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ABSTRACT

The objective of this grant is to pursue research in the field of noise driven
nonlinear, dynamical systems by means of both analog and digital simulations.! Topics
for these simulations are normally chosen from contemporary theoretical or,/experi-
mental works, usually in consultation with the appropriate groups. The-emphasis of
the research is on laser applications, but other topics, often more generally related to
laser dynamics, have also been undertaken. In the area of laser dynamics, two pro-
jects have been begun and one is still in progress.-)The first, is an electronic circuit
modelling of the effects of purely multiplicative noise on the correlated spontaneous
emission laser, -carried out in consultation with W. Schleich (Max-Planck, Munich),
H.. Risken andhis-rp (University of Ulm) and M. 0. Scully (Max-Planck and
University of New Mexico).)The second,7 "hich is still in progress. is a modelling of
the general problem of stochastic resonance, and a study of the effects of the modu-
lation and noise as they relate to the recently observed phenomenon in a dye ring
laser. In related areas, four projects have been completed: The first is a generaliza-
tion of mean-first-passage time calcul tions to problems involving spatio-temporal
noise. Specifically wv considereda Brownian particle moving in a random spa-
tial potential driven by temporal noise, and we highlight an unsolved problem which
appears to be extremely difficult, but-'nevertheless is of wide physical applicability.
Second. w-ha'9  completeJ an experiment and a contemporary theorr",_oii- gen'er'alized
switching processes in the presence of colored noise.-,Though the object of this work
was to study the noise behavior of a generic switch, there is an obvious application
to switching in lasers and optically bistable syster p. This work was carried out in
collaboration with C. Van den Broeck (Limburg University and the University of
Brussels) and P. Hanggi (University of Augsburg). .Third.-we-have-made a discovery
using analog techniques with strongly colored noise: a noise correlation time induced
change in the topology of the two dimensional probability density of multistable sys-
tems. The unmistakable implication of this observation for first passage time and
bifurcat'or--t.heoryis that the traditional methods which reduce the problem to an
"equivalent" one dimensional form are grossly inadequate, and that the multidimen-
sional nature of such problems must be fully accounted fidr'Fourth. we have com-
pleted an interesting example problemon state dependent diffusion posed by Lan-
dauer and Van Kampen. While not offering any really new knowledge, it highlights
an old question which has frequently been ignored especially in the context of evolu-
tion theories. Finally, a considerable effort has been expended in the preparation of a
review article on colored noise dynamics which has been solicited by D. ter Haar for
Physics Reports. We anticipate that this article will be finished in the Spring or
early summer of 1989. The coauthors are: P. Hanggi. P. Jung, and H. Risken. Con-
currently, new data acquisition and analysis equipment has been purchased in order
to modernize the simulation laboratory; a process which is not yet complete.
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INTRODUCTION

In this report, progress under the grant named on the cover sheet is summarized
for the period 12/01/87 to 11/31/88. Six projects were completed in the sense that
these were works in six identifiably separate topical areas and that each has lead to
a publication. The topical areas spanned a range from first passage time problems to
stochastic resonance and state dependent diffusion. They are described in more detail
below and in the attached papers in the Appendix.

Each of these projects represented a distinct application of the technique of
analog simulation. Specifically, that means that an electronic circuit model of a par-
ticular system was constructed, and driven by a noise voltage of well known statisti-
cal properties. Measurements of the response of the circuit under various conditions
were made and compared to contemporary stochastic theory. Specific, physically
observable quantities of interest to the theorists were measured: the first passage time
and its probability density; stationary one- and two-dimensional probability densities;
time evolving probability densities; and power spectra and correlation functions. Since
we are dealing with stochastic systems, each of these quantities must be appropriately
averaged.

The experimental process is as follows: An electronic circuit model of the system
of interest is designed and built. The "systems" themselves were invariably repre-
sented by one or a set of Langevin equations. Noise from a noise generator is passed
through a linear filter to establish its correlation time and then applied to the circuit
model. The fluctuating responses, i.e. the noisy output voltages, were digitized and
then processed by a computer in order to average the quantities of interest. These
measurements are then analyzed, the error bars established, and then compared to
theory in the same way that experimental data is treated. In this way, analog meas-
urements frequently point the way for experiments on the actual physical systems
and can often identify any pitfalls which might arise in the course of the measure-
ments. This latter characteristic has been especially useful in the experiments on sto-
chastic resonance where instrumental band width played a crucial role and was not
immediately recognized in either the experiments or in previous digital simulations.,

The remainder of this report is organized as follows: the description of the six
completed projects is followed by a list of the personnel who have worked on the
projects and the degrees granted based on research work completed under the grant.
Certain University contributions to this research as well as other grant support is
outlined. Then follows an outline of projects currently in progress. The special prob-
lems in which we have an interest and the objectives of these current projects are
discussed. After this we outline our plans for the second year of the grant. Two
areas here seem to be particularly attractive and timely. As is our usual practice,
discussions with the appropriate theorists have taken place or are planned. It is
important to emphasize, though, that I work in a rapidly developing field where cer-
tain "targets of opportunity" sometimes rapidly appear. The projects on stochastic
resonance and noise correlation time induced topologies were just such examples. It
is, therefore, not prudent to propose a rigid structure for our research. The last sec-
tion contains an outline of our budget expenditures for both personnel and equipment
and our projections of these for next year. Finally, reprints and preprints of papers
which were produced with support of this grant are attached in Lhe Appendix.
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SUMMARY OF RESEARCH PROJECTS COMPLETED

1) First passage time with spatio-temporal noise. The mean first-passage time
has for many years been a very useful concept for studies on a wide variety of
problems fro'm chemical reaction rates to theories of evolutionary biology. Often inter-
esting applications are found in various types of disordered systems, yet in only one
previous instance has an attempt been made to evaluate the MFPT in a realistic
random spatially distributed potential. 2 By realistic, we mean a non-discontinuous
random functional, as would be found in macroscopic natural systems, in contrast to
the usual distribution of delta functions3' 4. Here we consider a classical Brownian
particle moving in a one-dimensional random potential U(x) which has a non zero
correlation length 1, that is, colored spatial noise. The dynamics are given by the
Langevin equation,

x - -dU(x)/dx + (t), (1)

where the correlations of the random functions are given by

<U(x)U(x')> - (C/I)exp-lx - x1/1. (2)

and

<J(t)Vt')> - 213(t - t'). (3)

Note that the spatial noise of intensity C given by Eq. (2) has a correlation length 1,
while the temporal noise of intensity D given by Eq. (3) is white.

In spite of intense effort by the theorists: A. Engel. L. Schimansky-Geier and P.
Hanggi. all of whom worked on this problem to some extent, the more realistic prob-
lem - colored spatial and colored temporal noise - could not be effectively treated in
any known approximation. We highlight this as an open problem in the published
versions. The white temporal noise problem which we did pursue was resolved into
four expansions, framed in terms which are easy to interpret and apply by experi-
mentalists, which apply in various regimes of parameter space: small or large tempo-
ral noise intensity compared to the spatial noise intensity in the two length regimes:
small or large separation between the exit boundaries compared to the spatial correla-
tion length. The Einstenian relation for Brownian motion, <x2> -* Dt, is recovered in
all appropriate limits. A discussion of the possibilities for observing the predicted
higher order departures from the Einstein relation is included. The details can be
found in the reprint in the Appendix.

Though considerable effort was expended on analog simulations of this problem.
no reliable results were obtained, so only the theory paper was published. The reason
is that we were unable to obtain in a reasonable amount of experimental time a suit-
able ensemble average over sufficiently many realizations of the spatial potential. We
have ideas for advancing this technology, i.e. to significantly speed the spatial aver-
age over realizations, which, however require the new data analysis systems just now
being installed. It should be noted, however, that this work resulted in an extremely
practical advance in analog simulation technology: the ability to simulate any arbi-
trary spatial potential in both one and two dimensions. This means that we are no
longer limited to simulations of Langevin equations with polynomials made up of
powers or trigonometric functions of x and y, but can simulate truly arbitrary func-
tio,;nl so long as they are finite.
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2) Noise correlation time induced topologies. This project was completed in
collaboration with F. Marchesoni of the University of Perugia, and it represents an
actual discovery which subsequently prompted a degree of theoretical activity. The
observations were made initially on a special "soft" bistable potential which has been
used in soliton-soliton interactions:

U(x) - -ln{chx/(ch 2 x + sh'x)}, (4)

which increases only linearly for sufficiently large x. [It should be noted that this
potential is illustrative of our present ability to simulate an arbitrary function as out-
lined in the previous section.] We simulated the system,

x -dU/dx + 6(t). (5)

with strongly colored noise,

<6(t)t(t> = (D/r)exp-lx - x'I/r. (6)

"Strongly colored", means that the dimensionless correlation time T, which measures
how fast the noise fluctuates on the time scale of the electronic model, is >> I (it
was typically 3 to 7 depending on the depth of the wells and the strength of the
noise D). We measured the joint probability density P(x, ). Previous studies using the
standard quartic bistable potential, U - -(l/2)x2 + (l/4)x4. had shown characteristic
colored noise topological features6, notable the so-called "skewing effect" which were
simultaneously confirmed by Risken's group using matrix continued fraction tech-
niques7 . Though the shape of the cross sections through these densities continuously
evolved with increasing r, the topology remained the same. Specifically, the two
maxima (corresponding to the two potential wells) were always separated by a single
saddle point which was always located on the x axis (at the origin for the standard
quartic). The measurements on the soft potential, however, showed a striking new
feature: at a certain critical value of r, the single saddle point "exploded" into two
symmetrically oriented but skewed saddles located well off the axis' .

Confirmation of this phenomenon was soon obtained for an entirely different
potential (in fact a periodic potential) by the Risken group. And later the same phe-
nomenon was observed in analog simulations of the standard quartic potential and
even of a random potential'. So why had this feature not been previously observed
in either digital or analog simulations or with the matrix continued fractions? The
reason is that a shallow well depth (as was the case for the "soft" potential) is
required to observe the effect for moderate values of both D and -r.

The implications of this discovery for mean first passage time theory are signifi-
cant. Extant theoretical approximations for colored noise, the so-called "small r" theo-
ries, had always reduced the necessarily higher dimensional Fokker-Planck equation
to an "equivalent" one-dimensional form.' This amounts to choosing a most probable
path for the motion of a particle from one well to the other which is a straight line
crossing the saddle point at the origin. The measured topologies for r greater than the
critical value demonstrated, in contrast, that the most probable path which now must
pass through one of the off-axis saddles was a wide curve and sometimes a tortuous
path which, however, always avoided the origin. Obviously, in order to treat first
passage time problems for strongly colored noise a multidimensional approach is nec-
essary. This has recently been developed by Matkowsky". In any case, the observa-
tions present an interesting problem in bifurcation theory which has stimulated the
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interest of several groups' 2.

3) Generic switching in the presence of noise. Noise necessarily affects all
macroscopic (and probably most microscopic) switches. As computer memory element
densities tend toward ever larger numbers, with a concomitant reduction in the size
of the individual switch elements toward dimensions limited by quantum noise, the
subject of noise immunity becomes increasingly important. Moreover, switches operat-
ing even at the quantum level are better delcribed with colored noise theories 13.

In this project and the following one, we have undertaken to study: first, the
effects of colored noise on a classical generic switch; and second, the predicted effect
of noise color on a quantum system, the correlated spontaneous-emission laser (CEL).
In both cases, it has only recently become possible to handle the problem of colored
noise driven switching with adequate approximate theories 4" 5 .

In this, the classical, project, we have considered a generic switch as repre-
sented by a general Langevin equation of the form,

A - x[-I + A(t)/(l + x2)] + (t) (7)

driven by the usual colored noise

< (t) (t> - (D/i)exp-It - t'l/r. (8)

The forcing as shown in Eq. (7) may seem strange, but it is the result of the simplest
"soft" potential which is still nonlinear and bistable could be written:

U(x) - (l/2)[x 2 - A(t)ln(l + x2). (9)

[A soft potential is one for which the restoring force increases only linearly as x -.
oo.] Switches with "harder" potentials can easily be represented, but the generic
switch should be represented by a soft potential for which the effects of the noise
will be greatest. Moreover, this potential is a one-dimensional representation for the
dynamics of a ring laser. In the above expressions, A(t) represents the switch signal:

A(t) - Ao[-I + 2u(t)], (10)

where u(t) is the Heavyside (or unit step) function. Whence, A(t) = -Ao for all t < 0
and A(t) - +Ao for all t >- 0. What this really means is that the potential is
switched (in a time short compared to all other time scales in the simulation) at t - 0
from a potential which is globally stable at x - 0 to one which is bistable. The col-
ored noise (t) is always present, and forms a random initial condition which drives
the switch off the unstable state (on top of the barrier separating the stable states for
t > 0).

The probability density and the first moment of the time necessary for the
switch to respond by crossing a predetermined threshold were measured and calcu-
lated. This is a generalization of the more frequently encountered (but less physically
realistic) problem in the decay of an unstable state wherein the initial condition is
taken as a delta function and some mean first passage time theory is applied. The
general approximate theoretical framework for this problem has been developed by
Dhara and Menon", and we have applied it specifically to the generic switch 5 . For
more details, see the paper reproduced in the Appendix".
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More recently, Sancho and San Miguel and their coworkers, stimulated by this
work, have reworked and expanded on the same problem with an improved
theory 6"7 .We regard this body of work as a significant addition to the literature on
the subject of the decay of unstable and meta stable states or more specifically: noisy
switching processes.

