2b. DECLASSIFICATION / DOWNGRADING CHEDULE2 0 1989 3. DISTRIBUTION / AVAILABILITY OF REPORT Approved for public release; distribution unlimited. 4. PERFORMING ORGANIZATION REPORT Florida Institute of lectrical & 5. MONITORING ORGANIZATION REPORT NUMBER(S) Department of Electrical & 6a. NAME OF PERFORMING ORGANIZATION Florida Institute of lectrical & 6b. OFFICE SYMBOL (If applicable) 7a. NAME OF MONITORING ORGANIZATION AFOSR 6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) 8a. NAME OF FUNDING / SPONSORING ORGANIZATION AFOSR 8b. OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER AFOSR-79-0110 6c. ADDRESS (City, State, and ZIP Code) 8b. OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 6a. NAME OF FUNDING / SPONSORING ORGANIZATION AFOSR 8b. OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				CUMENTATI		Form Approved OMB No. 0704-					
21. DECLASSIFICATION / DOWINGRADING CONDUCTS 21. DISTRIBUTION / AVAILABILITY OF PROFIT APProved for public release; distribution unlisited. 21. DECLASSIFICATION / DOWINGRADING CONDUCTS 21. DISTRIBUTION / AVAILABILITY OF PROFIT APProved for public release; distribution unlisited. 3. DEFENDING ORGANIZATION REPORT NUMBERIND DEPARTMENT of Electrical & Computer Engineering Melbourne, Florida 32901 5. MONITORING ORGANIZATION REPORT NUMBERIND AFOSR 5. ADDRESS (Cry, State, and ZIP Code) Department of Electrical & Computer Engineering Melbourne, Florida 32901 7. ADDRESS (Cry, State, and ZIP Code) BLDG 410 BAFB DC 20332-6448 5. ADDRESS (Cry, State, and ZIP Code) Melbourne, Florida 32901 8. OFFICE SYMBOL (If applicable) 9. FOCUMENT INTRUMENT IDENTIFICATION NUMBERS PROJECT PUNDING STONSORING ORGANIZATION AFOSR 6. ADDRESS (Cry, State, and ZIP Code) BLDG 410 BAFB DC 20332-6448 10. SOURCE OF FUNDING NUMBERS PROJECT PUNDING NU	-	AE)-A2	07	188	TC	1b. RESTRICTIVI	E MARKINGS			
4. PERFORMING ORGANIZATION REACTION REFERENCES CG 5. MONITORING ORGANIZATION REPORT NUMBER(3) 4. PERFORMING ORGANIZATION REPORT NUMBER(3) CG 5. MONITORING ORGANIZATION REPORT NUMBER(3) 64. MAME OF FERFORMING ORGANIZATION Department of Electrical 8 5. MONITORING ORGANIZATION AFOSR 7. NAME OF MONITORING ORGANIZATION AFOSR 64. MAME OF FERFORMING SPEAKED Department of Electrical 8 7. NAME OF MONITORING ORGANIZATION AFOSR 7. NAME OF MONITORING ORGANIZATION AFOSR 64. MAME OF FUNDING SPEAKED ORGANIZATION AFOSR 7. NAORESS (CHy, State, and ZIP Code) BLDG 410 BAFB DC 20332-6448 8. OFFICE SYMBOL (1' epokesbe) 84. ADDRESS (CHy, State, and ZIP Code) MUESTIGATION OF RADIO FREQUENCY/MICROHAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM INVESTIGATION OF RADIO FREQUENCY/MICROHAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM INVESTIGATION OF RADIO FREQUENCY/MICROHAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM IS UPPERMENTARY NOTATION 17. COSAN CODES Final 13b. TIME COVERED Final 13b. TIME COVERED Final 14. DATE OF REPORT (Max, Month, Day) 15. PAGE COUL 20 17. COSAN CODES Final 13b. TIME COVERED Final 14. DATE OF REPORT (Max, Month, Day) 15. PAGE COUL 20 17. ASSTRACT (Continue on reverse if necessary and Identify by block number) 20 20 20 18. SUBJECT TERMS (Continue on reverse if necessary and Identify by block number) 20 20 20 19. ASSTRAC			•				3. DISTRIBUTIO Appr	N/AVAILABILITY	OF REPOR	T	<u> </u>
64. MAME OF PERPORTING ORGANIZATION Department of Electrical & 74. NAME OF MONITORING ORGANIZATION AFOSR 74. NAME OF MONITORING ORGANIZATION Department of Electrical & 75. NAME OF MONITORING ORGANIZATION AFOSR 75. ADDRESS (Chy, State, and ZIP Code) Computer Engineering Melbourne, Florida 32901 75. ADDRESS (Chy, State, and ZIP Code) BLDG 410 BAFB DC 20332-6448 76. ADDRESS (Chy, State, and ZIP Code) AFOSR 8. OFFICE SYMBOL (If applicable) AFOSR-79-0110 9. PROJECT TASK PROGRAM BAFB DC 20332-6448 81. DG 410 BAFB DC 20332-6448 8. OFFICE SYMBOL (If applicable) AFOSR-79-0110 10. SOURCE OF FUNDING NUMBERS PROGRAM BAFB DC 20332-6448 91. TITLE (Include Security Commits Commitscience) INVESTIGATION OF RADIO FREQUENCY/MICRONAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM INVESTIGATION OF RADIO FREQUENCY/MICRONAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM INVESTIGATION OF RADIO FREQUENCY/MICRONAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM IS UPPLEMENTARY NOTATION 12. PERSONAL AUTHOR(S) M.M. Shellton 13. TIME COVERED FROM 6/1/79 TO 2/28/80 14. DATE OF REPORT (War, Month, Day) 15. FAGE COUN 20 13. SUPPLEMENTARY NOTATION 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 20 14. ASTRACT (Continue on reverse if necessary and identify by block number) 20 20 20 21 15. SUPPLEMENTARY NOTATION 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 20 20 20	26.	OECLASSIF	ICATION/DO	WNGRAC	DINES CHEDU	EC 0 1903	dist	ribution unl	limited.	450 ;	(
64. MAME OF PERPORTING ORGANIZATION Department of Electrical & 74. NAME OF MONITORING ORGANIZATION AFOSR 74. NAME OF MONITORING ORGANIZATION Department of Electrical & 75. NAME OF MONITORING ORGANIZATION AFOSR 75. ADDRESS (Chy, State, and ZIP Code) Computer Engineering Melbourne, Florida 32901 75. ADDRESS (Chy, State, and ZIP Code) BLDG 410 BAFB DC 20332-6448 76. ADDRESS (Chy, State, and ZIP Code) AFOSR 8. OFFICE SYMBOL (If applicable) AFOSR-79-0110 9. PROJECT TASK PROGRAM BAFB DC 20332-6448 81. DG 410 BAFB DC 20332-6448 8. OFFICE SYMBOL (If applicable) AFOSR-79-0110 10. SOURCE OF FUNDING NUMBERS PROGRAM BAFB DC 20332-6448 91. TITLE (Include Security Commits Commitscience) INVESTIGATION OF RADIO FREQUENCY/MICRONAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM INVESTIGATION OF RADIO FREQUENCY/MICRONAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM INVESTIGATION OF RADIO FREQUENCY/MICRONAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM IS UPPLEMENTARY NOTATION 12. PERSONAL AUTHOR(S) M.M. Shellton 13. TIME COVERED FROM 6/1/79 TO 2/28/80 14. DATE OF REPORT (War, Month, Day) 15. FAGE COUN 20 13. SUPPLEMENTARY NOTATION 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 20 14. ASTRACT (Continue on reverse if necessary and identify by block number) 20 20 20 21 15. SUPPLEMENTARY NOTATION 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 20 20 20	4.	PERFORMIN	G ORGANIZA	TION RE	NUMBE	n co	5. MONITORING		REPORT N	UMBER	⁽⁵⁾ 19
Department of Electrical & AFDSR GC ADDRSS (CN, State, and ZP Code) Computer Engineering Melbourne, Florida 32901 7b. ADDRESS (CN, State, and ZP Code) BLDG 410 BAFB DC 20332-6448 Sa ADARG OF FUNDING / SPONSORING ONGENALZITON AFOSR 8b. OFFICE SYMBOL (W applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER AFOSR-79-0110 GC ADDRESS (CN, State, and ZIP Code) BLDG 410 BAFB DC 20332-6448 10. SOURCE OF FUNDING NUMBERS PROJECT NO. 2312 9 III TITLE (Include Security Classification) INVESTIGATION OF RADIO FREQUENCY/MICROHAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM Final 11. DATE OF REPORT (Yeer, Month, Day) 13. TYPE OF REPORT 13b. TIME COVERED Final 14. DATE OF REPORT (Yeer, Month, Day) 20 15. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES III. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 15. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Condinue on reverse if necessary and identify by block number) 12. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Condinue on reverse if necessary and identify by block number) 20 19. ABSTRACT (Condinue on reverse if necessary and identify by block number) 20 19. ABSTRACT (Condinue on reverse if necessary and identify by block number) 20 19. ABSTRACT (Condinue on reverse if necessary and identify by block number)<			AF REARMING	OPGAN	TATION						
6C ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) Computer Engineering Melbourne, Florida 32901 7b. ADDRESS (City, State, and ZIP Code) Sa MAME OF FUNDING /SPONSORING ORGANZATION AFOSR 8b. OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER AFOSR-79-0110 CADDRESS (City, State, and ZIP Code) 8b. OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER AFOSR-79-0110 CADDRESS (City, State, and ZIP Code) 8b. OFFICE SYMBOL (If applicable) 9. PROCUREMENT IDENTIFICATION NUMBER AFOSR-79-0110 CADDRESS (City, State, and ZIP Code) 8b. OFFICE SYMBOL (If applicable) 10. SOURCE OF FUNDING NUMBERS BLDG 410 BAFB DC 20332-6448 PROJECT (If applicable) PROJECT (If applicable) PROJECT (If applicable) INTITLE (Include Security Classification) INVESTIGATION OF RADIO FREQUENCY/MICROWAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM (If applicable) IS SUPEGROAT Final 13b. TIME COVERED Final 13b. TIME COVERED Final 13b. TIME COVERED Final IS SUPEGROAT Final 13b. TIME COVERED Final 13b. TIME COVERED Final 13b. TIME COVERED Final 13b. TIME COVERED Final IS ASTRACT (Continue on reverse if necessary and Identify by block number) A study to determine the effect of pulsed electromagnetic energy upon braincalcitum behavior was undertaken. An innovative approach for loading the cerebral	Q48.	Florid	a Institu ment of E	ite of lectr	'Téchnold ical &	9y (if applicable)			GANIZATIQI	N	
