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INTRODUCTION

The work presented herein was motivated by a collection of unusual strain

data acquired during a series of test firings of a 120-mm gun tube during the

latter part of 1985. During these tests, circumferential strains exceeding

three times those predicted by the customary Lame design formula (ref 1) were

recorded from the outer surface of this tube a few feet from the muzzle.

Subsequent inspection of the strain data showed that these strains increased

dramatically with projectile velocity and possessed an oscillatory waveform 'Aith

a frequency approaching 15 kHz.

It was soon discovered that the extremely large strains were caused by a

projectile velocity which was very close to critical. The existence of such a

critical velocity had been predicted in the literature at least thirty years ago

(refs 2-4), but to the best of our knowledge, no observations such as these have

been reported in the literature. In the following, the essence of the 'critical

velocity' theory of axisymmetric vibrations of a circular cylinder is reviewed

and the theory is extended to include the case of non-axially symmetric vibra-

tions which can be excited through coupling.

CRITICAL VELOCITY THEORY

This theory predicts a limit as to how fast the tube deformation--in the

immediate vicinity of the projectile--can be made to travel before some sort of

wave develops. An exaggerated view of this deformation when the projectile

velocity is low is shown in Figure 1. Under these 'quasi-static' conditions,

the deviation from the Lame-predicted deformation is less than 3 percent.

However, as the projectile velocity approaches a certain critical value, the

tube deformation in the neighborhood of the base of the projectile--that is, at

References are listed at the end of this report.
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the front of the moving pressure--grows dramatically. As with classical reso-

nance, the deformation is theoretically unbounded when the critical velocity is

reached unless damping is present.

LAME' DEFORMATION,
UNDE FORMED

=- PRESSURE -a

DEFORMATION OF BORE SURFACE

(STATIC)

Figure 1

The simplest equation containing the essential physics of the situation is

(ref 2)

D + El w + m aw = Q(1-H(x-vt))

0ax4 R2  t

where Q is a constant and represents the magnitude of the pressure which is

assumed to be moving at constant velocity v. H is the heaviside step function

H(x-vt) = 0 x < vt
=1 x > vt

In this equation, w is the radial displacement of a point on the median surface

of a cylindrical shell located at a distance x along, and R from, the central

axis; h is the shell thickness and is assumed to be small compared to R; m = ph

where p is the mass density of the shell material; D = Eh3/12(1-0z); E is
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Young's modulus of elasticity; v is Poisson's ratio; and v is the velocity of

the moving pressure, assumed to be finite and constant.

Conventionally, steady-state solutions to Eq. (1) are sought under the con-

ditions that the displacement remain bounded at x = w ® and that the stresses

and displacements be continuous at the location of the pressure front x = vt.

Usually, a change of variable from x to t is made where 4 = x-vt. Then the

moving pressure front (the projectile) is always at C = 0 and the partial dif-

ferential equation (Eq. (1)) becomes an ordinary differential equation which is

easily solved. In particular, these solutions have the form w = Ae±ikt and are

steady when seen by an observer moving with the pressure front at t = 0. k is

the wave number and, in general, is complex. Only when k is real does the

assumed form of the solution represent a wave. To find what waves can exist

naturally in the cylinder, one sets Q = 0, and substitutes the assumed solution

into Eq. (1). It is seen that real waves are possible for those values of k

which are the real roots of the equation

v(k) = k! 0 (1+( )(2
),k = k (2)

m k

where 4 = Eh and v is the phase velocity (real). A plot of these wave

numbers versus phase velocity is called a dispersion curve and is shown in Fig-

ure 2 (Cc a VE/p). This plot shows that waves with low wave number (long waves)

travel with phase velocities which decrease with wave number, while those with

high wave number (short waves) have phase velocities which increase with wave

number. This happens because of two competing restoring forces in Eq. (1). lhe

tube can deform as a cylindrical membrane in which case the second term of Eq.

(1) dominates the behavior, or the tube wall can undergo axisymmetric flexure in

which case the first term dominates. The fact that these two restoring forces

3
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compete to produce a minimum in the dispersion curve of Figure 2 is the impor-

tant part of the critical velocity theory.

1.5

V/Cc

5

V C i i v e I i i

k

Figure 2. Phase and group velocities--thin shell theory.

