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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

Multiply by To Obtain

cubic feet 0.02832 cubic metres

degrees O.01745 radians

feet O.3048 metres

inches 2.54 centimetres

square feet 0.09290304 square metres

3



EXPLICIT NUMERICAL ALGORITHM FOR MODELING

INCOMPRESSIBLE APPROACH FLOW

PART I: INTRODUCTION

Background

1. Adverse approach flow can increase the frequency of repair and the

cost of maintenance while reducing the working life of a hydraulic structure.

In many cases it is less expensive to modify the approach than to pay the

long-term costs that would result from continued operation under existing flow

conditions. Accordingly, the modifications themselves must be chosen to

achieve the greatest benefit with the simplest and least expensive remedial

measures.

2. In the past, each measure under consideration usually had to be

tested in the laboratory with a physical scale model. While such testing is

essential for the ultimate renovation, repair, and maintenance of a structure,

it is costly and time-consuming in the early stages of evaluation; i.e., when

there are many candidate measures from which the best are to be selected. In

addition, laboratory modeling may be of limited value in some cases, due to

scale differences between models and full-scale structures. Thus, it is

expedient to have alternative means available that can help to eliminate

errors introduced by scale effects.

3. A new computer program, STREMR, is under development to aid

scientists, mathematicians, and engineers in simulating complex approach

flows. The STREMR code is a finite-difference numerical model for two-

dimensional 42z-D) depth- or width-averaged flow with boundaries and obstacles

of arbitrary shape.--, By changing the input and the finite-difference grid,

which is generated by a separate computer program, WESCOR (Thompson 1983), the

user can investigate the relative effects of such parameters and constraints

as

a. Shape of boundaries (bank lines)

b. Vertical or lateral topography

c. Friction (Manning's n)

d. Dikes and training walls

e. Piers and piles
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f. Vanes and berms

g. Inlets and outlets

h. Islands

i. Submerged structures

4. The ultimate purpose of STREMR is to provide guidance and reinforce-

ment for physical models, but not to replace them. In fact, the greatest

benefit can be achieved dt the least r-xpense by using the two types of models

interactively rather than separately. Thus, the following sequence of

operations is recommended:

a. Use STREMR for screening and preliminary evaluation; that is, to

study the effects of as many repair measures and approach
modifications as time allows.

b. Select the best of these to be tested in the laboratory with

physical scale models.

c. If additional refinements are needed, use STREMR to study those

refinements before continuing with physical testing.

d. Select final specifications for modifications and repair

measures (final design), based on refinements in the laboratory.

5. The existing STREMR code uses an explicit finite-difference scheme

to solve the depth- or width-averaged equations of motion fcr 2-D incompres-

sible flow. The algorithm in its present form is limited to calculations at

low Froude number (less than 0.3) for transient flow, but it is applicable at

somewhat higher Froude numbers (perhaps up to 0.8) for subcritical steady-

state flow. In any case, the scheme is definitely inappropriate for critical

and supercritical flow, because it cannot accommodate sharp changes in the

elevation of the water surface. This does not seem a great limitation, since

many approach flows are subcritical flows at moderate Froude number (less than

0.5). Even if the flow does become critical, STREMR can still model the

subcritical upstream region.

Purpose and Scope

6. The purpose of this report is to document and demonstrate the

numerical algorithm used in STREMR. Part II offers a brief description of the

methods employed, with the mathematical details given in appendices. Part III

enumerates the results of benchmark tests used to verify the algorithm and

assess its limitations. Part IV discusses the strengths and weaknesses of

STREMR, and Part V outlines plans for continued development and improvement of
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the algorithm and the STREMR code. Appendix A presents the governing equa-

tions, and Appendix B describes the predictor-corrector scheme. Appendix C

discusses the boundary conditions, and Appendix D is the user's manual for the

preliminary STREMR code.



PART I!: GENERAL DESCRIPTION OF ALGORITHM

7. ,,e fundamental assumption in the STREMR code is that the flow

upstrea.,, of a hydraulic structure can be described by the depth- or width-

av;eraged equations of motion for an incompressible fluid. In addition, it is

assumed that the displacement of the free surface from its initial elevation

is small, which means the time derivative of the free-surface elevation is

disregarded. With these constraints, the computational free surface becomes a

rigid lid, and the pressure existing there is approximately equal to the

displacement of the actual free surface. This approximation is exact at zero

Froude number (Fr = 0),* but it gradually becomCs inexact as the Froude number

increases toward unity (Fr = 1). At small Froude numbers (Fr ( 0.3), the

rigid-lid approximation is adequate even for transient flow, because pressure

changes (changes in the free surface) propagate much faster than changes in

circulation (vorticity). At moderate Froude numbers (Fr < 0.5), vorticity

changes may propagate with speeds comparable to those for pressure changes,

but the steady-state velocities will be essentially the same for the rigid-lid

flow and the free-surface flow. The approximation breaks down completely as

the flow approaches critical (Fr = 1).

8. The governing equations for incompressible flow are the equations

for conservation of momentum and mass, which are discussed in Appendix A.

These equations are discretized on a curvilinear grid using a finite-volume

approximation for first derivatives and a finite-difference approximation for

second derivatives. The discrete momentum equations are solved with a

predictor-corrector scheme (Bernard 1986) derived from MacCormack's method

(MacCormack 1969). Each time-step consists of a predictor phase and a

corrector phase, which are combined to advance the developing flow by one time

increment. The discrete equation for conservation of mass (the continuity

equation) is satisfied in each predictor and corrector phase by introducing a

pressure gradient, which is obtained in turn from the solution to a Poisson

equation for pressure. The discrete Poisson equation is solved by means of an

iterative procedure based on the conjugate-gradient technique (Kapitza and

Eppel 1985). The predictor-corrector scheme is applied sequentially, time-

* The Froude number Fr is the ratio of flow velocity to free-surface wave

veloc ity.
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step after time-step, to march the evolving flow through time toward the

steady state. For some conditions there may be no steady state, in which case

the -reputation simply arrives at a periodic solution, such as vortex

shedding. Details of the entire algorithm are given in Appendix B.

9. The STREMR code can make calculations in either the horizontal or

the vertical plane, depending on the particular application. For computations

in the horizontal, bottom friction (as represented by Manning's equation) is

the dominant resisting force. Additional resistance may arise from shear

stress (due to the no-slip condition) along the edges of the flow field and

obstacles therein, but this will be far outweighed by the bottom friction when

the lateral and longitudinal dimensions are much greater than the vertical

depth. For calculations in the vertical plane, bottom friction gives way to

31dew~l friCtion, which is not important unless the lateral dimension of the

flow (normal to the plane of motion) is small compared to the longitudinal and

vertical dimensions. In such cases, the no-slip condition along edges and

obstacles is likely to generate most of the resistance to the flow.

10. The effects of turbulence have not yet been incorporated into the

STREMR code, and much effort will certainly be exerted toward that purpose in

the near future. While STREMR is admittedly incomplete without a turbulence

model, however, a turbulence model misapplied can be worse than no turbulence

model at all. Moreover, the complexity of some approach flows may be enough

to confound the most sophisticated turbulence models even in the most

experienced hands. Faced with this kind of uncertainty, the sensible solution

is to adopt a model that allows the user to set reasonable bounds on the

influence of turbulence. In the existing version of STREMR, that can be

accomplished by changing the fluid viscosity; but this demands judgment on the

part of the user, and it gives rather dubious results at best. A turbulence

algorithm will socn be incorporated that automatically accounts for the gross

effects without expending too much computer time on the details.

11. The proper formulation of boundary conditions is crucial to fluid

flow calculations, and much care has been given to this facet of algorithm

development in STREMR. The existing code accommodates four types of

boundaries in the plane of the flow:

a. Flux boundaries

b. Open boundaries

c. Slip boundaries



d. No-slip boundaries

12. A flux boundary has a fixed distribution of mass flux normal

thereto; e.g., solid boundaries (zero flux) or inlets and outlets with a

specified flux distribution. Open boundaries are like flux boundaries, except

that the distribution of flux through them may change in the course of time,

depending on the evolution of the computational flow field. A slip boundary

is a frictionless solid boundary, which offers no tangential resistance to the

flow. A no-slip boundary is a solid boundary that exerts shear stress on the

flow due to the no-slip condition (zero tangential velocity) along the

boundary.

13. The evolution of mass flux through open boundaries with time is

found by means of a discrete radiation condition (Orlanski 1976), which allows

changes inside the flow field to be transmitted outward, but not vice versa.

Thus, a disturbance (such as a moving eddy) created inside the computational

domain can leave the domain through an open boundary, but it cannot reenter.

The discrete radiation condition allows calculations to be made with fewer

grid cells (i.e., less storage and computer time) than might otherwise be

necessary with fixed flux conditions. Most computations will entail both flux

boundaries and open boundaries, with flux boundaries usually occurring at

inlets and open boundaries at outlets.

14. The flux boundary conditions are specified independent of the

pressure and are adjusted to maintain a fixed flow rate, which can be

specified by the user or computed by STREMR. On rectangular grids and

orthogonal curvilinear grids, the pressure is adjusted in a straightforward

manner on the boundaries to accommodate the independently specified changes in

mass flux. Nonorthogonal grids require additional measures for the pressure

boundary condition (Bernard 1987).