4) Noise quenching in simulations of the correlated spontaneous-emission
laser (CEL). Thts project is a natural outgrowth of the previous one. Though we do
not consider switching in this simulation, we do test some predictions regarding noise
quenching in the CEL both via analog modelling and by matrix continued fraction
techniques. Colored noise theory is only just beginning to be applied to quantum sys-
tems 18 . The colored noise theory seems, to be difficult, since for this particular model
the noise is both colored and multiplicative. The dynamics of the quantum system
can, however, be reduced to a description by a classical Langevin equation13:

- a - bsino + (t)sin(0/2) (1)

with the usual colored noise given by Eq. (8). In this case, it was a discovery of the
analog simulation that noise color (that is to say, increasing noise correlation time)
further enhances the noise quenching already resulting from squeezing in the CEL.
This result has since been corroborated by matrix continued fraction methods and by
a quantum colored noise theory 19, and may have significant practical implications for
the design of reduced quantum noise measuring devices2". For further details, see
preprint in the Appendix.

5) Stochastic resonance. This project is an example of how rapidly analog sim-
ulation can respond to arising topics of current interest. Stochastic resonance (SR) is
the name given to the phenomenon of noise assisted transitions in bi- or multi-stable
systems. It is a purely nonlinear effect whereby the signal-to-noise ratio of a switch--
ing signal can be considerably enhanced by the deliberate addition of noise. It
fits very well indeed into our program along with the two previous projects on the
study of noisy switching systems. SR was advanced about a decade ago as a possible
explanation of the observed periodicity in the recurrences of the Earth's ice ages 21,22 .

An interesting experiment wherein SR was observed in a dye ring laser has recently
refocused attention on the problem23 . I only learned of the laser experiment from R.
Roy at the Los Alamos workshop9 in March 1988, well before his Phys. Rev. Letter 23

was written. It was nevertheless possible to complete an analog simulation of this
system by early summer and to prepare a publication'. While the laser system is
multidimensional (at least two dimensional), the basic phenomenology of SR can be
represented by just two Langevin equations: one which represents additive modula-
tion,

_ x - x 3 + Ecosct + (t) (12)

and the other representing multiplicative modulation,

- (1 + Ecosotl1/2x - x3 + (t), (13)

where the coswt term represents the periodic modulation and (t) is the noise. The
forcing, x - x3, is just that due to the "standard" quartic potential, U(x) - -(l/2)x2 +
(l/4)x'. In the first case, both the modulation and the noise are additive. This means
that the potential is "tipped" up and down by the modulation so that the potential
wells alternately are raised and lowered in relation to the barrier separating them. In
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the second case, the wells remain stationary while the height of the barrier is modu-
lated.

In both cases, the probability that a transition from one well to the other will
occur is also a periodic function of time. Thus the problem is non stationary, and
hence raises interesting theoretical challenges 24- . What had escaped previous notice
in both digital simulations and in experiments was the fact that the power spectrum
of this system (at least that of Eq. (12)) must contain a delta function at the modula-
tion frequency. That observation is crucial for all experiments, and simulations. It
means that efforts to measure the signal-to-noise ratio by measuring the amplitude of.
the peak in the power spectrum can at best be only qualitative. This observation
prompted our comment'. In our simulation, the "input" and "output" signal-to-noise
ratios were measured for the two systems represented by Eqs. (12) and (13). Our res-
ults were compared with the McNamara and Wiesenfeld theory25. For more details
see preprint in the Appendix.

6) State dependent diffusion. This simulation did not contribute any new
knowledge but rather was undertaken at the request of Rolf Landauer in order to
illustrate and emphasize an old point: that the location of the point of global stability
in a multi stable system can be changed with multiplicative (or "state dependent")
noise. We chose an interesting example for which three independent theoretical
approaches had been taken.29- 3 For this example, a standard quartic potential was
chosen, with the noise intensity everywhere constant except at one discontinuous "hot
spot" near the potential maximum but located on one side of the barrier. It was
something of a challenge to simulate this "state dependent" noise with electronic cir-
cuits. The instantaneous location of the trajectory was sensed with comparators and
sample-and-hold circuits, while some "extra" noise was switched in when the trajec-
tory was located within the "hot spot". We mad measurements of the stationary pro-
bability densities as a function of the magnitude of the extra noise in the hot spot.
Our results were compared to the theories of Landauer and of Van Kampen (except
for a differing definition of particle velocity, the results are equivalent, though the
approaches are quite different: Van Kampen's being totally thermodynamical while
Landauer's was totally statistical.) Together these three papers29,3 1 .32 make an interest-
ing pedagogical collection on the particular point regarding global stability.

Buttiker's paper" . on the other hand, has more practical consequences. He pred-
icts a "noise induced probability current" in a continuous, spatially periodic one-
dimensional system with periodically placed hot spots. Thus a mechanical current can
be the result of spatially periodic heating. There may be applications of this theory
to the technology of superlattice fabrication. We have also simulated this system, and
observed and measured Buttiker's probability currents, but have not. yet written up
those results for publication."
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PERSONNEL. CONSULTANTS AND DEGREES GRANTED

1) Students. Two graduatc students were supported during one summer and par-
tially supported during one academic year. They both received MS degrees in August
1988. Their names and thesis topics are:

Mr. Goutam Debnath. "Observation of stochastic resonance in a bistable potential as a
model for a bidirectional ring laser." MS thesis; University of Missouri at St. Louis;
July 1988.

Miss Kathakali Sinha. "State dependent diffusion (SDD) in a bistable potential". MS
thesis; University of Missouri at St. Louis; July 1988.

Unfortunately, these two students did not elect to remain at this University to pursue
PhD work.

In addition, an undergraduate student Mr. Gabor Schmera was supported part
time during the summer and academic year.

2) Visitor. Professor Ting Zhou of the Institute for Semiconductors, The Chinese
Academy of Sciences, Beijing has been a visitor from May 1988 to May 1989. He has
been supported completely by funds made available from the University of Missouri.
He has worked full time on the projects described herein.

3) Consultants. My grant provided for theoretical consultants. The following con-
sultants, listed along with the topics they were consulted on, were supported to some
extent by the grant:

a) Prof. H. Risken, University of Ulm, FRG
Noise correlation time induced topologies.

b) Prof. P. Mandel. Free Uaiversity of Brussels, Belgium
Noise driven bifurcations in lasers. Chaotic responses of
coupled CO2 lasers.

c) Prof. P. Hanggi. University of Augsburg, FRO
Stochastic resonance. Review of colored noise in double
wells: an invited review article in preparation for
Physics Reports.

d) Dr. W. Schleich. Max-Planck Institute for Quantum Optics, Munich
Noise quenching in correlated spontaneous-emission lasers.

e) Dr. C. Van den Broeck, Limbergs Universitair Centrum and
University of Texas at Austin.
Random potentials. Decay of an unstable state.

f) Prof. J. M. Sancho, University of Barcelona, Spain
Decay of an unstable state driven by colored noise.



UNIVERSITY CONTRIBUTIONS TO THIS RESEARCH PROJECT

Before this grant was awarded the University of Missouri committed matching
support to a maximum of $80,000. To date only $13,000 of this has been made avail-
able. That money has gone entirely for the support of Professor Zhou as mentioned
above. I have been assured. however that the full amount promised will be made
available.
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PROJECTS CURRENTLY IN PROGRESS

1) Noise correlation time induced topoiogies. This project has resulted in one
Letter publication and one poster9 , but is far from complete. In collaboration with
the Risken group at Ulm, a complete study of this new critical feature is being car-
ried out over all parameter ranges. We expect this work to be finished in the spring
or early summer of 1989.

2) Stochastic resonance. This project has resulted in one Comment which is also
letter length', but is also not complete. In addition to signal-to-noise ratios, that is
power spectra, we hope to measure a different quantity which must also be sensitive
to the correlation between the output and. the modulation, the density of residence
times. This quantity has never been measured in an SR system nor is there yet a
theory for it. It is a quantity which is sensitive to time correlated changes in the
transition probability. In addition, this quantity does not suffer from the defect of the
power spectra in that there should be no delta functions in the output. We also wish
to measure the total power in the band of both the signal and the noise in order to
test a remarkable prediction of the McNamara-Wiesenfeld theory 25 : that the the signal
actually absorbs power from the noise near the maximum in the signal-to-noise ratio
curve. It has to date been impossible to test this prediction in the laser experiment.

3) Review article for Physics Reports. As stated above, this is a review to be
coauthored by Moss, Jung, Hanggi and Risken. We expect it to be finished by early
or mid summer 1989.

4) Time evolution of probability densities in oscillators with weak nonline-
arities. We are just at the beginning of this project. The appropriate Langevin equa-
tion is

x+ y + kx - exl - 0, (14)

where y is the damping, k the spring constant and e is a (weak) nonlinearity parame-
ter. In the case that the damping is noisy, ' - yo + J(t), the linear (k - 0) version of
this oscillator is known to explode (all moments -, oo) for some value of the noise in-
tensity. It is not known how weak nonlinearity can affect this behavior. Moreover,
for the first time ever, the time evolution of the probability density P(x,t) has been
obtained exactly for the linear case. This result is due to J. Win. Turner and R.
Lefever of the University of Brussels and has not yet been written up for publica-
tion. We have already constructed a simulator of this oscillator and begun the meas-
urements of P(xt). The oscillator with noisy damping is itself not physically interest-
ing, but the explosion can be viewed as a universal bifurcation event. (The usual
normal form analysis in conventional bifurcation theory always begins with a linleari-
zation, valid for small parameters, near the bifurcation point.) The recent solution of
the time dependent Fokker-Planck equation for this linear system, may lead to a truly
nonlinear bifurcation theory.

5) Postponements and advancements of noisy Hopf bifurcations. This is a
topic which we have been interested in for some time. We have previously done
experiments on both tht. stationary' and time dependent 3s properties of the Hopf
bifurcation in the Brusselator. Of interest is whether noise can produce an advance-
ment or a postponement of the Hopf bifurcation. The original analog simulation in
the Brusselator showed only a postponement 4. One theory predicts only postpone-

- - I
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ments3 6, while two others predict advancements3 7 , 3
8. In spite of our earlier measure-

ments, we are gathering evidence, from precision digital simulations, that there are
indeed advancements. It is possible that the advancements, if present in the earlier
analog simulations were not visible due to a lack of precision com'ined with the fact
that the Brusselator limit cycle is highly irregular. The digital simulations and the
theory are currently being applied to the Hopf bifurcation in the Poincare' oscillator:

x + [A + B(x2 + xl)] + 'yx + (t) =0 (15)

where the noise can either be additive, as shown is the above equation, or multipli-
citive, in which case B - B + J(t). This oscillator has the advantage that the limit
cycle is regular, i.e. it is a circle, and the magnitude of the velocity of the trajectory
x(x) 2 const. This question is important in the analysis of real. macroscopic, physical
systems which are always noisy. Are bifurcations advanced or postponed by this
noise? And if so, how does the magnitude of the advancement (postponement) depend
on the ratio of the noise correlation time and the limit cycle period? We do not have
good answers to these questions yet either from the experimental or theoretical points
of view or from simulations. Digital data are slow in coming. Near the bifurcation
point very large amounts of CPU time (the order of hours) on our VAX 8600 is
required just to obtain one two-dimensional probability density P(xx). The analog
simulations are much faster (order of minutes) but of less precision.

PLANS FOR THE SECOND YEAR

Obviously, the first priority is to finish the current projects listed above. How-
ever, there are two additional projects which we would like to pursue time and
supply of students permitting.

1) Weak chaos: weakly dissipative, weakly nonlinear oscillators. This project
has not taken form yet but the idea is to examine nearly Hamiltonian systems using
our electronic modelling techniques. We are following here the work of G. M. Zas-
lavsky and his coworkers regarding this possibility. He has observed the initial stages
of the breakup of KAM tori at the onset of Hamiltonian chaos in various weakly
driven oscillators. Using digital simulations, we have been able to reproduce some of
his results, but the requirements on CPU time are enormous. Therefore, if it is possi-
ble to study any of the phenomenology using analog simulations this would be of
great interest. In particular, Zaslavsky has observed the formation of "stochastic
webbs" for very weak chaos. These are just chaotic phase plane trajectories close to
the separatrices, for example in extended systems with periodic potentials which are
driven periodically 39-"I. Sometimes the webbs display interesting symmetries, e. g.
quasi crystal symmetries. An example is the following:

" + Wo2sinx - esin(kx - wt) (16)

For rational ratios w/wo, and for certain (small) values of c, the webb is formed
around the phase plane trajectories x(x). Now we have made simulations of similar,
though non-Hamiltonian, systems:

X +-yI +Wo2 sinx - (t) (17)

and we have been able to approach Hamiltonian behavior for -r - 0. The noise (t),
then drives the system, and for very small -f only a very small noise intensity is nec-
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essary to keep the system on a trajectory near the Hamiltonian separatrix. In this
case, we have measured the two-dimensional probability density P(xx). The contours
of constant probability in the phase plane then look very much like the separatrix.
We call these densities the stochastic phase portraits4 2. In fact they look very much
like Zaslavsky's stochastic webbs. but of course our system is not chaotic being
driven by (weak) high dimensional noise instead of a periodic time function. It cer-
tainly is easy to build an analog simulator of Eq (16), albeit with the added damping
term -yx. The question is, by careful design is it possible to make y' small enough to
unmistakably observe the chaotic webbs? Alternatively one can ask if any of the
symmetries observed by Zaslavsky are preserved when high dimensional noise drives
the system? The actual system to be simulated would be represented by:

+ y +W 0
2sinx - esin(kx - ot) + (t). (18)

It is probable that what would be observed would be some mixture of the chaotic
webbs and the noise driven portraits with (t) being the smallest possible inherent
electronic noise. Could these yield any useful information? The zaslavsky group have
agreed to collaborate with me on these simulations.

