
AFHRL-TR-88-41

AIR FO RC E PROCEEDINGS OF THE AIR FORCE FORUM

FOR INTELLIGENT TUTORING SYSTEMS

.nH
Edi ted ',y

N U J. Jeffrey Richardson
0 Martha C. Polson

Graduate School of Business and Administration

A University of Colorado at BoulderN Boulder, Colorado 80309-0419

TRAINING SYSTEMS DIVISION
Brooks Air Force Base, Texas 78235-5601

R
E

April 1989

S Final Report for Period June 1986 - February 1987

0
L Approved for public release; distribution is unlimited

R X
C JS
E
S LABORATORfj

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5601

,-- ,, , , ,, n, ,mn , i n nn i n~ncw ,c,. u

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related

procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or

in any way supplied the said drawings, specifications, or other data, is
not to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

The Public Affairs Office has reviewed this report, and it is releasable to

the National Technical Information Service, where it will be available to
the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

HENDRICK W. RUCK, Technical Advisor

Training Systems Division

HAROLD G. JENSEN, Colonel, USAF

Commander

Unclassified

SECL"ITV CLASSIFICATION OF TIk-.ifFAW
SForm Appioved

REPORT DOCUMENTATION PAGE o1 ANo 0o70 Q?8

Is. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
Unclassified

24. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b. DE CLASSIFICATIODOW NGRADING SCHEDULE Approved for public release; distribution Is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
AFHRL-TR-88-41

6. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Center for Applied Artificial (If applicable) Training Systems Division

Intelligence 1
6. ADDRESS (City, State, and ZiP Code) 7b ADDRESS (City, State, and ZIP Code)

Graduate School of Business and Administration Air Force Human Resources Laboratory
University of Colorado at Boulder Brooks Air Force Base, Texas 78235-5601
Boulder, Colorado 80309-0419

1a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applkcable) AFOSR-86-0144

Air Force Office of Scientific Research AFOSR/NL
Ic'. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Bolling Air Force Base, DC 20332-6448 PROGRAM PROJECT TASK .VORK UNIT

ELEMENT NO NO NO ACCESS;ON NO

61101F ILIR 20 15
I. TITLE (Include Securdty Classfication)

Proceedings of the Air Force Forum for Intelligent Tutoring Systems

12. PERSONAL AUTHOR(S)

Richardson, J.J.; Polson, M.C.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month Day) IS- PAGE COUN T

Final I FROM 4 j.A8 TO eph I April 1989 I 280
16. SUPPLEMENTARY NOTATION

Proceedings of the Air Force Forum for Intelligent Tutoring Systems, San Antonio, Texas, September 3-4, 1986.

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block numbe:)
FIELD IGROUP SUB-GROUP '- artificial intelligence, intelligent utorlng)

05 1 computerrassisted instruction,, training : .
nr 0 expert systems, ..

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This technical report is the record of the Air Force Research Forum for Intelligent Tutoring Systems and
provides a synthesis of the field of Intelligent Tutoring Systems (ITSs). It contains seven essays, written at
the general, foundational level, each treating an integral aspect of the field. Each essay defines its topic, its
relationship to other topics, the state-of-the-art, basic research issues, and near-term applications projects.
At the forum, each essay presentation was followed by a discussant's critique. This record contains edited
transcriptions of those critiques. The contents of this volume are rounded out by introductory and final
chapters. The introductory chapter provides a thorough overview of the seven essays. The final chapter
synthesizes the research and development recommendations made in the essays. Appendixes provide short
descriptions of the ITS systems referred to in the report and a glossary of ITS terms. r L .- _

20 DISTRIBUTION/AlAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
, UNCLASSIFIEDiUNLIMITED 0i SAME AS RPT [C DTIC USERS Unclassified

22a NAME OF RESPONSIBLE iNDIVIDUAL 22b TELEPHONE (Include Ared Code) 22c OFFICE SYMBOL
Nancy J. Allin, Chief, STINF0 Branch (512) 536-3877 , 7 AFHRL/SCV

DO Form 1473, JUN 86 Prev'ous editions are obsolete. SECURITY CLASSIFICATION OF THIS ;"CE

Unclassified

PREFACE

This technical report is the record of the Air Force Research Forum for
Intelligent Tutoring Systems and provides a synthesis of the field of Intelligent Tutoring
Systems (ITSs). It contains seven essays, written at the general, foundational level, each
treating an integral aspect of the field. Each essay defines its topic, its relationship to
other topics, the state-of-the art, basic research issues and near-term applications
projects. At the forum, each essay presentation was followed by a discussant's critique.
This record contains edited transcriptions of those critiques. The contents of this
volume are rounded out by introductory and final chapters. The introductory chapter
provides a thorough overview of the seven essays. The final chapter synthesizes the
research and development recommendations made in the essays. Appendices provide
short descriptiuns of the ITS systems referred to in the report and a glossary of ITS
terms.

The genesis of this report was a planning process set into motion by the Air
Force Human Resources Laboratory (AFHRL), to develop a research agenda in ITSs.
Acknowledged leaders in the field were contacted and agreed to participate in this
process. The authors, editors and sponsors held a meeting and agreed on the logical
organization of the field reflected in the chapters and on the assignment of ITS topics to
each chapter. Outlines for each chapter were developed and presented in a workshop
held by AFHRL. Based on feedback from the workshop, the outlines were refined and
draft papers were written. These were circulated among the authors, editors and
sponsors, critiqued and revised. The revised papers were presented at the AFHRL
Research Planning Forum for Intelligent Tutoring Systems, held September 3-4, 1986, in
San Antonio, Texas.

We would like to acknowledge Lt. Col. Hugh L. Burns, Chief of the Intelligent
Systems Branch, Training Systems Division, AFHRL for his role initiating and
monitoring this work. We would like to thank the Air Force Office of Scientific
Research for sponsoring this work through Grant Number AFOSR-86-0144 under the
guidance of Dr. Alfred R. Fregly, Program Manager, Life Sciences Directorate. Thanks
to Lt. Charles G. Capps of AFHRL and to Dr. Matthew J. Wayner, Director of the
Division of Life Sciences, University of Texas at San Antonio, and his assistant Janie
Ramos for their support in organizing the meetings, workshop, and conference associated
with this work. Special acknowledgments are due to Janet L. Grassia, who did the copy
editing for this report, to Marjorie J. DeFries, who assisted in the report editing as well
as managed the copyright releases for the figures, and to Tania M. Sizer, who prepared
the glossary.

Martha C. Poison J. Jeffrey Richardson
Institute for Cognitive Science Center for Applied Artificial Intelligence
University of Colorado Graduate School of Business Administration

University of Colorado on- -

Distrnbution/

Avai~bllltr Coalm

Dist Spei•

o"I / ,

CONTRIBUTORS AND EDITORS

John R. Anderson
Carnegie-Mellon University

Dr. Anderson is Professor of Psychology, Carnegie-Mellon University, holding the
Walter Van Dyke Bingham Chair of Cognitive Science. Having received his Ph.D. in
Psychology from Stanford University in 1972, his current research is centered on ACT, a
production-system capable of simulating intelligence behavior. His numerous research
interests are now being brought together in a major new project at Carnegie-Mellon to
develop intelligent computer-based tutors, with tutors for high-school geometry and
introductory college LISP having been developed already.

Hugh L Burns
United States Air Force

Hugh Burns, as a Lieutenant Colonel in the U.S. Air Force, serves as Chief,
Intelligent Systems Branch, Air Force Human Resources Laboratory (AFHRL) Brooks Air
Force Base, San Antonio, Texas. He earned his Ph.D. at the University of Texas at Austin -
investigating rhetorical theory, computer-assisted instruction, and instructional discourse. Lt.
Col. Burns participated in the Air Force's Project Forecast II - a "Think Tank" to identify the
critical technologies for the next generation of Air Force needs and capabilities.

Richard R. Burton
Xerox Palo Alto Research Center

Dr. Burton is a Member of the Research Staff of the Xerox Palo Alto Research
Center, working in the Intelligent Systems Laboratory. Dr. Burton's long involvement in
intelligent tutoring systems began prior to the receipt of his Ph.D. in Information and
Computer Science from the University of California, Irvine, in 1976. He was a collaborator
on three foundational intelligent tutoring systems: BUGGY, WEST, and SOPHIE.

Charles G. Capps
United States Air Force

Charles Capps is a First Lieutenant assigned to the Air Force Human Resources
Laboratory (AFHRL) at Brooks Air Force Base, Texas. He received his undergraduate
degree from the University of Alabama and his Master's degree in Clinical Psychology at
Mississippi State University. Since being assigned to the Intelligent Systems Branch at
AFHRL, his research activities have focused on projects investigating student performance
and instructional expertise within intelligent instructional systems.

Pamela K. Fink
Southwest Research Institute

Dr. Fink is a specialist in artificial intelligence, particularly in the areas of natural
language processing, speech understanding, learning, expert systems, knowledge
representation, automated planning, and distributed problem solving. Dr. Fink has recently
concentrated on the area of expert system design and the representation and use of
knowdc"ige. She has led a group that was involved with developing an innovative expert
system design for the diagnosis and repair of mechanical and electrical devices. Dr. Fink
received her Ph.D. in Computer Science from Duke University in 1983.

..Iil

James G. Greeno
University of California at Berkeley

Dr. Greeno is Professor of Education at the University of California, Berkeley, where
he recently moved from a six-year tenure as Professor of Psychology at the University of
Pittsburgh and Senior Scientist at the Learning Research and Development Center. Dr.
Greeno received his Ph.D. in Psychology from the University of Minnesota in 1961. A
member of the National Academy of Education, Fellow of the AAAS, Dr Greeno has led a
distinguished career in the psychology of learning, problem solving, and thinking; in cognition
and instruction in mathematics, science and technology; and in mathematical psychology.

Henry M. Halff
Halff Resources, Inc.

Dr. Halff is well-known in scientific, military, and government communities for his
management of research programs in the rapidly advancing fields of educational technology
and cognitive science, work performed as scientific officer of the Office of Naval Research.
Recently, Dr. Halff founded Halff Resources, where he is currently involved in applications
of artificial intelligence to computer-aided instruction. Dr. Halff received his Ph.D. in
Psychology in 1969 from the University of Texas.

William B. Johnson
Search Technology, Inc.

Dr. Johnson is a principal Senior Scientist, Search Technology, Inc., where he
manages training research for the military, nuclear power, and aviation industries. Dr.
Johnson is currently the knowledge engineer for the Office of Naval Research project on
intelligent maintenance training. Holding a Ph.D. in Education, 1980, from the University of
Illinois, Dr. Johnson is also a certified private pilot, airframe and powerplant mechanic, and
designated mechanical examiner. He served as consultant to the 1985 National Academy of
Science Air Force Summer Study on Fault Isolation in Air Force Weapons and Support
Systems. He is an expert in simulation-oriented computer-based instruction for fault
diagnosis.

David C. Littman
Yale University

Dr. Littman is currently a doctoral candidate in the Artificial Intelligence Program of
the Department of Computer Science. Dr. Littman received his first Ph.D. in Experimental
Psychology from Cornell University in 1976. Dr. Littman has been involved in evaluating
educational technology since 1977. His main interests are intelligent tutoring systems and
artificial intelligence approaches to scientific reasoning.

iv

M. David Merrill
University of Southern California

Dr. Merrill is Professor of Educational Psychology and Technology, University of
Southern California. Dr. Merrill was team leader in the development of the TICCIT CAI
authoring system. Major contributions to instructional psychology include his component
display and elaboration theories of instructional design. Dr. Merrill has been founder,
director, and officer of several instructional technology firms, including: M. David Merrill
and Associates, Courseware, Inc., and Microteacher, Inc. Additionally, he founded the
Instructional Science Department and the Division of Instructional Research, Development
and Evaluation at Brigham Young University.

James R. Miller
Microelectronics Computer Corporation

Dr. Miller is team leader of the MCC Human Interface Program where question
answering and coaching are being investigated in order to enable the computer user and
system to cooperate in achieving tasks stated by the user. Prior to joining MCC, Dr. Miller
was Director of Sponsored Research, ComputerThought Corporation, where he was
responsible for the student model on-line documentation system, and user interface of a
knowledge-based training system for the Ada programming language. Dr. Miller holds a
Ph.D. in Psychology from the University of California, Los Angeles, granted in 1978.

Martha Campbell Poison
University of Colorado

Dr. Polson is Assistant Director of the Institute of Cognitive Science at the
University of Colorado, Boulder. Since receiving her Ph.D. from the University of Indiana in
1968, her research interests have spanned a number of areas. Prior to assuming her current
position, she was a visiting scientist at the Training Systems Division of the Air Force Human
Resources Laboratory where she became involved in the intelligent tutoring systems program
and this project.

J. Jeffrey Richardson
University of Colorado

Dr. Richardson is Executive Director of the Center for Applied Artificial
Intelligence, College of Business, University of Colorado. This center pursues Al
applications in business, equipment maintenance, intelligent tutoring systems, and operations
research. Dr. Richardson also heads the Colorado Institute for Artificial Intelligence, a state-
wide university-industry consortium dedicated to enhancing the technology and human
resources foundation for AI in Colorado. His principal research interests include AI
applications in equipment maintenance and in training. Dr. Richardson received his Ph.D. in
Education from the University of Colorado in 1981 and worked at the Denver Research
Institute prior to moving to the University of Colorado.

Elliot M. Soloway
Yale University

Dr. Soloway is Associate Professor of Computer Science and Psychology at Yale
University where he is Director of the Cognition and Programming Project. Having received
his Ph.D. in Computer and Information Science at the University of Massachusetts in 1978,
his work focuses on the cognitive modeling of computer programming. An important
application of" this is the development of intelligent tutorial systems for college-level

V

programming instruction. Dr. Soloway is also Vice President of Computer-Teach, Inc., an
educational software company.

Kathleen M. Swigger
North Texas State University

Dr. Swigger holds the position of Associate Professor in the Computer Science
Department, North Texas State University, having received her Ph.D. in 1977 from the
University of Iowa. Dr. Swigger has made significant contributions to the field of intelligent
tutoring systems with her work in developing an intelligent tutoring system for physics. Dr.
Swigger's research interests and publications background include work in computer-based
education, human factors in computer science, and artificial intelligence. Dr. Swigger also has
served as University Resident Research Professor in the Intelligent Systems Branch, Training
Systems Division, Air Force Human Resources Laboratory.

Kurt VanLehn
Carnegie-Mellon University

Dr. VanLehn is Assistant Professor in the Department of Psychology at Carnegie-
Mellon University, having recently moved there from his position as Research Associate at
Xerox Palo Alto Research Center. Having received his Ph.D. in Computer Science from the
Massachusetts Institute of Technology in 1983, Dr. VanLehn is a major contributor to the
cognitive science literature pertaining to human skill acquisition, including pioneering work
in acquiring procedural skills from lesson sequences and "felicity conditions" for human skill
acquisition. Further contributions include the formulation, as a product of the BUGGY
project, of repair theory: a generative theory of bugs in procedural skills.

Beverly P. Woolf
University of Massachusetts

Dr. Woolf is currently Research Scientist at the University of Massachusetts
(Amherst) working to implement natural language facilities for intelligent interfaces. Dr.
Woolf is published extensively in the field of intelligent tutors and her research interests
focus on techniques for developing effective human-computer communications. Dr. Woolf
received her Ph.D. in Computer Science in 1984 from the University of Massachusetts.

Ai

TABLE OF CONTENTS

List of Figures ix

List of Tables xii

Chapter 1 Foundations of Intelligent Tutoring
Systems: An Introduction
Lt. CoL Hugh L. Burns
1st LL Charles G. Capps 1

Chapter 2 The Expert Module
John R Anderson 15

Chapter 3 Student Modeling
Kurt VanLehn 49

Discussion The Expert Module
and
Student Modeling
James G. Greeno 65

Chapter 4 Curriculum and Instruction in Automated
Tutors
Henry M. Halff 73

Chapter 5 The Environment Module of Intelligent
Tutoring Systems
Richard R. Burton 99

Discussion Curriculum and Instruction in Automated
Tutors
and
The Environment Module of Intelligent
Tutoring Systems
M. David Merrill 125

Chapter 6 The Role of Human-Computer Interaction
in Intelligent Tutoring Systems
James P_ Miller 137

vii

Discussion The Role of Human-Computer Interaction
in Intelligent Tutoring Systems
Kathleen M. Swigger 171

Chapter 7 Pragmatic Considerations in Research,
Development, and Implementation of
Intelligent Tutoring Systems.

Wdliam B. Johnson 179

Discussion Pragmatic Considerations in Research,
Development, and Implementation of
Intelligent Tutoring Systems.
Pamela K Fink 193

Chapter 8 Evaluating ITSs: The Cognitive Science
Perspective
David Littman and Elliot Soloway 199

Discussion Evaluating ITSs: The Cognitive Science
Perspective
Beverly P. Woolf 233

Chapter 9 Directions for Research and Applications
J Jeffrey Richardson 243

Appendix A Selected Intelligent Tutoring Systems 253

Appendix B Glossary of ITS Terms 259

viii

LIST OF FIGURES

Figure Page

1.1 The ITS Anatomy. 2

2.1 The Tradeoff Between the Pedagogical Effectiveness of
an Expert Module and the Effort of Constructing It. 17

2.2 The Set of Relationships Among Cognitive Models, Black
Box Models, Expert Systems Methodologically Defined,
Expert Systems Criterion Defined, Qualitative Models,
and the Expert Module of an ITS. 19

2.3 Tutoring of Bumping in WEST. 21

2.4 The Pattern Recognition That Underlies Issue-Oriented
Tutoring. 22

2.5 The Contrast Between Surface-Level and Deep-Level
Tutoring. 23

2.6 A Typical MYCIN rule. 24

2.7 An Example of GUIDON's Tutorial Rules. 25

2.8 An Illustration of the Backward Search Structure
Generated by MYCIN. 26

2.9 Production Rule Representation of the Subtraction Skill. 29

2.10 Some of the Correct and BUGGY Code Sequences That a
Student Might Enter to Determine Whether a Was Less
Than 2% ofc. 31

2.11 A Portion of the Semantic Net in SCHOLAR. 33

2.12 A Schema Representation of Some of the Knowledge
Underlying Our Understanding of Evaporation. 34

2.13 An Example of a Socratic Dialogue. 35

2.14 An Example of a Rule for Socratic Tutoring. 36

2.15 The Development of a Qualitative Simulation According
to deKleer & Brown. 37

2.16 deKleer & Brown's Representation of a Pressure
Regulator. 38

3.1 The Three Dimensions of Student Models. 54

ix

Figure Page

3.2 The Space of Student Models. 55

3.3 Diagnostic Techniques. 55

3.4 Two Bugs, in isolation and Co-occurring. 59

4.1 Components of BIP-II. 79

4.2 Display of Hutchins et al.'s Training System for Relative
Motion Problems. 82

4.3 A Page from a Third-Grade Math.ematics Book

Illustrating the Show-Work Principle. 83

4.4 Possible Configurations of Student and Tutor Knowledge 90

5.1 View of the Workspace from the Geometry Tutor. 101

5.2 Example of the Envisioning Machine. 103

5.3 Instructional Environments Vary in the Level of
Abstraction with which They Represent the Subject
Matter. 104

5.4 The Basic Steam Cycle from Steamer, Giving a High
Level View of the Whole Steam Plant. 105

5.5 A Signal Icon from Steamer. 106

5.6 A Diagram Showing the Representation Level of a Diesel
Engine Lubrication System in the FAULT System. 107

5.7 A Diagram of a System as Shown to a Student Using
TASK. 108

5.8 Screen Image of AlgebraLand. 112

5.9 A Portion of the Generic Object Library of IMTS. 115

5.10 Screen Image of the Xerox Instructional Design
Environment (IDE). 117

5.11 The Tutorial Model of Instruction. 128

5.12 The Experiential Model of Instruction. 129

5.13 Transaction Varieties for an Experiential Model. 129

5.14 An Experiential Model with an Advisor. 130

x

Figure Page

5.15 Combined Tutorial/experiential Models of Instruction. 131

5.16 Model of Instructional Design Thcory. 133

6.1 A Typical Use of Windows and Icons on the Apple
Macintosh. 140

6.2 Steamer's Depiction of a Steam Plant. 141

6.3 Computing a Pearson R with VSTAT. 142

6.4 A Typical NLMenu Screen. 147

6.5 Anderson, Boyle, and Yost's Geometry Tutor. 156

6.6 A Sample Screen from GUIDON-WATCH, which
Supports Exploration of Large Knowledge Bases. 157

6.7 Summary of Miller's Main Points. 171

6.8 Instructional Taxonomy. 174

7.1 Lessons to Be Learned from Computer
Software Development. 194

7.2 Lessons to Be Learned from Expert Systems. 195

7.3 Illustration of ITS Development. 196

7.4 Recommendations. 197

8.1 The Rainfall Assignment. 204

8.2 Sample of a Correct Rainfall Program. 204

8.3 Sample of an Incorrect Rainfall Program. 205

8.4 PROUST Output for Program in Figure 8.3. 206

8.5 Some Boundary Condition Bugs. 207

8.6 External Evaluation of PROUST. 209

8.7 An Example cf PROUST's Need for Lexical
Knowledge. 216

8.8 An Example of PROUST's Need for Bottom-up
Analysis. 217

8.9 How Current ITSs Have Been Evaluated. 224

xi

Figure Page

8.10 Recovery Boiler Tutor, Example 1. 236

8.11 Recovery Boiler Tutor, Example 2. 237

8.12 Recovery Boiler Tutor, Example 3. 237

8.13 Recovery Boiler Tutor, Example 4. 238

8.14 Interaction of Tutor with a Student. 239

8.15 Recovery Boiler Tutor, Example 5. 240

LIST OF TABLES

Table Page

4.1 Procedure for Generating a Theoretical Problem
Description in Mechanics. 75

4.2 Tutorial Dialogue Strategies for Different Instructional
Objectives. 81

xii

PROCEEDINGS
OF THE

AIR FORCE FORUM
FOR INTELLIGENT TUTORING SYSTEMS

CHAPTER 1

FOUNDATIONS OF INTELLIGENT TUTORING SYSTEMS:
AN INTRODUCTION

Lt. Col. Hugh L Burns
Chief, Intelligent System Branch

1st Lt. Charles G. Capps
Research Psycholopy

Training Systems Division
Air Force Human Resources Laboratory

Brooks Air Force Base
San Antonio, Texas

Artificial intelligence in education comes of age in systems now called intelligent
tutors, a step beyond traditional computer-assisted instruction. Computer-assisted
instruction evolves toward intelligent tutoring systems (ITSs) by passing three tests of
intelligence. First, the subject matter or domain must be "known0 to the computer system
well enough for this embedded expert to draw inferences or solve problems in the domain.
Second, the system must be able to deduce a learner's approximation of that knowledge.
Third, the tutorial strategy or pedagogy must be intelligent in that the "instructor in the box"
can implement strategies to reduce the difference between expert and student performance.
At the foundation of ITSs, therefore, one finds three special kinds of knowledge and
problem-solving expertise proammed in a sophisticated instructional environment. This
book examines these knowledge foundations--expert knowledge, student diagnostic
knowledge, and the instructional or curricular knowledge--in detail. This book also
describes (a) how these kinds of knowledge are embodied in computer-assisted instructional
environments; (b) how these systems accrue the advantages of advanced computer interface
technologies; (c) how ITSs will emerge in the real world of complex problem solving; and
finally (d) how researchers must learn to evaluate the effectiveness and overall quality of
these dynamic systems in a world where one day machine tutoring will be taken for granted.

The purpose of this chapter is to introduce the major research issues and
development themes that the primary authors-John Anderson, Kurt VanLehn, Henry
Haff, Richard Burton, James Miller, William Johnson, David Littman, and Elliot Soloway--
explore and amplify. At the core of this book is a simple notion that an ITS has an anatomy
(see Figure 1.1), an anatomy that creates convenient classifications of the research and
development dimensions.

The expert module contains the domain knowledge. The student diagnostic module
diagnoses what t. student knows. The instructor module identifies which deficiencies in
knowledge to focus on and selects strategies to present that knowledge. The instructional
environment and human-computer interface channel tutorial communication. In addition to
these components, implementation and evaluation issues are most important. When,
where, and how should these ITSs be used? How effective is the ITS and how is its quality
understood? ITSs are hard to design and the field requires further study. Consequently, as
the research community moves toward more and better ITSs, the need for integration of the
"distinct" modules should be obvious. It should come as no surprise that in a complex,
knowledge-based, problem-solving, computer-assisted tutoring system, the whole necessarily
becomes more than the sum of its parts.

- -- n a il l I l lil • i IP

R E

E 4V
A A

L L
ENVIRONMENT U

W A
0 INTERFACE T

R I

L 0
D N

Y SIUDENr

Figure 1.1. The ITS Anatomy.

I. THE EXPERT MODULE

John Anderson, whose current research is in the architecture of cognition and in pro-
duction systems capable of simulating intelligent human behavior, identifies the concepts
and challenges of designing the expert module, that part of a tutor that provides the domain
knowledge. The major lesson that the artificial intelligence community has learned from all
of the research in expert systems is that any expert module must have an abundance of
specific and detailed knowledge derived from people who have years of experience in a
particular domain. Consequently, much effort is expended in discovering and codifying the
domain knowledge, thus distilling years of experience into a knowledge representation. The
enormous amount of knowledge in complex domains as well as the interrelationship of that
knowledge means that designing and developing the expert module may be the most
demanding chore in buildi. an TS. Authoring systems for intelligent tutors, alone, are
unlikely to discover and codify all of the necessary domain knowledge. Thus, investigating
how to encode knowledge and how to represent such expertise in an ITS remains the central
focus of developing an expert module.

2

How does a research team explicitly go about encoding the knowledge in the ITS
data structure? Three approaches are common, each moving toward a more cognitively
faithful representation of the conten' expertise. The first is findig a way to encode the
knowledge without actually codifying the underlying human intelligence. The literature
often reters to these as "black box" expert systems. The simple input-output information
available from a black box system is not suitable for instruction. One method of enhancing
these models is to employ a methodology called "issue-based tutoring" (Burton and Brown,
1982). In other words, a programmer attaches instruction to specific issues observable in
the behavior of both the expert and the student within the learning environment. Thus,
when a student chooses (or fails to choose) a behavior, he or she may receive feedback
about the particular behavior. The examples in the artificial intelligence canon include
systems that use a mathematical equation-solving process in place of the symbolic human
pocessing. SOPHIE and Steamer (Brown, Burton, & deKleer, 1982; Hollan, Hutchins, &

eitzman, 1984) perform their calculations through such techniques. Although the
architectures of these systems have not represented human knowledge, they do produce
outputs that are useful in recognizing differences between student and expert performance.

The second approach involves the building of a "glass box model" to influence the
tutorial mechanisms of the system. To do this, a researcher must use knowledge engineering
techniques. A knowledge engineer interviews an expert and designs a computational
representation for delivering the knowledge, usually a rule-based formalism. This
implementation does not necessarily correspond to the way the human expert reasons,
especially in novel, unfamiliar situations or when providing explanations. Thus, this glass-
box model only allows for explanations of the information process inherent in the rules of its
knowledge base. The rules are typically more strategically aligned with performance rather
than explanation, limiting their utility in an instructional setting. However, knowledge
engineering tools and techniques, that is, ways of extracting and codifying information, are
becoming more and more useful for ITS development as attention is paid toward making
representations more faithful to the breadth and depth of expert reasoning

Nevertheless, because so much effort is expended in the knowledge acquisition
process, turning preexisting expert systems into ITSs is a fond ambition. Clancey's
GUIDON (1982) tried to implement MYCIN (Buchanan & Shortliffe, 1984)--an expert
system for diagnosing bacterial infections--as the expert model within an ITS. MYCIN's
representation of knowledge was highly "compiled." By analogy, a computer program's
source code (high-level programming instructions written in languages such as FORTRAN,
PASCAL, or COBOL) is compiled into object code (the primitive hardware instructions the
computer responds to). The source code is relatively easy to read, but not executable by a
computer. The object code is "machine readable," the computer can run it, but it is
extremely difficult for people to understand. Extending the analogy even further, the
"readability" of source code itself depends on the extent to which the programmer followed
structured programming practices. Similarly, the "readability," or utility in explanation, of a
knowledge base depends on the "principledness" of the knowledge engineer s approach to
representing the domain knowledge in the rule base (Clancey, 1981). The more principled
and well-structured, the better the expert system serves for explanation and instruction.
Clancey's research illustrates how limited expert systems can be in instructional settings.

The third approach to encoding the domain knowledge simulates not only the
knowledge but also the way a human uses that knowledge. Here, in this area of cognitive
modeling, the cognitive science community sees the greatest payoff for the design and
development of ITSs. If the goal of cognitive modeling is to develop as realistic a simulation
of human problem-solving processes as possible, many research questions must be
answered. These questions include: (a) which psychological components are essential for
tutoring, (b) at what level they should be represented, and (c) how should different types of

3

knowledge be treated--procedural, declarative, and qualitative. One way of classifying the
psychological components is according to problem-solving models as articulated by Newell
and Simon (1972), among others. These problem-solving models should have the highest
cognitive fidelity, that is, correspondence to actual human thought processes, as possible.

Because the three types of knowledge dictate the strategies of instruction, they need
clear definition. Procedural knowledge is knowledge about how to perform a task and is
well represented in the literature on expert systems as rule-based, production systems.
Many artificial intelligence researchers believe that production rules with their recognize-act
cycle capture the basic character of human cognition and, consequently, offer exciting
possibilities for ITSs. Declarative knowledge contrasts with procedural knowledge in that it
is fact-like, not specialized for a particular use. Finally, qualitative knowledge is the causal
understanding that allows a human to reason about bchavior using mental models of
systems. One of the most challenging issues will be constructing a metatheory that unifies
and shows the relationships between procedural, declarative, and qualitative knowledge.
John Anderson concludes that research investigating expert modules for tutoring systems
will be a unique test of the sufficiency of cognitive theories. Conversely, the design of an ITS
will contribute to the discovery of more accurate theories of cognition.

II. THE STUDENT DIAGNOSIS MODULE

Kurt VanLehn describes the essential problems of student modeling in ITSs. Many
ITSs infer a model of the student's current understanding of the subject matter and then
use that understanding to adapt the instruction to the student's particular needs. The
knowledge structure that depicts the student's current state is the student model and the
reasoning process to develop it is called student diagnosis. Outputs from student diagnostic
modules can be used for a variety of purposes such as advancing through selected
curriculums, coaching or offering unsolicited a vice, generating new problems, and adapting
sets of explanations. VanLehn describes the research issues in terms of three dimensions
and discusses the need for: (a) improving the bandwidth of available knowledge about the
student, (2) distinctly identifying types of knowledge to be learned, and (3) assessing
differences between students and experts.

How much of the learner's activity is available to the diagnostic program? This is the
bandwidth question, according to VanLehn. Most programs work on the low end of the
information band where only the final state, that is, the student's answer to a question, is
available to the system. Access to an intermediate state allows the diagnostic module to
assess the observable physical activity, for example, key strokes or scratch work. The
bandwidth of potentially the greatest value allows ITSs access to the learner's mental state,
step by step as reasoning proceeds. Because the student diagnostic module needs reliable
knowledge about the learner's mental state, bandwidth is critical in designing ITSs.

The second dimension of the student diagnostic module is the target knowledge type.
VanLehn classifies knowledge types into two types of procedural knowledge, flat and hierar-
chical, and declarative knowledge. Specialized strategies for using (or interpreting)
knowledge are paired with each type of knowledge. This interpretation process is more
difficult to implement for declarative knowledge than for procedural. The interpreter for
hierarchical procedural knowledge is more difficult than for flat procedural knowledge.
Because the difficulty of the student diagnostic process is closely related to the difficulty of
the interpretation process, a flat procedural knowledge base makes the student modeling
process the easiest, whereas a declarative knowledge base presents the most difficult student
modeling problem.

4

Assessing differences between students and experts is the third dimension VanLehn
discusses. In programming a student diagnostic module, most ITS designers use the same
knowledge representation scheme as was used in the expert module so that the expert and
student modules actually share the same knowledge base. This is called the overlay method
of student modeling, where the student's knowledge is represented as a subset of the
expert's. Hence, missing conceptions are represented, but not misconceptions.

The next level of complexity in student modeling is to represent misconceptions,
erroneous and incorrect knowledge, as opposed to simply incomplete knowledge. In this
approach, the overlay model is augmented by a bug library. Bugs, that is, misconceptions or
misunderstandings, must typically be collected empirically, but can be generated
cornputationally from the target procedure, as is done in repair theory (Brown & VanLehn,
1980S. To reduce the empirical work required for obtaining an exhaustive set of bugs, bugs
are sometimes generated from bug part libraries, where bui p arts, fragments of production
rule clauses, are assembled into bugs. This represents the highest degree of sophistication in
student modeling. Success in this is critically tied to the bandwidth issue.

Designing the student diagnostic module is a high-risk venture and, consequently,
presents a wide range of issues to be investigated. How detailed do the descriptions of the
student's knowledge have to be? What models of learning can be designed as a
superstructure for the diagnostic algorithms? How much should the artificial intelligence
research community push expert systems technology toward ITS technology? Of course, a
variety of studies of bandwidth, knowledge type, and student-expert differences could be
executed. This research promises many useful outcomes.

III. THE CURRICULUM AND INSTRUCTION MODULE

Henry Halff describes how the instructional module and curriculum issues give form
and meaning to ITS research and development as instructional systems. An ITS should
have three tutoring characteristics: (a) controls over the representation of the instructional
knowledge for selecting and sequencing the subject matter; (b) capabilities for responding
to students' questions about instructional goals and content; and (c) strategies for
determining when students need help and for delivering the appropriate help. The goal of
the instructional module is to circumscribe the nature of teaching and to implement
teaching as a solution to the educational communication problem. Separating instructional
and content expertise--or the "dancer from the dance," as William Butler Yeats once wrote-
-is the challenge in designing the instructional module. Obviously, the es of knowledge
and the nature of the learning process interrelate with the teaching act. Less obvious is the
interaction between content specifics and instructional strategy.

Specific knowledge necessary for learning but not necessary for proficient
performance is called propaedeuics, or enabling knowledge. Often this kind of knowledge is
not represented in designing a tutor, when the focus is more on the knowledge in the expert
module. In such cases, the required instructional background knowledge often comes about
as an afterthought, once the building process has begun. This is the danger that lies in
building an expert system first, then enhancing that expertise with explanations or
instructional sequences designed to foster an effective learning experience for the ITS user.

Mitigating against this problem somewhat, Halff contends that there are families of
instructional knowledge that could transfer from one tutor to another, for example,
diagnostic tutorial routines and simulation tutorial routines. Instructional knowledge

5

routines should allow a student to relate theory to practice, to propose solutions, to develop
more effective problem-solving strategies. They should also minimize the load on the
student's working memory while new concepts are being internalized.

Thus, the instructional module should and can be more than just a by-product of the
expert and student modules, and some instructional principles should be robust and explicit
enough to generalize across domains. The available literature on instructional theory
provides instructional methodologies and can help designers decide such questions as what
information to present in what sequence.

If a lesson can be found in curriculum design, it is simply that the overall goals of a
tutor must be clear and well communicated. To that end, an ITS must appropriately
manage the content and size of the content, conveying that structure to a learner and
insuring that the instructional goals are within the learner s reach.

Presentation techniques all depend on the instructional objective. Elicitation and
explanation help lead learners to an understanding of facts and concepts. Case
presentations and simulated entrapment induce learners to formulate rules and to
understand relations. Exercises, drills, and examples allow learners to generalize from
subskills to the performance of the full task. Seeing the required skills prepares the student
for the real-life situation. All of these strategies should be encompassed in an ITS design
when the instructional module is laid out. The instructional engine that propels the
presentation, Halff contends, rrust be investigated mre fully.

Achieving any dynamic flexibility at the instructional level requires designing specific
instructional states and means of transitioning from one state to another. Here is where
artificial intelligence techniques may be the most useful in the instructional module. Meno-
tutor (Woolf & McDonald, 1985) is one example of an attempt to achieve this flexibility by
manipulating 27 interrelated instructional states. The ITS community is thus articulating
needs for meta-rules to accommodate this dynamic reformulation of the tutor at the
instructional level.

Another challenge to artificial intelligence involves understanding instructional
discourse. Such understanding, for example, would include strategies appropriately
intervening in the course of a student's problem-solving activity. Intervention, on the one
hand, allows the ITS control of the tutorial process, but it is also important in keeping a
learner on the right track by preventing inappropriate or incorrect learning. Beyond
intervention, that is, offering advice, hints or guidance, other strategies are needed for
answering questions and providing explanations. These kinds of abilities must be
incorporated in the design of an adequate instructional module and depend on further
progress in the artificial intelligence field of natural language comprehension. Attempts to
use templates (Carbonell, 1970) or semantic networks (Brown, Burton & deKleer, 1982)
have been tried; however, a comprehensive theory of explanation that would make
automation possible has yet to be proposed.

As computer-assisted instruction becomes more intelligent in itself and more
intelligently used in the classroom, educators will contribute models for properly shaping an
automated instructional process. The fields of instruction and curriculum design can supply
guidelines for the general support of ITS design and specifications for developing tool kits
or certain educational applications. However, many of the tougher issues of ITS design are,

so far, beyond the reach of these guidelines and tools. Still lacking, Halff points out, are (a)
the design principles that determine whether a deductive or inductive approach is taken for
the ITS instructional module, (b) precise theories that account for instructional
effectiveness, and (c) explicit instructional principles in particular domains. Recognizing

6

these deficiencies, however, is a sign of real progress. The effort to construct an
instructional module--that explicit computational model of an instructor--ought to unravel
some of the pedagogical paradoxes in the human tutoring process. Instructional knowledge
acquisition promises to be a rich area for research and development--both for theory and for
practice.

IV. THE INSTRUCTIONAL ENVIRONMENT

An instructional environment consists of those elements of an ITS that support what
the learner is doing: situations, activities, and tools provided by the system to facilitate
learning. Richard Burton explores the issues pertaining to the instructional environment by
establishing a pedagogical foundation, by carefully examining some of the more successful"microworlds," and by presenting near-term and long-term research agendas.

The activities and tools presented to the learner in an ITS always reflect an
underlying educational philosophy. The trend, as computers get faster and as ITS
researchers and educators become more creative and clever, is clearly to create a more
open, more robust, more fulfilling, and more effective educational experience. Several
principles for building instructional environments have emerged from this trend. An
instructional environment should prove that there is more in an ITS than meets the eye. It
should foster constructive learning through activities--tools, games, worlds--designed to use
students' prior knowledge and to present students with new information and experiences
from which they can construct new knowledge. The environment should emphasize
conceptual understanding, not rote procedures. It should attempt to connect in-school and
outside-school knowledge. It should be designed so that students feel self-monitored,
allowing effective learners to assume responsibility for their own learning. The environment
should also be developed on the premise that education is a life-long pursuit. From such
principles, the educational technology community generally believes that computerized
instructional environments bec 'me self-contained worlds that can enhance and motivate
learning--even if the environments themselves are r t intelligent.

Among research considerations pertaining to instructional environments are: (a)
levels of abstraction, (b) fidelity, (c) sequences, and (d) help routines. Abstraction means
what features of the real world are represented in the design of the environment while
fidelity refers to how closely the simulated environmeni matches the real world. Important
here are considerations of the different types of fidelity; for example, physical fidelity,
display fidelity, mechanical fidelity, and cognitive fidelity. Seque-ices means the framework
a designer constructs for learning complex skills. A learner progresses through a sequence
of increasingly complex microworlds, each providing new challenges and new sets of
achievable goals. By means of help routines the designer takes into account additional
information learners may need for operating the ITS. But there are different degrees of
help. For example, help tells a learner what to do. Assistance or active help actually does
the task for the user. In addition to help and such active assistance are empowering tools,
reactive help systems, modeling, and--finally--tutoring itself.

The several instructional environments Burton examines share a sophistication in
educational design. Burton's own research in sophisticated instructional environments is
well known in the intelligent tutoring heritage. In the electronic troubleshooting
environment of SOPHIE I (which stands for Sophisticated Instruction Environment), the
learner must find a fault in a broken piece of equipment. The tools are the measurement
devices, which receive their commands in English. The instructional environment of
SOPHIE provides circuit simulation, a natural language program, and routines for judging

7

the adequacy of student actions and for offering advice. Foundational research like
Burton's research on SOPHIE opened many doors for ITS designers.

Research opportunities in instructional environments exist in the near term and long
term. Generally, Burton sees near-term opportunities in taking advantage of new
technologies; the long-term focus of research will be more on basic scientific issues
concerning human conceptual problems. In the near future, studies that investigate the
power of various simulation kits or ITS design tools should give the research community
several environments to explore. The next generation of LISP processing machines should
also spur development of 1TSs as well as experimental testing of various intelligent tutors.
Instructional environments will be enhanced to take advantage of innovations in computer
hardware--graphics chips, for example. The ITS design community should also make
advances based on new technologies such as read-write optical discs, speech processing
input/output, and faster parallel machines.

The long-term issues center on scientific assessments of the ways environments are
conceptualized by experts, learners, and instructors. For example, what tradeoffs must be
made among the various environmental properties? What are the stages of
conceptualization in a problem-solving environment? How can an ITS use information that
the environment provides? Do we need color graphics? animation? natural language
processing? speech synthesis? Instructional environments must also support the
transformation from incorrect concepts to correct ones. How should that be accomplished?

Additionally, the research community should carry out studies to articulate
appropriate fidelity requirements and to identify meta-skills useful in dynamic, instructional
environments. It will also be necessary to study environments to support the teaching of
social skills as well as intellectual skills. Simulation kits provide several exciting possibilities.
Medium-scale testing of these in the classrcm environment will also be necessary.
Empowering tools that enable learners to design more explicit problem-solving settings for
themselves should provide some exciting research.

Creativity and cleverness mark the design of the few environments that have been
expressly designed for ITSs; creativity and cleverness will continue to be well exercised in
the design and development of future intelligent tutors. But success in building instructional
environments will largely depend on how well designed the ITS's human-computer interface
is.

V. THE HUMAN-COMPUTER INTERFACE

When considering human-computer interactions in ITSs, James Miller emphasizes
making appropriate tradeoffs in the design of ITS interfaces. The learner working with an
ITS generally has two problems. First, the learner must learn some subject matter that he or
she may not understand. Why else would an ITS be used? The other problem is that the
learner must use the technology itself in order to learn and is very likely not an expert user.
If the human-computer interaction is poorly designed, a training session will probably be
ineffective. Simply put, if the learner has to spend significant intellectual energy working the
computer, then the learner has less intellectual and emotional energy for learning what is
supposedly being taught.

The goal of interface design, therefore, is to make the interface transparent. The re-
search community is beginning to think of the human-computer interaction as a
communication problem and to design this interaction as a system of semantic and

8

contextual processes built on a solid conceptual model. The knowledge embedded in this
component of an ITS thus evolves from knowledge of previous computer systems, from
human interface research, from the real world objects that are being imitated in the
computer system, and from knowledge of the entire range of the communication process--
perceiving, understanding, and creating meaning.

The state of the art in interface research and development, Miller points out, allows
for two basic styles of design. The first allows users to become direct participants in the
domain; the second allows them to control the domain by instructing the system to carry out
desired actions. First-person interfaces, or direct manipulation interfaces as they are
sometimes called in the literature, are familiar as the icons in the images of the Apple
Macintosh personal computer. The soul of these interfaces is the icon whose manipulation is
intended to map directly to a desired outcome. The breakthrough for this kind of
interaction has been large bit-mapped displays and the mouse, a pointing and selecting
device. One of the advantages of iconic interaction is that learners do not have to
remember names of documents, commands, and so forth, because all of this information is
intrinsically part of the icon data structure. The strength of the first-person interface is its
self-evident properties; its weakness is extensibility. In the second-person interface, an ITS
user commands the system. Command languages are fairly well understood and can
powerfully interact with a system. The general thrust of endeavor in the intelligent tutoring
community, however, will be to minimize research on new command languages and
concentrate on more direct manipulation and interaction in the actual delivery of the tutor.

Where are the promising research opportunities for the interface design team in an
ITS project? First, the overall goal is to make the domain semantics visible. Studies that
illustrate ways of constructing models of complex domains with special support for learners'
acquisition of these representations and for special recognition of learners' corresponding
conceptual models should be especially valuable. Investigation of the various graphical
techniques for presenting models ilso offers a large payoff, especially if the graphical
models are linked to various stages of the conceptualization. This direction points research
of interfaces toward a few of the issues pertinent to the instructional environment, for
example, level of abstraction and fidelity.

Another interesting research issue will be developing tool kits for interface
development. Such kits would include direct manipulation techniques, natural language
interfaces, speech processing, videodiscs, touch screen technologies, and combinations of
these. How these technologies will evolve for intelligent systems users is difficult to predict.
When Miller speculates about the arrival of tomorrow's technology--three-dimensional
graphics, continuous speech recognition, mammoth displays--he doubts that it will be
immediately clear how to use this technology wisely. Finally, although many of the interface
technologies could help integrate the separate ITS modules, developers must still suit the
content to the interface and the interface to the content. If the interface is overdone and
calls attention to itself, then the communication between the student and the instructional
system will be impaired.

VI. ITS PRAGMATICS

Bill Johnson reminds developers of intelligent tutors that the day comes when their
systems--built in the laboratories--must make the transition to the real world. This
generates a number of pragmatic considerations. The individual modules, the
environments, the interfaces must be integrated into a working entity. An ITS must be used
in its educational, technical, or industrial setting. If the jury is still out on the success and

9

promise of ITSs as a mode of instruction, the answers to many implementation questions
have not been forthcoming either. Certainly it is true that nothing is as practical as good
theory; nevertheless, there are pragmatic issues beyond good theory. Who are the users?
What are the expectations? How can intelligent tutors be effectively implemented? Suffice
it to say that a person does not simply decide in a vacuum that an ITS is the most
appropriate means of instruction for a given domain--certain practical matters must be
considered.

The willingness of the sponsors and the users to adapt this technology is an important
practical consideration. Support must be generated across several levels of the affected
organization. Initially, someone must have a desire to implement the ITS. Whether it is to
introduce a new curriculum, to improve an old one, or perhaps to supplement existing
courses, someone in a position of authority must see a need to institute intelligent tutoring.
Then, that person must provide the necessary support both throughout the full research and
devclopment cycle and during the implementation of the system.

Five considerations are crucial to determining whether implementation of an ITS is
currently feasible. First, [TSs are ready for trial application but admittedly are in their
infancy at this time. Second, the programming tools developed in artificial intelligence for
knowledge engineering and intelligent authoring as well as the necessary "field" hardware
are not sufficient. Third, hardware and software are constantly changing--and with
increasing speed. Fourth, the demand for various personnel resources within the
development team is quite drastic--subject matter experts, students, instructors, computer
engineers, computer scientists, managers of advanced technology programs are all needed.
Fifth, evaluation of intelligent tutoring, or for that matter any evaluation of artificial
intelligence system, is expensive in terms of both money and time.

This initial picture may seem bleak but it is important to note these deficiencies. ITS
developers must present their research fairly. Researchers in artificial intelligence have
good reason to avoid publicity hype; it damages the credibility of the entire scientific
community. Naturally, implementation issues will change rapidly during the next few years,
but this state of flux justifies bringing the systems to the demonstration stage. Until the
scientists are more aware of the real-world demands placed upon ITSs, many of the
limitations cannot be reduced. Research must therefore be conducted in appropriate
educational or training settings. The emphasis should be on evaluating some phases of
these emerging tutors in the real world and on measuring their effect on their intended
users.

The demands placed upon ITS developers are extensive. However, the science is
indeed in its early years, and as more systems are built and implemented, the skills of the
designers will improve drastically. Obviously, the technology will be ever changing and the
development of ITSs will continue to require the effort of knowledge engineers, subject
matter experts, computer programmers, and specialists in the science of human factors.
These people ensure the efficacy of a necessarily complex system. Johnson offers a word of
advice: "Keep the need for active involvement of the domain expert throughout the
research and development cycle." Many times, the domain expert may not feel or
understand the need for some alien, automated teaching machine; yet much of ,he success
of an entire ITS project depends on the cooperation between the domain expert and the
knowledge engineer.

Providing valuable information is only one of the contributions domain experts make
to an ITS pro'ect. They also can identify criteria for selecting appropriate ITS instructional
objectives. Johnson presents several characteristics that help identify candidates for
applications areas: (a) high flow of students, (b) low availability of instructors, (c) expensive

10

real equipment, (d) remote site training, (e) unavailable real equipment, (f) high public
visibility, (g) unsafe real equipment, (h) high recurrent training volume.

These criteria for selecting appropriate applications for tutoring suggest domains
that are complex and technical by nature. For example, maintenance of expensive,
dangerous, and sensitive equipment is an excellent proving ground for ITSs. The intelligent
components of the system allow learners to explore the environments and use the
information conveyed by their instructors. Military technical schools are also prime
candidates for ITSs. No other organization can furnish the sheer numbers of students who
are available for relatively short periods of time. Not only are the requirements for the
trainees quite rigorous, but also the obligations and course demands felt by the instructors
are overwhelming--the task being to teach students from a myriad of backgrounds the
competencies and skills for a particular occupation. Training in personnel, procurement,
logistics, and space operations are all important domains for demonstrating that artificial
intelligence approaches to training are both needed and effective. Finally, industrial settings
also present an excellent opportunity for testing ITSs in the real world, and especially for
testing computer-assisted, on-the-job tools in which the "intelligent coach" is an embedded
feature, not an independent entity.