15. The treatment of all boundary conditions is handled automatically

by the STREMR code, and the user need only specify the boundary types (flux,

open, slip, or no-slip). Appendix C offers a detailed mathematical discussion

of the formulation and resolution of the boundary conditions, including the

no-slip condition.
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PART ill: BENCHMARK CALCULATIONS

16. Presented in this part are the results of four sets of computer

calculations, each of which represents a simple flow that might occur upstream

of a hydraulic structure. The purpose here is to demonstrate both the assets

and the shortcomings of the existing STREMR code, with an eye toward improving

the shortcomings in the near future. In any case, to avoid wasted effort and

erroneous computation, it is important that prospective users have a keen

awareness of the code's limitations.

17. The first set of calculations involves a straight channel with a

nonuniform semitrapezoidal cross section, showing the coupled effects of

bathymetry and bottom friction. The second set entails a bendway in a channel

with a uniform trapezoidal cross section, indicating the need for additional

resistance forces (possibly arising from secondary flow) in the mathematical

model. The third set follows the time evolution of the flow about a circular

cylinder, demonstrating the code's ability to model transient flow at low

Froude number. The fourth set of calculations, intended as a practical

engineering example, shows the effect of reshaping an abutment in a hypo-

thetical approach flow. All linear dimensions are given in feet, and all

velocities in feet per second. The initial condition for all configurations

is potential flow.

Flow in a Straight Channel

18. Figure 1 (Ruff et al. 1987) shows the schematic drawing of a

tilting flume used to study riprap stability in flood-control channels. In

the following discussion, the lateral position y refers to distance measured

from the right side of the flume as the observer looks downst.ream. The

longitudinal position x refers to distance measured from a station 60 ft*

upstream of the transition section shown in Figure 1; e.g., the longitudinal

position x = 120 coincides with sta 120 in the schematic.

19. A number of physical tests were conducted for several tilt angles

and water depths in the flume (Ruff et al. 1987), but only one of those tests

A table of factors for converting non-SI units of measurement to SI
(metric) units is given on page 3.
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will be used herein for comparison with computed results. Specifically, the

test designated as number 20 by Ruff et al. (1987) was conducted with nearly

identical bed and water-surface slopes of 0.00510 and 0.00515, respectively.

The average rock diameter was I in., the riprap thickness was 2 in., and the

flow rate was 40 cfs. The maximum water depths were 1.54, 1.56, and 1.48 ft

at sta 120, 130, and 140, respectively. The estimated value for Manning's

coefficient was 0.024.

20. The STREMR computation simulating this test was executed on a

46 A 29 grid.* In the transition section of the flume (sta 60 to 80), the

longitudinal grid spacing was 1.0 ft. This was gradually increased from 1.0

to 4.0 ft in the entrance section (sta 80 to sta 100), and was held fixed at

4.0 ft in the test and exit sections (sta 100 to sta 160). The lateral grid

spacing was 0.25 ft at all stations. Figure 2 shows the grid and the

steady-state velocity vectors and streamlines in the transition and entrance

sections, computed with Manning's coefficient set at 0.03. Note that the

lateral dimension on these plots has been magnified for the sake of clarity.

21. Since the purpose of this set of calculations was to examine the

computed effects of bathymetry and bottom friction, the lateral boundaries

were idealized as slip boundaries and the kinematic viscosity was taken to be

0.1 ft2 /sec. The distribution of inflow was held fixed (flux boundary), and

the distribution of outflow was computed using the discrete radiation

condition discussed for open boundaries in Appendix C. The maximum depth was

set at 1.5 ft for all stations, and the banked portion of the bed was

idealized by stairstepping the mean cell depth from cell to cell, using the

topography option in STREMR (Appendix D). The Froude number based on the

maximum depth was Fr = 0.8 , and the Reynolds number based on the channel

width was Re = 400. Note that for a maximum depth of 1.5 ft, the wetted

width of the flume was 7.0 ft, and the water's edge lay at y = 1.0 ft .

22. The STREMR code was executed with a time-step of 0.1 sec, and

200 time-steps were sjificipnt to establish a steady state in the test

section. The computed depth-averaged velocities were nearly constant with

x between sta 120 and 140, and these are plotted against lateral position

y in Figure 3 for three different values of Manning's coefficient: n = 0.02,

* A 46 x 29 grid has 46 nodes in the horizontal direction and 29 nodes in

the vertical direction.
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a. Computed streamlines

- ~V - - -rF - --

b. Velocity vectors

c. Grid

I00 so .60

FLOW

2. 0 .0" 1_ 2 0 .0 " _
ENTRANCE - TRANSITION

SECTION SECTION

d. Entrance and transition sections

Figure 2. Computed streamlines, velocity vectors, and grid
for transition and entrance sections of flume
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O PHYSICAL TEST, STA 120

a PHYSICAL TEST, STA 130
o PHYSICAL TEST, STA 140

........ COMPUTATION, N = 0.02
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Figure 3. Comparison of computed and measured lateral distributions

of depth-averaged longitudinal velocity for tilting flume
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0.03 and 0.04. Measured depth-averaged velocities from stj 120, 130, and 140

are plotted for comparison. At first glance, agreement between computation

and experiment appears quite good for the coefficients n = 0.03 and 0.04,

especially for sta 140. Closer inspection, however, reveals that the measured

velocity distribution curve has a slightly different shape from that of the

computed distribution.

23. The STREMR code operates on the supposition that the flow is

essentially two-dimensional; that is, that the velocity is uniform in the

third dimension. While this seems a valid simplification in the flat portion

of the channel cross section, it appears somewhat less so on the banked

portion, especially near the water's edge (y = 1). This is borne out by

comparison of computed (vertically uniform) velocities with measured vertical

distributions (Figure 4). Here it is quite clear that some correction is

needed for the nonuniform vertical distribution of longitudinal velocity near

the water's edge.

24. The value estimated by Ruff et al. (1987) for Manning's coefficient

(n = 0.024) was based upon the hydraulic radius of the flume. There was some

question as to whether such a value is appropriate for the STREMR code, since

the latter uses local depth instead of hydraulic radius to compute local

resistance due to friction. In Figure 5, however, the plotted curve of

STREMR-computed water-surface slope versus Manning's coefficient indicates

that the correct slope (0.00515) is obtained for n = 0.027. This exceeds the

estimated value of n by less than 13 percent.

Flow in a Bendway

25. Figure 6 shows cross-section and plan views for a channel

consisting of a 15-ft straight section, a 100-deg circular bendway, and

another 15-ft straight section. The channel has a uniform lateral width of

8.6 ft (water surface), with inner and outer radii of 17.7 and 26.3 ft,

respectively, in the bendway. The cross section is trapezoidal with a maximum

depth of 0.455 ft and a lateral width of 7.0 ft across the bottom. This

configuration represents a partially filled, truncated segment of an existing

physical model containing two bendways (Maynord 1988). The estimated value

for Manning's coefficient is n = 0.02.

15
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a. Channel cross section

15.0 R"7. 15.0

b. Chamniel plan view

Figure 6. Schematic drawing ror channel with bendway
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26. A 69 x 47 grid was used to simulate a flow rate of 6.75 cfs in the

channel. Figure 7 shows the grid and the computed steady-state velocity

vectors at various longitudinal stations. All of the 69 lateral (radial) grid

lines appear in the figure, but only 24 of the 47 longitudinal grid lines are

shown. The flow is from left to right (clockwise), with a fixed inflow dis-

tribution (directly proportional to depth) through the left (flux) boundary.

The discrete radiation condition was used to compute the outflow distribution

through the right (open) boundary. The no-slip condition was imposed on the

inner and outer lateral boundaries, and the kinematic viscosity was taken to

be 0.01 ft2/sec. The Froude number based on the maximum depth was Fr = 0.5

and the Reynolds number based on the channel width was Re = 1600.

27. The STREMR code was executed with a time-step of 0.2 sec, and 200

time-steps were sufficient to establish steady-state flow at sta A and B

(located as shown in Figure 7). Comparison of computed results with physical

test results* is presented for sta A and B in Figures 8 and 9, respectively.

Longitudinal velocity is plotted against lateral (radial) position measured

from the inner boundary. As before, the computed velocities are depth-

averaged values, but the test data represent measurements taken at vertical

distances from the water surface of 20, 60, and 80 percent of the total depth.

28. At first glance, agreement between the computed and measured

velocity distributions looks only fair to poor, but upon closer inspection it

looks even worse. The measured velocities for all three depths increase

monotonically across the channel, with the increase becoming more dramatic

from sta A to sta B. The computed velocities show just the opposite trend at

sta A, with a slight improvement at sta B. These trends are only slightly

affected by uniformly changing the viscosity or the Manning coefficient, or

by varying the local depth with the local pressure (free-surface displacement).

The poor agreement indicates that something is still missing from the

mathematical model for the flow resistance. Some mechanism is needed that

automatically varies the viscosity or Manning coefficient, or perhaps both,

with position. In the context of the STREMR code, that is the only way that

the computed trend can be dramatically reversed for the bendway.

Unpublished test data provided by S. T. Maynord, Research Hydraulic

Engineer, August 1987, US Army Engineer Waterways Experiment Station,
Vicksburg, MS.
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a. Velocity vectors

STA B

b. Grid

Figure 7. Computed velocity vectors and grid for channel with bendway
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Figure 8. Comparison of computed and measured
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for channel with bendway, sta A
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Flow Past a Circular Cylinder

29. Figure 10 shows a 91 x 41 grid that represents a channel containing

a circular cylinder. The channel is 18 ft long, 8 ft wide, and 1 ft deep, and

the cylinder is 2 ft in diameter. A STREMR calculation was performed for this

configuration with a flow rate of 8.0 cfs and a kinematic viscosity of

0.02 ft2/sec, making the Froude number Fr = 0.176 based on the depth, and

the Reynolds number Re = 100 based on the diameter of the cylinder.