[For the record Michael, we contacted the Zaslavsky group nearly 8 months ago,
based on one of their publications in Physics Letters, long before the Physics Today
article and before I had seen the Nature article. They are also writing a book for
our Cambridge Nonlinear Dynamics series.]

2) Coupled Oscillators: a model for two coupled lasers. This is a three way
loose collaboration between myself and P. Mandel (Brussels) who is doing the theory
and P. Glorieux (Lille) who is doing the experiment with coupled CO2 lasers. They
would like to have a "catalogue of the phenomenology" from us in order to point
them toward regions in parameter space where interesting behavior is expected. The
system is five-dimensional, and is expected to exhibit complex behavior. We have
previously modeled a single laser which was driven by an external oscillator (instead
of a second laser) and observed a rich dynamics, including a Farey Tree of phase
locked regions, slow mode modulational instabilities (later observed in real lasers),
Arnold tongues and transitions to chaos 43, so the extension to two coupled lasers
would probably be straight forward. The single laser model is:

E- -kE + (g2/,y)EN (I 9a)

Nq - -y.(N - N.) - (4g2/f 0)lEI 2N (1 9b)

with periodically modulated losses

k -, k0[ I + mcos(wt)], (20)

where E is the field intensity, N is the population inversion, the -f are the two polar-
ization modes, g is the atomic field coupling factor, and k is the cavity loss. The
proposed coupling of two lasers would be accomplished by coupling the cavity losses,
so that k, - bk2, where the subscripts now represent laser I and laser 2. The system
is five-dimensional with two variables for each in E, N, and k.

I wish to add a caveat here: this project is expected to be long and difficult. It
will necessitate a very careful cataloging of the expected wide variety of complex
dynamic behavior. I cannot complete this and also meet my other commitments with-
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out either some new (and very good) students or a postdoctoral student, preferably
both. In view of the University's commitment outlined above, money is not a prob-
lem. however we have had difficulty in attracting good graduate students here rec-
ently.

3)Targets of opportunity. It is necessary to save both some time and laboratory
capacity in order to respond to interesting situations which may arise. During this
past year the project on stochastic resonance was just such an opportunity.
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The mean first-passage time of a particle moving in a spatially correlated, Gaussian random po-
tential and subject to Gaussian white noise is calculated. Depending on the parameters of the
problem, we find four different regimes of diffusional transport.

The mean first-passage time (MFPT) has for many This is the well-known MFPT (Ref. 4), T[U(x)], which
years been a most useful concept in the analysis of rate still functionally depends on U(x). Assuming now that
processes in stochastic systems. While the origins of U(x) is a sample of a random-field ensemble character-
MFPT theory are traceable to early Russian work,' more ized by some functional probability density P[U(x)], the
recent pedagogical treatments are to be found in Stratono- question about the ensemble-averaged MFPT
vich, 2 Weiss, 3 Van Kampen, 4 and Risken, 5 and today it f(
continues as a topic for active research 6- 0 and even con- T-fdU(x)P[U(x)]T[U(x)] (2)

troversy. 1 In these previous studies, various applications becomes relevant.
of the MFPT theory have been put forth, but always to In the present note, we consider only the most simple
bistable, metastable, or periodic potentials. In this short case of one-dimensional motion in a Gaussian random
note, we extend the MFPT concept to include particle field with Gaussian white noise, i.e., we take
motion in one-dimensional random fields with nonzero
correlation length and with 8-correlated random forcing: ((t))-0, (t(t) (t'))-2D5(t-1'),
white temporal noise driving a colored spatial noise dy- and
namics. We hope to highlight a problem in contemporary
stochastic theory: temporal colored noise driving a spatial P[U(x)]f f -x x'U WA(x,x')U )
colored noise dynamics. Though such a problem is physi- N f
cally more realistic than the one presented here, the (3)
theory seems to be more difficult, especially since all tem-
poral colored noise theories, even for completely deter- where D measures the intensity of the temporal noise, N is
ministic potentials, are necessarily approximate. 6-i a normalization constant, and A(x,x') is the matrix in-

Stochastic processes in random fields represent an in- verse of the spatial correlation function B(x,x') of the
teresting problem in statistical mechanics. On the one random field, i.e.,
hand, there is a variety of applications, for example, in
disordered solid-state systems 2 or models of biological J dx'A(x,x')B(x',x") 8(x-x").
evolution. 13 On the other hand, several challenging Using the well-known expression for the MFPT of one-
mathematical aspects arise in their theoretical descrip- dimensional processes driven by Gaussian white noise, 4 we
tion, 14-18 and interesting applications including 1/f noise find, for every realization U(x),

arise. 15 '19 Previous studies mainly concentrated on the

stationary probability distribution or the time dependence T[U(x)] -- L d dy po(y) (4)
of the moments and the autocorrelation function. We em- D JY P0 (y)
phasize also that in most cases Freviously studied, the spa- where
tial potential was 8 correlated in contrast to the nonzero
correlated one used here. A notable exception is the early rUs
work of de Gennes. 20  pO(x)-exp D (5)

We consider the overdamped motion of a particle in a
potential U(x) subject to additive noise W(t). Denoting denotes the stationary solution of the Fokker-Planck
the position of the particle by x (t), the equation of motion equation corresponding to Eq. (1). Here, and in the fol-
reads lowing, we assume without loss of generality that x, -0

dtx(t) -- dxU(x) +4()(1). and X2 >0.

Equations (4) and (5) combine to give
Given two points x, and X2, we can define for any U"
the average with respect to 4(t) of the time at which the T[U(x)J -"f dy exp I [U(y)-U(,')J . (6)
particle for the first time reaches X2 if it was at xI at t -0. D 0 [ I

.U 571 0 1988 The American Physical Society
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Since U(y) occurs in (6) only linearly in the exponential, the configurational average (2), with the distribution (3), in-
volves just a Gaussian functional integral, which k easily performed yielding

-*J dyfd y'exp 1 [B(y'y)-B)-B(',-)B(Yy')+B(y'Y)] . (7)

For macrosco pically homogeneous random fields, we have
B(x.x') -B( |x -x' I), and defining B -B(0) we get where C -B(1) defines the intensity of the static disorder.

lf V ffi' 1 In the following, we use (10) to discuss some limiting
T=-J dyJ dy exp [B-B(y-y')I , (8) cases of the general result as given by Eq. (8).

D f{ D2 JThere are two dimensionless parameters in the problem.

or equivalently, The first one is xlI which tells us whether there are many
variations of the potential U(x) between 0 and x or not.

T f dy, od v 'exp [B-B(y')] . (9) The second one is BID 2, which represents the ratio of the
D Dintensities of spatial disorder and temporal noise. Four

Usually. the correlation function B(x) is assumed to fall limiting cases are of interest as shown in Fig. 1.
off exponentially for distances large compared with the We first consider the case BID 2<< 1, i.e., the typical
correlation length 1. A typical choice is fluctuations of the random field are very much smaller

C ( than the intensity of the temporal noise. Expanding the
B(x) =-exp( - Ix /1). (10) exponential in (9), we find

I

X_- B 12 (e -. I-t + B 2 1 1 -- + e )+ 0 -1)xt -xt
I + l 31+1 . -'X 4e " )+O (11)2D . Xx 2D 4  x L 2iD]2

As expected (cf. Fig. 1) this is just an expansion around the case of pure diffusion, which is characterized by the familiar
Einstein result, 21

(X 2)-Dt . (12)

Note that the corrections depend on the ratio x/l. For x<<l, we get from Eq. (11)

- I +_._ + +0B - - (13)
2D D2  31 121 D 4 21' ,' D

which describes the influence of smooth variations in the random field on T. For x >> 1, Eq. (I 1) gives

B _ 1_ 2121 B2r 11 r ~ ]T 'X I-_" _ +1 - 2-31 +-27 +O[[' e  (14)

which accounts for the corrections of T due to many but
small fluctuations of the spatial randomness (see Fig. ).

Of more interest is the case BID2 >>t, where the sjp'-
tial disorder dominates. For x <<, we then have U U

expl(l/D 2)[B - B(y')l }-explBy'/D211, and we obtain
from (9), NA A 1D 12 21 - 1. 21, X2 ,

T - B 2 [exp(Bx/O 2, -l(Bx/O 21. 1,× C6 Y, VX

For very large values of BID2 such that Bx/D 21> 1, we
therefore find that U U

T-(D3 1 2/B 2 )exp(Bx/D 2 1). (15) I .
For x < the average variation of the random potential X, X2 X - 1 X .
between 0 and x is of order Bx/I, and the exponential fac-
tor in Eq. (15) is just the averaged Arrhenius factor which
controls escapes over such a hill in the presence of thermal 0
noise of intensity D.

Finally, we consider the case BID 2>> I and x>>1. Now X2 X1f IL
the potential shows many variations between 0 and x, and FIG. 1. Schematic plot of the random field U(x) between two

the particle will therefore encounter many hills and val- points x, and x2 in different regions of the parameter plane.
leys on its way. First, we perform the y' integral in Eq. The double arrow indicates the strength of the temporal noise.
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(9) exactly and obtain the result corresponds to a process of normal diffusion
with renormalized diffusion constant D-Dexp(-B!

T -(U/D)e8/Dfody E, _ e-.'/-E, B. (16) D 2 ). Usually, one expects that T is dominated by the
S  D2 transition time of the largest fluctuation between 0 and x 1.

Using the distribution Eq. (19), however, one realizes that
where EW(x) is the exponential integral.22  Because the height of this largest fluctuation varies with x as
E c(x)-- for x-0, the main contribution to the in- (lnx) /'1 2 which implies a contribution to T of order
tegral in Eq. (16) comes, for x-- -c, from large values of exp(lnx)/ 2 . For large x, this is smaller than the pure
y. Hence. we can neglect the constant term, and using 2 1  diffusion time T-x 2 -exp(21nx) and Eq. (18) is there-

E - -l -( -x) fore explained.

E1 ( - --- lnx, for x - 0, Note that the problem studied in Ref. 15 is different
n xn! from ours, insofar as there the derivative dxU(x) was tak-

(17) en as the stochastic variable. The corresponding potential

we find that U(x) was therefore a Wiener process (also having zero
correlation length) and hence it has statistical properties

T--- (x 2 /2D)exp(B/D 2) (18) very different from ours (see Eq. (3)1.
In conclusion, we have studied the ensemble-averaged

As in Eq. (15), the main contribution comes from the ex- MFPT for the overdamped motion of a particle in a spa-
ponential factor, which has a simple meaning. On its way tially correlated Gaussian random field subject to Gauss-
from 0 to x the particle has to climb many hills (see Fig. ian white noise. The general results, Eq. (7) and (9), have
I), and the height Umax of each is a Gaussian random been shown to interpolate between several limiting cases
variable with distribution accessible to intuitive arguments and possibly to experi-

P(Um) -exp( - L12,,/2B), (19) ment as well. For sufficiently weak spatial disorder, we
found expansions around the normal diffusive behavior

as follows from Eq. (3). The time T(Umax) to climb such [Eqs. (13) and (14)], i.e., the MFPT is mainly determined
a hill is given by the Kramers formula by the distance to be traveled. For strong spatial disorder,

the order of magnitude of the MFPT is given by an Ar-
T(Uniax) exp(Umax/D). (20) rhenius factor corresponding to the typical fluctuation of

From Eqs. (19) and (20), one realizes that the main con- the random field to be climbed by the particle, but in prac-

tribution to T comes from fluctuations with height tice, in this limit, the MFPT is determined by the local de-
tails of U(x).

Umax-B/D. (21)
Discussions with Dr. L. Schimansky-Geier, Professor

Maxima with Umax <<BID are quickly climbed, those with W. Ebeling, Professor P. Hanggi, Dr. W. Schleich, and
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Measurements of the two-dimensional probability density using an analogue simulator of a system with a "soft- bistable poten-
tial show a new. noise induced topological feature: the appearance at large noise correlation time of a symmetric pair of off-axis
saddle points. The implication of this observation for mean first passage time calculations is discussed.

