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\\y Abstract /"7

Standard cell placement algorithms have traditionally used cost functions that poorly predict the final area of the
circuit, and so can result in placements with good wire length but large final area. A good estimation of the area can
be obtained by global routing the placement, but routing has been considered too slow to be used as the placement
metric. This paper presents a new, fast global routing algorithm for standard cells and its parallel implemeatation.
‘The router is based on enumerating a subset of all two-bend routes between two points, and results in 16% to 37%
fewer total number of tracks than the TimberWolf global router for standard cells [Sech85]. It is comparable in
quality to a maze router and an industrial router, but is faster by a factor of 10 or more. Three axes of parallelism
are implemented: wire-by-wire, segment-by-segment and route-by-route. Two of these approaches achieve
significant speedup — route-by-route achieves up to 4.6 using eight processors, and wire-by-wire achieves from 10
to 14 using 15 processors. Because these axes are orthogonal, when combined we demonstrate that their respecnve
speedups multiply each other. A simple model is used to predict speedups of up to 61 using 120 processors. , ! . Q—— j
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1 Introduction

The best way to evaluate a placement of circuit modules is to route it and determine the final area.
Since routing is a time-consuming task typical placement algorithms [Hana72,Breu77] use other metrics
such as total wire length or crossing counts that are easier to calculate. With the advent of usable
commercial multiprocessors it is possible to consider using more compute-intensive cost functions if
efficient parallel algorithms can be developed. The aim of the Locus Project is to integrate placement and
routing into one optimization process, and to do this in a practical way, by using multiprocessing to
increase the speed of the routing.

This paper preseats the first step in the Locus Project: LocusRoute, a new global routing algorithm
for standard cells, and its paralle] implementation. Our goal is to make the recalculation time of an area-
based cost function on a multiprocessor the same as conventional cost functions on a uniprocessor. The
intention is for the global router to be invoked to rip-up and re-route wires whose end points have
changed when one or more cells have been moved. This goal implies that routing time must be about one
to two milliseconds per net on a VAX 11/780-class machine.

The routing performance of LocusRoute, as measured by total number of routing tracks, is better
than that of TimberWolf 4.2 [Sech85] and is comparable to a maze router and an industrial router. It is
fast because it investigatés only a subset of two-bend routes between pairs of pins to be routed. The
routing speed is increased further by parallelizing the algorithm in three ways: routing several wires at
once, routing several two-point segments simultaneously, and evaluating possible two-bend routes in
parallel. The wire-by-wire parallel approach achieves speedups ranging from 10 to 14 using 15
processors. The route-by-route approach achieves speedups of up to 4.6 using 8 processors. These two
"axes” of parallelism are orthogonal to each other, and so when used in tandem their speedups will
multiply. This is demonstrated on 15 processors, and used to predict speedups in excess of 60 using 120
processors for standard benchmark circuits.
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Previous work on parallel routing [Breu81, Blan81, Adsh82, Nair82, Rute84, Iosu86, Won87] has
generally focused on a fixed hardware mapping for the Lee routing algorithm [Lee61]. As such they lack
. the flexibility that is required in practical CAD software such as the global routers described in
[Kamb85,Yama85). Another drawback of special hardware for the Lee algorithm is that a uniprocessor
implementation can be made very efficient using special software data structures that cannot be put easily
into fixed hardware.

There have been few publications on global routing for standard cells, other than [Kamb85) and
[YamaRB5] which give little detail of the process. The cost-model used in [Pate85] is similar to that used
in LocusRoute. A survey of global routing that touches on standard cells appears in [Lore88]. An early
version of this work was presented in [Rose88b].

This paper is organized as follows: Section 2 defines the global routing problem for standard cells
and describes the serial LocusRoute algorithm. Section 3 gives performance comparisons with the
Timberwolf 4.2 global router [Sech85], a maze router, and the UTMC Highland Router [Robe87].
Section 4 presents three approaches for speeding up the new router using parallel processing, and
performance results. Section S presents experiments with combining two of the approaches which are
then used to model and predict speedups for larger numbers of processors.

2 The LocusRoute Algorithm

This section defines the standard cell global routing problem, and describes the new LocusRoute
approach to solving it.