For the purpose of discussion, it can be considered axiomatic that if waves

are generated by a moving axisymmetric pressure Q, the phase velocity of these

waves will be the velocity of this moving pressure. That is, the load must be

in phase with the wave(s) it creates. With this in mind, Figure 2 shows that

such waves are possible provided the load velocity equals or exceeds the minimum

possible value. Let us assume for the moment that the load velocity (the pro-

jectile velocityj somewhat exceeds this minimum. According to Figure 2, there

are two waves with this phase velocity. Now, physically we know that the energy

contained in these two waves must radiate away, not toward, the source of the

disturbance, namely the moving pressure front. Further, it is known that energy

travels not at the phase velocity, but at another velocity called the 'group

velocity,' related to the phase velocity as follows:
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Vg(k) = k dv(k) + v(k) (3)

where v(k) is the phase velocity (dispersion curve) from Figure 2. A plot of

group velocity versus wave number is also shown in Figure 2 and provides a cri-

terion for deciding whether a given wave belongs in the region f > 0 or f < 0.

For example, the wave corresponding to the point p has a group velocity which is

smaller than its phase velocity. Since the wave energy must flow away, not

toward, the pressure front at 0 = , this wave belongs in the region t < 0 only,

i.e., it is a 'trailing wave.' Conversely, the wave corresponding to the point q

is a 'head wave,' belonging to the region t > 0. Assigning the two waves to

their appropriate regions results in the following solution for the midwall

displacement w(x,t) when the load velocity v is greater than the minimum phase

velocity of Figure 2

w (1) -b= b _a 2 cos at + t ; 4 0

w(2) -a 2

z 61-:--i cos b ;t ) 0

where

+L T y2 R 2

2 2 2 2 2-

and C = QR2/Eh approximates the Lam6 displacement. Note that for X >> 1, the

solution for x 4 vt approaches 2C, twice the Lam6 displacement.

It can easily be seen from Eq. (3) that should dv/dk ever vanish, the group

velocity and the phase velocity would be equal and energy could not radiate away

from the pressure front, but would continually build the deformation in the

neighborhood of the front as time progressed, i.e., resonance would result.

Thus, the minimum phase velocity of Figure 2 is indeed a 'critical velocity' and

it is the near attainment of this velocity which caused the high strains in the

120-mm gun tube.
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Finally, if the velocity of the moving pressure is less than the minimum

possible for wave formation, the wave number k is complex and the solution to

Eq. (1) has the form of a damped harmonic

wM1 edt d2 c2w(1) -- (-cos ct + 2 c sin cf) + 1 ; 4 0

(5)
w(2) e-dt d2 -ct

S 6 --- (cos ct + d sin c) C 4 0

where

A+1 1l-A
C= and d2 2

A REFINED MODEL FOR THE 120-MM GUN TUBE

From the standpoint of gun tube design, it is important to be able to pre-

dict critical velocities as accurately as possible and to be able to predict the

steady-state deformation at any velocity of the pressure front. Thus, it is

necessary to use a model which is not restricted to cylinders with thin walls.

Axisymmetric equations of motion for thick-walled cylinders have been derived by

Mirsky and Herrmann (ref 5) and are considerably more complicated than Eq. (1).

They are used to obtain the results which follow in much the same way as

discussed previously. These equations and the details leading to their solution

have been reported by the author (ref 6).

Although transient effects, boundary reflections, non-uniformity of wall

thickness, and variable pressure (projectile) velocity are ignored, steady-state

calculations for thick-walled cylinders nevertheless produce results in

remarkable agreement with measured values when the projectile velocity is close

to critical. (The assumption of constant projectile velocity is justified in

the forward regions of many gun tubes where the projectile velocity/travel curve

is relatively flat.) Figures 3 and 4 compare predicted and measured values of
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--.-- measured

predicted

C6

IIi

L.7

-2

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

time from projectile passage - msec

Figure 3. Comparison of measured and predicted circumferential strains
located at the pressure front.
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Figure 4. Comparison of measured and predicted circumferential strains
located at the pressure front.



circumferential strain. Figure 3 shows the tube deformation in the neighborhood

of the projectile and Figure 4 shows the maximum strain as a function of projec-

tile velocity. The strains have been normalized with respect to the static

values predicted by the Lam6 formula. The disagreement between the measured and

predicted strains at low velocities may be partly due to transient deformation

and non-axially symmetric deformation induced through coupling. Neither of

these is accounted for in the preceding axisymmetric steady-state theory. The

latter is the main subject of this report.