The problem of the rate of escape in bistable po- mination of the rate of escape an arduous task: (i)
tentials driven by colored noise has recently at- no manifest energy detailed balance holds [31; and
tracted the attention of a number of investigators (for (ii) the exact stationary distributions p(x) and p(x.
a collection of reviews see ref. [ I ] ). Let us consider f) are unknown.
a one-dimensional bistable potential F(x), with bar- The very definition of the rate of escape may give
rier located at x=0. In tP Smoluchowski limit the rise to some misunderstanding. The authors of ref.
stochastic relaxation of tae spatial variable is de- [4], for instance, identify the rate of escape in bi-
scribed by the following equation of motion: stable potentials in the small noise limit (D <<A,')

with the smallest non-vanishing eigenvalue ;( r) of
- V' (x)+E(t). (1) the corresponding Fokker-Planck equation. This

The simplest choice for the fluctuating force f(t) is definition is particularly well suited to computations

given by a gaussian noise of zero-mean value with by means of numerical algorithms based on contin-
autocorrelation function (acf) ued fraction expansions [ 5 ]. In the case of analogue

or digital simulations A(r) can be determined
, E(t)E(0)>=(D/r) exp(-ItI/r) . (2) uniquely as the reciprocal of the slowest decay-time

In view of Doob's theorem [2], eqs. (I) and (2) of the temporal acfofx(t) [4].

can be replaced by a markovian system of two sto- By contrast. much effort has been put [6-10] into

chastic equations: characterizing the rate of escape in bistable poten-
tials as the reciprocal of the mean first passage time

(V) + f [61 (MFPT). T(r). for the brownian particle to cross
(3) over the potential barrier. In the white-noise limit
(3) (r=0) it can be proven that the T'(0) does in-

where (t) denotes a zero-mean valued, gaussian, deed coincide with ;(0) up to the first order in the
white noise with acf K ,(t)i(0)>=2D6(t). Two small parameter D/A V- compare the results of refs.
properties of system (3) make the analytical deter- [ I1]. However, the equivalence of T-'(r) and;.(r)

322 0375-9601/88/$ 03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
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is suggested not to hold in the presence of colored
noise (r>0) as indicated by the conflicting predic- 2 -

tions for the r-dependence of the rate of escape in
refs. [4,7-10]. /

MFPT calculations invariably assume that for > /-
D<< AV. the escape from one potential well into the //

other occurs any time x changes sign. In the two-di-
0-

mensional space (x, E) this means that the barrier - 2

crossing occurs any time a single trajectory intersects -2 0 =x, 2

the line x=0. the most probable crossing point being X

located at (0, 0). This assumption has been criti- Fig. 1. The sofi potential given b eq. (4).

cized first in ref. [ 10 ]. Subsequently, the authors of
ref. [4 ] determined the separatrix numerically, that A ch-R z
is, the curve of constant probability which passes lnn h 0R) .67.
through the saddle point between the peaks of the
distribution function p(x, E). Since p(x. t) cannot the positions ±x, of the local minima.
be factored into a simple product of functions of f X0 ch sh R_0.98.
and x. it is nontrivial to determine the separatrix for
intermediate to large values of T. The usual answer the curvature of the bottoms of the wells.
to such a criticism is that in the limit of very small V" ( + x,) = I - I /sh-R z 0.92: and finally, the cur-
values oft [12] (but how small is hard to say) the vature at the barrier, I F" (0) I - l-2/ch2 R;-0.86. A
correlation of x with e would play a minor role: so unique feature of this family of potentials is that they
that the most probable escape path crosses the po- are linear for large Ix 1, i.e., V(x) - I xl for x-- + o.
tential barrier at the unstable point (0, 0) as in the A good determination of .(0) has been obtained by
white-noise limit. The effect of time-correlation is means of a supersymmetric transformation [ 14] and
then supposed only to modify the curvature of the the identity T- '(0) =.(0) has been established for
effective potential at the bottom of the well and the this potential. In addition, the slow divergence of
top of the barrier. Consequently, the corrections to V(x) for large lxi required the introduction of a
the rate of escape at small r are not expected to de- modified MFPT formula [ 15 ].
pend much on D at least for small D. We have constructed an analogue simulator of eqs.

In this Letter we present a result of an analogue (1 )-(4) using an already well established technique
simulation experiment, which illustrates the impor- for simulating arbitrary potential functions [ 16].
tance of the (x. e)-space structure for a full under- Measurements of the two-dimensional statistical
standing of the relaxation dynamics of the class of density p(x, E) for several values of r are shown as
systems described by eqs. ( I ) and (2). We chose an contour plots in fig. 2.
unconventional potential function V(x), The main features detected by Risken and co-

workers [4,5 ] and observed in previous simulations.

V(x) =-n chx +const, (4) both for the quartic double-well potential [ 17] and
Vchx+sh2 R+ a sinusoidal potential [ 16], are reproduced here: (i )

the skewing of p(x, e) which increases with r. and
which is motivated by the analysis of the double sine- (ii) the separatrix which does not coincide with the
Gordon kink [ 13.141. This is not the potential used axis at x=0 [17].
in the works cited in refs. [7-10], however, it has Most notably, however, a novel feature of p(x. E)
the great advantage that certain exact results can be shows up for values of r which are large compared
obtained by means of supersymmetric transforma- with I 1" (0)1 - V" (x,,) - 0.9. For T large enough (the
tions [ 14 ]. This potential is shown in fig. I for R = 2. magnitude increases weakly with D) two symmetric
Numerical values of the relevant potential parame- saddlepoints in the distribution located at ( vs, -,)
ters are: the barrier height, and (-x,. -e,) become observable with our appa-
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a) f--- I I Iratus. This means that for large enough r, the system
(a) " presents two symmetric, most probable escape paths

connecting the potential wells, which make a detour
2 7' . / around the single crossing point located at (0, 0) for

r=0. and run instead across the saddle points.
'- ./, / \ It is not yet clear whether this observed noise in-

/0 duced change in the topology ofp(x., ) occurs 4t a
/ .- specific threshold value th. or whether the two sad-

S . /' / die points instead move out from (0, 0) continu-
ously for r> 0.

~ < -- .. \ ., / An example is shown by the contour plot in fig. 2c

for r=5. where the shaded area surrounding (0. 0)
_______________-_-depicts the crater in p(x, t ). The two saddle points

are marked by the double arrows, which lie on the
measured contour closest to the separatrix, and are
located approximately at x,.,)/2 and 6, -. For

0)-.- -, comparison, densities at r= 1.5. where the saddle
/ points have just disappeared, and at r=0.1, which is

close to white noise are shown in figs. 2b and 2a
/ . ,, respectively.

W -,)0 , , / " A simple, physical explanation for this observa-
/ ,,,'i/ /,." tion is the following: the locations of the wells of the

/ I/ potential under study can be approximated by
-i - 'J'/./ <.. , . .. i x+xcol (apart from an additive constant). The

. ., presence of a constant external force. for example, of

magnitude - E would correspond to a momentary
I I I L tilting of the potential due to the addition of the ex-

tra term xt. In the neighborhood of E =,t ± 1, the
effective potential V(x) +xE becomes unstable and

I(c) I I the trajectory falls into the single potential well. This
z()-', .mechanism obviously applies only when r is large

-#,/Y enough to allow the trajectory to relax into the new
/ # <') ibg- ,'Y potential well before f changes again. If this picture

/ is appropriate, the noise correlation time induced
change of topology is a general effect which should

,. 4#. .be observable for an arbitrary pair of wells separated"4", '.-Z L// -- " ' ----- by a barrier.

It is clear that the effective activation energy cor-
-2 1 0 1 2 responding to the newly observed crossing points (x,

X E) and (-x, - E,) is different (though perhaps not
Fig. 2. Measured statistical densities p(, ) for D=0.4: (a) much different in this example) from the Arrhenius
r=O. 1. or quasi-white noise. with amplitudes 9700. 3400and 1100 factors modified for use at large values of r, for ex-
at tbe peaks, separamnx and lowest contour respectively. (b) r= 1.5 ample by the ansatz of Hanggi et al. as defined in ref.
where the crater has disappeared. The peak. separatrix and low- 8 ]. We conclude by pointing out that any theory for
est contour amplitudes are 54700, 470. and 430 respectively. (c)
r= 5.0 showing the crater (shaded area) and the off-axis pair of colored noise driven bistable potentials should be able

saddle points (double arrows). The amplitudes ofthe peaks, sad- to reprodu e the complexity of the stochastic dy-
dles and lowest contours in the bottom of the crater are 98700, namics in the two variable space (x. E).
I K and 20 respectivel%. The amplitudes are in arbitrary units.
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Switching events are studied by means of a parametrically operated, fast transition from a
monostable to a bistable potential In the continuous presence of colored noise. The problem is thus
the decay of an unstable state with random initial conditions. We calculate, using contemporary
colored-noise theory, and measure by analog simulation, the relaxation time to cross a reference
boundary, and we contrast this with the strictly defined mean first passage time.

I. INTRODUCTION which later decays into the induced bistable states.
The problem of the decay of an unstable state in the.

In this paper we study a switching process under the presence of white noise has been well studied by a variety
influence of noise which is common to a class of parame- of techniques. 6 7 Among the more familiar and useful
trically activated bistable systems. The system exhibits a methods for describing the onset of macroscopic order
single, or monomodal, state x 0 while inactive, but devel- are the time evolution of the variance (x 2 )(t ), the mean
ops a bimodal potential upon receipt of a parametric first passage time (MFPT), and the onset of bimodality in
switching signal. The bimodal potential is developed in a the probability density. The MFPT in recent years has
time which is short compared to the characteristic become a widely used tool for analyzing such stochastic
dynamical response time of the system. The initial state processes.8

x 0 thus becomes an unstable state at the instant when the Non-numerical colored noise theories are, however,
switching signal is received. This state is, however, per- necessarily approximate. This arises because of the extra
turbed by noise which drives the decay. After a relaxa- variable necessary to describe noise with nonzero correla-
tion time ( T), which we analyze and measure herein, the tion time. The Langevin equation and its analogous
system settles into one of the bistable states. Fokker-Planck (FP) equation are, consequently, at least

Such generic switching processes were first proposed two dimensional. Since the latter equation can be solved
by Landauer' as possible zero- or low-energy switches. exactly only in one dimension,9 recent years have
They have been used for quite some time as examples in witnessed a veritable explosion of approximative
discussions on the minimum energy dissipation necessary schemes,10- 17 all of which seek to reduce the FP equation
for measurement and for information transmission and to an "equivalent" one-dimensional form, and an increas-
computation. 2 In view of this interest and of the funda- ingly vigorous debate regarding their accuracy and appli-
mental importance of the switching process itself, it is cability. 14 17- 19 With the exception of Refs. 12 and 14 all
relevant to study the dynamics of switching in the pres- of these are adaptations of, or improvements on, an ap-
ence of noise, which is inescapable in macroscopic sys- proximation originally put forth by Stratonovich 20 ' 21

tems. based on expansions valid for small correlation times.
The first theory and measurements on such noisy How accurate they are for a given correlation time de-

switching events induced by linearly swept parameters pends on the application and often the noise intensity as
and their remarkable noise-averaging properties were well. Here we present measurements for r as large as
carried out by Kondepudi et al.3 Noisy switching events -= 5 for which both one- and two-dimensional stationary
in lasers have been studied experimentally by Zhu et probability densities have been studied. 9 12 22

at.4a" and analytically by Broggi et al.4 b' and later simu- In this work the nonsmall noise color introduces
lated with analog circuits.5 However, all of these studies difficulties at two levels. In order to calculate the station-
were of switching events induced by variations of the pa- ary mean-square fluctuation intensity in the initial state,
rameters on time scales comparable to the characteristic we will use a simple linearization which is expected to be
dynamical response time of the system. By contrast in accurate for small noise intensities. More detailed
the present study the switch parameter is operated by a theories such as those cited above could be used instead,
step function at time t = 0, thus preparing an initial state but the linear theory is sufficiently accurate for the

38 4690 @1988 The American Physical Society
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initial-state calculations. We then analyze the transient x2
relaxation toward the stable state using colored-noise "-
modified Suzuki scaling6 following a recent theory. 23  Xt)
These results are then compared to measurements made
on an analog simulator of an example switch. 1

We find that the relaxation time is a decreasing loga- --fdt Vn(ttn )  + A
rithmic function of the noise intensity, results that, for
white noise, were anticipated much earlier.6"24 - 31 In-
creasing the noise correlation time increases the relaxa- +
tion time but does not have a large effect. A

This paper is organized as follows. In Sec. II the 1+xZJ
theory is developed following Refs. 12 and 23. In Sec. III FIG. 2. The circuit diagram of the electronic simulator. The
the simulator, its operation, and the measurement tech- multipliers and the divider are standard chips available from
niques are described. The results are presented in Sec. IV Analog Devices, Norwood, Mass.
and compared to the calculations. Conclusions and a dis-
cussion are presented in Sec. V. long to establish stationary statistical conditions, the sys-

II. THEORY tem is switched at t=0 so that A(t)= A > I for all t >0.
The control parameter is thus a step function.

First we consider the stationary dynamics in a single- We first consider the initial state for which stationary
well potential, i.e., before the control-parameter-induced conditions are assumed. In order to proceed it is neces-
switching event. The potential is given by sary to obtain the stationary probability density. In fact,