Manning's coefficient was set to zero, so there was no resistance due to

bottom friction.

30. The inflow distribution through the left (flux) boundary was fixed

and uniform for the duration of the run, and the outflow distribution through

the right (open) boundary was allowed to change in accordance with the

discrete radiation condition. The no-slip condition was imposed on the

surface of the cylinder, the channel sides were taken to be slip boundaries,

and the time-step was set at 0.05 sec. The code was allowed to run for 1,520

time-steps, and the resulting streamlines are shown in Figures 11 and 12.

31. Figure 11 shows the evolution of the flow field at intervals of

5 sec for the first 55 sec. The initial condition (at 0 sec) is potential

flow, which gradually gives way to a long, symmetric wake (20 to 25 sec). The

symmetric wake becomes unstable (30 to 40 sec) and degenerates to a periodic

wake (45 to 55 sec) with a period of 9 to 10 sec. After 65 sec the periodic

wake is well developed, as is shown by the streamline plots at intervals of

1 sec in Figure 12.

32. The flow pattern generated by the STREMR code is the well-known

Karman vortex street, and the computed period (about 9.5 sec) is somewhat

shorter than the observed period for unbounded flow, due to the proximity of

the channel sides. The Strouhal number (frequency times diameter divided by

velocity) resulting from the computation is about 0.21, while the measured

value (Berger and Wille 1972) is about 0.17 for Re = 100. This set of

calculations demonstrates that the code can accommodate transient flow at low

Froude number and moderate Reynolds number. Moreover, the periodic wake

evolves naturally in the presence of uniform steady inflow, without the need

for any sort of externally added perturbation or forcing function.
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a. Detail

b. Entire grid

Figure 10. Computational grid for channel with circular cylinder
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10 sec 40 sec

15 sec 4 e

20 sec 50 sec

25 sec 55 sec

Figure 11. Computed streamlines for developing flow past
circular cylinder
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65 sec 71 sec

66 sec 72 sec

67 sec 73 sec

68 sec 74 sec

69 sec 75 see

70 sec 76 sec

Figure 12. Computed streamlines for fully developed periodic
flow past circular cylinder
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Flow Past an Abutment

33. Prior to physical modeling of a structure, the STREMR code may help

reduce the number of alternatives for modification and repair of a given

approach flow. As a simple hypothetical example, consider a channel 12 ft

long, 8 ft wide, and 1 ft deep, with a square abutment 4 ft long and 4 ft wide

(as shown in the topmost configuration of Figure 13). For this case the code

was executed with a flow rate of 8.0 cfs, a kinematic viscosity of

0.02 ft2/sec, and a Manning coefficient of 0.0 (no bottom friction). The

Froude number was 0.176 to 0.352 based on the depth, and the Reynolds number

was 400 based on the channel width. The 61 x 41 grid for the channel was

bounded by a 21 x 21 abutment.

34. The inflow distribution was uniform and fixed at the left (flux)

boundary, and the outflow distribution was allowed to vary according to the

discrete radiation condition at the right (open) boundary. The no-slip

condition was imposed on the channel sides and on the abutment. The time-step

was set at 0.03 sec, and 600 steps were sufficient to establish a steady state

near the outflow.

35. The STREMR code was run for four different abutment shapes,

starting with the sharp-cornered configuration shown in Figure 13a. There-

after the corner radius was increased to 1.0, 2.0, and 3.0 ft to investigate

the effect of abutment shape upon outflow distribution. The resulting stream-

lines and velocity vectors are shown for the steady state in each case. (The

velocities were taken 1 ft upstream of the outflow boundary.)

36. The sharp-cornered abutment produced backflow in the vicinity of

the outflow boundary, and this would be considered an adverse flow if a

symmetric distribution were the desired condition. Increasing the corner

radius to 1.0 ft eliminated the backflow, but still left markedly different

velocity distributions on opposite sides of the channel. Further increase of

the corner radius improved the symmetry of the outflow.
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a. Sharp-cornered abutment

b. 1.0-ft corner radiusNM
c. 2.0-ft corner radius

d. 3.0-ft corner radius

Figure 13. Computational grids, streamlines, and outflow
velocity vectors for flow past an abutment
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PART IV: DISCUSSION

37. The results presented in Part III warrant some measure of optimism,

if not complacency. The preliminary version of the STREMR code (Appendix D)

appears to satisfy the fundamental requirements of a 2-D approach flow

model: it conserves mass-and momentum, and it adequately resolves the

development and transport of vorticity (circulation) provided the grid spacing

is sufficiently fine. In general, at least 5 cells are needed to represent

the smallest eddies in the flow field, so at least 10 cells should be used

along each vorticity-producing boundary segment. This was the case for the

flow about the circular cylinder, whose perimeter was divided into four arc

lengths bounded by 10 cells each (Figure 10). Three or four times that many

cells would have been necessary to resolve the fine details of the flow, such

as separation points and secondary vortices, close to the cylinder itself.

The grid used was fine enough to resolve only the large-scale periodic

behavior in the wake, but that should be adequate for many approach flow

calculations in which only the gross effects on some downstream hydraulic

structure are needed.

38. The predictor-corrector scheme (Appendix B) is time-centered and

has little or no damping, which might otherwise suppress the development of

transient and periodic flow patterns. Damping reduces the amplitudes of

transients in individual grid cells, and it is not to be confused with

diffusion, which reduces the amplitude in one cell while increasing it in

neighboring cells. While damping may be undesirable in transient flow

calculations, some damping is helpful in steady-state calculations. Without

damping, the amplitudes in a few cells (not necessarily in the region of

interest) may oscillate back and forth forever, never reaching a steady state

even though most of the flow field does converge. In practice the computation

should be terminated when convergence is achieved in the region of interest.

If convergence is not achieved when the flow is not truly periodic, then the

grid should be refined and the placement of open and flux boundaries

reexamined.

39. A word of caution is in order with regard to the placement of

convex corners on the grid boundaries in an adverse (rising) pressure

gradient. (See, for example, the detail for the grid about the circular

cylinder in Figure 10.) Unless the grid has one set of grid lines well
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aligned with streamlines, there may be enough false transverse diffusion (due

to numerical error) to allow the flow to separate prematurely, or even

incorrectly. Therefore, whenever the position of separation points is

important, convex grid corners should be placed well downstream of anticipated

separation-point locations. Otherwise flow separation may occur even for slip

boundaries (which is not necessarily a problem if convex corners are coinci-

dent with desired points of separation). The problem of false transverse

diffusion exists to some degree for all primitive-variable (pressure-velocity)

formulations of the governing equations, since no discrete algorithms exist

that are absolutely free of numerical error. The only way to avoid this kind

of behavior completely is to reformulate the equations so that vorticity

itself is one of the dependent variables. In most cases, however, it should

be enough simply to recognize the possibility of grid-induced separation and

to act accordingly in generating grids and setting boundary conditions.

40. The poor agreement between computation and experiment for the bend-

way indicates that an important mechanism is lacking in the mathematical

model; i.e., in the 2-D equations of motion as presented in Appendix A.

Perhaps a better formulation of the resistance due to bottom friction and

vertical mixing is needed, acknowledging the vertical distribution of the

horizontal velocity components, if not the vertical component itself.

Likewise, a simple 2-D turbulence model might also yield better results by

adjusting the local viscosity in proportion to lateral mixing. Whatever the

solution, the deficiency appears to be with the equations of motion and not

with the numerical algorithm. Since the existing code incorporates the

simplest of friction formulas (Manning's equation), it would be somewhat naive

to expect accurate flow predictions in general without further development.

Even the apparent agreement between computation and experiment for the

straight channel (tilting flume) is overshadowed by the subtle difference in

shape of the lateral distributions of depth-averaged velocity, which may hint

at the deficiency made quite plain by the results for the bendway.

41. As important as further model development is the need for

prospective users to recognize the limitations imposed by the 2-D nature of

the code. While most flow problems of interest entail some motion in three

dimensions, many of them (especially those involving shallow water) can be

reduced to quasi-2-D problems for engineering purposes. Nevertheless, the

meaningful reduction of a problem from three dimensions to two is largely a
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matter of judgment, and some experience in shallow-water hydraulics is

beneficial.

42. With regard to computer resources, at least one million words of

memory were needed for computing the flow about the cylinder, which used a

91 x 41 grid. In general the STREMR code takes 4 to 5 msec per grid cell per

time-step on a VAX 11/750 minicomputer, but it runs at least 60 times faster

on a CYBER 205. The complete flow history for the cylinder (1,520 time-steps)

took about 6.5 hr on the VAX, but it would have taken only about 6.5 min on

the CYBER. All of the calculations employed three to four iterations of the

conjugate-gradient Poisson solver in each half of each time-step, and this was

sufficient to keep errors below 1 percent for conservation of mass.

43. The flow calculation for the cylinder was relatively lengthy

because the code had to execute many time-steps to follow the slow development

of the flow in real (physical) time. By contrast, the calculation for the

straight channel (200 time-steps to steady state on a 47 x 29 grid) took only

20 min on the VAX, and it would have taken only 20 sec on the CYBER. In

general, steady-state calculations will be 10 to 100 times cheaper than

transient/periodic calculations.
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PART V: CONCLUSION

44. About 3 years' work has now gone into the development of a

practical computer model for 2-D approach flow. The original version of the

STREMR code was an outgrowth of the WESSEL code (Thompson and Bernard 1985)

and used vorticity and stream function as the dependent variables instead of

pressure and velocity. That version was strictly limited, however, to

steady-state problems, and it has now been replaced by the current version,

which is applicable for transient/periodic flow and incorporates recent

developments in numerical methods.