Johnson's bottom line is simply this: if ITSs are to reach their promise, then the labo-
ratory systems must operate and survive in the real world.

VII. ITS EVALUATION

David Littman and Elliot Soloway describe what has emerged as a serious gap in the
ITS literature--evaluation methods and quality control. Obviously, an intelligent tutor must
be evaluated so that one knows how good it truly is, and the evaluator must be able to
articulate why such systems are good or bad. To date, designers and evaluators have yet to
establish guidelines for use in judging a system's worth. In fact, evaluation is the aspect of
the intelligent tutoring methodology least written about. Science calls for empirical testing
of systems, theories, and models. Intelligent tutors have not, for the most part, met this
requirement of the experimental method.

Both formative and summative evaluations are important in evaluating instructional
products. Since the instructional impact of an ITS, that is, its summative evaluation, is
critically dependent on how well it was designed and built, Littman and Soloway properly
place primary emphasis on formative evaluation and a strategy for formative evaluation
specifically suited for ITSs.

Formative evaluations take place during the development of a system. As data are
collected and feedback received, scientists make changes. This ongoing process can involve
any of the modules in an ITS. Advice may come from the knowledge engineers, the subject
matter experts, and from early trials with potential users of the system. The system engineer
can circumvent bugs that would have occurred and anticipate other undesirable behavior
throughout the program.

Littman and Soloway emphasize the need for developing a systematic approach to
formative evaluation of ITSs, and they outline a two-part methodology for performing
formative assessments. The first part, external evaluation, focuses on the impact of the ITS
on students' problem-solving processes and is based on explicit models of how students solve
problems. Student modeling techniques are used to identify the kinds of problems students
should find hard to solve and easy to solve. An ITS can then be evaluated according to how

11

well it teaches students the specific skills they need to solve problems. The effectiveness of
the system is determined through measurement of observable phenomena that occur during
the learning process. Instructional experts should be able to recognize these overt signs and
determine whether or not the intended outcome was achieved. External evaluaLion can
make rigorous testing possible. Because student modeling techniques capture how students
solve problems, those techniques can be used to predict the ease or difficulty of additional
problems and the knowledge necessary to solve them. The performance of students actually
solving these problems can be compared to the predictions.

The second formative evaluation method, internal evaluation, addresses the question
of why the ITS behaves as it does. It involves analysis of the architectural components of the
ITS and the way these components respond to input values. Littman and Soloway
recommend that their internal evaluation answer three questions. First, what does the ITS
know? Second, how does the ITS do what it does? Third, what should the ITS do?

Littman and Soloway discuss many of the lessons their research group learned in
applying ideas for external and internal evaluation to an ITS called, PROUST, a LISP
program that finds the nonsyntactic bugs in PASCAL programs written by students and then
tutors the students about these errors. During the external evaluation, the PROUST
research group used its cognitive model of novice programming to determine whether
PROUST helped students acquire programming skills. One conclusion drawn from that
evaluation effort was that simply counting the number of answers a student got right or
wrong did not provide a useful measure of the effects of PROUST on novice programmers.
It appeared that a more fine-grained analysis was necessary. Therefore the evaluation
focused on PROUST's impact on specific "micro" problem-solving skiils such as students'
ability to determine whether a computer program is protected against certain invalid input
data.

The kind of evaluation Littman and Soloway propose has some intriguing
implications. One is that evaluation can help designers identify the kinds of reasoning
capacities their tutorial systems must have. For example, the PROUST evaluation
uncovered a need for the system to reason about how students name variables in their
programs. Without this reasoning capacity, the program was unable to completely
understand programs that humans find very easy to understand. When this capability was
added to PROUST, its tutorial performance was noticeably improved. Thus, evaluation can
have a very real impact on the design of tutorial systems.

VIII. TOWARD KNOWLEDGE-BASED EDUCATIONAL SYSTEMS

With only twenty ITSs scattered throughout the literature, a well-understood
technology for ITS development cannot be expected. More experience is needed, more
ITSs need to be built in exploration of the possibilities. However, the education and training
communities can expect high payoffs only when an ITS technology does formally emerge.
So, more ITSs need to be built not only for exploration, but for determining a generalizable
body of knowledge about how to build ITSs. This development will not be a simple task.
What is clearly understood, however, is that such systems will require seven kinds of
expertise, at least. This expertise pertains to the components that must be integrated as the
foundation for ITSs:

12

1. content expertise in the expert module,

2. diagnostic expertise (determining what learners know and need to learn) in
the student diagnostic module,

3. instructional and curriculum expertise in the instructor module,

4. expertise in creating instructional environments,

5. human-computer interface expertise,

6. implementation expertise, and

7. evaluation expertise.

These components comprise the anatomy of ITSs and together provide the educational
community with a basic conceptual model for designing, developing, deploying, and
evaluating machine tutors.

It is not easy to integrate all of this knowledge in a single delivery system. The hope
of achieving, through artificial intelligence, a rich, interactive, flexible, real-time capacity to
support learning is the basic motivation for research and development in ITSs. ITSs
promise not only to help people learn how to perform complex tasks better, but also to
reveal how people learn. This collection of essays examines the ITS's anatomy and proposes
two things: (1) achievable ITS capabilities for the near term and (2) fundamental research
questions that must be answered along the way toward more robust and effective,
knowledge-based educational systems.

13

REFERENCES

Brown, J. S., & VanLehn, K. (1980). Re pair theory: A generative theory of bugs in
procedural skills. Cognitive Science, 4, 389-426.

Brown, J. S., Burton, R. R., & deKleer, J. (1982). Pedagogical, natural language and
knowledge engineering techniques in SOPHIE I, II, and III. In D. Sleeman & J. S.
Brown (Eds.), Intelligent tutoring systems (pp. 227-282). New York: Academic Press.

Buchanan, B. G., & Shortliffe, E. H. (1984). Rule-based expert systems: The MYCIN experi-
ments of the Stanford Heuristic Programming Project (p. 576). Reading, PA. Addison-
Wesley.

Burton, R. R., & Brown, J. S. (1982). An investigation of computer coaching for informal
learning activities. In D. Sleeman & J. S. Brown (Eds.), Intelligent tutoring systems
(pp. 79-98). New York: Academic Press.

Carbonell, J. R. (1970). Al in CAI: An artificial intelligence approach to computer-assisted
instruction. IEEE Transactions on Man-Machine System, 11, 19-202.

Clancey, W. J. (1982). Tutoring rules for guiding a case method dialogue. In D. Sleeman &
J. S. Brown (Eds), Intelligent tutoring systems (pp. 201-225). New York: Academic
Press.

Clancey, W. J. (1981). The epistemology of a rule-based expert system: A framework for
explanation (Report No. STAN-CS-81-896). Stanford, CA: Department of
Computer Science, Stanford University.

Hollan, J. H., Hutchins, E. L., and Weitzman, L. (1984). Steamer: An interactive
inspectable simulation-based training system. Al Magazine, 5, 15-27.

Newell, A., & Simon, H. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-
Hall.

Woolf, B., & McDonald, D. D. (1985). Building a computer tutor: Design issues. AEDS
Monitor, 23, 10-18.

14

CHAPTER 2

THE EXPERT MODULE

John R. Anderson
Professor

Department of Psychology
Carnegie-Mellon University

Intelligent tutoring systems, by their name, arc supposed to bring intelligence in some way to
the task of computer-based instruction. There are two key places for intelligence in an ITS system.
One is in the knowledge the system has of its subject domain. The second is in the principles by
which it tutors and in the methods by which it applies these principles. Clearly, human tutors are
effective only when they possess both kinds of intelligence; lack of either component leads to
instructional ineffectiveness. Humans cannot tutor effectively in a domain in which they are not
expert, and there arc also inarticulate experts who make terrible instructors.

The focus of this paper is on the expert module of a tutor that provides the domain
intelligence. In my view, this is the backbone of any ITS system. A powerful instructional system
cannot exist without a powerful body of domain knowledge. Frequently and perhaps typically, the
expert modules in ITS systems are incomplete, and as a consequence, they can provide only part of
the instruiction required in the domain. All existing ITS systems need to be supplemented by human
teachers. So, for instance, Steamer (Hollan, Hutchins, & Weitzman, 1984), which is used to train
engineers about steam propulsion plants, knows a great deal about the mathematical properties of
steam but rather little about how to operate a steam plant. As a consequence, Steamer provides only
part of the instruction necessary to operate such plants, Nonetheless, it is judged to provide an
important component of the instruction.

A powerful expert module must have an abundance of knowledge. This is certainly the lesson
from the expert systems work in artificial intelligence. It is also the lesson from the study of human
expertise, where experts are invariably people with many years of experience. Hayes (1985)
investigated what It takes to achieve levels of performance commonly ascribed to geniuses in areas
ranging from mathematics to music. lie determined that no genius produced a truly exceptional work
without at least ten years of experiencc. Presumably, these ten years of experience were required for
enough knowledge to accumulate to permit the exceptional performance.

It should be emphasized that a great deal of effort needs to be expended to discover and codify
the domain knowledge. The shecr amount of knowledge required in most complex domains ensures
that developing the expert module will always be labor intensive. As techniques of intelligent tutoring
evolve, authoring systems might be expected to assume much of the work involved in tutoring.
However, authoring systems will never do the work of discovering and codifying the domain
knowledge. Already, we estimate in our applications to programming and mathematics that over 50%
of our effort goes into encoding the domain knowledge. This proportion will only increase as other
components become more automated.

Having decided that we nced to encode into the system a large and powerful body of
knowledge, we must confront the problem of how to encode that knowledge. There are basically

15

threc options. Tile first is to try to find sonic icans of computing Ilia(knowledge that does not
requirc our actually codifying the knowledge that underlies human intelligence. For instance, a
system can use mathematical equation-solving, which produces through numerical processes what
humans achieve through symbolic proccsses. SOP-IIE (Brown, Burton, & deKicer, 1982), for
example, used tile SPICE simulator for electronic circuits. This system performs its calculations by
mathemnatical relaxation techniques. It does not have human knowledge of electronic currents, but it
can still reason about them by simulating them with its mathematical model.

The second possibility is basically to go through the standard stages of developing an expert
system. This involves extracting knowledge from a human expcrt and devising a way of codifying and
applying that knowledge. Although the knowledge comes from a human, the way it is applied does not
have to correspond to the way the humnan expert applies it.

The third possibility is to go one step furthcr and make tile expert module a simulation, at
some level of abstraction, of the way the human uses the knowledge. This is clearly tile most
demanding approach to developing an expert module, but I will argue that experience shows this
approach to be essential to high-performance tutoring systems.

In general expert modules cannot be reviewed in the abstract. It is necessary to understand
how they will fit into an overall tutoring system. It certainly is the case that what is easy for the
expert module considered in isolation is not easy for tie tutoring system in total. Thus using a set
of mathematical equations, although expedient, would make it extremely difficult to generate articulate
instruction. Figure 2.1 illustrates the relationship 1 perceive between ease of development and
pedagogical effectiveness.

In what follows, the three approaches to the expert module will be reviewed, giving the
greatest emphasis to tie cognitive modeling approach, which lends itself most easily to powerful
tutoring methods.

. RELATIONSHIP OF EXPERT MODULES TO EXPERT SYSTEMS

Before analyzing the different types of expert modules, it is worthwhile to consider their relationship
to the expert systems of artificial intelligence (see Hayes-Roth, Waterman, & Lenat, 1983). The first issue is
to define an expert system. There are two notions of expert systems, one that is tied to a certain methodology
and a second that is criterion-based. A *knowledge engineering" methodology has arisen for developing expert
systems, and it involves deploying human-like knowledge in nonhuman ways. When I refer to expert systems, I
refer to products of this methodology. These are sometimes referred to as first-generation expert systems
because they tend to be narrow and brittle. Another definition would be criterion-based: Any system that
achieves high-quality performance could be classified as an expert system. Thus, because any kind of expert
inodule in an ITS must be capable of doing a complex task proficiently, it would be considered an expert
system if they model complex, demanding problem-solving. The reason I am not using the criterion-based

definition is that it does not enable me to distinguish between the expert module and expert systems.

16

MORE

COGNITIVE
MODELS

DECLARATIVE

W
0
LI-
LL. PROCEDURALw
z
0

z
w

w

;-: BLACK BOX

MORE
PEDAGOGICAL EFFECTIVENESS

Figure 2.1I. The Tradeoff B~etween the Pedagogical Effectiveness of an
Expert Module and the Effort of Constructing it.

17

It is particularly important here to consider what have been referred to as second-generation expert
systcms. These systcms have a more fundamental understanding of the domain and are not so
narrow or brittle. One does not yet get the same practical pcrformancc front these systems, but they
are often viewed as the hope of the future. Systems of this kind will be discussed under the category
of qualitative process models, a special kind of cognitive model. Qualitative process models arc
concerned with reasoning about the causal structure of the world. In actual fact, research in
qualitativc process models is only somctimes concerned with cognitive fidclity; however, the emphasis
here will be on research which does strive for cognitive fidelity.

Figure 2.2 illustrates some of tlc set relationships among the concepts we have defined so far:
cognitive models, black box models, expert systems defined by methodology, expert systems defined by
criterion, qualitative process models, and the expert module of an ITS. As can be seen, the
criterion-based dcfinition of an expert system is sufficiently encompassing to include everything except
thae cognitive models that concentrate on getting the details of some behavior correct. Black box
models, methodologically defined expert systems, and cognitive models all intersect with the expert
module of an ITS.

Work on expert modules could potentially increase the range of tasks that can be solved by
computers. Given the criterion-based definition, fundamentally expanding the boundaries of what can
be done by expert systems may be the long range consequence of the cognitive modeling approach
that I will be advocating. That is, it seems that a reasonable methodology for acquiring a working
expert system is to make a running simulation of a human expert.

This being said, it must be pointed out that no cognitive models to date have outperformed
expert systems developed with the knowledge-engineering methodology. So far, the constraint of being
true to human behavior has been more a burden than a stimulus.

By definition intelligent tutoring systems can only be built for domains for which expert
systems (criterion-defined) exist. This then poses an interesting question: Why build tutors to teach
topics for which we already have expert systems to perform the task? Even if we are faced with a
new domain requiring that a new expert module for our ITS be built, why not just quit at the expert
module? There are three standard answers.

(1) The need for robustness. It is generally considered desirable that humans be able to
perform functions that machines perform just in case these machines break down or are temporarily
inaccessible. Thus, even though calculators are common, we teach our children basic arithmetic
skills; and even though spelling correctors exist, it is considered valuable to know how to spell
accurately. Presumably, this need for robustness is especially strong in military domains.

(2) To establish prerequisite knowledge. Tutors can teach students knowledge that is often a
prerequisite to learning skills that an expert system cannot acquire. Thus, we need to teach calculus
problem-solving skills (Kimball, 1982) as a prerequisite to creating Ph.D. physicists. We need to
teach basic LISP programming skills (Reiser, Anderson, & Farrell, 1985) as a prerequisite to using
LISP for artificial intelligence programming. In effect, tutors can facilitate students' mastery of basic
skills before they learn advanced skills. Because the tutor cannot teach the advanced skill, a premium
is placed on having a tutor that smooths the transition from the tutoring environment to learning on
one's own.

18

EXPERT SYSTEMS
(CRITERION DEFINED)

BLACK
BOX MODEL

COGNITIVE
MODELS - ---.

MODULE
OF ITS

OUALITATIVE
PROCESS
MODELS

EXPERT SYSTEMS
(METHODOLOGY DEFINED)

Figure 2.2. The Set of Relationships Among Cognitive Models, Black Box Models,

Expert Systems Methodologically defined. Expert Systems Criterion Defined,

Qualitative Models, and tihe Expert Module of an urs.

19

(3) To teach part of a skill. A corollary of the previous answer is that tutors-can
sometimes teach part of a skill if not all of it. So, for instance, the Geometry Tutor
(Anderson, Boyles, & Yost, 1985) can tutor the generation of proofs but not their construction
because generating proofs is much more tractable than creating arbitrary constructions. We can
therefore provide tutors for a high-school geometry course. A variation on this is that we can
use the partial expertise of a system to provide partial feedback. So for proof systems that are
too complicated to build into a viable expert system, we can still tell a student whether a step
in a proof if logically correct although we cannot suggest the proof itself. Thus because we
have the necessary expert module, logical validity can be tutored, but the same is not true for
proof generation.

11. BLACK BOX MODELS

A black box expert is one that generates the correct input-output behavior over a range of
tasks in the domain and so can be used as a judge of correctness. However, the internal
computations by which it provides this behavior are either not available or are of no use in delivering
instruction. The classical example of a black box model is the original work on SOPHIE (Brown &
Burton, 1975). It used a general-purpose electronic simulator called SPICE II (Nagel & Pederson,
1973) and was intended to teach students how to troubleshoot faulty electronic circuits. The tutor used
its simulator to determine the reasonablcness of various measurements that the student would make in
troubleshooting the circuit. Because tle SPICE simulator worked by solving a set of equations rather
than by human-like, causal reasoning, it was not possible for SOPHIE to explain its decisions in
detail. Later versions of SOPHIE (Brown, Burton, & deKleer, 1982) utilized a causal model of
circuits to deal with this deficiency. We will discuss this causal model under the category of
qualitative process models.

One could imagine a black box expert for the game of chess that found good moves by
searching over millions of sequences of chess moves--somelhing that human chess experts clearly do
not do. Such a system could provide good advice about what move to make, but it could not explain
why. A similar idea is used in the WEST program (Burton & Brown, 1982), in which a black box
expert does an exhaustive search of the possible moves and determines the optimal move given a
particular strategy.

Clearly, such an expert can be used in a simple reactive tutor that simply tells students
whether they are right or wrong and possibly what the right move would be. Quite possibly such a
reactive tutor is more pedagogically effective than no tutor. The notion of a black box plus reactive
tutor is interesting because it suggests a cheap way of converting off-the-shelf expert systems into
tutors. Note (hat it is not limited to black box experts, but could be used with any type of expert
system (criterion definition).

However, the intelligent tutoring paradigm is based on the belief that what a tutor says is
critical and that it is helpful to say more than just "right," "wrong," and "do this." The question is
how to build a more articulate tutor around an expert system when knowledge of that system is not
accessible. One way to build such a tutor is with a methodology dubbed issue-based tutoring by
Burton and Brown (1982). The basic idea is to make patterns defined on the students' behavior and
the experts' behavior and to attach instruction to those patterns. For instance, one issue recognizer
in WEST is evoked when the expert chooses to bump and the student does not. (See Figure

20

s.A~.... .d. I..,~j~ I~S~ 5Z* ~ . .

IS ;~

X5?. .. .:E:t:.sq. ;sn . ~5l~s...

HIM5 . if g5 ol
MUM q55~ I, k51 1" ,, I..

1
.s.....

... IS.

5

.Offf~~.' HI.g
...J

......Stfzl
S.,;g ii i f f :;j;.5i

i~gre 2.. Tuorn of BumNg in WEST

2.3. It inerft wiha xlnto fth sflcso u p~ .. esos o h
isucbae reogizr noMosnl vnsbtptcu fevit nbc csse orsodIn

some fairlSsopeistiated ways

Figre2. ilusraesthebaicide o isu-orcuedtuorig asd o oscvig te urac
b .. havior oftee7r n0tesuet,2u-oine1conzrslo o oi oniuain o h
tw .u. cebhvos..tidiae..t..uo.l.su s iefrdicsin. Ti da fise
bae.uorn.svey.wr.ladnedntb esrce t.lc.bxmdls. I saprpit

for~~~~~~~ ~~~~ ote3id fepr ouc swl. Sfrisaci h emtyTtr(nesn

writte as i theywere),it prves t bc moe ccoom Tc e and ciciane to cod thsitreto7sa
issueOU reconiz. (e1ne on- surac beavor

21F" H

BL-ACK OUTPUT
BOX (e.g. Bump)

IN PU I-
(e.g. Game
Board)

STUDENT OUTPUT
(eq. Count)

TUTORIAL INTERVENTION

Figur 2.4. The Pattem Recognition That Underlies Issue-Oriented Tutoring.

However, as Brown and Burton recognized in their later versions of SOPHIE, there are things that
cannot be tutored by such surface-level issue recognizers. Access to the internal structure of the expert is
necessary for creating appropriate explanations. For instance, a standard mistake in geometry is to fail to use
the reflexive rule of congruence when appropriate. (Because the reflexive rule can apply to every object in the
diagram, there is a great potential for overusing it, and students appear guarded against overuse by never using
the rule at all.) A tutoring system cannot explain to the student why the rule is appropriate in a particular
context without access to the chain of reasoning that led the expert to conclude that the rule was appropriate.

Figure 2.5 illustrates the contrast between surface-level tutoring, which can be implemented with
issue-oriented recognizers, and the kind of deep-level tutoring that can be implemented if there is access to
the internal reasoning of the expert module. At the surface level we can note the legal problems with the
student's response (a) and point to the correct behavior (b). However, if we model the student's error, we can
explain the misconception to the student (c) and motivate the system's choice (d). Again, on the belief that
explanation is helpful, decp-level tutoring should be more effective than surface-level tutoring.

22

Surface Level versus
Deep Tutoring

Surface Level (a) "The side-angle-side rule
requires two congruent sides and
o congruent angle; you have only
given one congruent side and a
congruent angle."

(b) "Try to prove A -B A3"

(c) "To apply the side-angle-side
Deep Level postulate you have to establish AB

is congruent to itself. You cannot
simply assume it.'

(d) "Whenever you are trying to
prove triangles congruent it is a
good idea to prove that shared

A sides are congruent to themselves.
This will give you a,,poir of
corresponding parts.

C H B H D

Figure 2.5. The Conlrasl Jlclwcci Suifacc-Lcvcl and Dccp-l_.evel Tutoring.

23

I11. GL1I.ASS BOX IXI'ERT SYS'IENIS

A second category of Cxl)ert modules are tile Cxpc:t systeis that arc prototypically generatcd in the
knowledge-cngineering tradition. The basic methodology of building these expert systems involves a
knowledge engineer and a domain expert who can identify a problem area and its scope, enumerate
and formalize the key conccpts ;i the domain, formulaic a system to implement the knowledge, and
then iteratively test and refine that systcm. 'lIhesc systems are characterized by the great quantity and
human-like nature of knowledge that is articilatcd. The knowledge acquisition process is recognized
as the time-consuming component of building cxperl systems. and the one that great effort is being
expended in an allempt to automate.

By the very nature of the enterprise, the expert system that emerges from this exercise is
going to to be more amenable to tutoring than a black box model because a major component of this
expert system is an articulate, human-like rcprcscnlation of the knowledge underlying expertise in the
domain. The expert system methodology in its variations has been very successfully used to tackle a
wide range of intellectual behaviors. There are expert systems for interpretation, prediction, diagnosis,
design, planning. monitoring, debugging, repair, and control. Indeed, the expert system methodology
is one way of incorporating tutoring expertise when tile domain expert is also an expert teacher.
This seems to be Stevens, Collins, and Goldin's (1982) approach, for instance, to the development of
tutors. Curiously, there have been relatively few examples of the classic expert systems being used
as the expert modules of tutors. One example might be the use of MACSYMA by Genescreth (1982)
although it is questionable whether MACSYMA is really an expert system, methodologically defined.
The classic and well-analyzed case is GUIDON by Clancey (1982) which -is based on MYCIN.
MYCIN (Shortliffe, 1976), whose domain of expertise is the diagnosis of bacterial infections, is one of
the best known of the expert systems. It consists of 450 if-then rules, such as the one in Figure 2.6,
which encode bits and pieces of the probabilistic reasoning that underlies medical diagnosis.

IF
The infection which requires therapy is meningitis
Organisms were not seeni inl the stain of the culture
The type of infection is bacterial
The patient does not have a head injury defect
The age of the patient is between 15 and 55 years
THEN
The organisms that might have been causing the
infection are diplococus-ptieumnoniae(.75) and
ncisseria-meiriigiti dis(.74)

Figure 2.6. A Typical MYCIN Rule.

The basic instruction in GUIDON is driven by t-rules, which are an extension of Burton and
Brown's issue-oriented recognizers. T-rules (like tile issue-oriented recognizers) are defined on a
differential between the expert's behavior and the student's behavior, but they are also defined on the
expert's reasoning processes. An example of a t-rule is given in Figure 2.7. Note that this rule
refers to entities in the internal structurr of tlie expert such as rules and goals. The black box hns

been opened tip.

24

IF

The number of factors appearing in the domain
which need to be asked by the student is zero
The number of subgoals remaining to be determined
before the domain rule can be applied is equal to 1

THEN
Say: subgoal suggestion
Discuss the (sub)goal with the student in a
goal-directed mode
Wrap up the discussion of the domain being considered

Figure 2.7. An Example of GUIDON'S 'utorial Rules (Clancey, 1982). Reprinted with
permission of Academic Press, (D 1982.

Unfortunately, the actual reasoning process used by MYCIN to deploy its knowledge, an exhaustive
backward search, is not the way tie knowledge is deployed by humans. Figure 2.8 illustrates a
fraction of that structure. This mismatch between the control structure of MYCIN and that of
humans made an explanation of what to do next difficult. In addition, MYCIN's highly compiled
rules of reasoning were difficult for GUIDON to justify. Also, many of the MYCIN rules, although
appropriate for experts, were too complex to be directly taught to novices.

All of these difficulties led to the design of NEOMYCIN, in which an attempt was made to
impose a different control structure on the domain knowledge. The control structure is now a
domain-independent set of rules about how to use the domain rules. The currently active set of
hypotheses is contained in a new data structure that is called a differential and that is designed to
reflect some of the characteristics of human short-term memory. Also, a different data structure was
used for the t-rules to facilitate explanation.

The fundamental lesson of GUIDON is that for tutoring systems (o be truly effective, it is
necessary to pay attention not only to the knowledge in the expert module but also to the way it is
deployed. Many expert systems, although making use of human-like knowledge, deploy that
knowledge in the exhaustive manner so typical of computers. To be truly appropriate for tutoring,
the expert module must deploy its knowledge according to the same restrictions as a human does.
This principle leads us to the cognitive modeling approach.

Clancey's work was a watershed in development of intelligent tutors because it illustrated that
tutors were going to be seriously limited if they simply ported expert systems from artificial
intelligence. Consequently, subsequent research has focused on the use of cognitive models. In
many ways this research decision was a good one, but it has led to a neglect of practical issues such
as how off-the-shelf expert systems might be used. It would be comforting if there had been other
projects besides Clancey's that explored extensively the use of expert systems for tutoring.

25

LUA

6u CL

D=I co 0o 0ocKc)
LU

,2 CMam rLf.f- (00 U

LLU

LU C

1-. 00c

co- -

@

(14 LU 0 a

LU 0L r

Lu

LuU

cr--

U3U
ClU vL

c') C/3-A

((0

Ul Q)

LUL

-J C-4

26X

IV. COGNITIVE MODELS

The goal of the cognitive modeling approach is to effectively devclop a simulation of human problem
solving in a domain in which the knowledge is decomposed info mcaningful, human-like components
and deployed in a human-like manner. The mcrit of this approach is that it gives us the expert
module in the form that can be most easily and decply communicated to the student. However, there
arc real costs in this approach. First of all, developing cognitive models is a more constrained and
time-consuming task than simply developing expert systems. Fortunately, there have been dramatic
improvements over the past ten years in the ability of cognitive science to develop such models.
Thcse improvements have resulted at least in part from borrowing concepts fron the expert systems
work. A second difficulty is that running the computations of cognitive models can be quite
computationally expensive. Fortunalcly, increasing computational power is diminishing this concern.
Additional tcchniques for dealing with computational costs will be addressed later in the chapter.

Anolher complexity is the issue of the amount of dctail to be incorporated into a cognitive
model. Many of the factors that are incorporated into sonic psychological simulations, such as the
exact mechanisms of short-term memory scarch, seem irrelevant for tutoring. Faithfully modeling
phenomena in an expert module adds an unnecessary computational burden. The question arises,
which psychological components are essential for purposes of tutoring and which are not. I have
argued (Anderson, in press) that tutoring systems depend on cognitive assumptions at the algorithm
level and not at the implementation level. The algoritlhm level refers to high-level specification of
mental computation that ignores issues of neural implcmenlation. The obvious analogy is to a
program specified in a high-level programming language that does not address issues of machine
implementation. The best exemplars of algorithm level systems are the problem-solving models (e.g.,
Newell & Simon, 1972).

In discussing cognitive systems it is useful to distinguish between three types of knowledge that
need to be tutored. There are domains like calculus problem solving where the main knowledge to
be communicated is procedural- that is, knowledge about how to perform a task. There are domains
like geography where the tutorial goal is to convey declarative knowledge in the form of a set of facts
appropriately organized so that one can reason with thcni. Declarative knowledge contrasts with
procedural knowledge in that it is more general and not specialized for a particular use. Third, there
is causal knowledge in the form of qualitative models, about a device that allows one to reason (in a
task like trouble-shooting) about the behavior of thal device. I have listed these types of knowledge
in the order that they will be discussed. Coincidentally, the current success of our cognitive theories
in dealing with these types has followed the same order. These classifications also have implications
for the types of curriculum and instruction used to impart them, which is discussed by Halff (see
Halff's chapter, this volume).

V. PROCEDURAL KNOWLEDGE

Our relatively advanced ability to model the procedural knowledge underlying human problem solving
probably owes a lot to the importation of ideas from expert systems. Almost uniformly, the standard
representational formalism has been some kind of rule-based system just as in expert systems. This
rule-based approach is taken in tie LISP Tutlor (Reiser, Anderson, & Farrell, 1985), the Geometry
Tutor (Anderson, Boyle, & Yost, 1985), Algebra (Brown, 1983), BUGGY (Browln & VanLehn, 1980;
Burlon 1982), and the LEEDS modeling system (Sleeman, 1982) among others. The dominant type
of rule-based system takes the form of production systems, which arguably provide good models of
human problem solving (Anderson, 1983; Newell & Simon. 1972). Although there are many

27

variations on production system models, they all involve a set of if-thcn rules matched to a working
memory of facts. The working memory embodies sonic of the basic short-tcrm memory limitations of
the human. The production rules with their recognize-act cycle capture the basic data-driven character
of human cognition. One of the recent advances in production system models has been a set of
ideas for modeiing human learning within these models (Anderson, 1983; Holland, Holyoak, Nisbett,
& Thagard, 1986; Laird, Rosenbloom, & Newell, 1986; Langley, 1985; VanLehn, 1983). This is
an exciting potential for intelligent tutoring systems because of the prospect that the tutoring
component can make its decisions by reference to the simulation of the student learning. Although
this is an exciting possibility, no current tutoring systems actually use a learning simulation in this
way. This iP t :g"'y becaue Ihcse learning ccmponents arc rccent and tend to be very expensive
compulationally.

An exemplary set of procedural rules, shown in Figure 2.9, represent the skill underlying
multiple-column subtraction in the Brown and VanLehn model of subtraction skills. They make the
point that the underlying knowledge is very use-specific. Although this knowledge is derived from the
basic properties of addition, the actual rules are quite specific to subtraction and would not generalize
to addition. Thus, for instance, we have rules about borrowing rather than rules about carrying,
even though borrowing and carrying arc based on the same abstract rules of arithmetic. The choice
of using a procedural knowledge representation involves deciding whether such a use-specific
representation of the knowledge is appropriate. It certainly is the appropriate model in the case of
human subtraction skills because they have very little to do with addition skills.

The Brown and VanLchn work illustrates one use to which we can put procedural
representations. Brown and VanLehn propose that studci s make errors when they try to repair their
procedures at the impasses created by the missing production rules. By assuming that specific
instances of these rules arc missing, we can predict such students' errors. Extending a rule-based
model to predicting errors puts an additional (emland on its psychological reality. The rules in such
a system now must capture the units of human knowledge because loss of the rules must correspond
to human errors. If the rules were not the units of knowledge, then their loss would produce errors
that are not seen in human behavior.

Their modularity is one of the major advantages of production rules for purposes of
instruction: each production rule is an independent piece of knowledge. This means that a rule can
be communicated to the student independently of communicating the total problem structure in which
it appears. This is not to say that production rules are context free. Rather, they specify explicitly
that part of the context that is relevant. So, for instance, if a production rule for using vertical
angles in geometry makes reference to a goal of proving angles congruent, reference can be made to
that feature of the problem and only that feature in explaining the rule: "When you are trying to
prove triangles congruent and they form vertical angles at one of their vertices, it is a good idea to
prove these angles congruent by vertical angles. This will yield a pair of congruent corresponding
angles which will help you prove the triangles congruent." A frequent problem with earlier
production rule models (Anderson, 1976; Newell, 1973) is that contextual contraints on the rules were
not transparent. Rules had special tests built into their left-hand sides that constrained when they
would apply; but it was difficult in looking at such rules to imagine when those tests would be
satisfied. The current generation of goal-factored production systems (Anderson, 1983; Laird,
Rosenbloom, & Newell, 1986) offer a substantial solution to this problem by making explicit reference
in their conditions to goals that the production rules are relevant to. These goals, being structures
with well-defined semantics, facilitate the process of communicating to the student the relevant
information about contextual constraints.

28

.0

.0

C..-

C.0

06

C.) C.a- 0 M
0 4..d

4.'

0 0)

000

.E~
00 0 0 4

0 -l Z)0
m 0 0 % 0) .~ N _j

CO~- 0 E E 4E
_~ .2,w ~ 2 0 C

-
..E .. -

.co~ ~~ o~ =9~ %.O 0 00Ca0
aU Ur 7() 0'Cr .- <D 0: 00f .m.2a

W = 0 2
U) 000cA CDr mr -j"

0- 0 0100

C 0~I 0 C
0D to- 0 0 .a c

> CD 0- 00

.0 0

o 0 Q 0 .0 A

10 0
I.- Cl)

0 A UJ~* CA A -; A 0 AA .

Wi; CUW

Ow ca u: -'o

0u -6. ..~. .o . . E N 4
(n I* *L - a- M -0

04- (U 0 0i. 0.L.

0c) 0 Cf) m

29

Another advantage of the mnodularity of production rules is that we can use the rules to
represent the student's knowledge stale. That is, the student's knowledge slate can be diagnosed as a
set of production rules. We can then use curriculum selection techniques, such as were pioneered
with BIP (Barr, Beard, & Atkinson, 1975; Westcourt, Beard, & Gould, 1977), in which problems are
selectcd to exercise instructional units that the student has not mastered. In contrast to BIP,
however, the problem selection can be defined in psychologically real units rather than by somewhat
arbitrary topics. In recent work with tile LISP Tutor (Anderson, in press), we have found that the
underlying production rules seem to be learned systematically and independently of one another.
Selecting problems to exercise those productions diagnosed to be weak leads to improved learning.

Model T-"-cing

One of the major advantages of the rule-based approach is that it makes possible the
implementation of a tutoring methodology called model tracing. This is a technique used in WUSOR
(Goldstein, 1982), in Kimball's integration tutor (Kimball. 1982), in Spade (Miller, 1982), as well as
in our own Geometry and LISP Tutors (Anderson, Boyle, & Yost, 1985; Reiser, Anderson, &
Farrell, 1985). In model tracing we try to pace the student's surface behavior in solving a problem
in correspondence with a sequence of productions that are firing in the internal student model. This
correspondence then can be used to place an inlerprctation over the student's surface behavior.
Clearly, the richness with which the student's behavior can be interpreted will map onto tle richness
of subsequent instruction. In our own research, which has a strong commitment to immediate
feedback, tie major function of such a model trace is to provide feedback on errors as close in time
to the student's commission of these errors as possible. However, this is by no means the only
function of model tracing, nor is it the only function for which model tracing has been used.
Indeed, I would say our use of it for immediate feedback has been relatively unique,

Although it is nice to be able to interpret a student's thinking at every step through the
problem solution, model tracing creates a number of demands which are quite stressful
computationally. The major stress derives from the non-dterninisn of the underlying student model.
Typically, at each point there are a number of correct or incorrect productions that can fire. The
combination of a few layers of production firings creates a space of thousands or millions of possible
sequences of production firings. Managing this space of possible interpretations is naturally easier in
the presence of a rich behavioral trace from a student. Ideally, if each production rule has an
observable consequence, then the non-determinism call be pared down at each cycle of tle production
system. Providing such a rich behavior trace creates an interesting demand on the inte|face design.
Sometimes, however, efforts to obtain a rich behavior trace can lead to awkward and artificial
interactions. For instance, in some of our endeavours we have tried to create a trace by interrogating
students about their intentions at points of ambiguity. Students report this to be an annoying and
distracting feature of our tutors.

Even in the best of all possible worlds where each production has a behavioral consequence,
there are problems of ambiguity in which multiple sequences of production actions will generate the
same observed sequence of student behaviors. This is a problem particularly when some of these
interpretations are correct and some are in error. The tutor must either delay feedback until the
ambiguity is resolved or interrupt with distracting questions. For instance, suppose we have a student
who is trying to code whether a is less than 2% of c and the student writes,

30

(> (/ a c) .02).

At what pointl cani we tell tlie studcent tha;t (lic choice ">" is istapproprialc7 Clearly, not wien
it is typeCd hccatisc (lie student CoulII(C iintendiing to rcvcrsc the argminus. As it turns out, the
ambm0gii ity is n~ot resolved when il(Ie dlivision signi is cncounicrecd cubler, licciis [lie stuident could havc
b)CCIiniiciIling

(> (/ c 50.0) a).

The~ -imbiguity is resolved only when (lie a is eimcd. Figure 2.10 is an attempt to illustrate a

Small p.11.t of tie problcem space asoCimte withi this problem~ id the ambiguity in that problem space.

0

.02 0

C a .02 c 50 c

Figure 2.10. Sonmc of the Correct anid BUGGY Code Sequences That a Student Might
Enter to Detcrmine Whether a Was Less Tan 2% of c.

rleearc also serious p~roblemls with (tic efficicncy of running produclion systems. Despite
the recent advances in the 01'S familty of production systems they arc still not tihe world's most
efficient computational formtalismi (Forgy, 1982). A critical feature of any expert module is that it
run sufficicntly rapidtly so that the student is not left waiting too long (luring its computations. One
solution is to build more efficient donmainl-spccific pr-o(uction systems. In our owmi work wc have had
to btuild such domain-specific productionI systemis thiat were optimized to take advanitage or special
domain features.

31

Compiling tile Expert Out

Many formalisms for expcrt modules, including production systems, can be very expensive in
terms of time and space. This makes it difficult to deliver tutorial instruction on economically feasible
machines. One way of dealing with this problem is to perform in advance all the possible
computations of tlie expert for a particular problem and to store them in some efficiently indexed
scheme on disk. This method, which we call "compiling the expert out," has been used with
success in some of our applications. The cost is that they can tutor only a specific set of problems
on which the expert has been run. The dynamic ability to tutor any problem the student might enter
is lost. However, in some applications this tradcoff may be well worthwhile.

VI. DECLARATIVE KNOWLEDGE

Both the weaknesses and strengths of procedural knowledge representations are derived from the fact
that they are use-spccific. In somc instances more generalized declarative knowledge may be desired.
In many cases we want the students to understand thc basic principles and facts of a domain and how
to reason with these generally, but arc not concerned that the student become particularly facile at
any one application of the knowledge. These arc the situations that call for declarative knowledge
representations.

It is not the case that the goals of procedural tutoring and declarative tutoring are mutually
incompatible. We might well want a student to be both facile with the rules of a problem domain
and articulate about the justifications for the rules. This seems to be the case in the domain of
medical diagnosis, for instance (Clancey, 1982). Another need for declarative tutoring is illustrated in
our LISP Tutor, for which we have created a special text book (Anderson, Corbett, & Reiser, 1986)
for teaching the declarative underpinnings of the procedural knowledge the LISP Tutor teaches. It
clearly would have been better to have extended the LISP Tutor to cover what is in the text book.
In fact. it is part of our general theory of knowledge acquisition (Anderson, 1983) that knowledge
must start in a declarative form before becoming proceduralized.

The SCHOLAR project (Carbonell, 1970) was anl early example of a project whose goal was to
communicate information about South American geography. It was Carbonell's belief that the
semantic net representation of the knowledge base used in this project was close to the internal
knowledge structure of humans. This belief that was reinforced by a fair amount of contemporary
experimental work (,.g., Collins & Quillian, 1972). Figure 2.11 shows a fraction of the semantic
network Carbonell was working with. It consists of nodes representing various concepts like countries
and products linked by various relationships such as part-whole or generalization hierarchy. These
links were used to define certain fundamental inference processes on the network. For instance, the
system can conclude that Santiago is in South America because Santiago is in Chile and Chile is in
South America.

Subsequent to Carbonell's work, knowledge representations with semantic ,nets have become
considerably more sophisticated and have evolved into frame and schema systems (Bobrow &
Winograd, 1977; Brackman, 1978; Goldstein & Roberts, 1977; Minsky, 1975; Schank & Abelson,
1977; Stefik, 1980). However, the central idea has remained the same: We want hierarchical
representations of knowledge structured such that flexible inference procedures on the knowledge base
can be defined. Note that, in contrast to procedural rel)resentations, tie knowledge base is separate
from the inference procedures that are built on them. This clean distinction has been somewhat
blurred by the use of "procedural attachments," in which various slots in the schema representations

32

have procedures attached to then to define how thcy should be filled. But we still have a
fundamental separation in a schema system bctwccn knowledge and control. This separation does not
exist in procedural systems.

(SUPERC (4TATE INDEPENDENT))
(SUPERP CONTINENT)

-AT-UDE(EXAMPLES 0 ARGENTINA
BOLIVIA BRAZIL

,URUGUAY U.S. VENEZUELA)

URUGUAY
CONTNENT(SUPERC COU TRY)

(SUPER OUNTRY)
(LOCA N SOUTHIA MERICA(,,LIATITUDE (RAN ;E-22-'55(BORDERINGICOO. TRIES

S OUA E EUE

Figure 2.11. A Portion of the Semantic Net in SCHOLAR (Carbonell. 1970). Reprinted
with permission of IEEE, (D 1970.

33

Carbonell's work has been continued by Collins (Collins. Warnock, & Passafuime, 1978;
Stevens, Collins, & Goldin, 1982), Figure 2.12 illustrates one of the schema representations
developed for evaporation, which is part of the knowledge base in the curriculum on rainfall. It is
basically a schema representation consisting of various slots and fillers. In this case, there are slots
for tie actors in tie evaporation schema, for thc factors that influence the amount of evaporation, for
the functional relationships among these factors, and for the result of evaporation. Bugs arc created
by various fallacious entries in these slots. So, for instance, many people believe that the sun is
directly responsible for evaporation rather than that cvaporation is a function of the temperature of the
air mass and (lie water mass. This belief shows up as an crroncous filling in of the actor slot.
Another bug involving the actor slot of this schema is what Collins calls the "small-moisture-source"
-- the idea that any body of water inchlding a small pond is sufficient to produce rainfall.

Evaporation

Actors
Source: Large-body-of-water
Destination: Air-mass

Factors
Temperature(Source)
Temperature(Destination)
Proximity(Source, Destination)

Functional-relationship
Positive(Temperature(Source))
Positive(Temperature(Destination))
Positive(Proximity(Source, Destination))

Result
lncrease(Humidity(Destination))

Figure 2.12. A Schema Representation of Some of tie Knowledge Underlying Our

Understanding of Evaporation (Stevens, Collins, & Goldi, 1982). Reprinted with
permission of Academic Press, ©c 1982.

The implicit presupposition in tutoring such knowlcdgc bases is that the student already has the
general inference procedures to be able to reason- about the knowledge and that the real task is
therefore to represent (lie knowledge in such a form that these inference procedures can be invoked.
At some level this makes for a simple tutorial agenda, namely, to determine what a student has filled
in at each slot and to fill in the missing information and debug the misconceptions. The major
difficulty posed for tutoring systcms is that declarative knowledge cannot be run the way procedural
knowledge is, and so the criterion "if the student can use it, he knows it" does not apply. For
declarative knowledge tutors it is typical to fashion and interpret complex natural language dialogues.
To understand these dialogues it is necessary to understand how students make Inferences from their
declarative data base. and a good deal of Collins' work has been devoted to just this (e.g., Collins,
Warnock, Alello, & Miller, 1975).

34

In contrast with luloring proccdural knowlcdge, tutoring dcclarative knowledge necessitates
facing up to the full complcxity of mixed initiative dialogues. The student says somcthing that has to
be clarificd, which leads the tutor to ask a question, to which the studcnt reacts with a question of
his own. ctc. One of the functions of the Socratic dialogues promoled by Collins and others is to
lamc this process. Socratic dialogues really give tei control to the tutor who asks a series of
questions to which the student is supposed to respond. It a true Socratic dialogue both instruction
and knowledge assessment are supposed to bc handled by asking questions. It might seeni a bit
unnatural to instruct by asking questions, but thcrc arc proven psychological benefits to knowledge
that is generated rathcr than received (Bobrow & Bower, 1969). Moreover, asking questions enables
the tutor to assess how well the instruction is being received. Figure 2.13 presents a piece of the
Socratic dialogue with Collins' WHY systcn. Note that the discussion takes place with respect to
specific cases. So, for instance, in Figure 2,13. WIlY docs not directly ask the student whether
thcrc is a positive functional relationship between the temelwrature of the source and evaporation.
Instead, it probes the student's ability to apply this knowledgc to the Amazon.

WHY: Do you think the AMAZON jungle has heavy
rainfall or light rainfall?
(Ask for a prediction about a particular case)

STUDENT: Heavy rainfall

WHY: Why does the Amazon have heavy rainfall?
(Ask for prior cause)

STUDENT: Because it's near the Atlantic

WHY: Yes, the Amazon jungle is near the equatorial
Atlantic. How does that affect rainfall in the
Amazon jungle?
(Ask for intermediate cause)

STUDENT: The water in the current is warm.

WHY: Do you think that any place with mountains
has heavy rainfall?
(Form a general rule for insufficient cause)

STUDENT: Yes

WHY: Southern California has mountains. Why doesn't
Soulhern California have heavy rainfall?
(Pick a counter-example for an insuffient cause)

Figure 2.13. An Example of a Socratic Dialogue (Stevens & Collins, 1977.)
Reprinted with permission of Association for Conutiing Machinery, Inc., @ 1977.

35

Collins formulated a set of tutoring rules for implcmenlitng the Socratic method. Figure 2.14
illustrates one that was involved in the qucstion at the end of the sample dialogue. There are a
couple of noteworthy features about such rules for Socratic tutoring. First, they have a family
resemblance to the issue-based recognition rules we saw with the black box and expert models. Note,
however, that the conditions of such rules refer to the underlying knowledge rather than to the
surface behavior of the expert. Second, these rules involve a curious mix of knowledge assessment
and instruction. The rule in Figure 2.14 could be used to determine that the student is aware of all
the factors underlying rainfall but has just not mentioned them. or it could be used to make the
student aware of a new factor. Evoking this rule does not entail a commitment to tie intended
pedagogical outcome.

IF
The student gives an explanation of one or more
factors that are not sufficient
THEN
Formulate a general rule for asserting that the factors
given are sufficient
Ask the student if the rule is true

Figure 2.14. An Example of a Rule for Socratic Tutoring (Collins, 1976.) Reprinted
with permission of Lawrence Erlbauni Assoc., Inc., Publishers, (1976.

It should be clear that understanding natural language is the Achilles' heel of any effort to do
such declarative tutoring. There have not been a great many of these tutors. Collins' and
Carbonell's work is the only notable instance, and I think the difficulty of the natural language
problem is the principal reason why. This area of intelligent tutoring is certainly waiting for
fundamental progress in natural language processing.

VII. QUALITATIVE PROCESS MODELS

A third category of expert module is concerned with the knowledge that underlies our ability to
mentally simulate and reason about dynamic processes. As noted earlier, this is an important
component of the ability to engage in trouble-shooting behavior, which involves reasoning through the

causal structure of a device to find potential trouble spots.

Models of qualitative reasoning are in a relatively immature state compared to the schema and
rule-based formalisms of artificial intelligence. A number of notable research efforts are developing
such models (deKlcer & Brown, 1984; Forbus, 1984; Kuipers, 1984), but there is hardly an
established methodology for using them. deKleer's work on envisionment is an interesting case in
point because it evolved within the context of the SOPHIE project and the need to communicate to
students the causal structure of an electronic circuit.

deKleer and Brown divide the process of envisionment into constructing a causal model and
then simulating the process in this causal model. Figure 2.15 illustrates their conception of this

36

process. The causal structure of thc device is infcrrcd front its topology by examination of the local
interactions amiong comiponcnts. The assuniption is that this causality can be understood locally, and
it is called the "no function in structure" principle. Wtico this principle is violated and description
of a coinponcrnt makcs reference to thc functioning of thc whole device, there is a danger that that
comiponcrnt will assumec the functioning of the deCvice rather thant explain it. Having this causal
niodel, dcKlecr and Blrown then use a calcuilus to propagate the behavior of the device through thcsc
coniponcnis. Much of the current work on qjualitative miodtls is conccrucd with various calculi for
such propagations.

physical device ~prodicions

do:; cuplionI of .slriclwoeIdevice topology running:1 nollsini l)alion0
component model-,

en visioning: iinferring causality

P envisionments: plojectIlon '-1*asl oet 1o of -causal models selection - cua oi

Figu~re 2.1.5. The Dcelopnicnt of a Qtialitative Simutlation According to decKicer &
Brown (adapted froiu Wenger, 1987). Rcpritctd with permnission of

Morgan Kaufmann~ Publislicrs, In1C., ©D 1987.