I[2 2 we will only need the second moment (x 2)"=(X2(

U(x)- [x2 _ A ln( 1+x)] ,(Ia) of the stationary initial distribution. Since both the ex-

and the forcing is periment and the theory to be used later are restricted to
small values of D, linearized theory will be sufficient for

f(x)=x[--l+A(t)/(l+x 2 )], (lb) calculating (X2(r)). We begin with the following FP

where A (t) is the control parameter. As shown in Fig. 1, equation, valid for small D:

the potential is monostable for A <1 and bistable for aP(x,4,t) =a [A I+
A > 1. Moreover, the width of the monostable potential at ax
depends upon I A j. Our model is determined by the
Langevin equation 4- p(x, ,t)

= f(x) + (t ), (2a)
I D a'

where (t) is an exponentially correlated, Gaussian noise +-at(3)
source with zero mean:

In the steady state, the equations for the moments read( (t )gs )=(D /exp( - It-s I /), (2b)

(I A0 +l)(xg(1)-(x)=0, (4)
where D is the noise intensity and r is the noise correla-

tion time. The system is prepared in the monostable ini- ( A 0 +I+,r-)(x )- ( 2 )=0 , (5)
tial state by setting A (t)= A 0 < 1, for which the deter- D
ministic solution x0 =0, is globally stable. After having (0)1+ (6)
been prepared in this initial state for a time sufficiently 7

11.0

2.0
A= -1.38 0.aA=2/

1.0 A=3

0-0.
1.0-

X FIG. 3. Example trajectories measured for A 0 -1. 38 and
FIG. 1. The potential, showing a monostable initial state for A =2 for D =0. 1 and r =1.0. The bistable potential is switched

A 0 = - 1.38 and the switched bistable states at the values of A at t =0. The vertical scale is in volts with the potential minima
indicated, at ± 1.0 V. The horizontal scale is in ms.
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4

€I I 3

1 5 10

T 0
T 0--6 0-5 0-4. 0-3 102 1- 1 0

FIG. 4. Examples of the probability density of the relaxation 10 10 10 10 16-1 100 100
time from which the (T) were obtained for 7r= 1.0, A =2.0, D (V2 )
A,) =- 1. 38, and, reading from left to right, D I = 11.7 x 10- 3

V.) =.. s; d,=0.20XI' r n o f i, (T=. ms;~ and FIG. 6. (T) in msvsDinV 2 for Ao=-.38and A=3.0.
The values of" rare 0.1, 0; 0.5, X; 1.0, 0; and 4.9, 0. The solid

D, =2.56x 10 - ' V2, (T) =6.6. The horizontal scale is in ms. lines are fits to the data.

from which we conclude that noise is continuously present, as it is in all real switches.

(X ) ) = D( I + IA 1 +  !-( I A 0  1 + O(D 2) . In fact it is possible that the instant the unstable state is
born, the trajectory x 0 (t=0) could already exceed the

(7) reference boundry XR. For small D, however, in the
This describes the stationary dynamics before the switch- range where both the theory and the simulation are accu-
in event takes place. rate, such events are extremely rare.

in eThe time for decay from an unstable state has been
For t=0, the system is switched to a bistable state as studied by many authors. 6 26 31 As shown first by Kubo

shown in Fig. I for A > 0, and the state at x =0 is ren- et al.,26 the relaxation time exhibits a logarithmic depen-
dered locally unstable. Since the switching event takes dence on the noise intensity. Very recently, Suzuki's scal-
place in a time very short compared to all other time ing theory6 31 has been generalized to include colored
scales in the problem, the decay is driven by the noise dy- noise,23 with the result
namics described by Eqs. (6) and (7) toward the two local-
ly stable states x, = ±VA - I created at t =0. (T) = -(I /2a)In(Cl (x0+D[a(1+a)' ) , (8)

The simulation. dcscribed in Sec. III, measures the
residence time T, for a random walker x(t) necessary to where a =f'(x =0+)= A -1, and where C is a constant
cross a reference value XR =x, /2 for the first time after that depends only on the parameters of the deterministic

the switch function is activated at t =0. The mean of this nonlinear flow f(x ), i.e., on A 0 and A, but not on D or r.

quantity (T) is a measure of the time scale on which the The theoretical value of C depends also on the detailed
system assumes macroscopic order and is closely related definition of the residence time, for example, as the time
to (but not identical with) the MFPT on the same inter- for the second moment (x 2 )(t) to relax to some refer-
val. The residence time is like a weighted MFPT wherein ence value xR, or the time required for P(x,t) to become
the distribution of initial conditions is a Gaussian whose bimodal, or the strictly defined MFPT, etc. But certainly
second moment is given by Eq. (7). By contrast, our C is of order unity so that InC is of order zero.

switch is more physically realistic in supposing that the

8

6 - 2 "

4--

2-

S0 0-6- 0 0- 02 1_-6 10-5 16-1. 16-1 1-2 1-1 100

0 (v2) 0 (v2)
FIG. 5. (T) in ms vs Din V2 for Ao=-1.38 and A =2.0. FIG. 7. (T) in ms vs Din V2 for Ao=-2.40 and A =4.0.

The values of 7 are 0.1, 0; 0.5, Y; 1.0, r; and 4.9, 0. The solid The values of r are 0.1, 0; 0.5, X; 1.0, 0; and 5.0, 0. The solid
lines are fits to the data and the dashed line is a predicted result lines are fits to the data. The dot-dashed and dashed lines are
for r = 0.5. theoretical predictions for 7 = 1.0 and 0. 1, respectively.
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TABLE I. Calculated and measured parameters for A0 = -1.38, A =2, and Bo= -0.03.

" m tChor m ept bthr(") b ,hcor(r)+Bo bexpt

4.9 1.15 1.11 0.80 0.77 0.77
1.0 1.15 1.14 0.23 0.20 0.20
0.5 1.15 1.13 0.08 0.05 0.10
0.1 1.15 1.12 -0.11 -0.14 0.02

In our experiment, the noise color enters Eq. (8) in two and Goltermann3 3 wide band (> 100 kHz), Gaussian
places: First, there is a colored-noise effect on the initial noise generator. In order to create colored noise, V, (t) is
state Po(x,-r) which leads to (x2( fl) as given by Eq. (7). passed through a linear, single pole filter with a transfer
Second, the dynamics of the decay is dependent on - as function H(=o) =I + (co-wr )21-1, where to is the radian
shown explicitly in Eq. (8). Both effects move ( T) in the frequency and -r, the noise correlation time. The charac-
same direction, i.e., increasing - results in increasing teristic response time of the simulator is established by
(T). the integrator time constant r i , as shown on Fig. 2. The

Observing that lnx =ln( l0)log,)x, we can recast these dimensionless noise correlation time, as it appears in the
results in the convenient form theory and in Eq. (2), is the ratio r=,r,/ri. When r<< 1,

the simulator perceives the noise as quasiwhite, whereas
r> 1 marks the colored-noise regime. With V,(t) (t),

where Eq. (2b) defines the noise intensity D =r( V,' ) for t =s.

InlO The mean-square noise voltage (V;I) is the measured
m= 2(A -1) (10a) quantity in our simulation which defines D. In this ex-

periment we always maintained D < 0.30, and the corre-

and lation time varied over the range 0. 1<r < 5.

B 0 = -m logoC-0, (10b) In the absence of noise, the discrepancies between the
deterministic steady states measured on the simulator are

so that b(r) describes the combined dependence of (T) smaller than ±2.5% when compared to the steady-state
on the noise correlation time: (i =0) solutions of Eqs. (1) and (2a). Measurements in

the presence of noise are, of course, subject to statistical
b(r) =- m log 0 1( I A 0 +)-[+( A 0 + )]- errors which can be reduced by increasing the number of

+(A- -[l+r(A--l)]- . (11) samples in a given average. In this experiment the sta-
tistical errors are estimated (from the repeatability) to be

These results can be accurate only in the range of small - +5%. The largest error, and the most difficult to
D. Indeed, we used linear theory to calculate (xo). quantify, is systematic and shows up in the quasiwhite
Furthermore, Suzuki scaling is expected to be accurate noise end of the range of r. This results from the limited
only for small D, but here the quantitative limit is not dynamic range and bandwidth of the simulator. For -
known. small, V, (t) is large, and an increasing number of its

In the following sections we describe an analog simula- large-amplitude excursions in the wings of the Gaussian
tion of Eqs. (1) and (2) for the range 0. 1 <,r< 5 and for are clipped as r is decreased. At r-=0. 1, this results in
10- 6 <D < 10 - 1. Since D =.( 2), as shown by Eq. (2b), discrepancies between our measured probability densities
the range of D corresponds to a range of noise voltage and white-noise solutions of the FP equation which, in
V, _= of somewhat less than three orders of magnitude, places, are as large as -20%. In this experiment, relaxa-
or about 10 mV to a few volts, which corresponds to the tion times are measured for which it is difficult to esti-
usable dynamic range of our analog simulators. mate the systematic errors at the small-r end.

In operation, a rectangular wave A (t, operating be-
III. ANALOG SIMULATION tween the voltages A 0 and A was applied to the divider

as shown in Fig. 2. The frequency of this wave was ad-
We have constructed a circuit model of Eqs. (1) and (2) justed so that in the state A 0 sufficient time was allowed

using by now quite standard techniques. 32 The schematic for the initial probability density of x to become station-
diagram of this simulator is shown on Fig. 2. ary (several hundred times -ri). The wave switches from

The noise voltage V (t), is obtained from a Wandell A 0 to A at t=0 and at the same time the data-analysis

TABLE II. Calculated and measured parameters for A- -1. 38, A = 3, and Bo = 0.07.

7 m theor me opt b tfhor(r) btheor() + B0  b expt

4.9 0.58 0.58 0.63 0.70 0.70
1.0 0.58 0.58 0.31 0.38 0.39
0.5 0.58 0.58 0.20 0.27 0.31
0.1 0.58 0.57 0.07 0.14 0.28
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TABLE III. Calculated and measured parameters for A0 = -2.4, A =4.0, and B0 =0. 16.

" m theor M XPt b thmr(") b Ihor( ,)+B0  b c'Pt

5.0 0.38 0.39 0.55 0.71 0.71
1.0 0.38 0.39 0.32 0.48 0.47
0.5 0.38 0.39 0.24 0.40 0.39
0.1 0.38 0.38 0.12 0.28 0.35

system, a Nicolet-Lab 80 computer and digitizer connect- siderably, the discrepancy at -r=0. I is decreased. Figure
ed to the circuit at x(t), was triggered. A time series of 7 and Table III show the results for Ao=-2.4 and
typically 2000K digitized points was then obtained, and A =4. On Fig. 7 we also show the theoretical result for
the time at which the trajectory first crossed the thresh- r= 1.0 as the dot-dashed line to be compared with the
old XR =x,/2 (x, =+VA - 1 are the deterministic open circles. The dashed line is the prediction for 7r=0. 1
steady states) was measured and stored. Ten example tra- and shows the largest disagreement with the measure-
jectories are shown in Fig. 3, where the threshold is ments (closed circles).
marked by arrows, and an example crossing time at T, is V. CONCLUSIONS AND DISCUSSION
shown. After a large number of such measurements (typ-
ically 104 ) the computer tabulates the mean-relaxation The agreement between the calculated and the mea-
time (T) and its density P(T). Three examples of the sured results in this work is satisfactory considering the
densities are shown in Fig. 4 for three values of D. As ex- approximations necessary to achieve a colored-noise
pected ( T) increases as D becomes smaller, theory. We emphasize further that the strictly colored-

noise contributions to the theory have two sources: theIV. RESULTS decay theory of Dhara and Menon 23 and the ansatz. 12

The results of our simulation are summarized on three The latter, which agrees with the linearization result in
graphs and compared to the theoretical predictions in Eq. (7), can be used to calculate the second moment of
three tables. Figure 5 shows our measured values of ( T) the initial, stationary (t <0) density, an application for
versus D for four values of i- as indicated by the different which it is known to be relatively accurate. The relative
symbols for A 0 = - 1.38 and A = 2.0 V. Each set of data importance of each of these contributions depends on A 0
were matched by least-squares fit to the equation and A as shown by the two terms in brackets in Eq. (11).

