converted into heat instead of current. The sidelobe levels do go
down with this taper, but not relative to the main beam. Thus, a constant taper that lowers
the sidelobes by 20dB also lowers the main beamn by approximately the same amount.

Figures 3.1 and 3.2 coutain graphs of the calculated strip current density and scattering
patterns for a 4\ perfectly conducting strip for E- and H-polarization, respectively. The
PO and integral equation plots show good agreement except in the nulls of the PO patterns
and at angular locations far from the main beam. However, when n=1, the two currents
and corresponding scattering patterns agree much better (Figures 3.3 and 3.4). As the strip
resistivity increases, the two current plots agree even more closely. Figure 3.5b demonstrates
the increased correspondence between the two currents for an E-polarized incident wave with
n=4.0. Notice that the relative sidelobe level of the scattering patterns remains the same
as the strip resistivity increases (Figures 3.5¢ and 2.5d).

The relative sidelobe level may be lowered by tapering the strip resistivity from a
munumum at the center of the strip to a maximum at the edges. In tum, the current

decreases from the center to the edges, thus lowering the sidelobes. One possible taper is
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z:c
Rlz)=r-b> (3.1-2)

where r, b, and c are constants and 2a is the width of the strip. When c=1, the taper is
triangular, and when c=2 the taper is parabolic.

Figures 3.6 and 3.7 show the scattering results of a parabolic taper when an E-polarized
plane wave is incident on the strip. The smooth resistive taper produces a smooth current
taper that lowers the sidelobe level. Increasing the resistive taper by changing b from 1.0
to 4.0, causes the relative sidelobe level to go up close to the main beam but down far from
the main beam (Figure 3.7). Another consequence is the main beam gets fatter and its level
goes down.

A third type of taper has a gaussian shape

R(z) = r = bil — (2ez/a)®: (3.1-3)

This taper is attractive because of its smoothness (It has an infinite number of non-zero
derivatives.). Figures 3.8 and 3.9 show E-polarized results as b increases from 1.0 to 4.0.
These results look similar to the results from the parabolic taper. A slowly varying taper
as in Figures 3.6 or 3.8 produces a very nice scattering pattern with low sidelobes. A verv
steep taper as in Figures 3.7 and 3.9 produces a pattern with a wide main beam and high
sidelobes near the main beam but low sidelobes far from the main beam.
3.1.2 Edge Loading

Edge loading, the final type of resistive taper considered, terminates a conductive strip
with a resistive load a distance q from each edge. The purpose of edge-loading is to mask
the edge contribution to the scattering pattern. In effect, the load provides a transition
from the perfectly conducting strip with R=0 to free space with R=0c. The length and the
resistivity level of the load determines how smoothly the transition takes place. A perfect
match would occur when the discontinuities on the strip are transparent. At that time the
integral equation and PO current and bistatic scattering pattern for a given angle would be
identical.

A careful choice of the length and strip resistivity of the loads can alter the scattering

patterns in desirable ways. A small constant resistive strip added to the edges of a perfectly
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conducting strip lowers the scattering sidelobe level. Increasing the value of the resistive load
beyond a certain value actually raises the sidelobe level, because the scattering contributions
from the loads become very small relative to the contribution from the conducting part of
the strip. At a very high value of strip resistivity, the edge loads have no effect on the
scattering patterns and the strip has the scattering patterns of a perfectly conducting strip
2(a - q) long.

Figure 3.10 shows the E-polarized plots for a 4 strip having constant edge loads of
n = .5 a distance of .5\ from the edges. Compared with Figure 3.1, the scattering sidelobes
from this strip are lower, but the scattering mainbeam does not change much. Figure 3.11
shows the results when the strip resistivity of the load is increased to n = 1.5. Notice that
the width of the main beam increases and the outer sidelobe level goes up compared to
Figure 3.10.

Grating lobes occur in the scattering patterns of an edge-loaded strip, just as thev do in
antenna theory. Consider an 8 wide strip, perfectly conducting at the center, and constant
resistive loads (7=1.0) 2.0\ from either edge. Grating lobes in the bistatic scattering pattern

are given by Mailloux’s formula 1984 for grating lobes in a subarrayed phased array

bp= cos”[g], p==(1,2,..,9) (3.1-4)
q
or @, = 60° and 90°. Figure 3.12c confirms this prediction. Backscattering grating lobes

occur twice as often as the bistatic grating lobes and are predicted from

or ¢, = 75.52°,60°,41.41°, and 90°. Figure 3.12d confirms this prediction.

In order to reduce the abrupt discontinuity at the resistive loads and prevent the forma-
tion of grating lobes, the resistive load can be tapered from a small value of strip resistivity
at the conductive part to a large value at the edge. Tapering the subarrays of a phased
array has also been suggested to eliminate grating lobes {Haupt, 1985]. Figures 3.13 and
3.14 show the dramatic improvement to the scattering patterns when the resistive load has

a quadratic taper rather than a constant strip resistivity. The smooth transition between
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the perfectly conducting strip and its load reduces the current spikes at the discontinuity
which in turn reduces the scattering sidelobes. Figure 3.13 has a taper n = (-:)2 a distance
of 1) from either edge. No grating lobes appear in the scattering patterns and the outer
sidelobes are about 5 dB lower than those of a perfectly conducting strip. Figure 3.14 has
a taper n = 4(f) ’ a distance of 1) from either edge. Again, no grating lobes appear in the

scattering patterns and the outer sidelobes are about 15 dB lower than those of a perfectly

conducting strip.

3.2 Synthesizing a Resistive Taper

The examples of resistive tapers in the last section demonstrate that some control
over the scattering patterns is possible. Ultimately, one wishes to synthesize a resistive
taper from any current distribution on the strip that leads to a desired scattering pattern.
Antenna theory provides many types of synthesis techniques for relating desired far field
pattern characteristics to the aperture taper of the antenna. Another step is needed in
scattering theory that relates the current taper to the resistive taper.

The objective here is to develop a synthesis technique for relating a current distribu-
tion to a strip resistivity distribution on the strip, then borrow one of the many synthesis
techniques that already exists for relating the desired far field pattern characteristics to
a current taper. This chapter presents two techniques for synthesizing a resistive taper.
The first solves the integral equations for the strip resistivity. This method is more exact
than PO but requires complex resistivities. The second solves the PO equations for the
strip resistivity. This method is not as accurate as the integral equation approach but only
requires real valued resistivities.

3.2.1 Synthesis of a Resistive Taper from the Integral Fquations

The strip resistivity for a given current distribution may be found by solving (2.1-11)
or (2.1-15) for .

E-polarization:

pllzcos du _ ;/ J,(z')}]f,z)(klz - zlf)dz'} (3.2-1)

H-polarization:
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1 ; k [° 1 ~
- : Jhzcos ¢o _ ¥ J ' (2) Iy _ g ' )
n(z) ——J’(z)[smdioe i), oz )——k:z—:’le (k'z -z )dz] (3.2-2)

The current distrib-:tions come from synthesis techniques in antenna theory (see sections
3.3 and 34). If the same numerical integration techniques used to evaluate the custent in
(3.2-1) and (3.2-2) as are used to evaiunate the current in (2.1-11) and (2.1-15), then the
exact desired current will be found when solving (2.1-11) and (2.1-13).

The strip resistivity derived in this manner is a complex value, which means that not
only does the conductivity of the strip vary, but the real part of ¢ must vary too. As
such, a resistive strip can no longer be modeled by a substrate with an ¢ =~ ¢, that is
coated with a conductive material. Instead, the real part of the dielectric constant of the
substrate must also vary as a function of position. Some scattering pattern characteristics,
for instance placing a null at a desired angle, are obtained only through modifying the
amplitude and phase of the strip current. Complete control over the amplitude and phase
of the strip current is only possible through a complex strip resistivity. A variable complex
strip resistivity is much more difficult to manufacture than a strip resistivity with a variable
real part and a constant imaginary part. Fortunately, the imaginary part of the resistive
taper is often quite small, as in many low sidelobe tapers. In that case, either the magnitude
or the real part of the resistive taper is sufficient to elicit the desirable characteristics in the
scattering pattern.

3.2.2 Synthesis of a Resistive Taper from Physical Optics

An alternative to solving the integral equations for 5, is to solve the PO equations for
n. This alternative has its roots in inverse scattering. Boerner '1980], for example, suggests
that PO is the most reasonable approach to inverse scattering problems. He does caution
that PO has limitations such as

1. PO applies to targets with metallic surfaces.

2. PO approximation gets worse as bistatic angle increases.

3. PO docs not account for multiple reflections.

4. PO does not account for creeping waves.

These limitations can be severe for metallic strips. However, as shown in Chapter II,

PO equations also exist for non-metallic surfaces. Although these equations do not account
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for multiple reflections from the edges or creeping waves, a smoothly tapered strip resistivity
considerably reduces these effects. Also, the smoothly tapered strip resistivity extends the
accuracy of PO in the bistatic scattering pattern to angles closer to the edges.

The strip resistance is found by solving (2.1-28) and (2.1-29) for n(x).

E-polarization:

) S 1
= — _glkzcos do _ .
"= TR 2519, (3:2:3)
H-polarization:
_ sing, jexcosda sing, )
n= _—J,(z)e < (3.2-4)

Within the lLimits of accuracy of the PO, these values of n(x) produce the desired strip
currents which in turn produce the desired scattering pattern. The advantage of using this
technique is quite apparent: it is easy to calculate 7(x) compared to the integral equation
approach.
3.2.3 Relating the Desired Current to the Strip Resistivity
It is logical to assume that ¢, = 0 in the synthesis equations, otherwise an unnecessary
phase shift is required in the current, which means the strip resistivity derived from the
integral equation and PO approaches must be complex. These equations now take the form
E-polarization integral equation:

n(z) = % - f/.:h(z')as,”(kaz - z")dz’ (3.2:5)

P

H-polarization inte equation:

1 k e ! 1 n ]
we) = gy -7 [ I g Bk - 2 (3.2:6)

E- or H- polarization PO equation:

1 1
'I(f)=Hz—)—§

Observe that the leading terms in these three equations are identical and that the PO

(3.2:7)

equation is the same for both polarizations. If the first terms are dominant, then the three
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equations give nearly the same result. Consequently, the synthesis techniques are relativelyv
independent of the polarization'

When the resistive taper is first computed, it may have negative or exceptionally high
values. To eliminate any negative real values of strip resistivity, the taper is normalized bv
following these steps:

1. Find the smallest value of strip resistivity in the taper and its location, Z m;n.

2. Assume the minimum strip current density, J,(z min), Occurs at this point.

3. Specify the minimum value of the strip resistivity, fm.n. Nmin is tvpically 0.0.

4. Find a real conversion constant, v, such that 4 produces a current 9J,(z m;n) at the
point z .. v is given by one of the following equations:

PO:

1
y = Real{ VR P T—— 0.5]} (3.2-8)

Integral Equation E-polarization:

1
v = Real (3.2-9)
{J,(zm,.)n,...,. A2 042 B (kiz - = ‘)dc'}
Integral Equation H-polarization:
v = Real ! 5 } (3.2-10)
J (zmm)nmm + 1 f_ I) h\t- H (k -z )dz’

5. Multiply the derived current distribution by ¥ and solve for the new values of 7
using (3.2-3) to (3.2-7). The new taper has a minimum value of n,,,, and produces the
same relative scattering pattern.

Another important realization is that these synthesis techniques work for the backscat-
tering pattern as well as the bistatic scattering pattern, even though 7n(z) is derived for only
the normal incidence angle. At normal incidence (¢, = 90°), the phase of the current across
a resistive strip is nearly constant. The small values for o pn in Table 2.2 confirms this
fact, since PO has 0 current phase across the strip for any polarization and strip resistivity
when ¢, = 0. Thus, the current phase may be assumed to be zero with reasonable accuracy.