Figure 2. 16 illustrates one of Ilic devices, a pressure regulator, which has been a focus of
clcKlccr and Birown's work. Dt consists of a set of coiplonenits. such as a valve, which operate o1)
certfainl local inputs. So, for instance, (the valve operIates so that the aniouInt of water flowing through
it varies with the pressure~ and the positionl of the valve control. This relationship is exp~ressed by
what delcr and Birown call a confluenice, which, is a constraint amiong variables. The confluence

for the valve is

dPlln0oti +' dQ,,~v + "i = 0

whecre dP' 11 ,ps is the change in pressurie.

dQIv)is the change infnow,

and dX,-r is the position of the valve control.

The entire device is modelled by a set of such confluentces. Reasoning about it involves
tracing the constrain'ts amnong tic equations.

31

The psychological status of this work is quite ambiguous. As deKleer and Brown note, the
no-function-in-structure principle is constantly violated in human reasoning. What they are trying to
develop is more on the order of a prescriptive model of thinking. A constraint in this prescriptive
model is apparently that it should be easy for humans to follow these prescriptions even if they
normally do not. Such a prescriptive model is certainly appropriate as an expert module for an
intelligent tutoring system.

It is not clear to me whether qualitative models really involve a category of knowledge
fundamentally different from procedural and dcclarative knowlcdgc. It might be argued that people
have a set of declarative knowledge structures for representiing the form and function of various
devices and a set of procedures for reasoning about the causal interactions among these devices.

IN OUT

+

Ot + ON I--. 0, 2- + 0 T2

PIN SMP POUT SMP

Figure 2,16. dcKlcer & Brown's (1984) Representation of a Pressure Regulator.
Reprinted with permission of Elsevier Science Publishers, B.V., The Netherlands. (!984.

The real difference may not be in the knowledge type but in the indirectness of the knowledge
so represented. The end goal in applications such as electronic trouble-shooting is not to have the
student correctly simulate the causal interactions in a circuit but to use that ability in service of the
problem solving involved in trouble-shooting. Thus, one of the issues that arises in a tutoring
context is how to use the qualitative knowledge in a larger problem-solving context. This issue has
largely not been addressed in the work on qualitative reasoning.

38

As a consequence, how to include qualitative simulations in a tutoring paradigm has yet to be
worked out. Qualitative simulations can obviously be used in all the ways a black box model like
SPICE can, but this hardly justifies their development. There is the obvious potential for using them
in explanations in which the tutor would tell the student how it reasoned to a particular conclusion
about circuit behavior. White and Frederiksen (1986) at Bolt. Beranek and Newman use such
models to actually define tie curriculum sequence. There is also a need for more psychological
study on how such process models arc actually used in trouble-shooting. While I think it is clear
that such models are used and that systems like deKleer and Brown's have at least a family
resemblance to human qualitative reasoning, I think we know virtually nothing about how humans
deploy these simulations to achieve their goals. Interestingly, there is a considerable body of negative
results in getting students to bring mental models to tasks such as trouble-shooting (Rouse & Morris,
1985).

The other possibility for qualitative models is to generate articulate simulations of a particular
system such as in the Steamer project or in SOPHIE. The simulation can illustrate the qualitative
transformations assumed in the qualitative simulation. '[he assumption is that there is a pedagog;cal
benefit to illustrating a process in the same terms as a student should use in reasoning about it.

VIII. BASIC RESEARCH ISSUES

Although there has certainly been dramatic progress in our understanding of how to build the expert
module for a tutoring system, we need a great deal more basic research before construction of expert
modules can progress as an engineering enterprise. As we saw in the work on expert systems, there
are real limitations in using work from artificial intelligence, which has progressed without concern
for cognitive fidelity. We still need to deepen our understanding of human cognitive processes and
how they can be modelled. For instance, theories of learning, in contrast to theories of performance,
have yet to be integrated into tutoring systems. The range of tasks for which accurate student models
can be reasonably produced is relatively narrow and consists of tasks that arc algorithmically tractable
and that do not involve a great deal of general world knowledge. A prime example is calculus. To
understand human expertise more generally will involve a great deal more empirical and simulation
research.

Also, our understanding of the learning processes by which knowledge is acquired is still quite
primitive. Evidence of this is the fact that no tutoring system actively uses a learning model in its
computations. Any pedagogy needs to be rigorously founded in a theory of learning. Obviously, the
cognitive science efforts in learning (Anderson, 1983; Holland, Holyoak, Nisbett, & Thagard, 1986;
Laird, Rosenbloom, & Newell, 1986; Langley, 1985; VanLehn, 1983) are prime candidates for
support. Related to issues of learning are the issues of the origins of bugs. As is illustrated in the
work on BUGGY, the representation of knowledge can be closely connected to possible bugs.
Currently, most tutor builders have to invest large amounts of time building up bug catalogs. It
would accelerate the development of tutors if we had a theory or theories of the origin of bugs.

There seems to be little point in supporting work in artificial intelligence, which is not
cognitively motivated, if we want to further the goal of developing intelligent tutoring systems. There
are two domains in artificial intelligence that are exceptions, however: qualitative process models and
natural language processing for tutorial dialogues. Our need for mechanisms in these fields is so
great that insisting on cognitive fidelity in the artificial intelligence system would be premature.

39

Development of tie expert module is not independent of tie rest of the tutoring system in
which it resides. Much of my discussion of the expert module has been concerned with its
implications for other components of a tutoring system. Although there is need for research on
models of human expertise in the abstract, there is also need for research on how such modules will
lit into an overall tutoring architecture. We have seen that 'ious types of modules tend to be
linked to various styles of tutoring -- black box models with issue-based tutoring, cognitive rule
systems with model tracing, and declarative systems with Socratic tutoring. There is room for
expanding our catalog of architectures and their relationships to expert modules. We also need to
explore how the design of an interface can change the nature of the expert module. To take a
simple example. the advent of structure-based editors has eliminated the need for programming tutors
to be concerned about teaching syntax.

Finally, we need a meta-theory of the expert formalisms we are using and of how they can be
taught. Right now the development of expert modules is the domain of a few cognitive scientists even
more select than the builders of expert systems. We need to develop methods for teaching the use of
cognitive science formalisms to curriculum developers. Not only is this an important practical goal,
but in pursuing it I think we will come to a deeper understanding of the nature of a cognitive
theory.

I think we are in a position to develop an authoring environment around expert system
formalisms such as production systems or schema systems. We could develop a set of tools and
instructional materials that would make it easy for curriculum developers to use these systems. The
first steps towards tutoring systems that teach students how to program with production systems already
exist (Zhang, 1986). The facilities for actually delivering the tutoring could be made a prepackaged
part of the authoring environment. All the curriculum designers would have to do is develop the
expert module which, of course, is currently half the job of developing an intelligent tutoring system.
However, delivery of the tutoring could at least be automated, and the expertise for developing the
expert module could be more widely distributed.

IX. NEAR-TERM GOALS

Relatively little activity is currently occurring in intelligent tutoring that does not have the status of a
basic research project whose goal is to get more basic knowledge rather than to actually build useful
intelligent tutoring systems. However, the point has been reached where a few applications are
feasible, and it might be worthwhile to pursue some of them, both for the relatively immediate benefit
and for some sense of how the engineering of these projects will progress.

In my view the one area in which we might develop reasonably good cognitive models that
could be made part of intelligent tutors is that of rule-based systems for algorithmically tractable
domains. These domains include mathematics at the high school or junior-college level, basic
sciences like physics, basic electricity and electronics, some engineering and statistics, introductory
programming, and use of various packages like LOTUS 1-2-3. This is not to say that development
in these domains will be cheap. It will probably take hundreds of hours to just analyze and codify
the expert module for each hour of instruction, let alone build a full tutor. However, such time
frames are at least within the same order of magnitude as those that go into building conventional
educational software.

Another area that may yield some short-term payoff is use of off-the-shelf expert modules
either developed as black boxes or developed out of the knowledge engineering tradition of artificial

40

intelligence. This tactic circumvents the hundreds of hours that go into building the expert module.
As we have seen. issue-oriented methodology shows zome potential for utilizing these tutors. Basic
researchers have been somewhat reluctant to follow up these issue-oriented methods because of their
perceived limitations. Researchers have been moving to expert modules with greater cognitive fidelity,
and even if they continue to use an issue-oricilted methodology, they use a methodology appropriate
for such modules. There may be a great practical payoff to seeing how to develop methods for use
with the avaiiable expert systems. It would also be in the interest of the Air Force to identify and
sponsor some project of particular interest to the military. Besides possibly delivering an actual
system, this effort would uncover the issues specific to military applications. I can only guess where
the needs of the military are. but I would think electronics and electricity instructors in service of
maintenance would be a prime candidate. A fair amount of work has already been done in this
field, although of a rather theoretical variety. It would be profitable to see what would happen if we
made the practical compromises necessary to see an intelligent tutorial system in an actual classroom.

41

REFERENCES

Anderson, J. R. (1976). Language. nemorov. and thought. Hillsdale. NJ: Erlbaum.

Anderson, J. R. (1983). he archzitecture of cognition. Cambridge, MA: Harvard University Press.

Anderson, J. R. (in press). Analysis of student performance with the LISP tutor. In N. Frederiksen.
R. Glaser, A. Lesgold, & M. Shafto (Eds.). Diagnostic monitoring of skill and knowledge
acquisition. Hillsdale, NJ: Erlbaum.

Anderson, J. R. (in press). Methodologies for studying human knowledge. Manuscript submitted for
publication.

Anderson. J. R., Boyle C. F.. & Yost. G. (1985). The geometry tutor. Proceedings of the
International Joint Conference on Artificial Intelligence. Los Altos, CA: Morgan-Kaufman.

Anderson, J. R., Corbett. A. T., & Reiser, B. J. (1986). Essential LISP. Reading, MA: Addison-
Wesley.

Barr. A., Beard, M.. & Atkinson, R. C. (1975). Information networks for CAI curriculum. In
0. Lecareme & R. Lewis (Eds.), Computers in education. Amsterdam: North Holland.

Bobrow, S., & Bower. G. H. (1969). Comprehension and recall of sentences. Journal of
Experimental Psvchology. 80, 455-461.

Bobrow, D. G., & Winograd, T. (1977). An overview cf KRL: A knowledge representation
language. Cognitive Science, /, 3-46.

Brackman, R. J. (1978). A structural paradigm for representing knowledge.
(Tech. Rep. 3605). Cabridge, MA: Bolt, Beranek, & Newman, Inc.

Brown, J. S. (1983). Process versus product: A perspective on tools for communal and informal
electronic learning. In Report from the learning lab: Education in the
electronic age (Tech. Rep.). Educational Broadcasting Corporation.

Brown. J. S., & Burton, R. R. (1975). Multiple representation of knowledge for tutorial reasoning.
In D. Bobrow & A. Collins (Eds.), Representation and understanding: Studies in cognitive
science. New York: Academic Press.

Brown, J. S., Burton. R. R., & deKleer, J. (1982). Pedagogical, natural language and knowledge
engineering techniques in SOPHIE I, 1I and III. In D. Sleeman & J. S. Brown (Eds.),
Intelligent tutoring systems. New York: Academic Press.

Brown. J. S., & VanLehn, K. (1980). Repair theory: A generative theory of bugs in procedural
skills. Cognitive Science. 4, 379-426.

Buchanan, B., & Shortliffe. E. (1984). Rule-based expero systems. Reading, Mass: Addison-Wesley.

Burton, R. R. (1982). Diagnosing bugs in a simple procedural skill. In D. Sleeman & J. S. Brown
(Eds.), Intelligent tutoring sy.stems. New York: Academic Press.

42

Burton, R. R., & Brown. J. S. (1982). An invcstigation of computer coaching for informal learning
activities. In D. Sleeman & J. S. Brown (lids.), intelligen tutoring systems. New York:
Academic Press,

Carboncll, J. R. (1970). Al in CAI: An artificial intelligence approach to computcr-aided
instruction. IEEE Transactions on Man -Machine Systems, II, 190-202.

Clancey, W. J. (1982). Tutoring rules for guiding a case method dialogue. In D. Sleeman &
J. S. Brown (Eds.), Inuelligent tutoring systems. New York: Academic Press.

Collins, A. M. (1976). Processes in acquiring knowledge. InI R. C. Anderson, R. Spiro, &
W. E. Montague (Eds.), Schooling and the acquisition of kntowledge. Hillsdale, NJ: Erlbaum.

Collins, A. M., & Quillian, M. R. (1972). Experiments on semantic memory and language
comprehension. In L. Gregg (Ed.), Cognition in learning and meinory, NewYork: Wiley.

Collins, A. M., Warnock, E. H., Aiello, N., & Miller, M. L. (1975). Reasoning from incomplete
knowledge. In D. G. Bobrow & A. M. COllins (Eds.), Representation and understanding. New
York: Academic Press.

Collins, A., Warnock, E., & Passafuime, J. (1978). Analysis and synthesis of tutorial dialogues. In
G. Bower (Ed.), The psychology of learning and motivation, Vol. 9. New York: Academic
Press.

dcKler, 1. & Brown, J. S. (1983). Assumptions and ambiguities in mechanistic mental models. In

D. Gentner & A. Stevens (Elds.), Mental models. Hillsdale, NJ: Erlbaum.

deKiccr, J., & Brown, J. S. (1984). A physics based on confluences. At Journal, 24. 7-83.

Forbus, K. D. (1984). Qualitative process theory. Artificial Intelligence, 24, 85-168.

Forgy, C. L. (1982). Retc: A fast algorithm for the many pattcrn/many object pattern match
problem. Artificial Intelligence, 19, 17-37.

Gencscrch, M. R. (1982). The role of plans in intclligent leaching systems. In D. Sleeman &
J. S. Brown (Eds.), Intelligent tutoring systems. New York: Academic Press.

Goldstein, 1. (1982). The genetic graph: A represcntation for the evolution of procedural knowledge.
In D. Slecinan & J. S. Brown (Eds.), Intelligent tutoring systems. New York: Academic
Press.

Goldstcn, 1. P., & Roberts, R. B. (1977). NUDGE, a knowledge-bascd scheduling program.
Proceedings of the Association for Computing Machinety Annual Conference. Association for
Computing Machinery.

ilayes, J. R. (1985). Three problems in teaching general skills. In S. Chipman, J. Segal, &
R. Glaser (Eds.), lhinking and leanting skills. Hillsdale. NJ: Erlbaum.

layes-Rolh, F., Waterman, D. A., & Lcnat, D. B. (1983). Building expert systems. Reading, MA:
Addison-Wesley.

43

Hollan, J. D., Hutchins, E. L., & Weitzman, L. (1984). Steamer: An interactive inspectablc
simulation-based training system, Al Magazine, 5, 15-27.

Holland, J. H., tIolyoak, K., Nisbewt, R. 1., & Thagard, P. R. (1986). Induction: Processes of
inference, learning, and discovery. Cambridge, MA: Massachusetts Institute of Technology
Press.

Kimball, R. (1982). A self-improving tutor for symbolic integration. In D. Sleeman & J. S. Brown
(Eds.), hitelligent tutoring systems. New York: Academic Press.

Kuipers. B. (1984). Commonscnse reasoning about causality: Deriving behavior from structure.
Artificial Intelligence, 24, 169-203.

Laird, J. E., Rosenbloom, P. S., & Newcll, A. (1986). Chunking in SOAR: The anatomy of a
general learning mechanism. Machine Learning, 1. 11-46.

Langley, P. (1985). Learning to search: From weak methods to domain-specific heuristics. Cognitive
Science, 9, 2 17-260.

Miller, M. (1982). A structured planning and debugging environment for elementary programming.
In D. Sleeman & J. S. Brown (Eds.), Inteiligent tutori;ng systems. New York: Academic
Press.

Minsky. M. (1975). A framework for representing knowledge. In P. H. Winston (Ed.), The
psychology of computer vision. New York: McGraw-Hill.

Nagel, L. W., & Pcderson, D, 0. (1973). Simulation program with integrated circuit emphasis.
Proceedings of the Sixteenth Midwest Symposium on Circuit Theory.

Newell, A. (1973). Production systems: Models of control structures. In W. G. Chase (Ed.),
Visual information processing. New York: Academic Press.

Newell, A., & Simon, If. (1972). liuialt problem solvitg. t nglcwood Cliffs, NJ: Prentice-Hall.

Reiser, B. J., Anderson, J. R., & Farrell, R. G. (1985). Dyna,._: student modelling in an
intelligent tutor for LISP programming. l'roceedings of the hterational Joint Conference on
Artificial hitelligence. Los Altos: Morgan-Kaufian.

Rouse, W. B., & Morris, N.M. (1985). Ott looking into de black box. Prospects and limits il the
search for mental models (I'cch. Rep. 85-2). Atlanta: Georgia Institute of Technology.

Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals, and understanding. Hillsdale, NJ:
Erlbaum.

Shortliffe, E. H. (1976). Computer-based medical consultations: MYCIN. New York: American
Elsevier.

Slccman, D. (1982). Assessing aspects of competence in basic algebra. In D. Sleemnan &

J. S. Brown (Eds.), Intelligent tutoring systens. New York: Academic Press.

Stefik, M. (1980). I'latning with constraints, (Tech. Rep. 784). Palo Alto, California: Stanford

University.

44

Stevens. A., & Collins, A. (1977), Thc goal struclurc of a socratic tutor. Proceeditngs of the
Association for Computing Machinery Annual Colnference. Association for Computing Machinery.

Stcvcns. A.. Collins, A., & Goldin, S. E. (1982). Misconccptions in students' understanding. In
D. Slccman & J. S. Brown (Eds.), Intelligent tutoring systens. New York: Academic Press.

VanLchn. K. (1983). Felicihy conditions for humanu skill acquisition: Validating an Al-based teory
(Tcch. Rep. CIS-21). Palo Alto, CA: Xerox Parc.

Wengcr, E3. (1986). Knowledge communication systems: An artificial intclligence approach to
computcr-aided instruction. Monograph, University of California at Irvinc.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems: Computational and cognitive
approaches to the communication of knowledge. Los Altos, CA: Morgan Kaufmann.

Westcourt, K., Beard, M., & Gould, L. (1977). Knowlcdgc-bascd adaptive curriculum sequencing
for CAI: Application of a network reprcscntation. Proceedings of the Association for
Computing Machiney Aual Conference. Association for Computing Machinery.

White, B. Y., & Frederiksen, J. R. (1986). Progressions of qualilaive models as foundations
for inteligent learning environiments (BBN Report 6277). Cainbr~dgc, MA: Bolt, Beranek,
& Newman, Inc.

Zhang, G. (1986). Learning to program in Ol'S5. Unpublishcd doctoral dissertation, Carnegie-Mellon
University, Pittsburgh, PA.

45

DISCUSSION

The Expert Module

Di-cussion of the Expert Module is deferred to page 65. There

James G. Greeno discusses both Chapter 2 and Chapter 3.

47

CHAPTER 3

STUDENT MODELING

Kurt VanLehn

Assistant Professor

Department of Psychology

Carnegie-Mellon University

This chapter reviews the research literature concerned with the student modeling component of intelligent
tutoring systems. An intelligent tutoring system, or ITS, is a computer program that instructs the student in an
intelligent way. There is no accepted definition of what it mcans to teach intelligently. However, a characteristic
shared by many ITSs is that they infer a model of the student's current understanding of the subject matter and use
this indivi(ualizcd modcl to adapt the instruction to the student's needs. The component of an ITS that represents
the student's current state of knowledge is called the student model. Inferring a student model is called diagnosis
because it is much like the medical task of inferring a hidden physiological state (i.e., a disease) from observable
signs (i.e., symptoms). An ITS diagnostic system uncovers a hidden cognitive state (the student's knowledge of the
subject matter) from observable behavior.

The student model and the diagnostic module arc tightly interwoven. The student model is a data structure,
and diagnosis is a process that manipulates it. The two components must be designed together. This design
problem is called the student modeling problem. This chapter reviews solutions that have been found to the student
modeling problem and discusses the techniques that have been discovered.

I. THE STUDENT MODELING PROBLEM

Most design problems in computer science can be specified by describing the desired output of the program
and the available input. The design problem here is not, unfortunately, so neatly circumscribed.

Generally speaking, the input for diagnosis is garnered through interaction with the student. The particular
kinds of information available to the diagnosis module depend on the overall ITS application. The information
could be answers to questions posel by the ITS, moves; taken in a game, or commands issued to an editor. In some
applications, the student's educational history is also available to the diagnostic component.

The output from the diagnostic module is even harder to circumscribe. In fact, it doesn't even make sense
to talk about the product of diagnosis a'; "output" (here, the analogy to medical diagnosis breaks down). Rather, the
result is a (latbase, the student model, which accurately reflects the student's knowledge state. The student model is
drawn on by other ITS modules for many purposes. Below are listed sonic of the most common uses for the student
model.

Advancement. Some ITSs use a structured curriculum. A student is moved to the next topic in the
curriculum only when he or she has mastered the current topic. In such applications, the student model represents
the student's level of mastery. Periodicali), the ITS asks the student model for the level of mastery on the current
topic, weighs it, and decides whether to advance the student to the next topic. This use of student models is called
advancement. Advancement is useful not only with linearly structured curricula, whcre instruction dwells on one
topic at a time, but also in componentially structured curricula, where a student exercises several topics or skills at

tie same time. For instance, in the WUSOR ITS (Goldstein, 1982), the student uses several reasoning skills at the

same time to hunt a beast in a maze filled with dangerous pits and bats. The techniques for estimating the

dangerousness of caves can vary independently of the techniques for determining what caves are likely to contain

the beast. The ITS can advance a student through the skill levels for assessing danger independently of advancing

the student through lhe skill of locating quarry. 1his illustrates how advancement is used in ITSs that do not use a

linearly'structured curriculum.

Offering unsolicited advice. Some ITS systems are like athletic coaches in that they offer advice only when

they see that the student needs it. IF the student is performing well, the coach remains silent. A good coach will also

49

remain silent if the student makes a mistake in a situation that is too complicated for a successful pedagogical
interaction to take place. In order to offer unsolicited advice at just the right moments, the ITS must know the state
of the student's knowledge. For this, it reads the student model.

Problem generation. Some ITSs generate problems for the student dynamically rather than sequencing
through a predefined list of problems or letting the student invent problems to solve. In many applications, a good
problem is just a little beyond the student's current capabilities. To find out where the student's current capabilities
lie, the problem generation module consults the student model.

Adapting explanations. When good tutors explain something to the student, they use only concepts that the
student already understands. For an ITS to issue good explanations, it must determine what the student knows
already. To do so, it consults the student model.

The preceding functions are some of the most common ways the ITS components use the student model.
Because there are so many ways to use the student model, we cannot talk sensibly about the output of the diagnosis
module, nor can we classify student modeling problems by the desired input-output relationship. What does make
sense is to classify these problems according to the structural properties of the student model. For instance, the
student model might represent various levels of mastery of a subskill by a single bit (mastered vs. not yet mastered),
by a number, or by a complicated qualitative description. Such structural properties of the student model determine
how complicated the student modeling problem is and what kinds of techniques are best suited for its solution.

II. A THREE-DIMENSIONAL SPACE OF STUDENT MODELS

This section reviews existing student modeling systems in the context of a classification based partially on
structural properties of the student model and partially on properties of the input available to the diagnosis module.
At this writing, approximately 20 student modeling systems have been built, and more are under development.
There are many differences among them. The classification presented here is intended to capture the differences in
the student modeling problem that really make a difference in the solution techniques. If this classification is
correct, it can be used to predict what kinds of student modeling techniques would be most useful for some new
student modeling problem. Needless to say, such a prediction would be only the starting point in a long design
process that results in a system adapted to the demands of a particular ITS. Indeed, as more ITSs are constructed,
the perception of what differences really matter can be expected to change. That change is one reason why ITS
construction is still in the research stage and has not yet become a mature technology. In short, the following
classification is both heuristic and tentative.

The classification has three dimensions. The first one relates to the input, and the others are structural
properties of the student model.

Bandwidth

The input to the diagnosis unit consists of various kinds of information about what the student is doing or
saying. From this, the diagnosis unit must infer what the student is thinking and believing. Clearly, the less
information the unit has, the harder its task is. The bandwidth dimension is a rough categorization of the amount
and quality of the input.

Three levels of information suffice to capture most of the variation among existing ITSs. In order to explain
them, we will assume that students are solving problems either posed by themselves (e.g., What cave shall I explore
next?) or by the ITS (e.g., What is 283-119?). If the problem solving Lakes more than a few milliseconds, then we
can safely assume that the students go through a series of mental states. The highest bandwidth an ITS could attain
would be a list of the mental states that the students traverse as they solve problems. Human mental states are not
directly accessible by machines, so no ITS can really achieve this "mental states" bandwidth. However, by asking
enough questions or by eliciting verbal protocols, an ITS can obtain indirect information that approximates the
students' mental states. So the highest bandwidth category is approximate mental states.

In more complicated forms of problem solving, such as solving algebraic equations or playing chess, the
students make observable changes that carry the problem from its initial unsolved state to its final, solved state.
This results in a series of observable intermediate states, such as the midgame board positions in chess or the

50

equations written before tie last equation (luring algebraic equation solving. Sometimes an ITS has access to these
intermcdiate states, and sometimes it can see only the final state -- that is, the answer. The oier two categories of
bandwidth are final slaes and intermediate states.

To summarize, the three categories, from highest to lowest bandwidth, are mental states, intermediate
states, and final states. Each catcgory is intended to include the information in the category beneath it. Mental
states includes intermediate and final states. Intermediate states includes final states.

The subject domain of programming provides good examples of the bandwidth dimension because an ITS
exists for each bandwidth category. Anderson's LISP Tutor (Raiser. Anderson, & Farrel ,1 985) contains a detailed
model of the cognitive processes that Anderson believes underi fe the skill 6f programming. The tutor uses a
menu-driven interface to offer the student choices about what goals to attack next, what strategies to use, what code
fragments to write down, and so on. The model aims to offer so many choices that any problem-solving path that a
student wants to take is available. The belief is that the menus do not interfere with the path of mental states but
merely allow the ITS to track the student's cognitive progress. Thus, the input to the diagnosis component is an
approximation to a sequence of mental states. The LISP Tutor nicely illustrates the bandwidth level of mental
states.

The Spade ITS (Miller, 1982) was never completed; but,if it had been, it would illustrate the second level
of bandwidth. Spade acts as a coach who watches a student program. The student uses a structure editor; that is, an
editor that knows about the programming language and allows only syntactically legal edits. Spade sees all the
intermediate observable steps as the student creates a program. Unlike Anderson's LISP Tutor, Spade cannot see
the student's decisions about programming goals and strategies. Its input bandwidth fits squarely in the category of
intermediate states.

In contrast, PROUST (Johnson & Soloway, 1984a; Johnson & Soloway, 1984b) is given only the first
complete program that the student submits to a PASCAL compiler. PROUST does not have access to the student's
scratch work or incomplete programs.

The bandwidth dimension is perhaps the most important of the three dimensions. More so than the others, it
determines the algorithm used for diagnosis. As will be shown in a later section, where diagnosis algorithms are
discussed in detail, there are nine basic algorithms. Five are useful with final state bandwidth systems, three are
appropriate for interme(liate state bandwidth systems, and one is appropriate for mental states bandwidth systems.

Target Knowledge Type

Studet models can actually solve the same problems that student. do and can therefore be used to predict
the students' answers. This is a distinguishing characteristic of the student models used in ITSs. Student models
used in older systems for computer-based training cannot actually generate problem solutions, although they may be
able to generate a probability of a correct solution.

Solving problems requires some kind of interpretation process that applies knowledge in the student model
to the problem. There are two common types of interpretation, one for procedural knowledge and one for
declarative knowledge1 . The interpreter for procedural knowledge is simple. It does not search but makes decisions
based on local knowledge. It is like a little man with a flashlight who can see only a little way from the strand of
knowledge he is standing on; based on his view of the knowledge locale and the current state of the problem, he
lecides which strand of knowledge to turn onto and follow. A declarative interpreter constantly searches over its

whole knowledge base. It is like a librarian who searches outt the answer to a client's query by searching reference
books, assembling the facts, and deducing the answer from them. Procedural knowledge representations have been
used for skills such as algebra equation solving (Slecinan, 1982), game playing (Burton & Brown, 1982; Goldstein
& Carr, 1977; Goldstein, 1982), multicolumn arithmetic (Brown & Burton, 1978; Burton, 1982; Langley & Ohlsson,
19,4), and solving calcults intergrals (Kinball, 1982). Declarative knowledge representations have been used for
geography (Carbonell, 1970; Carbonell & Collins, 1973; Grignetti, Hlausman, & Gould, 1975) and meteorology
(Stevens, Collins, & Goldin, 1982).

IThe section on directions for future research discusses the student modeling problem for a third type of

knowledge, qualitative mental models of complex systems.

51

The distinction between procedural anid (lclar-tivc knowledge is notorious ini artificial intelligence as a
fuzzty, scIdlomf-tschlI Ii ffcrciaatioii. Because it is based onl how imiicli work the interpreter does, and bcaurse work
is an esscntial ly contintiuns quality. (lie bouindary bectweeni tlrcm in riot sharp and clear. I-or nistane, GIlDON 'S
knowledge of mnedic inc (Clanccy. 1982) is par fly cclarat ive -- because it says what symptons, iridicato which
diseases -- and partly jproCedmial - - l)Ccaiise it says whichI quest ions lo ask die patient tinder what circumstances.
PROUST'S knowledge of programmiling (Johnson & Soloway, 1984a, 1984b) is cven more (illictilt to classify. It is
mostly abouit which PASCAL code feiplates to ulse to achieve what purposes. In this rcspccl, it is declarativ e
knowledge aboirt PASC.AL I..I bwcvci, a simle. top-dlowmi p1ogi anmm g strategy readhily convcits this knowledge
Into prograncr actions.

Nonetless, the distinction between procedilural and declarative knowledge is important here because the
complexity of diagnosis is directly propo~rtional to the comnplexity of interpretation. InI fact, (diagniosis is time inverse
of interpretation. liiterpreltation takes a knowledge base and a problemn and p odirccs a solution. Djiagnosis takes a
probilm andl a sohit ion and produices aI knowledge base. When declarative knowledge is interpieted, miany itemis
may hec accesscdl in ordter to proxlhmce a Solution. WhenI (leclaratiye knrowledgc i.s diagniosedl, 1hIe resp)onsibil ity for a
wrong answer may lie will) any one of the many itlins that could he accesscd in produicing this aiswcr. InI gciicr-.d,
thne miore conipl icated the interpretation, thle m ore coinpl icateul the diagnosis.

These considerations underlie e second dimension in the space of studcnt modeling problems, thc type of
knowledge in thle stuldent model. The major distinction -- procedural vs. declarative. -- has been mentioned already.
It is uiseful to (divide procedural knowledge into two slbcategories: flat and hierar-chi cal. 11 icrarchical
represent~ations allow suhbgoaling; hlat ones (1o not. For instance, the ACM dliagnosis system (L angley & Ohlsson,
1984) uses a flat representation for a surbtraction proceduire. Operations suich as faking a columnn difference or
addilng 10 to a inunnd digit arc selcted solely onl the basis of the cuirrnt state of thie problem. InI the BU(;CY~
diagnosis system (Brown & Brton, 1978), subtraction prxocdurcs are, represented as goal hierarchies with goals like
"Borrow" or "Borrow across zero." Operators are sclectcdl on the basis of the problem state and the cuirrently active

subgoals.

Thei distinction between flat and hierarchical representations affects the diagnosis. A diagnostic system for
flat representation needls to infer what problemi-state conditions trigger eachi operator. This is easy b~ecause thie
system can sCe both thre prob~lem states and the operator applications. A diagnostic system for hierarchical
repiresentations needs to infer conditions and both thie problem states and the subtgoals. lint it cannot see thie
cuirrently active subgoals, so its infecrenice probemn is imuch harder.

In summary, thce arc three types of knowledge representation: flat procedural, which makes the student
mlodeling problem the easiest; hierarchical proe.(lral, which increases thie difficulty of the Strident mnodeling
problemi; and declarati vcwhich makes tne st intent modeling pirlcin nmost li flictilt.

Differences Bectween Stuident andl Expert

ITS systems uisually employ an expert miodlel as well as a stuldent, mod0el. 2 The expert model is usedI for
many ptirlxoses, stich as providing explanatlions of thie correct way to solve a problemi. 13ccaie sturdents will (one
hopes) move graduailly fromn their init ial state of kniowled,(ge towards maslery, stiudeit nmodels nist be able to change
gracefutlly from rclireseiiting novices to recpresenting explerts. Consequecnt 1y, mnost ITSs rise the the samie knowledge
represential ion langtiage for both the expert Iliodlel arnd 111c sthnrleit model. Conceptujally, the ITS has one knowledge
base to rep~resent tlIe expet t and aI different knowledge base to recpiesenit the stmmdlent.

However, economy and other implementation considerations frequently dictate a merger of the two
models. The student model is represented as the expert model plus a collection of differences. There are
basically two kinds of differences: missing conceptions and misconceptions. A missing conception is an item of
knowledge that the expert has and the student does not. A misconception is an item that the student has and
the expert dfoes not.

21" alis chapte)(r, ,cxpert- is iteideIIld to mean a mnaster of thie ITS's subject mnatter. Tine suibject matter is uisually
only a fraction of tire knowledIge possessed by a tin1lie expert in that area.

52

Some student modeling systems can represent only missing conceptions. Conceptually, the
student model is a proper subset of the expert model. Such student models are called overlay
models because the student model can be visualized as a piece of paper with holes punched in it
that is laid over the expert model, permitting only some knowledge to be accessible. A student
model, therefore, consists of the expert model plus a list of items that are missing. A variant
of overlay modeling puts weights on each element in the expert knowledge base; for xamlple, 1.0
indicates mastery, -1.0 indicates ignorance, and 0.5 indicates partial mastery. Overlay modls
are the most common type of student model.

Other systems represent both misconceptions and missing conceptions. The most common type of student
model in this class employs a library of predefined misconceptions and missing conceptions. The members of this
library are called bugs. A student model consists of an expert model plus a list of bugs. This bug library technique
is the second most common type of student modeling system. This system diagnoses a student by finding bugs from
the library that, when added to the expert model, yield a student model that fits the student's performance.

Assembling the library is the biggest hurdle in the bug library approach. The library should be nearly
complete. If a student has a bug that is not in the library, then the student model will try to fit the behavior with
some combination of other bugs. It may totally misdiagnose the student's misconceptions.

There are only a few techniques for obtaining a bug library:
1. Bugs can be gleaned from literature, particularly from the older works in the educational literature.

For instance, Buswell (1926) lists numerous "bad habits of thought" for arithmetic.

2. Bugs can be found by careful hand analysis of students' behaviors. Hand analysis of several thousand
subtraction tests yielded a bug library of 104 bugs for Burton and Brown's DEBUGGY program
(Burton, 1982; VanLehn, 1982).

3. If there is a learning theory for the subject domain, it may be able to predict the bugs that student have.
For instance, Repair theory (Brown & VanLchn, 1980; VanLehn, 1982) predicts subtraction bugs.
When its predictions were added to DEBUGGY'S library and students' tests were reanalyz-
ed, some of the students' answers were fit much better by the new bugs (VanLehn, 1983).
So theory can be a valuable contributor of bugs to a bug library.

An alternative to the bug library approach is to construct bugs from a library of bug parts. Bugs are
constructed during diagnosis rather than being predefined. For instance, each bug constructed by the ACM system
(Langley & Ohlsson, 1984) is a production rule consisting of a condition, which is a conjunction of predicates, and a
single action. The predicates and the action are drawn from predefined libraries. If the predicate library has P
predicates, and the action library has A actions, then ACM can represent approximately A * 2P distinct bugs. As in
the bug library approach, a student model may have more than one bug. So ACM can represent a very large number
of student models using only two small libraries of bug parts. Of course, the libraries of bug parts must be
assembled by the creators of the ITS. The problems of filling these libraries are exacdy analogous to the problem of
filling a bug library. However, because libraries of bug parts are smaller, the problems may be easier to solve. This
approach to representing differences between the student and the expert is the newest and least common. Its
properties are largely unknown.

To summarize, the three major techniques for representing differences between the student and the expert
are overlays, bug libraries, and bug part libraries.

A Chart of the Space

The preceding section defined three dimensions of student models, each with three distinguished values.
Figure 3.]summarizes them. Under each dimension, the order of the categories corresponds to the difficulty of the
diagnostic problem, easiest first. There are 33 possible student models. The student models that make diagnosis
easiest are overlay models on flat procedural knowledge, where the student's mental states are available to the
diagnostic program. The hardest problem is a bug-parts-library student model over declarative knowledge when
only the final result of the student's reasoning is available to the diagnostic program.

Not all of the 27 possible types of student models have been implemented. Figure 3.2 shows some of the
existing student modeling systems and their location in the space of the student models. The bandwidth dimension

53

1. Bandwidth -- How much of the student's activity is available to the
diagnostic program?

a. Mental states -- All the activity, both physical and mental,
is available.

b. Intermediate states -- All the observable, physical activity is
available.

c. Final states -- Only the final state -- the answer -- is available.

2. Knowledge Type -- What is the type of the subject matter knowledge?

a. Flat procedural -- Procedural knowledge without subgoaling.

b. Hierarchical procedural -- Procedural knowledge with subgoals.

c. Declarative.

3. Student-Expert Difference -- How does the student model differ from the
expert model?

a. Overlay -- Some items in the expert model are missing.

b. Bug library -- In addition to missing knowledge, the student model
may have incorrect "buggy" knowledge. The bugs come from a
predefined library.

c. Bug part library -- Bugs are assembled dynamically to fit the
student's behavior.

Figure 3.1: The Three Dimensions of Student Models.

is the Y axis and the knowledge type dimension is the X axis. The student-expert differences dimension is indicated
by asterisks: ** means a bug parts library, * means a bug library, and no asterisks means an overlay. The ITS
systems referenced in the figure are all quite complex, and there is ample room for disagreement over how they
should be classified.

II1. DIAGNOSTIC TECHNIQUES

Nine diagnostic techniques have appeared so far in the ITS literature. This section reviews them one by
one. Most techniques have been used in just a few kinds of student models. As a framework for further discussions,
Figure 3.3 shows how the diagnostic techniques align with the student models. The space of student

models Is shown in the same format as Figure 3.2; but the cells are filled with the names of the

diagnostic techniques that have been employed in the corresponding student modeling systems. It is

important to note that this chart is based on actual systems and the diagnostic techniques they
use. It is likely that some of the techniques can be used with other types of student models.

54

Knowledg.
type

Procedural-flat Procedural-Hierarchical Declarative

Mental "Kimballs calc'lus tutor

Slates "Anderson's LISP tutor GUIDON
"Anderson's Geometry tutor

Intermediate WEST "The MACSYMA Avisor SCHOLAR

States WUSOR "Spade WHY
"Image 'GUIDON

Final "*LMS 'BUGGY
"S Pixie *DEBUGGY MEO"ACM 'IDEBUGGY

Figure 3.2: The Space of Student Models.

Knowledge
type Procedural- flat Procedural-Hierarchical Declarative

Bandwidth

Mental Model tracing
States

Intermediate Issue tracing Plan recognition Expert
States system

Final Path finding Decision tree
States Condition Generate and test Generateinduction Interactive

Figure 3.3: Diagnostic Techniques.

Model Tracing

The model tracing technique (Anderson, Boyle, & Yost, 1985) is probably die easiest technique to
implcment hccause it assumcs that all of the student's significant mental states are available to the diagnostic
program. The basic idea is to use an underdetermined interpretcr for modeling problem solving. At each step in
problem solving, thc undcrdetcrmincd intcrprctcr may suggest a whole set of rules to be applied next, whereas a
(leterministic interpreter can suggest only a single ride. The (iagnostic algorithm fires all these suggested rles,
obilining a set of possible next states. One of these states should correspond to the slate generated by the student. If
so, then it is reasonably certain that the student used the corresponding rule to generate the next mental state andt so
must know that rule. The student model is updated accordingly. The name "model tracing" comes from the fact that
the diagnostic program merely traces the (under-determined) execution of the model and compaires it to the student's
activity.

55

Obviously, the model of problem solving must be highly plausible psychologically for this technique to be
applicable. Even if such a model is available, practical deployment of this technique requires solving several tricky
technical issues. Ilere are.just three: (a) What should the systcm dto if the student's state do s not match any of the
states produced by the rules in the model? (h) Supposc the studlnt generates a next site by guessing or by nistakc.
The systcn will erroneously assune that the student knows the corrcsponding rule. (c) When should the system
change its mind about its student nodel?

Path Finding

If the bandwidth is not high enough to warrant the assumption that the student has applied just one mental
rule, then model tracing is inapplicable. However, it is feasible to put a pah-finding algorithm in front of ihe
model-tracing algorithm. Given two consecutive states, it rinds a path, or chain of rule applications, that takes the
first state into the second state. The path is then given to a model-tracing algorithm, which treats it as a faithful
rendition of the student's mental state sequence.

The main technical problem with path finding is that there are usually many paths between the two given
states. Should the path finder send all the paths to the model tracer and let it deal with the ambiguity? Should it use
heuristics to reject unlikely palhs (Ohlsson's DPF system (Ohisson & Langley, 1985) takes this ai-proach)? Should
it ask the students what they did? These issues deserve frirtlicr research.

Condition Induction

Model tracing assumes that any two consecutive states in the student's problem solving can be connected
by a rule in its model. This puts strong demands on the completeness of the model. Overlay models often will not
work. Bug library models must contain a large number of bugs. Bug part libraries are therefore used as the basis for
student modeling. Given two consecutive states, the system constructs a rule that converts one state to the other.
Although there arc potentially many ways to construct such buggy niles, the only technique that has been tried so far
is condition induction (Langley & Ohlsson, 1984).

This technique requires two libraries. One is a library of operators that convert one state to another. The
other is a library of predicates. The technique assumes that the operator library is rich enough that any two
consecutive menial stites can be matched by applying some operator. That operator becomes the action side of the
production rule that will be generated. The hard job is determining what logical combination of predicates should
constitute the condition side of tire prodnclion. The condition should be true of states in which the rule was applied
anl false otherwise. The system currently has one state for which it is true; that is, the first state in the slate pair. In
order to reliably induce a condition, it necds to examinc more states. These states can come from a record of the
student's past problem solving. The system can also delay construction of the rule until more states arc examined in
later problem solving. This technique seems to require much morc dlam on the student's problem solving than
(liagiiostic techniques for overlay models or lug library models do. This is just what one would expect from
information theory. The brig part library can represent many more hypolheses than the other kinds of models can, so
more data is needed to discriminate among them.

Plan Recognition

In principle, path finding followed by model tracing, with or without rule induction, can diagnose anything.
Ilowever, when the paths between observable states get long, diagnosis may become infeasible or unreliable. Plan
recognition is a diagnostic technique that is similar to path finding in that it is a front end to model tracing.
However, it is more effective than path finding for the special circumstances in which it applies.

Plan recognition requires that the knowledge in the student model be procedural and hierarchical and that
all or nearly all of the physical, observable states in the student's problem solving be made available to the
diagnostic program. These two requricmens together dictate that an episode of problem solving can be analyzed as
a tree. The !eavcs of thc tree are primitive actions, such as moving a chess piece or writing an equation down. The
nonleaf nodes in the tree are subgoals, such as trying to take the opponent's queen or factoring x2+3x- 1. The root
node of the tree is the overall goal (e.g., Win (his chess game, or solve x[x+4J-x=]). Links between nodes in the tree
represent goal-subgoal relationships. Such a tree is often called a plan -- a misnomer from its early development in
robotics. Plan recognition is the process of inferring a plan tree when only its leaves are given. Computationally,

56

plan recognition is similar to parsing a string with a context-frec grammar -- a parse tree is constructed whose leaves
arc the elements of the string.

When plan recognition is used for diagnosis, it serves as a front end to model tracing. Assuming that plan
recognition can find a unique plan tree that spans the student's actions, then the student's mental path is assumed to
be a depth-first, left-to-right traversal of the tree. This path can be input to a model tracing algorithm, which updates
the student model accordingly.

There are two technical issues to confront: What if the plan recognizer finds more than one tree that is
consistent with the student's actions? What if it doesn't find any? To avoid the second situation, plan recognition
systems often use bug library models rather than overlay models. Bug part library models could also be used by
taking advantage of a machine-learning technique called learning by completing explanations (VanLehn, 1987). The
diagnosis programs that have used plan recognition (Genesereth, 1982; Miller, 1982; London & Clancey,
1982) have been more concerned 'iith the first problem; that is, determining which plan tree among
several trees consistent with the student's actions is most plausibly the student's mental plan.
These programs use a variety of heuristics.

Issue Tracing

The model tracing technique assumes that the rules in the student model are a fairly accurate psychological
model of the units of knowledge employed by a student. In some cases, such a detailed model of student cognition is
infeasible or unnecessary. In particular, a fine-grained student model is probably more work than it's worth if the
tutoring can not be adapted to the intricacies of a particular student's misconceptions. For instance, a perfect model
of a student's subtraction bug is unnecessary if the tutor's remedy is merely to teach the procedure over again. In
general, the level of diagnosis and tutoring should be the same.

If a coarse-grained student model is desired, then a variant of model tracing is appropriate. It is based on
analyzing a short episode of problem solving into a set of microskills or issues that are employed during that
episode. The analysis does not explicate how the issues interacted or what role they played in the problem solving.
It claims only that the issues were used.

The WEST system (Burton & Brown, 1982) pioneered this diagnostic technique. Its task is to teach a
simple board game. A turn consists of choosing an arithmetic combination of three randomly chosen numbers in
such a way that the value of the expression, when added to the current position of the player's token, results in a new
position that is closer to the goal position. Expressions may contain any arithmetic operation or parentheses. There
are several tricks involving "bumping" an opponent or taking a shortcut. West analyzes a student's move into
several issues including plus, minus, times, divide, parentheses, bump and shortcut. If a student forms the
expression 5 * 2 - 1, then the move is analyzed as involving the issues times and minus, and not involving the
others. The student's actual problem solving probably involved trying several expressions, seeing where they
moved the token, and selecting the expression that maximized progress toward the goal. A model tracing technique
would have to model this trial-and-error search in gory detail. The issue tracing technique ignores the details. Its
analysis claims only that the student apparently understands these two issues because the student's move embodied
them.

The first step in issue tracing is to analyze the student's move and the expert's move into issues. Each issue
has two counters, used and missed. Used counters are incremented for all the issues in the student's move. Missed
counters are incremented for all the issues in the expert's move that are not in the student's move. If the used
counter is high and the missed counter is low, the student probably understands the issue. If the missed counter is
high and the used counter is low, then the student probably does not understand the issue. If both counters are zero,
the issue has not come up yet.3

31f both counters are high, the model is inadequate in some way. The latter situation is called fear (Burton &
Brown, 1982). In West, it occurred when the student's objective in the game was not what it was assumed to be (i.e.,
some students did not care about winning but just wanted to bump their opponent as often as possible). West is
equipped to handle this. It searches for the student's objective by generate and test. It has lists of possible student
objectives from which it can choose, and it then reanalyzes the entire game using that objective. If the tear is
reduced, then West has found the student's objective.

57

This simple diagnostic proccdure has a hidden problem. Ignorance of any one of the issues involved in an
expert's move is sufficient to cause the student to overlook that move; yet issue tracing blames all the issues evenly
by incrementing all ihcir Inisscd counters. This introduces sonme inaccuracy into the student model. WEST'S
solution is to require that lic ratio misscd/uscd be fairly high before it assumes that the student needs tutoring on
that issue. WUSOR (Goldstein & Carr. 1977; Goldstcin, 1982) has a more complicated scheme. It has a system of
cxpectations about whai issues arc likeiy to ix lcaumed fi.,t and what issues typically f"llo., later. These prior
probabilities are folded into the evaluation of whether a student knows an issue or not. Evaluations based on
statistical functions have kIen uscd in Kni hall's calculns tutor (Kimball, 1982) and oiier systems for similar
purposes.

Expert Systems

Clancey's GUIDON system (Clancey, 1982) uses a large-grained student model just as WEST and
WUSOR do. Instead of issues, GUIDON uses inference rules. The rules concern medical diagnosis and model
moderately large chunks of knowledge that summiarize a variety of cognitive operations. A typical rule is:

Rule 545

if (1) the infection was acquired while the patient was hospitalized,
and

(2) the white blood cell count is less than 2.5 thousand,
then

(a) there is strong evidence that the organism is E. coli, and
(b) there is suggestive evidence that the organism is Klebsiella

pneumonia, and
(c) there is suggestive evidence that the organism is Pseudomonas.

Because such rules are more complicated than issues, the diagnosis problem is harder. For instance, if a
student is given a case that matches the antecedent clauses in Rule 545, and yet the student hypothesizes only one of
the conclusions (e.g., conclusion a, that the organism is E. cohl) but not the oher two, then it is not clear whether the
student has used the rule or not. Another rule, triggered by some oilier feature of the case, may have led the student
to conclude that the organism was E. coli.

There are many possible ways for rules to interact. To handle fhe myriad of combinations, GUIDON uses
an expert systems approach. It has dozens of diagnostic rules such as this one:

if (1) the student's hypotheses include ones that can be concluded
by this rule, and

(2) the student's hypotheses do not include all the conclusions
of this rule,

then
(a) decrease the degree of belief that the student knows this rule

by 70%.

This particular diagnostic rule applies i, the situation just described. GUIDON, which uses an overlay model with
continuous weights, accordingly downgrades the weight in the student model for Rule 545.

The basic idea of the expert systems approach to diagnosis is to provide diagnostic rules for all the
situations that arise. Some technical issues are: If two diagnostic rules match the current situation, how are their
couclusions combined? What if no diagnostic rule matches? flow much will diagnostic rules have to change if the
rules in the knowledge base for the (ask domain clangf.?