2.1 Problem Definition
Global routing for standard cells decides the following for each wire in the circuit:

1. For each group of electrically equivaient pins (pin clusters) it determines which of those pins are
actually to be connected.

2. H there is no path between channels when one is required, it must decide either which built-in
feedthrough to use or where to insert a feedthrough cell.

3. Xt decides which parts of a channel to use for a wire, including the use of two distinct wires in the
same channel if this is desirable.

4. Tt must determine the channel to use in routing from a pad into the core cells.

In this discussion of global routing there will be no differentiation between feedthrough cells and built-in
feedthroughs - they are referred to jointly as vertical hops. The decision to insert a feedthrough cell or
use a built-in feedthrough is deferred to a post-processing step. This does result in some inaccuracy in the
track count, and is discussed further in Section 3.4.
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The objective of a global router is to minimize the sum of the channel densities of all the channels
(hereafter called the rotal density). It is important 10 note that the total density can be traded off with the

- number of vertical hops, 0 to compare the total density of two global routings fairly they should both use

the same number of vertical hops.

2.2 The Basic LocusRoute Algorithm

In the LocusRoute algorithm, each wire sequentially goes through the following five steps:

1. Segment Decomposition. A multi-point wire is decomposed into a minimum spanning tree of two-
point segments, using Kruskal’s algorithm [Krus56]. This algorithm has running time O(n2) in the
number of pin clusters. The effect of the sub-optimality of this decomposition is discussed in
Section 3.2 below.

2. Permutation Decomposition. The segments are further decomposed, if necessary, into
pernuaations, which are the set of possible routes between each pin in a pin cluster.

3. Route Generation and Evaluation. A low-cost path is found for each permutation by evaluating a
subset of the two-bend routes between each pin pair. The definition of the cost of a wire is given
below, in Section 2.2.2. The permutation with the best cost is selected as the route for that segment.

4. Reconstruct. This step joins all the segments back together, and assigns unique numbers to distinct
segments of the same wire in each channel. This is so that a channel router can distinguish between
two segments and will not inadvertently join them together.

5. Record. The presence of the newly routed wire is recorded so that later wires can take it into
account.

In addition, LocusRoute uses the iterative technique described in [Nair87). Briefly, this means that after
the first time all wires are routed, each is sequentially ripped up and then re-routed. By routing each wire
several times (typically four is sufficient), the final answer is improved by five to ten percent because later
wires can take earlier wires into account after the first iteration. This also reduces the effect of the wire
order dependency.

The details of the second, third and fifth steps above are described in the following sections. The
others are simple enough that the above description suffices.

2.2.1 Decomposition into Permutations o
Each two-point segment consists of pairs of pin clusters that contain electrically equivalent pins. I
The LocusRoute algorithm considers routes between every pin in one cluster and every pin in the other 1 8
cluster. Each such route is called a permuuation. Figure 1 illustrates three of the four possible ,,
permutations between clusters A and B, which have two pins each. The four possible permutations are:
(A,,B)) ,(A,B3), (A3,B1), (A2,B,). If clusters A and B are separated by only a short horizontal
distance, then the (A, B ;) permutation is most likely the least-cost path of the four. If the horizontal »n/

e e

distance is large then it is possible that any one of the four permutations could have the low-cost path, and 1ty Codes
‘and/or
stst ! Special

-3- /




hence all should be investigated. This bas been confirmed experimentally, and a constant horizontal
separation (300 routing grids) has been determined beyond which total density will improve if all four
permutations are evaluated.

Standard Cell Rows

Route Permutation A2 -> B2

Figure 1 - Permutation Decomposition of Segment

2.2.2 Route Evaluation

The route evaluation step introduces two crucial notions of the LocusRoute algorithm: the cost
model, which dictates the cost assigned to a path chosen for a wire, and the basic method of choosing
routes based only on paths that have two or less bends.

