

OFFICE OF NAVAL RESEARCH

Contract N0001489WX24082

R&T Code 4131011---04

Technical Report No.

EFFICIENT LASER ACTION FROM 1,3,5,7,8-PENTAMETHYLPYRROMETHENE-BF₂ COMPLEX

by

Theodore G. Pavlopoulos, Mayur Shah, and Joseph H. Boyer

Prepared for Publication

in the

Optics Communications

NAVAL OCEAN SYSTEMS CENTER San Diego, CA 92152

19 April 1989

Reproduction in whole or in part is permitted for any purpose of the United States Government

ECTE

APR 2 6 1989

089 4 25 189

This document has been approved for public release and sale; its distribution is unlimited. UNCLASSIFIED BOUNTY CLASSIFICATION OF THE FACE

. •

`

.

ADA207/33

REPORT DOCUME	ENTATION PAGE			
TA NEPORT BECUNTY CLASSIFICATION	The HERTINGTING MANIMUM			
UNCLASSIFIED				
24. SECURITY CLASSIFICATION AUTHORITY	This document has been approved for			
2. DECLASSIFICATION/DOWINGRADING SCHEDULE	public release and sale: its distrib	ution		
	is unlimited			
4. PERFORMING ORGANIZATION REPORT NUMBER(S)	8. MONITONING ORGANIZATION REPORT NUMBER(8)			
ONR-TR-11				
BL NAME OF PERFORMING ORGANIZATION BL OFFICE SYMBOL	78. NAME OF MONITORING ORGANIZATION			
Naval Ocean Systems Center	Office of Naval Research, Chem. Di	v.		
Sc. ADORESS (Chy, State and 29 Code)	7b. ADDRESS (City, State and 2P Code)			
Code 521	Code 1113PS			
San Diego, CA 92152	Arlington, VA 22217			
BE. NAME OF FUNDING/SPONSORING ORGANIZATION BL. OFFICE SYMBOL	B. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
Office of Naval Research	N0001489WX24082			
er numers (r. R. state and Cr Lang	PROGRAM ELEMENT NO. PROJECT NO. TASK NO. AG	ENCY		
Anlington VA 22217	ACCES	SION NO.		
AT THY LON, YA 2221/				
11. TITLE linckeds Socurity Classificationy				
EFFICIENT LASER ACTION FROM 1,3,5,7,8-PENTA	METHYLPYRROMETHENE-BF ₂ COMPLEX			
12 PERSONAL AUTHORISI				
Theodore G. Pavlopoulos, Mayur Shah, and Jo	seph H. Boyer			
13a TYPE OF REPORT Intomim Tochnical 13b THME COVERED 0/80	14. DATE OF REPORT (Voor, Month, Doy) 18. PAGE COUNT			
Incer Im rechnical FROM 5700 TO 5703	<u>19 April 1989</u>			
TE SUPPLEMENTARY NOTATION				
to be published in Uptics Communications				
17. COSATI CODES 18. SUBJECT TERMAS (Continue	an reverse if necessary and identify by block number;			
Laser dyes, dye lasers, Pyrromethene Bro complexes				
Boron difluoin	be, methene, methyl 106 %. L.J. pyri	oles.		
	· · · · · · · · · · · · · · · · · · ·	night.		
		$\mathbf{\tilde{\Lambda}}$		
We observed efficient laser action under fl	ashlamp excitation at 546 nm from	- 1		
1,3,5,7,8-pentamethy1pyrromethene-BF2 compl	lex (PMP-Br'), dissolved in ethanol.			
This new laser dye lased about 300% more ef	thiciently than Loumarin 545. The			
fluorescence, absorption (S-S), and triplet	c-triblet absorption spectra of PMP-			
BF" were also recorded. To achieve greater	Water solubility the disodium 2,0-			
alsuitonate derivative (YMPUS-Br) was prep	pareu. rrirus-org lases duull 3/4			
as erriciently as PMP-Br, when dissolved in	i water and showed some photomstable	7		
incy; nowever, in methanoi it was nighty re		÷		
		1		
	(1)			
20.015TRIBUTION / AVAILABILITY OF ABBITRACT	21. ABSTRACT SECURITY CLASSIFICATION			
DI UNCLASSIFIED/UNLIMITED	UNCLASSIFIED			
Dr. I. G. Pavlopoulos	222. UBLERY WE AND AND CODY 222. OFFICE SYMBOL (610) 553_2702			
DD FORM 1473. 84 JAN	UNCLA	ssified		