AXISYMMETRIC AND NON-AXIALLY SYMMETRIC WAVE COUPLING

In addition to the axisymmetric equations mentioned in the last section,

Mirsky and Herrmann (ref 7) have also derived a set of five equations governing

both axisymmetric and non-axially symmetric motions of a uniform hollow

cylinder. Gazis (ref 8) has gone a step further, accomplishing the same using

the more accurate three-dimensional equations of elasticity. These investiga-

tors have computed the dispersion curves for several of these modes. Viewed in

the context of critical velocity theory, it is interesting that the dispersion

curves of the first non-axially symmetric mode and the previously considered

axisymmetric mode have minimum values in close proximity to one another. This

is shown in Figure 5. Both curves were constructed using the equations of

Mirsky and Herrmann. The ordinate values have been normalized with respect to

the velocity of shear waves in the material, Cs = VG/p, where G is the shear

modulus of the material. The abscissa is the non-dimensional wave number h/L,

where L is the wave length. The non-axially symmetric mode referred to in the

figure corresponds to a beamlike deformation of the axis of the cylinder. Since

the moving pressure is perfectly axisymmetric, the only means for exciting real

waves of this type, in par icular the resonance indicated by the minimum, is by
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some sort of coupling whereby energy can be exchanged between the axisymmetric

and non-axially symmetric modes.

- Izisymmeric

v/ca

0.1 , ' I I I III

0. .2 .4 . .8 1.

Figure 5. Uncoupled dispersion curves (e = O)--Mirsky and Herrmann,

thick-wall shell theory.

One source of modal coupling which is of importance in gun tube design is

the non-uniformity of the thickness of the tube wall. Intuitively, it is clear

that when a tube having an eccentric wall thickness is dynamically pressurized,

the bore centerline tends to move as well as the tube wall. In effect, the

eccentricity of the wall thickness creates a non-axially symmetric wall stiff-

ness and inertia. A good indication of what may be expected has been obtained

by neglecting the asymmetric stiffness and including only the eccentric inertia

coupling. This is the work reported herein.

Basically, it is assumed that we are dealing with a cylinder which has a

sinusoidal distribution of mass around its circumference and that this distribu-

tion is uniform along the direction of the bore axis. Thus

P = PO(1 + C cos 9) (6)

represents the mass distribution of the cylinder with c serving as the eccen-

tricity parameter. po is the mass density of the material. The coupling effect

sought does not require the use of sophisticated thick-wall cylinder equations
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such as those used by Mirsky and Herrmann or those employed by Gazis, and con-

sidering the idealism reflected in neglecting asymmetric stiffness effects and

the assumed mass distribution of Eq. (6) above, the use of such equations is

not required. However, the essential character of the dispersion curves--

especially near the dual minimums and throughout the long wave regions--must be

contained in whatever equations are chosen. It is surprising that the Donnell-

Mushtari equations (ref 9) do not suffice for this purpose, failing to provide a

dispersion curve for the beamlike vibration which passes through the origin.

Consequently, the equations of Flugge were chosen. Though more complicated than

those of Donnell-Mushtari, these equations provide the necessary features in the

dispersion curves and are considerably simpler than those of Mirsky and

Herrmann.

The Flugge equations of motion are as follows (ref 9):

L2 a'11 t' in) a'2
as 2 al 2 8s55 as

- P E at!]

2 asa as2 aN, ae

(1-v'2R' a' ]
aE a

a . 1+kV'+p E ,
as ae E at
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1121 M _3+11 _2 u 0
2 ae( 0 1 a3

2 asi 2 asae 2

k 3 + 1- _3_221 -Aa1 2 8528 V Q

L s i asaea 2 as25i We

(7)

where k = h2/12R 2 , s = x/R, and 6 is measured tangentially. u, v, and w are the

displacement components in the x, 9, and R directions, respectively. Q =

pR2 (1-V2 )/Eh is the applied load due to the pressure p.