Melbourne, Florida 32901 BAFB DC 20332-6448 Se NAME OF FUNDING/SPONSORING ORGANIZATION AFOSR (ff applikable) 9. PROCLEMENT INSTRUMENT IDENTIFICATION NUMBER AFOSR-79-0110 EC ADDRESS (Chy, State, and ZIP Code) BLDG 410 BAFB DC 20332-6448 10. SOURCE OF FUNDING NUMBERS FROGRAM ELEMENT NO. 61102F TASK NO Mo 2312 11. TITLE (Include Security Classification) INVESTIGATION OF RADIO FREQUENCY/MICRONAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM Final PROGRAM FROM 6/1/79 TASK NO D9 12. PERSONAL AUTHOR(S) M.M. Shelton 14. DATE OF REPORT (Vew, Mondy, Day) 15. PAGE COUP 13. TYPE OF REPORT 13b. TIME COVERED Final 14. DATE OF REPORT (Vew, Mondy, Day) 15. PAGE COUP 14. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 20 15. ASTINCT (Continue on reverse if necessary and identify by block number) 20 16. SUPPLEMENTARY NOTATION 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 18. ASTRACT (Continue on reverse if necessary and identify by block number) 20 19. ASTRACT (Continue on reverse if necessary and identify by block number) 20 19. ASTRACT (Continue on reverse if necessary and identify by block number) 20	6C.					L		lity, State, and Z	IP Code)		ور انتصب
Ba. NAME OF FUNDING/SPONSORING ORGANIZATION AFOSR Ib. OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER AFOSR-79-0110 EC ADDRESS (Chy, State, and ZIP Code) BLDG 410 BAFB DC 20332-6448 In. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. 61102F 10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. 61102F TASK NO. 2312 WO OD 11. TITLE (Include Security Classification) INVESTIGATION OF RADIO FREQUENCY/MICROWAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM M.M. Shelton 13. TYPE OF REPORT Final TASK NO. 20 WO 15. PAGE COUN FINA 12. PERSONAL AUTHOR(S) M.M. Shelton 13. TIME COVERED FROM 6/1/79 TO 2/28/80 14. DATE OF REPORT (Vest, Month, Day) 15. PAGE COUN Final 15. PAGE COUN FINA 13. SUPLEMENTARY NOTATION II. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) A study to determine the effect of pulsed electromagnetic energy upon braincalcium behavior was undertaken. An innovative approach for loading the cerebral tissues with radiocalcium was indtroduced. Intraventricular injections through the skull placed Ca-45 solution directly into the right lateral ventricle. Two hours later companion frontal lobe samples were placed in separate glass beakers containing physiologic. Solution directly into the right lateral ventricle. Two hours later companion frontal lobe samples were placed in separate glass beakers containing physiologic. Solution directly into the right lateral ventricle. Two hours later companion frontal lobe samples were placed in separate glass beakers containing physiologic. Solution directly into the right lateral ventricle. Two hours later contrimetury of soluting the intraventricular injections. Animals we											
ORGANIZATION AFOSR (if * splitable) AFOSR AFOSR-79-0110 CADDRESS (Chy, State, and ZIP Code) BLDG 410 BAFB DC 20332-6448 10. SOURCE OF FUNDING NUMBERS FROGRAM ELIMENT NO. C312 In Source of FUNDING NUMBERS PROGRAM ELIMENT NO. 2312 D9 11. TITLE (Include Security Classification) INVESTIGATION OF RADIO FREQUENCY/MICRONAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM M.W. Shelton PROJECT No. 2312 TASK No. 2312 D9 12. PERSONAL AUTHOR(S) M.W. Shelton 13b. TIME COVERED FROM 5/1/79 TO 2/28/80 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUN 20 13. STRACT (Continue on reverse if necessary and identify by block number) A study to determine the effect of pulsed electromagnetic energy upon braincalcium behavior was undertaken. An innovative approach for loading the cerebral tissues with radiocalcium was indtroduced. Intraventricular injections through the skull placed Ca-45 solution directly into the right lateral ventricle. Two hours later companion frontal lobe samples were placed in separate glass beakers containing physiologic Solution for a 20 min exposure to pulsed (26 Hz "ptT)-electromagnetic energy (10 mw/cm squared at 2.45 GHz). An efflux value was calculated for each sa A second experimental procedure involved whole-body irradiation of the animals two hours following the intraventricular injections. Animals were then irradiated with pulsed electromagnetic energy at a power density of 10 mW/cm squared, a pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure, frontal lobe and parieto-occipital tissues amples were taken and analys radioactivity. Statistical treatment of the first sets of experiments failed to reveal any perturbation in calcium efflux behavi				_							
EC. ADDRESS (Chy, State, and ZiP Code) 10. SOURCE OF FUNDING NUMBERS BLDG 410 BAFB DC 20332-6448 PROGRAM BLDG 410 BAFB DC 20332-6448 PROGRAM 11. TITLE (Include Security Classification) INVESTIGATION OF RADIO FREQUENCY/MICRONAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM 12. PERSONAL AUTHOR(5)	8a.	ORGANIZA		ONSORIA	IG				IDENTIFICA	TION N	UMBER
BLDG 410 BAFB DC 20332-6448 PROGRAM ELEMENTION 61102F PROJECT 2312 NOC D9 11. TITLE (Include Security Classification) INVESTIGATION OF RADIO FREQUENCY/MICRONAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM W.W. Shelton 13. TYPE OF REPORT Final 13. TYPE OF REPORT FROM 6/1/79 to 2/28/80 14. DATE OF REPORT (Year, Month, Day) 15. FAGE COUN 20 13. TYPE OF REPORT Final 13b. TIME COVERED FROM 6/1/79 to 2/28/80 14. DATE OF REPORT (Year, Month, Day) 15. FAGE COUN 20 14. SUBJECT TERMS (Condinue on reverse if necessary and identify by block num FIELD GROUP 18. SUBJECT TERMS (Condinue on reverse if necessary and identify by block num FIELD 15. ASTRACT (Condinue on reverse if necessary and identify by block number) 18. SUBJECT TERMS (Condinue on reverse if necessary and identify by block number) 16. SUPPLEMENTARY NOTATION 18. SUBJECT TERMS (Condinue on reverse if necessary and identify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Condinue on reverse if necessary and identify by block num Field 19. ASTRACT (Condinue on reverse if necessary and identify by block num Field Subject number) 18. SUBJECT TERMS (Condinue on reverse if necessary and identify by block num Field Subject number) 19. ASTRACT (Condinue on reverse if necessary and identify by block num Field Subject number) 19. ASTRACT (Condinue on reverse if necessary and identify by block num Field Subject number)				- 710 Ca							
BAFB DC 20332-6448 61102F 2312 Dg 11. TITLE (Include Security Classification) INVESTIGATION OF RADIO FREQUENCY/MICROHAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM 12. PERSONAL AUTHOR(5) M.M. Shelton 13a. TYPE OF REPORT Final FROM 6/1/79_ to 2/28/80 14. DATE OF REPORT Final FROM 6/1/79_ to 2/28/80 14. DATE OF REPORT Final FROM 6/1/79_ to 2/28/80 15. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) A study to determine the effect of pulsed electromagnetic energy upon braincalcium behavior was undertaken. An innovative approach for loading the cerebral tissues with radiocalcium was indtroduced. Intraventricular injections through the skull placed Ca-45 solution directly into the right lateral ventricle. Two hours later commanion frontal lobe samples were placed in separate glass beakers containing physiologic Solution for a 20 min exposure to pulsed (26 Hz "prf)-electromagnetic energy (10 mW/cm squared at 2.45 GHz). An efflux value was calculated for each sa A second experimental procedure involved whole-body irradiation of the animals two hours following the intraventricular injections. Animals were then irradiated with pulsed electromagnetic energy at a power density of 10 mW/cm squared, a pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure, fronta	8C.		-		<i></i>	• •	PROGRAM	PROJECT	TASK		WOR