OTHER EDITIONS A E OBSOLI

SECURITY GLASSIFICATION OF THE PAGE

EFFICIENT LASER ACTION FROM 1,3,5,7,8-PENTAMETHYLPYRROMETHENE-BF₂ COMPLEX AND ITS DISODIUM 2,6,-DISULFONATE DERIVATIVE

Theodore G. Pavlopoulos, Marine Sciences and Technology Department U.S. Naval Ocean Systems Center, San Diego, CA 92152

Mayur Shah and Joseph H. Boyer, Department of Chemistry University of New Orleans, New Orleans, LA 70148

We observed efficient laser action under flashlamp excitation at 546 nm from 1,3,5,7,8-pentamethylpyrromethene-BF₂ complex (PMP-BF₂), dissolved in ethanol. This new laser dye lased about 300% more efficiently than coumarin 545. The fluorescence, absorption (S-S) and triplet-triplet absorption spectra of PMP-BF₂ were also recorded. To achieve greater water solubility the disodium 2,6-disulfonate derivative (PMPDS-BF₂) was prepared. PMPDS-BF₂ lases about 3/4 as efficiently as PMP-BF₂ when dissolved in water and showed some photo-instability; however, in methanol it was highly resistant to photodegradation.

1. INTRODUCTION

Recently we reported that flashlamp excitation of 1,3,5,7-tetramethylpyrromethene-BF₂ complex (TMP-BF₂) ($2x10^{-4}$ M) in methanol brought about lasing emission (broad band BB) at 533 nm with about 10% greater efficiency than was obtained from coumarin 540A in ethanol (BB at 539 nm) [1]. Significantly, TMP-BF₂ had only a small amount of triplet-triplet (T-T) absorption over its fluorescence (laser action) spectral region. We speculated that even greater efficiency in laser action would be observed from pyrromethene complexes that show (1) extinction coefficients and quantum fluorescence yields

greater than those for TMP-BF₂ [ε_{505} (C₂H₅OH) = 83,200 and Q_F = 0.80][2], (2) a further decrease in the overlap of T-T absorption and fluorescence spectral regions, and (3) an increased photostability. This led to the preparation of pentamethylpyrromethene-BF₂ complex (4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-<u>s</u>-indacene) (PMP-BF₂). Some of its laser and other spectro-scopic properties were obtained.

Petamethylpyrromethene-BF₂ Complex PMP-BF₂

Disodium Pentamethylpyrromethene-2,6-disulfonate-BF₂ Complex PMPDS-BF₂

> COPY NSPECT

Dist

í E

Codes

Avati and/or

Special

2. EXPERIMENTAL

2.1 The dye laser

We used the same small dye laser which had a dye cell 50 mm long and 2.5 mm diameter [3]. Again, the dye laser was used in the static mode (the dye solution not circulating). The absence of an accumulation of detectable amounts of decomposition products in the stagnant solution was evidence for a high order of the laser dye photostability. To record laser output energies, we used a Scientech model 365 power/energy meter.

2.2 The spectroscopic equipment

We used the same spectroscopic equipment to measure the fluorescence spectrum of PMP-BF₂ as in [3]. Also, the same spectroscopic equipment was used as in [3] to record the T-T absorption (triplet optical density OD_T)

spectra, employing the 496.5 nm line from an ion argon cw laser. The conventional singlet-singlet (S-S) absorption spectrum [ϵ_{492} (CH₃OH) = 85,200] was recorded with Cary 17 and Varian SuperScan 3 UV/visible spectrophoto-meters.