Solutions to Eq. (7) are assumed in the form of a linear superposition of

axisymmetric motion (uo,wo) and motion from the first non-axially symmetric mode

(ul.vl,Wl). (vo can be omitted because it produces an equation for torsional

motion which is uncoupled from the non-axially symmetric variables.) Thus,

u(s,9,t) = uo(x,t) + ul(x,t)cos 6

v(s,O,t) = vl(x,t)sin 6

w(s,e,t) = wo(x,t) + wl(x,t)cos e (8)

Equations (8) can be considered as approximation functions for use with the

Galerkin method (ref 10). The variations 6u = 6uo + 6uI cos 8, 6v = 6vI sin 6,

and 6w = 6wo + 6w1 cos 6 multiply the first, second, and third of Eqs. (8),

respectively. The resulting expressions and Eq. (6) for p(6) are substituted in

Eq. (7) followed by an integration between the limits 6 = 0 and 27r. This

results in 'he five equations:
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83WO a 'o C 1u1  82u 0  a'u0as 3 - + s at' at'- as'-

a3W, awl k aw a~ v1  d'u1  8au 1

- k ul u l a' 0

i P -V) 5 i - - at'- 2 as' 2 asa i =a 0

C ' 1  a'w0  a'w0  a3U0  auo

ago+ k a4w. 2k 8' .tj aw -'2v 1H;- 5s- 5r+w+ i- 5;1- + ki

k 5-;+ V 0(9)
as as 2 as_

Steady-state solutions to Eqs. (9) can be obtained in exactly the same way as

the steady-state solution to Eq. (1). Under the substitution g = S - VT (where

T = (E/p0R'(l-i')]ht), Eqs. (9) become five ordinary differential equations with

Sas the independent variable.
oil Eva it of

-kw 0  + Vw 0 - -U, + (1-v2)U 0  0

-2kw1 ' + v(k+2) - k~w1 (1+v)vi + 2(1-vz)ul - 2ev'u0

+ [(k+1)(v-l)]ul = 0

k(3v~i'- 2w, - [2v2 + (3k+l)(v-1)Jv1  - 2v1 - (1+v)ui = 0

-- wl + kwo + v'w0  + (k+1)wo kuo + Vu0  Q

kw1 '' + (v2-2k)w1 ' + wl + evzw0  + (v-3)v1  + vl kull

+ ([,.P..) + VJui = 0 (10)
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The complementary solutions of Eqs. (10) are obtained by substituting solutions

of the form Aje-iat for each of the variables uo , u1 , v1 , wo , and w1 , where Aj

is a different arbitrary constant in each substitution and a is the wave number.

The result is a set of five linear equations which only have non-trivial solu-

tions if the determinant of the coefficients of the Ai vanishes, i.e.,

-CV20 -ia(v+aak) 0

CV a2(v-1) + (k+l) - (1+) 0 -ia( - +v+a2k

1 2 
k

- (k+)
2 z2

(0+L') -- [2v 2+v(3k+l) 0 --- (V-3) - 12 2 2

-3k-i]-1

-ia(v+ak) 0 0 -a2 (v2-a2 k) 2

+k+1

j0 k 2k (3-0+1 -a2ev -a2(v2-ak-2k)

+1

(11)

Setting this determinant to zero results in the dispersion relation. The first

two branches are shown in Figure 6 for the value c = 0.1. The similarity to

those of Mirsky and Herrmann (Figure 5) is evident.

The dispersion curves of Figure 6 represent the natural (unforced) waves of

the cylinder which are the complementary solutions to Eq. (10). As was the case

in dealing with Eq. (1), the stresses and displacements are required to be con-

tinuous at the location of the pressure front. In terms of the variables

13



defined in Eqs. (8), the following quantities must be continuous at { = 0 (ref

11):

h2 , , ,ip (w1 + v1 ) + v1 - u1

1)ul+ (V2)w + u i w;'' ,
III(l+V1 +-u1 - v 1 , 1 -u

il I

Wo Uo

and
I I

Vi, Wo, W1, wo, Wi

1.5

eps = ,1

1 0 -- axisymmetric

05

I I I I I 1

0. 0.1 h/L 0.2 0.3

Figure 6. Coupled dispersion curves (e = 0.1) using shell theory of Flugge.