Decision Trees

All diagnostic techniques must deal with the fact that students rarely have just one knowledge deficit. They
usually have several, Some of the technilue-s describcd earlier -- notably model tracing, path finding, and plan
recognition -- assume that at mos(ome rule fires hewecn consecutive mental sfntes, so each deficit will show up in
isolation as a buggy rule applicatior.. Because bugs appear in isolation, each bug can be accurately diagnosed even

58

when there are scvcral of them. Systems like WEST and GUIDON, which have less bandwidth, use a less accurate
description of knowledge deficits (e.g., weakness on issues), which allows them to rnodcl combinations of deficits
simply.

The next three techniques aim for highly accurate diagnoses with low bandwidths. They all work with final
states, which constitutes the lowest bandwidth in the student model space. The student models are based on bug
libraries. The bugs are highly accurate: when installed, they predict the sequence of intermediate states and perhaps
even the sequence of mental states.

Diagnosis of multiple bugs would be simple if systems could generate the symptoms of co-occurring bugs
by taking the union of the symptoms they display in isolation. This is not always possible. To illustrate, Figure 3.4
shows two subtraction bugs, in isolation and co-occurring. On the first problem, 50 - 28, the answer of the
co-occurring bugs, 30, equals the answer of the first bug in isolation. On the second problem, 712 - 56, the answer
matches the answer of the second bug in isolation, even though the first bug also gets this problem wrong when it
occurs in isolation. When the second bug occurs in isolation on 712 - 56, the borrow in the units column changes
the tens column to 0 - 5, which triggers the bug. When the second bug occurs together with the first, it suppressed
the borrow, so the tens column remains I - 5, and the first bug is not triggered. In this simple case, there is a causal
interaction between the two bugs that makes them manifest differently. In general, bugs can interact in even more
complex ways.

Problems: 50 712
-28-56

O- N = O 30 656
N-M =IN-MI 38 744
Both 30 744

Figure 3.4: Two Bugs, in Isolation and Co-occurring.

The decision tree technique is a brute force approach to bug compounding. It was employed by the
BUGGY diagnostic system (Brown & Burton, 1978). BUGGY enlarged the library of bugs by forming all possible
pairs. Since there were 55 bugs, this expansion generated about 55 (= 3025) bug pairs. In order to efficiently
diagnose this many bugs, BUGGY pre-analyzed the subtraction test that students were given and formed a decision
tree that indexed the bugs by their answers to the problems. The top node of the tree corresponds to the first
problem. Answers from all possible diagnoses (a diagnosis is a bug or a bug pair) are collected. Most answers will
be generated by several diagnoses. For each answer, a daughter node is attached to the root node, labeled by the
answer. Associated with each node are the diagnoses that gave that answer. The tree-building operation recurses,
once for each new node, using the second test problem. When BUGGY is finished, a huge tree has been built. Each
diagnosis corresponds to a path from the root to some leaf. If the test items are well chosen, then every such path is
unique -- each leaf corresponds to exactly one diagnosis. In general, it is very difficult to find a short test with such
high diagnostic capabilities. Burton (1982) discusses this important issue further.

All this tree building occurs before any students are seen. It is the most expensive part of the computation.
Diagnosis of a student's answers is simple, at least in principle. If a student makes no careless errors, then their

59

answers are used to steer BUGGY on a path from the root to the diagnosis that is appropriate. Of course, most
students do make unintentional errors (often called slips to distinguish them from bug-generated errors), such as
subtracting 9 - 5 and getting 3. Slips mean that a simple tree-walk will not always lead to a leaf, so BUGGY
performs a tree search to find a diagnosis while allowing a minimal number of slips.

The advantage of the decision tree approach is that the tree search is simple enough to be implemented on a
microco.riputer. A larger computer can be used for the computationally intensive tree-building process. The
disadvantage of this technique is that it does not really handle multiple co-occurring bugs. Instead, it computes in
advance all possible combinations (pairs, in BUGGY'S case) and treats the bug combinations just like primitive
bugs. This is usually too expensive if more than two bugs can occur together. Burton's hand analysis of the data
uncovered students with four co-occurring bugs. For BUGGY to diagnose these students would require
approximately 554 (= 9 million) bug tuples, which means a diagnostic tree with trillions of nodes.

Generate and Test

DEBUGGY (Burton, 1982) was designed to diagnose up to four or five multiple co-occurring bugs. Unlike
BUGGY, it does not calculate the answers of co-occurring bugs in advance. Rather, it generates bug combinations
dynamically. It begins by finding a small set of bugs that match some, but not necessarily all, of the student's
answers. There might be 10 bugs in this set. It then forms all pairs of these bugs (about 100 bug pairs). It also
makes pairs using a stored list of bugs that are known to be difficult to spot because they are often covered by other
bugs. From this set of perhaps 200 bugs, DEBUGGY selects the ones that best match the student's answers. Using
these favorites, the bug-compounding process occurs again and again until no further improvement in the match is
found. The resulting tuple of bugs is output as DEBUGGY'S diagnosis of the student.

DEBUGGY'S algorithm is a species of a very general technique for diagnosis, called generate and test.
The diagnostic algorithm generates a set of diagnoses, finds the answers that each predicts, tests those answers
against the student's answers, and keeps the ones that match best. In general, generate and test is rather inefficient.
Domain-specific heuristics are often needed in order to speed it up.

Interactive Diagnosis

DEBUGGY and BUGGY work with a predefined subtraction test and the student's answers to it. Thus,
they can be used as off-line diagnostic systems: the teacher administers the test, mails the answers to DEBUGGY,
gets the diagnosis a few days later, and administers the appropriate remedial instruction. VanLchn (1982) reports the
results of such a use of DEBUGGY.

Whithin a tutoring system, there is no need to stick with a fixed list of test items. The
system can choose a problem whose answer will help diagnosis the most. TOEBUGGY (Burton, 1982)
is such a system. Given a set of diagnoses consistent with the students' answers so far, it tries
to construct a subtraction problem that will cause each diagnosis to generate a different answer.
Thus, the problem splits the hypothesis space, so to speak. It is not always possible to find
such a problem, so IDEBUGGY puts only a fixed amount of effort into this strategy, then presents
the best problem it has found so far to the student. Still, the student can sometimes wait too
long for IDEBUGGY to present the next problem. Interactive diagnosis, where the diagnosis
algorithm drives the tutorial interaction, puts heavy demands on the speed of the diagnostic
algorithm. Nonethelts, it can yield highly accurate diagnoses with many fewer test items than a
fixed-item test would require in order to achieve the same accuracy. Reducing the length of the
diagnostic session may reduce students' fatigue and increase their willingness to cooperate.

IV. RESEARCH ISSUES

Cognitive diagnosis is a new field, and there are vast numbers of questions for research to address. There
are many questions of the form "Does technique X work well with student models of form Y on subject domain Z?'
From an engineering and educational standpoint, these are the most important questions to address, for they turn a
miscellaneous collection of techniques, each of which has been used once or twice, into a wcll-understood
technology. To this collection of issues, I would nominate a few more that are not of the XYZ form.

Much research has gone into finding diagnostic techniques that can produce very detailed descriptions of
the students' knowledge. Simpler techniques such as issue tracing produce less detailed descriptions. There is a

60

tacit assumption that tutoring based on fine-grained student models will be more effective than tutoring based on
coarse-grained models. No one has attempted to check this assumption. We need to know when fine-grained
modeling is worth the effoil. This is not really a question of how to do student mo(leling, but rather when to do
what kinds of student modeling. In order to addrcss this (lnCstion, one could situate two or more student modeling
systems inside [lie samc ITS and see which one tutors more effectively.

Research oriented towards improving student modeling could go in several directions. One is to employ
explicit models of learning. This topic was touched on in the WUSOR ITS (Goldstcin & Carr, 1977; Goldstein,
1982). Incorporating models of learning into diagnosis has much potential power because it can radically reduce the
space that the diagnostic algorithm must search.

Interactive diagnosis, where the diagnostic program selects problems to pose to the student, is another
technique that has great potential power. It has been briefly explored with the IDEBUGGY student modeling
program (Burton, 1982) , the GUIDON ITS (Clanccy, 1982). and the WHY project (Stevens, Collins, & Goldin,
1982). This topic -- the skill of posing problems -- seems almost as rich as diagnosis, which is the skill of
interpreting the student's answers to problems.

As user interfaces improve and powerful personal computers become cheaper, we are likely to see more
ITS designers choosing the high bandwidth option, where the student's behavior is very closely monitored by the
system. The amount of time between the student's actions is one type of information that is available for free but
that so far has been ignored by every ITS I know of. Chronomeiric data has been used in psychology for years as a
basis for deciding between potential models of human cognition. It would be interesting to see whether
chronometric data would favor fine-grained student modeling.

Much of the early ITS research concerned students learning about physical systems. The SOPHIE project
(Brown, Burton, & DeKleer, 1982) studied students learning about electronic circuits. The WHY project (Stevens,
Collins. & Goldin, 1982) studied rainfall. The Steamer project (flollan, l lutchins,& Weitzman, 1984) studied naval
steam plants. These projects gradually evolved into long-term, basic research on the mental models that people
seem to employ for mentally simulating physical systems (Gentncr & Stevens, 1984). Research on mental models
has progressed to the point that it might be worth reopening the investigation into ITSs for physical systems. The
student modeling problem will be very difficult- The students' responses depend ,on mentally running a model
constructed from their understanding of the device. If the response is wrong, it could be because of a bug in how
they ran their mental model, or in how they constructed it, or in both. Relative to the three-dimensional space of
student models, menial models are a l)ran(-ncw knowledge type -- a new column in the chart of Figure 2 -- with
unique now technical issues to conquer.

61

REFERENCES

Anderson, J. R., Boyle, C., & Yost, G. (1985). The geometry tutor. In

Proceedings of Ninth International Joint Conference on Artificial

Intelligence (pp. 1-7). Los Altos, CA: Morgan-Kaufmann.

Brown, J. S., & Burton, R. B. (1978). Diagnostic models for procedural bugs

in basic mathematical skills. Cognitive Science, 2, 155-192.

Brown, J. S., & VanLehn, K. (1980). Repair Theory: A generative theory of

bugs in procedural skills. Cognitive Science, 4, 379-426.

Brown, J. S., & Burton, R. B., & DeKleer, J. (1982). Pedagogical, natural

language and knowledge engineering techniques in SOPHIE I, II and III. In

D. Sleeman & J. S. Brown (Eds.), Intelligent Tutoring Systems (pp. 227-

282). New York: Academic Press.

Burton, R. B. (1982). Diagnosing bugs in a simple procedural skill. In

D. Sleeman & J.S. Brown (Eds.), Intelligent Tutoring Systems (pp. 157-183).

New York: Academic Press.

Burton, R. B., & Brown, J. S. (1982). An investigation of computer coaching

for informal learning activities. In D. Sleeman & J. S. Brown (Eds.),

Intelligent Tutoring Systems (pp. 79-98). New York: Academic Press.

Buswell, G. T. (1926). Diagnostic studies in arithmetic. Chicago, IL:

University of Chicago Press.

Carbonell, R. (1970). Al in CAI: An artificial intelligence approach to

computer aided instruction. IEEE Transactions on Man-Machine Systems, 11,
190-202.

Carbonell, J. R., & Collins, A. (1973). Natural semantics in artificial

intelligence. In Proceedings of the Third International Joint Conference

On Artificial Intelligence (pp. 344-351). Los Altos, CA: Morgan-Kaufmann.

Clancey, W. J. (1982). Tutoring rules for guiding a case method dialogue. In

D. Sleeman & J. S. Brown(Eds.), Intelligent Tutoring Systems (pp. 201-225).

London: Academic Press.

Genesereth, M. R. (1982). The role of plans in intelligent teaching systems.

In D. Sleeman & J. S. Brown (Eds.), Intelligent Tutoring Systems (pp. 137-
155). New York: Academic Press.

Gentner, D., & Stevens, A. (1984). Mental Models. Hillsdale, NJ: Erlbaum.

Goldstein, I. (1982). The genetic graph: A representation for the evolution

of procedural knowledge. In D. Sleeman & J. S. Brown (Eds.), Intelligent

Tutoring Systems (pp. 51-77). New York: Academic Press.

Goldstein, I., & Carr, B. (1977). The computer as coach: An athletic paradigm

for intellectual education. In Proceedings of ACM77 (pp. 227-233).

Grignetti, M., Hausman, C., & Gould, L. (1975). An intelligent on-line

assistant and tutor: NLS-Scholar. In Proceedings of the National Computer

Conference (pp. 775-781).

62

Hollan, J. D., Hutchins, E. L., & Weitzman, L. (1984). Steamer: An interactive
inspectable simulation-based training system. The AI Magazine, 5(2) 15-27.

Johnson, L., & Soloway, E. (1984a). Intention-based diagnosis of programming
errors. In Proceedings of American Association of Artificial Intelligence
Conference (pp. 162-168). Los Altos, CA: Morgan-Kaufmann.

Johnson, L., & Soloway, E. (1984b). PROUST: Knowledge-based program
debugging. In Proceedings of the Seventh International Software
Engineering Conference (pp. 369-380).

Kimball, R. (1982). A self-improving tutor for symbolic integration. In
D. Sleeman & J. S. Brown (Eds.), Intelligent Tutoring Systems (pp. 283-

308). New York: Academic Press.

Langley, P., & Ohlsson, S. (1984). Automated cognitive modeling. In
Proceedings of AAAI-84. Los Altos, CA: Morgan-Kaufmann.

London, B., & Clancey, W. J. (1982). Plan recognition strategies in student
modelling: Prediction and description. In Proceedings of the American
Association of Artificial Intelligence Conference (pp.193-197). Los Altos,
CA: Morgan-Kaufmann.

Miller, M. L. (1982). A structured planning and debugging environment for
elementary programming. In D. Sleeman & J. S. Brown (Eds.), Intelligent
Tutoring Systems (pp. 119-135). New York: Academic Press.

Ohlsson, S., & Langley, P. (1985). Identifying solution paths in cognitive
diagnosis (Technical Report CMU-RI-TR-84-7). Pittsburgh, PA: Robotics

Institute, Carnegie-Mellon University.

Reiser, B. V., Anderson, J. R., & Farrell, R. G. (1985). Dynamic student
modeling in an intelligent tator for LISP programming. In Proceedings of
Ninth International Joint Conference on Artificial Intelligence (pp. 8-14).
Los Altos, CA: Morgan-Kaufmann.

Sleeman, D. H. (1982). Assessing competence in basic algebra. In D. Sleeman
& J. S. Brown (Eds.), Intelligent Tutoring Systems (pp. 186-199). New
York: Academic Press.

Stevens, A., Collins, A., & Goldin, S. E. (1982). Misconceptions in students'
understanding. In D. Sleeman & J. S. Brown (Eds.), Intelligent Tutoring
Systems (pp. 13-24). New York: Academic Press.

VanLehn, K. (1982). Bugs are not enough: Empirical studies of bugs, impasses
and repairs in procedural skills. The Journal of Mathematical Behavior,

3(2), 3-71.

VanLehn, K. (1983). Felicity conditions for human skill acquisition:
Validating an Al-based theory (Tech. Report CIS-21). Palo Alto, CA:
Xerox Palo Alto Research Center.

VanLehn, K. (1987). Learning one subprocedure per lesson. Artificial
Intelligence, 31(l), 1-40.

63

DISCUSSION

The Expert Module
and

Student Modeling

James G. Grccno
Professor of Education

University of California, Berkeley
Berkeley, California

I have very positive reactions to the two papers by John Anderson and Kurt
VanLehn. The research that they have conducted and that they discuss in their
papers is science of the highest quality and significance.

The strength of this research comes partly from its being directed toward both
fundamental and applied issues at the same time. The strong research in this domain,
much of which is represented in the papers at this meeting, has addressed fundamental
questions in cognitive science and principles of technology at the same time that it
has produced significant new resources by developing new systems involving
advanced technology. One example, in Anderson's work and in the
ALGEBRALAND program that Richard Burton discussed, is the development of
graphics systems to display the search trees generated during solution of problems in
geometry and algebra. These systems are based on the theoretical analyses of the
cognitive proccsses involved in the tasks. They also provide new resources for
instruction, enabling students to reflect on and improve aspects of their performance
that are normally tacit and therefore inaccessible to efforts to improve them.
Another example is the DEBUGGY system of analysis that VanLehn discussed,
which is based on a theoretical analysis of a structure of correct and incorrect
procedurcs in a domain, which provided a new level of computational power in
intelligent diagnostic programs, and which VanLchn (1983) used as a powerful tool in
further advanced basic research of the learning on procedures.

I. AN AGENDA OF RESEARCH AT TWO LEVELS

My discussion of these issues will be general, involving an assessment of the
current state of research, its prospects for use in the short-term and intermediate-term
future, and some important questions that should be addressed now for use in a longer
term. There are interesting, detailed questions that could be discussed, but I have
chosen to focus on more general issues partly because the details will undoubtedly be
actively considered in the ongoing process of scientific work.

As I see the situation, there are several important results of recent research in
cognitive science and artificial intelligence that should be actively exploited in the
technology of intelligent tutoring systems. In the current state of our scientific
knowledge on these issues, we need to focus on applied research that will show how to
design instructional systems that arc more powerful because of the insights that have
been achieved in the fundamental research conducted in the last 15 years or so. In
addition, there arc some crucial fundamental issues about the nature of knowledge and

65

cognitive skill that require attention. The state of knowledge regarding this second
set of issues is that very recent results arc pointing the way toward research that can
fundamentally alter our conceptions of the goals and methods of instruction,
especially in technical domains.

An implication of this analysis is that some attention should be given to how
to improve the interaction between research and practice. In contrast to the physical
and biological sciences, where there are very substantial institutions of engineering
research, behavioral and cognitive sciences lack significant resources that arc
dedicated to the kind of research needed to develop new technology based on ongoing,
fundamental research progress. We need to go beyond the consideration of how to
use research findings in specific areas and attend to the development of general
structures that will facilitate the more effective use of advances in research.

II. APPLIED RESEARCH BASED ON RECENT FUNDAMENTAL PROGRESS

There is a slogan for this section: If you know, in detail, what you want to teach, you
can design a better way to teach it.

The strong technological developments that are described by Anderson,
VanLehn, and others at this meeting rest mainly on a major scientific development in
which we have learned how to analyze knowledge structures required for performing
instructional tasks. There now arc about a dozen good examples of tasks for which
the needed cognitive structures have been analyzed and represented in the form of
computational models that simulate successful performance. The scientific capability
now exists to take a significant, well-defined instructional task and identify a set of
cognitive structures and processes that are psychologically plausible and are sufficient
to perform the task successfully.

It is important to remember how recently this capability has been developed in
cognitive science. Cognitive science itself has only existed for about 30 years, and the
effort to apply cognitive analyses to instructional tasks has been active since about
1974. The fact that this capability has developed within two or at most three decades
indicates an unusually productive research program.

The ability to model successful performance is the basis of the expert model
and diagnostic systems that Anderson and VanLehn discussed. We can take a task
like geometry or LISP programming or subtraction, and we build a program, using
methodological and theoretical resources such as production rules and schemata, so
that we can come to a better understanding of how people perform the task
successfully. Models of this kind can be useful for instructional designers because the
models tell us, at least hypothetically, what it is that has to be acquired in the mental
structures of students in order for them to do the task. If a program can do the task
and if we can instruct students so that their knowledge is like the program, then the
students will be able to do it, too. That provides the kind of expert model that
Anderson discussed, as well as the kind of student model that VanLehn discussed. In
diagnosis, the model of correct performance provides an analysis of components of
knowledge, and the diagnostic task is to determine which of those componcnts have
been acquired by the student. A model of successful performance also provides a
basis for determining feedback that is targeted toward the student's acquisition of
specific cognitive components, either by correcting students' errors or in intelligent
coaching systems. It also can be used as the basis of specially designed displays of

66

information related to components of knowlcdge that are usually tacit, as in the case
of Anderson's tutoring systems in which strategic aspects of knowledge arc
represented explicitly as the goals of a search trce.

Although the ability to construct models of instructional tasks plays a crucial
rolc in the new developments in instructional technology, it does not in itself solve
any significant instructional problems. Important research questions have to be
answered to provide additional information about how to present instruction that uses
the ideas in the model. Significant research was required after there was an adequate
model of the procedure of subtraction before the DEBUGGY diagnostic system was
developed, and important questions remain unanswered about the processes that
generate buggy performance, the stability of bugs, and the organization of the space
of procedural flaws. When a model of successful performance is used as a basis of
giving students feedback, there are important questions about the manner in which
feedback can be given effectively. A model is helpful in designing computational
coaches or explicit displays of tacit information, but the characteristics of those
instructional systems are not determined by the features of the model, and research is
needed to guide the design and evaluation of the systems.

In addition to the need for research for developing effective components of
instruction, there are important tasks before us in extending the technological
capabilities that we have now. I think there is general agreement that we are just
beginning to develop instructional systems in which the ideas in current prototypes
will be built into larger curriculum units. Most current systems provide instruction in
relatively small units, and considerable further work is needed to develop capabilities
for providing larger integrated systems with sophisticated diagnostic and coaching
systems.

Another major issue for research on systems for development in the short term
is that they should be built with the understanding that they should change after they
are in place. Modifiability should be built into the design of systems when they are
developed. Provisions should be made for changes that arc called for by improved
understanding of the functions of the system. In addition, the social context in which
the systems are used will influence the ways that the systems function, and we need to
direct research attention to understanding ways to make technological systems flexible
and useful in the various social contexts in which they will be used.

III. LONGER-TERM RESEARCH ISSUES

A slogan for this section is: If what you really want to teach is different from what
you think you want to teach, then teaching what you think you want to teach better may do more

harm than good.

Understanding the requirements of a task in detail can be misleading if the
analysis neglects aspects of understanding and reasoning that are important in a
broader context. An example is in the training that is given in the Navy's Basic
Electricity/Electronics course, which Mary Riley (1984) studied in her dissertation.
That course is based on an analysis of behaviors required to solve a set of
instructional problems, mainly involving application of Ohm's Law and Kirchhoff's
Rules to calculate quantitative properties of circuits. Riley's research was motivated by
the high rate of attrition in the BE/E course, and she studied individuals comparable
to Navy recruits as they studied the instructional materials and worked on test

67

problems. She discovered that the instructional materials did not address important
aspects of the knowledge required to understand circuit diagrams and the concepts of
voltage, resistance, and current. I believe that the instruction was designed well for
the purpose of training students in the instructional tasks of solving circuits, according
to the analysis of behaviors involved in those tasks. The difficulty is that the analysis
was relatively shallow and did not indicate the need for some additional cognitive
structures and processes that students also need but that are not obviously needed for
performance of the tasks that were analyzed.

The specific deficiency that Riley discovered in the BE/E course can be
remedied using the kinds of ideas that current cognitive analyses offer. Indeed, Riley's
dissertation provides a nice example of one way that cognitive science has advanced
in recent years to enable consideration of issues that were not accessible to analyses in
earlier behavioral terms. But there is an important moral to the story. At any time,
the concepts and methods that we have for analyzing knowledge and cognitive skill
are incomplete. We need to recognize the likelihood that our current understanding
omits some important factors and that further work is needed to clarify those factors.
As that work proceeds, of course, we need to provide the best instruction that we can
based on the best understanding that is available, but it is important to keel) in mind
that there is room for improvement both in the instruction we give and in the theories
on which that instruction is based.

The next part of this commentary raises some issues that I think are likely to
be involved in the next phase of theoretical development beyond the understanding
that we have now. Within the last 12 years or so, we have developed the capability of
analyzing knowledge structure for instructional tasks. In the next 12 years or so, we
should expect some further progress. Recent research suggests three aspects of expert
knowledge and reasoning that are likely dimensions for that progress. The dimensions
involve (a) informal, qualitative reasoning by experts in subject-matter domains; (b)
knowledge for reasoning that is tightly coupled to situations of practice; and (c)
characteristics of knowledge that make it generative for understanding and learning
in new situations.

The importance of qualitative reasoning, often called intuition, is widely
recognized. Experts in many fields attribute their creative achievements to hard work
and intuition; they insist that formal knowledge is at most a prerequisite of tile
capabilities needed for successful professional work in a field. The informal, intuitive
aspects of expert reasoning have not been taken into account significantly in models
used for development of instructional systems. Indeed, it is probably not an accident
that we have had our main successes with cognitive skills in formal, symbolic domains
such as subtraction, algebra, geometry, and LISP programming.

The scientific analysis of informal, qualitative reasoning is in an early stage,
but some promising beginnings have been achieved, especially in work such as that of
deKlcer and Brown (1984), Forbus (1984), and Johnson-Laird (1983). Much remains to
be done, but a reasonable prediction is that within the next decade, there will be
considerable progress toward a rigorous analysis of informal, qualitative reasoning.
As we develop this analysis, we will want to be able to develop instruction that will
test ideas about the acquisition of intuitive understanding. Indeed, a promising
strategy for developing the analysis includes developing instructional systems that can
change students' intuitions in subject-matter domains and using the results of th'se
systems as material for scientific study.

68

A second dimension of expert reasoning that is indicated in current research is
its situated character. In most of the research that has been conducted on expert
knowlcdge, problems that students have to solve in order to get good grades in classcs
arc given to advanced students or professors, and their expertise has been assessed by
their performance on these textbook problems. Our picture of expertise, then, is
situated in the context in which people go to school. Everyone with practical
experience on a job has good reasons to say that that is probably going to give us a
somewhat limited view. It is important to recognize that. It is anothcr thing to figure
out what we ought to be doing instead.

One important current project is being conducted by Edwin Hutchins (1986), who
has been studying quantitative reasoning by looking over the shoulders of navigators--and
sometimes ducking ou, f their way--looking at the process of steering a ship so that it gets
into the harbor and doesn't run into things along the way. A great deal of sophisticated,
quantitative reasoning goes on in the chart room. At the same time, people are yelling at
each other and getting readings, some of which come in on schedule and some of which have
to be requested. Computations are being done, some by standard calculating methods and
some with special devices that use the spatial properties of maps to convert bearings to
positions. The data give a very strong impression that the expertise of these senior navigators
is only remotely related to formal mathematics.

Hutchins' findings arc consistent with other research in quantitative reasoning
in street markets in Recife, Brazil, and in supermarkets and kitchens in Orange
County, California (e.g., Lave, Martaugh,& de la Rocha, 1984). A common feature of
the results is that reasoning is primarily focused on solving problems that arise from
the structure of activity, rather than the structure of the formal system ot
mathematics, if you're working on portions of food according to some diet. Lave
refers to this as the structuring resource that comes from the setting in which you're
engaged in a practice. The knowledge acquired in school mathematics is structured by
the instructional setting, the arrangement of ideas, and the sequence of the skill that is
being taught. On a battleship the setting that structures the problem is the task of
getting the ship where it is supposed to go and not running into things along the way.
Mathematics comes up, but it comes up in a context that is not intrinsically
mathematical. Usually mathematics is needed when there is some kind of impasse in
which a person's direct knowledge is insufficient.

Understanding the knowledge that experts use in situations of practice is a
major challenge in research. Some interesting clues are in findings that Julian Orr
(1987) has obtained in studying the interactions that technical service representatives
have when they talk about their work. They seldom talk to each other over lunch
about information in the training manuals that they read when they went to school.
They tell each other stories about interesting successes or other dramatic events that
have occurred in their work. Orr's findings suggest that important components of
expert knowledge may be encoded as a kind of lore that relates directly to the setting
of the practice. It seems likely that this kind of ethnographic research can provide
important future information about the nature of knowledge that is used by experts in
their practice. The results of this research can make a fundamental difference in the
way we design instruction because it challenges the academic principles that have
been the basis of organization in virtually all the instruction that we have.

The third dimension that also presents a fundamental challenge to our way of
thinking about instruction is the generative character of expert knowledge. This issue
is being clarified in research done mainly with young children, which is investigating

69

the development of conceptual understanding in domains of knowledge. An
important recent example is Susan Carey's (1985) work on the changes in the way
youngsters think about processes in the domain that adults would think of as biology.
A major shift occurs roughly between the ages of 6 and 10 years, involving a
fundamental change that has many of the properties of the change in a scientific
theory. When children are about 6 years old, they think about life and living
functions according to a set of concepts that Carey calls naive psychology. The
explanatory system for understanding biological processes is basically a system about
wants, desires, and intentions. For example, people eat because they are hungry. But
10-year-olds have developed a set of concepts and principles that can be called a naive
biology, in which biological processes are understood in terms of biological function
such as nourishment. For example, 10-year-olds say that people eat because they need
food to stay alive, or because food helps them grow.

Examples like Carey's analysis emphasize that serious changes in conceptual
understanding are not rare evcnts. They are, in fact, the stuff of human understanding
and cognition about systems. I think that as we come to understand expertise more
thoroughly, we will come to realize that there is a subtle and elaborate structure of
ideas and understanding that is built into the practice that experts acquire after years
and years of experience.

IV. STRUCTURES OF INTERACTION BETWEEN RESEARCH AND
PRACTICE

Finally, I reiterate my concern about the infrastructure of our work as
scientists and engineers and practitioners. I believe that we need to think very hard
about how to create networks of researchers and practitioners that feed in all
directions. It seems clear in our field, as it has been in many other scientific fields,
that the view of generating ideas in basic research that then drive the development of
technology is grossly oversimplified. The effort to develop complex computational
systems leads to new ideas and the refinement of theories, and the use of
technological resources in practice provides important information for evaluating and
modifying theories as well as technology. In any case, we need to find structures in
which interactions among the activities of basic science, development of advanced
technology, and instructional practice will become unavoidable. We need institutional
structures that go beyond encouraging people to talk back and forth, and in which the
kinds of interactions that arc essential to the development of the field will happen as
a matter of coursc.

V. CONCLUSION

I have characterized two levels of research issues that are important for the
development of intelligent instructional technology. The ability to analyze knowledge
structures for instructional tasks is a major scientific achievement that can be put to
use in applied research immediately in studies that would include development of
integrated systems that use expert models, intelligent diagnostic systems, coaching, and
model-based displays of information that makes tacit knowledge explicit. Further,
there are fundamental research questions that should be addressed to deepen our
understanding of expert knowledge and reasoning, including the characteristics and
role of qualitative mental models, the naturc of situated reasoning, and the nature of

70

gcncrative knowledge. All of thcsc arc worthwhile problems, and good progress can
be madc on them with availablc scicntific concepts and methods, if the work is
supported. I hopc that it will be, and I also hopc that somc of thc resources that arc
availablc will be allocated to strengthening the structure of scicntific and engineering
rcsourccs that arc necded for thc long tcrin, cspecially thosc that foster interaction
among basic science, cnginccring, and instructional practice.

REFERENCES

Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: Bradford MIT Press.

dcKlcer, J., & Brown, J. S. (1984). A qualitativc physics based on confluences. Artificial
Intelligence, 24, 7-84.

Forbus, K. D. (1984). Qualitative process theory. Artificial Intelligence, 24, 85-168.

lutchins, E. (personal communication, 1986).

Joh nson-Laird, P. N. (1983). Mental models.- Toward a cognitive science of language, inference,
and consciousness. Cambridge MA: Iarvard University Press.

Lave, J., Martaugh, M., & dc la Roca, 0. (1984). The dialectic of arithmetic in grocery
shopping. In B. Rogoff & J. Lave (Eds.), Everyday cognition: Its development in
social context (pp. 67-94). Cambridgc MA: Harvard University Press.

Orr, J. E. (1987). Talking about machime." Social a.spects of expertise. Unpublished
manuscript, Xerox Palo Alto Research Center, Palo Alto, CA.

Riley, M. S. (1984). Structural understanding in permanence and learning. Unpublished
doctoral dissertation, Ulniversity of Pittsburgh, PA.

Van Lch n, K. (1983). Felicity conditions for human skill acquisition: Validating an Al-based
theory (Tech. Report CIS-21). Palo Alto, CA: Xerox Palo Alto Rescarch Center.

71

CHAPTER 4

CURRICULUM AND INSTRUCTION IN AUTOMATED TUTORS

Henry M. Halff
Chief Scientist

Halff Resources, Inc.

People learn many things without benefit of instruction, but we are distinguished as a species by
our ability to pass knowledge from the competent to the less competent. To endow machines with this
same instructional ability is, to a large extent, to cast the principles of instruction in precise information-
processing terms. This chapter assesses the progress that has been made on one important aspect of
this task; namely, that of codifying the principles of tutoring.

Intelligent Tutoring Systems

This chapter is concerned with only one genre of instruction, tutoring1 , and with only one design
approach to this instruction, that based on artificial intelligence technologies. It is necessary therefore to
say a bit more about what constitutes an intelligent tutor from an instructional point of view.

Tutoring. Tutors can use many different instructional techniques, but tutorial interactions,
however they are conducted, must exhibit three characteristics:

1. A tutor must exercise some control over curriculum: that is, the selection and sequencing of

material to be presented.

2. A tutor must be able to respond to students' questions about the subject matter.

3. A tutor must be able to determine when students need help in the course of practicing a skill
and what sort of help is needed.

Some tutors, automated and human have very weak models for one or two of these functions,
but the design of any tutorial system must inulude some approach to each.

Curriculum and instruction. By curriculum I mean the selection of and sequencing of material to be
presented to students. By instruction, I mean the actual presentation of that material to students.

For teaching methods such as lectures, which are less dynamic than tutoring, both curriculum and
instruction can be developed prior to delivery, with as much or as little accountability to principle as the
developers feel is needed. Tutorial systems afford no such luxury because a tutor, human or machine, is
bound to tailor the selection, sequencing, and methods of delivering instruction to meet the ongoing
needs of individual students. Developing curricula and instruction for tutoring therefore is the problem of
developing methods for selecting and sequencing material and methods for presenting that material.

The organization of this paper is straightforward. After a brief discussion of some issues central to

1 This is not to say that tutoring per se is the only way that automated tutors can function. Team or group
instruction could be and has been (Brown, Burton, & DeKleer, 1982) implemented to considerable
advantage with automated tutors.

73

intelligent tutoring, the major approaches to curriculum and instruction in automated tutors are
considered. The chapter concludes with a discussion of major research issues and some tentative
guidelines for implementing automated tutors.

Three Central Issues

Throughout the chapter, several major issues or distinctions will recur. They deserve some
mention at the outset. The common view of learning and teaching tends to obscure these distinctions,
but the, are all too evident in the context of intelligent tutoring systems.

The nature of learning. Most approaches to instruction are based on an unspoken "blank slate"
assumption. Entering students who cannot perform a particular task or recall a particular fact are viewed as
lacking the skill or missing the fact. Although this assumption may hold in a number of situations, there
may well be others in which students possess all the wrong skills or all too much knowledge. Since the
time of Socrates, scholars have recognized this possibility, but it has certainly not received widespread
recognition in current educational practices. There is little in advice to teachers or instructional designers
that directs them to the process of weeding out inappropriate knowledge at the same time that they are
sowing useful knowledge.

The nature of teaching. The view of learning that dominates current instruction is derived from
studies of how individual organisms manage to learn on their own in a variety of environments. The
unwritten assumption behind this approach is that instruction should be designed to take best advantage
of the mechanisms of individual learning. However, much learning, and indeed the learning that
distinguishes us as human, is a cooperative venture that depends crucially on certain conventions
(primarily linguistic) for communication among students and teachers. Since communication is a
particularly salient aspect of tutoring, we need to understand instruction not only from the point of view of
conventional learning theory but also as a process of communication.

The nature of the subect matter. The short history of automated tutoring exhibits a curious split in
the choice of instructional objectives, a split that has implications for all aspects of the field including
curriculum and instruction. Some tutors, which are called e tuors, are primarily concerned with
factual knowledge and inferential skills. They teach students a body of factual knowledge and the skills
needed to draw first-order inferences from that knowledge. They rely on declarative knowledge in the
sense discussed by Anderson (this volume). Dialogue is the primary instructional tool used by these
tutors. Carbonells (1970) tutor, for example, engaged students in systematic discussions of South
American geography. Collins and Stevens (1982) describe a tutor that uses dialogue to teach certain
principles of meteorology.

Other tutors, which are called p teach skills and procedures that have application
outside of the tutorial situation. Although memory for facts is important in learning such skills, tutors of this
genre are much more concerned with the procedures that operate on memory. As a consequence,
procedure tutors function much more like coaches. They present examples to exhibit problem-solving
skills, and they pose exercises for purposes of testing and practice.

Curriculum

The problem of curriculum can be broken into two problems, formulating a representation of the
material and selecting and sequencing of particular concepts from that representation. In automated
tutors, representing knowledge for instruction involves, at the least, an adequate expert module of the
type discussed by Anderson (this volume). Only one topic need be added to his discussion, and that is
for propaedeutics, the knowledge needed for learning but not for proficient performance. A brief

74

treatment of propaedeutics precedes the major topic of this section; namely, selection and sequencing of
material.

Propaedeutics: Representing Knowledge for Instruction

The most common strategy among those few who design automated tutors is to adopt an expert
model as the representation of material to be taught. The rationale for this strategy is that learning involves
progressive acquisition of the cognitive structures that support expert performance. Under many
circumstances, this strategy may be the most appropriate, but there also may be cases in which a tutor
should use a knowledge representation that is suited to instruction but not to skilled performance. One
example of such a representation is NEOMYCIN (Clancey, 1984; Clancey & Letsinger, 1981), described
by Anderson (this volume). Another example is Heller and Reif's (Heller & Reif, 1984; Reif & Heller, 1982)
verbal representation of some procedures for solving physics problems (see Table 4.1 for an example).

TABLE 4.1
Procedure for Generating a Theoretical Problem Description in Mechanics

(taken from Heller and Reif, 1984)

Relevant times and systems: At each relevant time (previously identified in the basic description of the
problem) identify those systems relevant in the problem because information about them is wanted or
because they interact with such systems directly or indirectly.

Description of relevant systems: At each relevant time, describe in the following way each
relevant system (if simple enough to be considered a single particle), introducing convenient
symbols and expressing simply related quantities in terms of the same symbol.

DescriDtion of motion: Draw a "motion diagram" indicating available information about the position,
velocity, and acceleration of the system.

Description of forces: Draw a "force diagram" indicating available information about all external
forces on the system. Identify these forces as follows:

Short-range forces: Identify each object which touches the given system and thus
interacts with it by short-range interaction. For each such interaction, indicate on the
diagram the corresponding force and all available information about it.

Long-range forces: Identify all objects interacting with the given system by long-range
interactions. (Ordinarily this is just the earth interacting with it by gravitational interaction.)
For each such interaction, indicate on the diagram the corresponding force and all
available information about it.

Checks of description: Check that the descriptions of motion and interaction are qualitatively consistent
with known motion principles (e.g., that the acceleration of each particle has the same direction as the total
force on it, as required by Newton's motion principle ma = F).

These intermediate or propaedeutic representations serve to support performance while more
efficient procedures are acquired through practice. Propaedeutic representations have two
characteristics. First, they make explicit the functional basis of the procedures used in exercising the skill.
Second, they are manageable with the limited cognitive resources available to students. Thus the,, serve
(a) to relate theory to practice, (b) to justify, explain, and test possible problem solutions, (c) as a stepping
stone to more efficient problem-solving strategies; and (d) as strategies for management of working
memory during intermediate stages of learning.

75

Anderson, Boyle, Corbett, and Lewis (1986) have recently provided some insight into the use of
these intermediate representations in instruction. They suggest that declarative knowledge is encoded in
special schemata called PUPS 2 structures which indicate, among other things, the form and function of
the declarative knowledge that they encode. These schemata are interpreted in the course of working
exercises, and the trace of that interpretation is the procedural knowledge underlying the skill to be
learned. Although a declarative representation plays no role in the exercise of an established skill, it is
crucial to the acquisition of that skill.

Selection and Sequencing

The differences between expository tutors and procedure tutors are evident in the problems
associated with selecting and sequencing material. For expository tutors, the problems are those of
maintaining focus and coherence and of covering the subject matter in an order that supports later
retrieval of the concepts being taught. Procedure tutors have the additional problem of properly ordering
the subskills of the target skill and selecting exercises and examples to reflect that order.

Topic selection in exxsitory tutors. Curricula in expository tutors must deal with two sources of
constraints. One set of constraints arises from the subject matter. Topics must be selected to maintain
coherence and to convey the structure of the material being taught. A second set of constraints comes
from the tutoring context. Selection of some topic or fact for discussion must reflect the student's reaction
to previous tutoring events.

The methods used to construct curricula that reflect the structure of the material have been the
subject of much research both in the context of automated tutors and in the larger educational community
itself. Work at Bolt Beranek and Newman, starting with SCHOLAR (Carbonell, 1970) and continuing with
research by Collins, Stevens, and others (Collins & Stevens, 1982; Collins, Warnock, & Passafiume,
1975; Stevens & Collins, 1977, 1980) has systematically examined how both human and automated
tutors plan curricula. Influential work of the same sort can be found in other educational literature
(Ausubel, 1968; Reigeluth & Stein, 1983).

The general conclusion of this work is that curricula should conform to an approach called web
teaching by Norman (1973). Two principles guide the selection of materials in web teaching:

1. Relatedness--give priority to concepts that are closely related to existing knowledge, and

2. Generality--discuss generalities before specifics.

Web teaching can be justified by reference to a complementary notion called web learning.
According to this notion, students develop cognitive structures that reflect the curriculum. The structure
provided by web teaching is a framework of general concepts that is anchored in existing knowledge and
that serves to support more detailed knowledge.

Web teaching and related approaches provide a static framework for curricula. They do not
address the powerful mechanisms that tutors can use to formulate and reformulate curricula within the
dynamic context of the tutoring situation. They do not tell us, for example, whether the curriculum should
be redirected as the result of some unanticipated question from the student.

Recently, Woolf and McDonald (1985) have developed a sophisticated methodology for
studying dynamic formulation and reformulation of curricula. This methodology, implemented in a program

2"pups" stands for the Penultimate Production System, a rule-based system that Anderson uses to
formulate his cognitive theory.

76

called Meno-tutor, has two distinct mechanisms for directing the tutorial dialogue. One mechanism
implements planning mechanisms like web theory for maintaining coherence and focus in the dialogue.
These mechanisms are represented in an ATN 3 grammar, called a Discourse Management Network
(DMN).

Meno-tutor has a second curricular mechanism that allows it to respond to a student's particular
situation. This mechanism is a set of mtrule that examine the overall context of instruction for
conditions that dictate a change from the normal path of instruction represented in the DMN. The meta-
rules consist of conditions on the overall state of the LIMN and actions that can effect transitions not
allowed by DMN's syntax. For example, when the tutor finishes the discussion of one topic, a meta-rule
assesses the tutor's overall knowledge of the student's competence, and, if it turns out that the tutor
knows little about the student, the meta-rule will drive the tutor to a strategy calling for exploration of
student knowledge.

Exercise and example selection in procedure tutors. Procedural skills are nearly always taught by
exercise and example. In these cases the major curricular issue is that of choosing the correct sequence
of exercises and examples. Ideally, the choice of exercises and examples should be dictated by a model
of learning, but, as Anderson (this volume) has pointed out, there is no theory of learning that is precase
and powerful enough to support an interactive tutoring system. Research on the selection and
sequencing of exercises has suggested several standards.

1. Manageability. Every exercise should be solvable and every example should be
comprehensible to students who have completed previous parts of the curriculum.

Recommendations for meeting the manageability criterion are well known by researchers
concerned with instructional systems design (ISD). Gagne and Briggs (1979) recommend analyzing the
skills to be taught into a prerequisite hierarchy of instructional objectives. The highest level of the
hierarchy consists of primary objectives. Each descendant of each objective in the hierarchy consists of
that objective's immediate prerequisites, called enabling objectives. Gagne and Briggs recommend a
curriculum that devotes a single lesson to each instructional objective, that imposes a mastery criterion on
the learning of each lesson, and that presents the lesson for each objective after the lessons for its
enabling objectives.

ISD also makes some recommendations concerning the fine-grained structure of curricula within
lessons. These recommendations rely on a taxonomy for the cognitive features of instructional objectives
and rules that construct lessons based on the classification of each objective in the taxonomy. For
example, component display theory (Merrill, 1983) provides two recommendations for the selection of
examples and exercises in classification learning. The divergence principle calls for broadly representative
sampling of instances, and the matching principle calls for presentation of both positive and negativs
instances of the concept, procedure, or principle being taught.

In summary, manageability can be achieved by isolating each objective to be taught, by providing
enough material to allow students to master each objective, and by teaching prerequisites first.

2. Structural transparency. The sequence of exercises and examples should reflect the structure
of the procedure being taught and should thereby help the student induce the target
procedure.

3 Augmented Transition Network (ATN) grammars are general and powerful mechanisms for representing
procedures. Their prirncipal use is for natural-language understanding, but they can serve, as in Meno-
Tutor, to represent complex procedures for other tasks. See Winston (1984, pp. 304-309) for a technical
discussion of these grammars.

77

This principle proposes that curriculum is a form of communication with the student in that the
sequence of exercises and examples tells the student something about the subject matter. Theories of
this kind of communication must therefore have two components. They must specify how to derive a
sequence of exercises and examples from the structure 3nd content of the procedure being taught, and
they must explain how a student can interpret the sequence in order to learn something about the
procedure.

To date, only two efforts have addressed both components of the structural transparency issue.
Smith, Walker, and Spool (1982) proposed certain structuring principles for an existing course in symbolic
logic that consisted largely of exercises and examples of proof problems. Smith et al. also constructed a
learning model that used these principles to induce the strategies supporting skilled problem solving in
the course. Smith et al.'s learning model is schema driven. It matches each unit of the course (e.g., a
sequence of examples) to a template that specified an induction principle. The induction principle can be
used to infer some problem-solving strategy from the unit. Smith et al. argued that the templates
constitute communicative conventions shared by instructional designer and student for the purpose of
conveying procedural knowledge through curriculum structure.

A similar but more thorough line of work can be found in VanLehn (1983,1985, in press). His
concern was with curricula In which students induce a procedure solely from the exercises and examples
presented to them. Most of his work focused on curricula for multicolumn subtraction problems and
student performance in those curricula. In a theory of these curricula called step theory, he proposed that
learning is possible in such cases only if certain conventions, called felicity conditions, govern the
construction of the curricula. The felicity condition that relates to selection and sequencing requires that
the curriculum be divided into discrete lessons, each of which adds a single decision point or step in the
procedure to be learned (hence the name step theory). The examples and exercises in each lesson can
use only the step to be learned or steps previously addressed in the curriculum Although VanLehn did
not present a particular learning model in his theory, he did demonstrate that no learning procedure could
possibly Induce the correct procedure unless the curriculum conforms to step theory and the procedure
takes advantage of this fact.

3. Individualization. Exercises and examples should be chosen to fit the pattern of skills and
weaknesses that characterize the student at the time the exercise or example is chosen.

The approaches to manageability and structural transparency previously described are static in
that they do not take advantage of a tutor's ability to dynamically formulate a curriculum to conform to the
ongoing instructional context and, in particular, to the student's changing state of mastery. Each exercise
or example should be chosen so that it is (a) manageable with skills already possessed by the individual
student, and (b) easily related to skills already possessed by the individual student.

BIP-I (Wescourt, Beard, & Gould, 1977) is the only example of a procedural tutor that addresses
these desiderata. BIP-I teaches the BASIC programming language by offering students exercises that
can be solved in a powerful but nonintelligent programming environment. Of interest here are BIP-Il's
methods for selecting each exercise.

The three components of BIP-I are illustrated in Figure 4.1. A semantic skills network represents
some 93 skills needed for competent BASIC programming and the salient pedagogical relations among
them. A studnt Lpof.i 4 maintains an assessment of the student's mastery of each skill in terms of five
states of learning. This profile is updated after every exercise, based on student performance. An
exercise library contains a large number of exercises and the skills required for each.

41 hesitate to call this a student model In the sense in which VanLehn (this volume) uses the term because
it is not an information-processing account of how student,, solve problems in the course.

78

Skills Network

02
03 H Print String Litoral

Print Nunmeric Variable

S

SPrint String Variable If P "\

A AA

n S- HarderLehan a

S -NSamerditicultly

P6 - PArqusl o

Student Profile Exercise Library

Skill State Exorcise Required Skills

02 Learned
03 Easy
04 Learned 17 02.03,13.55

28 Trouble 47 02. 04. 13, 14. 52, 55. 62. 80

30 Marginal

68 Unseen

Figure 4.1. Components of BIP-Il.

These components allow BIP-Il to dynamically address manageability and structural transparency
in its selection of exercises. That is, its selection algorithm chooses exercises that have some optimal
combination of learned and unlearned skills and contain unlearned skills that are conceptually related to

learned skills.

Selection and sequencing criteria. What lessons do the foregoing examqples and suggestians

have for curricula in automated tutoring systems? The primary one is that one should look more to the

overall goals of curriculum construction than to principles for design in particular situations. Curricula for

tutoring situations serve several functions:

79

1. A curriculum should divide the material to be learned into manageable units. These units
should address at most a small number of instructional goals and should present material that
will allow students to master them.

2. A curriculum should sequence the material in a way that conveys its structure to students.

3. A curriculum should ensure that the instructional goals presented in each unit are achievable.

4. Tutors should have mechanisms for evaluating the student reaction to instruction on a
moment-to-moment basis and for reformulating the curriculum.

Instruction

This section concerns the instructional methods that an automated tutor might use to deliver a
curriculum. These methods must cover initial presentation of the material, ways of responding to
students' questions, and the conditions and content of tutorial intervention.

Presentation Methods

The methods used to present material depend on the subject matter and the instructional
objectives. Expository tutoring uses dialogue as the chief method of conveying material. Tutors oriented
towards procedural skills use examples and coached exercises to develop those skills.