However, as ¢, varies from 90°, a nearly linear phase shift is produced in the current across
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the strip. If the strip had infinite width, the phase shift would steer the main beam of the
scattering pattern to ¢ = —¢@,. This is Snell’s law. A linear phase shift across the aperture
is also used to steer the main beam of an antenna. The larger ¢, and the smaller the strip,
the less Snell’s Law applies, because the edges make a large contribution relative to the
surface. In fact, H-polarization has a traveling current that becomes more dominant near
edge-on incidence Peters, 1958]. Thus, a “reasonable” variation in ¢, should only “steer”
the main beam of the scattering pattern without having much effect on the shape of the
pattern. As a result, we should expect the backscattering pattern to also exhibit desirable

properties at angles other than those near grazing incidence.

3.3 Taylor Low Sidelobe Synthesis Technique

An effective way to control the scattering patterns from a strip is to relate a strip
current density that produces the desired scattering pattern to a resistive taper via (3.2-5)
to (3.2-7). Low sidelobes over a specified angular sector is a very desirable far field pattern
characteristic. Many aperture tapers are available to generate low sidelobes in the far field
for phased array antennas, as well as continuous apertures. Some of the more popular
tapers include Chebychev, Taylor, Binomial, and Bayliss. These tapers have the common
characteristic that the height of the sidelobes decreases or remains constant as the angle
from the main beam increases. Of these, the Taylor current taper [Taylor, 1955 has the
most desirable characteristics.

This analysis uses the Taylor amplitude taper to relate the far field pattern to the
current on the strip for two reasons.® First, it produces very desirable far field pattern
characteristics. The taper limits the first 7i-1 sidelobes on either side of the main beam to
a height of q dB below the peak of the main beam, while the remaining sidelobes fall-off
exponentially. Second, the taper is smooth with little to no increases in current at the edges.
This advantage is extremely important when using PO, since PO does not take edge effects
into account. Tapers with large increases in current at the edges are difficult to physically

realize (e.g Chebychev).

8 New techniques have been reported that give arbitrary sidelobe topography [Elliot, 1981s and 1985bl. In other
words, each sidelobe of the antenna pettern may be specified at s certain height. Instead of using one of these
methods, more standard low sidelobe taper with the option of placing nulls in the pattern (section 3.3.2) is used
here.
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The current amplitude weights for the Taylor taper are given by'Stutzman and Thiele,

1981]

J{z) = 2—1&[1 - 2i f(n)cos(’%)] (3.3-1)
n=1

where

f(n) = { ﬁ:‘}%-)zl%‘r-n) (- 5,
0,

BB
vV A
3 3

— [ A2+(m-05)? T =
W = {"V AT-(moos)7: m'<nm

n, nj 27
7l — 1 = number of sidelobes q dB below the main beam
z = distance from center of strip in wavelengths

2a = length of strip in wavelengths
1

A= —cosh™' R
n

R =109

Figure 3.15 shows the resistive taper der: -‘ed from (3.2-5) and its corresponding induced
current and scattering patterns for a 30dB, 7=6 Taylor current taper on a 4 strip with an
E-polarized incident plane wave. Figure 3.15¢ shows the desired bistatic scattering pattern
perfectly replicated from the complex strip resistivity. As predicted, the backscattering
pattern bears a rather good resemblence of the desired pattern. Although the backscat-
tering pattern does not go to zero at edge-on incidence, it is about 18dB lower than the
backscattering pattern of the perfectly conducting strip.

A resistive taper may also be synthesized form the same Taylor current taper using PO.
This time, the taper is real-valued. Figure 3.16b is the PO resistive taper. The strip current
density calculated usi z PO and the integral equation approaches are shown in Figure 3.16a.
These currents agree vary closely. The corresponding bistatic scattering patterns are shown

mn Figure 3.16c. Notice that the PO and integral equation patterns nearly overlay except
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at 09 to 15° observation angles and right at the null locations. The integral equation
backscattering pattern in 3.16d actually resembles the desried Taylor pattern better than
the backscattering pattern in 3.15d. Again, the PO and integral equation approaches agree
very well except at 0° through 15° observation angles and at the null at 30°.

Two other ways of getting real-valued resistive tapers are taking the real part of or the
magnitude of the tapers derived from the integral equation formulas. Examples of these
procedures applied to the taper in Figure 3.15 appear in Figures 3.17 and 3.18, respectively.
The scattering patterns closely resemble the far field patterns of the desired Taylor taper.
Of the four methods of getting a resistive taper, the PO approach produced a backscattering
pattern most closely resembling the desired Taylor taper. Consequently, all the low sidelobe
Taylor tapers in the remainder of this thesis are derived from PO.

The PO synthesis technique works equally well for H-polarization (Figure 3.19). The
resistive tapers in Figure 3.16 and 3.19 are identical and the current taper and scattering
patterns are very similar even though the polarizations are orthogonal.

Much lower sidelobes are also possible. Figures 3.21 and 3.22 show the resistive PO
tapers of a 40dB =12 Taylor current taper for E- and H-polarizations, respectively. The
strip current density and scattering patterns are calculated using the integral equation and
PO approaches and are shown together for comparison. Notice the very close agreement

between the two approaches.

3.4 Modifying the Current on a Strip for Nulls

Occasionally, nulls at certain angles (particularly at edge-on incidence) in the far field
pattern are desirable in addition to or instead of low sidelobes. This section begins by
describing a technique reported by Shore and Steyskal for placing nulls in the far field
pattern of an array. It is used to place multiple nulls in a bistatic scattering pattern or a
single null in a backscattering pattern. Placing multiple nulls in a backscattering pattern is
desirable in some cases, but is considerably more difficult to do. The problem is discussed

at the end of this section, but not solved.

3.4.1 Nulling by Minimization of Current Perturbations
Although Shore and Steyskal {1982 developed this technique for phased array antennas,
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it also works with continuous current sources, in particular current induced in a resistive
strip.
The current distribution on the strip that generates nulls at specified angles in the

bistatic scattering pattern is represented by the quiescent current, J,(x), plus a perturba-

tion, J(z)6(z).

Jo(z) = Joo(z)(1 - §(2)) (3.4-1)

In the far field, this new current produces nulls at M locations

S(tm) = / J(z)e?* = mdz =0 form=1,2,.,. M (3.4-2)

where S(¢) is the relative far field pattern. The above integral may then be solved using

mid point integration

N N
S(bm) =B Jnetrortm = AN (1 + §,)Jne ™ ncorem = (3.4-3)

n=1 n=1
where

Jn = current that produces nulls in the far field
Jon = quiescent current

§, = perturbation to the quiescent current

N

a

A= v = length of current segment

S = far field pattern

Rearranging (3.4-3) into a form amenable to matrix solution yields

N N
3 AbplpeitEacsn = _ N AT et = S ($), m= 1,2, M (3.44)

n=1 n=1

where S, is the quiescent relative far field pattern.
Now that (3.4-4) is in the form of M equations with N unknowns, where M<N, a least
squares solution is possible. Usually, the minimum norm solution to the matrix equation is

given by
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(A'A)z = A'b (3.4-5)

where { is the complex conjugate transpose of matrix A. The unknown vector, x, is found
using PLU decomposition and back-substitution. For this application, however, M<<N

and a simpler solution is given by

z=A'(A4N)"" (3.4-6)

Rather than using PLU decompositition and back-substitution on the N x N matrix (A'4),
the actual inverse of (AA')~! is computed since it is only an M x M matrix compared.
If the current perturbations are minimized in a least mean square sense
N
Y i6n? = minimum (3.4-7)

n=1

then the components of (3.4-6) take the form

z=(61,65.. 6NT (3.4-8)

b =[5(¢1),5(82), .. S(dum))T (3.4-9)
Jlejkzxcala Jzejluacooh JNej"’ Ncosdy
J ejlwl cos» J e Jkza1cosn o k= NcosER

a=| * e (3.4-10)
Jlejh.‘cowu J)cﬂu‘gcowu JNC)BNwttm

where 7 is the transpose of the vector.
The minimization in (3.4-7) is, of course, not unique. One other interesting approach

is to have

N
Y 174 = minimum (3.4-7)
n=1

This approach minimizes the perturbations to the far field pattern rather than the pertur-
bations to the current.

Figures 3.22 to 3.24 show examples of the nulling technique using the integral equation
approach to derive the resistive taper. Figure 3.22 is an example of placing nulls at 20° and
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50° in the bistatic scattering patterns of a 4 perfectly conducting strip. The reisistivity is
complex with small variations in the real and imaginary parts. In order to avoid negative
values of strip resistivity, the taper is normalized using the procedure outlined in section
3.2.3. The current still exhibits singularities at the edges, even with the resistive taper. No
nulls appear in the backscattering pattern.

Figure 3.23 shows the scattering results when nulls are placed in a low sidelobe taper.
As before, the nulls are at 20° and 50° in the bistatic scattering pattern. The quiescent
resistive taper is derived from a Taylor current taper using PO.

Figure 3.24 is an example of placing a single null in the backscattering pattern at 0°.
The strip current density has large unrealistic variations across the strip. This example
does show, though, that it is at least theoretically possible to place a single null in the
backscattering patterns of strips. The resistive taper derived for backscattering nulls does
not place nulls in the bistatic pattern at 90°. They do, however, place a null in the specular
direction of the bistatic scattering pattern calculated at the angle of the null.

3.4.2 Placing Multiple Nulls in the Backscattering Far Field Pattern

Placing multiple nulls in the backscattering far field pattern of a strip is conceivably
possible, but the procedure is considerably more complicated and will only be outlined here.
The problem with placing multiple nulls in the backscattering pattern of a strip is that a
different induced strip current density contributes to the scattering pattern at each angle.
Placing multiple nulls in a bistatic scatteting pattern is simpler, because only one strip cur-
rent density distribution contributes to the scattering pattern. The Shore-Steyskal nulling
methud places multiple nulls in the far field pattern of one strip current density distribution.
In turn, a resistive taper is synthesized form this strip current density distribution. As the
angle of incidence changes in the backscattering pattern so does the induced strip current
density. The Shore-Steyskal method can calculate a strip current density that places a
single null in the specular direction of a bistatic scattering pattern which also places a null
in the backscattering pattern in the same direction. The same method can also produce a
null in the backscattering pattern in a different direction. However, two different resistive
tapers are needed to produce the two different strip current densities. Since the resistive

taper cannot vary, the Shore-Steyskal method is not adequate for placing mmultiple nulls in
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the backscattering pattern.

More than one resistive taper can place a null in the specular direction of a bistatic
scattering pattern. Placing multiple nulls in the backscattering pattern requires finding one
resistive taper that results in nulls in 2 or more specular directions. The strip resistivity
perturbations may be very erratic. Iterative techniques, steepest descent, and non-linear

programming are possible methods to use in finding a resistive taper that causes multiple

nulls in the backscattering pattern.




CHAPTER IV

STATIC RESISTIVITY MEASUREMENTS USING A FOUR-POINT
PROBE

An important step in the manufacturing process of a resistive sheet with a low sidelobe
resistive taper is accurately measuring the sheet resistivity. Errors in the measurement
process manifest themselves as errors in the scattering patterns of the sheet. If the errors
are large enough, then the sidelobes will not meet the tolerances of the desired taper.

Three viable nondestructive techniques for measuring sheet resistivity are four-point
probe, network analyzer, and two-point probe measurements. The four-point and two-point
probe measurements are static measurements, while the network analyzer measurement is
an rf measurement. Other, perhaps more accurate, techniques are available for measuring
the sheet resistivity, but they involve destroying the test object. For instance, cutting a
small square from a resistive sheet, painting highlv conductive strips on both sides of the
square, then measuring the sheet resistivity with an ohm meter, gives an accurate answer.
This technique is unacceptable because it destroys the sheet.

Four-point probe measurements of sheet resistivity have been of major importance in
semiconductor electronics. The four point probe has two outer probes that insert a known
current on the surface of the sheet and the two inner probes measure a voltage drop due
to the current. A simple formula then relates the resistance on the sheet to the current
and voltage drop. This method was used to determine the resistivity of the experimental
resistive sheet; hence, it is of most interest here.

Network analyzer measurements of sheet resistivity have been limited. This method is

attractive because the measurement is performed at the frequency of interest. The network
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analyzer determines the reflection coefficient of the material under test which then relates to
the complex dielectric constant of the medium. This method has been successfully applied
to liquids such as water iStuchly, 1982] and to vegetation such as leaves {ElRayes, 1987].
Wang also used this method to measure the resistivity of a tapered resistive groundplane
[Wang, 1985].