Cost Model. Each possible routing position in a channel (also called routing grid of that channel) is
represented as one element of an array as shown in Figure 2. The array, called the Cost Array, has a
vertical dimension of the number of rows plus one, and a horizontal dimension of the width of the
placement in routing grids. Each element of the Cost Array contains two values: H;; and Vij. H;;
contains the number of wire routes that pass horizontally through the grid at channel i in position j. This
value changes as wires are routed. Similarly, V;; is the cost, assigned by parameter, of traversing a row in
travelling from channel i to channel i + 1 at grid position j. A wire is represented as a list of (i ,j )
pairs of locations in the Cost Array, corresponding to the locations of pins to be joined.

This model implies that more than one vertical hop can exist in one grid location, and that the
assignment of a vertical hop does not disturb the placement. While these assumptions are strictly
incorrect, their effect is minimal as discussed in Section 3.4.

Under this model, the objective is to find a minimum-cost path for each wire. The wire's cost is
given by the sum of all of the H;; and V;; that it traverses. After a path is found for a wire that goes
through location (i ,j ) its presence is recorded in the Cost Array (the appropriate H;; and V;; are
incremented) so that subsequent wires can take it into account. The more wires going through a particular
location in a channel, the less likely it is that area will be used. Note that in this model the total density is
not directly minimized, but rather a combination of average density and wire length.

Two-Bend Route Generation and Evaluation. The LocusRoute algorithm searches for a low-cost path
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Figure 2 - Cost Model

for a permutation by evaluating the cost of a number of different routes and choosing the best. The basic
approach is to evaluate a subset of all two-bend routes between the two pins, and then choose the one
with the lowest cost. Generation of two-bend routes is discussed in [Ng86). Figure 3 illustrates three
possible two-bend (or less) routes inside a representation of the Cost Array as a small example.

(@) () (©
Figure 3 - Sample Two-Bend Routes

If the horizontal distance between the two pins is H routing grids, and the vertical difference is C
channels then the total number of possible two-bend routes is C+H. In the LocusRoute algorithm the
percentage of all the possible two-bend routes to be evaluated is a parameter. If fewer than 100% of all
the routes are to be evaluated, the set of all possible routes is prioritized as follows: first all principally
horizontal routes (those with bends only at the left and right extremes) are evaluated. Then the
principally vertical routes (those with bends at the upper and lower extremes) are evaluated. Horizontal
routes are evaluated first because it is important that all of the potential channels for the route be
examined at least once. Within the horizontal and vertical groups, routes are searched in bisection order;
i if the limits of the group span are normalized to {0.1] then the routes are prioritized as

0.1, -%- , %— R % . %— , and so on. This ensures that the possible space of routes is evenly spanned.




To calibrate the number of two-bend routes to0 be evaluated the two-bend router was compared
against a least-cost path maze router. Both routers were not allowed to go beyond the bounding box of
. the two end points of the segment. Experimentally, it was determined that if only 20% of the two-bend
routes were evaluated, then this would result in a path as good as that found by the maze router, as
compared on the basis of total density for the entire circuit. On all of the test circuits used in the
experiments discussed in the Section 3, the LocusRoute router’s total density was within 2% of that
obtained by the two-point maze router, with one exception of 3.3%. Most of the differences were below
1%. This is surprising in that the maze router looks for not only two-bend routes but for three or more
bend routes. It implies that two-bend routes provide a sufficiently rich route set for the standard cell

routing problem.
2.2.3 Recording A Wire

The last step in the algorithm is to record the presence of the wire’s route in the Cost Array, so that
the cost of using any part of that path will increase for other wires. This is done simply by incrementing
the appropriate cells of the cost array. In the next iteration, the wire is “ripped up" by decrementing those
same cells of the Cost Amay.

3 Performance Comparisons

This section compares the quality and execution time of LocusRoute with three other routers.