INVESTIGATION OF RADIO FREQUENCY/MICROWAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM 12. FERSONAL AUTHOR(S) W.W. Shelton 13. TYPE OF REPORT Final 13. TIME COVERED FINAL COSATI CODES 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUN 20 15. SUPPLEMENTARY NOTATION 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block num FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessary and identify by block num FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessary and identify by block num FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessary and identify by block num behavior was undertaken. An innovative approach for loading the cerebral tissues with radiocalcium was indtroduced. Intraventricular injections through the skull placed Ca-45 solution directly into the right lateral ventricle. Two hours later companion frontal lobe samples were placed in separate glass beakers containing physiologic <u>solution</u> for a 20 min exposure to pulsed (26 Hz prf)-electromagnetic energy (10 mw/cm squared at 2.45 GHZ). An efflux value was calculated for each sa A second experimental procedure involved whole-body irradiation of the animals two hours following the intraventricular injections. Animals were then irradiated with pulsed electromagnetic energy at a power density of 10 mW/cm squared, a pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure, frontal lobe and parieto-occipital tissue samples were taken and analys radioactivity. Statistical treatment of the first sets of experiments failed to reveal any perturbation in calcium efflux behavior. Data from the second set. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT CUNCLASSIFIED/UNLIMITED AAME AS RPT OFT USERS 21. ABSTRACT SECURITY CLASSIFICATION CONSTRIBUTION/AVAILABILITY OF ABSTRACT 22. TELEPHONE (include Area Code) 22. OFFICE SYMBO 767-4278 NL				5448			61102F	NO. 2312	NO.)9	ACCE
FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessary and identify by block number) A study to determine the effect of pulsed electromagnetic energy upon braincalcium behavior was undertaken. An innovative approach for loading the cerebral tissues with radiocalcium was indtroduced. Intraventricular injections through the skull placed Ca-45 solution directly into the right lateral ventricle. Two hours later companion frontal lobe samples were placed in separate glass beakers containing physiologic solution for a 20 min exposure to pulsed (26 Hz prf)-electromagnetic energy (10 mw/cm squared at 2.45 GHz). An efflux value was calculated for each sa A second experimental procedure involved whole-body irradiation of the animals two hours following the intraventricular injections. Animals were then irradiated with pulsed electromagnetic energy at a power density of 10 mW/cm squared, a pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure, frontal lobe and parieto-occipital tissue samples were taken and analys radioactivity. Statistical treatment of the first sets of experiments failed to reveal any perturbation in calcium efflux behavior. Data from the second set. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 21. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBO		. TYPE OF Final	REPORT								
 19. ABSTRACT (Continue on reverse if necessary and identify by block number) A study to determine the effect of pulsed electromagnetic energy upon braincalcium behavior was undertaken. An innovative approach for loading the cerebral tissues with radiocalcium was indtroduced. Intraventricular injections through the skull placed Ca-45 solution directly into the right lateral ventricle. Two hours later companion frontal lobe samples were placed in separate glass beakers containing physiologic solution for a 20 min exposure to pulsed (26 Hz prf)-electromagnetic energy (10 mw/cm squared at 2.45 GHz). An efflux value was calculated for each sa A second experimental procedure involved whole-body irradiation of the animals two hours following the intraventricular injections. Animals were then irradiated with pulsed electromagnetic energy at a power density of 10 mW/cm squared, a pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure, frontal lobe and parieto-occipital tissue samples were taken and analys radioactivity. Statistical treatment of the first sets of experiments failed to reveal any perturbation in calcium efflux behavior. Data from the second set. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBO 767-4278 NL 221. TELEPHONE (include Area Code) 222. OFFICE SYMBO 767-4278 NL 220. Distribution 221. TELEPHONE (include Area Code) 222. OFFICE SYMBO 767-4278 NL 223. NAME OF RESPONSIBLE INDIVIDUAL 224. State Sta		. TYPE OF Final	REPORT	TION							
A study to determine the effect of pulsed electromagnetic energy upon braincalcium behavior was undertaken. An innovative approach for loading the cerebral tissues with radiocalcium was indtroduced. Intraventricular injections through the skull placed Ca-45 solution directly into the right lateral ventricle. Two hours later companion frontal lobe samples were placed in separate glass beakers containing physiologic solution for a 20 min exposure to pulsed (26 Hz prf) electromagnetic energy (10 mw/cm squared at 2.45 GHz). An efflux value was calculated for each sa A second experimental procedure involved whole-body irradiation of the animals two hours following the intraventricular injections. Animals were then irradiated with pulsed electromagnetic energy at a power density of 10 mV/cm squared, a pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure, frontal lobe and parieto-occipital tissue samples were taken and analys radioactivity. Statistical treatment of the first sets of experiments failed to reveal any perturbation in calcium efflux behavior. Data from the second set. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT CHUNCLASSIFIED/UNLIMITED SAME AS RPT DIDIC USERS 228. NAME OF RESPONSIBLE INDIVIDUAL 220. TELEPHONE (Include Area Code) 220. OFFICE SYMBO 767-4278 NL	16.	. TYPE OF Final SUPPLEME	REPORT			<u>./79</u> _то <u>2/28/</u> 80	2	6 June 1980		20	0
A study to determine the effect of pulsed electromagnetic energy upon braincalcium behavior was undertaken. An innovative approach for loading the cerebral tissues with radiocalcium was indtroduced. Intraventricular injections through the skull placed Ca-45 solution directly into the right lateral ventricle. Two hours later companion frontal lobe samples were placed in separate glass beakers containing physiologic solution for a 20 min exposure to pulsed (26 Hz prf) electromagnetic energy (10 mw/cm squared at 2.45 GHz). An efflux value was calculated for each sa A second experimental procedure involved whole-body irradiation of the animals two hours following the intraventricular injections. Animals were then irradiated with pulsed electromagnetic energy at a power density of 10 mW/cm squared, a pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure, frontal lobe and parieto-occipital tissue samples were taken and analys radioactivity. Statistical treatment of the first sets of experiments failed to reveal any perturbation in calcium efflux behavior. Data from the second set. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DUNCLASSIFIED/UNLIMITED SAME AS RPT DOTIC USERS 228. NAME OF RESPONSIBLE INDIVIDUAL 220. TELEPHONE (Include Area Code) 220. OFFICE SYMBO 767-4278 NL	16.	. TYPE OF Final SUPPLEME	REPORT NTARY NOTA COSATI	CODES	FROM <u>6/1</u>	<u>./79</u> _то <u>2/28/</u> 80	2	6 June 1980		20	0
<pre>with radiocalcium was indtroduced. Intraventricular injections through the skull placed Ca-45 solution directly into the right lateral ventricle. Two hours later companion frontal lobe samples were placed in separate glass beakers containing physiologic solution for a 20 min exposure to pulsed (26 Hz prf) electromagnetic energy (10 mw/cm squared at 2.45 GHz). An efflux value was calculated for each sa A second experimental procedure involved whole-body irradiation of the animals two hours following the intraventricular injections. Animals were then irradiated with pulsed electromagnetic energy at a power density of 10 mW/cm squared, a pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure, frontal lobe and parieto-occipital tissue samples were taken and analys radioactivity. Statistical treatment of the first sets of experiments failed to reveal any perturbation in calcium efflux behavior. Data from the second set 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DUNCLASSIFIED/UNLIMITED SAME AS RPT DITC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBO 767-4278 NL </pre>	1 6 .	Final SUPPLEME	REPORT NTARY NOTA COSATI GROUP	CODES SUE	FROM <u>6/1</u> GROUP	18. SUBJECT TERMS	Continue on reve	6 June 1980		20	0
<pre>placed Ca-45 solution directly into the right lateral ventricle. Two hours later companion frontal lobe samples were placed in separate glass beakers containing physiologic <u>solution for a 20 min exposure</u> to pulsed (26 Hz prf)-electromagnetic energy (10 mw/cm squared at 2.45 GHz). An efflux value was calculated for each sa A second experimental procedure involved whole-body irradiation of the animals two hours following the intraventricular injections. Animals were then irradiated with pulsed electromagnetic energy at a power density of 10 mW/cm squared, a pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure, frontal lobe and parieto-occipital tissue samples were taken and analys radioactivity. Statistical treatment of the first sets of experiments failed to reveal any perturbation in calcium efflux behavior. Data from the second set. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DUNCLASSIFIED/UNLIMITED SAME AS RPT DITIC USERS 228. NAME OF RESPONSIBLE INDIVIDUAL 228. NAME OF RESPONSIBLE INDIVIDUAL 220. DISTRIBUTION / AVAILABILITY OF ABSTRACT 220. NAME OF RESPONSIBLE INDIVIDUAL 220. NAME OF RESPONSIBLE INDIVIDUAL 221. ABSTRACT SECURITY CLASSIFICATION 222. NAME OF RESPONSIBLE INDIVIDUAL 223. NAME OF RESPONSIBLE INDIVIDUAL 224. NAME OF RESPONSIBLE INDIVIDUAL 225. TELEPHONE (Include Area Code) 225. OFFICE SYMBO 226. NAME OF RESPONSIBLE INDIVIDUAL</pre>	16.	FIELD	REPORT NTARY NOTA COSATI GROUP (Continue or y to dete	CODES SUE	FROM <u>6/1</u> -GROUP If necessary the effe	18. SUBJECT TERMS	(Continue on reve number) electromagnet	6 June 1980	and identify	20 y by blo ainca	0