To obtain triplet extinction coefficients $\epsilon_{T}(\lambda)$ from the measured OD_T(λ) values we employed McClure's method [4-6]. Because of the limited solubility of PMP-BF₂ in ethanol, we used 2-methyltetrahydrofuran as a glassy solvent.

2.3. The laser dyes and chemicals

The synthesis of PMP-BF₂ and the disodium salt of 1,3,5,7,8-pentamethylpyrromethene-2,6-disulfonic acid-BF₂ complex (PMPDS-BF₂) will be reported elsewhere. Coumarin 545 was obtained from Exciton and rhodamine 6G from the Eastman Kodak Company. Ethanol was purchased from the U.S. Industrial Company, 2-methyltetrahydrofuran from Lancaster Synthesis, and N,Ndimethylformamide from the Aldrich Chemical Company.

3. RESULTS AND DISCUSSION

3.1 Pentamethylpyrromethene-BF₂ complex

In figure 1 we present the energy output Δ E (in mJ) of a 1.5×10^{-4} molar solution of PMP-BF₂ in ethanol as a function of flashlamp pump energy E (in J). In the same figure, we also show the energy output of a 2×10^{-4} molar solution of coumarin 545 in ethanol and a 2×10^{-4} molar solution of rhodamine 6G also dissolved in ethanol. PMP-BF₂ lases BB at 546 nm, coumarin 545 at 546 nm, and rhodamine 6G at 595 nm. From Figure 1 it is apparent that PMP-BF₂ lases about 300% more efficiently than coumarin 545 and about 20% less efficiently than rhodamine 6G.

Figure 2 shows the fluorescence, S-S absorption and T-T absorption of PMP-BF₂. A striking feature is the exceptionally low value of the triplet extinction coefficient $\epsilon_{\rm T} \sim 1 \times 10^3$ L/mole cm over the laser action spectral region.

In a comparison evaluation with acridine orange ($Q_F = 0.46$) fluorescense quantum yields (Q_F) were obtained for PMP-BF₂ (0.73) PMPDS-BF₂ (0.98) and TMP-BF₂ (0.83, compare 0.80 [2]).*

3.2 Disodium Pentamethylpyrromethene-2,6-disulfonate-BF₂-Complex (PMPDS-BF₂)

PMP-BF₂ was partially soluble in ethanol/water mixtures and other aqueous solvents, but had limited solubility in water only. PMPDS-BF₂ was readily soluble in water, but showed poor photostability. It showed laser action BB at 555 nm that was about 50% as efficient as that obtained from PMP-BF₂. The salt dissolved in dimethylformamide showed greater photostability and lased BB at 577 nm with about 50% of the efficiency for PMP-BF₂. In methanol PMPDS-BF₂ ($2x10^{-4}$ M) lased at 551 nm. A comparison of the laser energy output Δ E of ethanol solutions of selected laser dyes as a function of flashlamp pump energy E, figure 1, shows PMPDS-BF₂ to be about 75% as efficient as PMP-BF₂ in ethanol. In methanol PMPDS-BF₂ was vastly superior to rhodamine 6G in photostability.

3.3 Discussion

Our experimental results on the lasing efficiency of $PMP-BF_2$ and $PMPDS-BF_2$ places these new laser dyes and $TMP-BF_2$ among the most impressive laser dyes known. Nevertheless, we are surprised that they did not lase with even greater efficiency. From Figure 2 it follows that $PMP-BF_2$ is the dye

 * We are indebted to Dr. Scott Whittenburg for these Q_F determinations.

with the lowest $\varepsilon_{T}(\lambda_{las})$ of any laser dye known [6]. The prolonged laser action efficiency of these three dyes, TMP-BF₂, PMP-BF₂, and PMPDS-BF₂, can be attributed to a combination of their high extinction coefficients, moderately high fluorescence quantum yields, minimal S-S and T-T absorption in the fluorescence spectral region, and superior photostability in selected solvents. Photodegradation of PMP-BF₂ from flashlamp irradiation was not detected. Continuous irradiation of PMP-BF₂ (10⁻⁴ M) in methanol by a Westinghouse sunlamp (275 w) at a distance of about 20 cm. from the flask brought about the disappearance of fluorescence after one week. In a similar experiment in which methanol as solvent was replaced by methylene chloride fluorescence had not disappeared after one month. To obtain increased prolonged power efficiency tailor made derivatives of the pyrromethene-BF₂ complex that offer further improvement in these characteristic features are sought.