Two-point probe measurements do not provide the accuracy of the four-point probe
measurements. Wang [1985] measured resistive sheets with the two point probe and found
the measurements varied significantly from one measurement to the next. She attributes
this problem to the fact that the measured resistivity depends upon the contact between
the probe and sheet. To help alleviate the problem, she averaged twenty sheet resistivity
measurements to get an estimate of the actual sheet resistivity.

The first part of this chapter describes an analytical technique for finding the sheet
resistivity of a uniform sheet using a four-point probe. Although it is derived for a uniform
shzet, it is used to measure the sheet resistivity of tapered sheets. The second part of
the chapter derives a partial differential equation for the voltage on the resistive sheet and
solves for the voltage using Successive Over Relaxation (SOR). Results of the analytical and
numerical methods are compared. Then, the accuracy of extending the analytical results
to tapered sheets and measurements close to the edges is examined with the numerical

method.

4.1 Analytically Calculating the Sheet Resistivity of a Uniform Resistive Sheet

from Four-point Probe Measurements

Methods of calculating the static resistivity of materials from four-point probe mea-
surements have appeared in the literature for many years. Valdes (1952] reports theoretical
and experimental results on the effect of electrode spacing on measuring the resistivity of
germanium semiconductor materials. He also gives various theoretical corrections to resis-
tivity measurements on a finite piece of germanium [Valdes, 1954]. Uhlir [1954] and Smits
{1957! provide analytical solutions for finding the resistivity of a surface using image theory.
Although analytical solutions are not developed for tapered resistivities, they can provide

a means of checking numerical algorithms developed for tapered resistive sheets.
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Figure 4.1 is a diagram of a four point probe measurement system with a probe spacing
of s. The probes lie along the y axis and symmetrically about the x axis. A direct current
(I) passes through the outer two probes and a voltage differential (AV) appears between
the inner two probes. One may find the resistivity by knowing the probe spacing, size of
the resistive sheet (2axd), and the voltage and current between the inner and outer probe
respectively.

Assuming the resistive sheet lies in the x-y plane and the resistivity does not vary in

the ¢ or z directions, then Gauss' law states that

//E-E’s'zq (4.1-1)

and

E(p) = —— (4.1-2)

The voltage drop between terminals 1 and 2 due to the positive current source is given by

2 24
f= E.d-= 2 gy =3 i
‘A = ‘/. E .- d /; wae dy 2re In2 (41 3)

Likewise, the voltage drop between 1 and 2 due to the negative current source is given by

. q
Vg= —1In2 4.1
B= 5 (4.1-4)

The total voltage drop between 1 and 2 is given by the superposition of the results form

(4.1-3) and (4.1-4)

AV =V,-1p= ;“:mz (4.1-3)

Using (4.1-2), (4.1-5) may be written as

2
AV = 1-”;2/ RJ - dl pde (4.1-6)
0

Since R does not vary with @, it can be taken outside the integral.
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Figure 4.1 — Diagram of a four point probe measuring system. The ocuter probes insert a

current | and the inner probes measure a voltage differential AV.
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Rin2 [*~
AV :—/ Jpdo (4.1-7)
T 0
AV Iln2 L8
R - * ( <4 )
Solving (4.1-8) for R gives
AV=
R=21T 1
T3 (4.1-9)

Since (4.1-9) is not valid for finite resistive sheets, a correction factor is needed to take into
account the finite size of the resistive sheet. Equations have been developed to sum the
current points and their infinite number of images to find AV between the voltage probes
which are symmetrically placed about the center of the sheet. Assuming that V, I, a, d,

and s are known, the equation for the resistance is 'Smits, 1958'

R= —Aic(é %) (4.1-10)

’
a s

where Table 4.1 lists the values for C (E% , 22).

4.2 Numerically Calculating the Resistivity of a Tapered Resistive Sheet

The solution in the preceding section assumes several simplifications to the problem.
First, the probes must lie along the y axis and symmetric about the x axis. Second, the
resistivity must be constant. Neither of the simplifications is possible when measuring the
resistivity of a tapered resistive sheet. In this case. one must resort to a numerical sclution
of the static fields.

Static fields have a solenoidal current:

V.J=0 (4.2-1)

Substituting J = -GV’ into this equation and expanding V into its rectangular represen-

tation vields

0G(z,y) 0V (z,y)
oz oz

8V(z,y) 0G(z,y)8V(z,y)
dz? dy dy

8%V (z,y)
Oy?

+ G(z,y) =0 (4.2-2)

+G(z,y)




2;‘1 -24; =1 -2‘; =2 -2% >2
1.0 0.9994
1.25 1.2248
15 1.4788 | 1.4893
1.75 1.7196 | 1.7238
2.0 1.9454 | 1.9475
25 2.3532 | 2.3541

3.0 | 2.4575 | 2.7000 { 2.7005

4.0 | 3.1137 | 3.2246 | 3.2248
5.0 1 3.5098 | 3.5749 | 3.5750
7.5 | 40095 | 4.0361 | 4.0362
10.0 | 4.2209 | 4.2357 | 4.2357
15.0 | 4.3882 | 4.3947 | 4.3947
20.0 | 4.4516 | 4.4553 | 4.4553
40.0 | 45120 | 4.5129 | 4.5129
oo | 4.5324 | 4.5324 | 4.5324

Table 4.1 — Correction factars for measuring a finite sheet with a four point probe. The

variables are s=probe spacing. 2a=width of sheet, and d=length of sheet.
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where G = ]‘& is the sheet conductivity. Assuming that the resistivity varies only in the

x-direction reduces the above equation to

BG(z)a‘ (z,y)
(2) =5~ 8z oz

For numerical solution, this equation is placed into a finite difference form using fourth order

-V (z,y)=0 (4.2:3)

differencing schemes with equal spacing for the first and second derivatives. The indices

give the location of the grid point, where n is in the x-direction and m in the y-direction.

%%)[G(" ~2)-8G(n -1} -8G(n~1) - G(n~ 2)]x

1 , i . ,
12h[l(n—2m) 81 (n - 1,m) ~ 81 (n-1,m)-x(n+2,m)],

1 , . _ _ ’
=73 [16(V(n = 1m) + V(n - 1,m) = V{n,m ~ 1) = V(n.m = 1) - 60V (n.m))

—(V(n +2,m)~V(n~2,m)~V(nm=-2)=V(nm- 2))} =0 (4.2-4)
where
h = grid spacing ip x and y directions
n = point along x, n=1,...,.N
m = point along y, m=1,.. .M
N = number of points along x that lie on the resistive sheet
M = number of points along y that lie on the resistive sheet

Solving this equation for V(n,m) gives

Vin,m (“) [G( ~2)-8G(n~1)~8G(n~1) - G(n ~ 2)] x
[V(n - 2,m) - 8V(n - 1,m) + 8V(n + L,m) = V(n ~ 2,m)]
616[16(1/(11 +1Lm)+ V(n~1,m)~V(nm+1)+V(n,m-1))~
(Vin+2,m)+ V(n = 2,m)+ V(n,m+2)+ V(n,m- 2))] (4.2:5)

Figure 4.2 shows an example of a finite difference grid. The N+4 grid points in the x
direction are spaced h apart, and the M+4 grid points in the y direction are also spaced h
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apart. The extra 2 rows and columns of grid points along each edge are necessary to form

the Neumann boundary conditions.

When G is constant, the first term (4.2-3) becomes zero, leaving the familiar Laplace’s
Equation. Actually, if h is chosen small and the difference between G at n-1 and n+1 is
small, then this term may also be ignored.

Two voltage source points (+V and -V) are located at the grid points corresponding to
the current probes of the four-point probe. An initial guess for V is the solution of Laplace’s
equation for the two-wire transmission line. This initial guess accelerates convergence of
the iterative method.

SOR is an efficient way to iteratively solve this difference equation. It takes the form

Vaew(n,m) = (1.0 - w)Vorp(n,m) + wV{n, m) (4.2-6)

where 1’4 is calculated from (4.2-3).

The speed of the SOR iterative method depends upon the value chosen for w. The
optimum w is given by (2.3-2). Another way of finding the optimum w is to plot w versus
the number of iterations to convergence. The curve has a sharp minimum at the optimum
w. Both there methods are time consuming.

There are some formulas available for estimating w for the Laplace equation. When the

surface is rectangular w is given by 'Varga, 1962]

4

- 4.2.7
YT s N icos Z + cos X]2) ( )
When the surface is square then [Pearson, 1983]
w =2 - 2sin( = 4.2.8)
w=2- un(—ﬁ) (4.2-

- When m=n and sin § is very small, these two equationsare the same.
The boundary conditions for this problem are that the normal component of the deriva-
tive of V at the edges is zero. In order to numerically represent a boundary condition, two
extra rows of grid points on the top, bottom, and two sides of the M x N grid are necessary.

The derivative is estimated by a fourth order approximation which leads to the equation
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av , ,
atn=1: . =0 -V(-1,m) = V(3,m) and
1'(0,m) = V(2,m) (4.2-9)

Similarly, the other three boundary conditions are

1%
atn=N: ?9—’::0—» V(N -2,m)=V(N +2,m)and
V(N -1,m)=V(N-2,m) (4.2-10)
ov
atm=1: — =0— V(n,-1) = V(n,3) and
9y
V(n,0) = V(n,2) (4.2-11)
av . .
atm=M: E:O—' Vin,M -2)=V(n,M + 2) and
VM -1)=V(n, M +1) (4.2-12)

The rows corresponding to n=-1, 0, N+1, and N+2 and the columns corresponding m=-
1, 0, N+1, and N+2 do not lie on the resistive sheet. After each iteration the boundary

conditions (4.2-9) to (4.2-12) update the extra edge points before starting the next iteration.

The sheet current density can be calculated from the voltage by

J(n,m) = - G(n,m)i%{ [V(n -2,m)-8V(n-1,m)+8V(n+1,m)-V(n+-2,m)z~
Vin,m -2) - 8V(n,m-1) ~8V(,m+1) - V(n,m + 2)]5} (4.2-13)
The current, I, at the voltage source points may be found by integrating J around one

of the voitage source points.

I= /7-37':
h{J,(n.m —2) =~ Jn,m+2) + Jo(n - 2,m) - Jo(n + 2,m)+
JAn-1m=-2)-Jn-1m+2)+J(n-2,m~-1)-J(n+2,m-1)+
Jn+1m=-2)-Jn=-1m+2)+J(n-2m+1)=J(n+2,m+1)+
-12-[.],(71 C2m—2) e Jin-2m~2) - Ju(n+2,m-2) - Jo(n+2,m+2)+

JAn=2,m-2)~J,(n-2,m=+2) -J,(n+2,m-2)-J,(n+2,m+2)}}.2-14)
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Table 4.2 compares the actual R of a 4A x 4 with the R calculated from (4.1-10) using
AV and I from the numerical solution and C from Table 4.1. The first 3 rows in the table
show the effect of moving the probes (spaced s=.2) apart) from the center of a uniform
resistive sheet toward the edge. Close to the edge, the error in the calculated resistivity is
quite high (20.20%). This large error occurs because the correction factor, C, in (4.1-10)
was derived for measurements made at the center of the sheet.

The next two rows show the importance of close robe spacing. Measurements near the

center do not require close probe spacing, while measurements near the edges do.

Rows 6 and 7 show that edge effects have a greater impact when the edge is parallel to
the line of probes than when the edge is perpendicular to the line of probes.

The remaining rows show the results for resistive sheets with a parabolic resistive taper.
The steepness of the taper had little impact on the error. Unlike the error in the calculations
for the uniform sheet, the error for the tapered sheets increases towards the center of the
sheet where the resistivity is very small. This occurs because the current follows a path of
least resistance which is near the center of the sheet.