<pre>physiologic solution for a 20 min exposure to pulsed (26 Hz prf) electromagnetic energy (10 mw/cm squared at 2.45 GHz). An efflux value was calculated for each sa A second experimental procedure involved whole-body irradiation of the animals two hours following the intraventricular injections. Animals were then irradiated with pulsed electromagnetic energy at a power density of 10 mN/cm squared, a pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure, frontal lobe and parieto-occipital tissue samples were taken and analys radioactivity. Statistical treatment of the first sets of experiments failed to reveal any perturbation in calcium efflux behavior. Data from the second set. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DUNCLASSIFIED/UNLIMITED SAME AS RPT DITIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBO 767-4278 NL</pre>	16.	FIELD ASSTRACT A stud behavi	REPORT NTARY NOTA COSATI GROUP (Continue or y to dete or was ur	SUE SUE reverse ermine iderta	FROM <u>6/1</u> GROUP If necessary the effe ken. An	18. SUBJECT TERMS and Identify by block ect of pulsed of innovative ap	(Continue on reve (Continue on reve electromagnet proach for lo	6 June 1980	upon bra	2(by blo ainca l tis:	0 kknum lcium sues
 energy (10 mw/cm squared at 2.45 GHz). An efflux value was calculated for each sa A second experimental procedure involved whole-body irradiation of the animals two hours following the intraventricular injections. Animals were then irradiated with pulsed electromagnetic energy at a power density of 10 mH/cm squared, a pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure, frontal lobe and parieto-occipital tissue samples were taken and analys radioactivity. Statistical treatment of the first sets of experiments failed to reveal any perturbation in calcium efflux behavior. Data from the second set unclassified. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 228. NAME OF RESPONSIBLE INDIVIDUAL 21. AMSTRACT SECURITY CLASSIFICATION 226. TELEPHONE (Include Area Code) 22c. OFFICE SYMBO 767-4278 	16.	FIELD ABSTRACT A stud behavi with r placed	COSATI GROUP (Continue or y to dete or was ur adiocalci Ca-45 sc	CODES SUE reverse ermine iderta ium wa olutio	FROM <u>6/1</u> GROUP If necessary the effe ken. An s indtroo n direct1	18. SUBJECT TERM and Identify by block ect of pulsed of innovative appluced. Intrave y into the rig	(Continue on reve (Continue on reve electromagnet proach for lo entricular in ght lateral v	ic energy ading the pections the	upon bra cerebral hrough t Two hou	20 by blo ainca tis the sl urs la	0 kknum lcium sues kull ater
A second experimental procedure involved whole-body irradiation of the animals two hours following the intraventricular injections. Animals were then irradiated with pulsed electromagnetic energy at a power density of 10 mH/cm squared, a pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure, frontal lobe and parieto-occipital tissue samples were taken and analys radioactivity. Statistical treatment of the first sets of experiments failed to reveal any perturbation in calcium efflux behavior. Data from the second set 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT CLUNCLASSIFIED/UNLIMITED SAME AS RPT DIC USERS 228. NAME OF RESPONSIBLE INDIVIDUAL 220. DISTRIBUTION/AVAILABILITY OF ABSTRACT 220. NAME OF RESPONSIBLE INDIVIDUAL 220. NAME OF RESPONSIBLE INDIVIDUAL 221. ABSTRACT SECURITY CLASSIFICATION 222. NAME OF RESPONSIBLE INDIVIDUAL 223. NAME OF RESPONSIBLE INDIVIDUAL 224. NAME OF RESPONSIBLE INDIVIDUAL 225. TELEPHONE (Include Area Code) 226. OFFICE SYMBO	16.	FIELD ABSTRACT A stud behavi with r placed compan	REPORT NTARY NOTA COSATI GROUP (Continue or y to dete or was ur adiocalci Ca-45 sc ion front	CODES Sup reverse ermine iderta ium wa plutio tal lo	FROM <u>6/1</u> -GROUP <i>If necessary</i> the effect ken. An s indtrood n directl be sample	18. SUBJECT TERMS and identify by block ect of pulsed of innovative appluced. Intrave y into the right s were placed	(Continue on reve electromagnet proach for lo entricular in ght lateral v in separate	ic energy ading the jections the glass beak	upon bra cerebral hrough t Two hou ers cont	20 by blo ainca t tis the sl urs la tainin	lcium sues kull ater
 with pulsed electromagnetic energy at a power density of 10 mW/cm squared, a pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure, frontal lobe and parieto-occipital tissue samples were taken and analys radioactivity. Statistical treatment of the first sets of experiments failed to reveal any perturbation in calcium efflux behavior. Data from the second set 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 228. NAME OF RESPONSIBLE INDIVIDUAL 229. NAME OF RESPONSIBLE INDIVIDUAL 	16.	FIELD FIELD ABSTRACT A stud behavi with r placed compan physio	REPORT NTARY NOTA COSATI GROUP (Continue or y to dete or was ur adiocalci Ca-45 sc ion front logic so	CODES SUE reverse ermine iderta ium wa blutio tal lo lution	FROM <u>6/1</u> -GROUP <i>If necessary</i> the effe ken. An s indtrood n directl be sample for a 20	18. SUBJECT TERMS and identify by block ect of pulsed innovative appluced. Intrave y into the rig es were placed min exposure	(Continue on reve electromagnet proach for lo entricular in ght lateral v in separate to pulsed -{2	ic energy ading the jections the entricle. glass beak 6 Hz prf)	upon bra cerebral hrough t Two hou ers cont electron	20 by blo ainca t tis the sl trs la tainin nagne	lcium sues kull ater ng tic
pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure, frontal lobe and parieto-occipital tissue samples were taken and analys radioactivity. Statistical treatment of the first sets of experiments failed to reveal any perturbation in calcium efflux behavior. Data from the second set 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBO 767-4278 NL	16.	FIELD FIELD ABSTRACT A stud behavi with r placed compan physio energy A seco	COSATI GROUP (Continue or y to dete or was ur adiocalci Ca-45 sc ion front logic sol (10 mw/c nd experi	CODES SUE reverse ermine derta ium wa blutio tal lo <u>lútion</u> cm squ imenta	FROM <u>6/1</u> -GROUP If necessary the effe ken. An s indtroc n directl be sample for a 20 ared at 2 1 procedu	18. SUBJECT TERMS and Identify by block ect of pulsed of innovative appluced. Intrave y into the rig s were placed min exposure 2.45 GHz). An are involved w	(Continue on reve electromagnet broach for lo entricular in ght lateral v in separate to pulsed -{2 efflux value	ic energy ading the jections the entricle. glass beak 6 Hz prf) was calcu	and identify and identify upon bra cerebral hrough t Two hou ers cont electron lated fo f the ar	20 by blo by blo b b b b b b c b c c c c c c c c	lcium sues kull ater ng tic ch sar s
exposure, frontal lobe and parieto-occipital tissue samples were taken and analys radioactivity. Statistical treatment of the first sets of experiments failed to reveal any perturbation in calcium efflux behavior. Data from the second set 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DUNCLASSIFIED/UNLIMITED SAME AS RPT. DIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBO 767-4278 NL	16.	FIELD FIELD FIELD ABSTRACT A stud behavi with r placed compan physio energy A seco two ho	COSATI GROUP (Continue or y to dete or was ur adiocalci Ca-45 sc ion front logic sol - (10 mw/c nd experi urs follo	CODES SUE reverse ermine aderta ium wa blutio tal lo lution cm squ imenta owing	FROM <u>6/1</u> FROM <u></u>	18. SUBJECT TERMS and Identify by block ect of pulsed of innovative appluced. Intrave by into the right swere placed min exposure 2.45 GHz). An ure involved we	(Continue on reve electromagnet broach for lo entricular in ght lateral v in separate to pulsed -(2 efflux value nole-body irr njections. A	ic energy ading the jections the entricle. <u>glass beak</u> 6 Hz prf) was calcu adiation on nimals were	and identify and identify upon bra cerebral hrough t Two hou ers cont electrom lated fo f the ar e then i	20 by blo aincas t tiss the sl tainin nagne or each irrad	lcium sues kull ater ng tic ch sau