The continuity relations plus the boundedness criteria at infinity and/or

the group velocity argument are sufficient to uniquely determine the displace-

ments once the particular solutions have been determined. The particular solu-

tions corresponding to the load terms on the right-hand side of Eqs. (9) may be

found by eliminating all but one of the dependent variables through the use of

14



Cramer's rule and the commutativity of the differential operators (ref 12).

This procedure is much simpler than inverting Fourier transforms--a common solu-

tion technique used in connection with these problems (cf. (ref 3)).

From the previous discussion in connection with Eq. (1), several load

velocities are of interest. For example, from the dispersion curves of Figure

6, it is clear that a real wave will be excited regardless of how small the pro-

jectile velocity might be. As a typical value, v = 0.382 CS has been chosen and

the corresponding mid-wall radial displacement at the top of the cylinder (6 =

0) is shown in Figure 7 using the value c = 0.1 (10 percent mass eccentricity).

1.4

C) 1.2

F- 1

Z .6
IE
L,4
U
<1f .2

UO

0 -.2

-.4
IiI I I I I I

-10 -5 0 5 10 15 20 25

S -UT
Figure 7. Radial displacement from coupled Flugge equations,

v/Cs = 0.382, c = 0.1.

The ordinate in Figures 7 through 10 is the ratio of the dynamic displacement in

the radial direction (w) to the static axisymmetric radial displacement as

approximated by the particular solution for wo . This radial displacement is

essentially quasi-static except for the existence of a wave which, from the

15



group velocity argument, exists in front of the pressure only. The presence of

any 'head wave' will be felt at the gun muzzle prior to the arrival of the pro-

jectile and therefore constitutes a possible cause of round inaccuracy at the

target.

Another load velocity of interest is v = 0.515 Cs which is just below the

lowest critical value. Again, e = 0.1 and the radial displacement at the top of

the cylinder is shown in Figure 8a. The head wave of Figure 7 is evident. The

axisymmetric portion of this displacement is shown in Figure 8b, so that the

difference between the two figures is the contribution of the beamlike motion at

this velocity and is substantial.

4 -

C

C
21

L.L.J 0
L)4

C: \C. I) /
r)=

U- .2 -1

III I I I I -

-10 -5 0 5 10 15 20 25

S -UT

Figure 8a. Radial displacement, 6 = 0, v/Cs = 0.515, C = 0.1.
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I II I II

2. 5

0 2

C 1,
E '.5

0

-1 ;

-10 -S 0 5 10 is 20 25

S-UT

Figure 8b. Axisymmetric component of Figure 8a.

The presence of a maximum value in the long wavelength region of the lower

dispersion curve is also cause for interest. It is known, however, that the

dispersion curve for the next non-axially symmetric mode (in which the tube

distorts more or less into an elliptical shape) passes through this region and

has a minimum value there. This mode is not included in the present analysis

and therefore the model is considered to be indccurate in this region.

Probably the most interesting load velocity is that which falls between the

minimums (vcrl,vcr2) of the two curves of Figure 6. For a load velocity exactly

halfway between these minimums, i.e.,

Vcr= + Vcr2
2

17



Figure 9 shows that the axisymmetric and beamlike motions are nearly equal in

magnitude for values of c as small as 0.01. This is apparently due to the fact

that the minimums (critical velocities) of the two branches of Figure 6 approach

each other as c diminishes. Consequently, a load velocity halfway between them

is closer to both critical values when e is smaller. This is shown in Figure

10--a blowup of Figure 6 in the vicinity of the minimums in the neighborhood of

the critical velocities for two values of c. From one point of view, the non-

axially symmetric wave acts as a vibration absorber for the axisymmetric motion.

This is not likely to reduce the maximum stress in the cylinder, however, since

the wall will then be subjected to biaxial stresses of comparable magnitudes.

I I I

4

3

cc2

7-z I

cL
Yr)

~~-2

-3
I I I I I I 1

-15 -10 -5 0 5 10 15 20 25

S -UT

Figure 9a. Axisymmetric component of radial displacement, e = 0,

V cri + Vcr 2c vr2 = 0.541, c = 0.01.
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Figure 9b. Non-axially symmetric (beamlike) component of radial displacement.
e = 0,

V crl 4 c = 0.541, e 0.01.

I-Vcr, eps = 5
.53 r-7

Figure 10. Dispersion curves near their minimum values, e a 0.1 and c =0.5.
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