Dialogue. The issues involved in formulating dialogue for expository tutors are similar to those
involved in formulating curricula for these tutors. In particular, dialogues need to be planned to address
the instructional objectives at issue, and dialogues must be sensitive to the evolving tutorial context.

Collins and Stevens (1982) and Collins et al. (1975) have derived some general guidelines for
conducting tutorial dialogues once the instructional objective of the dialogue has been established. They
treat three types of objectives: the teaching of facts and concepts, the teaching of rules and functional
relations, and the teaching of skills for deriving these rules. Note that this classification corresponds to
that used in recommendations from ISD (Gagne & Briggs, 1979; Merrill, 1983).

Table 4.2 summarizes Collins and Stevens' guidelines for dialogues addressing each objective.
Teaching of facts and concepts is accomplished by asking for or explaining the material. The decision to
ask or tell is made on the basis of the importance of the material and the student's knowledge thereof.
Teaching of rules in tutorial sessions usually involves inducing the student to consider the relevant data
and to formulate the rule. This can be done by presenting case data that makes the rule clear or by
entrapment strategies that enable the student to eliminate incorrect versions of the rule. Skills for deriving
rules are taught as procedures. These procedures are broken down into their components (e.g., listing
factors, generating cases to specification), and exercises and examples are provided that address each
subskill.

The dialogue plans suggested by Collins and Stevens are interactive in the sense that particular
tutorial utterances are conditioned by the student's responses, but these dialogues do conform to rigid
plans that cqnnot be reformulated in the middle of an interaction. By contrast, Woolf and McDonald ' s
(1985) Meno-tutor, which has been described previously, offers the same dynamic flexibility at the
instructional level as it does at the curricular level. Meno-tutor's DMN has some 27 instructional (as
opposed to curricular) states, each representing a different method of presenting tutorial materials. The
DMN, for example, makes a distinction between feedback used to dismiss a topic (a simple "no" or
"well...") and that used to maintain the topic at the center of atention.

80

TABLE 4.2
Tutorial Dialogue Strategies for Different Instructional Objectives

Instructional Objective - Strategie

Teach facts and concepts Elicit fact or concept

Explain fact or concept Teach rules and relations
Case selection strategies
Entrapment

Teach induction skills Exercises and examples
oriented to subskills

More to the point, meta-rules allow for dynamic reformulation of the tutorial at the instructional level
as well as the curricular level. The method of presentation can therefore be determined by default
assumptions in the DMN, or, if circumstances dictate, by needs that arise in the particular Instructional
context. Normal circumstances might, for example, dictate active correction of a student error, but Meno-
tutor possesses a rule that allows it to give a less emphatic correction if it decides that the student is
confused at that point in the dialogue.

Instructional modelina. Instructional modeling, the use of worked examples or guided practice, is
a prime vehicle for introducing students to procedures that they must learn. Essential to the success of
modeling in intelligent tutoring systems is the formulation and presentation of procedures for working the
examples. These procedures must be based on the representations (including propaedeutic
representations) that students need to acquire the target skills, and they must be presented to the
student in a manner that shows how each step applies to the case being modeled.

SOPHIE II (Brown, Burton, & de Kleer, 1982) is one early example of a training system that faced
these issues. It demonstrated procedures for troubleshooting arbitrary faults in a simple electronic device.
The significance of Brown et al.'s work is in the discipline they used to formulate and present SOPHIE-I's
troubleshooting procedure. In particular, they restricted SOPHIE-Il to general (device-independent)
procedures that were cognitively faithful to human troubleshooters, and they gave SOPHIE the facility to
verbally account for its troubleshooting decisions as it demonstrated these procedures.

Language is not the only vehicle that can be used to explain procedures during instructional
modeling. Hutchins and his colleagues (Hutchins & McCandless, 1982; Hutchins, McCandless,
Woodworth, & Dutton, 1984) developed a system (MANBOARD) to aid in the training of relative-motion
problems in naval surface operations. This system is able to demonstrate procedures and illustrate these
demonstrations with displays (like the one in Figure 4.2) of ships In both relative and geographic
coordinates. These displays make clear the geometric basis of the procedures being taught.

VanLehn (1983) found another important application of visual explanation, not in a tutoring
situation but in his examination of multicolumn subtraction procedures. He found that the indications of
crossing out and borrowing in worked examples (see Figure 4.3) were crucial to learning In that they made
explicit the intermediate steps of procedures. Without these indications, students are, in principle, unable
to induce the procedure from the examples given them in typical curricula. The import of this show-work
felicity condition is obvious for instructional modeling; a tutor should provide whatever description Is
necessary to ensure that the student can grasp the intermediate mental steps of the procedure.

81

1 NewCours

... *

....

SPE 0. PE 14.. S 73 RAG 30

Haecmuer geeaeanw°e fvle
plt, and-the right nel ro....... . . i

Answeri QuSionsRIGSHPRee

D -if r

man.. Display of tutohe be dlopd Them or u ltive quest ion

answerin , s andess mentionsrhpe, is Duthe, diffcult ohft n atur l anguages omrehaes oion
geneatin. nettept t e righ ro ntel prole canhe fourspnding gHogaR'sc (Caronel 17).s

ofAstemplatQemtinstaeytdelwhsuen'qetir

anRenusnig setostionsisng sental qustion SoPHI hua (Btrw, Burton, mih Bell, 1974)n
anwrdthe ustions auofae stutos. erIng atoweroubleso esdevie has sedn he 1f.cMan of

theswerqins, suchdes hymentis iht 2,ihae reqfuired cofniderale sarcut ophein n

de temneath n swerseby sytoemaialy rihunins aatemtic o de fte eieudeaiu

cndlingitios.ecs nof rasoning wsinledin hesruns SOPHIE I hadowno wayrto &exlai and9u4)f

the methods used in the search and could therefore not produce the reasoning needed to answer such
questions. This problem and later observations of both novice and expert troubleshooters led Brown et

al. to the conclusion that causal explanations of device function were necessary for understanding that

device. Subsequent investigations associated with and subsequent to SOPHIE Ill have provided some
82

deep insights in the field of qualitative mental models (de Kleer & Brown, 1983). These investigations are
treated more fully in Chapter 2.

Trading Hundreds First

There are 304 birds at the Lincoln Zoo.
126 birds are from North America.
How many birds are from other places?

304 - 126 = N

Need more Trade 1 Trade 1 ten Subtract the ones.
ones? Yes. hundred for for 10 ones. Subtract the tens.
But no tens to 10 tens. Subtract the
trade. Need hundreds.
more tens.

9 S
2 10 2 1014 2 1014

304 304 20 4 4 004
-126 -126 -126 -126

1 78

304 - 126 = 178 178 birds are from other places.

Subtract.

1. 401 2. 205 3. 300 4. 102 5. 406
- 182 - 77 - 151 - 4 - 28

6. 700 7. 608 8. 503 9. 900 10. 802
-513 - 39 -304 - 28 - 9

11. 806 12. 500 13. 407 14. 904 IS. 600
- 747 - 439 - 8 - 676 - 89

16. 00 17. 306 18. 204 19. 600 20. 508
- 56 - 197 - 7 - 29 -429

21. 402- 16 22. 700- 8 23. 900- 101

Figure 4.3. A Page from a Third-Grade Mathematics Book Illustrating the Show-Work
Principle (Bitter, Greenes, Sobel, et al., 1981). Reprinted with permission of McGraw-Hill,

0 1981.

Tutorial Intervention

One of the prime benefits of tutoring is the opportunity that a tutor has to break into a student's
ongoing learning activities with whatever intervention is needed to speed the course of instruction.
Tutorial intervention is needed to maintain control of the tutorial situation, to protect the student from

83

inappropriate or incorrect learning, and to keep the student from exploring paths that are not
instructionally useful5. Automating the process of tutorial intervention involves devising rules for
deciding when (or when not) to intervene, and formulating the content of the intervention.

Conditions for intervention. There are two major approaches to decisions about tutorial
intervention. Model tracing calls for intervention whenever the student strays from a known solution path.
Issue-based tutoring calls for tutorial intervention only when it can make a positive identification of a
particular 3ccasion for intervention.

Both Anderson and VanLehn in this volume have explained the essentials of model tracing. A
tutor using this technique maintains a model of the student's cognitive processing as the student works
through an instructional unit. This model reflects the cognitive processes of a competent performer in the
instructional setting. As the student progresses, the model traces that behavior, attempting to match it to
one of the paths that could be taken by the ideal student. When the matching process fails, the tutor
intervenes with advice that will return the student to a successful path.

Whereas model tracing suggests intervention whenever the tutor cannot positively identify the
student's response, issue-based tutoring suggests intervention only when the tutor can make some
sense of the student's response. Issue-based tutoring has certain advantages over model tracing. For
one thing, it need not restrict its intervention to remedial instruction. Identifiably good performance may
be occasion for intervention along with identifiably bad performance. In addition, issue-based tutors can
be more informative in the content of their intervention since they can speak to the issue that caused the
intervention. Issue-based tutoi; -an also function with less than perfect expert modules. Model-tracing
tutors will Intervene even when the student finds a better approach than the expert module, but issue-
based tutors will remain silent in these circumstances.

These and other benefit-., of issue-based tutors are well-illustrated in the tutor called WEST
developed by Burton and Brown (1982, and described by Anderson (this volume). WEST offers advice to
the player of a computerized arithmetic game. It characterizes the game in terms of a number of issues or
strategies that may be of use to a player on certain moves, and it tutors in these issues by reminding the
student of them on carefully chosen occasions throughout the game. The primary criteria for these
occasions are the student's failure to use the issue when appropriate and evidence that the student's
knowfodge of the issue is weak.

Systems like WEST offer the opportunity to try a variety of different principles for deciding on
intervention. These principles can address cognitive concerns. For example, WEST never intervenes on
the first few moves so that students can concentrate on the mechanics of the game. Other principles are
motivational. WEST, for example, does not offer advice if a player is dou med to lose no matter what, and it
congratulates players on exceptionally good moves.

There Is no reason why model-tracing and Issue-based techniques cannot exist in the same tutor.
Anderson's tutors (Anderson, Boyle, & Reiser, 1985; Anderson, Boyle, & Yost, 1985) incorporate some
aspects of issue-based tutoring within a model-tracing framework. In particular, they rely on a bug catalog
(discussed in VanLehn, this volume), a set of inappropriate or incorreCt rules that are commonly observed
at intermediate stages of learning. When the model trace matches one of these buggy rules, the tutor can
direct its advice to the bug.

Gentner (1979) and Gentner and Norman (1977) used another combined approach in Coach, a
tutor that monitors students learning a very simple programming language called FLOW. Coach was

5 What constitutes an instructionally useful path depends on instructional objectives. If these objectives
include teaching error-recovery skills, then allowing the student to make errors is an important part of
instruction.

84

designed to monitor their every keypress in real time 6 and to intervene under particular circumstances.

Coach's tutoring methods are based on a schema model that encodes the structure of the course
as well as the structure of the language FLOW. The model is hierarchical in nature with high-level
schemata representing, say, chapters in the manual or entire exercises, and low-level schemata
representing individual keypresses. Coach implements student modeling in both a top-down (model
tracing) and bottom-up (issue-based) fashion. It also has context-independent buggy schemata 'e.g., a
schema for improperly ordered steps), an activation-driven mechanism for dealing with unfulfilled
expectations, and mechanism for separating bugs from slips on the basis of past performance. Coach is
an outstanding example of the leverage that sophisticated student and expert modules can contribute to
tutoring.

The content of intervention. When a tutor decides to intervene it must also formulate the content
of the intervention. There is no uniform approach to the content of intervention among the few computer
coaches in the literature. The most obvious technique, directly correcting the problem that caused the
intervention, is not used in any of them, and with good reason. Simply informing a student of the low-level
actions needed to recover from a bad situation would waste the opportunity for the tutor to teach students
about the situation. Thus, some tutors, such as those of Anderson (Anderson, Boyle, & Reiser, 1985;
Anderson, Boyle, & Yost, 1985) and WEST, provide advice at the next higher level of abstraction,
requiring students to apply this advice to their own concrete situation. Coach attempts to locate the
particular schema where the problem arose and offer advice addressing that schema.

Perhaps the most sophisticated approach to formulating the content of tutorial advice is described
by Goldstein (1982). He suggests that as students acquire skill, they can be characterized in terms of
increasingly sophisticated information-processing models. Tutorial advice should be responsive not only
to the student's particular difficulty but also to the student's level of sophistication in the task. A neophyte
making an error should receive suggestions of a relatively coarse nature. A more sophisticated student
making !he same error should receive advice of a more detailed nature.

Research and Practice in Automated Tutors

From the foregoing description of where research in automated tutors has been over the past 15 or
20 years, we can look forward in several directions. This section begins with some suggestions for the
direction of research in the field. It does not present a laundry list of potential research projects, but
instead concentrates on three fundamental research issues. Brief suggestions for the kinds of projects
that might illuminate those issues are included. Also mentioned in this section are some lines of research
that, while interesting, are not appropriate for investigation at this time. Finally, for those interested In
immediate applications, a brief discussion of currently feasible implementations Is presented.

Research Issues

A broad view of current research in intelligent tutoring systems and in education in general reveals
a few crucial issues that deserve serious consideration in any planned research and development effoit.

1. An important concern in both research and development is the scope of the efforts; that is, the
range and combination of different situations which those efforts address. Researchers In
intelligent tutoring systems should look to ISD as a field that is particularly concerned with the

6 1t is important to understand, however, that Coach was never implemented in real time. Instead, it was
evaluated in terms of its ability to deal with replays of untutored students' protocols.

85

broad range of instructional applications.

2. Equally important from a scientific point of view is the necessity of being specific about
machanisms. It is not sufficient to simply build automated tutors that work. An effort must be
made to characterize the principles of learning and instruction that account for the
effectiveness of these tutors.

3. In addition, attention should be paid to the structure of the discipline. A major aim of the
research discussed here is the the codification of instructional principles. Future researchers
need to seriously question the extent to which these principles can be codified independently
of the material that they teach and to what extent they are an integral part of that material.

Automated tutors and instructional design. One of the major tasks facing researchers in
automated tutors is that of relating their work to other research in training and education. Other
instructional research has not been discussed prior to this section, because the relationship of research
on automated tutors to other instructional research is an important issue in its own right and because the
discussion would have been difficult to understand without the context set by the foregoing description of
research in automated tutoring.

Most instructional research is tangentially relevant, if it is relevant at all to automated tutoring
systems, either because it addresses other forms of instruction or is simply not sufficiently oriented to
design to be of direct help. But one branch of instructional research, namely ISD, seeks to provide
methods that can be used to design instructional systems. Moreover, the ISD community is in general
agreement about the methodology that should be used to design instructional systems.

ISD is a mixed blessing for automated tutors. On the one hand, it offers the kind of systematic
decomposition of the instructional problem and the comprehensive coverage of instructional applications
that is sorely needed in the intelligent tutoring field at this point. On the other hand, ISD strives for a level
of specificity that is appropriate for instructional designers but nowhere near appropriate for computer
tutors. In addition, because it has not been particularly concerned with tutoring methods, it makes no
recommendations for the kind of student-tutor interaction that makes these methods so effective. To see
the research implications of these statements it is necessary to take a more detailed look at each one.

Starting with the benefits of an ISD view of automated tutors, note that ISD proposes a
decomposition of the design process that Is consistent with the one discussed in this volume and in this
chapter in particular. ISD makes a distinction between analysis of instructional needs (the subject of
Anderson's chapter) and development of curriculum and instruction (the subject of this chapter). Also,
ISD distinguishes between curriculum and instruction. Reigeluth and Merrill (1978) refer to these aspects
of instruction as macro- and micro-strategies, respectively. ISD also holds that decisions about curriculum
and Instruction can be based on a cognitive classification of the instructional objectives. Specific
recommendations in this regard can be found for curriculum in Reigeluth and Stein (1983) and for
instruction In Merrill (1983). In the automated tutoring literature, many of these recommendations (e.g.,
teach procedures with exercises and examples) are implicit and far from complete.

A second potential benefit of ISD is the fact that it aims for a comprehensive treatment of
instructional design. Even a casual reader of the literature in automated tutoring would have to be struck
by the narrow, piecemeal nature of the offerings. The chances of finding an intelligent tutor that meets
the needs of a randomly chosen application are quite small indeed. By contrast, ISD offers a top-down
approach that covers a large area of the instructional waterfront. This means, for one thing, that
researchers or designers need not tailor their application to ISD methodology; rather, the methodology will
tailor Itself to the application. In addition, ISD can deal with complex combinations of different kinds of
instructional objectives and find the corresponding combination of instructional methods. Most skills
require a combination of declarative and procedural knowledge. Whereas most automated tutors are

86

specialized to teach one or the other, ISD offers as part of the design process methods for teaching both
where they are needed.

However, ISD is not without features that make it difficult to apply to intelligent tutoring systems.
One of the most evident of these problems is the fact that ISD is meant to be used by intelligent
designers, and it takes full advantage of their powers of intellect. Although the prescriptions of ISD are
precise enough to be understood by people (and are often seen as annoying in their precision), they
come nowhere near the specificity necessary for formalization and programming on a computer.
Designers can fill in many of the details in, say, Merrill's divergence principle, discussed previously); but
the task of writing a single computer program that could apply that principle to concepts as diverse as well-
formed Russian sentences and identifier names in Pascal is well beyond the state of the art.

The state of the art in intelligent tutoring systems is quite different. Well-specified solutions exist,
but only for a small number of problems. Of course, it is possible to create, by hand, additional solutions
by writing programs that apply ISD principles in particular cases; but this strategy will not significantly
advance the task of formalizing those principles themselves. If ISD has any power that is Independent of
the intellect of its users, then expressing its principles in formal mechanistic terms is a most appropriate
venture.

Another feature of ISD that limits its current applicability to automated tutors is its lack of emphasis
on tutorial situations. Tutoring, after all, is an expensive and uncommon instructional method, and for this
reason alone may have failed to capture the attention of the ISD community. Woolf and MlcDonald's
(1985) research suggests a parallel that helps make the shortcomings of ISD apparent in tutorial situations.
Recall that they proposed two levels of tutorial interaction. One, governed by the DMN, corresponds to
the kinds of instructional plans that can be developed using ISD. The other, governed by meta-rules,
allows for global evaluation of the instructional context and dynamic modification of the instructional plan.
The principles for effecting the former, planned level of interaction are consistent with the principles of ISD
and in fact are given an extensive treatment in Gagne and Briggs (1979). However, I see no way that the
second more global level of interaction can be accommodated under ISD as it currently stands. Extending
ISD to allow for ongoing global evaluation of the instructional context would make it more applicable to
automated tutoring and would be a significant advance in ISD itself.

Research suggestions for instructional desian. As a first step towards a design approach to
automated tutors, laboratories for the systematic manipulation of alternative tutoring methods are needed.
Meno-tutor and WEST are good examples of these laboratories because they provide a tutorial shelf that
can host a variety of instructional methods. Design knowledge can also come from observation. Of
interest in this regard are Wizard-of-Oz systems7 , semiautomated tutors in which a human tutor (like the
Wizard of Oz) replaces some or all of the instructional functions of an automated tutor (like the machine
that the Wizard used to project a wizardly presence to visitors). Studies of these systems might range from
systematic observations of tutors' case-selection strategies to development of a sophisticated tutors
assistant, designed to support real tutoring activities as well as collect data on tutors' behaviors.

Theories of learning and instruction. Many of the problems that afflict ISD and other approaches
to instruction occur because they lack a foundation in a precise theory of learning. That is, there are no
models of the mechanisms that govern a student's interpretation of particular instructional presentations.
An obvious approach to these problems is to discover laws of learning which will specify these
mechanisms, and in fact much work over the past century has been devoted to the discovery of such laws.
A question posed earlier by Anderson (this volume) again arises. Why are there no automated tutors that
can work with a model of a learning student?

71 would like to thank Jim Miller for suggesting this concept and the term Wizard of Oz.

87

The answer lies in the complexity of the instructional enterprise, a complexity manifest on several
levels. The first level is that of cognition. Laws of learning apply not to overt stimuli and responses but
rather to internal symbolic representations of the type described by Anderson and VanLehn (this volume).
A second level of complexity stems from the communicative nature of the instructional enterprise. Laws of
learning are incomplete descriptions of what goes on in instructional situations. Needed is a joint theory of
how instruction is formulated by the tutor and how it is interpreted by the student; neither aspect makes
sense without the other. Even greater complexity is introduced by the possibility that students do not
already know the instructional conventions when they come to the tutorial, but rather must learn them
during the course of instruction. Do children come to second grade fully prepared to take advantage of
VanLehn's felicity conditions, and if not, what laws govern their learning about these conditions? Does a
tutor based on laws of instruction have to arrange to teach those laws to students? There is also the
possibility that the principles that govern teaching and learning are not immutable but rather are selected,
modified, or generated through negotiation between tutor and student. A tutor who fails in using one
form of communication may change the rules in hopes that another form will succeed.

The abbreviated argument presented here takes us from a simple stimulus-response theory of
learning to a complex theory of instruction that makes little reference to basic laws of learning. I do not
mean to suggest that simple laws have no use in instructional design. Indeed, Schneider (1985) has
gotten considerable instructional mileage from a few simple stimulus-response principles. I do, however,
want to make clear that there is much to the tutoring enterprise that does not follow from simple laws of
learning and that demands a theory of instruction in its own right. A research program in automated
tutoring must have a special concern for the particular nature of instruction as a cooperative enterprise
involving instructional designer, teacher, and student.

Suggested research on learning and instruction. In summary, the field of automated tutoring
needs an account of the mechanism whereby automated tutors achieve (or fail to achieve) their
effectiveness. Such an account may rest on fundamental laws of learning or it may appeal to complex
theories of communication between tutor and student. Research on this question is therefore needed at
several levels. Theories of human learning and machine models of those theories (notably Anderson,
1983) have provided and will continue to provide singular benefits to the field of automated tutoring.
Observations of natural tutorial interactions, and particularly of procedure tutoring are also needed. In
addition new theoretical stances need to be applied to research and development in tutoring. fehan's
(1979) analysis of communicative mechanisms in a classroom might well be extended to tutorial situations
in a way that supports the development of automated tutors.

Modularity: The independence of instructional and domain knowledge. One of the most
important working hypotheses in research on automated tutors is that diagnostic and instructional
methods can be formulated in a domain-independent fashion and that, conversely, the domain
knowledge (I.e., the expert module) can be formulated without reference to particular instructional
methods. This hypothesis, which I call the modularity hypothesis, suggests that diagnostic and
instructional modules can be used across a broad range of domains. It also suggests the less common
converse, namely, the use of several different instructional methods for the same material; see Crawford
and Hollan (1983) for an example of this kind of experiment.

Because it lies at the foundation of the work on automated tutors, the modularity hypothesis
deserves serious examination in its own right. Parts of the foregoing discussion call this hypothesis
into question. For one thing, it is known that different diagnostic and instructional methods apply to
different kinds of instructional objectives. In view of this, rules of correspondence of the sort detailed in
Merrill (1983) might be used to preserve modularity. These rules allow for the systematic tailoring of
diagnostic and instructional modules to different kinds of domains. Conceivably, there could be a tutor
maker that would use these rules of correspondence to generate an automated tutor for a particular
application.

88

A more serious retreat from modularity might be needed in the light of the previous discussion of
propaedeutic representations. Recall that these representations are models of the subject matter that are
needed for instruction but not for skilled performance. Since these representations are derived from a
combination of first principles about the domain and the cognitive capacities of students, there Is little
hope of generating them from any expert model. Propaedeutic representations are therefore a form of
instructional knowledge that is specific to a particular domain.

Research on modularity. A number of research approaches could illuminate our understanding of
the modularity problem. Studies on tutoring shells or tutor generators are certainly appropriate. Such
studies should develop the rules that govern the design of automated tutors and attempt to Implement
these rules in programs that generate or configure automated tutors for particular applications. Also
needed are broader studies of propaedeutic representations. NEOMYCIN and Reif and Hellers work
(Heller & Reif, 1984; Reif & Heller, 1982) are the most systematic efforts in this area to date. Needed are
more examples, and particularly needed are instructional studies that examine how these representations
function in learning. The development of techniques that tutors could use to tailor their materials to
particular specifications could also illuminate the structure of the material to be taught. Domain-
independent tutors may start with domain-independent methods for generating instructional materials
from the expert module.

Research Pitfalls

Research in intelligent tutoring systems is somewhat like a mine field, so it is fitting to point out a
few of the issues that researchers do not know how to approach but that could easily sink a development
effort.

Tutors that must learn the material. The common working assumption for intelligent tutoring
systems is that the expert model is fully competent in what it is trying to teach or at least possesses much
more competence than the student does. Two common situations for which this assumption holds are
illustrated in Figure 4.4, panels a and b. Panel a illustrates a blank-slate situation in which the student
knows little or nothing about the domain, and the tutor knows just about all that there is to know. Panel b
illustrates a situation appropriate for Socratic teaching. The student has little useful knowledge but a good
deal of misconceptual knowledge. The tutor, as in Panel a, is a master of the subject matter.

Panels c and d of Figure 4.4 illustrate two situations that may often occur in real tutoring situations.
Panel c illustrates a peer tutoring situation in which the tutor has only a small advantage over the student.
Communication between tutor and student is dramatically altered in this situation because the tutor must
effectively convey his or her own shortcomings to the student. Also, both tutor and student in these
situations are often involved in a cooperative learning enterprise in which each grows in competence.
Meeting either one of these demands is well beyond the state of the art at this time, and the combination
is even further from the grasp of current methods.

Panel d of Figure 4.4 presents an even more difficult case, one in which the student is actually
more competent than the tutor. Automated tutors that can function well in this kind of situation have a
tremendous advantage over those limited to the situations illustrated in Panels a and b because they can
be of use even with a less than complete expert module.

Tutors that must learn to teach. The underlying goal of most research In intelligent tutoring
systems is the successful representation of teaching knowledge and its implementation in a machine.
However, at least two efforts in the field have inquired into the possibility that automated tutors could,
themselves, learn to teach. Both of these efforts missed the mark in my opinion. One tutor (Kimball,
1982) improved its technique through successive refinement not of teaching strategies but of its student
model. The other (O'Shea, 1982) used a complex generate-and-test procedure to try out various
commonsensical notions about teaching techniques. Little is known about good teaching and less about

89

how it is learned. Our own ignorance aside, it is doubtful that any intelligent system, human or machine,
could learn to teach on the basis of experience alone. Hence, automated tutors that can really improve
their technique on the basis of interactions with students are probably not going to appear in the
foreseeable future.

= ruth Truth

b

tde Knowledge
STtrKnowledge

c d

I Tru~hTruth

Figure 4.4. Possible Configurations of Student and Tutor Knowledge. (a--Blank-slate model; b--
Socratic model; c--inexpert tutor, inexpert student; d--inexpert tutor, expert student.)

90

Building Automated Tutors with Today's Technology

Finding one's way to a feasible application of automated tutors is a difficult job at best.
Nonetheless, I offer the following guidelines for deciding when and how to implement automated tutors.
The reader should be aware that the shelf life of lists such as these is vanishingly small.

Choosing an application.

1. Work with a domain that can be formalized. Choose an application that can be formalized, one
for which, in particular where it is feasible to build an expert module, a propaedeutic representation, or
both. Formal problem-solving situations such as troubleshooting or programming are highly suitable. In
domains such as tactical planning, which have a more subjective content, select subtasks that can be
formalized. Domains such as literary criticism or foreign policy analysis are not within the reach of today's
automated tutors.

2. Stay away from natural language. Anderson (this volume) has pointed out that natural
language understanding is the Achilles' heel of many potential tutors and of expository tutors in particular.
If an application calls for an expository tutor, look for techniques such as those described in Crawford and
Hollan (1983) that do not require natural language understanding.

Instructional design considerations.

3. Use known principles of sound instruction. Although a good many of the principles of ISD are
difficult to automate, many can be used in the design of an automated tutor. At the least, tutors can be
designed to conform to the curricular constraints that make for manageability, coherence, and structural
transparency. In addition, the show-work principle from step theory deserves serious consideration in any
procedure tutor.

4. Use both model-tracing and issue-based tutoring. Both of these instructional techniques are
known to work in selected cases. They can be combined in the same system and they will compensate for
each other's failures. Hence the design of an automated tutor, starting with the student and expert
modules, should provide for both of these techniques.

A general design consideration.

5. Design for modularity and robustness. Implementing automated tutors is a risky business.
They should therefore be designed to function even if one or more of the parts is ineffective or
inoperable. With respect to curriculum and instruction, for example, the tutor should be designed to
function with a fixed default curriculum, and it should provide a useful instructional environment even if the
tutor is completely silent. The Wizard-of-Oz systems previously mentioned, which use human tutors
instead of machine tutors, may also be a possibility in some cases.

Conclusion

What then is the current state of the task of codifying the principles of effective tutoring? There
are a number of instructional guidelines (e.g.,step theory) that can support the design of automated
tutors, and there are some technological tools (e.g., model tracing) that can be used to build effective
automated tutors for certain applications.

91

The existence of these guidelines and the tools for implementing them represent real progress in
the field of intelligent tutoring systems. However, the major issues associated with curriculum and
instruction in intelligent tutoring systems are still unresolved. The design principles needed to specify the
range of automated tutoring applications and the structure of that range do not exist. Precise mechanistic
theories that can account for the effectiveness of particular instructional techniques have not been
formulated. Clear notions of what constitutes an instructional principle and what constitutes an
instructionally useful aspect of some particular domain are also not available.

The very fact that these issues are recognized is a sign of real progress. Fifteen years ago, when
the field was in its infancy, there was little to say about the representation of knowledge for teaching
purposes and even less to say about the instructional process. Until very recently, a representation of
expert knowledge was deemed sufficient for teaching purposes, and theories of learning in uninstructed
situations were deemed sufficient for describing instructed learning. Awareness of these issues and the
technology for exploring them will make the next few years of research in intelligent tutoring systems at
least as exciting and profitable as the past 15 years.

92

REFERENCES

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.

Anderson, J. R., Boyle, C. F., Corbett, A., & Lewis, M. (1986). Cognitive modeling and intelligent tutoring
(Tech. Rep. No. ONR-86-1). Pittsburgh, PA: Carnegie-Mellon University, Psychology
Department.

Anderson, J. R., Boyle, C. F., & Reiser, B. J. (1985). Intelligent tutoring systems. Science, M,456-

462.

Anderson, J. R., Boyle, C. F., & Yost, G. (1985). The Geometry Tutor. In Proceedings of IJCAI-85, 1-7.

Ausubel, D. P. (1968). Educational osychology A cognitive view. New York: Holt, Rinehart & Winston.

Bitter, G. G., Greenes, C. E., Sobel, M. A., et al. (1981). Third-grade mathemalics. New York: McGraw-Hill.

Brown, J. S., Burton, R. R., & Bell, A. G. (1974). SOPHIE: A step towards a reactive learning
environment. International Journal of Man Machine Studies, Z, 675-696.

Brown, J. S., Burton, R. R., & de Kleer, J. (1982). Pedagogical, natural language, and knowledge
engineering techniques in SOPHIE 1, 11, and Ill. In D. Sleeman & J. S. Brown (Eds.), Intellgent
tutoring systems (pp. 227-282). New York: Academic Press.

Burton, R. R., & Brown, J. S. (1982). An investigation of computer coaching for informal learning
activities. In D. Sleeman & J. S. Brown (Eds.), Intelligent tutoring systems (pp. 79-98). New York:
Academic Press.

Carbonell, J. R. (1970). Al in CAI: An artificial intelligence approach to computer-aided instruction. IEEE
Transactions on Man-Machine Systems. MMS-11 190-202.

Clancey, W. J. (1984). Methodology for building an intelligent tutoring system. In W. Kintsch, J. R. Miller,
& P. G. Poison (Eds.), Method and tactics in cognitive science. Hillsdale, NJ: Erlbaum.

Clancey, W. J., & Letsinger, R. (1981). NEOMYCIN: Reconfiguring a rule-based expert system for
application to teaching. Proceedings of the Seventh IJCAI.

Collins, A., & Stevens, A. L. (1982). Goals and strategies of inquiry teachers. In R. Glaser (Ed.),
Advances in instructional psychology (Vol. 2, pp. 65-119). Hillsdale, NJ: Erlbaum.

Collins, A., Wamock, E. H., & Passafiume, J. J. (1975). Analysis and synthesis of tutorial dialogues. In G.
Bower (Ed.), The psychology of learning and motivation (Vol. 9, pp. 49-87). New York: Academic
Press.

Crawford, A. M., & Hollan, J. D. (1983). Development of a computer-based tactical trainina system
(Special Report NPRDC-SR-83-13). San Diego, CA: Navy Personnel Research and Development
Center.

de Kleer, J. (1984). How circuits work. In D. G. Bobrow (Ed.), Qualitative reasoning about physical
systens (pp. 205-280). Cambridge, MA: MIT Press.

de Kleer, J., & Brown, J. S. (1983). Assumptions and ambiguities in mechanistic mental models. In D.
Gentner & A. L. Stevens (Eds.), M (pp. 155-190). Hillsdale, NJ: Erlbaum.

93

Gagne, R. M., & Briggs, L. J. (1979). Principles of instructional design. New York: Holt, Rinehart, &
Winston.

Gentner, D. R. (1979). Coach: A schema-based tutor (Rep. No. 7903). La Jolla, CA: University of
California, San Diego, Center for Human Information Processing.

Gentner, D. R., & Norman, D. A. (1977). The FLOW tutor: Schemas for tutoring (Rep. No. 7702). La
Jolla, CA: University of California, San Diego, Center for Human Information Processing.

Goldstein, I. P. (1982). The genetic graph: a representation for the evolution of procedural knowledge.
In D. Sleeman & J. S. Brown (Eds.), Intelligent tutoring systems (pp. 51-77). New York: Academic
Press.

Heller, J. I., & Reif, F. (1984). Prescribing effective human problem-solving processes: Problem
description in physics. Cognition and Instruction, 1, 177-216.

Hutchins, E., & McCandless, T. P. (1982). MANBOARD: A graphic display rogram for training relative
m (NPRDC Technical Note 82-10). San Diego, CA: Navy Personnel Research and
Development Center.

Hutchins, E., McCandless, T. P., Woodworth, G., & Dutton, B. (1984). Maneuvering board training
system: Analysis and redesign (NPRDC Technical Report 84-19). San Diego, CA: Navy
Personnel Research and Development Center.

Kimball, R. (1982). A self-improving tutor for symbolic integration. In D. Sleeman & J. S. Brown (Eds.),
Intelligent tutoring systems (pp. 283-307). New York: Academic Press.

Mehan, Hugh (1979). Learning lessons: Social organization in the classroom. Cambridge, MA: Harvard
University Press.

Merrill, D. M. (1983). Component display theory. In C. M. Reigeluth (Ed.), Instructional design theories
and models: An overview of their current status (pp 279-332). Hillsdale, NJ: Erlbaum.

Norman, D. A. (1973). Memory, knowledge, and the answering of questions. In R. L. Solso (Ed.),
Contemorary Issues in cognitive psychology: The Loyola Symposium (pp. 135-165).
Washington, DC: V. H. Winston & Sons.

O'Shea, T. (1982). A self-improving quadratic tutor. In D. Sleeman & J. S. Brown (Eds.), Intelligent
t (pp. 309-336). New York: Academic Press.

Reif, F., & Hefer, J. I. (1982). Knowledge structure and problem solving in physics. Educational
Psychologist, 1Z 102-127.

Reigeluth, C. M., & Merrill, M. D. (1978). A knowledge base for improving our methods of instruction.
Educational Psychologist, 13, 57-70.

Reigeluth, C. M., & Stein, F. S. (1983). The elaboration theory of instruction. In C. M. Reigeluth (Ed.),
Instructional design theories and models: An overview of their current status (pp. 335-381).
Hillsdale, NJ: Erlbaum.

Schneider, W. (1985). Training high-performance skills: Fallacies and guidelines. Human Eacto, 27,
285-300.

94

Smith, R. L., Walker, P., & Spool, P. (1982). The recognition of instructional strategies in the modeling
of student acquisition of groblem-solving skills (Final Rep. 1). New Brunswick, NJ: Rutgers--The
State University, Laboratory for Computer Science Research.

Stevens, A. & Collins, A. (1977, October). The goal structure of a socratic tutor. In Proceedings of the
Association for Computing Machinery Annual ConferEnce, Seattle, Washington.

Stevens, A. L., & Collins, A. (1980). Multiple conceptual models of a complex system. In R. Snow, P.-A.
Federico, & W. Montague (Eds.), Aptitude. learning, and instruction: Vol, 2 Cognitive process
analyses of learning and problem solving (pp. 177-197). Hillsdale, NJ: Erlbaum.

VanLehn, K. (1983). Felicity conditions for human skill acquisition: Validating an A theory (Report No.
CSL-21). Palo Alto, CA: Xerox Palo Alto Research Center.

VanLehn, K. (1985). Acauiring procedural skills from iesson seQuences (Report No. ISL-9). Palo Alto,
CA: Xerox Palo Alto Research Center.

VanLehn, K. (in press). Learning one subprocedure per lesson. AlJurna.

Wescourt, K., Beard, M., & Gould, L. (1977). Knowledge-based adaptive curriculum sequencing for CAI:
Application of a network representation. Proceedings of the 1977 Annual Conference.
Association for Comouting Machiner (pp. 234-240). Seattle, Washington.

Winston, P. H. (1984). Artificial Intelligence (2nd ed.). Reading, MA: Addison-Wesley.

Woolf, B., & McDonald, D. D. (1985). Building a computer tutor: Design issues. AE. _Moflu, Q(9-10),
10-18.

95

DISCUSSION

Curriculum and Instruction in Autonmated Tutors

Tb, discussion on Curriculum and Instruction in Automated Tutors is
deferredi co page 125. There M. David Merrill discusses both Chapter 4 and
ChaloLer 5.

97

CHA PTE R 5

THE ENVIRONMENT MOIDULIE OF INTELLIGENT

TUTORING SYSTEMS

Richard It. Burton
Intelligent Systems Laboratory

Xerox Palo Alto Research Center

Palo Alto, California

1. INTRODUCTION TO THIE ENVIRONMENT MOI)ULE

This chapter describes the environment part of intelligent tutoring systems (ITS). The term
"environment" is used to refer to that part of the system specifyingor supporting the activities that the
student does and the methods available to the student to (to those activities. That is, the environment
defines the kind of'problem the student is to solve and the tools available for solving it For example,
in the SOPHIE I electronic troubleshooting environment (Brown & Burton. 1975, 1987: Brown,
Burton, & de Kleer, 1982), the activity is finding a fault in a broken piece of equipment, and the
primary tool available to solve the problem is being able to ask in English for the values of
measurements made on the equipment. The environment part of SOP I E supports these activities by
providing a circuit simulation, a program to understand a subset of natural language, and the routines
to set up contexts, keep history lists, etc. Our definition of environment includes some aspects of help
that the system provides to the student while he or she is solving problems but does not include those
forms of help that one would classify as requiring intelligence; these will be left to the chapter on
tutoring, curriculum and instruction. This chapter is of necessity brief and selective in its coverage of
instructional environments. Wenger (1987) provides a more detailed overview of many of the systems
mentioned here, and more.

A Pedagogical Philosophy

The combination of highly reactive and individualized dialogues in ITS enabled by research in
cognitive science about the nature of understanding has allowed a revisiting and a revising of
pedagogical philosophy. Some of these ideas are new, some are old. The important point here is that
their realization in actual educational practice is made more feasible by the combination of technology
and psychology. The following precepts adapted from Nickerson (1986) prov.ide a worthwhile
perspective on the view of education that underlies much of the researcl" in intelligent instructional
environments.

Constructivism: Learning is the construction of knowledge, not the absorption of it. The
learner is not an empty vessel into which knowledge is poured. The learner must be active and must
be relating new knowledge to existing knowledge.

Importance of conceptual understanding: If. is inappropriate to hawv students learn procedures
by rote. The rationalizations for prmcedural knowledge must be taught or discovered if students are to
extend learned procedures to situations heyond those taught. In most cases, students will have to
construct their own rationalization of a collection of procedures just to remember them. (Brown,
Moran, & Williams, 1982)

Preconceptions: Given that learning is constructive, the role of preconceptions that even
introductory students bring to a subject is critical. Some of the preconceptions are likely to be wrong.
These misconceptions may need to be identilied and corrected for correct learning to occur.

Connecting in-school and out-of-school learning: A major impediment to learning is the
failure to connect classroom learning to experiences in everyday life. A similar problem is the failure
to connect knowledge learned in different subjects. In oier words, learning is not integrated. The
structure of the instructional environment must be made real to avoid the schooling phenomenon; that

99

is, the tendency of students to learn to solve the problem by using the structure of the instructional
environment rather than the knowledge it is trying to teach. For example, math students quickly
learn that the "irst problem at the end of a chapter is simple and requires only the techniques
presented in that chapter, whereas the last problems often require techniques from earlier chapters
and have more complex solutions (Schoenfeld, 1985).

Self-monitoring and self-management techniques: Effective learners take responsibility for
managing and monitoring their own thinking and learning activities. Some of the skills they need for
these activities are planning, directing attention, assessing comprehension and controlling anxiety.
Instructional environments are increasingly being designed to foster the development of meta-skills.

Lifelong learning: Education is not something acquired in school and used throughout life.
Increasingly,job skills are prone to obsolescence. Education must he an ongoing process.

Examples Of Instructional Environment Tools and Activities

Learning is greatly enhanced by a proper facilitating environment. This section presents
some examples of effective instructional environments that have been developed by cleverly
formulating problems and constructing tools to solve them. Some of these environments are
considered intelligent; others are not. They are presented here to point out the range of tools and
activities that have been developed.

The Lego Logo environment (Papert, 1986) is a good example of creating tools and activities to
produce an effective instructional environment. This environment consists of a collection of Lego
construction blocks, some of which are computer monitored and controlled; motors; switches; and
sensors. An early activity for students is to build soap box racers and to race them to see whose goes
farthest. Students quickly develop ideas about why some go farther than others such as weight,
distribution of weight, aerodynamic shape, etc. Eventually they discover that the most important
thing about making a long-running car is to reduce friction. Of course, they may not know the name of
this principle, but they are very much aware of the concept. Such experiences form a good basis for
later formalization in physics.

Problem selection plays a major role in instructional environments. The Historian's
microworld (Copeland, 1984) illustrates how clever problem selection greatly enhances an education
activity. This system gives students a chance to discover what a historian does. It is used in a
classroom by several teams of students, each of whom is trying to find the answer to a perplexing
historical situation. For example, paraphrased from Copeland (1984):

From 1565 until 1769, the "Manilla Galleon", laden with rich cargo, sailed from
Manilla to Acapulco. Prevailing winds forced the ship to sail north, contact the
California coast north of San Francisco, and then sail down the coast to Acapulco.
Because of the great distance traveled and the poor weather conditions, this
nine-month voyage was very difficult. For more than 200 years, with passengers and
crew weak or dying from starvation and vitamin deficiency, the galleons on this route
did not stop but sailed past what is today one of the most fertile and inviting coastlines
in the world. Why?

The teams brainstorm about possible causes such as fog, hostile natives, or a rocky coast and
arrive at a hypothesis the group supports. They then gather data to support the hypothesis by asking
the system for information (it uses keywords to analyze their queries) and reject, refine, or expand
their hypothesis. Finally, each team publishes its results and compares its analysis and conclusions to
those of other teams. All of this pedagogically valuable activity depends crucially on the selection ofa
suitably captivating problem.

One powerful way that an environment can aid learning is by making explicit or manifest a
previously implicit, or hidden property of the content. The environment portion of Anderson's
Geometry Tutor (Anderson et, al, 1986: Anderson, Boyle, & Yost, 1985) is a good example of an
environment that brings out implicit properties in the task, making it easier to learn. In the standard
way of doing geometry proofs, a proof is seen as a sequence of statements that starts with premises and
uses theorems and applications of modus ponens to previous statements to huild a logical chain from
the premises to the conclusion. This view masks two important properties of geometry proofs. One is
that they are really tre ;trmuctured, not. linear The other is that they can be developed by working

100

both forward from the premises and backward from thle conclusion. The representation provided by
the Geometry T1utor (see Figure 5.1) brings out both of Ithese properties. Thus, thc environment of the
Geometry Tutor, even if it did not con1tainl thle tutor. woulId be at valuLable aid to learning. It is
noteworthiv that research into thle cogtitve natureI of tihe task preceded and guided the design of tile
environment (Anderson, 1981)

A EJVFAEKX

Semen TRANITIVITY
Pointi

6EJX96EJY 6EJXwtbEKX

ri-Irls
rupp

bisecis fSeg)
bisects (4)
midpoint

ARIITIIMEJIC
keypad

blank
rubout
clear Input
dom

4EJX*/LEJY

TRANSITIVITY REFLEXIVE DEF*BISECTOR

r CCeM- XEJV.LXEK L-XEJ9"LYE.) £EXJw/EXK JR W~edis LXJY

Figure 5. 1. View of the Workspace from the Geometry Tutor (Anderson et al., 1986).
The large window on the right contains a diagram of the theorem in the upper left
corner, the proposition to be proven at the top, and the assumptions at the bottom. The
nodes between the top and bottomn are statements derived by rules of inference. The
proof can be grown from either the bottom upward, using forward inferencing, or top
downward, using backward reasoning.

The BUGGY game (B rown & Burton, 1978) is another example of an environment that makes
students aware of hidden processes in this case, their own thinking. Prom studying student error
patterns in arithmetic. Brown and Burton developed a computational model that was able to duplicate
students' behavior The BUGGY game arose from using tire computational model to simulate "buggy"
students so that students or student teachers could experience diagnosing realistic erroneous
behavior. The object of the gane is to discover a computer-simulated student's bug by giving it
problems to solve. This forces the players to consider as an object, study the subtraction algorithm that
they have heretofore been following by rote. To play the game, they must trace through their own
procedure, checking at each step to see whether the simulated student's answer agrees with theirs
and, when it disagrees, considering what alterna tives t, heir own procedure would cause the observed
behavior. The game introduces the players, who are students or teachers themselves, to the idea of
debugging and gives them a concrete example of thinking about their own thinking.

One theme that repeatedly appears in ITS is the presentation of processes and information
from multiple perspectives to get students to appreciate the power of different ways of conceptualizing
a problem. The Envisioning Machine in Figure 5.2, a physics world being developed by Roschelle (in
press), provides parallel displays of physical motion. In one display, students throw objects around and
observe their motion. In the other display, students create and observe motions using force diagrams.
ARK (Smith, 1986) is another environment that allows students to play with the motion of objects
from different perspectives. In ARK, students activate and watch ob.jects that obey different laws of
motion. Thus, for example, students can compare motion in worlds that have gravity with those that
t o not.

Using multiple perspective is a powerful pedagogical technique that other systems use as well. The
MANBOARD system (tlutchins & McCandless, 1982) described in the curriculum and instruction
chapter (see lialff, this volume, Figure 4.2) seeks to develop the student's concept of relative motion by
displaying the paths of ships in both geographic and relative (egocentric) coordinates and by pointing
out how certain problems become easier to solve in one coordinate system than in the other. Steamer,
which will be discussed later, allows the student to view the operation of a steam plant from external,
internal or mechanistic points of view. Arithmekit (t1rown, 1983) provides parallel worlds, one
symbolic and one semantic based on Dienes Blocks, in which arithmetic algorithms can be displayed.
The student constructs a procedure in the symbolic world and watches its execution simultaneously in
both the symbolic and the semantic worlds.

Issues of Instructional Environments

This section lays out several dimensions along which instructional environments differ.
Examples are given of systems at different positions along the dimensions.

Knowledge: What Is Being Learned?

One important dimension of instructional environments is the question of what is being
taught. Loosely speaking, the knowledge a person has about a domain consists of facts about the
domain, skills or knowledge of procedures in the domain, and concepts that organize the facts and
procedures in the domain. In addition, the person has neta-skills that aid in the learning of new
skills. Different instructional environments focus on teaching different aspects of the knowledge by
changing the activities and tools in the environment. ilowever, most of the intelligent instructional
environments have concentrated on the learning of domain-specific skills.

Even in the same domain there can be many different kinds of activities teaching different
skills. This can be seen in a number of systems that have all been built around the domain of plane
geometry.

The Geometry Tutor mentioned earlier provides an environment in which students can prove
geometry theorems. The system monitors their performance and corrects them when they make a
mistake. The skill this system teaches is how to prove geometry theorems that someone else has
provided.

102

.. . it.c l alr, f d IPause fLastfThrow l/ewlonhanModel

•M

trj Ia~ '.d ~ Isn-CIsDs]' Li.Ir './rf,r -mS

Figure 5.2. Example of the Envisioning Machine (Roschelle, 1986). The window on
the right, "Observable World", contains a simulation of objects moving in real space.
In this window, the user can grab the ball and drop or throw it and watch its trajectory.

The window on the left, "Newtonian World," contains a force diagrammatic view of
objects in motion. In this window, the user sets vectors that give velocity and
acceleration to point masses. The activity shown here is to duplicate the trajectory of
a thrown ball with velocity and acceleration vectors. Reprinted with permission of

Xerox Corporation, C 1986.

The Geometry Supposer (Schwartz & Yerushalmy, 1986) allows students to construct
geometric figures and perform measurements on them. Importantly, it keeps track of their
constructions and can redo the operations under varying conditions. This Facility allows the students
to invent conjectures and see whether they are true for different examples. this system is used to
develop students' skills in forming nd e ng hyorheses, a central activity in the art of mathematics.
It also instills the need for proof as the basis for settling disagreement about the validity of
conjectures. Note that this instructional environment does not provide the problem. The problem
must come from the teacher, the student himself, or a fellow student. Thus the social environment in
which the Geometry Supposer is used is important to its success.