to reveal any perturbation in calcium efflux behavior. Data from the second set 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DUNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 228. NAME OF RESPONSIBLE INDIVIDUAL 229. TELEPHONE (Include Area Code) 220. OFFICE SYMBO 767-4278 NL	16.	FIELD FIELD FIELD ABSTRACT A stud behavi with r placed compan physio energy A seco two ho with p	COSATI GROUP (Continue or y to dete or was ur adiocalci Ca-45 sc ion front logic sol - (10 mw/c nd experi urs follo ulsed ele	CODES SUE reverse ermine aderta ium wa blutio tal lo lution cm squ imenta owing ectrom	FROM <u>6/1</u> FROM <u></u>	18. SUBJECT TERMS and Identify by block ect of pulsed of innovative appluced. Intrave by into the right swere placed min exposure 2.45 GHz). An ire involved we eventricular inter energy at a pose	(Continue on reve electromagnet broach for lo entricular in ght lateral v in separate to pulsed -(2 efflux value nole-body irr njections. A wer density o	ic energy ading the jections the entricle. <u>glass beak</u> 6 Hz prf) was calcu adiation on nimals were f 10 mN/cm	and identify and identify upon bra cerebral hrough t Two hou ers cont electrom lated fo f the ar e then i squared	20 by blo aincas t tiss the sl tainin nagne or each imals irrad	lcium sues kull ater ng tic ch sau s iated
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION DUNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBO 767-4278 NL	16.	FIELD FIELD ABSTRACT A stud behavi with r placed compan physio energy A seco two ho with p pulse exposu	COSATI GROUP (Continue or y to dete or was ur adiocalci Ca-45 sc ion front logic so (10 mw/c nd experi urs follo ulsed ele repetitio re, front	CODES SUE sue ermine aderta ium wa blutio tal lo lution cm squ imenta bwing ectrom on fre tal lo	FROM <u>6/1</u> FROM <u>6/1</u> FROUP FROUP FROUP FROUP FROUP FROM <u>6/1</u> FROM <u>6</u>	18. SUBJECT TERMS and Identify by block ect of pulsed of innovative appluced. Intrave by into the right s were placed min exposure 2.45 GHz). An ure involved while the involved	(Continue on reve electromagnet broach for lo entricular in ght lateral v in separate to pulsed -(2 efflux value hole-body irr hjections. A wer density of arrier freque al tissue sam	ic energy ading the jections the entricle. glass beak 6 Hz prf) was calcu- adiation o nimals were f 10 mN/cm ncy of 2.4 ples were	and identify and identify upon bra cerebral hrough t Two hou ers cont electrom lated for f the ar e then i squared 5 GHz. taken a	20 by blo aincai t tiss the sl tainin agne or eau irrad irrad i, a Follo and an	O lcium sues kull ater ng tic ch sau s iated owing
DUNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS UNCLASSIFIED 228. NAME OF RESPONSIBLE INDIVIDUAL 767-4278 NL	16. 17.	FIELD FIELD FIELD ABSTRACT A stud behavi with r placed compan physio energy A seco two ho with p pulse exposu radioa	COSATI GROUP (Continue or y to dete or was ur adiocalci Ca-45 sc ion front logic so (10 mw/c nd experi urs follo ulsed ele repetitio re, front ctivity.	CODES SUE sue ermine aderta ium wa blutio tal lo lution cm squ imenta bwing ectrom on fre tal lo Stat	FROM <u>6/1</u> FROM <u>6/1</u> FROUP FOR P FROUP FROUP FROUP FROM <u>6/1</u> FROM <u>6</u>	18. SUBJECT TERMS and Identify by block ect of pulsed of innovative appluced. Intrave by into the right swere placed <u>o min exposure</u> 2.45 GHz). An ure involved while energy at a point inteto-occipital creatment of the	(Continue on reve electromagnet broach for lo entricular in ght lateral v in separate to pulsed -(2 efflux value nole-body irr njections. A wer density of arrier freque al tissue sam	ic energy ading the jections the entricle. glass beak 6 Hz prf) was calcu- adiation o nimals were f 10 mN/cm ncy of 2.4 ples were of experie	and identify and identify upon bra cerebral hrough t Two hou ers cont electrom lated for f the ar e then i squared 5 GHz. taken a ments fa	20 by blo aincai t tiss the sl tainin agne birrad i, a Follo and an ailed	O lcium sues kull ater ng tic ch sau s iated owing nalys
767-4278 NL	16.	FIELD FIELD ABSTRACT A stud behavi with r placed compan physio energy A seco two ho with p pulse exposu radioa to rev	COSATT GROUP (Continue or y to dete or was ur adiocalci Ca-45 sc ion front logic sol (10 mw/c nd experi urs follo ulsed ele repetitio re, front ctivity. eal any p	CODES SUE sue ermine aderta ium wa olutio tal lo fution cm squ imenta owing ectrom on fre tal lo Stat	FROM <u>6/1</u> FROM <u>6/1</u> FROUP FROUP FROUP FROUP FROUP FROM <u>6/1</u> FROM <u>6</u>	18. SUBJECT TERMS and Identify by block ect of pulsed of innovative appluced. Intrave by into the right swere placed <u>o min exposure</u> 2.45 GHz). An ure involved while energy at a point inteto-occipital creatment of the	(Continue on reve electromagnet broach for lo entricular in ght lateral v in separate to pulsed -(2 efflux value nole-body irr njections. A wer density of arrier freque al tissue sam he first sets lux behavior.	6 June 1980 The if necessary of ading the of ading the of ading the of pections the entricle. glass beak 6 Hz prf) was calcu- adiation of nimals were of a prefix ples were of expering Data from	upon bra cerebral hrough t Two hou ers cont electrom lated fo f the ar e then i squared 5 GHz. taken a ments fa n the se	20 by blo aincai t tiss the sl tainin agne birrad i, a Follo and an ailed	O lcium sues kull ater ng tic ch sa s iated owing nalys
	16.	FIELD FIELD ASSTRACT A stud behavi with r placed compan physio energy A seco two ho with p pulse exposu radioa to rev	COSATT COSATT GROUP (Continue or y to dete or was ur adiocalci Ca-45 sc ion front logic sol (10 mw/c nd experi urs follo urs follo urs follo repetitio repetitio repetitio repetitio reivity. eal any p	CODES SUE sum and erta ium wa olutio tal lo <u>fution</u> squ imenta bectrom on fre tal lo Stat pertur Suty of	FROM <u>6/1</u> FROUP FROUP FOR A the effect ken. An s indtrood n directl be sample for a 20 ared at 2 l procedu the intra agnetic e quency of be and pa istical t bation in FABSTRACT	18. SUBJECT TERMS and Identify by block ect of pulsed of innovative apply luced. Intrave y into the rig es were placed <u>o min exposure</u> 2.45 GHz). An ure involved will energy at a pour f 16 Hz, and ca crieto-occipital creatment of the calcium eff	(Continue on reve electromagnet broach for lo entricular in ght lateral v in separate to pulsed -{2 efflux value hole-body irr hjections. A wer density of arrier freque al tissue sam he first sets lux behavior. 21. ABSTRACT S	6 June 1980 ic energy ading the jections the entricle. glass beak 6 Hz prf) was calcu- adiation on- nimals were of experin Data from ECURITY CLASSI lassified	upon bra cerebral hrough t Two hou ers cont electrom lated fo f the ar e then i squared 5 GHz. taken a ments fa <u>n the se</u> FICATION	20 by blo ainca t tis tainin agne birrad irrad irrad irrad ailed ailed acond	0 lcium sues kull ater ng tic ch sau s tic ch sau s s iated owing nalys set
	16.	FIELD FIELD FIELD ASSTRACT A stud behavi with r placed compan physio energy A seco two ho with p pulse exposu radioa to rev DISTRIBUT	COSATT COSATT GROUP (Continue or y to dete or was ur adiocalci Ca-45 sc ion front logic sol (10 mw/c nd experi urs follc ulsed ele repetitic repetitic ctivity. eal any p ION/AVAILA SIFIED/UNLIM	CODES SUE sum aderta ium wa olutio tal lo ium squ imenta cm squ imenta con fre tal lo Stat Stat	FROM <u>6/1</u> FROUP FROUP FROUP Freessory the effect ken. An s indtrood n directl be sample for a 20 ared at 2 l procedu the intra agnetic e quency of be and pa istical t bation in FABSTRACT SAME AS R	18. SUBJECT TERMS and Identify by block ect of pulsed of innovative apply luced. Intrave y into the rig es were placed <u>o min exposure</u> 2.45 GHz). An ure involved will energy at a pour f 16 Hz, and ca crieto-occipital creatment of the calcium eff	(Continue on reve electromagnet broach for lo entricular in ght lateral v in separate to pulsed -{2 efflux value hole-body irr hjections. A ver density of arrier freque al tissue sam he first sets lux behavior. 21. ABSTRACT S unc - 22b. TELEPHONE	6 June 1980 ref frecessary ading the filter ading the filter jections the entricle. glass beaks 6 Hz prf) was calcu- adiation on nimals were of expering Data from ECURITY CLASSI lassified (Include Area Co	upon bra cerebral hrough t Two hou ers cont electrom lated fo f the ar e then i squared 5 GHz. taken a ments fa <u>n the se</u> FICATION	20 by blo ainca t tiss the sl tainin agne birrad irrad irrad irrad ailed ailed DFFICE	Ch sate sues kull ater ng tic ch sate s tiated owing nalys set