45. The fundamental components of the STREMR code are now installed and

working. The code conserves mass and momentum, and it resolves the develop-

ment and transport of vorticity in real (physical) time on properly con-

structed computational grids with sufficiently fine grid spacing. The

greatest remaining deficiency appears to be the lack of a turbulence model to

account for the spatial variation of lateral mixing (diffusion) and vertical

mixing (bottom friction). The remaining year or so of work will be devoted to

finding and appending one or more turbulence models to the 2-D equation. of

motion. The ultimate goal will be to make reliable flow predictions within

useful bounds, with as few judgment calls as possible on the part of the user.

46. Efforts will also continue toward making STREMR easier and less

expensive to use. While these considerations are justifiably subordinate to

reliability, they are nonetheless important if the code is to be of any help

to potential users. It is anticipated that many prospective users will have

access to mini- and microcomputers, and much of the software improvement will

be oriented toward facilities of this kind.

47. A future report will include a complete user's manual for the final

version of the STREMR approach-flow code. In the meantime, the existing code

(Appendix D) will be made available to prospective users upon request.
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APPENDIX A: GOVERNING EQUATIONS

1. Consider an incompressible fluid in two dimensions (x,y) with

density p and depth h normal to the plane of motion. Assuming that h is

a gently varying function of position only, and that the kinematic viscosity

* is constant, then the depth-averaged equations of motion are

-I -I
ut + uux + vu = h 1 v div (h grad u) - p Px - X(u,v,h) (Al)

-I -I
vt + uv + vv = h v div (h grad v) - p py - Y(u,v,h) (A2)x yy

(uh)x + (vh)y - 0 (A3)

where

u,v = x- and y-components of velocity, respectively

t = time

div = divergence operator

grad = gradient operator

p = pressure

X,Y = x- and y-components of body force

and the subscripts x , y , and t denote partial derivatives. The body

force in this case is the friction force, the components of which are func-

tions of depth and velocity. Equations Al and A2 are transport equations for

the x- and y-components of momentum, and Equation Aj (the continuity equation)

maintains conservation of mass. The pressure p represents the deviation

from the local hydrostatic value that would exist in the absence of velocity

gradients.

2. Cartesian coordinates are not well suited to flow configurations

with nonrectangular boundaries, and it is expedient to rewrite the governing

equations in general curvilinear coordinates

= E(x,y) (A4)

Al



n = n(x,y) (A5)

Under this coordinate transformation, Equations Al through A3 become

-I

hJu t + Uu + Vu = J dlv (h grad u) - p hJp x- hJX(u,v,h) (A6)

-1

hJv t + Uv + VvY = J div (h grad v) - p hJpy - hJY(u,v,h) (A7)

U +V n = 0 (A8)

The quantities U and V are volumetric flux components, the subscripts C

and n denote partial derivatives, and J is the Jacobian of the

transformation, given by

U = y uh - x nvh (A9)

V = X vh - y uh (AlO)

J = x yn - xnYE (All)

The cartesian velocity components may also be expressed in terms of the flux

components, using the relations,

u = h- 1J- (x U + x V) (A12)

v = h- j - 1 ( y U + y V) (A13)

The components of the gradient of any function f are

-l
fx = 1-f1 (y f y f (A14)

fy =J- (xf - x ) (A15)

which may in turn be used in the expression for the divergence of the

gradient,
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J div (h grad f) = -(hy f - hx f + L(hxf - hy f (A16)

3. Although the spatial derivatives have been rewritten in terms of the

curvilinear coordinates, the cartesian velocity components have been retained

for convenience in the transport equations. The body-force components X

and Y are unaltered by the change of coordinates because they do not involve

spatial derivatives.

4. The body force due to friction is assumed to obey Manning's equa-

tion, with the depth h replacing the hydraulic radius:

X(u,v,h) = Kn 2u(u 2 + v 2 ) 1 / 2 h- 4 / 3  (A17)

Y(u,v,h) = Kn 2 v(u 2 + v2 )1 1 2 h- 4 / 3  (A18)

The quantity n is Manning's coefficient, and the factor of proportionality

K is 14.5 for non-SI units (slugs, feet, seconds) and 9.81 for SI units

(kilogram3, metres, seconds).

A3



APPENDIX B: PREDICTOR-CORRECTOR SCHEME

1. To represent incompressible approach flow with a computer

(numerical) model, it is first necessary to discretize the governing equations

(Appendix A, Equations A6 through A8) and then solve them with an appropriate

algorithm. This is achieved in the manner discussed in the following

paragraphs.

2. The flow field is divided into a finite number of discrete cells,

and the boundaries may be permeable (inlets and outlets) or impermeable (solid

walls). The arrangement of cells therein constitutes a finite-volume grid

which may be curvilinear in the physical (x,y) plane (Figure BI), but

rectangular in the computational ( ,n) plane (Figure B2). The transformation

of coordinates from (x,y) to (&,n) carries all information that pertains to

grid spacing in the physical plane, and the choice of grid spacing in the

computational plane has no effect on anything except convenience. Thus, a

unit spacing is chosen in the ,n plane:

AE = An= 1 (BI)

This makes the grid cells perfectly square in the computational plane, but not

necessarily so in the physical plane. Since the choice of planes for solving

the governing equations is also arbitrary, the discrete formulation of the

solution algorithm is carried out entirely in the ,q plane.

3. The cartesian velocity components (u, v) are defined at the center

of each grid cell (Figure B2), where the depth h and pressure p are also

computed. The volumetric flux component U is defined at the midpoint of the

right (east) face, and the flux V at the midpoint of the upper (north)

face. Each cell is identified with integer indices (i,j) so that the cell

center occurs at position ( ,n) given by

= i - 1/2 (B2)

n = j - 1/2 (B3)

The values of x and y are specified at the cell corners, with x(i,j)

and y(i,j) defined at the lower left (southwest) corner of cell (i,j).
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Figure B1. Computational grid in physical (x,y) plane
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Figure B2. Computational grid in computational ( ,n) plane
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Letting subscripts and superscripts e,w,n,s denote the evaluation of

quantities on east, west, north, and south faces of the cell, with c

indicating the center, the derivatives of the x-coordinate are given by

n
x = x(i+1,j+1) x(i,j+ (B4)

ex = x(i+1,j+1) x(i+1,j (B5)

e 1
x= [x(i+2,j+1) - x(ij+1) + x(i+2,j) - x(i,j)] (B6)

n Ix n [x(i+1 j+2) - x(i+1,j) + x(i,j+2) - x(i,j)] (B7)

c 1
x : [x(i+1,j+1) - x(ij+1) + x(i+1,j) - x(i,j)] (B8)

c 1
x = [x(i+1 j+1) - x(i+1,j) + x(i,j+1) - x(i,j)] (B9)

and similar equations apply for the y-coordinate. Since (u,v) and (U,V)

are specified at different locations on each cell, it is expedient to

introduce the shift indices (r,s), which can be used to relate velocity and

flux components on the staggered grid cell shown in Figure B2. The shift

indices are pairs of integers with values of zero or unity, in any of four

possible combinations; e.g.,

(r,s) = (1,0) (B10)

The convention is adopted that all quantities have indices (i,j) unless

specified otherwise. Note also that the fluxes through the east, west, north

and south faces are U(i,j) , U(i-1,J) , V(i,j), and V(i,j-1), respectively.

Combining the shift indices with Equations A12 and A13, the following

relations now exist between the cell-centered velocity components and the

face-centered flux components:

u(i,j) = x (ij) U(i-r,j) + xn(ij) V(i,j-s) (B11)
c c & nihc~c

h v(,J) = (i,ij) U(i-r,j) + y (i,j) V(i,j-s) (B12)
cB c
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where J is the Jacobian of the curvilinear coordinate transformation. The

r- and s-indices thus dictate whether U will be taken from the east or west

face, and V from the north or south face, in computing the cell-centered

velocity components u(i,j) and v(i,j) .

4. In the algorithm at hand, only the face-centered flux components

U(i,j) and V(i,j) will be kept from one time-step (or predictor-corrector

phase) to the next. The cell-centered velocities u(i,j) and v(i,j) will

always be computed from existing fluxes using the space-shifted relations

given by Equations BI and B12. These velocity components will be used to

find cell-centered velocity increments (in time). The velocity increments

will then be used to calculate flux increments on the cell faces by reversing

the shift operation in Equations A9 and AIO:

AU(i-r,j) = hc [ycAu(i,i) - xCAv(iJ)] (B13)

AV(i,j-s) = hc [x Av(i,j) - yCAu(i,j) (B14)

Before enumerating the details of the predictor-corrector scheme, it is

helpful to introduce the difference operators

D f(ij) = f(i,j) - f(i-1,j) (B15)

D f(i,j) = f(i,j) - f(i,j-1) (B16)

with the understanding that f can represent a single function or the product

of two or more functions. Omitting the pressure and body-force terms from

Equations A6 and A7, and employing the shift indices (r,s) only in the

advective terms, each of the transport equations for momentum takes the same

discrete form:

Af + U(i-1+r,j)D f(i+r,j) + V(i,j-1+s)D f(i,j+s)AT Cr

= J cvc div (h grad f) (B17)
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where

AT = h-I J At (B18)
c c

and

v = kinematic viscosity

div = divergence operator

grad = gradient operator

At = time increment

5. Using the difference operators given by Equations B15 and B16, the

continuity equation (A8) takes the discrete form

D U(i,j) + D V(ij) = 0 (B19)

Given the shift indices (r,s), the procedure for advancing U and V by one

time increment At will be the following:

a. Use Equations B11 and B12 to compute u and v from existing
values of U and V.

b. Use Equation B17 to compute Au and Av , adding the body-force
components as indicated by Equations A6 and A7.

c. Calculate the flux increments AU and AV from Equations B13
and B14.

d. Find new flux values U and V by adding the increments AU
and AV to the existing values.

e. Adjust U and V for conservation of mass by adding a pressure
gradient such that Equation B19 is satisfied.