3.1 Comparison with TimberWolf

Table 1 shows a comparison between the LocusRoute global router and the TimberWolf 4.2
[Sech8S) global router for several industrial circuits. These circuits are from several sources: The
standard cell benchmark suite (Primaryl, Primary2, Test06 [Prea87]), Bell-Northern Research Lid.
(BNRA->BNRE), and the University of Toronto Microelectronic Development Centre (MDC). The
placement for all of the circuits was done by the ALTOR standard cell placement program [Rose85,
Rose88a). Table 1 gives the number of wires in each circuit, the total density achieved by LocusRoute
and Timberwolf, and the percentage fewer tracks LocusRoute achieved over Timberwolf. LocusRoute
achieves significantly better total density than does the TimberWolf global router, ranging from 16% to
37% fewer tracks. The principal reason is that the TimberWolf global router is constrained to use only
the minimum number of vertical hops, whereas LocusRoute uses considerably more. This is a
reasonable practice in current technology because many standard cells contain "free” built-in
feedthroughs. The execution times of LocusRoute and TimberWolf are comparable for most of the
examples, though TimberWolf is faster by a factor of 8 and 3 respectively for circuits Test06 and
Primary?2. This is due to the fact that the LocusRoute algorithm increases in running time proportional to
the area covered by the wire, which is much larger in these two circuits, and the inefficiency of the
segment decomposition for large wires.




Circuit # Total Density
Name | Wires |LocusRoute| TimberWolf | % Fewer
BNRE 420 138 179 2%
MDC 5§75 150 179 16%
BNRD 4 188 225 16%
| Primaryl | 904 262 316 17%
BNRC 937 202 247 " 18%
BNRB 1364 320 o442 7 | 21%
BNRA 1634 315 432 27%
Test06 1673 335 537 37%
Primary2 | 3029 563 702 20%

Table 1 - Comparison of LocusRoute and TimberWolf
3.2 Comparison with Maze Router

For comparison purposes a maze router [Lee61] was developed, using the same cost model as
LocusRoute, that exhaustively determines the optimal solution to the two-point routing problem. It also
determines a good approximation to the minimum-cost Steiner tree for multi-point wires using the
approach described in [Aker72]. The maze router was carefully optimized for speed. Table 2 shows the
comparison of total density and execution time for the maze router and the LocusRoute router, for all of
the test circuits. The comparison is made on the basis of roughly equal numbers of vertical hops.
Execution times are for four iterations over all wires on a DEC Micro Vax II.

Circult Total Density Time (Micro Vax li 8)
Name Locus | Maze | Diff | Locus | Maze | Factor

BNRE 138 129 | 7% 88 2378 | 27x
MDC 150 141 6% 178 3173 18x
BNRD 188 182 | 3% 167 3306
Primary1 262 255 3% 325 6534
BNRC 202 189 | 7% 363 7250
BNRB 320 308 4% 599 | 15116
BNRA 315 294 | 1% 769 | 19652 | 26x
Tost06 335 316 6% | 5137 | 92272 | 18x
Primary2 | 563 S49 | 3% | 3758 | 48295 13x

BIFRF

Table 2 - Comparison of LocusRoute and Maze Router




For all circuits the LocusRoute total density (total number of routing tracks) is no greater than 7%
more than that achieved by the maze router, and in some cases is as little as 3% more. Most of this
difference is due to the sub-optimality of dividing the wires up into two point nets. LocusRoute ranges
" from 13 to 27 times faster than the maze router. Since the purpose of this work is to use the router as an
area-based cost function for a placement algorithm, we will always be willing to trade this slight loss in
quality for such a large gain in speed. This will allow many more potential placements to be evaluated.

3.3 Comparison with the UTMC Highland Router

For two of our circuits, we can also compare the total routing density with the United Technologies
global router used in the recent benchmark effort at the 1987 Physical Design Workshop
[Prea87,Robe87]. The placements used above for circuits Primary1 and Primary2 were also routed by the
UTMC router. Table 3 shows the comparison of total density for both circuits, with each router using
roughly the same number of vertical hops. The total density of the UTMC router for circuit Primary]1 is
notably less than for the LocusRoute router. This is probably due to the fact that the UTMC router also
performs neighbour exchanges and cell orientation changes on the placement in order to reduce the total
number of tracks. The LocusRoute total density for circuit Primary? is slightly less than that achieved by
the UTMC router. We have no information on the execution time of the UTMC router, except that for
circuits near the size of Primary2, it would take roughly 10000 Vax 11/780 seconds [Robe87] which is
about three times slower than LocusRoute.