~

INVESTIGATION OF RADIO FREQUENCY/MICROWAVE

EFFECTS UPON THE CENTRAL NERVOUS SYSTEM

Ъу

W.W.Shelton

Grant AFOSR 79-0110

Final Report

26 June 1980

Accesi	on For	1						
NTIS	CRA&I	N						
DTIC	DTIC TAB							
Unann	ounced							
Justific	cation							
	Distribution /							
Availability Codes								
Dist	Dist Special							
A-1								

Prepared for

Air Force Office of Scientific Research

Bolling AFB, D.C. 20332

e

ABSTRACT

A study to determine the effect of pulsed electromagnetic energy upon brain calcium behavior was undertaken. An innovative approach for loading the cerebral tissues with radiocalcium was introduced in order to reduce the amount of tissue handling: intraventricular injections through the skull placed 40 μ l of 45 Ca²⁺ solution directly into the right lateral ventricle. Two hours later, one of two experimental procedures was employed. In the first, the skull was opened and companion frontal lobe samples were taken from each animal and placed in separate glass beakers containing uncontaminated physiologic solution (efflux medium) for a 20 min exposure to pulsed (16 Hz pulse repetition frequency) electromagnetic energy consisting of one of three power density-carrier frequency schemes: JmW/cm² at JCHz, 10 mW/cm² at 1 GHz, and 10 mW/cm² at 2.45 GHz. Measurements of radioactivity in the efflux medium and in the tissue sample were used to calculate an efflux value (ratio) for each sample. Control samples were placed in the radiation chambre with the power off to accomplish sham-irradiation conditions. A second experimental procedure involved whole-body irradiation of the animals two hours following the intraventricular injections. The irradiated rat was restrained in a plexiglass holder and oriented such that the longitudinal axis of the animal was collinear with the k-vector and normal to the E-vector. The animal was then irradiated with pulsed electromagnetic energy at a power density of 10 mW/cm², a pulse repetition frequency of 16 Hz, and carrier frequency of 2.45 GHz. Following exposure or sham-exposure, frontal lobe and parieto-occipital tissue samples were taken and analysed for radioactivity.

Statistical treatment of the first sets of experiments have failed to reveal any perturbation in calcium efflux behavior. Data from the second set of experiments, employing whole-body irradiation, is still undergoing statistical analysis at this writing.

i

TABLE OF CONTENTS

ABSTRACI		• •	•	•	•	•	•	•		•	•	٠	•	•	•	•	•	<u>Page</u> i
LIST OF	FIGURES AND	TABLE	s.	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	iii
I.	INTRODUCTIO	N.	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	1
II.	EXPERIMENTA	L.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
	Introductio	n.	••	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	4
	Preliminary	Expe	rime	nta	tio	n	•	•	•	•	•	•	•	•	•	•	•	5
	Acquisiton	of Ti	ssue	Sa	mpl	es	•	•	•	•	•	•	•	•	•	•	•	5
	Injection S	oluti	on	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
	Radioassay	of Sa	nple	S	•	•	•	•	•	•	•	•	•	•	•	•	•	8
	Calculation	s and	Sta	tis	tic	S	••	•	•	•	•	•	•	•	•	•	•	9
III.	RESULTS .	· •	• •	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	10
IV.	DISCUSSIONS	•	•	٠	•	•	٠	٠	•	•	•	•	•	•	•	•	•	12
v.	REFERENCES	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16

٠

-

LIST OF FIGURES AND TABLES

Figure	-	Page
1	Calcium efflux value comparisons between radiated and control samples for the <u>in vitro</u> irradiation experiments	11
Table		
1	Summary of experiments	8
2	Summary of in vitro exposure experiments	10

INVESTIGATION OF RADIO FREQUENCY/MICROWAVE EFFECTS UPON THE CENTRAL NERVOUS SYSTEM

I INTRODUCTION

The increased use of radiofrequency (RF) and microwave power during the past two decades has spurred interest in ascertaining the biohazzard potential of these electromagnetic (EM) radiations. Research into the biological effects of EM radiations has expanded enormously in an effort to identify EM-induced biological deficits and describe the underlying mechanisms.

The central nervous system (CNS) has been a very prominent area of RF/microwave studies, and numerous reports exist proclaiming both the presence and the absence of low-level KF/microwave - induced alterations in the anatomical, neurochemical, and physiological aspects of the CNS (1,2,3,4,5,6), and some behavioral modifications at higher power levels has been noted (1). However, much research remains to be completed before these findings can be completely assessed.

An important consideration of the research outlined above is the effect of weak fields upon cerebral cation behavior. In particular, the profound role of the Ca²⁺ion in the regulation of membrane resting potential and in synaptic events dictates that the influence of EM energy upon its neuronal distribution and kinetics be fully assessed.

Bawin and colleagues (4,7) have reported a range of frequencies (6-20 Hz) whose sinusoidal modulation (double sideband-large carrier, or DSB-LC, at 80-90% modulation depth) of a 147 MHz carrier could produce significant increases in $^{45}Ca^{2+}$ efflux from neonatal chick brain exposed <u>in vitro</u> at low power densities (PD) of around 0.8 mW/cm². The maximal response occurred at 16 Hz, where $^{45}Ca^{2+}$ efflux was found to be 18.5% above control. Modulating frequencies outside this

range were found to be ineffective in producing efflux changes. Furthermore, the direct application of the unmodulated carrier signal itself also failed to induce efflux perturbations. A subsequent report by Bawin and Adey (1976) considered the actions of only the slow modulation frequencies on $^{45}Ca^{2+}$ efflux. They showed that direct application of 6-16 Hz sinusoidal fields produced a decrease in $^{45}Ca^{2+}$ efflux in chick and brain tissue. Other studies by the Bawin group have shown that a similar increase release of $^{45}Ca^{2+}$ from chick cerebral tissue can be induced by a 450 MHz carrier signal amplitude-modulated at 16 Hz (8). The essential results of these investigations have been confirmed elsewhere (9).

Shelton and Mettitt (10,11) undertook parallel studies employing pulsedmircrowave irradiation of rat cerebral tissues in vitro in the far-field region. The exposures performed consisted of several PD-PRF combinations (0.5, 1.0, 2.0 and 15 mW/cm² at 16 Hz; 1.0 and 2.0 mW/cm² at 32 Hz) with a 1 GHz sinusoidal carrier. No significant changes in $^{45}Ca^{2+}$ efflux could be elicited.

Thus far, experiments dealing with the response of brain calcium to modulated sinusoidal waveforms have been performed entirely under <u>in vitro</u> conditions, and the results must be interpreted with that in mind. A more attractive approach would be to perform as much of the experimentation as possible under <u>in</u> vivo conditions.

The present report, which is the Final Report on Minigrant AFOSR 79-0110, presents the findings of $^{45}Ca^{2+}$ efflux studies which incorporated <u>in vivo</u> techniques into the experimental procedure.

II EXPERIMENTAL

Introduction

In the study of brain calcium response to electromagnetic (EM) energy, the in vitro methods used exclusively to date have required that the brain be removed from the cranial vault and placed in a $^{45}Ca^{2+}$ -treated physiologic medium for 20 minutes or longer to accomplish radioisotope loading. Aside from the inherent shortcomings of <u>in vitro</u> methods in general, Bawin and Adey (7) have pointed out the sensitivity of calcium efflux in cerebral tissues to tissue handling. They noted that loading of the tissues, under <u>in vitro</u> conditions, takes place predominantly in the superficial regions of the tissues and that substantial variations in the efflux occur in response to changes in tissue handling procedures such as cutting and rinsing. This effect was confirmed by Shelton and Merritt in similar experiments.

The experimentation described in this report was designed to introduce more in vivo methodology into calcium efflux experimentation. Primarily, earlier experimentation by Shelton and Merritt (10,11) was repeated with the exception that in vivo tissue loading of $^{45}Ca^{2+}$ was introduced, and an additional carrier frequency of 2.45 GHz was added to the exposure parameters. The principal in vivo technique introduced in these experiments was the injection of the $^{45}Ca^{2+}$ through the skull directly into the right lateral ventricle of each animal and allowing time for sufficient incorporation of the radioisotope into the brain calcium population. Though the radiocalcium <u>loading</u> was in vivo, the irradiation was still performed under in vitro conditions. Thus, beyond the principal objectives, it was decided to pursue, additionally, <u>whole-body irradiation</u> of the of the animals in order to reduce further the amount of tissue handling.