Papert (1980) developed Turtle Geometry to take advantage of children's physical experience
ins e to provide entry into a world in which mathematics is useful. Papert uses the domain of
geometry but in a sense does not care whether students learn geometry per se. By exploring the Turtle
Geometry microworld students develop skills in and an appreciation of the power of mathematical

103

thinking. In an extension of Papert's work, Abelson and diSessa (1980) present a path that uses Turtle
Geometry to explore a particular set of mathematical ideas.

As can be seen from these examples, all of which teach different parts of the same subject, it is
important to consider what an instructional environment is trying to teach. It is also important to
identify what the student is (or can be) learning The two may be very different,. An anecdote about
ihe potential for mis Inatch concerns a student discovered by Erlwanger (1973). The student had taken
several years of a computerized arithmetic curriculum that had been structured into small units.
Each unit taught a simple subsk ill, such as how to borrow from the nex tcolumn, and was followed by a
Itst to ensure mastery. The criterion for m1oving to the next, unit was to get 801% right. on a test. The
st udent was one of the better shiudenl.s in the program at the Lime 1'rlwanger interviewed him. What
Erlwanger discovered was that [ar from havingt a coherent notion of the arithmetic operations, .he
student knew a large collection of ad hoc rules, each of which worked on a particular subset of the
problems. Furthermore, the student's concept of mathematics included a belief (hat the correct
arithmetic algorithm is something that. produces the right answer 80% of the time! The design of an
instructional environment needs to be informed by careful observations and perhaps in-depth clinical
interviews about what is actually being learned. This is one important role for formative evaluations,
as discussed in the chapter on evaluation.

Level of Abstraction

Another issue in the design of the environment is the level of abstraction at which knowledge
is presented, i.e., what features of the real world to represent and why. This issue can be illtsrated by
considering a range of instructional environments that could be used to teach steam plant procedures.
Figure 5.3 lays out five examples along a level of abstraction dimension. For the purposes of this
example, assume tLhat the activity is the saame for every environment; such as diagnosing a problem in
the steam plant. Although FAULT and TASK have not been applied to this domain, they could be in a
straightforward way.

real sleam plant Steamer FAULT TASK
steam plant mock-up

least most
abstract abstract

Figure 5.3. Instructional Environments Vary in the Level of Abstraction with Which
They Represent the Subject Matter.

The most realistic experience is to train in the actual steam plant. The students' tools in this
environment are the actual gauges, visual inspection of the pipes, etc. An alternative to incurring the
expense and risk of allowing a trainee to experiment with a real steam plant and its attached ship is to
use a mock-up. This is typically a full-sized duplication of the components of the stenm plant with the
gauges being driven by a mathematical simulation model rather than by the actual flow of fluid in the
pipes.

Steamer. Steamer (ltollan, lutchins, & Weitzman, 1984; Itollan et al , 1987) provides
graphical dispiay and control of a simulation of a steam plant. The steam plant can be viewed at
different levels of detail, and the processes involved in the functioning of the plant can be seen in
different ways. For example, one of the approximately 100 displays shows, using animation, the flow
of fluid through the plant (see Figure 5.4.). Another display shows dials that give the pressure at
various points in the plant. A third display shows a graph of pressure as it changes t.hrough time or
indicates the rate of change (see Iligure 5.5.). The different displays are used to demonstrate different
properties of the plant's operation. The flow animation may be used to indicate causal connections
between different parts of the plant, whereas processes that depend on the rate of change in pressure

104

IV

Figure 5.5. A Signal Icon from Steamer (liollan, llutchins,& Weitzman, 1984). The
graph at the top of the figure shows the value of a variable across tinc; the icons at the
botton ldepict the rate ofchange of that variable. Displays such as this one are used to
make visible some aspects of automatic control systems that are difficult to see with
traditional gauges. Reprinted with permission of AAAI,0 1984.

Fault. The FAUIT system (,Johnson, 1987) works on a functional representation of the
equipment, a level that does not include any mechanisms across the connections. ligure 5.6 shows an
exaniple of tie representation of one device, a car engine. The student gains inforniatlion in the
troubleshooting task by asking for the status between two components and is told whether the stat us
is normal or not. l)uring troubleshooting, the student is charged according to the costs of performing
tests in a real piece ofequipment.

Task. The TASK system, Troubleshooling by the Application of Structural Knowledge, is
actually a precursor to AUIT (,Johnson, Maddox, Rouse, & Kiel, 1985; Rouse, 1979: Rouse & lunt.
1984). It eliminates all domain knowledge and represents only tile information needed to develop
generic troubleshooting skills such as the half-split method. It views the troubleshooting task at the
level of abstract components connected to other components ias sho n in Figure 5.7. The connectfion

106

a4d II c c

C2 C.4

C3

1

0 N M n 1N N N (Y NQ el

MJCL.

aca

goU

C-7-

ac)

cc)

CAU

LT-

100

between any two components is either acceptable or unacceptable. rhe student queries the
connections and looks for the one component that has all acceptable inputs but unacceptable outputs.

OH01-166 (1 6 -(11 ~-'16 2: 21) 6

2 12 / 1? - +- - 22)

/

/ .# \ , ItAI

(5 115/- 20)--- 25) 1

TASK

Figure 5.7. A Diagram of a System as Shown to a Student Using TASK. The system
focuses on domain-independent troubleshooting skills; the student is not told what the
numbered components are.

Fidelity of Environments

In the training literature, the concept of how closely the simulated environment matches the
real world is referred to as fidelity. A high-fidelity simulation is one that is nearly indistinguishable
from the real thing. Researchers have identified several different kinds of fidelity that serve in
different situations. There are at least four kinds: physical fidelity (feels the same), display fidelity
(looks the same), mechanistic fidelity (behaves in the same way), and conceptual fidelity (is thought of
as the same). {footnote: For ITS, there is an additional kind of fidelity, expert fidelity. This
characterizes how the methods used by the student and the computer expert to solve the problem

108

correspond. A comp,.' er expert that corresponds in a useful way is referred to as an articulate expert;
see the chapter on the Expert Module.

Researchers are beginning to understand that the importance of each kind of fidelity depends
on the conceptual framework of the learner. lv studying the difference between experts and novices
in different dom ins, cognitive psychologists have discovered that students go through different
conceptual stages in learning a subject (IBrown & Burrton, 1987; Chi, Feltovich, & Glaser, 1981:
diSessa. 1983; larkin, 1983; Wiser & Carey, 1983). Related work has shown that students can learn
advanced theories well enough to)ass test, but still act in tie real world in ways that contradict the
theories (Clement, 1983; diSessa, 1982). This finding lends new support to viewing learning not as
the pouring of knowledge into an empty vessel hut as a process of reconceptualization, of getting
students lo construct the appropriate knowledge out of the knowledge that they already have. It is
important. to take students through a progression and not merely teach them the expert's notion
because it is through this progression that new knowledge connects to students' experience of the real
world. (See Brown & Burton, 1987 for further discussion.)

From experiences using TASK and FAULT, ,Johnson (1987) reports that, for beginning
students, a high level of display fidelity is important. That is, the displays in which information is
given must resemble the real equipment: beginning students have vo domain concepts and hence rely
on the appearance of the equipment to organize their knowledge. As the students learn more, this
reliance decreases, and they will use a display with more digested information about the internal state
of the equipment in preference to a color, visually realistic display of thu external state. As their
concept of the domain becomes more abstract, they can recognize and work with the more digested
information if it corresponds to their way of breaking down information. For experienced students,
even the abstract view of troubleshooting presented in TASK is valuable because their knowledge has
advanced to this level. Interestingly, this finding implies that more realistic (i.e., more physically
accurate) simulations are more important For beginning students and, therefore, the multimillion
dollar steam plant mock-up, or real equipment, ought to) be used with beginning students who, after
their first experiences, can be moved to much cheaper computer systems. Fortunately, this is not the
case as Johnson (1987) reports that visually accurate simulations seem to be as effective as the rea
equipment for training.

In their attempts to evaluate human-computer interfaces, Hutchins, llollan, and Norman
(1985) defined the term "semantic distance" to be how far the concepts that the system uses are from
the ones the user has. Combining the idea of semantic distance with the movement in conceptual
structures that takes place in development from novice to expert leads to the conclusion that the
environment that is cognitively accurate to the novice will not necessarily be so for the expert and vice
versa. The conception of the domain in the environment may need to change to create intermediate
stages to move the student to a final state.

["or example, students just learning to program in LISP look at a function such as

(DEFUN fact (n)
(COND ((= n 0) 1)

(T (* n (fact n-I)))))

and see text. For them, a text editor is the appropriate tool for changing programs. If they want to add
an additional conditional clause to check vwi,ethcr n is less than zero, they would think of it as
inserting the characters "((< n 0) 0)" after the string "CONI)." As they learn to recognize the program
structure that the text represents, they will begin to c,mceive of this edit as adding a new conditional
clause; and it is then appropriate for the editor to providc them with commands that operate on
structure as well. Thus, proper environment, or instruction's[cnvironment, may change as students'
conceptualization of the domain changes.

Sequences of Environments

Fischer, Brown, and Burton proposed a framework for learning complex skills that arose from
studying (ownhill skiing as a successful example of teaching (Burton, Brown, & Fischer, 1984;
Fischer, Brown,& Burton, 1978). 'he franmework views the student as being exposed to a sequence of
increasingly complex microworids that provide intermediate experiences such that within each
microworld the student can see a challenging but attainable goal. An important aspect of the

109

instruction is the 'nstructor's choice of the proper microworld. The factors that a ski instructor
manipulates to create different microworlds are the equipment (e.g., the length of the skis), the
physical setting (e.g., the steepness of the slope and the kind of snow), and the task (e.g., do many turns
as opposed to ski fast).

The framework of increasingly complex microworlds has been extended into the domain of
learning computer environments)y Fischer and his colleagues at the University of Colorado (Fischer,
in press). They have identified a number of' microworlds that the student must learn, such as the
manipulation of mull iple windows or the difference bel wee,, destructive and nondestructive functions.
They are also developing a variety of tools that provide different kinds of help within and across the
microworlds.

VanLehn and Brown (1980) developed a formal representation for the structure of tasks and
have used it to model various addition algorithms represented in both symbolic form and base-10
blocks. They were able to evolve a sequence of addition algorithms for base-tO blocks that begins with
an algorithm that simply pushes two groups of blocks together and ends with an algorithm that. is
representationally equivalent to the standard symbolic addition algorithm. The sequence is such that
at each step, one more constraint on the way the algorithm can be performed is included. An example
ofa constraint is that any final pile of blocks can have at most nine of any size of block. This constraint
is needed to make canonical the representation of a number in blocks and thereby facilitate
comparison of two numbers. Thus, each transition from one algorithm in the sequence to the next
manifests and motivates one constraint- and the complexity of the final symbolic procedure is justified
by the collection of constraints. This work demonstrates a theoretical basis for choosing a sequence of
microworlds.

White and Frederiksen's (1986a, 1986b) work at Bolt Beranek and Newman, provides another
good example of increasingly complex microworlds. They have developed a system for teaching simple
electronic theory by using microworlds based on a series of qualitative models. They argue that a
student needs to know "zero-order" electronic concepts (those employing no derivatives) and how to
use connectivity to propagate the existence of voltage differences, before they can learn more
complicated concepts. They have identified three levels of conceptual models so their system has three
corresponding levels of qualitative simulation through which students must progress. At each level,
the simulation serves as the basis not only for the generation of the circuit behavior hut also for the
student model and for the explanations generated by an articulate expert. By knowing a student's
level, the system can also know on what examples the student's models will fail and hence can push
the student into the next level when he or she has mastered the current one.

I help Provided by the Environment

In addition to providing problem situations and tools, some instructional environments also
provide help to further their instructional purposes. The systems differ in the degree and manner of
help they provide. Each of the following different ways of offering help is appropriate for some of the
difficulties students are likely to encounter:

1. Help: system has help available upon request or (luring errors

2. Assistance: system does part of the task, sometimes the whole task.

3. Empowering tools: perform bookkeeping tasks that aid learning

4. Reactive: r.eacts to student's ideas

5. Modeling: system performs the task while the student watches

6. Coach: breaks in and makes suggestions.

7. Tutor: system maintains control over the interaction.

(Tutoring is discussed in the chapter on tutoring and curriculum and will not be discussed further
here.)

110

I Ill Systems. Almost all instructional environments provide some kind of help system. Ielp
systcms are useful when students recognize that they need help or when they make an explicit
mistake. [lelp .ystems can he complex. The UNIX Consultant (Wilensky, Arens, & Chin, 1984)
provides help 1v answering the user's questions in English based on a knowledge base of UNIX
commands. 'i'h, MACSYMA Advisor (Genesereth, 1982) builds a plausible plan that explains the
user.s act iOns leading up to an error, proposes a misconception that might have caused the user to
make the error, and advises the user with a natural language explanation tailored to repair the
misconception. .Johnson (1987) found that on-line documentation and operating instructions are an
important kind of help that makes a significant difference in the acceptance of the instructional
environment. The learning-by-doing style of learning that ITSs support applies to the system as well
as the domain.

Assistance. Some systems can take over parts of the problem-solving task, freeing students to
concentrate on t-e remaining parts. In general, such systems enable students to) see beyond the
details that can overwhelm them during the early stages o learning and to grasp the larger structural
properties of the domain. Properly designed, such an environment can facilitate the development of
sound conceptual understanding and encourage the higher-order thinking skills involved in solving
problems strategically.

In AlgebraLand (Brown, 1985) (see Figure 5.8) and in the Algebra Tutor (Anderson et at.
1986), students are freed from having to perform manually all the calculations associated with
different algebraic operations. Instead, when solving a problem, students select operations and
observe as the computer performs them. With the system performing the time-consuming mechanical
tasks of symbol manipulation, students are free to see the range of applications for an operation, to
learn to recognize situations in which an operation will he effective, and to understand the limits of its
Ise.

Empowering Tools. Ono, important form of assistance an instructional environment can
provide is tools that encourage students to reflect on their problem-solving activities. Such tools
capture a student's actions and decisions, structure them in an appropriate manner, and allow the
student to browse through them. Algebral,and (Figure 5.8) provides a good example of empowering
tools. Each decision the student makes is captured and displayed in a tree form that makes explicit
the structure of the search space. Algebral,and also keeps a history of previous solution spaces so that
the student can look back to earlier work. The role played bv these tools is to reify the problem-solving
process so that the student is made aware of it and can more easily study it. The two-dimensional
proof tree supported by the Geometry'Tutor (Figure 5.1) plays at similar role.

Reactive Learning Environments. In a reactive learning environment, the system responds to
the student's aciT ns in a manner that tends the student's understanding of his or her action in the
context of the specific situation. This kind of environment is useful for getting students to "break set"
because they are forced to state the ramifications of their beliefs so that the system can challenge
them. SOlilllE I (Brown & Burton, 1975, 1987; Brown, Burton, & de Kleer, 1982) is a good example f
a reactive learning environment. While troubleshooting a simulated piece of equipment, the student
can, at any time, offer a hypothesis about what might he wrong. SOPllE I reacts to this request by
evaluating the hypothesis relative to the measurements the student has thus far made. That is, the
system tells the student not whether the hypothesis is a correct identification of the fault but whether
it, is logically consistent with the information the student should have learned about the device from
the measurements. Thus, when the hypothesis is inconsistent, the student is confronted with
examples that his or her current knowledge does not adequately explain. A key property of reactive
learning environments is to get students to articulate their hypotheses as opposed to just acting them
out.

Modeling Systems. A form of help that some systems provide is to model for the student the
way an expertioes h ivity. It is important that this model articulate the decisions it is faced with
and the strategies it is using to make those decisions. The "articulate expert" in SOPIIIE If is a good
example of a modeling system. It allows the student to insert a fault, into the circuit and then
troubleshoots it)y making measurements just as the student would. Before each measurement, the
expert explains why it was making that measurement in terms of various debugging strategies and
based on a qualititative analysis of the circuit. Similarly, after each measurement, it explains what it,
can now conclude. This form of modeling is one important aspect of apprenticeship-style learning
(Collins. Brown, & Newman, in press) which has been used successfully by cognitive science

111

researchers (who were not using computers, however) to Leitch reading (Brown & l'alincsar, in press),
writing (Scardantialia, Bercitcr, & Steinbach, 1.984) and calcultis (Schoenfeld, 1985) Trhe role played
by the modeling is to make explicit the sthuategics al c- xpert- uses, thereby gi vin um l 11 student an
example to follow.

.' .-

____ ____ ____ ____ __11 V::I

wI)2

N&IfLV DVID

to-O~EC Cjiber -9~ Tnt S iniC,.'9'i
spa *...IoICotawnin theow is,6bi (ioido) (n~ext lvabe-)

Figure 5.8. Screen linage of Algebra l~anc. 'rho window titled "solve for N" Shows thc
current stat~e of the student's work. The window titled "search space window" presents
a visual represettLion of all the previous problem state-,, preserving their temporal
order. In the search space window, duplicate nodes are linked together with gray
lines. rIhe window titled "hasic operations mnnu" contains the operations that the
student can apply to the current state.

Coaching Systems. In a coaching system, the system tracks the student's activities, recogniz.es
stulptiat bhavir, and breaks in LoI give advice. Two good examples of coaching systems are WlKS1
(liirton & Browni, 1982) and WUSOJI (Gldsteiu, 1982; Skinsfield, Carr, & Goldstein, 1976). I n bodi
systems, a model of the student is formned by comparing the student's behavior with that of an expert.
When the student makcs a had move, the coach interrutpts, giving adIvice designed to overcome the
weaknesses observed in the student inodel. WIUSOR tises an articulate expert, and thme advice decrives
from a trace of the expert. WKSTl emplo 'vs akn expert that cannot articulate its reasoning in
psychologically relevant terms;. Its advice conies fromt local knowledge associated with particular

112

weaknesses. WEST demonstrates the idea that even when the system cannot track everything the
student does, it can recognize patterns ofsiioptimal behavior and provide coaching about the things it.
does know. Fischer (1986) has implemented a coach for a practical application, the editor for a
programming language.

The Structure Provided by the Instructional Environment

Instructional environments can be distinguished according to the amount of structure they
impose on the activity. Some systems such as Lego Logo are very unstructured. The environment is
carefully designed to embody a set of ideas and concepts, and students are allowed to explore it.
Unstructured systems are based on the belief that by providing a rich environment, worthwhile
learning will emerge if students are encouraged to explore whatever interests; them-

One of the early goals of ITS research was to make unstructured environments more
productive by augmenting them with intelligent tutors. Thus, the system could help the student see
and appreciate the ideas and concepts the environment had to offer. Unfortunately, the system's
ability to recognize interesting situations occurring in the student's activity is limited by how well the
computer can understand what the student is doing. If the student is allowed to do a wide variety of
things, this problem is more difficult.

Some systems such as Anderson's LISP Tutor (Anderson & Skwarecki, 1986) solve this
problem by imposing structure on what the student is allowed to do. The LISP Tutor walks the
student through the creation of a LISP function, correcting the student whenever he or she deviates
from a correct path. In this way, the system can know what the student is doing at any time and
,,spond a)propriately.

A problem with the structured approach arises when the designer of the ITS has an incomplete
characterization of the knowledge learned from it. Then the system may work against the students'
learning those things that have been left out, and the students may fail to learn everything they need.
Ilaving a computerized expert that performs a task does not guarantee that all of the requisite
knowledge has been identified. Examples of additional kinds of knowledge include self-monitoring
skills that, might be necessary in a less structured environment, context recognition skills to
(letermine when the learned procedure applies and when it does not, and ways of structuring
knowledge that (liffer from the computerized experts but are more amenable to human consumption.
A good example of the inadequacy of a computer expert's knowledge for teaching can be seen in the
progression from MYCIN to GUIDON to NEOMYCIN (Clancey, 1982, 1986: Richer & Clancey, 1985),
where at each stage, some knowledge was found to be missing. The GUIDON experience is also an
example of a good research methodology: It uses each system to improve our knowledge of what needs
to be learned.

1. TOOLS FOR BUILDING INSTRUCTIONAL ENVIRONMENTS

A variety of existing tools makes the creation of instructional environments easier. Different
tools are designed to help different aspects of the problem and examining some of them gives another
perspective on the range of issues that come up in the development of an ITS.

Successful instructional environments have been built in many different programming
languages and run on many different sizes of machines. As we have seen, it is possible %o invent
systems that require little computation or to reimplenient existing systems on smaller computers.
Ilowever, the bulk of the research on ITS has been (lone in exploratory programming environments
(Shell, 1983a: 1983b) originally developed for artificial inteiligence work. These programming
environments seek to minimize the time and effort re(quired to go from an idea to its implementation
and to minimize the difficulty of modifying the implementation as the idea changes. As a result, the
designer is encouraged to do formative evaluations, to actually get and use feedback by trying out
early systems to improve later ones. 'This seems like an eminently reasonable idea. Currently the best
environments are Interlisp and Zetalisp. Within several years, it is likely that the CommonLisp
community will have developed comparable environments. It can be expected that the transition from
either Interlisp or Zetalisp will not be difficult. It would be premature to trade the ability to make
rapid, large-scale changes that these programming systems provide for the cost savings currently
available through recoding in other languages such as C.)uring the coming period, it will be critical

113

to be able to modify the systems quickly to respond to shortcomings discovered by their being placed in
the field.

Much work is being done in the commercial market for artificial intelligence by companies
such as Jntellicorp, Inference Corporation, and Teknowledge to develop tools to make building expert.
systems easier. Any computing strategy for developing ITS should be able to incorporate the good
ideas that come out of these efforts.

Tools for Building Educational Simulation Kits

Aside from programming environments, tools have been developed to attack particular areas
within the ITS. One common kind of system is built around a simulator of a certain piece of
equipment. Typically, these environments teach the procedures to operate, maintain, and
troubleshoot the equipment. The use of simulators in the training community has a long history, and
some of the earliest work in intelligent computer-assisted instruction involved augmenting a
simulator with intelligent agents that facilitated exploration by students and tutoring (Brown &
1Burton, 1975).

Tools in Steamer

As part of the Steamer project, many tools were constructed to facilitate building complex
graphical interfaces to simulations and using them in educational ways (Hollan et al4 1987). The
Graphics Editor was designed to allow instructors who were knowledgeable about the domain but
naive about computers to create graphical interfaces and to customize displays to show exactly the
features or mechanism relevant to a particular point. For example, as part of a classroom lecture, an
instructor might put together a display that contained dials from two separate parts of the plant and
graphs of their pressures to show the relationship between them. The Graphics Editor allows the user
to interactively place graphic objects, or icons, from a large predefined library. The icons can then he
tapped into the simulation to display and, in some cases, change the values when the simulation is
running.

The Icon Editor allows a more knowledgeable user to create new icons. The library of icons is
organized in a multiple hierarchical manner using the Zetalisp Flavors system (Weinreb & Moon,
1981) that allows properties and behaviors to be inherited. This feature makes it very easy to
customize new icons or combine existing icons into new ones. Icons "behave" in the sense that their
display can change in response to either a change in the simulation or the passage of time. This latter
capability makes possible the animation that is used to show fluid flowing in pipes or flames flickering
tinder heating vessels.

The Steamer group is exploring knowledge-based editors to extend the application of the
graphical-simulation technology. One is the Lesson Editor, which provides a means for specifying
instructional sequences that are tied to particular behaviors of the simulation. This editor can be used
to present remedial or informative text or other displays when the student's actions cause the steam
plant to attain certain states.

Another knowledge-based editor is the Behavior Editor, which extends icons to include
activity behavior as well as display behavior in order to remove the requirement for the mathematical
model of the domain. Each icon in the library is given code that determines its state based on the
states of the icons to which it is connected. When the icons are placed on the display, their connections
are inferred, and the result is not just a display but also a simulation of the process depicted. This is
similar to the work of rowne's group which will be described next. This approach to building
simulation models definitely restricts the kind of behaviors that are produced because there is no
mechanism to handle simultaneous constraints that are required such as obtaining feedback. For
example, this technique would not produce the complete model of the steam plant underlying Steamer.
I lowever, its exact limits are not known, and it seems clear that much useful instruction can be done
within its boundaries.

The Intelligent Maintenance Training System

Towne's (1987) Intelligent Maintenance Training System (IMTS) is an interactive system for
building graphical simulations for use with a variety ofequipment. It performs three major functions:

114

I. It provides a simulation of equi)ment at the functional and front-panel levels and simulates
associated test equipment while a student practices fault diagnosis.

2. It evaluates the student's diagnostic approaches, assists the student where necessary, and
models preferred diagnostic techniques on problems.

3. It selects appropriate problems for the student to solve and evaluates the students' progress
during troubleshooting practice.

To specify the simulation knowledge base for IMTS. an editor was developed that borrows
many of the graphical and behavior editing ideas in Steamer. An author can build equipment-specific
simulations by interactively assembling graphical objects that also specify behavior (see Figure 5.9.).
The simulation is determined automatically from the graphical connections between the objects. The
author can also construct new generic objects and specify their behavior with a menu-based interface
that avoids the need to program. IMTS then provides tutorial training functions on the created
equipment. As mentioned in the discussion of Steamer, the complexity of simulations that can be
constructed using this local technique is limited, but it is unclear how far this level of simulation can

o. The system has been successfully used to construct a simulation of the blade-folding mechanism of
the SII-3 helicopter, which is a moderately complex, electrically controlled hydraulic system.

, . 300

C.,

C. -

~ L4~L

I II

IU

_ _ - I J AV

t,\,,

Figure 5.9. A Portion of the Generic Object Library of IMTS. The objects shown here
can be wired together by an editor to create a simulation model of a piece of machinery.

115

The intelligent tutoring components, the automatic expert troubleshooter, the tutor, and the
problem selection specialist all work from information given locally for the components. This includes
information about the replacement time, the cost of spares, and mean time between failure. In
addition, the problem selection is driven from a subjective level of difficulty assigned to each
component by the author.

Tools for Building Tutors

PUPS Tutoring Architecture

Anderson's PUPS Tutoring Architecture (PTA) (Anderson & Skwarecki, 1986) is designed to
make it easier to produce tutoring systems that follow the model-tracing methodology discussed in
detail by Van Lehn (this volume). rhe system strives to separate the knowledge about features
specific to one domain from the general purpose tutoring apparatus. A domain expert is written il
PUPS, a production rule system that allows flexible control. The trace of the expert running on the
problems the students will get is then produced. The solution trace is given to a monitoring program
that can run on a Macintosh computer and performs the model tracing tutorial interaction with a
student. Based on PTA, tutors are currently being developed for programming in Ada, LISP, and
PROLOG. PTA provides an interesting example of reducing the cost of deploying intelligent
computer-aided instruction by using intelligence on one computer to produce code that actually
interacts with the student on a smaller computer.

Bite-Sized Tutor

Bonar, Lesgold, and their colleagues at the Learning Research and Development Center
(Bonar, 1985; Bonar, Cunningham,& Schultz, 1986) are working toward the goal of an authoring
language for intelligent tutors. Their approach, called the bite-sized tutor, is organized around the
curriculum to be presented. The knowledge needed by a student is broken into "bite-sized" chunks
that are represented in a formalism specialized to the task of tutoring. For example, the formalism
contains links to represent relationships like general-specific or prerequisite and slots for procedures
like modeling the student's knowledge, tutoring on the content, or assessing blame for errors. The
hope is that by building on an object-oriented system (LOOPS), the bite-sized tutor can accumulate
generally useful routines so that the amount of specialized information needed for a new domain will
be small. Tutors currently exist for several different domains: subtraction, electronics, and
economics. It is still too early in the research to evaluate how well this approach will generalize.

Tools to Merge ITS with Existing Authoring Techniques

IDE

A group at Xerox Palo Alto Research Center is working on an authoring aid for the course
development process, called the Instructional Design Environment (IDE) (Russell et al., 1986). One
noteworthy feature of the Xerox environment is that during all stages of the process, the author has
access to a powerful computing environment, NoteCards (Xerox Special Information Systems, 1985).
This environment is built on top of Interlisp-D and includes the ability to link together "cards"
containing animations, simulations, ICAI activities, video disc, and speech. This feature makes it
easier to design a complete course around an instructional environment.

IDE (see Figure 5.10) provides a collection of tools to aid the design of instructional material.
Some of these tools support knowledge acquisition and structuring, cognitive task analysis, story
boarding and course layout. One tool Ii)I provides, called the rationale tool, allows the user to
annotate the design of a course, collecting the many decisions, rationales, constraints, principles, and
assumptions that underlie its development. This collection of annotations captures the information
needed by someone who later wants to change something about the course. It also serves as an
effective communication medium for designers cooperating on the design ofa course.

IDE makes it easier to incorporate an activity from an ITS into a complete course. Xerox is
also working on an experimental course development and intelligent delivery system, the IDE
Interpreter, that automates the sequencing of instructional material, thus allowing more flexible and
personalized instruction. Instructors create instruction units that present information or determine
what a student knows and provide rules that represent instructional strategies. During instruction

116

delivery, the IIE Interpreter presents students with different sequences of instruction units
determined by the rules of the instructional strategy and based on a model of their behavior. The
svstem was modeled after O'Shea's five-ring model for CA I authoring systems (O'Shea, Bornat, lu
Boulay, Eisenstadt, & Page, 1983).

KA/IAA

Perceptronics, Control Data, and Iarris have recently started a large contract to produce
knowledge acquisition and intelligent authoring aids (KA/IAA) to support the development and
production of intelligent instructional environments. They propose to follow an evolutionary approach
from CA! to [CAI and stress the importance of reviewing existing authoring systems and military
courses to determine which are appropriate for [CAl.

IDEI
.$t~~~3udernts are : .

c sl ilettgonocs or less) Mapt p The end: rsl ofthe

design process is a ~ ~3 linke colecio ofdsr ptions(2 6f insrcinlnt.Rerne

Fiatlarwie-

on h Corpooratf
Wevary IsqX co~€pying and decomposes it Ito

~~Useful knowledge: [

I- --t "I

Knowledge of the functionality of Knowledge structures that tie
an artifact Is often used In together a collection of knowledge :i~ l~ l w* ~ .lm
reatsoningl about thatl artifa ct., elemencts should be prevented

prior to the knowledge elements m r ese, 4 ,€

themselves knt t"o ' 2- ev" *,. er s

Hierarchical knowledge structures

ae rCOtrucalble is p-tSoww

041-j Wd ter "*saw C-

:1A..'"

Figure 5.10. Screen Image of the Xerox Instructional Design Environment (IDE)
(Russell, et al., 1986). At the topof the screen are the course goals. The windows on
the left contain instructional principles. The windows on the right contain the
decisions made in structuring the course. In the middle are "rationales" that link the
course decisions to the goals and principles that support it. The end result of the
design process is a linked collection of descriptions of instructional units. Reprinted
with permission of Xerox Corporation, OF0 1986.

117

III. FUTURE TECIINOI,()GY AN I)INSTRUCTIONAI ENVIRONMENTS

There will continue to be major development in both hardware and software. Computation
will continue to get cheaper. The price/performance ratio of personal workstation computers .xil!
halve each year through 1992, independent of advances in parallel processing Read/write optical dl. .
technology will arrive, making it possible to store massive amounts of information locally. Speech,
input and output, will come along,. Graphic chips incorporated into machines will provide rapid color
graphics.

The research efforts in instructional environments should track these developments and be
ready to exploit them when they arrive.)evelopment systems for artificial intelligence programs will
he improved, driven by market pressures. Similarly, developments will occur in graphics, natural
language processing, and knowledge representation languages. The research strategy for developing
ITS should allow whatever new developments arise to be incorporated as they appear in the
marketplace.

Massively parallel machines such as the Connection Machine promise tremendous increases
in speed for particular applications such as simulations, and questions arise as to what we should do
about this innovation. Our approach should be based on a view of ourselves as users of the developing
technology for education. We should equip researchers with the best available system development
environments that arc cheap enough to permit testing in real classrooms of 10 to 20 students. When
applications of parallel processing are demonstrated, we should incorporate these applications into our
systems. In general, the program for ITS research and development should focus on problems unique
to ITS.

IV. RESEARCH OPPORTUNITIES IN INSTRUCTIONAL EINVIRONMENTS

New technology and research ideas from cognitive science are opening up many opportunites
for instructional environments. Faster, cheaper computers that have color, sound, video, etc., and that
have access to massive amounts of data through devices such as compact discs open up a wide
spectrum of new environments. One can easily imagine Steamer-like systems sitting on everyone's
desk and having versions of the IIistorian's Microworld that have access to major parts of the original
source material for significant portions of history. It is important that these new systems are built on
effective environments; that is, ones that present relevant problems and provide pedagogically
appropriate tools. As we mentioned earlier, the environment in many ways defines the way the
student looks at the subject matter. One of the significant contributions of research in intelligent
instructional environments is the cognitive perspective it brings to defining the content of instruction.
We have seen benefits in the Geometry Tutor environment, in AlgebraLand and in Buggy where
developing the system actually helped clarify what needed to be learned. Another good example is the
work of llaertel (1987) which lays out a qualitative model of electricity that will provide an excellent
base for a computerized curriculum on electronics.

Near-Term Opportunities

Listed below are several specific near-term research opportunities in ITS environment research.

Simulation kits are a promising form of instructional environment. Applications for tools like
those that Steamer and IMTS provide should be found, and systems should be developed for them.
Applications will improve these tools and provide examples of their use. More research is needed on
how to use the tools and the environments they produce. This research is best (one in a context in
which many examples exist.

Medium-scale experimental testing of ITS should be planned. The next generation of low-cost,
personal LISP machines will be as fast as current research machines and will make testing more
feasible. Also, the increasing availability of LISP on the 32-bit PCs makes the testing easier.

The incorporation of ITS into standard courses and the use of knowledge based authoring
environments such as I DE should be explored.

Empowering environments that make explicit the process the student has to do should be
developed and their use explored. For example, the process of troubleshooting may have a structure

118

analogous to the geometry proof I,'ee or the algebra search space tree that could be made explicit to

students thereby improving their troubleshooting skills.

Technological developments such as compact discs, speech, and parallel machines should he
tracked and their potential for ITS application should he determined.

Long Term

The stages of conceptualizations, and common incorrect conceptualizations, that is,
misconcepLs, that incoming trainees have should be identified. The role of misconceptions in blocking
learning from instructional environments should he studied. Instructional environments should be
developed to support the transition from incorrect concepts to correct ones. Research must determine
when to do this by confronting the student's misconceptions and when to ignore them and just teach
the student a better concept in a different way.

The other side of understanding the student's conceptualization is to understand the cognitive
ramifications of changes to the instructional environment. We need to know more precisely when
different kinds of fidelity are appropriate and when we should use similar environments with slightly
different kinds of fidelity to remedy misconceptions.

We also do not know the extent to which the structure of the environment should impose on
the student's learning. What skills are better learned with more structured rather than less
structured environments? Which domains? In what situations, if any, can and should meta-skills be
taught?

In the final analysis, the largest contribution of research into intelligent instructional
environments may arise from redefining what skills we teach. Recent research (Orr, 1986) watching
technicians at work indicates that an important part of building individual and community knowledge
among copier repair technicians involves structured narratives about the machine's operation.
lBasically, what technicians do to organize and communicate their understanding of machines is to tell
stories. Yet nowhere in any curriculum is the student taught about stories, how to tell them, or how to
understand them. Similarly, collaboration, working productively together with others, is an
important part of many tasks but not included in most curricula. Research in instructional
environments needs to include ways of representing and teaching not only the intellectual skills but
also the social skills students will need on the job.

119

REFERENCES

Abelson, A., & diSessa, A. A. (1980). Turtle geometry. Cambridge, MA: MIT Press.

Anderson, J. R. (1981). Tuning of search of the problem space for geometry proofs. In A. Drinan (Ed.),
Proceedings of the International Joint Conference on Artificial Intelligence-81. (Vol. 1, pp.
1I65-170). Los Altos, CA: Morgan Kaufmann Publishers, Inc.

Anderson, J. R., Boyle, C. F., Corbett, A., & Lewis, M. (1986). Cognitive modelling and intelligent
tutoring (CMU Tech Rep). Pittsburgh, PA: Carnegie-Mellon University, Psychology
Dipartment.

Anderson, J.R., Boyle, C.F., & Yost, G. (1985). The geometry tutor. In A. Joshi (Ed.), Proceedings of
the Ninth International Joint Conference on Artificial Intelligence (pp. 1-7). Los Altos, CA:
Morgan Kaufmann Publishers, Inc.

Anderson, J, R., & Skwarecki, E. (1986). The automated tutoring of introductory computer
programming. Communications of the ACM, 29, 824-849.

Bonar, J. (1985, June). Bite-sized intelligent tutoring. Newsletter 85-3, 1-11. Pittsburgh, PA:
University of Pittsburgh, Learning Research and Development Center, Intelligent Tutoring
Systems Group.

Bonar, J., Cunningham, R., & Schultz, J. (1986). An object-oriented architecture for intelligent
tutoring systems. In N. Meyrowitz (Ed.), Proceedings of the First Conference on Object
Oriented Programming, Systems, Languages and Applications. (Vol. 21, pp. 269-276). New
York, NY: The Association for Computing Machinery.

Brown, A. L., & Palincsar, A. S. (in press). Reciprocal teaching of comprehension strategies: A natural
history of one program for enhancing learning. In J. B. Borkowski and J. D. Day (Eds.),
Intelligence and cognition in special children: Comparative studies of giftedness, mental
retardation, and learning disabilities. Norwood, NJ: Ablex.

Brown, J. S. (1983). Learning by doing revisited for electronic learning environments. In M. A. White
(Ed.), The future of electronic learning, (pp. 13-32). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Brown, J. S. (1985). Idea amplifiers: New kinds of electronic learningenvironments. Educational
Horizons, 63, 108-112.

Brown, J. S., & Burton, R. R. (1975). Multiple representations of knowledge for tutorial reasoning. In
D. G. Bobrow & A. Collins (Eds.), Representation and understanding, (pp. 311-349). New York:
Academic Press.

Brown, J. S., & Burton, R. R. (1978). Diagnostic models for procedural bugs in basic mathematical
skills. Cognitive Science, 2, 155-192.

Brown, J. S., & Burton, R. R. (1987). Reactive learning environments for teaching electronic
troubleshooting. In W. B. Rouse (Ed.), Advances in man-machine systems research: (Vol. 3).
Greenwich, CT: JAI Press Inc.

Brown, J. S., Burton, R. R., & de Kleer, J. (1982). Pedagogical, natural language and knowledge
engineering techniques in SOPHIE I, II and Ill. In D. Sleeman & J. S. Brown (Eds.), Intelligent
tutoring systems, (pp. 227-282). New York: Academic Press.

Brown, J. S., Moran, T. P., & Williams, M. D. (1982). The semantics of procedures: A cognitive basis
for training procedural skills for complex system maintenance. (CIS working paper). Palo A o,
CA: Xerox Palo Alto Hesearch Center, Intelligent Systems Laboratory.

Burton, R. R., & Brown, J. S. (1982). An investigation of computer coaching for informal learning
activities. In D. Sleeman & J. S. Brown (Eds.), Intelligent Tutoring Systems, (pp. 79-98). New
York: Academic Press.

Burton, R. R., Brown, J. S., & Fischer, G. (1984). Skiing as a model of instruction. In B. Rogoff& J.
Lave (Eds.), Everyday cognition: Its development in social context, (pp. 139-150). Cambridge,
MA: Harvard University Press.

120

Chi, M. T. It-, Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics
problems by experts and novices. Cognitive Science, 5, 121-152.

Clancey, W. J. (1982). Tutoring rules for guiding a case method dialogue. In D. Sleeman & J. S. Brown,
(Eds.), Intelligent tutoring systems, (pp. 201-226). New York: Academic Press.

Clancey, W. J. (1986). From GUIDON to NEOMYCIN and HIERACLES in twenty short lessons: ONR
final report 1979-1985. Al Magazine, 7, 40-60.

Clement, J. (1983). A conceptual model discussed by Galileo and used intuitively by physics students.
In D. Gentner & A. L. Stevens (Eds.), Mental models, (pp. 325-340). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Collins, A., Brown, J. S., & Newman, S. E. (in press). The new apprenticeship: Teaching students the
craft of reading, writing, and mathematics. In L. B. Resnick (Ed.), Cognition and instruction:
Issues and agendas. lIillsdale, NJ: Lawrence Erlbaum Associates.

Copeland, W. D. (1984). Creating a historian's microworld. Classroom Computer Learning, 5, 48-53.

diSessa, A. (1982). Unlearning Aristotelian physics: A study of knowledge-based learning. Cognitive
Science, 6, 37-75.

diSessa, A. (1983). Phenomenology and the evolution of intuition. In D. Gentner & A. L. Stevens
'Eds.), Mental models, (pp. 15-34). Hillsdale, NJ: Lawrence Erlbaum Associates.

Erlwanger, S. I. (1973). Benny's conception of rules and answers in IPI mathematics. Journal of
Children's Mathematical Behavior, 1, 7-26.

Fischer, G. (1986). Enhancing incremental learning processes with knowledge-based systems. In
H. Mandl & A. Lesgold (Eds.), Learning issues for intelligent tutoring systems. New York:
Springer Verlag.

Fischer, G., Brown, J. S., & Burton, R. (1978). Simplification, debugging and coaching. Proceedings
of the 2nd National Conference of Canadian Society for Studies of Intelligence (pp.TT134

Genesereth, M. (1982). The role of plans in intelligent teaching systems. In D. Sleeman & J. S. Brown
(Eds.), Intelligent tutoring systems, (pp. 137-156). New York: Academic Press.

Gentner, D., & Stevens, A. L. (Eds.). (1983). Mental models. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Goldstein, I. P. (1982). The genetic graph: A representation for the evolution of procedural
knowledge. In D. Sleeman & J. S. Brown ,ds.), Intelligent tutoring systems (pp. 51-78). New
York: Academic Press.

Haertel, H. (1987). A qualitative approach to electricity (IRL technical report). Palo Alto, CA: Xerox
Palo Alto Research Center, Institute tbr Research on Learning.

llollan,J. D., lutchins, E. L., McCandless, T. P., Rosenstein, M., & Weitzman, L. (1987).
Graphical interfaces for simulation. In W. B. Rouse (Ed.), Advances in man-machine systems
research (Vol. 3). Greenwich, CT: JAI Press Inc.

iollan,J. D., Hutchins, E. L., & Weitzman, L. (1984). Steamer: An interactive inspectable
simulation-based training system. Al Magazine, 5, 15-28.

Hutchins, E. L., lIollanJ. D. and Norman, D. A. (1985). Direct manipulation interfaces.
luman-Computer Interaction, 1,311-338.

Hutchins. E., & McCandless, T. P. (1982). MANBOARD: A graphic display program for training
relative motion concepts (NPRDC Technical Note 82-10). San Diego: Navy Personnel Research
and Development Center.

Johnson, W.B. (1987). Development and evaluation of simulation-oriented computer-based
instruction for diagnostic training. In W. B. Rouse (Ed.), Advances in Man-Machine Systems
Research (Vol. 3). Greenwich, CT: JAI Press Inc.

121

Johnson, W. B., Maddox, M. E., Rouse, W.B., & Kiel, G. C. (1985). Diagnostic training for nuclear
plant personnel. Volume 1. Courseware development (EPRI NP-3829). Palo Alto, CA: Electric
Power Research institute.

Larkin, J. H. (1983). The role of problem representation in physics. In D. Gentner & A. L. Stevens
(Eds.), Mental models (pp. 75-98). Hillsdale, NJ: Lawrence Erlbaum Associates.

Mandl, H., & Lesgold, A. (Eds.). (1986). Learning issues for intelligent tutoring systems. New York:
Springer Verlag.

Nickerson, R. (1986). Technology in education in 2020: Thinking about the not-distant future.
Background paper for Harvard Center tar School Technology Conference. Cambridge, MA:
Bolt, Beranek, and Newman, Inc.

Orr, J. E. (1986). Narratives at work: Story telling as cooperative diagnostic activity. Proceedings of
the Conference on Computer-Supported Cooperative Work (pp.62-72).

O'Shea, T., Bornat, R., Du Boulay, B., Eisenstadt, M., & Page, 1. (1983). Tools for designing
intelligent computer tutors. In A. Elithorn & R Banerjii (Eds.), Human and artificial
intelligence (pp. 181-199). London: North-Holland.

Papert, S. (1980). Mindstorms. New York: Basic Books.

Papert, S. (1984). Microworlds: Transforming education. In S. Evans & P. Clark (Eds.). The
computer culture. White River Press.

Papert, S. (1986, May 2). Rethinking mathematics learnability in a computer culture. The Karl de
Leeuw Memorial Lecture. Stanford, CA: Stanford University.

Richer, M., & Clancey, W. J. (1985). GUIDON-WATCH: A graphical interface for viewing a
knowledge-based system. IEEE Computer Graphics and Applications, 11, 51-64.

Rogoff, B., & Lave, J. (Eds.). (1984). Everyday cognition: Its development in social context.
Cambridge, MA: Harvard University Press.

Roschelle, J.(1966). The envisioning machine: Facilitating students' re-o tualization of
S(I. wrking paper). Palo Alto, CA: Xerox Palo Alto Research CMrter, Intelligent

System Laboratory.

Rouse, W. B. (1979). Problem solving performance of maintenance trainees in a fault diagnosis task.
Human Factors, 21, 195-203.

Rouse, W. B. (Ed.). (1987). Advances in man-machine systems research (Vol. 3). Greenwich, CT: JAI
Press Inc.

Rouse, W. B., & Hunt, R. M. (1984). Human problem solving in fault diagnosis tasks. In W. B. Rouse
(Ed.), Advances in Man-Machine Systems Research (Vol. 1). Greenwich, CT: JAI Press Inc.

Russell, D. M., Moran, T. P., & Jordan, D. S. (1986). Instructional design environment. In J.
Psotka, L. D.Massey, & S. A. Mutter (Eds.), Intelligent tutoring systems: Lessons learned.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Scardamalia, M., Bereiter, C., & Steinbach, R. (1984). Teachability of reflective processes in written
composition. Cognitive Science, 8, 173-190.

Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic Press.

Schwartz, J. L., & Yerushalmy, M. (1986). The geometry supposer: Using microcomputers to restore
invention to the learning of mathematics. In D. N. Perkins, J. Lochhead, & J. Butler (Eds.),
Thinking: The second international conference. Iiillsdale, NJ: Lawrence Erlbaum Associates.

Sheil, B. (1983a). The artificial intelligence tool box. In W. Reitman (Ed.), Proceeding of the NYE
Symposium on Artificial Intelligence and Business (pp. 287-295). Norwood, NJ: Ablex.

Sheil, B. (1983b). Power tools for programmers. Datamation, 29, 131-144.

Sleeman, D., & Brown, J. S. (Eds.). (1982). Intelligent tutoring systems. New York: Academic Press.

122

Smith, R. B. (1986). The alternate reality kit: An animated environment for creating interactive
simulations. Proceedings of the IEEE Computer Society Workshop on Visual Languages (pp.
99-106). Washington, D.C.: IEEE Computer SocietyPTcss.

Stansfield, J., Carr, B., & Goldstein, 1. P. (1976). Wumpus advisor 1: A first implementation of a
program that tutors logical and probabilistic reasoning skills (MIT Al Laboratory Memo No.
381). Cambridge, MA: Massachusetts Institute of Technology.

Towne. D. M. (1987). The generalized maintenance trainer: Evolution and revolution. In W. B.
Rouse (Ed.), Advances in man-machine systems research (Vol. 3). Greenwich, CT: JAI Press
Inc.

VanLehn, K., & Brown,J. S. (1980). Planning nets: A representation for formalizing analogies and
semantic models for procedural skills. In R. W. Snow, P. A. Fredico, & W. E. Montagues (Eds.),
Aptitute learning and instruction: Vol. 2. Cognitive process analyses of learning and
problem-solving (pp. 95-137). Hillsdale, NJ: Lawrence Erlbaum Associates.

Weinreb, D., & Moon, D. (1981). Lisp Machine manual. Cambridge, MA: MIT Artificial Intelligence
Laboratory.

Wenger, E. (1987). Artificial intelligence and tutoring systems: Computational approaches to the
communication of knowledge. Los Altos, CA: Morgan Kaufmann Publishers, Inc.

White, B. Y., & Frederiksen, J. R. (1986a). Intelligent tutoring systems based upon qualitative model
evolutions. Proceeding of AAAI-86 (pp. 313-319). Los Altos, CA: Morgan Kaufmann
Publishers, Inc.

White, B. Y., & Frederiksen, J. R. (1986b). Progressions of qualitative models as foundations for
intelligent learning environments (BBN Report 6277). Cambridge, MA: Bolt, Beranek and
Newman, Inc.

Wilensky, R., Arens, Y., & Chin, D. (1984). Talking to UNIX in English: An overview of UC.
Communications of the ACM, 27, 574-593.

Wiser, M., & Carey, S. (1983). When heat and temperature were one. In D. Gentner & A. L. Stevens
(Eds.), Mental models (pp. 267-298). Hillsdale, NJ: Lawrence Erlbaum Associates.

Xerox Special Information Systems. (1985). Notecards release 1.2i reference manual. Pasadena, CA:
Xerox Special Information Systems.

123

DISCUSSION

Curriculum and Instruction in Automated Tutors
and

The Environment Module of Intelligent Tutoring Systems

M. David Merrill
Professor of Educational Psychology and Technology

University of Southern California
Los Angeles, California

I have a few anecdotes, some criticism, and then I will get into the synthesis.