Figures 4.3 and 4.4 show the voltage and magnitude of the sheet current density contour
plots when the resistive sheet is 41 x 4, has a constant resistivity of 2, is divided intc a
41 x41 grid, the current source is located at (18,16) and (24,16), and the voltage is measured
between points (20,16) and (22,16). The next two figures (4.5 and 4.6) show the contour
plots when the sheet has an .01 + 3z resistive taper, the current source is at (18,16) and
(24,16), and the voltage is measured between points (20,16) and (22,16). Notice how the
sheet current density contour lines are influenced by the highly conductive center of the
sheet. This influence creates errors in the measurements. The next four figures (Figures
4.7 to 4.10) show the contours when the measurements are done closer to the edge. The
constant and tapered resistive sheets have very similar contours in this case. Although,

some current still leaks through to the center of the tapered sheet.
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source locations | AV 1 Taper (n) | Actual R | Calculated R | % Error
(o.m)
18,21 22719 | 4.9649 | constant 2.0 2.0370 1.85
24,21
‘ 18,10 2.2878 | 4.8965 | comstant 2.0 2.0799 4.00
24.10
18.4 2.4216 | 4.4843 constant 2.0 2.4039 20.20
24,4
15,21 1.8822 | 3.9590 conpstant 2.0 2.0067 0.00
27,21
15,4 2.2487 | 3.2936 | constant 2.0 3.0393 5197
274
4,21 2.2983 | 4.8033 | constant 2.0 2.1300 6.50
10,21
44 2.4558 | 4.2883 constant 2.0 2.5493 2747
104
18,10 2.1649 | 34.2168 01+x? 0.31 0.2817 9.14
24,10
18.4 2.2970 | 13.4987 Ol+x? 0.73 0.7575 3.77
24,4
18,10 2.1550 | 11.7415 | .01+3x? 0.92 0.8170 11.19
24,10
184 2.2043 | 4.5592 0143x2 2.18 2.2402 2.76
244
18,16 1.9805 | 60.0656 | .01+3x? 0.20 0.1468 26.61
24,16

Table 4.2 — Comparison of the actual R for a 4) x 4) sheet (41x41 grid) with that found
by substituting the numerical calcalations of AV and I into equation 4.1-10.
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source at at (18.16) and (24.16). and A V' measured between (20,16) and (22.16).

Figure 4.4 — J contours for a 4) x 4\ sheet (41 x 41 grid) with
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source at at (18.4) and (24.4), and AV measured between (20.¢) and (22.4).
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Figure 4.9 — Voltage contours for a 41 x 4\ sheet (41 x 41 grid) with n

current source at at (18.4) and (24.4), and AV measured between (20,4) and (22.4).
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CHAPTER V

EFFECTS OF ERRORS IN THE RESISTIVE TAPER ON THE FARFIELD
SCATTERING PATTERNS

The theoretical low sidelobe resistive tapers derived in Chapter 3 have practical lLim-
itations. Tolerances in the metal deposition and resistivity measurement processes will
introduce a certain range of errors in the resistive taper. These errors are modeled as ran-
dom and/or correlated and cause the induced surface current density to deviate from the
desired surface current density. In turn, the scattering pattern sidelobes differ form those
calculated from the no-error resistive taper. The extent of the errors determines the lowest
possible average sidelobe level in the scattering patterns of the strip.

This chapter begins with a review of error tolerance theory in electromagnetics. From
there, the error models for the resistivity, PO and integral equation surface current densities.
and bistatic scattering and backscattering patterns are derived. An rms average ertor level
is calculated and tabulated for several tapered resistive strips. Computer plots show the
error and error-free resistivity, current density and scattering patterns from the PO and

integral equation approaches, as well as the isolated contributions from the errors alone.

5.1 Background

Relating errors in a resistive taper to perturbations in the scattering patterns of a strip
is a new area of study. Similar topics that have been investigated include antenna error
tolerance theory and rough-surface scattering. In particular, phased array error theory
provides the most relevant background here.

The classic paper on antenna tolerance theory was written by Ruse [1966]. He theo

retically and experimentally modeled the impact of surface errors on the gain and far field
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pattern of a reflector antenna. The reflector is divided into N correlated regions with any

one region being statistically independent from any other region. These correlation regions
(dents in the reflector) are assumed to cause normal- or Gaussian-shaped distortions to the
phase front. Their impact on the far field pattern is a function of the number and size of
dents as well as the size and efficiency of the antenna aperture. Further extensions of this

work have appeared more recently in the literature {Tripp, 1984].

The Ruze model takes into account phase errors in the aperture distribution, but not
amplitude errors. Although a phase error model applies when the strip has wrinkels or
indentations, or when the resistive taper is complex (as in the nulling problem), the main
impetus here is how errors in the imaginary part of the dielectric constant (real part of the
resistivity) alter the induced surface current density and far field scattering patterns. Errors
in the imaginary part of the permitivity, ¢”, predominantly result in amplitude errors in the
surface current density. As such, past work on the impact of current amplitude errors on

the far field pattern of an antenna has the most application in this situation.

Several sources in the literature analyze the effects of random phase and amplitude
errors in the element excitations of an array on the array’s far field pattern [Collin and
Zucker, 1969; Mailloux, 1982 |. From sampling theory, if N normally distributed random
variables with mean of 0 and variance of §2 are averaged, then the average is normally
distributed with a mean of 0 and a standard deviation of %—’, Since the current is tapered,
the random variables do not have equal weighting. To compensate, the variance is also
divided by the taper efficiency. The taper efficiency is a measure of how well the aperture
collimates the radiated energy and is defined as the ratio of the directivity to the directivity
of an identical aperture with uniform amplitude and phase. An array with random phase
and amplitude errors has an average relative sidelobe power level (f2) at a null in the

no-error pattern given by

_fath

£ = (5.1-1)

where
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6: =amplitude error variance normalized to unity
2 _ . . .

6, =phase error variance(in radians)

N =number of elements in array

n. =array taper efficiency

Equation (5.1-1) states that random current errors by themselves (like white noise) have
a flat Fourier Transform with a height of f2. The height of the transform is inversely

proportional to the number of samples (N) and the taper efficiency (n,).

Unlike random errors, correlated errors have a response that peaks near the main beam
and dies-off far from the main beam. An example of this type of error occurs when a
scattering pattern is not measured in the far field. The resulting quadratic phase error
across the test object fills-in nulls close to the main beam and expands the main beam.
This error is noticeable in the experimental bistatic scattering results for a tapered sheet in

Chapter 6.

Brookner{1975] gives a formula for the rms relative sidelobe level of the correlated errors

due to subarraying:

_ 62, + 683,

2 {5.1-2
f Nl'h ) )

but the extent of the errors is limited to

IA
L)
A

3l
3l

where
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62, =amplitude error variance at the subarray port normalized to unity
63, =phase error variance at the subarray port (in radians)
N, =number of subarrays in array
n. =number of elements in subarray
ne =array efficiency

6 =angle from array broadside(in radians)

From the above equations one may conclude that random errors predominantly alter
the far field pattern far from the main beam, whereas correlated errors predominantly alter
the far field pattern close to the main beam. As a result, these equations predict the impact
of the errors on the far field pattern whether only one occurs or both oceur.

The effects of surface roughness and changing dielectric properties on scattering patterns
is discussed in the literature [Beckmann and Spizzichino, 1987 ;Ulaby, Moore, and Fung,
1982]. These results apply to scattering from vegetation, earth surface, etc. They are not

as applicable to “hard targets” such as the strip as the above are.

5.2 Modeling Resistivity Errors

Derivations in the resistive taper on a strip (resistivity errors) arise from the man-
ufacturing and resistivity measurement processes. Blotching of the conductive material,
inaccuracies in the deposition process, and possibly quantization errors, if only certain lev-
els of resistivity are possible, limit the accuracy of depositing a fine coat of conductive
material on a thin dielectric substrate having the imaginary part of n=0. Poor contacts
between the measuring probe and the resistive surface, difficulties with measuring a resistive
taper (Chapter 4), and equipment limitations produce errors in the resistivity measurement
process. Accurately determining and classifying the errors in a resistive taper requires ex-
tensive experimental analysis of the manufacturing and measuring processes. In lieu of

such an experimental analysis the errors are thecretically modeled and their impact on the

scattering pattern of a strip are calculated.
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Both error sources depend on the level of resistivity. The metal deposition process

has an associated tolerance that is a function of the resistivity. Accurately depositing a

thick coating of metal to obtain a low resistivity (7 = 0) is much easier than accurately
depositing a very sparse coating of metal to obtain a high resistivity (7 = 4). The resistivity
measurement process also has an error that is a function of the resistivitv. Because there is a

poor contact between the probes and the surface, accurate measurement of a high resistivity

is much more difficult than a low resistivity, Since both error sources are a function of the .
resistivity level, the magnitude of the error should likewise be modeled as a function of the
resistivity. In other words, smaller values of resistivity are prone to smaller errors and larger

values of resistivity are prone to larger errors.

As in antenna theory, it is convenient to classify errors as either random or correlated.
Random or uncorrelated means the errors on one part of the strip are totally independent
from errors on another part of the strip. Correlated means the errors in a certain region
of the strip are related. The region where this relationship holds is called the correlation
region.

The actual resistive taper (n) on a strip is composed of the theoretical taper (n,) plus

perturbations (§) to that taper due to manufacturing errors.

n(z) = no(z) + §(z) (5.2.1)
The perturbations may be due to either correlated or random errors.

Both the random and correlated error models divide the strip into N small correlation
regions over which the error is constant. On the one hand, the random error model assumes
the errors assigned to the N correlation regions are all statistically independent. On the
other hand, the correlated error model assumes the errors assigned to the N correlation
regions are all related by a function. The two models are described in greater detail in the
following subsections.

5.2.1 Modeling Random Errors in the Resistive Taper

Random errors are assumed to follow a normal probability densitv function (pdf) with

a mean of 0.0 and a standard deviation of ,n4(z), where o, is a constant between 0.0 and

0.3. The upper limit of 0.3 is due to the definition of standard deviation. Since 99% of
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the samples of a normal pdf are within 3 standard deviations on either side of the mean
and since the negative values of resistivity are not allowed, then ny(z) - 30sn.(z) must be
greater than 0. A value of ,=0.3 allows a small safely margin to insure no negative values
of resistivity are generated.

5.2.2 Correlated errors in the Resistive Taper

Two correlated error models are considered:

1. e(z) =c,é‘%|§°q,,(z) (5.2-2)

2. e(z) =ccos [21(%%)] no(z) (5.2-3)

where ¢ and q are constants.

These equations are continuous, but their digital implementations are not. Hence, not
only is the whole strip one correlation region, but it is also divided into N smaller correlation
regions with each region haviug a constant resistivity. If the N correlation regions are small
enough, then the error function appears continuous and the effects of these correlation

regions are small and can be ignored.

5.3 Modeling Surface Current Density Errors

As with resistivity, the surface current density is separated into a desired surface current

density (J,) plus a perturbation ().

J(z) = Jo(z) + £(=z) (5.3-1)

The desired surface current density arises only from the no-error taper, while the current

perturbation arises only form the resistivity errors. In either case, it should be noted that

- the current perturbation is a function of the resistivity perturbation and the quiescent
resistive taper, not just the resistivity perturbation alone.

Errors in the induced surface current density are calculated from the errors in the

resistive taper by two methods: integral equation and physical optics. Both approaches

yield very similar results. The errors are modeled as real numbers, since they occur only in
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the metal deposited on the substrate and not in the dielectric substrate. The errars may
be either correlated or random.
5.3.1 Integral Equation Formulation of the Current Perturbations

The errors in the surface current density relate to the errors in the resistive taper
via the integral equations derived in Chapter 2. Substituting (5.2-1) and (5.3-1) into the

right-hand-side of (2.1-11) gives

nda)i(@)+ 5 [ TP (kiz - 2')de’ = (ne) - 2D Joslz) ~ (2))

+ ;/_:(J,,(z') + E(z)H P (k2 - 2’ )dz' (5.3-2)

This E-polarization equation may be simplified to the form

1d)ele) + 3 [ €@VED (b - 2')s’ = ~8(2)1of2) (533)

The same procedure for H-polarization yields

ne(2)E(2) + ;[:E(:')-E'Tl_-z—qﬂfz)(klz - 2')dz' = ~6(2)J (z) (5.3-4)

These equations have the same form as the integral equations in Chapter 2, so they may
be solved with the same numerical methods. All the variables are known except for the
current perturbation.