Preliminary Experimentation

A preliminary set of experiments was performed to determine the efficacy of direct intraventricular injections. Initially, injections of trypan blue were made (with the animals under light ether anesthesia) and the animals sacrificed at various times up to 24 hours. These studies confirmed by visual inspection that injections targeted for the ventricles could be easily and reliably accomplished from outside the skull. No evidence of behavior modification was observed among the rats up to the time of sacrifice.

The second phase of the preliminary experiments was designed to establish a reasonable post-injection sacrifice time for the animals. Intraventricular injections of 45Ca²⁺ -treated physiologic medium (see below) were followed by sacrifices at 2,4,8, and 48 hours after injection and frontal lobe tissue samples were assayed for radioactivity. This provided a sketch of the frontal-lobe 45Ca²⁺ -uptake kinetics. Uptake of 45Ca²⁺ was found to be approximately 25% complete by 2 hours following the injection. This figure was considered to be sufficient for counting purposes and, hence, a standard two hour post-injection sacrifice time was settled upon.

Intraventricular Injections

Male Sprague Dawley rats, 150-250 g, were used exclusively and allowed Purina Chow and water ad libitum. The animals were lightly anesthetized with ether in a closed container. They were then removed and a longitudinal incision was made along the midline of the scalp. The scalp was retracted and a vertical puncture (approximately 1 mm diameter) was made through the skull and into the cortex. A microsyringe with a 23 gauge needle (approximately 2.5 mm long) was immediately positioned over the puncture wound to permit the injection of 40 µl of the radioisotope solution through the puncture wound into the right lateral

ventricle. The injection was made gradually over a 2-3 second interval and pressure then briefly applied over the injection site prior to closing by suture. Characteristically, the injection procedure required 5-6 minutes following the anesthesia, with the animals recovering during the suturing.

Acquisition of Tissue Samples

For the <u>in vitro</u> exposures, the animals were sacrificed via cervical dislocation two hours following the intraventricular injections. The cranial vault was quickly opened and the entire brain removed and washed briefly with cold physiologic solution. Two frontal lobe samples from each animal were excised by a single coronal slice made approximately 5 mm posterior to the frontal poles (using a #10 surgical blade) followed by a midsaggital cut (when needed) to complete the separation of the samples. Each sample was weighed and placed in a 50 ml glass beaker containing 2 ml of the physiologic solution in preparation for irradiation of sham irradiation. Four such pairs of frontal lobe tissue samples were processed together in each exposure or control experiment.

Simples for the <u>in vivo</u> irradiation were taken immediately following irradidation or sham irradiation. The cranial vault was opened and the entire brain removed. Frontal lobe samples were taken in the manner described for the <u>in</u> <u>vitro</u> exposures. Additionally, a wide strip of cortial tissue from the middle half of the cerebrum was also taken.

Exposure of Samples

Irradiation was performed in the 10 ft x 10 ft test center of an Emerson and Cumming 10 ft x 10 ft x 24 ft tapered Eccosorb anechoic chambre located in the Radiation Sciences Division of the USAF School of Aerospace Medicine at Brooks AFB, Texas. The output of MCL Model 15022 microwave generator was trans-

5.

mitted to a standard gain horn by flexible waveguide. Horn transmitters operating in the TEM mode were used for irradiation, with the animals located sufficiently distant to ensure far field conditions. Incident power densities at the irradiation pane were measured with a Narda Electromagnetic Radiation Monitor (Model 8316 b) and Isotropic Probe (Model 8231). The chambre was modified to permit environmental control which ensured consistent chambre temperature and humidity throughout the experiments.

For the in vitro exposures, standard gain horns were mounted above the samples so that normal incidence of the EM wave upon the plane of the samples was achieved. For each in vitro exposure or sham exposure, the eight samplecontaining beakers were arranged in two parallel rows of four beakers each. The beakers were restrained in a styrofoam holder which was afloat in a plexiglas waterbath. The lower part of the holder (and, therefore, the bottoms of the beakers) was submerged and was designed to permit circulation of the temperaturecontrolled water around the beakers. The circulation was promoted by the transverse flow of the water from the inputport of the water bath to the output port and by a gentle lateral oscillation imparted to the styrofoam holder by a long plexiglas rod connected to the movable section of another water-bath maintained outside the irradiation area. The lateral oscillation frequency was approximately one cycle every two seconds, and the lateral displacements of the holder were restricted to ensure that the samples were at all times within the region of constant power density. The water was routed via tygon tubing to and from a Neslab heating unit stationed just outside the anechoic chambre. The water was kept at 37°C in the large reservoir of the Neslab unit, and the temperature continuously monitored by visual insepection during the exposure period. The temperature of the water in the water bath within the chambre was monitored by a

Vitek electrothermia monitor (Model 102). The sensor leads were fed into the water bath from outside the irradiation area and attached to the side of the water bath by tape such that they were immersed in the adjacent water. The output of the Viteck electrothermia monitor was fet outside the chambre to an HP 9830 A which was programmed to record the temperature measurements at 30 sec intervals.

In the in vitro irradiation experiments, a 16 Hz PRF was selected on the basis of its "analogy" to the 16 Hz sinusoidal modulating frequency found by Bawin and Adey (4) to be optimal in producing changes in cerebral calcium efflux in DSB-LC experiments. Power densities of 1 mW/cm² and 10 mW/cm² at 1.0 GHz were also related to the work of Bawin and Adey (4) which indicated that the former PD might be biologically effective. Two additional sets of experiments utilizing the 16 Hz PRF and the same two PD figures at a carrier frequency of 2.45 GHz were included in the experimental plan in order to provide a shorter wavelength of biological importance. In these latter experiments only the 10 mW/cm² irradiations were performed, since it was then decided to proceed to the whole-body experiments and return later to complete the final in vitro exposure experiment. The whole-body experiments subsequently occupied the remainder of the experimentation and the final in vitro experiment had to be delayed until the next opportunity arose in the lab. Whole-body experiments are still in progress at USAFSAM due to continuing interest by personnel in the Radiation Sciences labs. Upon their completion, the final in vitro experiments will be pursued.

The selection of parameters for the whole body irradiations were made on the same basis as described for the <u>in vitro</u> experiments. A summary of all the experiments is presented in Table 1.

In vivo, or whole-body, exposures were begun at the two hours post-injection times. The rats were placed in a cylindrical, plexiglas restrainer which rested horizontally on a styroforam platform, with the longitudinal axis of the animal aligned with the incident k-vector and normal to the E-vector in the far-field region. During the exposure of sham-exposure, the rectal temperatures were monitored with a Vitek electrothermia monitor. The output was fed into an HP 9830A outside the chambre which recorded the temperatures at 30 sec intervals.

Experiment	Exposure	PRF (Hz)	PD (mW/cm ²)	Carrier Freq. (GHz)
I	<u>in vitro</u>	16	1.0	1.0
II	<u>in vitro</u>	16	10.0	1.0
III	<u>in vitro</u>	16	10.0	2.45
IV	<u>in vivo</u>	16	10.0	2.45

Table 1. Summary of Experiments

Injection Solution

The solution used for intraventricular ${}^{45}Ca^{2+}$ loading was modeled after Cooke and Robinson (12): 124 mM NaCl, 26 mM NaHCO₃, 5mM KCl, 12 mM KH₂PO₄, 1.3 mM MgSO₄, 0.75 mM CaCl₂, 10 mM glucose and 2 µCi of ${}^{45}Ca^{2+}$. For the <u>in vitro</u> exposures, the uncontaminated version of the medium was used for efflux analysis.

Radioassay of Samples

Upon completion of the 20 min exposure period for the <u>in vitro</u> experiments, a 0.5 ml aliquot of the physiologic medium was pipetted into a counting vial and the tissue sample washed briefly with fresh physiologic solution and also placed in a counting vial. The tissue sample was digested overnight in 2 ml of Soluene

in an oven maintained at 37° C. A 1 ml aliquot of the resultant solution was transferred to a new counting vial and 9 ml of Dimulume was added. The 0.5 ml aliquots of the physiologic medium were also supplemented with 9 ml volumes of Dimulume at this time. The vials were then placed in a Beckman LS 250 liquid scintillation counter and counted for 10 min periods to determine radioactive content.

For the <u>in vivo</u> exposure experiments, the samples were treated overnight in Soluene and then processed in the same fashion as the <u>in vitro</u> samples.

Calculations and Statistics

For the <u>in vitro</u> exposure experiments, the calcium efflux was calculated as the ratio

where CPM (medium) is the total counts per minute in the efflux medium as determined from radioassay of the aliquots and CPM (tissue) is the total CPM measured in the tissue at the end of an experiment. The denominator, then, represents the total CPM in the tissue at the outset of an exposure. All counting was corrected for radioisotope half-life and efficiency of the counting system. The efflux values of the irradiated tissues were compared to the companion sham-irradiated tissue using the student's t-test. Nonsignificance of difference was assumed if P>0.05.

Data from the <u>in vivo</u> exposures is still being processed. At this time, the data is being transformed into a simple numberrepresenting CPM per g of brain tissue.

III RESULTS

The results of the <u>in vitro</u> exposure experiments are summarized in Table 2, and are presented graphically in Figure 1.