Anecdotes

First I would like to ask a question. If expertise in this field takes thousands
of hours and more than 10 years to acquire, how come so many ITS experts are so
young? Most of you received your degrees less than ten years ago!

Several years ago at an AERA session, I heard Alan Lesgold, Elliot Soloway,
and others speaking about CAI and ICAI. There was no discussant. I volunteered. I
said, "Most intelligent tutoring systems remind me of many college professors. They
are brilliant scholars but terrible instructors." The participants got a little nervous.
Then I said, "If I were paid $2,000 per day-which I am not-and if ICAT systems
worked-which they do not (yet)-and if a client asked me to recommend frame-based
CAI or ICAI, I would recommend frame-based CAI instead of ICAI." At which
point, Elliott Soloway jumped on the table and said, "There are a lot of you little old
ladies in tennis shoes that don't understand computers! You've got to get into the 20th
century. Computers are here to stay." Elliott and I had not yet met. My reply was,
"Elliot, when you were in kindergarten, I wrote my first computer program."

Criticism

Somebody asked, "Is instructional design dead?" My response is, "Are you kid-
dingT? There is a whole new breed of instructional designers. They grew up at MIT,
Carnegie-Mellon, Yale or Stanford. They speak with a 'lisp' and they call themselves
knowledge engineers. These new instructional designers are reinventing instructional
design. As an old-school instructional designer, it's appropriate that I make a few
comments about the new instructional designers. My criticism will be constructive; I
would like to participate in the very exciting developments in intelligent tutoring
systems. I suggest a couple of cautions.

Caution number one: If you are going to be credible in the educational com-
munity, you need to be more careful about extreme straw-man characterizations. For
example, Henry Halff wrote in his paper, "Nondynamic situations are like classrooms
where both curriculum and instruction can be developed prior to delivery" Have you

125

ever been in a sccond-grade classroom? Talk about dynamic interactive! These arc
very interactive environments.

Richard Burton wrote about the new pedagogy. I was going to jump on the
word new but I noticed in his talk he did not use the word new. These are not new
pedagogical ideas. They date back to Dewey and before. We must be careful if we
think the pedagogy of intelligent tutoring systems is a new approach to instruction.

Caution number two: Many of the arguments for intelligent tutoring systems
are based on untested assumptions that are often stated as axioms. The description of
intelligent tutoring systems often includes a number of unqualified assumptions about
instruction that may not be supported either by theoiy or empiricism. John Anderson
said, "We need an expert system in order to have an intelligent tutor." The question is:
Do we have any evidence that expertise of the type that he was describing today is
necessary for effective instruction to go on? I don't know of any evidence that really
suggests that an expert tutor in the subject matter area is necessary for effective
instruction. There are many teachers who teach students who are smarter than they
are, and the students learn more than the teacher knows, and yet the teachers are very
effective. How come? We will surely learn much about knowledge representation
from building expert tutors, but are they really necessary for effective instruction to
occur?

Kurt VanLehn raised the question, Do we need a student model? Weak
student models concerning student performance and activities have been used for a
long time in adaptive instruction. One would argue that such models are an essential
part of adaptive instruction. However, a strong student model, one which models the
student's learning and enables the computer to act like a student, may not be necessary
to effective instruction. Like expert models, they may enable us to learn a great deal
about learning and human information processing, but they may not be necessary for
effective instruction.

The assumptions that an expert model and a student model are necessary for
an intelligent tutoring system are assumptions, not axioms. They need to be tested and
demonstrated to determine whether their presence does indeed enable more effective
instruction. Intelligent tutoring systems that depend on expert tutors and strong
student models may not be able to demonstrate more effective learning precisely
because the assumptions on which these systems are built cannot be supported.

I enjoyed Henry Halff's presentation because he tried to relate intelligent
tutoring systems to instructional design theory. We need more efforts to relate these
two bodies of literature. He raised some very important issues. He correctly indicated
that propaedeutic knowledge, that information we must learn in order to learn
something else, may be lost in our emphasis on expertise. Experts have already
eliminated from their repertoire that propaedeutic knowledge that they used to get
where they are. Hence, a model of the expert does not contain all the knowledge
necessary to train the student in that expertise.

Dr. Halff's description of STEP theory suggested the work of Joseph Scandura
(Scandura, 1983) on rule learning or the work of Lev Landa (Landa, 1983) on algorith-
mic learning. I also was reminded of Don Norman's (Lindsay & Norman, 1977) web
theory and David Ausubel's (1968) subsumptive learning. Both of these instructional
design theories make an excellent argument for tying learning back to what students
already know and carefully building on what is known. All of these instructional

126

design theories contain prescriptions that could form a foundation on which the more
technical rules necessary for Al application could be based.

The work on elaborative microworlds described by Richard Burton reminds
me of the work of Charles Reigcluth (Rcigcluth & Stein, 1983) on elaboration theory.
There are even some ideas, that some may fcel are dead but that still seem very
relevant. One of my favorite authors is Suc Markle who wrote Good Frames and Bad
(1969). This book contains excellent suggestions about screen design and about
prompting techniques. She and Phil Tiemann (Markle & Tiemann, 1969) put forth a
whole tcchnology of prompting and learning guidance. Many of their ideas are
specific enough to be easily translated into production rules. Our own work (Merrill
& Tennyson, 1977; Merrill, 1983) seems relevant here as well.

I am also amused when ITS enthusiasts talk about CAI and characterize it as
archaic, frame-based page turning. Let me describe a system that I helped design in
the early 1970s (Merrill, 1980). This system has a mixed initiative dialog, which allows stu-
dents to ask questions of the system such as: Would you please show me a definition?
Would you please show me an example? Could you help me with this problem?
Could you advise me of what to do next? The system does not understand natural
language. The student communicates his or her questions via learner command
language buttons. There are at least 15 different questions a student can ask at any
time. Does this sound an awful lot like an intelligent tutor?

This system also has an advisor (coach), which looks over the student's
shoulder and watches what he or she is doing. At times the advisor intervenes and
provides guidance to the student about what to do next. The advisor works by
comparing student activity to an overlay model of optimal instructional performance.
This advisor is an expert system in learner-controlled learning and coaches the student
to effectively use the learner command language. Does this sound a little like
intelligent tutoring?

Perhaps there is more to so-called conventional CAI than mere page turning.
Perhaps some systems deserve a closer look. Maybe they are not so unintelligent as
once supposed. Could there be some principles of adaptive instruction that have been
overlooked by the new designers of intelligent CAI?

Why have the designers of intelligent tutoring systems overlooked the instructional
design literature? I think there are two reasons. Perhaps the first is that [rs researchers
wanted to develop their ideas without being biased by what had been done previously. I
teach a class in instructional research. The first assignment is: "Write a research review
paper. Write it in the next two weeks. Don't go to the library. Don't look at the literature.
Just dump it out." In graduate school we often teach students that the first thing you do is go
to the library and read everything you can find. Every student comes to graduate school with
some idea that he or she thought was important. My goal is for the students to express this
idea, develop it, and then after they've done that, go to the literature and see if anybody else
has thought about it and what they might have said about it. Write first, go to the literature
second. Perhaps that is what has been happening in ITS. There are a lot of bright people
with a lot of really creative ideas. Perhaps they have deliberately avoided going to the
literature because they wanted to get down the road and get some of these ideas thought
through. However, now is the time to go to the literature. There are others who have
thought about these same ideas.

127

Perhaps there is a second reason why the educational literature is seldom cited.
Henry Halff suggested this reason. Beverly Woolf, at a previous conference, said to
me, "All right, I'm ready. You give me the list of things to read." I had the same
sensation that I have when I take my wife to a questionable movie that I thought was
pretty good. Suddenly, I hear profanity that I hadn't heard the first time I saw the
film. This causes my wife to look at me as if to say,"Why did you bring me to this
movie?" I had -a similar sensation when I was talking to Beverly. Each time I
recommended a source, I thought to myself, this is really vague stuff. When Beverly
starts to read this, she is going to say, "Why did Merrill recommend this? It's pretty
hard to translate this stuff into production rules." Too much of the literature in the
instructional world is very vague. It was written for designers, and Henry Halff
kindly said that that is the level that designers wanted, but it's vague for them, too.
This literature needs to be translated into more precise terms. There is need for an
intervening science. Bob Glaser, some years ago, suggested an intervening science
between psychology and education. Now we need an intervening science betw-cn
instructional design and computer science. Both instructional science and compatcr
science need to share the responsibility to provide this intervening science. Cali we
state instructional theory in the form of production rules? But let us not start from
scratch and assume that there is a whole new pedagogy. Let us work togcther and
build on what is already known.

Synthesis: Multiple Experts

I would preface the following remarks by suggesting that I am very
uncomfortable with the word tutoring. Intelligent tutoring systems would be better
referenced by the term ituelligent instructional systems. The word tutor is much narrower
than we intend. Much of what Richard Burton discussed is not tutoring at all. It's
creating very active instructional environments that may or may not involve tutoring.
Further, tutoring is only a small subset of direct instruction.

What characterizes tutoring? Many ITS systems are firmly rooted in the
philosophy of Socratic tutorials. The goal seems to be to duplicate Mark Hopkins on
the other end of the log. I think that both Socrates and Mark Hopkins are highly

TUTORIAL MODEL STRUCTURAL
CONTENT

Question

4- Branch J4

STUDEN TUTOR
Mixed
Initiative
Dialogue

Figure 5.11. The Tutorial Model of Instruction.

128

overrated. While tutoring has its place, it may not be the ideal instructional model. Figure
5.11 illustrates the tutorial model as it is envisioned by the Socratic method and as it is
implemented by many ITS systems. Figures 5.12 and 5.13 illustrate alternative, broader, and
potentially richer modes of instructional interaction. In the tutorial mode, the computer
program selects information from the subject-matter content and presents it to the student
via text-graphic frames or helps the student to see the relationships in the content via
question frames (inquiry teaching) or tests the student's understanding via question frames.
In a mixed initiative dialog the student is able to direct the sequence of these presentations to
some extent, but the critical variable is still the extraction of parts of the content and
embedding these content fragments in presentations or questions for the student.

EXPERIENTIAL .--- .-

CONTENT E)STUDENT

Figure 5.12 The Experiential Model of Instruction.

IExplre

cED
EXPERIENTIAL STDN

CONTENT(EpanSTDN

= etect

Errors

Figure 5.13. Transaction Varietics for an Experiential Model.

Ironically, this same characteristic of tutorial instruction is shared by tutorial
CAI. The difference is in the adaptability of the system to the student's input. Many
have tried to characterize CAI and ICAI as a dichotomy, but in reality they represent
a continuum with adaptability being the primary dimension.

129

Richard Burton described the computer as an experiential environment. The
computer can be not only the tutor but also the subject matter. Almost any
phenomena can be simulated and the student can be given control over this simulation
to explore, experiment, predict and interact with the subject matter itself. Figure 5.12
illustrates the experiential model where the student is put in direct contact with the
subject matter as simulated by the computer.

The most common form of transaction with such an experiential environment
is to allow the student to explore and discover the relationships involved. Often such
exploration is the only transaction provided. However, exploration is only one type of
transaction. Figure 5.13 illustrates an experiential model of instruction that includes a
variety of transactions. While exploration is appropriate in some situations, it is often
not sufficient to enable the student to learn the necessary procedures or to understand
all of the relationships included in the experiential simulation. Figure 5.13 indicates
that if the experiential representation involves a process, that other possible
transactions may include demonstration, explanation, prediction and error detection.

However, in the experimental mode of instruction, the student is freed from
the oke of Socratic dialog and free to explore an environment directly. Unguided
discovery can be augmented with a computer coach or advisor to watch over the
student's shoulder while she or he explores an environment, performs experiments,
designs apparatus, or solves problems. When the student is in trouble, the computer
can intervene to help the student with the problem, provide missing information, or
guide the student down a different path. In Figure 5.14 an advisor function has been
added to the experiential model. With multiple transactions included, the advisor may
also serve to select or suggest what transaction should be used next and when it is
advantageous to change to a new type of transaction.

ui da

EXPERIENTIAL 4-
CONTET ExlainSTUDENT

E rro rs .,

Figure 5.14. An Experiential Model with an Advisor.

130

Figure 5.15 combines the tutorial model and the experiential model. A student
model and expert model have been added to indicate a complete intelligent
instructional system. Figure 5.15 also adds as a tool a knowlcdge expander of the type
describcd by Richard Burton.

STUDENT MODEL
EXPERT

TUTOR

ADVISOR
G T

U U

d 0

C! o0re an rianc ia

STRUCTURAL CONTENT e I

CNETG STUDENT

TOOLS ii

,Errorsj

Figure 5.15 Combined Tutorial/cxpcricntial Models of Instruction.

To see the computer merely as a tutor is to limit our view. The computer can
be many things simultaneously, and the most effective instruction is that which
enables the student to interact directly with thc subject matter (simulated by the
computer), watch an expert perform a task (simulated by the computer), engage in a
Socratic dialog about his or her exploration with the subject matter, or receive
coaching as he or she attempts to perform sonic complex cognitive task. To limit the
student's interaction with the computer to only one or some subset of these
possibilities fails to take advantage of the tremendous flexibility of this tool.

Using Figure 5.15, 1 would like to make some distinctions that I think all of us
understand but that are not always made specific in descriptions of intelligent instruc-
tional systems. An intelligent instructional system can include several different kinds
of expert systems. Experiential environments are one form of expertise. A second
kind of expert, labeled expert in Figure 5.15, the type that John Anderson described, is
an expert that knows how to manipulate the experiential environment in an optimal
way. There is a real distinction between an experiential environment and the skill to
manipulate that environment. Richard Burton described a third kind of expertise,
labeled expert tools in Figure 5.15. These are expert systems or knowledge extenders

131

with which to manipulate the environment. The advisor represents a fourth expert
system, an expert about instructional strategy, sequence and learner guidance. Each of
these experts is quite distinct. We need to be clear about which of thesc we are
talking about.

In addition to different kinds of experts, there are different kinds of content
representations or knowledge structures. The knowledge for tutoring is very different
from the knowledge representation for expericntial environments.

Synthesis: Instructional Theory

I would like to try to present a brief instructional model that indicates the
kinds of questions we need to answer in order to formulate instructional theory. The
assumption is that there are great instructional principles that apply regardless of
subject-matter content. Consider Figure 5.16.

Instruction is a goal-driven enterprise. The first decision for an instructional
designer is: What are the goals? In some of today's presentations a distinction was
made between declarative and procedural knowledge. Bloom (1956) characterized
educational objectives in terms of categories. Bob Gagne wrote four editions of The
Conditions of Learning (1965 - 1984), which describe categories of learning. Most of us
accept the assumption that there are different kinds of learning outcomes and that the
conditions necessary to teach one outcome may be different from the conditions
necessary to teach a different outcome. The underlying axiom of instructional theory
is that what you do instructionally is different depending on the desired goal or
outcome of instruction.

The second instructional design decision is the selection of appropriate content
or knowledge representations. If we want to accomplish one kind of educational
outcome, there is a content representation appropriate for that outcome. Not all
knowledge representations are appropriate for all outcomes. There is a
correspondence between goals and content representation. For example, some goals
require tutorial representations while others require experiential representations.
There is a potential set of rules, labeled A in Figure 5.16, that states: IF <goal A>
THEN <content representation A'>.

A third instructional design decision is the selection of appropriate
transactions. Just as different outcomes require different content representations,
different transactions are most appropriate for promoting an outcome when used in
conjunction with a given content representation. There is a set of rules, labeled B in
Figure 5.16, which states: IF <goal A> AND <content representation A'> THEN
<transactions Al, A2, A3>.

A fourth instructional design decision is content organization. A given course
could consist of a number of different content representations, each with associated
transactions. How are these instructional components best organized? There is a
third set of consistency rules, labeled C in Figure 5.16, which states: IF <goal A>
AND <content representation A'> THEN <content organization A">.

The consistency rules are design rules that can be made prior to course deliv-
ery. There are also instructional design decisions concerning intervention rules that
are executed as a course is delivered. These are advisor decisions. There are four

132

A Consistency Rules
O @<A>

CONTENT C

(DCONTENT
ESENTANIZATION

TRANSACTIONS
INTERVENTION
(ADVISE/TUTOR)
RULES

1 GUIDANCE

C S -TRATEGY 3SEQUENCE

4 LEARNER CONTROL

Figure 5.16. Model of Instructional Design Theory

133

categories of advisor rules. First are guidance rules. Guidance rules are often subject
matter specific. There are also some general rules that would state: IF <transaction
A> THEN <guidance A'>. These guidance rules provide two kinds of decisions: How
to guide and when to guide.

A second category of advisor rules are labeled strategy in Figure 5.16. Given
two or more transactions associated with a given content representation, the decision
is: When should the student shift to a new transaction? And which transaction
should be next?

A third category of advisor rules arc labeled sequence in Figure 5.16. If the
content organization consists of a network of content representations, each with
associated transactions, then the decision is: When should the student move to the
next content representation? And which content representation component should be
next?

Finally, there is a set of meta advisor rules. Who makes the strategy or
sequence decisions, the system or the student? Under what conditions?

The rules need not wait for the distant future. In my opinion, it is possible at
this point in time to develop instructional theory that would give us considerable
guidance in creating more intelligent, intelligent instructional systems. We don't have
all of these design rules, but many are suggested by the existing literature. A clear
specification of instructional design rules such as those described could result in a
much more systematic approach to the development of intelligent instructional
systems.

134

REFERENCES

Ausubcl, D. P. (1968). Educational psychology: A cognitive view. New York: Rinehart &
Winston.

Bloom, B. S. (Ed.) (1956). Taxonomy of educational objectives: the classification of
educational goals. Handbook I: Cognitive domain. New York: Longmans, Green.

Gagne, R. M. (1965, 1970, 1977, 1984). The conditions of learning. New York: Holt,
Rinehart & Winston.

Landa, L. N. (1983). The algo-heuristic theory of instruction. In C. M. Reigheluth
(Ed), Instructional design theories and models. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Lindsay, P. H. & Norman, D. A. (1977). Human information processing. New York:
Academic Press.

Markle, S. M. (1969). Good frames and bad (2nd ed.). New York: Wiley.

Marklc, S. M.& Tiemann, P. W. (1969). Really understanding concepts. Chicago: Tiemann
Associates.

Merrill, M. D. (1980). TICCIT. Englewood Cliffs, NJ: Educational Technology
Publications.

Mcrrill, M. D. (1983). Component display theory. In C. M. Reigeluth (Ed.), Itstructiontal
design theories and models. Hillsdale, NJ: Lawrence Erlbaum Associates.

Merrill, M. D. & Tennyson, R. D. (1977). Teaching concepts. Englewood Cliffs, NJ:
Educational Technology Publications.

Reigeluth, C. M.,& Stein, F. S. (1983). The elaboration theory of instruction. In C. M.
Reigeluth (Ed.), Instructional design theories and models. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Scandura, J. M. (1983). Instructional strategies based on the structural learning theory.
In C. M. Reigeluth (Ed.), Instructional design theories and models. Hillsdale, NJ:
Lawrence Erlbaum Associates.

135

CHAPTER 6

THE ROLE OF HUMAN-COMPUTER INTERACTION
IN INTELLIGENT TUTORING SYSTEMS

James R. Miller
Team Leader, Intelligent User Assistance Project

Microelectronics and Computer Technology Corporation

I. INTRODUCTION

The study of human-computer interaction is especially germane to research on intelligent
tutoring systems (ITSs). The interaction between students and ITSs is inherently complex because the
users of these systems are by definition working with concepts they do not understand well. If the
interface to the ITS is confusing or poorly designed, the effectiveness of the entire instructional session
will suffer. Conversely, a well-designed interface can enhance the capabilities of an ITS in many ways.
Being able to specify the interface to an ITS means that the designer has considerable power over the
way in which the student will conceptualize the problem domain, and over the vocabulary the student
will use to talk about the domain. This is of course a two-edged sword -- it means that for ITSs to be
effective, the designer must be aware of the ITS's interface and must treat its design as a fundamental
part of the design of the system.

Human interface techniques affect two aspects of ITSs. First, they determine how students
interact with the ITS. A well-designed human interface allows the ITS to present instruction and
feedback to students in a clear and direct way. Similarly, it can provide students with a set of expressive
techniques for stating problems and hypotheses to the ITS. Second, they determine how students
interact with the domain. Many ITSs allow students to work in the domain that is being tutored,
through either a simulation of the domain or direct connection to the domain itself. This interaction is
generally tied closely to the tutorial component of the system so that actions in the domain are analyzed
and acted upon (e.g., Brown, Burton, & deKleer, 1982; Hollan, Hutchins, & Weitzman, 1984; Reiser,
Anderson, & Farrell, 1985). For example, students might write computer programs, solve geometry
problems, work with computer systems, or repair simulated electronic or mechanical devices, with an ITS
monitoring the students' use of the system. A good interface should ease this interaction: it should be
easy to carry out actions in the domain and to see and understand the results and implications of those
actions. There are of course different ways in which a domain can be characterized by an interface, and,
as was noted earlier, this is where the real power of a well-designed tutorial interface lies: in defining the
way that students think about the concepts in which they are being tutored.

It is easy to talk about what constitutes a good human-computer interface but much harder to
build one. The key lies in how we think about human-computer interaction, because this
conceptualization will affect how we go about making it good. In fact, interaction is perhaps a poor
term to use for this process because it connotes a rather mechanical exchange of actions.
Communication is better; it emphasizes the exchange not of actions, but of concepts. By thinking in
terms of communication, an inherently semantic process, it becomes evident that interfaces should reflect
the semantic nature of this interaction. Good interfaces embody an understanding of and appreciation
for the goals and concepts that are important to users and to the domain being tutored; bad ones do not.
As a result, it is very difficult to talk about a good or a bad interface without considering the users'
cognitive capabilities and limitations, and the domain to which the interface serves as a portal. An
important part of this discussion will then be to describe how a user's interaction with an ITS is affected
by these essential yet external parts of the overall human-computer communication problem. Many of

137

the examples in this paper will be of interfaces that address issues other than ITSs. However, the
important issue is not the application area of the interface, but the definition of the ways in which good
interfaces can support people as they gradually acquire an understanding of a complex semantic domain.
This support task is the whole purpose of ITSs, and, as will be shown, it is also central to the more
general questions underlying human interface research.

II. HUMAN-COMPUTER INTERACTION:
THE STATE OF THE ART

The importance of the application domain and of users' past experiences on the quality of
interfaces means that the critical problems in interface construction lie in the design of these systems.
The following three questions raise other important points about interface design, and particularly about
the suitability of an interface for a particular task and user community.

What Conceptual Model Is Offered of the Underlying System?

All users come to an interface with knowledge that can guide their use of that interface:
knowledge about their past use of computer systems, about the kinds of real-world objects that might be
manipulated by the application program, and about the kinds of real-world objects that might be
portrayed and manipulated as part of the interface. It is clear that this knowledge plays an important
role in human-computer interaction and that people combine this knowledge with their observation of
the structure and behavior of the interface to construct a conceptual model of the system (Gentner &
Stevens, 1983). The value of conceptual models is that they can be used to guide users' interactions with
systems: they allow users to make reasonable guesses about likely ways to handle novel problems, about
probable reasons for errors, and about good ways to recover from errors.

A good conceptual model of an interface has several characteristics. First, it should offer the
user clarity. The important concepts, distinctions, and relations in the domain that are under the
control of the interface should be clearly and accurately captured by the model. Second, it should offer
the user a high degree of coverage: it should explain as many aspects of the interface and domain as
possible. Third, it should offer them a sound level of abstraction of the system. The model should be
specific enough to allow the user to make strong, correct inferences about the interface and the domain,
but general enough that the user can accept -- or even look for - differences between a literal
interpretation of the model and the application domain.

These properties can interact. Simple models can be powerful and clear, but their coverage can
be limited and may characterize the domain at an inappropriate level of abstraction. Users who take too
literally the analogy that "a word processor is like a typewriter" have no reason to think that such a
system would let them cut and paste text, search for and replace strings, or justify paragraphs, and they
may never think to search the system for evidence of these capabilities (cf. Douglas & Moran, 1983;
Halasz & Moran, 1983; Lewis & Mack, 1981).

Constructing a good conceptual model for a system is not easy, but is very important. If a good
model is not provided for the users, they are almost certaiin to build their own, and it will almost
certainly be flawed. Unfortunately, picking and building a good conceptual model for a particular
domain is difficult. Most domains can be described by alternate models (e.g., the "flowing water" vs.
"teeming crowds" models of electricity JGentner & Gentner, 1983]), and these different models can lead
users to make very different kinds of predictions about the domain. Insuring the quality of the
conceptual model around which an interface is built is an important part of the design of that interface,

138

and good tools to support the incremental development and evaluation of model-based interfaces are
badly needed.

How Does the Interface Handle the External-Internal Task Mapping
Problem?

Users come to a computer system with a set of task-level goals that they want to achieve, such as
to "archive all the Scribe manuscript files I created last month." Unfortunately, there is a considerable
distance between this goal statement and the actions that most interfaces make available to users.
Spanning this gap -- solving the external-internal task mapping problem (Moran, 1983) - poses a major
design problem for interface construction and a major interaction problem for users. The greater the
gap, Le more difficult the interface will be to use.

This gap can be minimized by building the interface so that the actions supported by the
interface map directly to corresponding actions in the domain. In principle, if users understand the
domain, the use of the interface is trivial. There are problems here, though. The resulting interface may
be good for its intended domain but useless for others. Other interfaces must be constructed separately
for these domains, at considerable time and expense. If the interface is too specialized, users cannot do
anything other than what the interface designer thought of during the design process. Finally, the
conceptual models that underlie specialized interfaces are critical to their success, which means that the
difficulties in identifying appropriate models are especially critical.

Despite these problems, the trend toward building high-level, specialized interfaces for specific
domains is becoming predorminant. The task-mapping problem is too great to ignore, and the increasing
availability of graphic interfaces and poweriul tools for interface development is reducing the effort
required to implement a well-designed, specialized interface. Simultaneously, the conceptual model
problem is diminishing as more knowledge about these models accumulates and as interface development
tools allow alternative models to be implemented and experimented with.

What Is the General Style of the Interface?

Laurel's (1986) analysis of interfaces is a good place to start in search of a way to classify
systems on the basis of their overall structure and orientation to the user. This analysis divides
interfaces into two groups, based on the perceived relationship between the user and the domain
addressed by the computer system. In one group, the interface allows users to become direct participants
in the domain. In the other, users control the domain by instructing an intermediary to carry out
actions in the domain.

First-Person Interfaces

In first-person or direct manipulation interfaces, the user has a feeling of working directly with
the domain. These interfaces almost always make strong use of graphics, allowing users to carry out
desired computations by manipulating graphic objects. These interfaces are designed so that the actions
and objects relevant to the task and domain at hand map directly to actions and objects in the interface.
In this way, designers of first-person interfaces hope to avoid the task-mapping problem altogether, or at
least minimize it.

First-person interface techniques came to prominence in the iconic interfaces of the Xerox Star
and the Apple Mirintosh. The basic hardware configuration of these systems has not. changed very much

139

from the days of the Xerox Alto (Thacker, McCreight, Lampson, Sproull, & Boggs, 1979), the forerunner
of this technology. A single-user workstation drives a large bit-mapped display of about 1000 by 1000
points and includes some sort of pointing device with which users can refer directly to objects drawn
from collections of these points. The mouse has become the pointing device most commonly used with
these systems, although joysticks and trackballs have been tried in other systems and applications, with
varying degrees of success.

In these systems, small pictures, or icons, represent programs and data files on the screen (Figure
6.1). These icons can be selected and activated with the system's mouse, which starts the execution of
the desired program (Smith, Irby, Kimball, Verplank, & Ilarslem, 1982). Notice that the user need not
remember the name of the document to be accessed -- it is present on the screen as part of the icon.
Further, links arc generally eqt-blished between text files (document icons) and the programs that
created them (program icons). Users need not remember what program is used to edit a document or
how to access that editor -- this information is an intrinsic part of the data structures underlying the
icon and is accessed automatically by the system.

r 4 File Edit View Special

-Misct:_______

22 items t 3240K in disk 6902K available

Core Vars JC)Gck ripple I rippl#2 JamSession MaLandmig

SeT.&S Soundnit SoundPlay MacCornmand MSseores

IDEEP' LED) El
Betplnit BeepSound Grep-Vc 1.1 Grep-Vc.dc Stars 1.6 Design

Figure 6.1. A Typical Use of Windows and Icons on the Apple Macintosh.

Steamer (Hollan, Hutchins, & Weitzman, 1984) is a training system that emphasizes first-person
interface techniques. Steamer's graphic display allows students to view a simulation model of a Naval
steam power plant in ways that emphasize different structural relations among the components of the
steam plant. Steam and water tanks are shown interconnected by pipes, with different kinds of gauges
and valves displaying and offering control over certain aspects of the plant (Figure 6.2). Many of these
devices can be directly manipulated by the student; valves can be closed by clicking the system's mouse
on them rather than by issuing a command like CLOSE VALVE-17X. Similarly, when gauges display
values associated with parts of the system under the student's control, such as the temperature of a
boiler, the student can reset the value by clicking the mouse on the needle of the gauge, and moving the
needle to the desired value. The corresponding variable in the simulation model is t hen given that value,
and the model is updated to reflect the modification.

140

(j~II)

. ' .

F igure 6.'2. Steamer s I)epiction of a Steam IPlant. (Ilollan, |utchis,
and Weitzman, 1984). Reprinted with permission of AAAI,@)1984.

Other projects have used first-person techniques to facilitate procedural tasks such as data
manipulation. Miller and Blumenthal (1985; Figure 6..3) and hlutchins, Ilollan, and Norman (1986) have
independently pursued this problem, with rather similar results: icons represent data structures and
proceduires, and links between these objects specify how the procedures are to be applied to the data
struicture:. T[he overall intent is the same as in Steamer: to use graphic techniques to concretize data and
procedures. and *o make the procedural relations between data and procedures explicit.

The graphical properties of icons have evoked responses ranging from excitement to antagonism.
Some people find t.le depiction of a document, as a little piece of paper to be a convecnient memory aid;
others find it, insulting. However, the graphical r .preseiitation of icons is ultimately beside the point,.
Vhat is valuable :ibout iconic systems is the directness of the user's interaction with the system. The

objects available to the user are visible on the screen, anti when users interact with these objects, they
receive ilnnedIiate fe.edback about their actions. When a Macintosh icon is clicked upon, it, expands into
a window contai|ning the appropriate application program; when an icon is dclet, ci, by picking the icon
mip with the mouse andi moving it to the system's "garbage can" icon (F'igure 6.1), it immediately

141

ICE: 6/08/OG I Vstet: 6/05/16

C.,d.ts I.by 2.P... r t

S.Ioct Co~.1-6

Th* ,d b LBIfl, g Moa.

. ct
Mn Ip. At .ylt*U

Figure 6.3. Computing a Pearson R with VSTAT.

disappears from the screen. It, is this immediacy and the visibility of the user's actions and the results of
these actions that are important, not the details of the graphic presentation.

Although the properties of first-person interfaces appear to offer significant advantages to users,
they are not well-understood. The systems that exist today have generally been hand-crafted through
long periods of incremental design and evaluation; it is hard to say in any objective way what, types of
system functionality can reasonably be offered through direct manipulation techniques. Many of these
questions follow from the extensibility issue raised in the discussion of conceptual models. For instance,
in the gauge example from Steamer, how would inexperienced users know that clicking the mouse on the
needle of the gauge allows them to change the rate of flow of the water? Real gauges certainly don't
behave in this way! A tutorial system might explain the different capabilities of the system to the user,
but the whole point of first-person systems is that they are meant to be self-evident -- such a detailed
explanation of their use should be unnecessary.

An additional problem is that of conveying through the model enough of the underlying
application that users can understand which parts of the system they can directly manipulate. In the
Steamer example above, the gauge attached to the boiler is a means of controlling the temperature of the
boiler, and so can be manipulated by the user. Another gauge might indicate the pressure of the water
leaving the boiler, and so would not be manipulatable. Understanding which gauges can be manipulated
and which cannot is the same problem as was seen before: the link between the semantics of the domain
and the semantics of the interface. Direct, manipulation techniques are a particularly promising way to
approach this problem, but they do not solve it.

142

6econd-Person Interfaces

In sccond-person interfaces, users interact with the domain by giving commands to a
computerized intcriediary, who then carries out tw desired actions. Textual interfaces and some
graphical iL.rface, fall into this category.

Command languages. Command languages are the keyword-oriented interfaces that were
originally developed on and for the teletype-based computer systems of the pa-st. A command consists of
a string of words and sometimes special characters that, when processed by the system's command
interpreter, specify the action the user wants to carry out. This command typically states the name of
an application program that will carry out the user's request, followed by a list of optional arguments
that specify either data files on which the application program should operate or modifications to the
default operation of the program. The feedback to the command varies, depending on the program that,
is run as a result of executing the command.

Few ITSs have used command languages. Either the domain of the ITS and the studet's
options in th domain have been so restricted that, menu selection or other highly restricted interaction
lechniques have been appropriate, or they have used a restricted form of natural language. Both
alternatives will be discussed later in this paper. In general, command languages are relevant to this
discussion because they may serve as the interface to an application program for which an ITS is being
constructed.

The advantages and flaws of command languages are by now well known. For experts who know
the numerous functions that can be accessed by the commands, a command language can be a very
efficient way of interacting with a system. However, the number of commands needed to cover the range
of functions available on complex systems is large, and mastering this set is an imposing task even for
system experts. Further, the names for these commands are rarely derived from a coherent set of rules
and are consequently hard to remember or predict (Norman, 1981). The number of commands can
sometimes be reduced by collapsing several commands into one, with a set of options that can request the
finer-grained behavior. However, this solution merely shifts the user's problem from remembering the
name of a specific command to remembering (or deducing) the appropriate set of options that must be
specified as part of the more general command.

Countless versions of command languages have been developed, both as interfaces to general
operating systems and as more specialized application programs. Some are better than others. However,
they have flourished not because they have been good interfaces, but rather because they have been easy
to implement, could be run on many different computers and terminals, and for a long time were the
only kind of interface that could be supported by the available hardware.

It is hard to justify more research on the properties of command languages. This does not mean
that command languages are inherently bad or that. designing a good command language for a specific
task is trivial. Quite the opposite: for some applications and users, a command language is a very
efficient means of interaction, and the task of designing a command language that provides an adequate
interface to a given task can be difficult. But it, is not. worthwhile to study the fundamental
characteristics of command languages themselves, such as alternative syntaxes for specifying command
arguiment,-, or good techniques for abbreviating terms describing system functionality. The practical
problems that arise from the use of command languages today are not whether one method of specifying
arguments is better than another, but how to design a particularly good command language for a given
task and user population. These task and user constraints are independent of the command languages
themselves, and more abstract work on command languages will offer no insights into these issues. It is
time for research to move on to problems with higher payoffs.

143

Alirnus. Menus first came about. ,as a feature of teletype systems, in which a list of options was
shown to the user, who selected the desired option by striking a. specific key. This technique was never
really satisract.ory. Finding a reasonable one-to-one mapping between a set, of menu items and
alphanumeric characters was generally difficult, and the speed with which the options could be presented
was limited. lHowever, the advent of personal computers and bitmapped graphics revived the use of
menus. Display speed was no longer an issue because an entire menu could be displayed in a fraction of
a second. Because the strings representing the ii:dividual items could be arbitrarily long phras,,s, the

clarity and therely the meaningfulness of the terms used in menus were increased substanti J' . Further,
since an item could he selected by pointing at. a string instead of pressing a key, the need for a one-to-oine
mapping between mnuii items and keyboard characters disappeared. These types of menus have been
frequently incorporated in workstatio,-hLaed lI'FSs, such as in '-,teamer (1lollan, 1lutclins, X- Weitzman,
19)8 I and the presentation of proof techniques in the Geometry Tutor (Anderson, Boyle. & Yost, 1985).

Like command languages, menu-based systems have rather well-defined advantages and
disadvantages. Menus can offer novices a reasonable interface to a system because they have simply to
recognize the desired action from its description in the menu rather than recall the name of the command
they need from memory (Shneiderman, 1986). In a sense, menu systems are a middle ground between
first,- and second-person interfaces: being presented with information and subsequently selecting some of

that information is characteristic of second-person interfaces, but the direct way in which the user can
specify the information is more like a first-person interface. On the negative side, interacting with a

menu system can be tedious. Even a simple interaction can require selecting items from several menus.
This can be tedious, especially for experts, who generally prefer a more terse form of interaction that.
takes advantage of -- in fact, relies on -- their greater knowledge of the system (Savage, llabinek, &
larnhart, 1981). In addition, menus can pose special problems for tutorial systems, since allowing
students to recognize the solution to a problem instead of requiring them to generate it can defeat, the
whole purpose of the tutor.

Just as was true with command languages, it is hard to see any large payoff coming from
continued research on the basic properties of menu systems, such as the optimal arrangement, and
number of items in a menu or the colors the menu items should be displayed in. Visually acceptable
menu systems can be built with tools available today; the real question is how to tailor a particular menu
system to a specific task and user population. Abstract research on menus themselves will not address
this question. As before, it is time for the research community to move on.

Natural Language Interfaces. The image of an interface as a "second-person" agent working
for the user is perhaps most clearly c.ptured by a natural language interface. Here, so it seems, users
can communicate in a language they already know with an agent that will interpret, their requests and

instruct an application program to carry them out. SCHOLAR (Carbonell & Collins, 1973), WIY

(Stevens & Collins, 1977), GUIDON (Clancey, 1982), and SOPHIE (Brown, Burton, & deKleer, 1982)
have all relied on some form of natural language, and much of their power came from the naturalness of
this style of interaction. However, it is important to be aware of the difference between the kind of

natural language interaction we would like to have and the kind of interaction that is possible.

The most significant problem with natural language interfaces is that there are large differences

between the kinds of language that people use -- and want to use when talking to computers -- and the

kinds of language that current, natural language systems can understand. This problem can best, be

described in terms of the roicragr a given natural language system provides for certain language

phenomena:

*Lexical and syntactic coverage: the ability to handle the basic word tokens and sentence

structures that are entered by users.

144

" Semantic cot'crage: the ability of the "front-end" natural language system to map parsed
words and phrases into meaniingful concepts in the world of the "back-end" application
prograin. For instance, a natural language front. end to a company's employee data base
would have to understand that a query about "salary" refers to the EMi'-SALRY column of
the EMPLOYEE table in the data base.

" Dialog coteragc: the ability to handle intra- and intersentential references, such as pronouns,
ellipses, and anaphora.

* Action coverage: the ability to translate the user's statement into an action or set of actions
that will carry out the desired operations in the application program to which the natural
language system is serving as an interface.

Providing adequate coverage of these phenomena is very difficult, primarily because natural
language interfaces so strongly embody the second-person view of interfaces. Because the style of
interaction is very much that of speaking to an assistant who will carry out the requested actions, users
tend to treat a natural language system as if it had not only a human's understanding of language, but
all the human's world knowledge and problem-solving capabilities as well.

This has unfortunate implications for natural language systems. Users are likely to adopt a
vocabulary that exceeds the lexicon of the natural language system and may make use of obscure or
ungrammatical sentence construicts that exceed the capabilities of the natural language system's parser.
They will often make considerable use of discourse phenomena such as ellipsis and anaphora, which are
very hard for natural language systems to handle. They may also ask the system about things it has no
knowledge of, or ask the system to do things that either cannot be done by the application program or
that are logically possible but require vast, planning capabilities to determine the series of actions
required to carry out those actions in the application program.

These shortcomings are unavoidable in an interface that places no constraints on how the user
may interact with it. They arise because without training or experience, users have no way of knowing
what words and sentences the system can understand, what kinds of things the system might know
about, or what actions the application program can carry out. There are two primary ways of
addressing this problem, and research on both of them is needed.

The first approach is to improve natural language technology so that natural language interfaces
can handle the kinds of language people want to use. This is a difficult and long-term task. However,
for short-term projects, this difficulty is lessened somewhat, by the inherent constraints of the application
program that a given natural language interface serves. Natural language interfaces do not have to know
every word in the language, just the words that are relevant to the task served by the interface. If a user
refers to an unknown word, it may be possible to allow the user to add the missing word to the system's
lexicon by defining it in terms of words the system already understands (Ballard & Stumberger, !' ;).
This may be especially feasible in the technical areas served by most natural language systems, where a
well-defined, highly interrelated set of terms often exists. The limitations to understanding
ungrammatical language can be addressed by natural language techniques that pay special attention to
ungrammaticality (Carbonell & Hayes, 1983) or that are designed to be less sensitive to these problems
(Granger, 1983). llandling complex requests that, result in sequences of application program actions will
require planning facilities, so research in natural language must also be aware of ongoing work in
planning (Allen & Perrault, 1980; Litman, 1986).

145

Many of the usability problems with natural language systems became evident when these
systems were applied to real-world problems such as tutoring (Brown, Burton, & deKleer, 1982) and
database retrieval (Tennant, 1979). These)ractical attempts to use natural language have led to the
second approach to this problem, which is to acknowledge that all natural language systems are designed
to handle only a very specific subset of the user's language. lPeople will furthermore not, be able to use a
system that implements such a sublanguage unless they are aware of the boundaries of that language.
Acknowledging this problem leads to a rather different research agenda than that. derived from the
technological approach. The important issues in this second, user-oriented approach are to find ways of
defining a sublanguage so that. the boundaries are a.s obvious as possible, identifying interface techniques
that make the bounidaries of the sublanguage evident, and developing ways of allowing users to
iivestigate the boundaries and capabilities of the natural language interface and the applicat ln system.

The NLMenu system, marketed for personal computers by Texas Instruments, Inc. as
.NaturalLink, is an example of this pragmatic approach. It presents users with menus that, control and
are controlled by a natural language system running beneath the menu interface (Tenniant, Boss, Saenz,
Thompson, & Miller, 1983). A user constructs a query in natural language by repeatedly selecting items
from these menus. After each selection, the system updates the list of menus from which items can be
selected and the contents of the menus themselves so that, only permissible continuations of the query are
possible. As shown in Figure 6A, users are permitted to select items unly from the windows with the
light background. The items in those menus (in Figure 6.4, there t. only one such menu) correspond to
legal continuations of the query in progress. As a result, any query constructed with the system is
guaranteed to be interpretable. This kind of interface is not appropriate for all areas where natural
language might be considered. However, for those areas in which it is appropriate, its constraints offer
significant advantages in understandability and ease of use.

The second problem with natural language interfaces is the amount of work required to
implement one. Two basic approaches can be taken to this problem. One approach is to capitalize on
the constraints in the domain addressed by the application program and to build the system in such a
way that it relies upon these constraints. This "semantic grammar" approach (Brown, Burton, &
deKleer, 1982; Hendrix, 1979) can produce a natural language system relatively quickly. Additionally,
the techniques used to build such systems typically place more emphasis on the concepts underlying the
domain than on syntactic issues. Consequently, these systems can handle a greater variety of sentence
forms than are syntactic natural language systems, and are typically less sensitive to ungrammaticality.
The disadvantage of this approach is that the resulting system is so closely tied to the targeted domain
that very little of it can be reused when building a natural language system for a new domain.

The second approach to implementation is to base the system in linguistics theory and to
implement components to handle the lexicon, syntax, semantics, pragmatics of the chosen language. This
work requires more effort than the semantic grammar approach, but it can result. in a systelu that is
largely domain-independent.. For example, although different domains have specialized lexicons, these
can be viewed as extensions of a large, basic lexicon that is shared by all domains. Similarly, the syntax
of language varies little, if at all, across different problem domains. As a result, the formal linguistic
approach offers the hope of producing not only a natural language system that is as flexible as the
domain-hound systems previously described, but also a set. of toolk and knowledge structures that, can
serve as a foundation for natural language systems for many different domains, thereby greatly reducing
the effort required to implement. a new system. To be fair, it should be noted that, techniques for
designing and implementing these systems so that their portability is maintained is still a research issue
(cf. Ballard & Stumrnberger, 1986; -endrix & Lewis, 1981; Grosz, Appelt, Martin, & Pereira, 1987).
However, such portability is an inherent part. of their design, which is not the cas e for the domain-
specific systems. Middle-ground systems, such as IMIUS (Bates & Bobrow, 1983) that employ both
semantic grammar and formal linguistic approaches are also being studied.

146

4P

Retri -! Iue e u

4w, d

tca nne tars -- oul

sorted by

ysten uonmn s
Restart Refresh Ruijout Exit System

Save Inpiut Retrieve Input Delete Inputs Play Input

Find novles whose director is Hitchcock. nirred

Belnn't-of-output

14lnenu Display Windou Movies
End -of-output

Figure 6.4. A Typical NLMenu Screen.

Tradeoffs Between First- and Second-Person Interfaces

The discussion so far should not be taken as an attempt to establish the superiority of either
first- or second-person interfaces. What really determines the utility of a particular interface technique is
the task for which it is being used, and this interaction between the task and the interface can shift the
scales from first-person to second-person very capriciously. For instance, the direct manipulation
techniques of the Macintosh make moving files from one disk directory to another very easy. All a user
must do is select, the file by clicking on its icon with the mouse, move the icon into the desired
destination "folder" (an iconic representation of a disk directory), and click the mouse button,
"dropping" the file icon into its new directory. This is much easier than the corresponding operation in
a Unix system, which requires learning the name and syntax of the corresponding command, my.

Suppose, however, a user wants to move all the Scribe manuscript files in one directory to
another. On the Macintosh, the user must identify each file and individually select, move, and drop it.

147

into the target folder. This direct manipulation technique now becomes tedious, and the Unix user has
the easy job. Since the names of Scribe manuscript files are required to end with the characters .ross,
the Unix uwildcard" feature can be used to refer to all the desired files in an abstract, parameterized
way. They can then be moved with a single command: my *.mss new-f older. This ability to
describe an arbitrary set of system objects in terms of the properties of those objects is relatively easy to
do in second-person interfaces, but difficult or impossible in first-person interfaces.

Second-person interfaces also give the user more precise control over system functionality than
the first-person interfaces do. In Steamer, for example, it is easy to change the rate of flow of water
through a valve by adjusting the needle on the gauge. However, if the user wants to set the flow rate to
be exactly 78.85492 gallons per minute, typing that number would be preferable to trying to adjust the
needle on the gauge by moving the mouse. Note that this shortcoming of direct manipulation techniques
comes from both the difficulty of precise control with the mouse and the difficulty of precisely reading a
number from a gauge.

These interface styles also differ in how they expose users to the capabilities of their systems.
The basic model of a second-person interface, especially a command language, is clear. The user types in
the name of the desired command, followed by some arguments, and waits for the specified function to
compute its results. Most of these systems have some simple but reasonably effective way to inform the
user of the available commands (e.g., typing HELP), as well as ways for the user to find out what a given
command does (e.g., typing HELP command-name). These techniques are not ideal -- finding the desired
command can require searching through the documentation of several commands, and the difficulties of
the external-internal task mapping problem discussed earlier complicate the search. However, they are
better than nothing. In contrast, it is unclear how tie user of a first-person interface can discover what
can be done with it, especially those things that are not self-evident in the design of the interface. Since
there are no keywords in a first-person interface, there are no easy ways to get at information about the
system. How does the user find out what it means to double-click and drag the mouse? Why should the
user think that doing this would cause something interesting to happen in the interface? How can the
system help the user learn these things? Because this interface style is new, little is known about these
problems. One promising approach to investigating them is to develop systems that allow students to
work with a domain from several different perspectives, including the external interface the system
presents to the world as well as some independent view of the knowledge underlying the domain. Burton
(1987) describes several examples of this meta-world approach.

As usual, when there is a choice between two attractive alternatives, the right solution is to try
to have both. First-person interfaces reduce the external-internal task mapping problem and thus greatly
enhance ease of use and learning. However, they are inherently very specific: Steamer's interface is good
for steam plants, but little else. As a resu. , two things are needed. One is a good set of tools for
building first-person interfaces. Because these !nterfaces are unavoidably tied to the domain they
address, and new ones must be built for different domains their construction must be made as efficient as
possible. Second, their capabilities need to be augmented with second-person, assistant-like capabilities,
which can inform the user about the capabilities of the system and offer advice on how task-oriented
goals can be achieved. More will be said about these combinations of technologies later.

Alternative Interface Technologies

The hardware platforms on which these interfaces are presented have not yet been discussed.
Most of the interfaces described previously could be implemented on the now-common combination of
monochrome bitmapped display, keyboard, and mouse, if not on the even simpler teletype. This
omission should be corrected, for many of the advances in display and interaction technology have the

148

potential to change the nature of interfaces dramatically. Furthermore, many of these changes are likely
to be especially relevant to the communication needs of tutoring systems and to allow information to
flow much more directly between a tutoring system and a student. These developments can then
contribute to the primary design goal of a good interface: to make the semantics of the domain evident
and manipulatable.

Graphics

The increasing availability of high-quality graphics has already significantly enhanced the quality
of computer interfaces. It is now possible to develop interfaces assuming the availability of a bitmapped
display of reasonable resolution -- at least 600 by 200 pixels on personal computers, and probably 1000
by 1000 pixels on workstations -- and some sort of software support for the creation of windows, menus,
and icons. Graphics technology has been used to excellent effect in many ITS interfaces, as described
earlier here and by Burton (1987). Color displays are often but not yet universally available. In
addition, the level of hardware support for complex graphics procedures is rapidly increasing. Many
systems now have hardware assists for line or curve drawing, and this technology is extending into
support for real-time animation and the coloring and shading of complex two- and three-dimensional
images. These developments increase the ability to use dynamic, highly realistic images in interfaces.