In order to accomplish step e, it is convenient to introduce the scalar

potential,

(B20)
P

where p is density. Let U' and V' be the unadjusted flux components.

The mass-conserving flux components are then found from the relations,

U = U' - he (e 0 e xe (B21)

V = V' - h n 0 n n n) (B22)
n  K y E X
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with the superscripts n and e indicating derivatives taken on the north

and east faces, respectively. When the derivatives *x and *y are

evaluated by the chain rule (Equations A14 and A15), the result is

x = Ji (Yno - YE0n (B23)

-1

Oy = J (x Eo - x 7 ) (B24)

For U and V to satisfy the continuity equation (B19), the scalar potential

must satisfy the Poisso equation,

J div (h grad 0) = U1 + Vt  (B25)E n

The evaluation of the left-hand side of Equation B25 is the same as that for

the viscous terms in the transport equations, and it will be discussed later.

6. The five-step time-marching procedure is suitable for implementation

in a two-phase predictor-corrector scheme like that of MacCormack (1969).* In

the predictor phase, the five steps are followed as prescribed, using the

existing values Um and Vm from time-step m to calculate the provisional

time-advanced values with the provisional increments AUm and AVm :

U* = Um + AUm - h(y ^* - x *) &B26)
n x n y

V* = Vm + AVm - h(x * - y *) (B27)
E y & x

The superscript m indicates the time-step number, and the asterisk *

indicates the provisionally advanced time,

t* = tm + At (B28)

Before starting the corrector phase, the shift indices (r,s) are replaced with

the indices (r*,s*) given by

* References cited in this Appendix are included in the References at the

end of the main text.
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r* = - r (B29)

s* - S (B30)

7. In the corrector phase, the first four steps of the time-marching

procedure are executed exactly as in the predictor phase, using U* and V*

to compute the continuity-violating increments AU* and AV* . These

increments are used in step e of the corrector to calculate the

mass-conserving flux components that will exist at time-step m+1

um+1 I(Um + U* + AU*) ** - x 4** ) (B31)= ~ ~ ~ ~ r ( )-hyq x  -y

m+1 1Vm
= 2(V + V* + AV*) - h(x y (B32)

The average pressure during the time-step is

m+1/2 = ( * + 20**) (B33)
2At

The Poisson equation for 4* in step e of the predictor phase is

J div (h grad **) = D (Um + AU m ) + D (Vm + AV m ) (B34)

and the Poisson equation for 0** in step e of the corrector phase is

J div (h grad €**) = [ m+ AUm + AU*) + D (V + AVm + AV*)] (B35)

8. The factor 2 appears in Equation B33 because 0* = p*At/p in the

predictor phase, while 4** = p**At/2p in the corrector phase. Equation B35

removes not only those continuitr violations generated in the first four steps

of the corrector phase, but also any residual violations left over from the

predictor phase.

9. As the predictor-corrector scheme marches the fluxes (U,V) through

time, the shift indices (r,s) must be cycled so that each of four possible

combinations is used with equal frequency. This is necessary to avoid the

accumulation of error due to asymmetry (directional bias). As previously

stated, the cell-centered velocities (u,v) need not be kept from one time-step

to the next, nor even from predictor phase to corrector phase. They are
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simply intermediate quantities needed to compute the velocity increments

(Au,Av) , which are themselves intermediate quantities. In the evolution of

the flow field, only the fluxes (U,V) and the pressure p are really

important.

10. It now remains to clarify the discrete representation of the

operation div (h grad f) , which appears in the viscous terms of the

transport equations (A6 and A7), and in the left-hand side of the Poisson

equation (B25). If h is independent of position, the operation simply

reduces to div grad f , which is the Laplacian of the function f . The

cartesian form of the operation is quite simple, but the scheme outlined in

this Appendix demands a general curvilinear form.

11. The fundamental approach taken herein is to evaluate the gradient

operator (grad) via the chain rule (Equations B23 and B24), and the divergence

operator (div) via the Gauss Divergence Theorem:

J div (h grad f) = E + F (B36)

where

E = h(ynfx - x f y) (B37)

F = h(x fy - yC f x) (B38)

Once again using subscripts and superscripts (e,w,n,s) to indicate quantities

evaluated on east, west, north, and south cell faces, it is helpful to write

the discrete form of Equation B36 as

J div (h grad f) = Ee - E w + Fn - Fs  (B39)

12. The fluxes E and F are proportional to normal derivatives of

the function f on the cell faces. When used with the scalar potential * ,

they represent corrections to the volumetric flux components (U,V); when used

in the viscous terms, they represent components of momentum flux due to shear

stress. Now introducing the double subscripts (cc,ee,ww,nn,ss,ne,nw,se,sw) to

indicate coefficients and values of cell-centered quantities in adjacent cells

(central, east, west, etc.) as shown in Figure B3, derivatives of the cell-
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centered function f are approximated with the following finite-difference

expressions:

fe fee fcc (B40)

f f nn- f cc (B41)

fe = e - + f - f (B42)ri (ne fse nn ss

fn (fne + f - f (B43)= nw ee ww

Incorporating Equations B40 through B43 into Equation B39, the latter takes

the final form,

J div (h grad f) = Aee fee + Aww fww + Ann fnn + Ass fss

+ Acc fcc + Ane fne + Anw fnw + Ase fse + Asw fsw (B44)

and the coefficients are given by

Acc = -a e - a 8n  8s  (B45)

Aee ae Yn s(B46)

A = a + Y - Y (B47)ww w n s

Ann an Ye w(B48)

Ass =8s + Ye Yw (B49)

A = -Y - Y (B50)ne e n

A = Y + Y (B51)nw w n

A = Y + Y (B52)
se e s
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nw nn ne

ww cc ee

SW SS se

Figure B3. Labeling system for cell-centered quantities in
neighboring grid cells
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A = -Y - Y (B53)

where

a = hJ -1 (x 2 + y2 (B54)

B = hJ -1 (x2 + Y2 (B55)

= hj 1J x x + y y (B56)

13. The expressions for the coefficients (Equations B45 through B53)

are valid for cells not adjacent to boundaries. The incorporation of boundary

conditions is discussed at length in Appendix C. At this point it is

sufficient merely to recognize that the boundary constraints can be absorbed

directly into the coefficients of the function f for every cell in the flow

field, including those adjacent to the boundaries.

14. Subject to the discretization procedure outlined in the previous

paragraphs, the Poisson equation reduces to a set of N equations in N

unknowns, where N is the total number of cells in the computational flow

field. The N equations are linear and the matrix of coefficients is sparse,

which means that each row or column has only a few nonzero entries (a maximum

of nine). Large sparse systems of linear equations are best solved by iter-

ative methods, and the specific method chosen may depend somewhat on the flow

problem to be solved. A preliminary version of the STREMR code (Appendix D)

offers the user a choice of one of two successive over-relaxation (SOR)

methods or an idealized generalized conjugate-gradient (IGCG) method.
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APPENDIX C: BOUNDARY CONDITIONS

1. The treatment of boundary conditions is just as important as the

treatment of the governing equations. The latter serve to propagate the flow

variables through space and time, but only in the manner permitted by the

boundaries. Poorly formulated boundary conditions will always generate poor

results, no matter how accurate the computational method. For discussion,

boundary conditions may be divided into two categories:

a. Definite boundary conditions arise from some known (or assumed)
physical constraint.

b. Indefinite boundary conditions arise only because the
computational flow fiel.d is smaller than the physical flow
field.

Boundary conditions for pressure generally fall into the first category, but

those for velocity and volumetric flux may fall into either.

2. Wherever the normal component of volumetric flux (either U or V )

can be specified on the boundary at each instant, there exists a simple

Neumann condition for the scalar potential 4 defined in Appendix B. That

is, if either the east or west face of a cell is coincident with a boundary,

and the flux U is known for that segment, then U' = U and there is no

correction needed for that flux component. This reduces Equation B21 to

h(y n x - x n ) = 0 (Cl)

where h is the depth. Likewise, if either the north or south face coincides

with a boundary segment where V is known, then V' = V and Equation B22

reduces to

h(x - y4x) = 0 (C2)

Equations C1 and C2 apply on solid boundaries (zero flux) and on inlets and

outlets (nonzero flux). In the treatment used herein, these constraints are

absorbed directly into the Poisson equation for boundary-adjacent cells. For

example, if the east cell face lies on a boundary, then only the north, south

and west faces have nonzero normal derivatives of 0 , and Equation B39

becomes
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J div (h grad 0) = -E + F - F (C3)w n s

where

J = Jacobian of the curvlinear coordinate transformation

div = divergence operator

grad = gradient operator

E,F = fluxes proportional to normal derivatives of the function

f on the cell faces

e,w,n,s,c = subscripts denoting evaluation of quantities on east, west,

north, and south faces of grid cell with c indicating the

center

Likewise, if both the east and north faces lie on boundaries (i.e., the cell

lies in a concave corner), then Equation B39 reduces to

J div (h grad 4) = -E - F (C4)w s

For orthogonal grids, no further considerations are necessary in computing the

scalar potential (and hence the pressure) and its derivatives on boundary-

adjacent cells. In general, however, curvilinear grids are not orthogonal,

and additional logic is needed for cell faces with only one end touching a

boundary.