Circuit Name | # Wires Total Density
LocusRoute | Highland ’
Primary1 904 253 194
Primary2 3029 560 562

Table 3 - Comparison of LocusRoute and UTMC Highland Router

3.4 Effect of Vertical Hop Approximation

As discussed in Section 2.1, the abstraction of vertical hops (representing both feedthrough cells and
built-in feedthroughs), and the fact that they overlay active cells, causes an inaccuracy in the track counts
reported here. The difference is small, however. The 904-wire Primary1 circuit global routed to 249
tracks, using 995 vertical hops under the LocusRoute algorithm. The actual, post-process track count
using 10 feedthrough cells and 985 built-ins was 253, only 1.6% more tracks. For the 3029-wire
Primary?2 circuit with 3424 vertical hops (287 feedthroughs, 3137 built-ins) the approximate track count
was 546 and the post-process count was 590, an increase of 8%.

4 Paraliel Decomposition and implementation

As mentioned in the introduction, previous parallel routers have focused on fixed bardware
implementations of the maze routing algorithm [Lee61). A more flexible approach is to use general
purpose parallel processors, which can be adapted to many applications. Using the flexibility of a general
purpose multiprocessor, several "axes” of parallelism can be exploited. If these axes are orthogonal 0




each other then when used in tandem they can achieve significant speedup. Two approaches to
parallelizing an algorithm are said to be orthogonal if, when used together, the resulting speedup is the

. product of the speedup of the individual methods. In this section several ways of parallelizing the

LocusRoute router are proposed and implemented:
1. Wire-based Parallelism. Each processor is given an entire multi-point wire to route.

2. Segment-based Parallelism. Each two-point segment produced by the minimum spanning tree
decomposition is routed in parallel. .

3. Permutation-based Parallelism. Each of the four possible permutations, as discussed in Section
2.2.1, are evaluated in paraliel.

4. Route-based Parallelism. Each of the possible two-bend routes for every permutation are evaluated
in parallel.

Note that these are only potential axes of parallelism. It is possible to eliminate some of them as
uneconomical by using statistical run-time measurements of the serial router. For example, the number
of two-point segments that actually need to have all four permutations evaluated is quite small with
respect to the total. Thus, permutation-based parallelism is not going to provide significant speedup.
Other measurements show that the time spent evaluating the cost of two-bend routes ranges from 50 to 90
percent of the total routing time and so reasonat's speedup from route-based parallelism can be expected.

The following sections gives the detils of three axes of parallelism, their performance and a
quantitative measure of the degradation in quality if there is some. All decompositions assume a shared-
memory multiprocessor.

4.1 Wire-Based Parallelism

In Wire-Based parallelism, each multi-point wire is given to a separate processor, which runs the
LocusRoute routing algorithm as described in Section 2. The Cost Array is a shared data structure to
which all processors have read and write access. This is an excellent axis of parallelism: if the sharing of
the Cost Array does not cause performance degradation due to memory contention, and there are enough
wires to provide good load balance, then the speedup should simply be the number of wires that are
routed in parallel. The resulting parallel answer, however, will not necessarily be the same as the
sequential answer. The problem is that the sequential router has complete knowledge of all wires that
bave already been routed, by virtue of their presence in the cost array. The parallel router has less
information because it doesn’t see the wires that are being routed simultaneously. The more wires routed
in parallel, the less information each processor has to choose good routes that avoid congestion and hence
cause an increase in total density. Thus the total density will increase as the number of processors
increase. The measured effect on total density is discussed below, in Section 4.1.1.




4.1.1 Wire-Based Parallel Performance

. Figure 4 is a plot of the speedup versus number of processors for the 3029-wire (Primary2) example
running on an sixteen-processor Encore MULTIMAX. The speedup for p processors, S, is calculated as

%' where T is the execution time on one processor and T, is the execution time using p processors.

The Encore uses National 32032 chip sets which, in our benchmarks, timed out slightly faster than a DEC
Micro Vax II. _
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Figure 4 - Wire-Based Speedup for Circuit Primary2

It is clear from the figure that the wire-based approach achieves excelient speedup. Note that the
execution time is only the actual routing computation time, excluding input time. For this circuit the
increase in total density (between 1 and 16 processors) is negligible, and the number of vertical hops
increases about 3%.