5.3.2 PO Formulation of the Current Perturbations

The errors in the surface current density relate to the errors in the resistive taper
through the PO equations derived in Chapter 2. For E-polarization the PO surface current

density due to errors in the resistive taper is given by

E2) ~ Jox(2) = 5~ {'lo(:)inf;(z)]:in%ejm“. (533)

Substituting ..1-29) for J,,(z) and solving for the current perturbations results in

_ -§(z)sin0, I .
&le) = (5 + 0z )0ing,? = 6(2)8in o 5 ~ No(z)ein0, (5.3-6)
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Assuming small resistivity perturbations such that

L5+ no(z)sind,,? >> 6(z)sind,[.5 ~ no(z)sing,) (5.3-7)

or
(2) =~ —— >> §(=) (5.3-8
e 2sing, 3-8)

An approximation to the surface current perturbation is given by

E:(z) =] TM.__ejw'éo

.5+ no(z)sing,j? (5.3-9)

At normal incidence the current perturbation approximately equals the negative of the

resistivity perturbation times the no-error current squared.

2 _ (=) -
dz) = ~b(2)[Jole)] = (5.3-10)
The H-polarization PO current perturbation is derived in the same manner.
N —-6(z)sin @, sezcond o
S = T et - i)+ Semes (3311
When the current perturbations are small the equation simplifies to
1 .
no(z) + §am¢° >> é(z) (5.3-12)

Unlike (5.3-9), this equation has a sin ¢, factor in the numerator rather than the denomina-
tor. Thus, as ¢, increases, (5.3-8) becomes a better approximation while (5.3-12) becomes
a worse approximation. Care should be exercised when applying this result. When this

approximation is assumed, the current perturbation is given by

_5(2)sin by s .
£x(z) = ino(z)(:)-?:m %:2&*“00 (5.3-13)

At normal incidence this equation reduces to (5.3-10).
Equations (5.3-10) and (5.3-13) show that at normal incidence the surface current

perturbation is proportional to the resistivity perturbation, while it is inversely proportional
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to the square of the resistive taper plus 0.5. In logarithmic form the magnitude of (5.3-10)
is given by

log £{=log é —2log (n - .5) (5.3-14)

This form of the equation simply shows that é is the dominant contributor for smaller values
of the resistive taper (n < % - .5), and n is the dominant contributor for larger values of
the resistive taper (n > 71; ~ .5) given that n = § >> 5.

5.4 Modeling Errors in the Scattering Patterns

The RCS of a strip with resistive errors is given by

O =0+ Cepr (5.4-1)
where ¢, is the no-error RCS and o, is the RCS due to the errors alone. Substituting the

error currents from section 5.3 into the (2.4-4) and (2.4-5) yields

olarization:
2
o E(®) = / Jos(2)e?™ > *%dz’ + AZe ghmncoed! (5.4-2)
n=]
H-polarization:
k 2
7(0) = gl 0, [ Jola)e s - AT e’ (say)
n=1

where A is the length of the integration region. The deviations in the scattering patterns
may be isolated by completing the squares in the RCS formulas.
k a
c(®) =— / Joslz Yoo “’"dz

——-Real / Jos(Z") e""‘“‘dz'}Real{Z{ c"""’"“}

n=1
Ak ; * 1, kz' co0® 4! : = he acose
—2-1rnagmary{/ Jos(2')e? dz }Imagmary{z Ene?™" }*
- n=1
N
é-r! Z elh.ww (5.4-4
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; k. ‘ ¢ 1\ jke' cos [ 2
UH(¢) =Z sin? ¢oj Jo:(z )eJk3 ®dr’

-a

Ak ., a L N ,
- 1, hz' cosd 4! jkz acosd | _
5 sin d:oReal{/_‘Jo,(x )e dz }Real{ E £ne } :

n=1
':\‘ﬁs'm? ¢,Imaginary{ : J (z')e"'"°°'°dz’}1maginary{ = ¢ e,‘kg.ww}__
2 a5 E—x n ‘
A% N o cond 2 )
T$m2¢m E_lfne’“""" ¢! . (5.4-5)

The first term in (5.4-4) and in (5.4-5) is the RCS due to the desired resistive tapers
(¢5). The remaining three terms (o) are due to the errors in the taper. When the errors
are small, the fourth term has a much lower average level than the other terms. Generally,
the last three terms combined are much smaller than the first. The exception is in the
nulls and low sidelobe regions of the RCS patterns. There, the level of the error terms may

exceed the desired RCS.

5.5 Average Error Levels in the Scattering Patterns Due to Random Resistivity

Errors

No obvious way exists to simply relate the resistivity error level to the current error
level. For small resistive errors at normal incidence, (5.3-10) gives a reasonable estimate for
the PO current error, if n and § are replaced by their respective averages. Otherwise, the
average rms current error is found by solving one of the current perturbation equations in
section 5.3 and dividing the sum of the absolute values of the £'s by /N

After estimating the average rms current perturbation, two methods are used to find
an estimate of the error levels in the scattering patterns. The first calculates average rms
bistatic scattering (o) and backscattering (o) errors from the calculated error and no-
error scattering patterns. This method provides accurate error information for all bistatic
angles and for backscattering and may also be used for evaluating the impact of correlated
resistive errors. The second only estimates the error level of the bistatic scattering pattern

at a null in the error-free bistatic scattering pattern. This method is very similar to the
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method used in array theory, (see (5.1-1)). It has the advantage of being much simpler to
calculate than the first method.
5.5.1 Average RMS Errors

The average RMS error is defined by

TN i) - i)
N

adl.l
where
2, =no-error quantity
2z, =error quantity

N =number of correlated regions
The constant o,, may be one of the following:

0y, =average RMS resistivity error
0 . =average RMS surface current density error
o, =average RMS bistatic scattering error

oy, =average RMS backscattering error

The computer is used to generate rancom numbers that have a normal pdf with a mean
of 0 and a standard deviation of o n(z). Since it has already been assumed that the errors
are a function of the resistive taper, the standard deviation for the resistive error at a pownt

x along the strip is given by

oMz) = oun(z) (5.52)

where o, is & constant such that 0 < ¢, < 0.3. When n(z) = 1 then 0., = ,, otherwise,
the two constants differ.

No obvious way exists to accurately predict o, On, OF Oy from o, for either the
PO or integral equation approaches. Instead, o.,,, o4, and oy, are found by substituting

the appropriate error and no-error quantities into {5.5-1). Table 5.1 and 5.2 display typical
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examples of these quantities for a 42 and a 6) strip. These tables compare the impact
of polarization, type of resistive taper, number of segments, method used to calculate the
surface current density, length of strip, and level of ¢, on the RMS errors.

The tables bring several observations to light:

1. The integral equation and PO approaches agree much better when ¢,=.15 than when

o=.3. Large changes in the resistivity create large discontinuities which is the condition
when PO and the integral equation approaches do not agree as well. .

2. The agreement between the two approaches does not increase as the resistivity
increases, because the magnitude of the error is a function of the resistivity. If the magnitude
of the resistive error remains constant as the resistive taper increases, then agreement
between the two approaches does get closer.

3. The magnitude of o,., increases as o and/or 7 increases.

4. oy and oy, are greater for the larger strip than for the smaller strip.

5. The magnitude of oy is smaller than oy,

5. As N increases 0,., and 0, approach their limiting values and o,, and o, decrease.
In these examples the bistatic scattering and backscattering patterns are calculated at 1°
increments form 0° to 90°.

One can calculate the average rms RCS error from o4 or oy, by using one of the

following equations:

A2 2

oF = ’2"’6 (5.5-2)
A2xm?cin?

oH :——————A ”ab;m ¢° (55‘3)

where the “b” in ¢, stands for either “bi” or “bk”. This error measurement is > the error
measurement in the next section, because this error measurement takes all three error terms
of (5.4-4) and (5.4-5) into account while the error measurement in the next section only
takes the last term into account.
5.5.1.2 Average RMS Sidelobe Level at a Null in the Error-Free Pattern

This analysis develops simple equations for estimating the average rms bistatic scatter-
ing sidelobe level at a null in the error-free scattering pattern. Consider (5.4-4) and (5.4-5)

at a null in the error-free pattern. In other words when

e ——




E-polarized RMS error averaged over 10 samples

e e e

Integral Physical
Equation Optics
n N |2 | or |ores || ocur | o081 | ok [l ocvr | 081 | o8k
1.0 40 | 42 | .15 | .1575 || .1605 | .0307 | .0273 || .0748 | .0340 | .0254
60 | 4A | 15| .1489 || .1007 | .0246 | .0217 {{ .0702 { .0246 | .0197
2.0 40 | 4 | .15 | .3151 (| .0682 | .0234 | .0215 || .0553 | .0254 | .0203

60 [ 4x | .15 | .2979 || .0639 | .0186 | .0177 || .0518 | .0186 | .0158

30dB =8 | 40 | 4A | .15 | .0962 || .0870 } .0215 | .0200 [ .0595 | .0252 | .0178
Taylor 60 | 42 | .15 | .0884 || 0946 | .0171 | .0163 || .0545 | .0175 | .0138
40dB =12 | 40 | 42 | .15 | .2242 | .0840 | .0206 | .0193 || .0571 | .0238 | .0172
Taylor 60 | 42 | .15 | 2078 {| .0B38 | .0145 | .0142 || .0498 | 0161 | .0124

*—————L————d#ﬁ

1.0 40 | 4A | .3 | .3125 || 2752 | .0917 | .0788 || .1814 | .0876 | .0642

60 | 4x | .3 | .2980 || .2867 | .0824 | .0687 ! 1683 | .0669 | .0506

2.0 40 [ 4A | .3 | 6250 {| .2119 | .0836 | .0739 § .1519 | .0754 | .0581

60 [ 42 ) .3 | .5961 || 2079 | 0724 | .0619 ) .1393 | .0588 | .0453

30dBR=8 |40 |42 | .3 | .1903 || .1967 | .0542 | 0480 || .1300 | .0581 | .0405
Taylor 60 | 42| 3 | .1791 || .2296 | .0564 | .0488 || .1240 | .0469 | .0344
40dB =12 | 40 | 4A | .3 | .4426 || .1947 | .0576 | .0521 || .1278 | .0587 | .0417
Taylor 60 [ 42| 3 | 4194 || .2040 | .0504 | .0449 /| 1149 | .0436 { .03I8

1.0 40 [ 6A | .3 | .3125 {| .2255 | .1173 | .1027 | .1814 | .1412 { .0933
6016 | .3 |.2980 || .2510 | .1039 | 0907 | .1683 | .1032 | .0743

90 | 6A ] 3 | 2986 §§ 2877 ] .1118 ] .0915 | .1678 | .0871 | .0643

2.0 40 16| 3 | .6250 )1 .1824 | .1122 | .0089 || .1519 | .1219 | .0857

60 ) 6A | .3 | 5961 |} 1909 | .0939 | 0838 [| .1393 | .0877 | .0668

90 | 6A | .3 | .5972 || .2080 | .0941 | .0784 § 1387 | .0753 | .0574

30dBn=8 |40 | 6A | .3 | .1903 || 1538 | .0741 | 0661 || .1300 | .0915 | .0613
Taylor 60 1 6A | .3 | .1791 || .1887 | .0726 | .0631 | .1240 | .0732 | .0507
90 | 6A | .3 | .1888 || 2547 | .0823 | 0692 || 1326 | .0662 | .0476

40dB A=12 {40 | 6A | .3 | 4426 || 1523 | .0762 | .0706 {| .1278 | .0985 | .0644
Taylor 60 1 6A | 3 | 4194 )} 1712 | 0671 | .0604 [ .1149 | .0681 | .0480
90 { 6A | .3 | 4352 || 2373 | 0770 | 0645 }j .1263 | 0639 | .0461

Table 5.1 — The average RMS error for a resistive strip when the incident field is
E-polarised




H-polarized RMS error averaged over 10 samples

e
Integral Physical
Equation Optics
n N {2aios {ores | ccur | oBr | o8k | ocur | o1 | o8k
1.0 40 | 42 | .15 | 3125 | .1369 | .0619 | .0531 1814 1 .0684 | .0625
60 | 42 | .15 | .2980 0982 | .0465 | .0398 | .1683 | .0570 | .0489
2.0 40 | 4A | .15 | .6250 1301 | .0549 | 0464 || .1519 | .0601 | .0529
60 | 42 | .15 | 5961 0948 | .0400 | .0330 | .1393 | .0503 | .0416