3. Suppose that the east cell face coincides with a boundary, but the

north face does not. In this case the northeast corner of the cell lies on

the boundary, and the northwest corner lies in the field. In other words, the

north face has only one end touching a boundary. Using Equation B41, it is

straightforward to compute the n-derivative of 4 on the north face:

n
On = Onn ¢cc (C5)

On the contrary, a problem arises if Equation B43 is used to calculate

the &-derlvative of 4 on the north face:

n 1

S= i (ne -
4nw + ee -Oww (C6)
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Equation C6 requires information outside the flow field, and it is incomplete

until the outside pressures are specified. Previous experience (Bernard 1987)*

has shown that, rather than using Equation C6, it is better to use the

first-order approximation:

n 1
0 = ( (nn - nw + 0 cc - ww (CM)

4. Similar reasoning applies for all boundary-adjacei. cells, and the

equations for the coefficients of 0 in the discrete Poisson equation

(analogous to Equations B45 through B53) must accommodate every possibility

directly, including concave and convex corners. The preliminary version of

the STREMR code takes care of this automatically.

5. This same logic is used for the evaluation of viscous terms in cells

adjacent to slip boundaries, inlets, and outlets; that is, the normal

component of momentum flux due to shear stress is assumed to be zero on these

boundaries.

6. For cells adjacent to no-slip boundaries, the normal component of

momentum flux through the boundary is computed subject to the constraint that

both velocity components are zero on the boundary. Suppose, for example, that

the lower (south) cell face coincides with a no-slip boundary. If the cell

indices are (i,j), then the cell-centered velocity components (u,v) in cell

(i,j-1) are equal but opposite to those in cell (i,j):

u(i,j-1) = -u(i,j) (C8)

v(i,j-1) = -v(i,j) (C9)

Actually, cell (i,j-1) is a fictitious cell that lies across the boundary from

cell (i,j), but the imposition of Equations C8 and C9 forces the velocity to

be zero precisely on the boundary. Since the velocity is uniformly zero for

all cell faces tangent to the boundary, the C-derivatives of u and v are

zero on the south face, and the shear-stress momentum flux through the south

face takes a simple form. For example, the momentum flux vF , obtained by
s

* References cited in this Appendix are included in the References at the

end of the main text.
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replacing 0 by u in Equation C3, reduces to

vF s  2vBs u(i,j) (CO0)

where v is kinematic viscosity and B is defined by Equation B55. Similar

arguments and equations hold for u and v in other cells adjacent to

no-slip boundaries.

7. It may sometimes happen that the computational grid is too coarse to

resolve the viscous forces arising from the no-slip condition; that is, the

amount of viscosity required for numerical stability may be greater than the

actual fluid viscosity, making the force imposed by Equation C10 unrealis-

tically large. When this happens, it may be advisable to use a smaller value

of v in Equation C10 than in the other viscous terms. Accordingly, the

preliminary version of STREMR allows the user to specify one coefficient of

viscosity to be used only for imposing the no-slip condition, and another to

be used for the remaining viscous terms.

8. All of these boundary conditions fall into the category of definite

boundary conditions, because they impose known or assumed constraints on the

pressure and velocity. It still remains, however, to set conditions for the

components of velocity (u,v) and volumetric flux (U,V) at inlets and outlets,

and these may be either definite or indefinite.

9. Wherever the volumetric flux is a specified function of time, normal

to an inlet or outlet, then the boundary condition for U or V is

definite. On the other hand, if this flux cannot be specified in advance, the

boundary condition is indefinite. The latter situation arises when the

computational grid does not cover the entire physical flow field (e.g., a

truncated river or reservoir), so that some inlets or outlets may simply

represent pseudo-boundaries along which the field is truncated to reduce

computer storage and time requirements. On these boundaries it is expedient

to use a discrete radiation condition (Orlanski 1976), which allows

outward-moving disturbances to leave the computational region instead of

bouncing around like echoes.

10. The preliminary version of the STREMR code makes a distinction

between boundaries and pseudo-boundaries with respect to the normal component

of volumetric flux. If the flux is fixed by the user for the duration of the

computation, the cell adjacent thereto is designated a FLUX cell; but if the
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flux is calculated from a discrete radiation condition, this cell is

designated an OPEN cell. For the predictor-corrector scheme used herein, the

radiation condition has been adapted in the following manner.

11. If the east or west face of a cell lies on an OPEN (radiation)

boundary, then the volumetric flux normal to that face is assumed to obey the

simple advection equation,

Ut + U= 0 (C11)

where t denotes time and ^ is the discrete phase velocity. Likewise, if the

north or south face lies on an OPEN boundary, then the flux normal to that

face obeys a similar equation,

Vt + cV = 0 (C12)

Suppose that the east face of cell (i,j) coincides with an open boundary, so

that U(i,j) obeys Equation C11. The discrete phase velocity is taken to be

t)m1 /2

c =i (C13)

where the superscript m-1/2 denotes quantities evaluated at the intermediate

time between time-steps m and m-1 , while the subscript i-3/2 indicates

quantities taken halfway between the east and west faces of cell (i-1,j). In

other words, the phase velocity is to be computed from information at the

previous time-step (or predictor phase) in the only neighboring field cell

that shares a common face with the boundary-adjacent cell (i,j). Using a

central-difference approximation in both space and time, it follows that

cAt = Um(i-l,j) - Um- (i-l,J) + UM (i-2,j) - U m-1(i-2,j) (C14)
A& um(i_2,j) + Um-1(i-2,j) - U m(i-ij) um- 1 (i-1,j)

The left-hand side of Equation C14 is the radiation Courant number C

related to the discrete phase velocity by

C 8At (C15)
AC
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Since the object here is for the east face of cell (ij) to transmit

information outward (to the right) but not inward, the value of C is set to

zero if the right-hand side (RHS) of Equation C14 is negative; i.e.,

C = MAX[O,RHS(C14)] (C16)

Furthermore, to avoid possible instability from Courant numbers greater than

unity, Equation C16 is supplemented with a second constraint,

C = MIN[1,RHS(C16)] (C17)

This keeps the flux Courant number in the range 0 < C < 1 , and the value

for U(i,j) at the end of the predictor phase of time-step m now becomes

U*(i,j) = (1 - C) Um(i,j) + CUm(i-l,j) (C18)

where * denotes provisionally advanced time. Similar arguments apply for

boundary-normal flux components on other cells. If the boundary coincides

with a west or south face, however, the flux Courant number is constrained to

lie in the range -1 < C < 0 to satisfy the requirement that changes be

transmitted outward from the flow field.

12. The discrete radiation condition is implemented in each predictor

and corrector phase, using radiation Courant numbers calculated at the end of

the preceding predictor phase or time-step. Equation C14 is used to obtain

C for the predictor phase of time-step m . In the corrector phase, however,

the superscripts m and m-1 are replaced by the superscripts * and m ,

respectively, in Equation C14. This value of C is then used to compute the

boundary value for U(i,j) at time-step m+1

um+1 (ij) = l[Um(ij) + (I - C)U*(i,J) + CU*(i-,j)] (C19)

13. The transport equations for momentum require the specification of

velocity components outside the flow field for cells adjacent to FLUX and OPEN

boundaries. In the preliminary version of STREMR, this is done by two-point

extrapolation. For example, if the east face of cell (i,J) lies on an OPEN or
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FLUX boundary, the values of (u,v) outside the flow field are taken to be

u(i+l,j) -2u(i,j) - u(i-1,j) (C20)

v(i+l,j) = 2v(i,j) - v(i-1,J) (C21)

Similar equations apply for cells adjacent to other FLUX and OPEN boundaries.
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APPENDIX D: USER'S MANUAL FOR PRELIMINARY STREMR CODE

Background

1. The VAXPVC code is a preliminary version of the two-dimensional

STREMR code using primitive variables (pressure and velocity). It uses an

explicit predictor-corrector scheme (Bernard 1986)* to solve the equations of

motion for incompressible flow on boundary-fitted grids constructed by the

WESCOR code (Thompson 1983). From the standpoint of the user, however, the

flow field can be thought of as a rectangular domain in the computational

plane, containing indentions (such as dikes) and obstacles (such as islands).

Thus, the boundaries are all straight lines in the computational (i,j) plane,

but they may be curved in the physical (x,y) plane.

2. In the computational plane, all quantities except the components of

the volumetric-flux vector are defined at the centers of the grid cells; that

is, the pressure p and the depth h are computed at the cell centers, along

with the cartesian velocity components u and v. The volumetric-flux

components U and V are computed at the midpoints of the cell faces, but

this is done automatically by the code, along with the calculation of

pressure. The user may specify only u , v , and h in advance for the

entire field or for selected locations.

3. The grid is best thought of as a collection of finite-volume cells,

in which the cell-centered quantities actually represent volume-averaged

quantities for each cell. The cell faces are then local boundaries through

which influence is transmitted from one cell to another. In other words, the

only way that two cells can affect each other is for information to cross

their common cell face.

4. In its present form, VAXPVC can calculate time-varying flow fields

subject to advection, diffusion, and friction. Advection and diffusion are

handled automatically by the predictor-corrector scheme, but the user can

specify the diffusion coefficient (viscosity) and the friction coefficient

(Manning's n ). Friction may vary from cell to cell, but the viscosity is

uniform for the entire field. Only on no-slip boundaries may a distinct (but

* References cited in this Appendix are included in the References at the

end of the main text.
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uniform) viscosity coefficient be used for imposing resistance due to the

no-slip condition.