Table 4 gives the speedup using fifteen processors for the other test circuits. The speedup ranges
from 10.1 for a smaller circuit to 14.1 for the largest. The speedup is less for smaller circuits because they
are done in such a short time, so that the startup overhead and load balance become factors. The
execution time is for four iterations over all the wires. It was discovered that very large global wires,
such as TRUE or FALSE that have up to 150 pins, caused a severe degradation in speedup. This is
because our system handles those nets just like any other, and the O(n 2) nature of the minimum spanning
tree algorithm causes load balancing problems. Since most production systems treat TRUE and FALSE
signal nets differently (usually tapping directly into the power lines with special cells) these were
eliminated under the assumption that they could be handled quickly that way.

Table S gives the density and vertical hop counts for both 1 and 15 processors using wire-based
parallelism. The degradation in total density ranges between 1% to 7%. The increase in vertical hops is
6% or less. Again, in the context of using the router as a placement cost function, it is worthwhile to
trade a small loss in quality for a large gain in speed, so that many more placements may be evaluated.
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Circult |1-Processor|15-Processor;15-Processor
Name Time (8) Time (s) Spoodug
BNRE 67 6.5 10.4
MDC 76.6 7.5 10.1
BNRD 136 11.8 11.5
Primary1 275 249 11.0
BNRC 196 16.9 . 116
BNRB 553 48.6 114
BNRA 713 549 13.0
Test0Db 5654 425 133
Primary2 3934 279 14.1

Table 4 - Wire-Based Paralielism Speedup

Circuit Density Vertical Hops
Name 1-Proc | 15-Proc | %increase | 1-Proc | 15-Proc | %Increase
BNRE 130 137 5% 449 474 6%
MDC 134 142 6% 241 249 3%
BNRD 176 182 3% 530 574 6%
Primaryl | 262 27 3% 940 947 1%
BNRC 191 192 1% 725 739 2%
BNRB 307 328 7% 1904 1990 5%
BNRA 298 312 5% 2106 2198 4%
Test06 318 339 7% 3221 3309 3%
Primary2 | 560 593 6% 3053 3133 3%

Table § - Wire-Based Parallelism Quality

4.1.2 Gain Due to Removal of Locks

An interesting issue is whether or not each processor should lock the Cost Array as it both rips up
and re-routes wires in the Cost Array. The act of ripping up a route is esseatially a decrement, and re-
routing is an increment on a set of cells in the Cost Array. Locking the Cost Array during these operations
ensures that two simultaneous operations on the same element does not prevent one of the operations
from being lost. It does, however, cause a significant performance degradation. For example, for the
Primary1 circuit the speedup decreased from 8.3 to 6.4 using 15 processors when Cost Array locking was
used. For the Primary2 circuit the speedup for 15 processors was reduced to 12.1 from 13.0 due to

locking.

-11-




The final routing quality, however, does not decrease when locking is omitted. The reason for this is
that the probability of two processors accessing the same Cost Array element (of which there are on the
order of 10000) at the same instant is very low. Even if very few increment or decrement operations are
~ lost, the effect on final quality is negligible since only a few elements would be wrong by a small amount.
This was shown experimentally by performing ten runs with 15 processors on each of the above circuits,
for both the locking and non-locking cases. For the two circuits table 6 gives the average running time,
and the average and standard deviation of the total density and number of vertical hops. From this table it
can be seen that the quality in both cases is very nearly the same. Note that in a placement context in
which many more wires will be ripped up and re-routed, the effect of these smail efrors would be
cumulative and 50 an occasional correction step may be necessary if locks are not used.