30dB =8 { 40 | 4A | .15 | .1903 |} .0985 | .0453 | .0426 || .1300 | .0419 | .0429
Taylor 60 { 4A { .15 [ .1791 §| .0735 | .0329 | .0320 {| .1240 | .0365 | .0345
40dB n=12 | 40 | 42 | .15 | 4426 || .0941 | .0434 | 0440 || .1278 | .0416 | .0450
Taylor 60 | 42 | 15 | 4194 { 0713 | 0295 | 0312 } .1149 [ .0330 | .0321
]

L
| S GRS SIS SIS S | IR S T"

1.0 40 | 4A | .3 { .1575 || 0652 | .0258 | .0226 || .0748 | .0247 | .0232

60 | 4A | .3 | .1489 j .0473 | .0204 { .0178 || .0702 | .0200 | .0180

20 40 | 42 | .3 | 3151 || 0549 | .0195 | .0167 (| .0553 | .0188 | .0169

60 ] 42 ) .3 | 2979 || .0428 | 0153 | 0129 {f .0518 | .0153 | .0132

30dB =8 |40 142} .3 | .0962 || .0488 } 0207 | 0190 || .0595 | .0175 | .0184

Taylor 60 ] 4r | .3 | .0884 ) .0347 | .0141 | .0135 )| .0545 | .0129 | .0135

40dB =12 {40 | 42 | .3 { .2242 || .0457 | .0188 | 0193 } .0571 | .0161 ] .0175
3

Taylor 60 | 4X [ . 2078 | 0328 | .0126 | .C137 |1 0498 | .0116 | .0116
i——————i——d———d——-ﬁ————l———————l——l——

11 1 I 1 T T 71

|

1.0 40 | 62 1 .3 | 3125 ) .1819 | .1024 | 0874 | .1814 | .0972 | .0911

60 | 61 | .3 | .2980 §| .1299 | .0727 | .0626 | .1683 | .0785 | .0723

90 | 6A | .3 | .2086 || .0962 | .0560 { .0470 || .1678 | .0744 | .0627

20 40 | 6A | .3 | 6250 || .1645 | .0906 | .07T75 {| .1519 | .0846 | .0771

60 | 6A | .3 | 5961 || .1219 | 0640 | .0545 || .1393 | .0685 | .0607

90 | 6A | 3 | 5972 ) .0933 | .0479 | .0393 [} .1387 | .0649 | .0532

30dB%=8 {40 | 6A | .3 | 1903 || .1282 |} .0706 | .0675 || .1300 | .0619 | .0659
Taylor 60 | 6A | .3 | .1791 || .0963 | .0508 { .0483 I .1240 } .0521 | .0517
90 { 6A | .3 | .1888 || .0735 | .0462 ( .0435 {| .1326 | .0537 | .0481

40dB =12 | 40 { 6A | .3 | .4426 || .1233 | 0726 | .0694 | .1278 | .0635 | .0696
Taylor 60 | 6A | .3 | 4194 || 0914 | .0474 | .0456 |{ .1149 | .0479 [ .0490
90 | 6 | .3 | 4352 || 0726 | .0428 | .0421 || .1263 | .0511 | .0464

| N

Table 5.2 — The average RMS error for a resistive strip when the incident field is
H-polarised

*ﬂ
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a
/ oz )e?™ 4z = (5.54)

~a
where s=z for E-polarization and s=x for H-polanzation. Now, the first three terms in both
equations vanish, leaving only the fourth term. Since the H-polarization is the same as the

E-polarization term except for a sin? ¢, the remaining part of the development is done only

for E-polarization. Expand the fourth term as follows:

N 2 N N
‘ Z fnejkz.cacél = Z E,,ejh““’° Z f;c”‘""“”’
n=] n=1 m=]
N
\ 2 - -
-3 T BT s
n=1 n=m
N
~ 2 |- -4
= Z n. (5.5-5)
n=1

where * denotes complex conjugate. Substituting from (5.5-1), Z,‘:’:I a2 = NoZ,,, gives

_ (2a)%a?

Ohing =ONGL,, = (5.5-6)
2 2.2 i@
Sy = L0 65

The subscripts binE and binH stand for bistatic scattering level at the null of the error-free
pattern E- and H-polarization, respectively.

When the strip is perfectly conducting or has a very light resistive taper the scattering
patterns do not have distinct nulls (e.g. Figures 3.1 and 3.2). However, the error sidelobe
level is only of concern when the sidelobes are low or the strip has a heavy resistive taper,
in which case the low sidelobe and large constant resistive tapers do have distinct nulls (e g.
Figures 3.5 and 3.20).

Sometimes it is of interest to calculate the error sidelobe level relative to the peak of
the main beam. At normal iucidence, the peak of the electric field far from the strip is

given by

a N N
/ Jo2Vdz' + A €= 8 Uarlza) = €4 (5.58)
s n=1 n=i
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Since the £, are normally distributed rv's with a mean on 0, then Zfﬂ £, =0, and the far

field power pattern at the peak of the main beam (P pp) reduces to

N
2
Ppyp = A? Z Jor(zn) (5.5-9)
' n=1

Dividing (5.5-6) and (5.5-7) by (5.5-9) produces the relative scattering sidelobe level.

Ne?2
oF=—o "N"w 5 (5.5-10)
2Hol2,,_—.1jox(zn)!
No?l i 2
oq=— ”;"'sm %0 (5.5-11)
2Ho| TN Jor(z0)

5.6 Computer Results

This section presents computer plots depicting the no-error and error resistive tapers,
surface current densities, and scattering patterns for various strips. In addition, the isolated
error terms for the resistive taper, surface current density, and scattering patterns are shown.

Figure 5.1 delineates the E-polarization integral equation error and no-error results for
a 4] resistive strip with a 40dB ==12 Taylor resistive taper and o, = 0.3. Figure 5.2 shows
the PO results for the same strip with exactly the same resistivity errors. The integral
equation error surface current density is much smoother than the PO error current. Notice
the excellent agreement between the PO and integral equation scattering patterns, though.
Figure 5.3 superimposes the PO and integral equation error terms. The surface current
densities are plots from (5.3-3) and (5.3-6) and the scattering patterns are plots of the last
three terms in (5.4-4).

Decreasing o, to 0.1 produces a marked decrease in the error perturbations as shown
by the integral equation results in Figure 5.4.

Figures 5.5 to 5.7 show the results for a constant resistive strip with n = 2.0 and
0,=0.3. Even though there are radical changes in the surface current density of the strip,
the scattering patterns show little change. This happens because the original sidelobe level

of the strip is much higher than the scattering pattern due to the error terms.
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— ERRORS — ERRORS
— NO ERRORS o — NO ERRORS
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o
o
1=
c
Q
o
2.0 0.0 2.0 2.0 0.0 2.0
X (WAVELENGTHS) X (WAVELENGTHS)
a. Magnitude of induced surface b. Normalized resistivity on strip
current density on strip, ¢, = 90°
: ERRORS e ERRORS
NO ERRORS g — NOERRORS
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o~ ]
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£ 3 8
3 3 |
0 30 60 90 0 30 60 90
¢ (DEGREES) ¢ (DEGREES)
c. Bistatic scattering pattern, ¢, = 90° d. Backscattering pattern

Figure 5.1 - Error and no-error plots calculated from the E-polarized integral equation when the

strip is 4A wide, has a 40dB 1_] = 12 Taylor resistive taper, and has random errors with 6, = 03
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— NO ERRORS ° — NO ERRORS
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puc -
2.0 00 20 2.0 0.0 2.0
X (WAVELENGTHS) X (WAVELENGTHS)
a Magnitude of induce surface b. Normalized resistivity on strip
current density on strip, ¢, = 90°
e ERRORS e ERRORS
3 — NO ERRORS = — NO ERRORS
= o
= Q =
g 3¢
n o 7))
g © | e 3
3 3
0 30 60 90 0 30 60 90
¢ (DEGREES) ¢ (DEGREES)
c. Bistatic scattering pattern, ¢, = 90° d. Backscattering pattern

Figure 5.2 - Error and no-error plots calculated using the E-polarizied PO equation when the strip

is 4\ wide, has a 40dB a = 12 Taylor resistive taper, and has random errors with 6, =0.3
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— PHYSICAL OPTICS
oo INTEGRAL EQUATION

Q
<
o
N
o
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f
o !
o | A v
© 20 0.0 20 20 0.0 2.0
X (WAVELENGTHS) X (WAVELENGTHS)

a. Magnitude of surface current, ¢, = 90° b. Errors in normalized resistivity
due to errors in the resistivity

— PHYSICAL OPTICS — PHYSICAL OPTICS
e INTEGRAL EQUATION oo INTEGRAL EQUATION
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8 2
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@ 8 88
& T
2 3
"0 30 60 90 0 30 60 90
o (DEGREES) 0 (DEGREES)
c. Bistatic scattering pattern, ¢, = 90° d. Backscattering pattern due to
due to errors in the surface current errors in the surface current

Figure 5.3 - Isolated E-polarized error contributions when the 4A wide strip has a 40dB n = 12

Taylor resistive taper and random errors with 6, = 0.3

_______)




119

~+ ERRORS e ERRORS
— NO ERRORS g — NOERRORS
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current density on strip, ¢, = 90°
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c. Bistatic scattering pattern, 4o = 90° d. Backscattering pattern

Figure 5.4 - Error and no-error plots calculated from the E-polarized integral equation when the 4A

wide strip, has  40dB 1 = 12 Taylor resistive taper and random errors with 6, = 0.1

—_—




120
-— NO ERRORS o — NO ERRORS
<
Q
N
=2 Q
o & o
of o
o o
‘2.0 0.0 2.0 _20 0-0 20
X (WAVELENGTHS) X (WAVELENGTHS)
a. Magnitude of i b. Normalized resistivity on strip
current density
e+ ERRORS —+ ERRORS
3 — NO ERRORS , NO ERRORS
o =
8 2
(@] o ©
8~ a
ac
3 ® 3
3, 3
0 30 60 90 0 30 60 90
¢ (DEGREES) ¢ (DEGREES)
c. Bistatic scattering pattern, ¢, = 90° d. Backscattering pattern

Figure 5.5 - Error and no-error plots calculated from the E-polarized integral equation when the 4A
wide strip has a constant resistive taper (n = 2.0) and random errors with 6, = 0.3
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c. Bistatic scattering pattern, ¢, = 90° d. Backscattering pattern

Figure 5.6 - Error and no-error plots calculated using the E-polarized PO equation when the 4A
wide strip has a constant resistive taper (n = 2.0) and random errors with ¢, =0.3
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Figure 5.7 - Isolated error contributions when the 4\ wide strip has a constant resistive taper

(n = 2.0) and random errors with o, = 0.3
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Figure 5.8 - Error and no-error plots calculated from the E-polarized integral equation when the 4A

strip has a 40dB T-\ = 12 Taylor resistive taper and correlated errors with e (%) = 2,0

e ——————




124
—e ERRORS — ERRORS
o ]
N
= o
1 o
. < =
2 2 _
< 20 0.0 2.0 2.0 0.0 2.0
X (WAVELENGTHS) X (WAVELENGTHS)
a. Magnitude of induced surface b. Normalized resistivity on strip
current density on strip, ¢, = 90°
—e ERRORS o ERRORS
8, — NOERRORS Q¢ — NOERRORS
= o
:2 —
m <
S 2 8 %
A 0
Q Q
“ g < 3
B 3 !
0 30 60 90 0 30 60 90
¢ (DEGREES) ¢ (DEGREES)
c. Bistatic scattering pattern, ¢, = 90° d. Backscattering pattern

Figure 5.9 - E-polarized integral equation error and no-error plots when the 4A strip has a 40dB

4
M= 12 Taylor resistive taper and correlated errors withe (x) = .1 cos[ 2n ( TX) n,(x)
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Figure 5.10 - E-polarized PO error and no-error plots when the 4A strip has a 40dB
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T = 12 Taylor resistive taper and correlated errors withe () = .1 cos[27! (-%“)] n,(X)
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Figure 5.8 shows the first example of a correlated error using the E-polarized integral
equation. The strip is 4A wide with a 40dB fi=12 Taylor resistive taper and a correlated
error given by (5.2-2) with ¢=0.2 and q=0. This error produces an even steeper resistive

taper that reduces the sidelobes to a lower level than the no-error taper.