Experiment Number	<u>Efflux Valu</u> Radiated (n)	<u>e (m ± S.D.</u>) Control (n)	t-test
I	5.70 <u>+</u> 1.57 (46)	6.15 <u>+</u> 1.25 (53)	P>0.05
II	4.98 <u>+</u> 1.44 (22)	5.04 <u>+</u> 1.06 (22)	P>0.05
III	6.42+ 1.63 (24)	5.70 <u>+</u> 1.33 (22)	P>0.05

Table 2. Summary of in vitro exposure experiments. Efflux values are expressed as mean percentages (m) and standard deviations (S.D.), and the number of samples (n) used in calculating each value is given in parentheses.

At the time of this writing, whole-body irradiation (Experiment IV) using a power density of 10 mW/cm² and a 2.45 GHz carrier frequency has been completed, but data processing and analysis is still being performed.

For the <u>in vitro</u> irradiation results presented here, the differences between radiated and sham radiated means was considered significant if the t-test yielded P>0.05. All experiments completed so far indicate nonsignificant differences in the means since P>0.05.

Figure 1. Calcium efflux value comparisons between radiated and control samples for the in vivo irradiation experiments. Vertical bars indicate one standard deviation.

. ...

æ

IV DISCUSSION

The introduction of intraventricular 45Ca²⁺ injections to permit <u>in vivo</u> exchange of the isotope with the indigenous brain calcium represents a significant improvement in calcium efflux studies. Equilibration thus could proceed under more homeostatic conditions and eliminated were the tissue handling procedures prior to 45Ca²⁺ loading of the tissue as well as the in vitro loading technique itself. The intraventricular injection technique was found to be a reliable and reasonably easy method of delivering radiocalcium directly into the brain at a location proximal to the frontal lobes from which the samples were to be taken. The 2 hour post-injection interval required for accumulation of the isotope in the frontal lobes added 1 2/3 hour to the time utilized in the <u>in vitro</u> loading procedure. This factor along with the innovative intraventricular injection made the overall procedure more complicated and time consuming, and dictated a rigorous schedule for each day's experiments. However, the enhancement in experimental design more than offset the sacrifice in the rate at which data could be collected.

Whole-body irradiation following intraventricular delivery of radiocalcium perimtted brain calcium kinetics to proceed with the homeostatic mechanisms remaining operational up to the time of sacrifice of the animals. However, the rate of data collection was reduced substantially as a consequence of the constraint that only one animal at a time could occupy the irradiation chambre for either exposure or sham exposure. Furthermore, a new expression for quantifying the efflux ratio had to be employed since there now existed no efflux solution.

The <u>in vitro</u> irradiations performed in this experimentations failed to produce statistically significant changes in cerebral calcium efflux. These findings confirmed the conclusions drawn from previous experiments (10,11) involving

the same exposure parameters (1.0 and 10.0 mW/cm^2 at 16 Hz PRF and 1.0 GHz carrier frequency), and extended consideration to higher carrier frequencies (2.45 GHz) where the same findings were seen.

Although no significant differences in efflux values were found betweem exposed and control rats in this experimentation or between exposed and control rats in the previous experiments (10,11), it should be noted that a marked difference in the efflux values derived from these two experimental methodologies does occur. Shelton and Merritt (10,11) previously reported efflux values of 36.8 % (exposed) and 39.5 % (control) for an experiment corresponding to experiment I of this report. This is seen to be in dramatic contrast to the figures of 5.7 % and 6.15 %, respectively, derived from the present experimentation. These differences apparently develop from such factors as cerebral vascularization and CSF flow (as well as slightly modified tissue cutting procedures) as compared to the immersiontype of treatment involved in the in vitro method radioisotope loading. The 45Ca²⁺-rich superficial regions of tissues loaded by the latter method thus appear capable of releasing of greater amounts of the radioisotope into the efflux medium during the 20 min effluz period. This tendency of in vivo-loaded tissue to retain 45Ca²⁺ may also reflect a more genuine incorporation of the radioisotope into normal calcium roles in the brain.

Experimental animal and carrier frequency differences aside, it is perhaps appropriate here to point out a few of the other fundamental differences between the exposure techniques employed in the present work and those used by other researchers to date (4,5,6,7,8). The use of pulsed microwave energy with a 0.32 duty factor means that the samples were actually being irradiated only about a third of the time during the 20-minute exposure period. This contrasts with the continuous exposure in the double sideband-large carrier (DSB-LC) tech-

nique used by others. Of course, the response of tissue to the abrupt on-off fields of pulsed radiofrequency (RF) energy, as opposed to the steady-state sinusoids, is another point of consideration. Finally, the use of DSB-LC implies a signal magnitude spectrum consisting of a carrier component along with a sideband component on either side at a separation distance equal to the modulating frequency. For 80-90% modulation, simple calculations place some 24-29% of the transmitted power in the two sidebands, which are suggested by others to be the biologically significant components. Pulsed RF radiation on the other hand, is characterized by a magnitude spectrum consisting of a carrier term and a number of symmetric sidebands spaced about the carrier at integral multiplies of the PRF and following a $\frac{\sin x}{x}$ envelope.

The process by which a membrane might demodulate single-tone DSB-LC signals is unresolved, but suggestions for an exquisitely sensitive mechanism have been offered recently (see Adey 1977 for discussion). This mechanism represents a highly selective membrane response to electromagnetic energy according to the constraints imposed by the "power window" phenomena. Thus, given the contrasting properties of pulsed RF fields, the question arises as to whether such a signal (pulsed RF) possesses any of the requisite characteristics for triggering a demodulation mechanism. Further , if the pulsed RF signals were in fact somehow demodulated, it would still remain to show that the tissue interprets the recovered pulse-train the same as it would a sinusoid recovered from a DSB-LC signal.

The results presented in this report reinforce the conclusions of earlier work (10,11) that if a pulsed RF demodulation mechanism exists in rat cerebral tissue, it is either unresponsive or else insufficiently responsive to the

pulsed RF parameters defined in Table 1.

The need for additional research in this area is apparent. Of immediate interest would be an experiment designed to place, in the first sidebands of the pulse spectrum, an amount of energy equivalent to that used in DSB-LC experimentation, since it is this energy that is suggested to be biologically potent. Additional combinations of carrier frequency, PRF, power density, and other types of modulation need to be incorporated into this experimentation.

V REFERENCES

- 1. S.F. Cleary, "Biological Effects of Microwave and Radio Frequency Radiation," CRC Crit. Rev. Environ. Control 7: 121-165 (1977).
- 2. Proc. Symposium on Biological Effects and Measurement of Radio Frequency/ Microwaves, Rockville, Maryland, February 1977.
- I.T. Kaplan <u>et al.</u>, "Absence of Heart-Rate Effects in Rabbits During Low-Level Microwave Irradiation," <u>IEEE Trans. Micr. Theory and Tech.</u>, MTT-19: 168-173 (1971).
- 4. S.M. Bawin, L.K. Kaczmarek, and W.R. Adey, "Effects of Modulated VHF Fields on the Central Nervous System," Ann. N.Y. Acad. Sci., 247: 75-81 (1975).
- S.M. Bawin and W.R. Adey, "Sensitivity of Calcium Binding in Cerebral Tissue to Weak Environmental Electric Fields Oscillating at Low Frequency," <u>Proc.</u> <u>Nat. Acad. Sci. 73</u>: 1999-2003 (1976).
- 6. S.M. Bawin and W.R. Adey, "interaction Between Nervous Tissue and Weak Environmental Electric Fields," <u>Biological Effects of Electromagnetic Waves</u> -Selected Papers of the USNC/URSI Annual Meeting, Boulder, Colorado, Oct. 1975.-
- S.M. Bawin and W.R. Adey, "Calcium Binding in Cerebral Tissue," <u>Proc. Sympo-</u> sium on Biological Effects and Measurement of Radio Frequency/Microwaves, Rockville, Maryland, February 1977.
- S.M. Bawin and W.R. Adey, "Ionic Factors in Relaease of ⁴⁵Ca²⁺ From Chicken Cerebral Tissues by Electromagnetic Fields," <u>Proc. Nat. Acad. Sci.</u>, 75: 6314-6318 (1978).
- 9. C.F. Blackman et al., "Two Parameters Affecting Radiation-Induced Calcium Efflux From Brain Tissue," Abstract in <u>1977 International Symposium on the Biological Effects of Electromagnetic Waves</u>, Airlie, Virginia, October-November 1977.
- 10. W.W. Shelton and J.H. Merritt," In Vitro Study of Microwave Effects on Calcium Efflux in Rat Brain Tissue," Presented at Annual Bioelectromagnetics Symposium, Seattle, Washington, June 1979.
- 11. W.W. Shelton and J.H. Merritt," In Vitro Study of Microwave Effects on Calcium Efflux in Rat Brain Tissue," Submitted for publication.
- 12. W.J. Cooke and J.D. Robinson, "Factors Influencing Calcium Movements in Rat Brain Slices," Amer. J. Physiol 221: 218-225 (1971).