Circuilt & Avg Density | Vertical Hops
Lock Type T(8) | Avg. | SD | Av SD
Primary1 Locks 43.8 | 269 | 20 | 962 | 49
Primary1 NO Locks | 33.7 | 272 [ 3.0 | 964 | 34
Primary2 Locks 325 | 591 | 19 {3126 | 75
Primary2 NO Locks | 303 | 591 | 49 | 3122 | 4.0

Table 6 - Speed & Quality Using and Not Using Locks

4.2 Segment-Based Parallelism

In segment-based parallelism, each two-point segment of a wire is given to a different processor to
route. This is the stage following the minimum spanning tree decomposition, but prior to the evaluation
of different two-bend routes. Measurements of the sequential router showed that about 60% of the routing
time was spent on wires with more than one segment. This means that a speedup of about two might be
expected using three processors. Even though there are many wires that provide two or three-way parallel
tasks, however, the size of those tasks are not pecessarily equal. The amount of time taken by the
LocusRoute router to route two points is proportional to the Manhattan distance between the two points.
If, in a three-point wire, two of the points are close together and the third is far away, it will then take
much longer to route one segment than the other. The processor assigned to the short segment will be
idle while the longer one is being routed. This unequal load prevents a reasonable speedup. On the test
circuits a speedup of about 1.1 using two processors was measured.

It is fairly clear, however, that an extra processor could be assigned to a number of processors that
are routing different wires. It is likely that at any given time, one of them will be able to use the extra
processor to route an extra segment. This technique would become essential in wire-based parallelism if
the number of processors were increased much beyond sixteen. In that case, the load balance becomes a
problem because wires with many segments take much longer than wires with few segments. Hence
segment-based parallelism could be used as a method to balance those loads and speed up the routing of
larger wires.
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4.3 Route-Based Parallelism

In route-based paralielism all of the two-bend routes to be evaluated are divided among the
" processors. Each finds the lowest-cost path among the set of two-bend routes thal it is assigned. When all
processors finish, the route with the best overall cost is selected. In this case the processor loads are well
balanced because the routes are all of the same length, and the number of routes is evenly divided among
the processors.

Figure 5 is a plot of the speedup versus number of processors for the circuit Test06, a large circuit.
It achieves a speedup of 4.6 using 8 processors.
8-
7 4 oo idoal
6 —— measured

5
Speedup 4
34
2]
1

T 0 T b
1 2 3 4 5 6 7 8

Number of Processors

Figure 5 - Route-Based Speedup for Test06

Table 7 gives the best speedup achieved for all of the test circuits, ranging from 1.2 using 2
processors to 4.6 using 8 processors. The principal reason for the limitation in speedup is the sequential
portion of the routing: the wire decomposition and the post-route processing that places the presence of
the route into the Cost Array. On the small circuits that have lesser speedup, the sequential portion is
about 50% of the total routing time, while on the larger circuits which have better speedup the sequential
portion ranges from 10-15%. Another reason is that some segments have only one potential route,
limiting the available parallelism.

5 Combining Two Orthogonal Axes of Parallelism

The wire and route axes of parallelism introduced above are orthogonal, and so when they are
combined we can expect a multiplication of their respective speedups. In this section experiments are
performed to demonstrate this effect on the Encore MULTIMAX. Using a simple model, the speedup for
a larger number of processors is then predicted.

5.1 Implementation on the MULTIMAX

Because there are different kinds of tasks to be executed, the major challenge of combining the wire
and route axes of parallelism is the scheduling of those tasks. An obvious static scheduling strategy is
implied by the notion of orthogonality: for each wire that is being routed simultaneously by one
processor in the wire-based approach. we now statically assign a constant number of processors to that
wire to aid in the parallel execution u: the route-based tasks. This situation is depicted in Figure 6. These
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Circult | Best Route-based Speedup
Name S up/#Processors
e
BNRE 1212
MDC 1312
BNRD 132
Primary1 1873
BNRC 1.673
BNRB 2.1/4
BNRA 1.9/4
Tost06 4.6/8
Primary2 3.3/5

Table 7 - Performance of Route-Based Parallelism

extra processors are used only during the two-bend route evaluation.
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Figure 6 - Suatic Scheduling Policy

Several experiments were performed to show that the combined speedup of the wire and route-based
approaches will indeed be the multiplication of the individually measured speedups. Table 8 gives the
result of those experiments for the 3029-wire Primary2 circuit. For each experiment it gives the number
of wires being routed in parallel (M), the number of processors assigned to each wire to do the routing
tasks (V), the total number of processors (M xXN), the speedup predicted by multiplying the wire-based
speedup using M processors and the route-based speedup using N processors, and the measured
combined speedup. From this table it is clear that the speedups very nearly multiply, as expected. The
small difference is due to increased contention for shared memory and the ceatral bus, and the fact that
two processors contend for one cache in the Encore MULTIMAX.
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# Wire |#Route Procs| Total
3 4
4 3 12 9.9 9.6
L6 2 12 108 10.3
3 5 15 10.4 9.9
5 3 15 12.4 117
7 2 14 | 126 12.0