Another example of a correlated error appears in Figures 59 to 5.11. The strip is
4) wide with a 40dB =12 Taylor resistive :aper and a correlated error given by (5.2-3)
with c=.1 and q=4. Figure 5.9 shows the integral equation error and no-error results, while
Figure 5.10 shows the same results for PO. The PO and integral equation error terms appear
alone in Figure 5.11.

Section 5.1 mentions that in array theory random errors primarily alter the sidelobe
level away from the main beam and correlated errors primarily alter the sidelobe leve] near
the main beam. The same phenomena appears in the figures presented here. For instance,
the random errors ™M Figures 5.1 and 5.2 raise the sidelobe level uniformly everywhere,
but the correlated errors in Figure 5.9 and 5.10 raise the sidelobs level near the main
beam. When these errors are combined, the error scattering patterns closely resemble the
correlated error patterns near the main beam, while they closely resemblé the random error
patterns far from the main beam. Figure 5.12 shows the E-polarisation integral equation
and Figure 5.13 shows the PO results for the combined errors. Figure 5.14 shows error plots

of the combined random and correlated errors.




CHAPTER V1

EXPERIMENTAL MEASUREMENT OF THE BISTATIC SCATTERING
PATTERNS OF RESISTIVE SHEETS

The theory presented in the previous chapters is more convincing when demonstrated
experimentally. Such an experiment has three main parts: building the strip, measuring
the resistive taper, and measuring the far field scattering patterns. Each of these parts has
difficulties to over-come. For instance, accurately building a low sidelobe resistive taper
requires facilities that are not available, and even if the facilities for building the strip were
available, accurately measuring the resistive taper has limitations as discussed in Chapter
4. Finally, bistatic scattering measurement facilities are not avaiiable at the University of
Michigan.

The first part of this chapter tells how the perfectly conducting and resistive sheets
were constructed for the experiment. Next, the experiméntal set-up is described and the
potential errors in the experiment Aiscussed. Finally, the experimémal and theoretical

results are compared and discussed.

6.1 Construction of the Strips

There were three alternatives to constructing a tapered resistive strip: 1) build it in-
house, 2) pay a contractor to build it, and 3) ask a contractor to donate a tapered resistive
sheet. The first alternative was very unattractive because the Radiation Laboratory does
not have the facilities to accurately build a tapered resistive strip. Had this alternative
been pursued, the strip would have been built by spraying resistive paint on a substrate

that had a dielectric constant close to that of free space. Such an archaic technique would
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probably have proven frustrating and inaccurate. The second alternative was unattractive

because of the cost. Unfortunately, a graduate student’s budget could not quite match the

$50,000+ price tag for buying a tapered resistive strip built to specifications. The final
alternative proved most attractive. Southwall Technologies, Inc provided a strip that has
an 1z* + 22% + 5 (zin inches) taper with one edge at a resistivity approximately equal
to 0 and the other a resistivity of n > 4.0. Although this taper is not symmetric about
the center of the strip and does not correspond to any of the synthesized Taylor tapers in
Chapter 3, it actually worked quite well for the purposes of this thesis after a few minor
adjustments.

Three samples were prepared for the bistatic measurements:

1) perfectly conducting

2) substrate

3) tapered resistive
Each is 16 inches square or about 4) square at a frequency of 3 GHz.

6.1.1 Perfectly Conducting Sheet

The perfectly conducting strip was cut from a 0.032 inch thick aluminum sheet. Alu-
minum has a d¢ conductivity of ¢ = 3.54 x 10"mhos/m which corresponds to a very low
value of resistivity. It can safely be assumed that 1 = 0.0 on this sheet. This target serves
as a comparison to the tapered sheet and as a calibration target.

6.1.2 Substrate Sheet

A 16 x 16 inch uniform substrate sheet was made of kaptan. The sheet had to be
pieced together in four parts, because the available pieces of substrate were too small to
cut a single 16 x 16 inch sheet. Two of the pieces are 13} x 8 inches and the other two are
23 x 8 inches. They were butted together and joined by Scotch tape to form the 16 x 16
inch sheet.

The dielectric constant of Kaptan is approximately real and the substrate thickness is
0.007 inches. The corresponding high value of n results in a very low RCS. The styrofoam
support and Scotch tape have a very low RCS relative to the metal plate and do not have
any noticeable impact on the measurements The styrofoam and tape can have an effect

on the substrate sheet measurements, though. The effects of the styrofoam support may




{5 s

133

be virtually eliminated by measuring the bistatic pattern of the support and background

and subtracting this measurement from the bistatic pattern of the target, support, and

background. Since the tape has a relatively low dielectric constant and has a much smaller
area than the substrate sheet, it is assumed to have little effect on the main beam of the
scattered field.
¥ 6.1.3 _Tapered Resistive Sheet
Southwall Techologies sent the tapered sheet in a roll about 6 feet long and 14 inches
wide. The taper was not symmetric about the center. Instead, the taper starts at perfectly
conducting at one edge and gradually increases to a very high resistivity at the other end.

The taper is given by the equation

R= %z‘+2:2+5 (6.1-1)

where x is in inches and R in ). Figure 6.1 shows a graph of this taper with x=0)\ at the
center of the sheet and extending 2A on either side of the center. The sheet was constructed
by sputter depositing indium tin oxide on one side of the kaptan substrate.

This thesis is concerned with symmetrical resistive tapers of strips. To get this sym-
metry, two 16 inch long pieces were cut from the 6 foot roll. Each piece was 14 inches wide,
so it had to be trimmed to 8 inches wide. A thin clear line marked the x=12A position on
the strip. Both strips were trimmed to 4 inches on either side of the center line. These
two pieces were layed flat with the perfectly conducting sides touching. The back (kaptan
side) of the pieces were joined with Scotch tape while the front (metal deposited side) of
the pieces were joined with % inch copper tape. The resultant sheet was 16 inches square
with a symmetrical resistive taper. A photograph of the ta;‘éred sheet appears in Figure
6.2. In the picture, the taper runs horizontally while the copper tape runs vertically.

6.1.4 Mouating the Sheets
. A 16 inch square of styrofoam was cut from a larger 11 inch thick piece of styrofoam
using a “hot” wire. Three sides were beveled and sanded to reduce the specular scattering.
A small 6 x 2 x 1% piece of styrofoam served as a support for the larger square piece.
The sheets were mounted on the styrofoam using double sided Scotch tape. This tape

had little effect on the scattering patterns of the tapered sheet and perfectly conducting
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Figure 6.2 - Photograph of the experimental tapered sheet after it had been
cut and taped together to form a 16 inch square. Note that the sheet is most

ronductive at the center.
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sheet, and an unknown effect on the substrate sheet. The aluminum sheet proved to be very
heavy and the double sided tape could not firmly hold it against the styrofoam support. In
order to firmly attach the metal sheet to the support, the corners of the sheet were securely
taped to the styrofoam.

Since the resistive sheets and styrofoam support were light-weight and the mount turned
very smoothly, a small piece of masking tape behind the styrofoam support was sufficient
to hold it to the styrofoam mcunt in the chamber. On the other hand, the metal sheet

was very heavy and required a lot of masking tape to firmly hold the sheet and styrofoam

support to the mount. The tape has a very low scattering return relative to the metal
sheet and is also subtracted from the measurements with the background. Consequently,

the extra tape should not have interfered with accurate bistatic measurements.

6.2 Bistatic Scattering Measurements of the Sheets

The experiments were performed at the Rome Air Development Center (RADC) mea-
surement facility at Ipswich, MA. This facility has a bistatic measurement range suited for
the purposes of this thesis.

The range comsists of a large rectangular aneochoic chamber with a 6 inch diameter
styrofoam cylinder mount close to one side of the chamber (see diagram in Figure 6.3).
This mount holds the sheet and styrofoam support (photograph in Figure 6.4). A boom
rotates about the center of the mount. Both the mount at one end of the boom and the
transmitting antenna at the other end move with the boom (see picture ir Figure 6.5). In
this way, the incident angle of the transmitted energy is always the same. The transmitting
antenna is a 2 foot parabolic dish and is 105 inches away from the target. A stationary
receiving horn is located in one of the walls of the chamber. As the boom rotates the
transmitting antenna and the target, the receiving horn detects the scattered energy from
the target. The scattered signal passes from the horn to a receiver, computer, and recording
apparatus (picture of instrumentation in Figure 6.6). An absorber covered window in the
same wall as the receiving horn allows access to the interior of the chamber to align the

target and bistatic angle with a theodolite.

6.2.1 Alignment
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Figure 6.3 — Diagram of the RADC bistatic scattering measurement range at Ipswich,
MA.
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Figure 6.4 - Picture of the tapered resistive sheet on top of the styrofoam mount inside
the anechoic chamber.
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Figure 6.5 - Picture inside of the anechoic chamber with the transmitting antenna to
the left and the resistive sheet on the support to the right.
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Figure 6.6 - Photograph of the equipment outside the anechoic chamber
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A theodolite was used to align the targets and set the bistatic scattering angles. The
straight edges on the sheets made this process easy. First, the theodolite was made level
with the ground. Then, the test object was examined through the viewing scope to see if

it was aligned both edge-on and at normal incidence. Alignment was corrected by either

repositioning the sheet on the styrofoam support or placing small styrofoam wedges under
the styrofoam support.

The theodolite was also used to set the bistatic scattering angle. Since the target and
transmitting antenna rotated together while the receiving antenna is stationary, the angle
of incidence is measured between the target and the boom. The mount could be rotated
independent of the boom to get the desired bistatic angle.

One final alignment was the polarization of the waveguide feed to the parabolic trans-
mitting dish. This was done by setting a level on the waveguide and turning the waveguide
until the desired side was parallel to the ground. The alignment was checked with the
theodolite.

6.2.2 Transmitting Antenna

The transmitting antenna is a 2 foot parabolic dish. This means that the test object
is not in the far field® of the antenna when the frequency is 3 GHz. The test object is 16
inches square, and the separation distance is 105 inches. The ?-ﬁ’—’ distance in this case is
128 inches.

A parabolic dish was used instead of a smaller horn because the dish has a much smaller
beamwidth. The smaller beam width reduces the coupling between the transmitting antenna
and the receiving antenna. Increasing the antenna size also increases the distance to the
far field. The trade-off fell in favor of the larger antenna. Violating the far field criterion in
this case may be viewed as a correlated quadratic phase error across the test object. This
type of error manifests itself in the far field by filling in nulls close to the main beam.

‘ 6.2.3 Frequency Sejection
The measure.nents were done at 3.029GHz for several reasons. First, the strip is 4A

wide, which is the same size as the theoretical results presented in the previous chapters.

9 The accepted far fieid deftnition is lii for most objects. It sssumes sn spproximately constant amplitude
vanation and s 22.5 ° phase vaniation scross the test object. This eriterion is not strict enough for test objects
with low sidelobes. though
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Second, errors such as bumps in the sheets and far field separation between the target
and an:ennas are less of a problem at S band than at X band, for example. Third, the
measurement range was already configured for S band measurements. Fourth, 3 GHz was
the center frequency of the equipment in use. Finally, at this frequency, the target was
almost in the far field of the transmitting antenna.

6.2.4 Experimental Procedure
The metal, substrate, and tapered resistive sheets were measured for two bistatic angles

of incidence, 30° and 90°, and two polarizations, E and H. It seemed easiest to measure all
the targets at H-polarization first, then measure them again at E-polarization. The sequence
for each target went as follows:

1. Mount the target on the styrofoam support and place the target and support on the
mount.

2. Use the theodolite to align the target and the bistatic angle of incidence at 90°.
Take the measurement of the sheet, support, and background and record the data.
Use the theodolite to align the target and the bistatic angle of incidence at 30°.
Take the measurement of the sheet, support, and background and record the data.
Remove the target.