Acknowledgements:

The authors gratefully acknowledge the support from the Office of Naval Research. One of the authors (TGP) wishes to thank the Naval Ocean Systems Independent Research program; another author (JHB) thanks the Board of Regents Louisiana Education Quality Support Fund under contract LEQSF(86-87)-RD-B-06.

REFERENCES

- 1. T. G. Pavlopoulos, M. Shah, and J. H. Boyer, Appl. Optics, 15 December 1988.
- E. Vos de Wael, J. A. Pardoen, J. A. van Koeveringe, and J. Lugtenburg, Rec., Trav. Chim. Pays-Bas <u>96</u>, 306 (1977).
- 3. T. G. Pavlopoulos, J. H. Boyer, I. R. Politzer, and C. M. Lau, J. Appl Phys. <u>60</u>, 4028 (1986).
- 4. D. J. McClure, J. Chem. Phys. <u>19</u>, 670 (1951).
- 5. T. G. Pavlopoulos, Spectrochim. Acta, <u>43A</u>, 1201 (1987).
- 6. T, G. Pavlopoulos and D. J. Golich, J. Appl. Phys. <u>64</u>, 521 (1988).

Figure 1.

Laser energy output ΔE (in mJoule) as a function of energy E (in Joule) of a 1.5×10^{-4} molar solution of te pentamethylpyrromethene-BF₂ complex (PMP-BF₂) dissolved in ethanol, a 2×10^{-4} molar solution of Coumarin 545 dissolved in ethanol, a 2×10^{-4} molar solution of Rhodamine 6G dissolved in ethanol, and a 2×10^{-4} molar solution of pentamethylpyrromethene-BF₂ sulfonate (PMP-BF₂-sulfonate) also dissolved in ethanol.

OUTF

•

•

Figure 2.

Absorption (S-S) and fluorescence Fl spectra of pentamethylpyrromethene- BF_2 complex (PMP- BF_2) dissolved in ethanol. The T-T absorption spectrum was recorded at 77 K, employing a 1×10^{-4} molar solution of 2-methyltetrahydrofuran as a glassy solvent.

DL/1113/89/1

TECHNICAL REPORT DISTRIBUTION LIST, GENERAL

	No. Copies	Co	No. pies
Office of Naval Research Chemistry Division, Code 1113 800 North Quincy Street Arlington, VA 22217-5000	3	Dr. Ronald L. Atkins Chemistry Division (Code 385) Naval Weapons Center China Lake, CA 93555-6001	1
Commanding Officer Naval Weapons Support Center Attn: Dr. Bernard E. Douda Crane, IN 47522-5050	I	Chief of Naval Research Special Assistant for Marine Corps Matters Code 00MC 800 North Quincy Street	1
Dr. Richard W. Drisko Naval Civil Engineering Laboratory	1	Arlington, VA 22217-5000	
Code L52 Port Hueneme, California 93043		Dr. Bernadette Eichinger Naval Ship Systems Engineering Station	1
Building 5, Cameron Station Alexandria, Virginia 22314	er 2 <u>high</u> quality	Code 053 Philadelphia Naval Base Philadelphia, PA 19112	
David Taylor Research Center Dr. Eugene C. Fischer Annapolis, MD 21402-5067	1	Dr. Sachio Yamamoto Naval Ocean Systems Center Code 52 San Diego, CA 92152-5000	1
Dr. James S. Murday Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000	1	David Taylor Research Center Dr. Harold H. Singerman Annapolis, MD 21402-5067 ATTN: Code 283	1