(T)=-m logo0D+b , (12) For small A 0 and large A, (x 2 ) dominates the decay
process and hence the ansatz is more important, while for

and the values mexpt and b ex p were extracted. These large A0 and small A the reverse is true, and the non-
were compared to the results predicted by Eqs. (9)-(0 1). linear decay process dominates. We conclude by pointing
As shown by Eq. (9) the entire colored-noise effect is out that colored-noise-driven decay of unstable states
represented by the constant b(). It is evident, however, should find applications in a variety of switching
that the non-color-dependent constant B0 is not negligi- scenarios most notably in laser dynamics and nonlinear
ble. We obtained a value for B o by matching the experi- optical bistability.
mental and theoretical results at r=4. 9 and 5 (where the
simulation is most accurate) and then compared the pre-
dicted and observed values in Table I, where the btheor(r) Two of us (F.M. and P.H.) are grateful to the Physics
and mtheor are calculated directly from Eqs. (10a) and Departments of the University of Lancaster, U. K. and
(11), and b e i" is to be compared with bther(-r)+B 0. The Limburg's University Centrum, Belgium for their hospi-
results are shown on Table I. The largest discrepancies tality during which part of this work was carried out.
are for r=0. 5 and 0.1 as expected. Even so, on the loga- We are pleased to acknowledge stimulating discussions
rithmic scale of Fig. 5 the difference between Eq. (9) using with F. T. Arecchi, E. Arimondo, W. Ebeling, L. A. Lu-
the theoretical values and the data are small, as shown by giato, P. Mandel, F. Marchesoni, L. Narducci, H. Risk-
the dashed line which is to be compared to the crosses en, R. Roy, J. M. Sancho, M. San Miguel, and J.
r=0. 5). The solid lines through the data for -=0. 1 and Tredicce. This work was supported in part by the British
,r=4.9 are example plots of the results of the least- Science and Engineering Research Council, the Belgian
squares fits of the data to Eq. (12). National Foundation for Scientific Research, NATO

Figure 6 and Table II show the results for A 0 = - 1.38 Grant No. RG. 85/0770, and the U. S. Office of Naval
and A = 3.0. It is evident that while B0 has changed con- Research Grant No. N00014-88-K-0084.
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Comment on Stochastic Resonance
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ABSTRACT

A recent and interesting experimental paper [B. McNamara. K. Wiesenfeld and

R. Roy. Phys. Rev. Lett. 60. 2626 (1988)] has refocused attention on the problem of

stochastic resonance by presenting measurements of the signal-to-noise ratio (SNR) of

a noise driven, periodically modulated bistable ring laser. We point out that the theo-

retical SNR, as defined in this and a previous work, is always infinity, because addi-

tive modulation leads to a delta function in the power spectrum of the output. Quan-

titative information on stochastic resonance is contained in the strength of this delta

function relative to the noise background. We qualitatively reproduce the SNR data

with an analog simulator using a standard quartic bistable potential. In this, as in

previous experiments and simulations, a peak in the observed power spectrum is a

reflection of the delta function, but the amplitude of the peak is rendered finite (and

hence measurable) only because of the finite resolution of the measurement system.

PACS numbers: 5.40. + j, 2.50. + s. 42.65.Pc



The phenomena of stochastic resonance was first investigated by Benzi, Sutera

and Vulpiani' and later suggested by C. Nicolis2 and by Benzi, Parisi, Sutera and

Vulpiani s as a possible explanation of the observed periodicity in the recurrence of

the ice ages. In this model, a pair of stable climate states separated by a barrier is

imagined. This bistable system is driven by noise resulting from random fluctuations

of the solar constant. Using reasonable climate models, it was demonstrated that such

fluctuations could trigger switching events between the two stable states on time

scales' which are in approximate agreement with the period of the observed recur-

rences (10s yrs)'. s. The switching events would, however, be uncorrelated random

occurrences in time. In order to explain the observed periodicity, a modulation of the

height of the barrier or of the alternate depths of the potential wells was introduced

into the model. The resulting switching events, while still randomly occurring, must

now be correlated with the periodic forcing since the switching probability is a

strong function of the well depth. In the climate models, the modulation is assumed

to result from a weak but periodic variation in the eccentricity of the earth's orbit

with period as 10 yrs. Digital simulations of the models show finite amplitude peaks

in the power spectra located at the modulation frequency 1,3 .

Several years ago, a physical realization of stochastic resonance was demon-

strated by Fauve and Heslot 6 using an electronic Schmidtt trigger as a bistable

system. They modulated periodically the depths of the potential wells, which repre-

sent the two stable states of the switch, alternately and simultaneously applied addi-

tive white noise. The measured power spectrum of this system displayed a sharp

peak at the modulation frequency superimposed on a slowly varying continuum noise

background of Lorentzian line shape. These authors defined the signal-to-noise ratio

(SNR) as the (measured) amplitude of the peak relative to the (measured) noise back-
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ground. They observed that the SNR passed through a maximum as the noise inten-

sity D was increased from zero, and that at the maximum the value D - Do could be

associated with the period T of the modulating function by a Kramer's characteristic

time (see also Ref. 2), T = T ex exp(Au/Do), where AU is the unmodulated barrier

height.

Very recently, McNamara, Wiesenfeld and Roy have observed this phenomenon

using a bidirectional ring laser as the bistable system7 . Using an intracavity acousto-

optic modulator, they were able to induce changes in the direction of the lasing by

controlling the acoustic frequency. Representing the two directions as the stable states

separated by a barrier, it was possible to modulate the height of the barrier and to

introduce external noise as well by modulating the acoustic frequency. These authors

have observed the same phenomenology as those of Ref. 6. In particular, they have

observed a sharp peak in the power spectrum of the laser intensity (measured in one

dir-ction) superimposed on a broadband noise background spectrim. In order to

obtain the SNR, they measured the amplitude of the peak and that of the noise back-

ground at the modulation frequency. Measurements of the SNR versus the noise in-

tensity in this experiment demonstrated the characteristic maximum, though the

Kramer's time was not obtained.

In this Comment, we point out, based on physical arguments, that the power

spectra of all such systems regardless of the details of the model, but additively mod-

ulated by a single frequency must contain delta functions. Noise in the system does

not alter this so long as the noise does not multiply the amplitude of the periodic

modulation. By contrast, experimental measurements of the power spectra or digital

simulations of models, both obtained from Fourier transforms of time series made at

finite resolution, show non-infinite amplitude peaks. The amplitudes so obtained ref-
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lect both the strength of the singularity, which contains all the information about sto-

chastic resonance, and the finite resolution of the Fourier transform technique used.

The latter is an entirely instrumental effect which also determines the observed line

shape. Results obtained by measurements of the amplitudes only of the peaks in the

power spectra can therefore only be qualitative in the absence of the details of the

line shape'. This appears to have escaped notice not only in the recent experiments6.

but also in the previous digital simulations'.

For the purposes of discussion, we consider two models represented by the fol-

lowing Langevin equations:

i - ax - x1 + ecoswot + t(t), e < (4as/27)1/2, (1)

and

- a(t)x - x3 + (t), a(t) - 2(1 + ecoswt)1/2, E < 1, (2)

which represent an infinitely damped system moving in the standard quartic potential,

U(x) - -(a/2)x2 + (1/4)x 4, (3)

modulated at the frequency w and driven by the additive noise J(t). Equation (1) rep-

resents additive modulation and additive noise. In this case, the modulation raises and

lowers the depth of each well alternately on alternate half cycles. Equation (2) rep-

resents the case of multiplicative modulation and additive noise9 . In this case, the

height of the potential barrier AU - (I/4)a2 is modulated about an average value of

1. The limits on c insure that the barrier never vanishes. (In the simulation discussed
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below, most of the data were taken for a - (2)1/2 and c - 0.4).

As Eckmann and Thomas have pointed out, calculations of the statistical proper-

ties of such time modulated bistable systems are by no means trivial 0 . in the first

instance because they are nonlinear, and in the second because they are not station-

ary. Nevertheless, some general remarks can be made. Considering Eq. (1). whatever

the Fourier transform of x(t) may be, we note that the modulation term. ecoswt, stands

alone and therefore will necessarily contribute a delta function at co to the transform

and hence to the power spectrum. In Eq. (2), or in other versions where the modula-

tion may multiply more highly nonlinear terms, the situation becomes more compli-

cated because x(t) itself is a stochastic function. The Fourier transform can, in princi-

ple, be broadened into a continuum which may be repeated at harmonics of the mod-

ulation frequency. In the simulation of Eq. (2) described below, however, the meas-

ured line shapes are as sharp as or sharper than those observed in the simulation of

Eq. (1). In either case is the line shape observed to be continuously broadened

either by the noise or by the dynamics (see Ref. 9). Theoretical results recently obta-

ined by Fox predict Lorentzian line shapes even for Eq. (1)". By contrast, a general-

ized two state model put forth by McNamara and Wiesenfeld predicts delta functions

in the power spectrum.1 2

The climate models' - ' are based on a Langevin equation of the type of Eq. (2).

The Schmidtt trigger6 obeys an equation of the type of Eq. (1). An accurate model

for the laser is more difficult for two reasons. First, the laser is a multidimensional

system, and even with appropriate adiabatic eliminations probably cannot be ade-

quately represented by any less than two coupled Langevin equations. Second, the

details of the bistable potential actually introduced by the AOM are not well under-

stood". Nevertheless, the modulation and the noise must enter the experimental sys-
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tems phenomenologically either as additive or multiplicative terms or some combina-

tion of the two. We believe that the generic systems represented by Eqs. (1) and (2)

above will thus reproduce the phenomenology observed in the experimental systems.
0

In order to illustrate these remarks, we have built analog simulators of Eqs. (1)

and (2) following well developed techniques"4 . The modulation frequency was always

set at f - wi21 - 500 Hz, and the modulation amplitude was always e - 0.4. An

example measured time series x(t), obtained from the simulator of Eq. (1) is shown in

Fig. I (a). The time scale is delineated by the plot of the 500 Hz modulation shown

in Fig. I (b). The switching events occur randomly in time and, in this example, on a

somewhat longer time scale than the modulation period. They are, however, correlated

with the modulation as shown by the sharp peak at exactly 500 Hz in the measured

power spectrum shown in Fig. 1 (c). Figure 1 (d) shows a power spectrum obtained

from a simulator of Eq. (2). It is very similar except that a small peak appears at the

second harmonic of the modulation frequency. These power spectra are qualitatively

very similar to the ones published by Fauve and Heslot6 and by McNamara, et. al.7

in the sense that very sharp peaks are observed superimposed on a broadband noise

background.

The power spectra were measured in the following way: First 2048 points of

time domain data x(t) were digitized with 12 bit accuracy, each point separated from

its neighbors by 300 ps. The magnitude of the square of the Fourier transform was

then computed and compressed into 1024 points. The final power spectrum was obta-

ined by averaging a number of samples (usually 200) of the individual spectra. In

every case, the peak at the modulation frequency was only a few points wide, and

the measured amplitude of the peak depended upon which individual point was

chosen as "the maximum". Increasing the frequency resolution by increasing the sep-
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aration time between digitized points resulted in narrower, higher amplitude peaks

and the reverse was also true though we explored a range of only a factor of two in

separation time.

Using the definition adopted in Refs. 6 and 7 (the ratio of the amplitudes of the

peaks to the background noise power density) we have measured the SNR as a func-

tion of- noise intensity D = T< 2 >, where T is the noise correlation time15 , for the sim-

ulator of Eq. (1). The data are shown by the experimental points in Fig. 2 and are

self consistent, since all points were measured with the same instrumental resolution.

However, it is important to realize that lacking a quantitatively measure of the effect

of this resolution, i.e. lacking detailed knowledge of the line shape, the vertical scale

in Fig. 2 has no quantitative meaning. The error bars shown in Fig. 2 require dis-

cussion. They were assigned by making repeatability measurements as well as by

testing the results of repositioning the cursors presumably located at the maximum of

the peak and near the base of the peak at a place which we hoped would represent

the "average" noise power density. The largest amount of scatter by far was incurred

with the repeatability measurements. The reason is that the modulation peaks are

only a few points wide, so that small variabilities from sample-to-sample in, for

example the signal generator (modulation) frequency, resulted in large variations in

the peak amplitudes as the modulation power density happened to be shared among a

few or several "bins" as the Fourier transform was processed. We suggest that the

comparably large error bars in the ring laser experiment7 might have derived from

the same variability.

In their original paper, McNamara, et al' outlined a theory which has now been

written up in detail 2 . We quote here only the result:



-7-

S/N - (c/D 2)exp(-2AU/D). (4)

where S/N is the power density amplitude ratio and c is some constant. Following

the usual definition, the SNR in decibels (db) is given by SNR - lOlog(S/N). As did

the authors of Ref. 7, we have found it necessary to add an offset value Do - 0.032

v2/Hz to all values of D applied to the simulator in order to fit the data with Eq. (4).

Presumably, this represents the effect of the internal circuit noise. For c - 60.8 and

AU - 0.5 the theory is represented by the curve shown in Fig. 2 which is qualita-

tively comparable to that obtained in the Schmidtt trigger and ring laser experiments.

We conclude by emphasizing that ideally the power spectra of stochastic reso-

nance systems with additive modulation contain delta functions which are rendered

into measurable peaks by experimental systems with finite frequency resolution.

Quantitative measurements of the SNR of such systems can be obtained by introduc-

ing the details of the instrumentally broadened line shape, or alternatively by integ-

rating the measured power spectra thus transforming the peaks into steps whose amp-

litudes are independent of the line shapes.

We are grateful to Kurt Wiesenfeld for a valuable discussion. Thanks are also

due to Peter Hanggi for remarks concerning the Four'er transforms of modulated sys-

tems. This work was supported by the Office of Naval Research grant no.

N00014-88-K-0084.
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FIGURE CAPTIONS

Fig. 1. Example results of the analog simulation. (a) A time series for Eq. (1) with a

- (2)1/2. D - 0.20 v2 -/Hz. and r - 0.20. (b) The 500 Hz modulation which also estab-

lishes the time scale for (a) with c - 0.4. (c) An example power spectrum which is

the result of 200 averages computed from individual time series obtained for the con-

ditions stated in (a) and (b). The sharp peak at 500 Hz establishes the frequency

scale. (d) A power spectrum obtained for the same conditions as listed in (a) except

from the simulator of Eq. (2). and only -100 averages were accumulated.