Take the measurement of the background and support and record the data.

@ N e o e L

Use the theodolite to align the styrofoam support to a bistatic angle of incidence at
90°.

9. Take the measurement of the background and support and record the data.

i0. Have the computer subtract the corresponding support plus background measure-
ment from the target, support, and background measurement and plot the resuits.

11. Repeat the process for the next target.

An 8 inch diameter metal sphere was also measured after measuring all the targets at
E-polarigation. The sphere serves as an extra calibration standard to judge how well the
measurements were taken.

Once all the targets were measured, the polarization of the transmitting antenna and
receiving horn was switched to E-polarization. Again after measuring the targets at ths

polarization, the 8 inch sphere was also measured.
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6.2.5 Potential Errors in the Measurements

Errors are bound to creep into any experiment. One of the problems with bistatic
scattering measurements is the relative infancy of the subject. Backscattering measurements
have been done for many years and is a mature area of work, but not so with bistatic
measurements. Even recent review information in the literature on scattering measurements

contain almost no mention of bistatic scattering measurements [Knott, Shaeffer, and Tuley,

1985; Ulaby,...;and Dybdal, 1987].

Several problems peculiar to bistatic scattering measurements done today are

1. Lack of good target calibration information.

2. Measurements are limited in angular extent because of coupling between the trans-
mitting and receiving antennas.

3. Few bistatic measurement ranges, consequently few published resuits.
These problems will gradually disappear as research in the area increases.

Some potential errors in the bistatic measurements of the metal and resistive sheets are

1. The resistive strips were not perfectly flat. They were for the most part flat but
had a few bumps that were < ; inch high, which is well within the Rayleigh criterion for
smoothness {Beckmann and Spizzichino, 1987

bumps < (6.1-2)

8sing,

2. The polarization of the trmmitting antenna is only accurate to within £1°.

3. The target was not in the far field of the transmitting antenna.

4. The center of the transmitting antenna was a few inches below the center of the
sheets.

5. The metal sheet was not perfectly square and the resistive sheets had to be joined
together with tape.

6. Equipment errors.

7. Target alignment errors.
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6.3 Comparison of theoretical and experimental results

This section compares the measured bistatic scattering patterns to the theoretical pat-
terns. Although some equipment probiems prevent an exact over-lay of the theoretical and
measured patterns, the tapered sheet did result in much lower sidelobes then the perfectly
conducting sheet.

6.3.1 _Calibration

The metal plate has a well known scattering pattern and serves as the calibration target.
The theoretical results are plotted to the same dB scale as the experimental results. An
error in the experimental measurements caused an 8° shift in the data as well as a slight
squeezing together of the data points by about 5% . These errors were adjusted for the
calibration target, then the same adjustments were used for the tapered resistive sheet.

6.3.2 Matching the Theoretical Strip Results to the Experimental Plate Results

The experimental bistatic scattering measurements were made on square plates whereas
the theoretical calculations were done for strips. By keeping the bistatic scattering pattern
of interest in the x-y plane, the relative scattering patterns of the plate and strip are the
same. A correction factor is needed to match the theoretical and experimental patterns.
This factor is obtained through assuming a PO current in the z-direction.

In the x-y plane the bistatic RCS of a plate with an E-polarized incident field is given
by

E
7 Epiane(9) = 5.4 \Ex(:,))
_:_nﬂ'. J(z")ehm' o 0gyida’ o
= lim 4rr I‘E{e,w):. y ( (6.3-1)

where 2a is the width and 2b the length of the sheet. Assuming the current is constant in

the z-direction, this fornmila reduces to

O Epiate(®) = —|/_‘/ J(z') e""“’"dy'dzl

b,k:, / J(z")e?
= 0 g,mp(®) + 20log(d) + 9.03 dBsm (6.3-3)

(6.3-2)
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The RCS given by (2.5-4) and (6.3-2) are identical except for a constant.
H-polarization has a similar result

b%k? sin? a L, 2
O Hplate(®) = _._;’2_?}/ J(z')e?™ ”‘d:'/ (6.3-4)
= dg“,..',(¢) + 20 log( %) + 9.03 dBsm (6.3-5)

In the x-y plane, the bistatic RCS of a plate is found by muitiplying the RCS of a strip by
Wk

6.3.1 _Theory vs. Experiment

The adjustments mentioned in 6.3.1 are applied to the experimental data, then the
experimental data is overlayed on the theoretical results shown in the following ﬁgu}es.

Figure 6.7 shows the experimental and theoretical bistatic patterns from a 4A by 4\
metal plate at 3.024 GHz and an E-polarized incident field at an angle of 90°. The ex-
perimental and theoretical results agree very well. Figure 6.8 shows the bistatic scattering
patterns when the incident field impinges at an angle of 60°. The lobe at 120° is due to
reflection and the lobe at 240° is due to forward scattering. H-polarized results for the
metal plate appear in Figures 6.9 and 6.10.

Figures 6.11 and 6.12 show the E-polarized and H-polarized bistatic scattering pat-
terns of the tapered resistive sheet when the field is incident at 90°. The theoretical and
experimental curves align well at the main beam, but the sidelobes differ by 5 dB or more.
Differences in the sidelobe level occur because of several factors. First, the mounting and
construction of the sheet induces unwanted errors. The metal tape running down the center
of the sheet and wrinkles in the sheet add small errors, but can be enough to affect the low
sidelobes. Second, even though the sheet alignment was done with a theodolite, so some
error in alignment of the sheet impacts the sidelobe level. Third, background subtraction

. becomes more difficult for low sidelobes, since the low sidelobes are closer to the scattering
levels of the background. Fourth, coupling between the transmitting and receiving anten-
nas plays a more critical role in the sidelobe region. Notice how the occ.ill\ations in all the

, experimental patterns increase from left to right (from receiving and transmitting anten-

nas facing the same way to receiving and transmitting antennas facing each other). The

ﬁ_)t
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Figure 6.7 — Comparison of the experimental and theoretical bistatic scattering patterns
from a ¢\ by 42 metal plate due to an E-polarised wave incident at 90°.
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Figure 6.8 — Comparison of the experimental and thearetical bistatic scattering patterns
from a ¢) by ¢\ metal plate due to an E-polarised wave icident at 60°.
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Figure 6.9 — Comparison of the experimental and thearetical bistatic scattering patterns
from a 4) by ¢\ metal plate due to an H-polarised wave incident at 90°.
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Figare 6.10 — Comparison of the experimental and thearetical bistatic scattering
patterns fram a ¢) by ¢\ metal plate due to an H-polarised wave incident at 60°.
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Figure 6.11 — Comparisan of the experimental and thearetical bistatic scattering patterns
from a 4) by 4\ tapered resistive gsheet due to an E-polarised wave incident at 90°.
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Figure 6.12 — Camparison of the experimental and theoretical bistatic scattering patterns
from a ¢) by 4\ tapered resistive theet due to an H-polarised wave incident at 90°.
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Figure 6.1¢ — Comparison of the experimental and theoretical bistatic scattering patterns
from a ¢\ by ¢\ tapered resistive sheet due to an H-polarised wave incident at 60°.
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oscillations are due to coupling between the receiving and transmitting antennas and are
especially dominant in the low sidelobe regions. Fifth, manufacturing errors in the resistive
sheet cause the theoretical taper to differ from the actual taper. Chapter IV discusses some
of the potential resistive measurement errors. Errors also occur in the metal deposition
process. Sixth, the bulging of the scattering mainbeams of the resistive sheet may be due
in part to the small separation distance between the transmitting and receiving antennas.

A smaller antenna would alleviate this problem, but would also comtribute more to the

coupling problem, because the smaller antenna has a broader beamwidth.

Figures 6.13 and 6.14 show the E-polarized and H-polarized bistatic scattering patterns
of the tapered resistive sheet when the field is incident at 60°. The agreement between theory
and experiment is worse for a 60° incidence angle. The theoretical sidelobe level near 65°
is about 10 dB lower than the measured sidelobe level. Both the H-polarized theoretical
and experimental patterns show a deep null at 180°. On the other hand, the E-polarized
theoretical sidelobes are 10 dB higher than the experimental ones between 165° and 205°.

The experimental results from the tapered sheet do show a reduction in the sidelobe

level. Better results are possible if some of the errors mentioned above are reduced.




CHAPTER VII

CONCLUSIONS

This thesis examines ways of eliciting a desired scattering response from a strip by

tapering the surface resistivity on the strip.

7.1 Summary

_ Both the theoretical and experimental models of the strip consist of a very thin deposit
of metal on a substrate with a dielectric constant close to that of free space. A resistive
taper is formed by varying the amount of metal deposited at different positions on the strip.
Some of the techniques require a complex resistive taper. In other words both the dielectric
constant of the substrate and the conductivity of the metal layer vary with position.

Two methods of calculating the surface current density and scattering patterns of the
strip are PO and integral equation approaches. The integral equation approach results are
more accurate, but more difficult to calculate than the PO results. Collocation with pulse
basis functions forms a system of linear equations that are solved via PLU decomposition
and backsubstitution, iteration, and conjugate gradient. ‘The higher the resistivity, the
fewer collocation points are necessary for an accurate solution. Since PO gives excellent
results for resistive strips, it is used as a seed for the iterative methods. Unfortunately, it

. did not speed convergence and PLU decomposition and backsubstitution proved the most
efficient method of solving the linear system of equations.

In the past, controlling scattering patterns of strips consisted of iterating between vary-
ing the resistive taper and looking at the scattering patterns until an acceptable taper was

found. A more efficient way to get the desired response is to synthesize a resistive taper in
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one step. This can be done by solving the PO and integral equations for the surface re - s-
tivity in terms of the surface current density. By substituting a current with a known far
field response (e.g. low sidelobe antenna current taper) into the equations, a resistive taper
can be found that gives the desired response. The integral equation synthesis technique
gives a complex taper, while PO gives a real valued taper. Both tapers yield the desired
low sidelobe response when calculating the scattering patterns with the integral equation
approach. A real valued taper is preferred, so the PO approach is best.

It is also possible to synthesize a resistive taper that places nulls in the bistatic and
backscattering patterns of a resistive strip. The resistive taper derived for nulling is complex
and the nulls are much more sensitive to variations in the resistive taper. Consequently,
the integral equation synthesis technique is used instead of the PO synthesis technique.

The dc surface resistivity of a sheet may be measured with a four point probe. This
technique inserts a current into the resistive sheet via two probes and measures the voltage
drop between two other probes. The surface resistivity is calculated with an apalytical
expression that uses the current, voltage drop, and a correction factor that takes the probe
spacing and size of sheet into account. The correction factor assumes the surface resistivity
is constant throughout the sheet and the measurement is done in the center of the sheet.
Measuring a resistive taper on a strip clearly violates both these assumptions. The impact
of the taper and proximity of the edges is taken into account by numerically solving a partial
differential equation for the voltage induced on the sheet.

It was not practical to build or buy a sheet with a resistive taper that gives rise to
a desired low sidelobe current distribution. Southwall Technologies donated a tapered
resistive sheet with a parabolic resistive taper across its width. Bistatic scattering patterns
of the tapered sheet and a metal plate of the same size were measured at the RADC Ipswich
measurement range and compared with theoretical results. The tapered sheet produced low
sidelobes in the scattering pattern that agree very well with the thecretical results.

The building of the tapered resistive sheet has errors that keep the experimental and
theoretical results from agreeing exactly. Errors in the resistive taper may be characterized
as being either random or correlated. The errors cause the average sidelobe level of the

desired pattern to go up. These errors and their impact can be statistically analyzed to
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determine the tolerances necessary to manufacture a resistive taper for a given sidelobe

level.

7.2 Future Work

This thesis only begins to adress the topic of controlling scattering patterns via the

synthesis of a resistive taper. More complex shapes and impedance tapers are logical next
steps. Also, the theoretical work on the measurement of a resistive taper needs to be
expanded and looked at experimentally. Lack of facilities preciuded the measurement of
the backscattering patterns of the tapered resistive strip. It would be interesting to compare
the theoretical and experimental results for backscattering. Other topics include multiple
nulls in backscattering patterns, experimentally verifying the error theory, and better first

guesses for the iterative methods.
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