5. Each grid cell is labeled by a pair of indices (I,J), with I

running left to right from 0 to IMAX+1 , and J running bottom to top

from 0 to JMAX+1 . Furthermore, each cell has a user-given type

designation into one of six categories:

FIELD Any cell lying in the computed flow field, but
not adjacent to a boundary

OUT Any cell not lying in the computed flow field

SLIP Any cell adjacent to a slip boundary

NOSLIP Any cell adjacent to a no-slip boundary

FLUX Any cell adjacent to a boundary segment with a
fixed normal component of mass flux

OPEN Any cell adjacent to a boundary segment with a
variable normal component of mass flux

6. The code reads the grid data from the WESCOR output, and

automatically designates all cells as either FIELD, OUT, or SLIP. Cells lying

inside obstacles are OUT, and other cells not adjacent to boundaries are

FIELD. The remaining boundary-adjacent cells are SLIP by default, unless

altered by subsequent user input. The user must designate all cells that are

to be NOSLIP, FLUX, or OPEN.

7. After all cell types have been assigned, the code reads user input

for general (global) values for flow rate, bottom-friction coefficient

(Manning's n ), kinematic viscosity, x-velocity, y-velocity, and depth.

These will be the initial values used for all cells unless altered by

subsequent user input.

8. Next the code reads user input for section values on specified

groups of cells for x-velocity, y-velocity, bottom friction, and depth.

Finally the code reads input for lines of cells along which these same

quantities will be interpolated (by arc length) from specified values at the

end points.

9. At this point, if the user so designates, the code will recompute

the depth as the solution to a Laplace equation, for which the section-input

and line-input values will be held fixed. General input values will be used

for boundary-adjacent cells, unless superseded by section or line input. This

option facilitates the generation of smoothly varying depth (bottom

topography) with sparse input data.
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10. With all velocities and depths now assigned, flux components on all

inflow and outflow boundary segments are adjusted to comply with one of three

user-selected options:

a. The net inflow and outflow must match a specified flow rate.

b. The net outflow must match the net inflow computed from the
user-specified velocities.

c. The net inflow must match the net outflow computed from
the user-specified velocities.

With this step complete, mass is conserved insofar as total flux through the

boundaries is concerned; but it is not necessarily conserved for the

individual grid cells. So the code computes the interior flux corrections

necessary for global mass conservation. These corrections are provided by the

gradient of a scalar potential, obtained from the solution to a Poisson

equation. Here the user has two options:

a. The interior flux components can be calculated from the
user-specified velocities, inserted into the Poisson equation,
and then corrected with the resulting scalar potential.

b. The interior flux components can be set to zero, inserted into
the Poisson equation, and then corrected with the resulting
scalar potential.

11. Option a preserves any circulation (vorticity) inherent in the

user-specified velocity field, so the mass-conserving flux field will preserve

the same vorticity. Option b eliminates all circulation inside the flow field

(but not on the boundaries), and the mass-conserving flux field will be

potential flow.

12. This completes the steps for a cold start. Hot-start calculations

will begin by reading data from a previous output file before proceeding from

this point.

13. Now the code marches the flow field through time, beginning with

either (a) the initial mass-conserving fluxes (cold start) or (b) the

mass-conserving fluxes and pressures from a previous code run (hot start).

Since the existing algorithm is an explicit scheme, there is a numerical

stability condition that limits the maximum allowable time-step size. The

code calculates and prints this quantity for the initial flow, and for

subsequent intervals designated by the user, so there need be little or no

guesswork about what size time-step to use. For each code run, the user has

to select the size of the time-step, the total number of time-steps, the first

time-step to be stored, the subsequent intervals to be stored, the first time-
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step for which information is to be printed, and the subsequent intervals for

the same.

14. Information to be stored is written (unformatted) onto separate

external files for plots and hot starts. The file used by the plot codes

(VAXVEC and VAXCON) receives information at the user-designated intervals

discussed in the preceding paragraphs. The file used for hot starts receives

information at the same intervals.

Explanation of User Input

15. The VAXPVC code accepts user input from three namelists: BEGIN,

PARAM, and INPUT. These namelists must appear in the run stream after the

job-control command that executes the code. The first namelist is BEGIN,

which contains only a single character variable START, whose possible values

are as follows:

START = 'COLD' Cold start.

'HOT' Hot start (default).

16. Next comes namelist PARAM, which contains character, integer, and

floating-point variables. The character variables and their possible values

are as follows:

FLOW = 'FLOWRATE' Net flow rate will be specified by user.

'OUTFLOW' Net flow rate will be computed from user-
specified outflow velocities.

'INFLOW' Net flow rate will be computed from user-
specified inflow velocities (default).

SOLVER = 'POINT' Poisson equation will be solved by using
point-successive over-relaxation (SOR) iteration
scheme.

'CHECK' Poisson equation will be solved by using
checkerboard-SOR iteration scheme.

'IGCG' Poisson equation will be solved by using
idealized generalized conjugate-gradient (IGCG)
iteration scheme (default).
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TOPO = 'YES' Bottom topography will be calculated as
the solution of a Laplace equation using
the same solver as the Poisson equation.

'NO' Bottom topography will be specified only

by user input (default).

RESIST = 'YES' Resistance due to bottom friction and

no-slip condition will be included in
the calculation (default).

'NO' Resistance due to bottom friction and
no-slip condition will be omitted.

MAPOUT 'YES' Symbolic map will be printed, showing

cell types and positions in the compu-
tational plane (default).

'NO' No symbolic map will be printed.

RITINT 'YES' Initial values of mass-conserving flow
variables will be printed before first

time-step begins.

'NO' Initial values will not be printed for
flow variables (default).

RITOUT = 'YES' Flow variables will be printed whenever
output is written on external files for

storage (default).

'NO' Flow variables will not be printed when

output is written on external files.

PUNITS 'ENGLISH' Printed information will be in non-SI (English)

units: feet, cubic feet, and seconds.

'METRIC' Printed information will be in SI (Metric)
units: metres, cubic metres and seconds
(default).

17. In namelist PARAM, the integer variables are as follows:

STEPS Number of time-steps to be computed.
(Default = 1)

STORIT First time-step for which flow field
is to be stored. (Default = 1)

D5



STORINT Number of elapsed time-steps before
next storage of flow field.

(Default = 1 )

INFIT First time-step for which condensed

information is to be printed.
(Default = 1)

INFINT Number of elapsed time-steps before

next print of condensed information.

(Default = 1)

IPOTS Number of iterations allowed by the
Poisson solver for the initial mass-
conserving flow field. (Default = 50)

ITERS Number of iterations allowed by the
Poisson solver for each predictor and
each corrector phase of each time-step.

(Default = 3)

IBOTS Number of iterations allowed by the

Laplace solver for calculating bottom

topography. (Default = 50)

IREF I-index of reference cell which will

be assigned a zero value of pressure.
Default will be first non-OUT cell to

be found in a left-to-right, bottom-
to-top search of the entire grid.

JREF J-index of reference cell which will

be assigned a zero value of pressure.

IMAP Maximum width of printed map of cell

types. Map will extend from left to
right by this number of spaces, but
will be vertically unbroken. Segments
wider than IMAP will be continued on
additional maps following. (Default = 130)

18. In nantelist PARAM, the floating-point variables are as follows:

DELTAT Size of time-step in seconds.
(Default = 1.0)

VSTART Dimensionless factor by which
interior fluxes are multiplied
before initial correction for
conservation of mass. A value
of 0.0 gives potential flow,
and a value of 1.0 preserves

any vorticity that may exist
in the user-specified velocity
field. (Default = 0.0)
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AVIS Dimensionless factor by which
the general (global) viscosity
is multiplied for calculating
diffusion. (Default = 1.0)

BVIS Dimensionless factor by which

the general (global) viscosity
is multiplied for calculating
resistance due to the no-slip
condition. (Default = 1.0)

SOR Dimensionless parameter needed
for accelerating convergence of
point-SOR and checkerboard-SOR
iteration. Value chosen should
fall in range 1.0 to 2.0 for
best convergence. Not used for
IGCG iteration. (Default = 1.0)

19. The code reads namelists BEGIN and PARAM at the beginning of each

run; but only those parameters in PARAM that are different from the values in

the previous run need to be respecified for hot starts, since the code stores

the existing values at the end of each run. Furthermore, only those

parameters different from default values need ever be specified at all.

20. The namelists BEGIN and PARAM must be present in the run streams

for all cold starts and hot starts. The namelist INPUT is read by the code

only for cold starts, and its presence (or absence) has no effect on hot

starts.

21. The namelist INPUT is used repeatedly in all run streams for cold

starts, and the value of the character variable ITEM determines the kind and

the amount of information read from INPUT by the code. Through its repeated

appearance in the run stream, the namelist INPUT is used to specify cell

types, general (global) values, section values, and line values, in that

order.