Fig. 2. The measured SNR versus Dl/2 from the simulator of Eq. (1) with a - (2)1/2

(which implies that AU - 0.5), T - 0.20 and the modulation as in Fig. I (b). For a

discussion of the error bars, see the text. The curve is Eq. (4) with c - 60.8 and AU

- 0.5.
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Analog simulation of a simple system with state dependent diffusion
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ARSTRACT

We have constructed an electronic simulator of a simple histahle system

driven by noise, whose intensity is determined by the instantaneous value of

the coordinate. We observe that the most probahle state of the system can be

reversed by altering the noise intensity only in the neighborhood of the

barrier: an effect pointed out by Landauer many years ago in the context of

discussions on entropy related stability criteria for nonequllibrium systems.

We compare detailed measurements on the system with the recent white noise

calculations of Landauer and van Kampen. The system also has interesting

possibilities for tests of contemporary colored noise theory which we

illustrate with an example.

PACS 05.40.+j
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I. Introduction

Many years ago Landauer raised a discussion on the implications of state

dependent diffusion in the context of entropy generation and stahility in

nonequilibrium systems.1 His point was that the relative stability of a

multistable system could he altered by path dependent diffusion even when

localized to the neighborhoods of the potential barriers separating the

deterministically stable or metastable modes. That is, the most probable

state of such a system cannot be determined from information about the local

minima alone. Later it was observed that in certain models, state dependent

diffusion can even generate maxima in the probability distrihution at

locations where no potential minima exist.2 These early studies gave rise to

wide discussions which continue to be of current interest.
3

The more general problem of diffusion in inhomogeneous media has recently

been carefully analyzed by van Kampen.4 State dependent diffusion which is

.periodic and commensurate with a spatially periodic potential can give rise to

continuous currents in the absence of externally applied fields. Such systems

have recently been treated by Buttiker5 and van Kampen6 as well as Landauer.7

In this paper we consider the simplest model for state dependent

diffision in a bistable system as originally suggested.1 We take the standard

quartic as the potential

V(x) - - x2/2 + x4/4 + ex, (1a)

with the dynamics being determined by the infinitely damped system

= x - x3 + g(x)&(t) - e, (lb)

where &(t) is a Gaussian, white noise with zero mean and correlation

<&(t)&(s)>= 2Dn6(t-s); and where g(x) is defined by

g(x) = 1, for x < 0 or x > 1/2

g(x) = 1 + A, for 0 4 x 1 1/2. (2)

2



The noise intensity is On and e controls the symmetry of the potential wells.

This specific system has recently been analyzed by both van Kampen,6 who, in a

notably clear tutorial, derived the probability densities from thermodynamic

arguments as well as from the diffusion equation, and by Landauer.
7

The effect of the reversal of stability in this bistable system due to an

increased temperature (larger D) in the neighborhood of the barrier is

illustrated in Fig. 1. Though the illustration is schematic, the graphs are

quantitative. On the left is shown U(x) as given by Eq. (la) with C = 05.

On the right are shown the probability densities as measured on the simulator

described in Section III below for increasing values of A. The effect of A in

reversing the most probable state is clearly evident.

This paper is organized as follows: In Section II the theory is briefly

reviewed. Expressions for the ratio of the amplitudes of the stationary

probability densities in the two wells and for the magnitudes of the discon-

tinuities at the locations where the noise intensity is discontinuously changed

are summarized. In Section III the simulator and the methods of measurement

are described. The main results are presented in Section IV where measurements

of the amplitude ratio of the probability density and the magnitudes of the

discontinuities are compared to the theory of Refs. 6 and 7. In Section V we

examine the colored noise problem and the possibility that this system could he

of use in the testing of contemporary colored noise theory. As examples, data

on the amplitude ratios are compared to the predictions of the conventional

small correlation time theory, as recently improved by Fox,8 and to Hanggi's

ansatz.9 The advantage of this system is that the results depend only on the

ratios of probability densities, so that the correlation time dependent

prefactors which often appear in various forms in colored noise approximate

theories cancel out, revealing the exponential behavior alone.

3



This could be a considerable advantage, since it is often difficult or

impossible to clearly distinguish between the influence of the prefactors and

exponentials using numerical, matrix continued fraction or analog simulations.

A vigorous discussion on the merits and accuracy of various colored noise

approximate theories is currently in progress.1 0 ,11 Finally in Section VI we

summarize our results.

II. Theory

We consider the symmetric potential defined by Eq. (la) with C = 0 and as

shown in Fig (2b). Following Landauer's notation,7 the left hand well is

located at A (x = -1), the barrier at B (x = 0), the region of increased noise

intensity between B and C (x = 1/2) and the right hand well at D (x = 1).

It is necessary to first consider what happens at a temperature (or noise

intensity) discontinuity. For stationary conditions the probability currents

across the discontinuity at B, for example, can be written p(B-)v(B-) =

p(B+)v(B+), where p is the probability density and v is the velocity of a

particle in thermal equilibrium at temperature T just to the left of the

discontinuity (R-) or just to the right (B+). The velocity is v V T,

so that p(B+)/p(B- ) = (TL/TH)l/ 2 , where TL is the (lower) temperature outside

the region BC and TH is the (higher) temperature inside BC. We identify the

temperature with the diffusion or noise intensity through nn = pkT, and since

we consider only homogeneous media we take p = const. = 1. The ratios are thus

p(B+)/p(B ") - p(Ci)/p(C + ) = (OnL/nnH)1/ 2. (3)

Landauer then argues that the densities within the regions are given by

th- Boltzmann distribution exp(-U(x)/Dn). In addition to Eq. (3), the ratios

are p(B')/p(A) = exp[-(IJB-UA)/nnL]; p(C.)/p(B + ) = expC-(UC-I1B)/nnH]; and

p(D)/p(C+ ) - exp[-(UD-Uc)/DnL]. These probabilities are then multiplied

together, whereupon the ratios given by Eq. (3) cancel, and the result is

4



p(D)/p(A) = expE-(Uo-UA)/DnL] exp:-AU(DnL-DnH)/DnLnnH], (4)

where AU = UC - UB. van Kampen6 obtains the same result for the amplitude

ratio at the wells, but he predicts that for ratio at the discontinuities

p(B+)/p(B ") = p(C-)/p(C+ ) = DnL/DnH (5)

instead of Eq. (3). In this work, we consider only the symmetric (C = 0)

potential. With UA = UD, Eq. (4) becomes

p(D)/p(A) = exp[-AI(DnL-DnH)/DnLDnH]. (6)

IIl. The Simulator

Figure 2(a) shows a schematic diagram of the simulator of Eqs. (1) and

(2). The design is straight-forward and one which we have used before 9,12

with the exception of the added system for generating g(x). This is shown by

the two comparitors which continuously test the voltage on x and compare it to

the preset values xo and xl which mark the boundries.of the region of

increased noise intensity. Each time the trajectory crosses one of the

boundries an output is applied to the AND gate shown. This gate, in turn, and

the adder which follows it, provide a suitable voltage Vg, to a multiplier

whose other input is the noise voltage Vn . The logic is arranged in such a

way that Vg = 1 + A when xo cx(t) € xl , and V9 = 1 when x(t) is outside this

range, or Vg = g(x). The noise voltage 4(t) which drives the trajectory in

the bistable potential is then defined by

&(t,x) = g(x)Vn(t) , (7)

with g(x) defined by Eqs. (2).

The noise voltage is supplied by a noise generator13 of wide hut finite

bandwidth, and is therefore necessarily colored. In order to define its

correlation time n precisely, it is passed through a linear, single pole

filter with transfer function H(w) - 1/[l + (w'cn) 21. The simulator scales

5



time with the integrator time constant Ti, so that the dimensionless

correlation time is T = n/'i, and the correlation function Of Vn is

<Vn(t)Vn(s)> = (Dn/T)exp(-It - sl/) ( )

In the limit t + s, the noise intensity is defined by

Dn = r < Vn2 >, " (9)

and the mean square noise voltage is a measured quantity. In this simulation

Tri = 100 ps and the range of Tn was 20 ps to 500 ps (the range of T was then

0.?0 to 5). For comparison with the white noise theories, however, we set the

value = 0.20. Equations (2), (7) and (9) then give for the noise intensities

DnL T < Vn2 >

DnH = < 2 > (I + A)2, (10)

Figure 2(b) shows the potential of Eq. (1a) with e = 0. The region RC of

enhanced noise intensity is shown by the darkened segment which lies hetween

x0 = 0 and xl = 1/2. The potentials shown in Eq. (4) are then given hy UA =

- 1/4, UB = 0, I1c = 7/64 and I'D = 1/4, as determined hy .q. (1a) with e = 0.

The theoretical prediction for the amplitude ratio of the densities in the

wells, Eq. (4), then becomes

7 1
p(D)/p(A) - exp I - - [

64nnL [w')]. (11)

Using Eqs. (3), and (10) the predictions for the amplitude ratios at the

discontinuities are

1I(1 +A) (.12a)

p(B+)/p(B") = p(C-)/p(C + ) or

1/(I+A)2 (lb)

The simulator is operated by first setting A = n and hy adjusting c in

order to obtain a symmetric density p. Checks on this symmetry adjustment

were frequently made throughout the experiment. Figure 3 shows an example
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set of measured densities for increasing values of A commencing with the

symmetric density shown at the top. These densities were assembled as

averages from a sequence of time series x(t) of 4096 digitized points each.

Typically 800 such time series were obtained so that each density resulted

from about 3.2 x 106 digitized points. For each density, the amplitudes at

the two peaks and at the high and low sides of each discontinuity were

recorded.

IV. The results

Figure 4 shows the results of our measurements of the amplitude ratio in

the wells as a function of A for various values of Dn , The solid lines are

plots of Eq. (11) with DnL determined directly from T and measurements of <

Vn2 >. There are no adjustable constants. The agreement between Eq. (11) and

our measurements is excellent, but probably fortuitous, since the noise

driving our simulator is actually colored with T = 0.2, and the theory is

valid only for white noise. The region of quasi-white behavior of the

simulator is r << 1, but in practice the usable dynamic range of the analog

components imposes a lower limit of T - n. 1 to 0.2 for reliable operation

without voltage clipping. Nevertheless the systematic behavior with DnL and A

is convincing.

The scatter in the data points shown on Fig. 4 is the result of both

systematic and statistical errors. The ratio p(D)/p(A) is obtained from two

large numbers, each with a certain statistical error. The statistical scatter

was estimated from short term repeatability measurements, and is shown as the

example error bar on the DnL - 0.36 data. A more troublesome error stems from

longer term variations in < Vn2 > due to very low frequency drifts, or

systematic variations, in the noise generator. An attempt has been made to

estimate the maximal effects of this error, and is shown by the dashed curves

for DnL - 0.40 (upper curve) and nnL - 0.32 (lower curve).
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We have also measured the amplitudes of the density on hoth sides of the

discontinuities in order to find the ratios p(B+)/p(B ") and p(C-)/p(C+). Both

Refs. (6) and (7) make specific predictions for the behavior of these ratios

with A as shown by Eqs. (12). In Ref. (7) it is argued additionally that

whatever fhe functional dependence of the magnitude of the discontinuities on

A, it can be expected to be the same for both discontinuities, and therefore

will cancel in the result Eq. (11). Our measurements of these ratios are

shown on Fig. 5, where (a) and (b) display the results for a larger and a

smaller noise intensity respectively. The statistical errors on these data

are relatively larger, as can be judged from the scatter, because the

discontinuities occur at low amplitude on the density. The theoretical

predictions are shown by the curves: Ref. (7) and Eq. (12a) are the solid

curves, and Ref. (6) and Eq. (12b) are the dashed curves.

We remark that both theories predict the equality of the magnitudes of

the two discontinuities, and their independence on D. Certainly to within the

scatter of our data the measured magnitudes appear to he equal as shown hy the

solid circles (discontinuity at R, x = 0) and the open circles (discontinuity

at C, x = 1/2). Both sets of data seem to lie systematically higher than Eq.

(12a), a trend which seems more evident for large noise intensity.

Nevertheless, the systematics clearly favor Eq. (12a).

Certainly these results come as no surprise to anyone, since exact

solutions of white noise systems in the limit of large damping are very well

known. The quasi-white noise measurements shown here serve to indicate the

accuracy of our simulator.
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V. Colored Noise

Nearly all colored noise approximate theories begin with an effective

Fokker-Planck equation

p(X,t) = ---- [U'(x)p(x,t)] + 2- D(x)p(x,t), (13)at ax ax2

wherein the diffusion 0(x) - f(x, ), is intended to approximately account for

the nonzero point-to-point correlations over x which are induced by a

correlated driving force (the colored noise). rThe case wherein n(x) is the

result of an inhomogeneous medium has heen recently examined by van KampenAl.

The recent rapid growth of the theoretical colored noise industry" 'll has

resulted in a variety of expressions for the "renormalized" diffusion n(x,T).