Table 8 - Static Schedule Experiments for Circuit Primary2

A drawback of the static scheduling policy is that it cannot assign processors where they will be of
best use. If one wire has very few routes while another has many, the processors assigned to the first are
not used by the second. In addition, there is a portion of the wire routing procedure that only uses one
processor, so the others will be idle. A dynamic scheduling approach allows any idle processor to be used
by any wire that has a need for it. This was implemented as a single task queue. Wire processors add
tasks to the queue, and other processors remove and execute tasks. The granularity of the routing tasks in
the dynamic scheme, the number of two-bend routes assigned to one processor to evaluate per task, was
tuned to achieve the best speedup. The best performance was achieved when the number of tasks was
several times the number of available processors, indicating that the load balance effect was more
significant than the overhead of starting up a task.

Experiments have shown that the dynamic approach can both obtain the same speedup as the static
approach using fewer processors, or better speedup using the same number of processors. For example,
for Primary2 the static approach attained a measured speedup of 9.9 using 15 processors, while the
dynamic approach achieved 10.8. '

5.2 Predicting Performance on More Processors

Since we have observed that the static schedule performance of the combined approach does indeed
nearly multiply the speedups attained by the individual methods, it is possible to predict the performance
of that schedule on many more processors. Assume, for a given circuit that a speedup of S,, is achieved
using wire-based parallelism on W processors, and a speedup of S, is achieved using route-based
parallelism on R processors. Then, because the two approaches are orthogonal, the resuiting speedup
when they are used together should be §,, X S, using W X R processors. This model neglects the effect of
memory contention that may occur when the number of processors is increased dramatically. Table 9
shows the best predicted speedup for the test circuits. Combined speedup ranges from 13 using 30
processors to 61 using 120 processors. The smaller circuits are routed very quickly and so it is difficult to
get speedups greater than 13 due to the startup overhead. The larger circuits benefit greatly from the
combination of the approaches.
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oo | 5 [ % (555 | a1 | am
enRe | 104 121 123 | sgms | 37ms
moc | 101 | 134 131 | 3em | 29ms
BnRp | L3 113 1 180 soms | 33ms
Primaryt | 110 | 18 1 I38 1 goms | asms
eupe | 1L6 1 16 1 IBS ) somg | 32ms
enpe | L4 | 21 %Q 127ms | 5.3ms
BNRA %‘l 19 %1 134ms | S.4ms
Testop | 133 L‘§6- &2 | o35ms | 152ms
Primary2 | 14 -333- L5 | 3s8ms | 77ms

Table 9 - Predicted Combined Speedup of Wire and Route Parallelism

Table 9 also contains the average routing time per net on one processor, A, and what the the
average routing time per net would be under the maximum speedup, Agw. Thatis, Agw = -SA—X‘S— The
w r

average routing times for all circuits, under the various speedups range mostly from 3 to 6ms, (with one at
15ms) and approaches our goal of one to two milliseconds per net. If more processors were used under
the wire-by-wire axis, this goal could definitely be achieved.

6 Conclusions

A new global routing algorithm for standard cells and its parallel implementation has been
presented. The LocusRoute algorithm uses significantly fewer tracks than the TimberWolf standard cell
global router, and is comparable to a maze router and an industrial router. It is more than a factor of 10
faster than either of the two latter routers. Three axes of orthogonal parallelism were developed to speed
up the LocusRoute router further. Two of the three axes that were implemented achieved significant
speedup - up to 14.1 using fifteen processors and 4.6 using eight processors. They should produce
combined speedups of uj. *~ 61 times.

The Locus placement environment is currently being developed, and in the future will be combined
with the parallel LocusRoute global router. Our aim is to achieve smaller final area by using the global
routing as a better measure of each placement.
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