22. The namelist INPUT is used first to specify user-designated cell

types in the following manner:

a. A namelist INPUT appears, containing only the variable

ITEM = 'CELL TYPES'

b. Another namelist INPUT appears, containing the character
variable ITEM and the integers II , 12 , J1 , and J2 , whose
values indihate the following designations:

ITEM 'OUT' OUT cells
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'FLUX' FLUX cells
'OPEN' OPEN cells

'SLIP' SLIP cells

'NOSLIP' NOSLIP cells

Ii Smallest I-index for section

12 Largest I-index for section

Ji Smallest J-index for section

J2 Largest J-index for section

c. Step b must be repeated for each distinct type of cell to be

specified, and for each distinct section of cell types to be

specified.

d. After all user-designated cell types have been specified, one

more namelist INPUT must appear, containing only the character

variable

ITEM = 'END'

23. The namelist INPUT is used next to specify user-designated general

(global) values for certain parameters and flow variables in the following

manner:

a. A namelist INPUT appears, containing only the variable

ITEM = 'GENERAL'

b. Another namelist INPUT appears, containing the character

variables ITEM and UNITS, in addition to the floating-point

variable VALUE, whose values indicate the following

designations:

ITEM-- 'COORD' Units will be specified for grid.

'FLOWRATE' Net flow rate will be specified.

'DEPTH' Global depth will be specified.

'X-VELOCITY' Global x-component of velocity will be

specified.

'Y-VELOCITY' Global y-component of velocity will be
specified.

'VISCOSITY' Global kinematic viscosity will be
specified.

'MANNING' Global value fur Manning's "n" will be

specified (no units).

UNITS = 'METRIC' Specified units will be metric.

'ENGLISH' Specified units will be English.

VALUE Specified (floating-point) value for

designated quantity.
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c. Step b must be repeated for each distinct quantity that is to
be assigned a global value. UNITS default is 'METRIC'. VALUE
default for 'FLOWRATE' and 'DEPTH' is 1. VALUE default for
'X-VELOCITY' and 'Y-VELOCITY' and 'MANNING' is 0. VALUE
default for 'VISCOSITY' is 1.E-6. Note that UNITS and VALUE
must be specified for each namelist INPUT unless the defaults
are to be used. (Only UNITS need be specified for ITEM -
'COORD'.)

d. After all of the user-designated global values have been
specified, one more namelist INPUT must appear, containing only
the character variable

ITEM = 'END'

24. The namelist INPUT is used next to specify user-designated section

values for depth, velocity, and bottom friction in the following manner:

a. A namelist INPUT appears, containing only the variable

ITEM = 'SECTION'

b. Another namelist INPUT appears, containing the character
variables ITEM and UNITS, the one-dimensional (1-D)
floating-point array VALUES, and the integers II, 12, J1,
and J2, whose values indicate the following designations:

ITEM = 'X-VELOCITY' X-components of velocity
'Y-VELOCITY' Y-components of velocity

'MANNING' Manning's n (no units)
'DEPTH' Depth

Ii Smallest I-index for section

12 Largest I-index for section

Ji Smallest J-index for section

J2 Largest J-index for section

VALUES Values specified for designated
quantities in rectangular section
of cells extending (inclusively)
from II to 12 and from J1 to J2
in the computational plane. The
code begins at J1 and reads the
input values from II to 12 for

each J-index through J2 . In other
words, the code reads row by row.

UNITS 'METRIC' SI (metric) units (default)

'ENGLISH' Non-SI (English) units

c. Step b must be repeated for each distinct quantity to be
specified, as well as for each distinct grid section.

d. After all of the user-designated section values have been
specified, one more namelist INPUT must appear, which contains
only the character variable
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ITEM = 'END'

25. The final use of the namelist INPUT is to designate lines in the

computational plane (which may be curves in the physical plane), along which

initial values will be specified by linear arc-length interpolation. In this

case the user specifies only the values at the cell centers lying on the end

points of the line. The code then computes the remaining intermediate values

by interpolation so that the designated quantity varies linearly with arc

length along the line or curve in the physical plane. The run stream must

contain the following:

a. A namelist INPUT appears, containing only the variable

ITEM = 'LINE'

b. Another namelist INPUT appears, containing the character

variables ITEM and UNITS, the 1-D floating-point array VALUES,

and the integers Ii , 12 , J1 , and J2 , whose values

indicate the following designations:

ITEM = 'X-VELOCITY' X-components of velocity
'Y-VELOCITY' Y-components of velocity

'MANNING' Manning's n (no units)
'DEPTH' Depth

Ii Smallest I-index for line

12 Largest I-index for line

J1 Smallest J-index for line

J2 Largest J-index for line

VALUES End-point values specified for

designated quantity. The first
input value will be assigned to
the cell having indices (II ,J1).

The second will be assigned to

the cell having indices (12,J2).
One of the following conditions

must be met:

either II = 12

or J1 = J2

UNITS = 'METRIC' SI (metric) units (default)

'ENGLISH' Non-SI (English) units

c. Step b must be repeated for each distinct quantity to be

specified, as well as for each distinct grid line.

d. After all of the user-designated variables and grid lines have

been specified for arc-length interpolation, one more namelist

INPUT must appear, containing only the character variable

ITEM = 'END'
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26. This completes the input needed to execute the VAXPVC code. Even

if none of the options offered by namelist INPUT is exercised, namelist INPUT

must nevertheless appear at least eight times in a run stream for a cold

start, because the code expects it. The minimum acceptable input will be

eight occurrences of namelist INPUT, each containing only one character

variable (ITEM), in the following order:

ITEM = 'CELL TYPES'

ITEM = 'END'

ITEM = 'GENERAL'

ITEM - 'END'

ITEM - 'SECTION'

ITEM = 'END'

ITEM = 'LINE'

ITEM = 'END'

27. In other words, at least two INPUT namelists must appear, in this

order, for each of the four possible user designations: cell types, general

values, section values, and line values.

28. If the run stream lacks any of the essential namelists (BEGIN,

PARAM, or INPUT), the code will not run properly. Furthermore, if the user

intends to use non-SI (English) units, but fails to so designate for some

input quantities, the code output will be worthless. The code uses SI

(metric) units internally, and it converts input data to the same, based on

the value specified for the character variable UNITS.

Code Dimensions

29. The two-dimensional arrays in the VAXPVC code are dimensioned from

0 to IDIM in the I-index, and from 0 to JDIM in the J-index. These

dimensions must be large enough to accommodate the maximum indices of the grid

cells (IMAX+1,JMAX+1), so in general IDIM has to be equal to or greater than

IMAX+1 , and JDIM equal to or greater than JMAX+I . For maximum

efficiency, it is best to have IDIM = IMAX+1 and JDIM = JMAX+1 ; but this

demands that the code be recompiled for each new set of grid dimensions. Such

frugality is not imperative for small problems (say, 20 x 20), but it is

recommended for larger problems (say, 50 x 50).

30. The dimensions IDIM and JDIM are specified internally in the code
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with parameter statements; e.g.,

PARAMETER(IDIM = 32,JDIM = 32)

Whenever these array dimensions are to be changed, they must be given exactly

the same integer value for each occurrence of the parameter statement;

otherwise the code will not run properly. In addition, the codes used for

vector and contour plots of the flow field must have the same integer values

for IDIM and JDIM. It is not necessary, however, that IDIM = JDIM.

31. Grid cells with both indices lying in the range 1 to IMAX and 1

to JMAX may be of any cell type: FIELD, OUT, SLIP, NOSLIP, FLUX, or OPEN.

Cells for which I = 0 or I = IMAX+1 , or for which J = 0 or J = JMAX+1

will always be of type OUT. The outer rows (J = 0 and JMAX+I) and columns

(I = 0 and IMAX+1) are strictly dummy cells for which no permanent

information is stored, but they are needed for proper execution of the

numerical algorithm. This is why the array dimensions are larger than the

number of meaningful grid cells.

32. In setting up a calculation, it is important to see that there

exist at least three non-OUT cells (horizontally, vertically, and diagonally)

between each pair of OUT cells in the computational plane. This means that

every pair of vertical boundary segments (facing each other in the computa-

tional plane) must be separated horizontally by at least three non-OUT

cells. Similar pairs of horizontal boundary segments must be separated

vertically in the same way. Convex boundary corners must be separated

diagonally from each other by at least three non-OUT cells in the flow field

as it appears in the computational plane.

33. On the other hand, obstacles (such as islands) and indentions (such

as dikes) may be composed of single rows or columns of OUT cells, as long as

they are separated vertically, horizontally, and diagonally by at least three

non-OUT cells in each direction.

External Input and Output Files

34. The VAXPVC code is written in FORTRAN 77, and it reads grid and

hot-start data from external files other than the standard input file

(File 5). Likewise, it writes hot-start data and data for plotting to files
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other than the standard output file (File 6). The job-control commands for

accessing and attaching these files will vary from one computer system to

another, but the specific files needed will usually be the same. The input

and output files discussed here are distinct from namelists, which may be

either included in the run stream or attached by the job control.

35. The computational grid, which is created in advance by a separate

grid-generation code, is read unformatted from File 10. This is done in ENTRY

GRIDL of SUBROUTINE ENTREE, by statements beginning with the command

READ(10)

36. Data to be used for subsequent hot starts are written unformatted

to File 11. This is done in ENTRY WRITER of SUBROUTINE ENTREE, by

statements beginning with the command

WRITE(1 1)

37. Data to be used later by the plot codes are written unformatted to

File 12. This is done in ENTRY WRITER of SUBROUTINE ENTREE, by

statements beginning with the command

WRITE(12)

38. Data from a previous run, to be used for a current hot start, are

read unformatted from File 13. This is done in ENTRY READER of SUBROUTINE

ENTREE, by statements beginning with the command

READ(1 3)

39. If the user wishes to overwrite the existing file containing the

hot-start data, then statements beginning with READ(13) should be changed so

that they all begin with the command

READ(1 1)

40. In this case File 13 will no longer be used, and it need not be

included in the job control.
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