For the purpose of example we choose here only two: the improved "small

.r" approximation of Fox 8 ,14 which reduces to the often cited result of Sancho,

et a11 5 in the limit of small r; and the ansatz due to Hanggi. 9 The Fox

results are obtained from Eq. (13) with

DF(x, ) = Doll + - U"(x)] l  , (14)

which results in the stationary density

pF(x) = (1 - r + 3x2.)exp[- UF(x, )/nol , (15a)

with UF(x, ) for our potential given by

UF(X, ) = - x?/2 + x4 /4 + z (x/2 - xA + x6/2) (15h)

Hanggi's results are obtained from Eq. (13) with

nH(x,T) = nol + T(3< x2 > - l)1l , (l)

where < x2 > is an average over the trajectories, and this D(x) is specific to

our potential. The density in this case is

PH(x) = N exp[-IJ(x)/DH(x,)] (17)

where U(x) is given by Eq. (la).
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As a zeroth order approximation, we can simply substitute these results

into the white noise formula for the ratio of the densities. This procedure

is based on the observation that, even though this is a system with state

dependent noise, the space is separated into three regions, within each of

which the noise intensity is constant. Nevertheless, to simply substitute

colored noise densities for the white ones neglects the effects (if any) of

correlations across the boundries. Our only justification for this procedure

is that our measurements of the amplitude ratios of the discontinuities, as

discussed below, show no systematic behavior with z to within our (not so

small) statistical errors.

Using Fqs. (15)-(17), results in the following predictions

1 7 9
p(D)/p(A)F = exp]()[1 + (18)

DnL (1 + A)2  64 128

for the Fox theory; and

p(D)/p(A)H = exp- 7( + 2) (19)
64DnL (1 + A

for the Hanggi theory. We note that the T dependent prefactors (if any) on

the densities cancel out in this application. Further, these two expressions

make qualitatively opposite predictions: Eq. (18) shows the ratio increasing

with r, while Eq. (19) shows it decreasing. Both show the same A dependence

(which is also the white noise 6 dependence).

Our measurements at fixed A = 1 are shown in Fig. 6 where the open

circles are for the large 0nL and the closed circles are for the small 0nL'

Equation (18) is shown by the dashed curve and Fq. (19) by the solid curve.

Both are plotted for DnL = 0.40 which is also the noise intensity for which

the solid circles were obtained. The lozenge on the vertical axis shows the

white noise limit for all theories and illustrates the difficulty in
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comparing our simulations with white noise results: the quasi-white noise

simulation was done for T = 0.2 but does not extrapolate well to the lozenge

shown on the axis at T = 0.

Finally, measurements of the amplitude ratios at the discontinuities

versus v for A = 1 are shown in Fig. 7. There is no discernible -C dependence

of these ratios.

VI. Summary and conclusions

We have measured stationary density amplitude ratios for a system with

state dependent noise applied in d of three discrete regions. The noise

intensity was changed discontinuously at the boundries of the inner region.

The measured results are in good agreement with the predictions of white noise

calculations due to Landauer and van Kampen. In addition, we have repeated

two sets of amplitude ratio measurements for a range of noise correlation

times, and compared the results to two current colored noise approximate

theories. While neither approximation accurately describes the data, the

ansatz of Ref. 9 is in better qualitative agreement.

We are grateful to R. Landauer and M. Ruttiker for stimulating

discussions and for suggesting this experiment. We are also indebted to R.

Fox, P. Hanggi and J. M. Sancho for various discussions. This work was

supported by the Office of Naval Research, Grant No. NOOOI4-88-K-00R4.
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FIGURE CAPTIONS

Fig. 1 Potentials from Eq. (1) with c = 0.05 are shown on the left and

measured densities on the right for A = 0, 0.45, and 1.3

top-to-bottom, showing the reversal of the most probable state.

Fig. 2 (a) A schematic diagram of the simulator, showing multipliers (x)

summers (±), comparitors (comp.) and an and circuit (ANw). (b) An

example of the potential utilized in the simulator with the region of

increased noise intensity RC shown in hold lines between xo = n and

xi = 1/2.

Fig. 3 Probability densities measured for values of A = 0, 0.5, 0.75, and

I.n top-to-bottom. The region of increased noise intensity RC is

clearly evident for A > 0.

Fig. 4 p(D)/p(A) versus A for values of rnL = 0.20 (squares), 0.36

(triangles), 0.60 (circles) and 1.6 (inverted triangles). The solid

lines are plots of Eq. (11). The dashed lines estimate the

systematic error in DnL.

Fig. 5 p(B+)/p(B ") (solid circles) and p(C-)/p(C+) (open circles) for (a)

DnL = 1.60 and (b) 0nL = 0.36. The solid line is Eq. (12a) and the

dashed line is Eq. (12b).

Fig. 6. The effect of colored noise is shown by this plot of p(D)/p(A) versus

- for A = 1. The open circles are for DnL = 1.6 and the solid

circles are for DnL = 0.40. The dashed curve is Eq. (18) and the

solid curve is Eq. (19), both for DnL = 0.40.

Fig. 7. The effect of noise color T on the discontinuities p(+)/p(R-)

(solid circles) and p(C')/p(C+) (open circles). The upper data set

is for nnL = 1.60 and the lower set for DnL = 0.40. All data are for
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ABSTRACT

We show via an approximate, analytical technique and an analog simulation of

the classical Langevin equation of a correlated, spontaneous emission laser (CEL) that

noise of non-zero correlation time leads to an enhancement in the characteristic CEL

noise quenching.
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The recognition that quantum noise determines the ultimate accuracy of active

interferometers in applications involving, for example, gravitational wave detection'- ' ,

or ring-laser gyroscopes4'5 , has stimulated the investigation of laser systems with

reduced spontaneous emission noise such as the correlated (spontaneous) emission

laser 6- 8 (CEL). In the CEL, the relative phase angle between two electromagnetic

waves Can be freed completely from the effects of spontaneous emission noise as a

result of the fact that this noise appears to the phase as a purely multiplicative

stochastic process 9 . The physics of noise quenching in the CEL has been discussed

in parts I and II of this series of papers' ° . Moreover, it has been shown that, in a

laser consisting of long-lived atoms, the quantum, i.e. the spontaneous emission.

noise is colored instead of white." An excellent discussion of both white and col-

ored (pump) noise effects in lasers has been provided recently 2 . In this brief note,

we demonstrate the purely classical quenching effect of colored, multiplicative noise

in a system with a periodic potential as has been shown to apply to the CEL. Such

effects have been previously studied theoretically for white, additive noise using con-

tinued fractions 3 and for white, multiplicative noise by approximate analytic tech-

niques"' .

We do not intend to present here a theory of the CEL with long-lived atomic

states, nor are we concerned with the intricacies of colored noise theory and the var-

ious approximation schemes associated therewith 4 as used to calculate approximate

Fokker-Planck equations (except as in Ref. 22). Rather, we focus on the influence of

noise color on the noise quenching effect as obtained from the classical Langevin

equation of the two-mode CEL. A similar equation also describes the phase of the
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electromagnetic field in a two-photon CEL 5 .

We pursue this study following two strategies: First, we perform an approxi-

mate analysis of the Langevin equation by linearization within a physically relevant

range of parameters. With the help of smne standard techniques of noise theory 2, we

find the (approximate) width of the steady stat, probability distribution, Po(O) for the

relative phase 0, to be reduced by a factor (I + 'r)-' compared to the white noise

case. Here, r is the noise correlation time and y - (b2 - a2)1/2, where b and a denote

the laser gain and the detuning between the two waves respectively. Thus the CEL

noise quenching is not only preserved in the case of colored noise but is even

enhanced. Moreover, the white noise results"0 for the noise induced drift <,6>. and

the noise induced asymmetry are both reduced by this factor. In the second

approach, we simulate the Langevin equation of the CEL with an electronic circuit

using a circuit and techniques similar to those previously described 6 .. The simulator

provides immediately the steady state distributions PO as shown by the examples in

Fig. 1, for a range of values of 7. We compare and contrast these distributions to

Gaussian approximations with first and second moments <A".2 >. We find qualitative

agreement between the measured and calculated results and, in particular, we are

able to confirm the predicted enhancement of the CEL noise quenching by color.

The natural extension of the CEL Langevin equation for the relative phase

difference between the two modes in the presence of Gaussian noise,

<e(t)c(s)> - (D/r)exp[-It - sl/t], (l)

of noise intensity D and correlation time r with zero mean,
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<E(t)> - 0, (2)

iso.17,18

- a + bsino + E(t)sino. (3)

For small noise intensity D/b << 1, and for small detuning IaI/b << 1. we can try the

ansatzo, 1
7

¢(t) ir + arcsin(a/b) + A(t), (4)

where IAI << 1. Thus Eq. (3) reduces to

L - -[7 + (7/b)c(t)]A - (a/b)e(t),

where -y was defined above in terms of a and b, and with the obvious solution

A(t) - Aoexp [.yt - - dt'e(t')b 1,
t t 1

a fdt'(texp-YI(t - tjf dt~e(t")j (5)

where AO - A(t-0). From Eq. (5) it is straight forward to evaluate the moments 20 (AJ)

for j - 1 and 2.
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With the help of Eqs (I) and (2) we can find the center-of-gravity, <0>, for the

stationary distribution, at

<0> 2 i + arcsin(a/b) + <A>

2! if + arcsin(a/b) + (1 + -t)-(a/b)(D/b). (6)

and the approximate width of P0 is governed by

0.2 = <02> <0>2 - (1 + ,')-1(a/b)2(D/-). (7)

The Gaussian,

Poapp (0) = (2n)-1/2cr- texp(2gi2)-I(O _ (0))2], (8)

with <0> and a given by Eqs. (6) and (7). thus represents the simplest approximation

to the exact distribution P., which we do not calculate here.

The noise source e(t) is multiplicative 9 and so gives rise to a noise-induced asym-

metry which manifests itself as a separation of the center-of-gravity of the right

hand peak of Po, given by Eq. (6), and the location of its maximum 22,

Omax 2 if + arcsin(a/b) - (I + r)-I(a/b)(D/b). (9)

This asymmetry is obviously not contained in the Gaussian approximation.
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From Eqs. (6). (7) and (9), we recognize that the noise color modifies the white

noise (r - 0) moments by the prefactor (1 + yr)-'. which signifies an enhancement of

the noise quenching characteristic of the CEL. We emphasize that this noise color

enhanced quenching is an entirely classical effect which may have applications to

other systems. Nor does the quenching stem from the multiplicative nature of the

noise in this particular application. For example, a similar result can easily be obta-

ined for the standard phase locked ring laser Langevin equation23.

S- a + bsino + c(t). (10)

For this case, following an analysis similar to the above results in an approximate

width for the stationary distribution in the phase locked region given by,

2+aring laser - (1 + ,j')-(D/b). (I1)

which shows that the width, for this simpler case of additive noise, is governed by

the same color prefactor.

The techniques for simulating periodic potentials with analog circuits have been

previously discussed1 6, and here we use the same approach except for the following

simple alterations: First, the hybrid analog-digital-analog system for producing the

spatially periodic force was replaced with an analog chip26 which accomplishes the

same task; and second, an additional multiplier was used to implement the multiplica-

tive noise. The voltages representing O(t) were digitized into time series of approxi-

mately four million points from which the stationary probability densities were

assembled. In contrast to the simulation of this same system with additive noise

described in Ref. 16, in the present case only the one-dimensional densities were
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measured. Our purpose is simply to demonstrate the phenomenon of noise quenching

and the noise color effects in this purely classical multiplicative system.

Figure 1 shows a set of three probability densities measured for values of T

ranging from 0.1 (quasi-white noise) to 10 (strongly colored noise). These densities are

consistentconsistant with the behavior predicted by Eqs. (6) and (9), which predict

that the effect of the multiplicative noise is to induce a T-dependent shift between

the center-of-gravity and the maxima of the peaks of P0 . This shift is, however,

quite small for small D and a where the theory should be accurate. For the values of

the parameters shown in the Figure caption, the T-dependent term in Eqs. (6) and (9),

(1 + fT) -y , is only a 0.12 for T - 0.1 and -5 0.013 for r - 10. These numbers must

be compared with ir and with the deterministic shift, arcsin(a/b), which is 0.52. On

the scale of our measurements, the predicted shift is just observable, but too small to

measure quantitatively. The quenching predicted by Eq. (7), a - 0.26 for r - 0.1 and

a a 0.09 for T - 10. is also clearly evident and in rough agreement with the widths

of the P. curves shown. Measurements for larger D (-5 I) and larger a (- 1, where

free running commences in the deterministic case) show exaggerations of all these

effects, however, the linearized theory cannot be expected to apply for these large

parameter values, and so we do not show those data.

Also evident in Figure 1 is the hint of a third maximum in P0 near ¢ - 0. This

is the location of a zero in the deterministic force. Furthermore this zero is a stable

fixed point. In the case of pure white, multiplicative noise, the diffusion approaches

zero, so that P. - 6(o - 0) at this point. This maximum is easily observed using the

simulator for small T and larger D values. The relative amplitude of this maximum is

observed to decrease with increasing values of 7, as the length scale of the noise cor-

related motions grows relative to the size of the deterministic basin of attraction
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around ¢ - 0.

In summary, we have estimated the magnitudes of the noise quenching and the

color induced shifts between the center-of-gravity and the maximum of a peak in the

density using an approximate, linear analysis which begins with the classical Lan-

gevin equation for the CEL. In addition, we have qualitatively observed in an elec-

tronic analog all the features forecast by the calculation.
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FIGURE CAPTION

Fig. 1. Three probability densities measured for D - 0.25, a - 0.5 and b - 1. The

values of T are shown on the curves. The vertical scale is in arbitrary units, how-

ever the curve for T - 10 has been ,educed in amplitude as shown.
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