Sophisticated graphics technology should have great potential value for ITSs. If used well, color
can clarify the relationships among the components of a complex structure. Steamer has made good use
of color, as have a number of CAD/CAM systems (Hertzog, 1985). Animation has also played a useful
role in several systems, including several of the PLATO applications (Bitzer & Easley, 1965) and
Steamer, in which animation indicates the direction and rate of flow of steam through pipes.

Nevertheless, graphic techniques do not always enhance the quality of an interface. When the
precise role of graphics or color can be well-defined, there is much to be gained. However, it is also easy
to use graphical techniques in ways that are unmotivated, that add little to the interface, and that may
even detract from its quality. Some guidelines are available for insuring that the use of graphics and
color produce maximum perceptibility (Christ, 1975; Marcus, 1985; Tufte, 1983), but knowledge about
using color to enhance the semantics of the interface is little more than anecdotal. There simply is no
general theory for directing the effective use of sophisticated graphics techniques in human interfaces.
Until such a theory is found -- and finding one will be difficult -- it is likely that the field will have to
muddle through by experimenting and prototyping.

Large Displays

Even though many current workstations offer 17-inch, 1000 by 1000 pixel displays, most users
and system designers want more. To deal with the problem of allocating the existing screen space,
techniques exist for presenting multiple overlapping windows of varying sizes and shapes (Teitelman,
1984a) or for Ntiling" windows together so that they do not overlap but still occupy all the space
available on the screen (Teitelman, 1984b). The more basic alternative to these approaches, of course, is
to increase the size of the screen so that there is room for more windows and more information.

However, the screen size issue does not simply refer to the physical size of the screen, which can
be easily increased with projection systems now available. Rather, the number of pixels on the screen as
well as the physical size of the screen must also be increased to accommodate a greater amount of
information. This task is harder. Plasma and liquid crystal technologies, which offer both higher
resolution and larger size, are becoming available. However, they are still quite expensive. An 18 by 22
inch LCD display currently costs about $40,000, and a 30-inch plasma display with a resolution of about
100 pixels/inch was recently marketed at, $250,000.

149

Of course, these prices will eventually drop, and these technologies will become cost-effective for
at least some applications. In the meantime, the psychological implications of these displays should be
considered. A significant increase in the size of a display is likely to produce problems of attention and
salience: it will do little good to put large amounts of information on a display if users can't find tile
information they need. This is not to argue against the potential value of large displays, but only to
note that the user-oriented aspects of the technology must also be considered.

Small Displays

A small, portable, high-resolution display would be valuable in such situations as the field
placement of ITSs for maintenance and on-the-job training. The LCD displays of portable computers are
limited in resolution, speed, and the availability of color, but they are adequate for the field placement of
ITSs that do not make extreme demands on display technology (assuming that the computing power in
the machine is sufficient to support the ITS). A portable version of the Lisp Tutor (Reiser, Anderson, &
Farrell, 1985) or of Johnson's fault diagnosis system (Johnson, 1987) would be straightforward from the
perspective of the interface; a portable version of Steamer is farther away, but possible. The main
bottleneck at the moment - the limited computing power of portable computers (compared to Lisp
machines and 68020-based workstations, that is) -- will eventually disappear.

A secondary area of interest is much smaller displays -- perhaps one or two inches wide -- that
might be embedded in specialized maintenance or job-training devices that incorporate ITS technology.
Color, high-resolution LCD displays of this type are already available, as seen in tile pocket television
scts from several manufacturers. The limiting factor in the use of these displays is the visual acuity of
the user; they are suitable for the display of a small amount, of text or for graphic displays that are not
too complex. These displays may be useful in certain classes of ITSs, but their limitations need to be
kept in mind.

Videodiscs

One of the problems with graphics technology noted earlier is the difficulty of generating real-
time animation and highly realistic images. In many cases, this problem can be finessed by creating the
desired animations or images ahead of time and encoding them on a videodisc. These sequences can then
be merged with computer-generated information to produce the desired effects. The capacity of these
discs should be sufficient for many tutorial purposes: a 12-inch videodisc can hold up to 54,000 images,
which results in up to an hour of video (Brewer, 1986). Several tutorial systems have already used
videodiscs with promising results, especially in the demonstration of procedures involving real-world
devices (Bonissone & Johnson, 1984). There is no strong theory to guide and motivate the use of video
as part of interfaces and ITSs. However, the body of experience with these systems is growing, and
opportunities for effectively using this technology are becoming known.

The primary limitation of videodisc technology is that at present these discs are read-only
devices. All the information that the designer wants to present via a videodisc must be anticipated,
created, and stored on the disc as part of the development of the system. This limitation has two
implications for ITSs. First, it may not be possible or practical to identify all the unique states into
which a student might enter. In such cases, it will be necessary to generate the desired images with
real-time graphic techniques during the execution of the system. As noted earlier, however, this solution
is becoming increasingly feasible. Second, constructing a master disc from a videotape containing the
desired images is both time-consuming and expensive enough to limit the number of prototypes and
experiments that can be made with different discs: a test disc currently costs about $400, and a
production master costs at least $800. Some prototyping can be done with the videotape that is
ultimately used to produce the videodisc, but this work is feasible only when the time required to find
the relevant part of the program on the videotape does not interfere with the user's interaction with the

1S0

I tl tl l l l ni l lll ll l l ll il ~ l m =

system. The prototyping problem will be partially relieved by WORM discs (write once, read many
times) which will allow instructional developers much more flexibility in experimenting with different
programs while preserving the random-access capabilities of videodiscs.

As an adjunct to videodisc technology, there is much interest throughout the computing industry
in CD-ROMs (lambert & Ropiequet., 1986). CD-ROMs use the technology that produces audio compact
discs to store and retrieve large amounts of digitized information. At present, CD-ROMs can hold about
550 megabytes, which makes them an appealing alternative for storing large documents such as
dictionaries and encyclopedias, documentation, and source code, as well as single digitized images.

However, creating moving images from CD-ROMs is difficult. Substantial external hardware is
required to reconstruct the image from the bits that encode it, and the data transfer rate of current CD
players is not high enough to support live video. The current capacity of 550 megabytes is only enough
to store five or six minutes of video. Nevertheless, all of these problems are being addressed because of
their importance for the audio entertainment industry. This work will result in increased capacity and
retrieval speed, and advanced techniques for encoding and compressing video images (Brewer, 1986). In
addition, work on digital television, which is required to regenerate the video from the encoded signal on
the disc, is well underway.

Touch Screens and Tablets

In some circumstances, touch technology can be a useful alternative to mice or other pointing
devices. Various techniques exist for sensing the position of fingers on a computer display; alternatively,
a special-purpose tablet can be used that contains a predefined set of options. Touch screens can be very
useful when a separate pointing device is undesirable, as in field placement of portable systems. At one
time, the designers of SOPHIE experimented with the use of touch panels by placing a schematic of the
circuit being repaired on a touchi panel. This allowed users to specify circuit components by touching the
schematic (Soloway & VanLehn, 1985).

The primary shortcomings of these systems are the limited resolution available in the detection
of finger position and the parallax problems that result from the curved shape of the display and the
changing viewing angle as the user points at, different parts of the screen. The resolution problem can be
addressed through the use of a stylus, but adding an external device defeats much of the purpose of touch
systems. If an interface can be designed so that these problems can be minimized, a touch screen may be
a reasonable alternative to other pointing techniques.

Speech Recognition and Understanding

The ability to talk to a computer instead of typing has been a long-held dream. Many people
cannot. or do not want to type, and keyboards are sometimes impractical, as they are when the user's
hands are busy performing other tasks. In these cases, speech recognition seems like the ideal solution.
However, as with natural language, reality has not, caught up with the dream. Analyzing real-time
speech is very difficult, and the technology is still inadequate.

Current speech systems differ in whether they are speaker-dependent or speaker-independent. If
the system is speaker-dependent, it must be pretrained on the speech of a specific person. The tradeoff
between these two characteristics, as one might expect, lies in the size of the vocabulary that the systems
can handle. At present, low-cost speaker-dependent systems are available that can handle vocabularies of
about 100 to 300 words with reasonable accuracy (about 70%). More powerful and more expensive
systems are beginning to reach levels of 1000 words. In contrast, speaker-independent systems are

151

restricted to much smaller and more specialized vocabularies, often the digits from 0 to 9 and the words
yes and no (cf. Cater, 1984).

Systems also differ in whether they are capable of discrete or continuous recognition. When
speaking, people normally do not pause between words. Rather, words flow into each other, forming
blocks of continuous speech sounds. This obscures the boundaries between words and greatly complicates
the recognition process. Most existing systems require that speakers segment their speech so that the
recognition algorithm does not have to deal with the word boundary problem. Systems capable of
continuous recognition require more complex algorithms and are typically less successful than those with
discrete recognition. Most commercial systems assume discrete speech, and continuous systems are
currently limited to vocabularies of about 75 to 100 words. Conveniently, some evidence suggests that
people can adapt to the requirements of discrete speech rather easily (Biermann, Fineman, & Gilbert,
1985; but see Gould, Conti, & Hovanyecz, 1981). The word boundary problem may then not pose a
serious barrier to the use of this technology.

The above discussion is meant to characterize what is generally referred to as speech recognition
-- identifying which member of a rather small set of words was just spoken. This task is very different
from what is usually thought of as "talking to a computer." This latter, more complex process is better
thought of as speech understanding, in which the speech being analyzed is not a word or two, but a
longer, more meaningful utterance. This complicates the interpretation task greatly, for it presupposes a
natural language understanding system capable of interpreting the meaning of the utterance once the
words have been identified. Consequently, speech understanding inherits all the problems of natural
language understanding. In addition, spoken language has long been known to be much less grammatical
and well-structured than written or typed language (Dreiman, 1962; Horowitz & Newman, 1964). Thus,
the natural language understanding task is complicated even more.

Further, regardless of the complexity of speech understanding, speakers are likely to want much
larger vocabularies than most current systems can handle. One way around this limitation is to partition
the complete vocabulary into several smaller vocabularies and to use a predictive parser to select the
specific vocabulary that is in use at any instant. That is, when the parser is expecting a verb, the
vocabulary containing verbs would be loaded into the speech system. This approach is reasonable for
simple grammars where such strong predictions of word types are possible, but it breaks down when
language is richer and predictability decreases. Speakers are also likely to tend more toward continuous
speech, further complicating the speech processing component.

The most promising work in speech understanding (Adams & Bisiani, 1986; Erman, Hayes-Roth,
Lesser, & Reddy, 1980) has integrated speech and natural language processing so that the attempts at
understanding one level can influence and be influenced by attempts to understand the other. Although
there is promise for the future, speech technology can be a useful part of present-day interfaces if it is
used in ways that reflect its limitations. In some situations, it can be a good way to enter simple, short
commands or to select items from menus. Much more research will be required before the more complex
and desirable uses of speech and spoken language are possible.

Speech Coding and Speech Synthesis

These techniques have a much less ambitious goal than speech recognition and understanding.
They are not meant, to identify or extract, the meaning of an utterance. Instead, they are concerned with
storing and reproducing speech sounds as part of an interface.

152

TIe most straightforward way to produce voice sounds is to digitize and store the analog speech
waveform. At a later time, these samples can be passed through a digital-to-analog converter and turned
back into sound. If the sampling rate is high enough -- at least 40,000 samples per second - very high-
quality speech caj, be obtained. Unfortunately, sampling at such high rates produces a very large
amount of data: five seconds of sound would require about a half megabyte of storage.

The alternative, of course, is to encode the speech waveform in some way. Techniques for doing
this can reduce the size of the stored waveform considerably, but the quality of the reproduced speech is
also somewhat reduced. The simplest of these techniques, linear predictive coding (LPC) and adaptive
delta pulse code modulation (ADPCM), perform relatively straightforward transformations on the
waveform and can reduce the size of the stored waveform by several orders of magnitude.

The next step beyond speech coding is speech synthesis. Techniques for speech synthesis
represent a speech waveform in a more abstract form than the waveform itself, typically phonemes or
words. The playback system is then responsible for translating this representation into speech. This is
true synthesis: the user can specify a novel set of phonemes or words to the system and produce novel
speech. Several techniques are available, primarily phoneme synthesis, in which the user specifies the
phonemes that are to be "spoken," and synthesis by rule, in which the user can specify a string of words
that are to be spoken and then rely on transformation rules to convert the words into the proper set of
phonemes. Both of these techniques can produce acceptable but identifiably synthetic speech. The major
benefit is that the data rates that are required to produce this speech are greatly reduced, often to as low
as 70 to 100 bits per second.

At present, speech synthesis technology is rather good; as in other areas, it is much more
advanced than is the knowledge about how to use it wisely. Little work has been done on the kinds of
messages that should or should not be presented by speech. Nevertheless, the advantages to speech are
clear. It takes advantage of a powerful communication channel, and it can pass information to users
without cluttering up the display with a message of possibly only temporary relevance. Also, it does not
require users to divert their eyes from some part of the display that might be critical to their interaction.
These techniques have been used by Nakatani, Egan, Ruedisueli, Hawley, and Lewart (1986) to develop a
speech-oriented tutoring system for the Unix vi text editor. This system uses synthetic speech to present
tasks to the user, report user errors, and offer hints and suggestions. The focus of this work has been on
how speech can be used effectively in training tasks; more work of this sort should help clarify the true
value of speech output in the interface.

A Brief Note on the Dangers of Technology Projections

Predicting trends in computer technology is very risky. Many of these predictions are probably
very conservative, and readers of this chapter several years from now may well be shaking their heads
and wondering how the speed of these developments could not have been foreseen.

Such is life. However, pretend for the moment that tomorrow everything described so far --

three-dimensional graphics, large-vocabulary continuous speech recognition, huge displays, and the like --

was widely available. It is still unclear that we would know how to use this technology wisely. Right

now, we are actually in a very good position from a research perspective. These technologies are more or
less available now, although not in forms as cheap or convenient as we would like. We have the
opportunity to experiment with them from the user's perspective, to understand their strengths and
weaknesses, and to learn what opportunities they offer to us. This is not to say that these technologies
pre all "solutions in search of problems," but we must be careful to look beyond the simple technology to
the larger question of how to use them to enhance the interface and the user's capabilities.

153

1I. GOING BEYOND INTERFACE TECHNOLOGY:
TOWARD INTERFACE SEMANTICS

It is easy to list the developments in interface technology and to speculate about their influence
on interfaces and ITSs. However, it. is difficult to go much beyond speculation because the problem these
developments address is underconstrained. If the issue is really the quality of the interface -- its power,
ease of use, and ease of learning -- we must ultimately be concerned not with the outward appearance of
the interface but with the underlying structure of the interface and the application program. What is
most important is not how the interface looks but how it allows the user to understand the capabilities of
the underlying application program. Because these capabilities are inherently constrained by the domain
that the application addresses, it is also important that the interface convey the important properties of
the domain. Clearly, the appearance of the interface and the technologies that can contribute to this
appearance are an important part of this process. However, the physical appearance of the interface
should never be the driving factor in the development of an interactive system. That role must he
played by the semantic constraints inherent in the application and the domain.

If the proper role of the interface is to help the user understand the semantics of the application
and the domain, there would seem to be two ways to do this:

Make the Constraints Self-Evident in the Interface

This is the first-person approach to interfaces. Graphics can be used to create an interface with
objects and relations that expresses the semantic constraints of the domain. Things that are
manipulatable in the domain are manipulatable in the interface, and in much the same ways. As a
result, users do not, have to learn how to use a general-purpose interface, their knowledge about the
domain will constrain and guide their use of the system.

Let the Interface Reason About and Explain its Constraints

As noted earlier, first-person techniques are not always desirable, possible, or completely
effective. In these cases, second-person techniques are required. The interface must be given the ability
to inform the user about the capabilities of the system, the actions that can be carried out, the conditions
under which they are possible, and their consequences. This advice can be given to users in several ways,
corresponding to the different tutorial strategies discussed elsewhere in the ITS literature: question
answering, coaching, guided exploration, and the like.

An ideal interface would combine these techniques to cover all of the constraints present in the
system. Users would therefore always be able to induce a certain characteristic of the system from the
appe-.-ince of the interface or to enter into a dialog with the system advisor to resolve a problem. All of
this is, of course, easier said than done. Much is not understood about the construction of self-evident
interfaces, and the development of first-person techniques depends on progress in this area. Similarly,
the second-person techniques depend on substantial progress in artificial intelligence technology,
especially knowledge representation, reasoning, and natural language understanding.

The entire set of constraints that affect the relationship between a user, an interface, and an
application domain is hard to enumerate and address. The following sections present an initial
categorization of these constraints and an attempt to identify some of the most challenging problems
facing the development of good user interfaces.

154

Task Constraints

"'ihe real issue here is mental models (Gentner & Stevens, 1983); that is, in understanding how
people think about, semantically rich domains. flow are these domains broken up into meaningful
components, and how are these components related to each other to reflect the constraints of the task
and the (omain? iow do people resolve apparent or real inconsistencies in mental models, and how do
they choo:;e among alternative representations of a task? What are effective ways of embodying
constraints in an interface, and how can users best be given control over them? Answers to these
questions are critical if we are to build interfaces that do a good job of reflecting domain semantics and
helping users understand and manipulate ,hem.

User Constraints and Cognitive Limitations

One of the most important properties of a good user interface is that it can augment and
compensate for weaknesses in the users' cognitive abilities. For instance, a good interface is in many
ways an external memory system. Menus support recognition over recall, and iconic techniques such as
those used in Steamer (Ilollan, Hutchins, & Weitzman, 1984) and VSTAT (Miller & Blumenthal, 1985)
capt!re and preserve information that users would otherwise have to keep in working memory or retrieve
from long-term memory (Anderson, Boyle, Farrell, & Reiser, 1984; Anderson & Jeffries, 1985).
Similarly, the Geometry Tutor's (Anderson, Boyle, & Yost, 1985; Figure 6.5) display maintains a
concrete representation of the current state of the proof process. This display relieves the student of the
need to maintain a well-organized representation of the proof in working memory, a difficult task when,
as is inherently the case in a tutoring situation, the student does not have a sound understanding of the
information being worked with. The display also reifies the proof process: it makes the student's thought
processes themselves a subject of study. A good interface can also help users understand the results of
complex processes. Rather than requiring users to infer or guess the effects of their actions, these effects
can be made an explicit and visible part of the interface, especially through direct manipulation
techniques (cf. Norman, 1986).

Designing interfaces that help users with these limitations will require good models of the sources
of these limitations: basic human cognitive processes. An appropriate division of labor must be
established between the user and the system, and it must be based on a good understanding of what
people are capable of and how their cognitive capabilities complement those of computer systems.

Instructional Constraints

The domain being tutored and the instructional role played by the ITS inevitably drive the form
of a tutorial system's interface. Instruction that entails continuous dialog between the student and the
ITS would call for a strong natural language understanding component, while a coaching system that
monitors ,wscr actions and offers advice about more efficient use of the system would not. Instead, for
this coaching system, a first-person interface that supports high-level, semantically meaningful user
actions and thereby eases the diagnosis problem would be more desirable. A domain that requires
mastery of a large and complex body of knowledge could benefit from powerful and flexible tools for
browsing and editing, such as those available in GUIDON-WATCII (Richer & Clancey, 1985; Figure 6.6),
an exploratory system for medical knowledge. Designing the "face" of the ITS requires identifying the
kinds of information that are relevant to the instructional task the system is dealing with, and making
-,re that interface techniques capable of conveying this information are available and are used.
Ultimately, the choice of interface techniques is an issue of pedagogy and tutorial strategies.

155

FIGUJRESA
EJYrAEKXx

L A_

Segment TRANSITIVITY
m Segment j K
Point E

A EJX=AEJY AEJXEaEKX
RELATIONS

-Y

II
rtt.
rt-tris
supp
comp
bisects (Seg)
bisects (.)
midpoint

ARITHMETIC
keypad

EDfTNG
blank
rubout
clear input
dorm

X E 4EJXai/EJY

.4XFJ=aXEK z XEJirYEJ z- FXJ--EXK JR bisects z-XJY

Int
Review WAIT
Rule

Figure 6.5. Anderson, Boyle, and Yost's Geometry Tutor.

A second instructional issue is how the ITS presents information to the student. This is a matter
of deciding in which of several different ways a specific piece of information shoild be presented:
including a table, graph, piece of text, or diagram. The nature of the interface controlling the
application should direct this choice of course: consistency of presentation is important. However, when
no such constraints exist, the user often benefits when different kinds of information are presented in
ways that emphasize their most important properties. Some relationships are best shown graphically;
others require a table for greatest clarity. The simultaneous presentation of the same body of

156

!P) Doat Ssathe huato foa Sne ocal signs? k12

Do)eht s Susannsae dublrae iinFhehi) Acp~

185.8 fhrhn-he

13) VhAt s u hne 0ndrgtono sigiiane' rocent sigs? te-^ckl-i. e ta oFILC - 1

14) "as 1 Susann * c ierased hs (eig Faronoeit). rP..-sDhsaf.ws D. 55513

15) Has Susanne underane inifioranst reet orgt w f o

neosurgery)?'err t

rII eUS() Is Susnn ae'~ hempomse aos (eiff alchoic H 1- hdaSl3 rofo RULE IE
st ickl-cl1-Sea famuotpee e) s isxiSSS. a.,d

17 e~tp st usann hav nase hatieni has a1 heao.-h RIALIOLSFWO09 .4..

FINDING W" 9 that1 the gatiest has a st~sgf neck-AclR1A.iLNMG1I

ItC 011NIL(utes) h ptlJtho h*04*tho TRIJ5AICLI-POCESS
St,,A-ccI' Ms 01S PWUM9PA 4

MEADACK 0~~~~~51144T31 x h 01.Vsst ~d.o CII-INN n1

wat porint is4 ths i f r ai n ty n o m k , a d w a r s nai n t c nq e r etfr c n e I

th i ure At 6 Ah momtlte Scresenttro GIor -ACI inhrmao mustbe d terie Eipoti bytor yse

designer, who can "hard code" a few alternatives into the system, or by the users, who might be allowed
to vary the presentation format accordIing to their own preferences and the ongoing requirements of the
task. However, work has begun on automated techniques for examining a set of data and a situational
context and~ choosing an appropriate display format (e.g., Mackinlay, 1980; Myers & Buxton, 1980), so
some of this effort may ultimately be taken on by the interface itself,

A third issue concernis the interpersonal spirit in which the information orfered by the ITS is
ultimately p~resented. An ITS couldi present. information to the student in a very unemotional way,
emlphlasizin~g that, the tutor is really Just a compulter system; or the ITS could attempt to port-ray a
hutman teacher and present information in a friendly and encouraging way.

Both styles have benefits and dangers. Bloom (1984) has argued that much of the benefit
perceived in individual human tutoring comes from the cooperative and empathetic style of interaction.
The "humanized" ITS should, in principle, be less threatening and more motivating. Hlowever, a human

157

style of communication should follow from the principled design of the interface and from the knowledge-
I- -m .tiWa-1. th, PRINT

statements in the system in a "Now, Johnny" tone will not work. Most students quickly see that such
statements are artificial, and what is meant to be helpful and motivating soon becomes a distraction.

We should also remember the problems seen with natural language systems whose capabilities
are limited: because of their ability to handle some instances of language, their users will sometimes
assume far greater capabilities than are actually present, and the overall effectiveness of the interface
declines as a result. Similar problems could arise in ITSs built with a strong facade of friendliness: users
might inappropriately presume that the system understands them more thoroughly that it really does.
The "impersonal computer" style may clarify the capabilities of the system more successfully; it would
fail because it leads tl' user to expect too little.

The most realistic approach to the issue of style is to accept the fact that ITSs are implemented
on computer systems and to minimize human characteristics in the interaction. This does not mean that
interaction in ITS should be as primitive as that common in the computers of the 1950's. In fact, one of
the attractive aspects of using graphics in an interface is that they can increase users' interest and
motivation (Malone, 1981). Motivation is certainly an important part of education and tutoring; so
important, in fact that designers should consider it in its own right, and not try to add it to a system
like a coat of paint.

Physical Constraints

In many ITSs, the application domains being tutored by the system are highly symbolic and
conceptual, such as basic cognitive skills or computer programming. In these cases, as long as the
systems' interfaces provide good models of the domains, they can typically rely on relatively simple
graphic or textual presentation techniques for communicating with the student; the usual bitmapped
display, mouse, and keyboard combination are often sufficient. However, for a tutorial task that deals
with a real-world device and environment, these techniques may not be enough. Instead, a highly
realistic depiction of the device or environment and equally realistic techniques for interacting with this
interface may be necessary for the student to understand and learn the domain. This belief has led to
the dewlopment of flight simulators and maintenance training systems that are based on real-world
devices, and that give students direct experience with both the devices and the problem domain on which
they are used.

An alternative view of instruction for real-world devices and environments is that highly realistic
interfaces are not required. Students certainly need to understand the concepts in the curriculum, but
these can often be presented in relatively abstract ways that not only are less expensive and easier to
implement but also may improve the learning environment in the process. Thus, in Steamer, abstract
illustrations replace much of the real-world appearance of the components of the steam plant. Water
tanks appear as boxes or cylinders, and pipes as rectangular conduits between tanks, but no attempt has
been made to make a tank or pipe look exactly as it does in a real steam plant. Doing so would actually
impair the student's ability to understand the operation of the steam plant, because the student would no
longer be able to see the water levels in the tank or the direction and rate of flow of water and steam in
the pipes. There is no question that students ultimately need to become familiar with real steam plants,

but the claim here is that it is possible to separate the physical aspects of the problem from the cognitive
aspects, and to teach them separately, using whatever techniques are most appropriate.

Of course, hybrid systems are possible. As noted earlier, real-time, three-dimensional animation

158

is rapidly becoming feasible. The displays in a flight simulator may soon completely simulate a pilot's
environment with computer graphics techniques. Research at Wright-Patterson Air Force Base has been
exploring stereoscopic display techniques to generate and project, via a helmet incorporating small
television screens positioned in front of the stldent's eyes, an animated, three-dimensional flight scene.
The system reacts to both the student's head movements and the student's control of the simulator.
lowever, the displays are still highly schematic. Hills and rivers do not look exactly like real hills and

rivers, and the display is filled with symbols that denote and describe especially important objects (e.g.,
friendly and enemy aircraft) in the student's field of vision. This work is a good example of a system
that identifies the physical and cognitive components of the task and applies appropriate techniques to
each.

Another advantage of the middle ground between the abstract and representational positions is
that it can accommodate change in the user's requirements as their understanding of the domain changes.
Johnson (1987) has found that novices can benefit from concrete representation of the devices they are
learning about. However, once they have understood the basic properties of the devices, they are better
off with a representation of the devices that is more abstract and emphasizes the domain semantics, the
primary focus of their learning at this point.

The key to designing a good interface is to understand the task, the information that must be
presented, and the ways in which students might interact with it. In many situations, highly realistic
interfaces may not be desirable because one or more of these requirements is violated. For instance, it.
would probably be possible to build a new version of Steamer with a highly realistic, three-dimensional
computer graphic model of a steam plant. However, the user of such a system would need to manipulate
and control this model: to reach into it and change its orientation, open and close valves, and inspect
the contents or status of the device. This leads to two problems, one technological and one psychological.
The technological problem is that the system would have to track the position of the user's hands with
respect to the perceived position of the image. Two-dimensional pointing devices such as joysticks or
mice are not particularly effective for this task because they do not provide for movement in the third
dimension. One alternative is to use small sensors that, can be attached to the user's hand, similar to the
Po1hemus device used in the "Put That There" system (Bolt, 1980; Schmandt & Hulteen, 1981). More
recently, a glove has been developed for use with personal computers, which senses the position of the
user's hand in three-dimensional space, the tilt, of the hand, and whether the user's fingers are straight or
bent, (Zimmerman, Lanier, Blanchard, Bryson, & Ilarvill, 1987). Relating the tracking information
produced by these devices to the image is complex but possible.

The real problem, of course, lies in what the student takes away from the interaction. In
Steamer, the important concepts to be acquired by the user are not physical but functional. Depending
on the student's needs (cf. Burton, this volume; Johnson, 1987), highly realistic presentation techniques
may even impair learning. However, these techniques may be very useful in problem areas such as
molecular modeling (Feldmann, 1985), in which a three-dimensional model of molecular structure is the
most appropriate way of characterizing and manipulating the information to be acquired by the student.
As before, the real task is to understand the goals and needs of the student, and make sure that the
interface offers a good match to these.

Tutorial Constraints

There is a crucial relationship between the interface and the capabilities of the ITS. One part of
this problem is the extent to which the interface can ease the diagnosis and remediation tasks of the ITS.
First-person interfaces can present students with a good picture of the underlying application, one that
provides a meaningful context for explaining and discussing the domain and a student's possible problems

159

with it. First-person interfaces can also enhance ITSs through their reliance on the manipulation of
semantically rich graphic objects. In an interface buift around such objects, the user's actions are also
high-level and semantically rich. The semantic basis of these actions can make diagnosing problems and
hypothesizing about the student's knowledge much easier. Another possibility is to embed "bug objects"
in the interface; manipulation of these objects indicates that the user harbors a particular misconception.

The advantages of these high-level interfaces can be seen by comparing two different types of
tutoring systems. In the Geometry Tutor (Anderson, Boyle, & Yost, 1985; Figure 6.5) students make
very high-level assertions about the domain. They focus on specific parts of the proof and identify some
of them as being especially significant and worthy of elaboration. As a result, the tutorial system
underlying this interface can reason directly about the student's assumptions and beliefs about the high-
level geometric concepts that are being manipulated. The system can therefore make inferences about
misconceptions and future actions and explain past actions in a meaningful way.

In contrast to the Geometry Tutor, consider several coaching systems for text editors such as
Emacs (Miller, 1982; Fischer, Lemke, & Schwab, 1985; Zissis & Witten, 1985). These systems monitor a
user's keystrokes and offer suggestions for making the user's interaction more efficient. For instance, if a
user moved the cursor forward character by character over several words, the coach might suggest using
the editor's "forward word" command.

The problem with these coaching systems is that the interface actions do not carry with them
much in the way of semantics -- they do not constrain the domain enough to support strong inferences
about future or past actions. For example, in a text editor, moving the cursor forward by a character
does not limit a user's subsequent actions much, if at all. Consequently, the inferencing and advising
that the system can do is very limited. About the most it can do is suggest more powerful commands
that subsume several recently observed actions, as in the "forward-character, forward-word" example.
This problem lies not in the system but in the domain: people who look over the shoulder of text editor
users and try to infer high-level editing plans do not seem to be much more successful than these
programs.

The utility of Emacs coaches and other systems such as operating systems interfaces (cf. Shrager
& Finin, 1982) that apply to semantically unconstrained domains is an empirical question. It may be
that the low-level advice they make available is useful enough to warrant their development. However,
the more general point is that systems with low-level, semantically weak interface actions complicate the
diagnosis problem greatly and are probably not good candidates for the application of these low-level
coaching techniques. In general, interfaces should be built at as high and semantically rich a level as is
appropriate for the task and the needs of the user. This should make the system easier to learn and use,
and also enhance the ability of the ITS to make powerful inferences that lead to useful advice and

tutoring.

Another crucial relationship between the components of an ITS is whether the intelligent

component of the ITS -- the agent capable of reasoning about the domain addressed by the interface --
can influence the design and the capabilities of the interface. The presence of an active, knowledgeable
agent could allow a graphical, first-person interface to insure that the user could carry out only

semantically acceptable actions. Consequently, major classes of user errors could be eliminated simply by

preventing the user from making them.

However, as the power and the subtlety of controlling the interface Increase, preventing user

160

errors becomes a more controversial issue in the basic design of the system. In some cases, letting the
user make mistakes can be useful because it allows misconceptions to be identified and corrected in a
specific, problem-oriented context. If these mistakes are prevented, the misconceptions may linger and
need to be detected later by techniques that are computationally more costly and complex, and less
certain to succeed. Better results may be achieved in the system as a whole by intentionally reducing the
level of intelligence that is playing an explicit role in the interface. The appropriate level of intelligence
in the ITS certainly depends on the specifics of the task. The point is, however, that issues of interface
design and implementation can quickly slip into the area of tutorial strategy, and vice versa.
Consequently, a system-wide approach to the development, of an ITS is essential to ensure that the parts
of the system complement one other.

Implementation Constraints

An ITS is really three things: an educational instrument, an interface to an application program,
and a knowledge-based system. The discussion thus far has focused on issues related to the educational
and tutorial aspects of these systems and the ways that, interface and artificial intelligence technologies
can improve education and ease of use. The issues related to the latter two aspects focus on how these
systems are implemented, and, while these issues are more pragmatic than theoretical, they cannot be
ignored.

Interface Implementation

The tools that are commercially available for implementing peweriul graphical interfaces, such as
SunTools for the Sun workstation, the window systems on Lisp workstations, and the Macintosh Toolkit,
are very limited. They typically support basic window properties and operations (e.g., sizing, scrolling,
and refreshing), multiple text fonts, menu presentation and selection, and simple graphics functions (e.g.,
line and curve drawing and sometimes region filling). Unfortunately, there is a great distance between
these capabilities and those needed to implement a system with the graphic capabilities of Steamer or
Trillium (llenderson, 1986). As a result, many research projects that are actively concerned with
extending these capabilities in ways that provide the interface designer -- and thereby the ITS designer --
with significantly more power.

These efforts take two rather different approaches. The user interface management system
(UIMS) strategy attempts to separate the interface component of an application program from the more
direct computational part. The idea here is that the UIMS should serve as a high-quality interface to a
pre-existing application program. It should be responsible for translating users' interface actions --
perhaps menu and icon selection -- into whatever form is required by the application program -- perhaps
a command language designed ten years before the integration of the system with the UIMS. If the
UIMS is kept separate from the application program, the same UIMS can be used with many different
applications, yielding a consistent and high-quality interface across all these applications. Examples of
the UIMS approach include FLAIR (Wong & Reid, 1982), COUSIN (Hayes, Szekely, & Lerner, 1985), and
ADM (Schulert, Rogers, & Hamilton, 1985).

The problem with the UIMS approach is that the communication channel between the UIMS and
the application program is very narrow. Typically it is either a character stream across which command
lat 6 uage statements and resuits are passed or a very limited set of system calls. If the interface needs to
know a great deal about the ongoing state of the application program in order to carry out its
operations, this narrow band of communication may be inadequate. This gap is likely to widen as
application programs become more powerful and intelligent and the interface to these programs must
display the internal state of the programs in even greater detail. ITSs and the computer-based
applications for which ITSs are being developed certainly fall into this category.

161

One approach to this problem is for the UIMS to maintain a simulation model of the application
program so that information about the state of that program is available to it. However, these models
are very difficult to develop and to synchronize with the application programs. The alternative to the
UIMS approach is to abandon a strong separation between the application and the interface tools and
instead to integrate the interface and the application. In this way, access to the information about the
state of the application program is made available in the values of global variables or function -alls. The
large, common address space of Lisp environments supports this communication in a very direct way,
and designers of many of the systems with powerful interfaces and complex application programs have
chosen this route ([ocker, Fischer, & Nieper, 1986; Miller & Blumenthal, 1985; lutchins, Hollan, &
Norman, 1986; Henderson, 1986; Myers & Buxton, 1986; Mackinlay, 1986; Weitzman, 1986). High-level
interface tools are just as central to this work as they are to the IMS approach. If these tools are good,
they can provide much of the application independence that is available with UIMSs, although some
recoding of the application is inevitable. The integrative approach to intelligent interface development
expands the communication path between the interface and the application, and allows rich
communication between a complex system and its interface.

Knowledge Acquisition

The absence of good design and development tools is also evident when ITSs are available as
knowledge-based systems. Commercial expert system shells may be useful in implementing the
underlying mechanics of ITSs, but they offer little help on the knowledge acquisition problem itself.
Collecting and encoding the knowledge needed to build an ITS is still a long and difficult task and
substantial project resources must still be allocated to this stage. Of course, the lack of good high-level
tools for knowledge acquisition is a serious problem not merely for development, but for testing and
maintenance as well.

The interface construction and knowledge acquisition problems ultimately merge when
implementation finally begins. Many ITSs, especially those that provide training on specific application
programs or simulated devices, require two virtually identical stages of implementation. First, the
running application program that is the basis of the training system must be built. Once it is completed,
what amounts to a second version of that program must be built. This version, the knowledge
component of the ITS, is essentially a symbolic representation of the application, which captures the
important aspects of that application program in such a way that the ITS can reason about it. The
development of an ITS is therefore a difficult and time-consuming task with significant opportunities for
error.

Something must be done about the difficulties of implementing these systems. Ultimately, tools
like the authoring languages for traditional computer-aided instruction systems (Bitzer & Easley, 1965)
are needed, but they must appreciate the knowledge requirements of ITSs and the likelihood of a link
between the ITS and the more advanced interface techniques that are now important parts of these
systems. Bonar's Bite-Size Tutor (Bonar, Cunningham, & Schultz, 1986) and Anderson's PUPS Tutoring
Architecture (Anderson & Skwarecki, 1986) are initial steps toward splitting the knowledge relevant only
to tutoring apart from domain-specific knowledge. Other researchers are seeking a merger of the
interface and knowledge components of the problem so that some of the effort of defining knowledge
about the application area can be used to define the interface, and vice versa (Miller & Blumenthal,
1985; Sibert, Hurley, & Bleser, 1986).

IV. WHERE CAN WE BEGIN?

The preceding discussion has enumerated some important research topics in human-computer
interaction that pertain to ITSs. In view of the complexity of these topics and the rapidity with which

162

developments in both fields are occurring, it should not be surprising that the list is long. Given the
current state of knowledge about these topics, however, progress in certain areas looks especially
promising for ITSs.

Making Domain Semantics Visible

Solving this problem is critical to the success of first-person interface techniques. An especially
important part of this problem is to find ways to identify appropriate mental models for complex
domains, and convey these models to the users of the systems. Similarly, designers need some basis for
choosing between alternative models, for choosing the proper level of abstraction for a successful model,
and for implementing a graphic representation of a model.

Another aspect of this problem is understanding the various stages of users' conceptualizations of
systems and domains. The ways in which people conceptualize a problem gradually change (cf. Chi,
Feltovich, & Glaser, 1981), and interface designers need to understand these stages of conceptualization,
how the movement from one stage to another takes place, and how these changes would constrain
interface design and development. Finally, as these changes take place, the relative importance of
cognitive and physical fidelity needs to be understood.

Dealing with domain semantics is hard; it requires much work that is specific to a particular
domain, and that is not reusable in other areas. An important direction this work could take is to follow
on the PUPS and Bit.e Size Tutor projects and consider whether some abstract system can be defined
that would be capable of representing the semantics of many different domains, generalizing as much of
this semantic information as possible. Such a system would ease the implementation of ITSs and would
have value for other areas of artificial intelligence as well.

The Dichotomy Between First-Person and Second-Person Interfaces

This distinction appears to be a valuable way to think of interfaces, but a better understanding
of these classes of interfaces is needed. For instance, the limitations of first-person interfaces are not well
understood. We need a better understanding of when they are most appropriate from a tutorial or
interaction perspective, and how far they can be pushed before the illusion of direct interaction or
cooperation with an agent begins to break down. We also need to address the problem of understanding
the coverage of the domain offered by a particular interface. As noted in the discussion of natural
language interfaces, serious problems arise when users misunderstand the limitations of the application
programs behind the interface. This calls for identifying interface techniques that communicate the
capabilities of these application programs as clearly as possible. Finally, we need to understand how to
integrate first- and second-person interface styles, so that the the power and flexibility of this integration
c,I be maximized. For instance, it should be possible for a student to ask a question about a graphical
object in the interface's display by combining a typed or perhaps spoken statement to the tutor with a
mouse click or some similar manipulation of that object. Such possibilities imply a whole class of
research projects on how to combine multiple interface technologies in fruitful, synergistic ways.

Interface Design Aids

Except in a few limited areas, there is not a strong scientific component to the design of
interfaces. This lack of knowledge points to work in two basic areas. First, more knowledge about
interface design is needed. The research cited earlier has primarily explored screen layout and
information presentation; other guidelines exist regarding color, fonts, and window proportions (Marcus,

163

1985) that could similarly be codified. There has been some study of the command structure of
interfaces, with the goal of predicting the ease of use and learnability of these interfaces (Poison &
Kieras, 1985; Payne & Green, 1986); this work should continue and move into the more complex,
semantic aspects of domains and interfaces.

Second, to fill in the gaps in our knowledge about interface design, powerful interface
prototyping tools are also needed. These tools would allow designers to experiment with different designs
and rapidly converge on a good design. These tools should increase the level of support for interface
designers so that they can work directly with the objects that will appear on the screen and the behaviors
that will be associated with them. Designers must, be freed from worrying about plotting points and
tracking mouse positions.

Knowledge Acquisition Environments

Help is also needed in the design of the knowledge component of ITSs. Tools supporting this
design process need to go beyond the currently-available expert system shells, and address the link
between interface development and knowledge acquisition. In particular, it would be useful to learn how
much knowledge about the use of an interface and about the domain it controls can be derived from a
representation of the interface itself, and how much help can be offered toward filling in the knowledge
that cannot be derived from these representations. The problem of domain specificity is again relevant
here: one would like a development environment that both addresses the knowledge acquisition problem
and also supports the development of interfaces of many different styles and for many different domains.
However, this may not be feasible: it may instead be necessary to build many different interface toolkits,
each of which has been specialized to reflect the interface and knowledge requirements of a particular
domain.

Cognitive Limitations

An important step in building better interfaces is knowing more about basic cognitive processes
and the limitations inherent in these processes. For instance, if we learn more about how working
memory is managed, we can begin to design interface techniques that offer minimal interference with
working memory and that serve as useful external memory systems. Similarly, attention and salience are
also important problems for interface design because of the problems people have in organizing their
displays and the information on them so that they can later find what they need. This problem is
somewhat manageable now, but only because the size and resolution of current displays limit the amount
of information a display can contain. As displays become larger, it will be especially important to
understand how large amounts of information can be organized to insure the clarity of the information,
and to find ways for the application program to alert the user to changes on some part of the screen.

Intelligent Interface Capabilities

Two areas of research are especially important here. First, there is a practical need for better
intelligent system development environments. Interface designers are rarely expert in the development of
knowledge-based systems, and toolkits to aid the development of knowledge components of interfaces and
tutoring systems are badly needed. Second, basic research on the role of intelligence in interfaces is
needed. How can an intelligent system make its powers and limitations clear to its users? Systems like
NLMenu offer one solution for one class of , roblems, but the more general question remains. Until
better answers for these questions exist, much of the effort devoted to putting intelligence into interfaces
and ITSs may go unused.

164

Educational and Psychological Utility of Interface Technologies

What is the relative value of graphics versus text and voice versus typing? What is the utility of
color, animation, and other high-realism graphic techniques? The evaluation of these specific
technologies will be difficult. One can often be shown to be better than another, but it is hard to
determine whether this advantage is inherent in that technology, or if it is the result of better
implementation or of the specific domain or task that was chosen for the evaluation process.
Nevertheless, a better understanding of the real values of alternative technologies is badly needed. It
brings us back to the real problem surrounding the development, of interfaces for ITSs: that of making
the application domain clear and easily understood. Ultimately, this is the real role of all these
techniques: to serve the user and improve the total educational experience.

165

REFERENCES

Adams, D. A., & Bisiani, R. (1986). The Carnegie-Mellon University distributed speech recognition
system. Speech Technology, 12, 14-23.

Allen, J. F., & Perrault, C. R. (1980). Analyzing intention in utterances. Artificial Intelligence, 15,
143-178.

Anderson, J. R., Boyle, C. F., Farrell, R., & Reiser, B. (1984). Cognitive principles in the design or
computr tutors. In Proceedings of the Sizth Cognitive Science Conference (pp. 2-9). Boulder,
Colorado: University of Colorado.

Anderson, J. R., Boyle, C. F., & Yost, 0. (1985). The geometry tutor. In A. Joshi (Ed.), Proceedings of
the Ninth International Joint Conference on Artificial Intelligence (Vol. 1, pp. 1-7). Los Altos,
CA: Motgan Kaufman.

Anderson, J. R., & Jeffries, R. (1985). Novice LISP errors: Undetected losses of information from
working memory. Human-Computer Interaction, 1, 107-132.

Anderson, J. R., & Skwarecki, E. (1986). The automated tutoring of introductory computer
programming. Communications of the ACM, 29, 842-849.

Ballard, 13. W., & Stumberger, D. E. (1986). Semantic acquisition in TELl: A transportable, user-
customized natural language processor. In Proceedings of the 24th Annual Meeting of the
Association for Computational Linguistic3 (pp. 20-29). New York: Association for Computing
Machinery.

Bates, M., & Bobrow, R. J. (1983). A transportable natural language interface. In Proceedings of the
6th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval. Bcthesda, MD: Association for Computing Machinery.

Biermann, A. W., Fineman, L., & Gilbert, K. C. (1985). An imperative sentence processor for voice
interactive office applications. ACM Transactions on Office Information Systems, 3, 321-346.

Bitzer, D. L., & Easley, J. A., Jr. (1965). PLATO: A computer-controlled teaching system. In Sass and
Wilkinson (Eds.), Computer augmentation of hu-man reasoning. Washington, D.C.: Spartan
Books.

Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as effective as
one-to-one tutoring. Educational Researcher, June/July, 4-16.

Bocker, H., Fischer, G., & Nieper, H. (1086). The enhancement of understanding through visual
representations. In M. Mantei & P. Orbeton (Eds.), Proceedings of the GHI '86 Conference on
Human Factors in Computing Systems (pp. 44-50). Boston: Association for Computing
Machinery.

Bolt, R. A. (1980). Put That There: Voice and gesture at the graphics interface. In Computer Graphics:
Proceedings of ACM SIGGRAPH '80 (pp. 262-270). New York: Association for Computing
Machinery.

Bonar, J., Cunningham, R., & Schultz, J. (1986). An object-oriented architecture for intelligent tutoring
systems. In Proceedings of the Object-Oriented Programming Systems, Languages, and
Applications Conference. Uppsala: ACM.

Bonissone, P. P., & Johnson, H. E., Jr. (1984). DELTA: An expert system for diesel locomotive repair.
In Artificial intelligence in maintenance: Proceedings of the joint services workshop (pp.
181-195). Brooks Air Force Base, TX: Air Force Systems Command.

166

Brewer, B. (1986). Video on CD: The big picture. In S. Lambert & S. Ropiequet (Eds.), CD ROM: The
new papyrus (pp. 291-294). Redmond, WA: Microsoft Press.

Brown, J. S., Burton, R. R., & deKleer, J. (1982). Pedagogical, natural language, and knowledge
engineering techniques in SOPHIE I, II, and 111. In D. Sleeman & J. S. Brown (Eds.), Intelligent
tutoring systems (pp. 227-282). New York: Academic Press.

Burton, R. R. (1987). Instructional environments. In M. Poison & J. Richardson (Eds.), Foundations of
intelligent tutoring systems.. Hillsdale, NJ: Erlbaum.

Carbonell, J. R., & Collins, A. M. (1973). Natural semantics in artificial intelligence. In Proceedings of
the Third International Joint Conference on Artificial Intelligence (pp. 344-351). Stanford:
Stanford Research Institute.

Carbonell, J. G., & Hayes, P. J. (1983). Recovery strategies for parsing extragrammatical language.
American Journal of Computational Linguistics, 9, 123-146.

Cater, J. C. (1984). Electronically hearing: Computer speech recognition Indianapolis: Sams.

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics
problems by experts and novices. Cognitive Science, 5, 121-152.

Christ, R. E. (1975). Review and analysis of color coding research for visual displays. Human Factors,
17, 542-570.

Clancey, W. J. (1982). Tutoring rules for guiding a case method dialogue. In D. Sleeman & J. S. Brown
(Eds.), Intelligent tutoring systems (pp. 201-226). New York: Academic Press.

Douglas, S. A., & Moran, T. P. (1983). Learning text editor semantics by analogy. In A. Janda (Ed.),
Proceeding.5 of the CHI '83 Conference on Human Factors in Computing Systems (pp. 207-211).
Boston: Association for Computing Machinery.

Dreiman, G. H. J. (1962). Differences between written and spoken language: An exploratory study. Acta

Psychologia, 10, 36-100.

Erman, L. D., Hayes-Roth, F., Lesser, V. It., & Reddy, D. R. (1980). The Hearsay-lI speech
understanding system: Integrating knowledge to resolve uncertainty. ACM Computing Surveys, 12,
213-253.

Feldmann, R. (1985). Interfaces for molecular modeling systems. Presentation at the MCC Symposium
on Computer Graphics and Human Interfaces: MCC, Austin, TX.

Fischer, G., Lemke, A., & Schwab, T. (1985). Knowledge-based help systems. In L. Borman & B, Curtis

(Eds.), Proceedings of the CHI '85 Conference on Human Factors in Computing Systems (pp.
161-167). San Francisco: Association for Computing Machinery.

Gentner, D., & Gentner, D. R. (1983). Flowing water or teeming crowds: Mental models of electricity.
In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 99-130). Hillsdale, NJ: Erlbaum.

Gentner, D., & Stevens, A. L. (Eds.). (1983). Afental models. Hilsdale, NJ: Erlbaum.

Gould, J. D., Conti, J., & Hovanyecz, T. (1981). Composing letters with a simulated listening

typewriter. In Proceedings of the First Conference on Human Factors in Computing

Systems (pp. 367-370). Gaithersburg, MD: Association for Computing Machinery.

Granger, R. H. (1983). The NOMAD system: Expectation-based detection and correction of errors

during understanding of syntactically and semantically ill-formed text. American Journal of

Computational Linguistics, 9, 188-196.

167

Gross, B. J., Appelt, D., Martin, P., & Pereira, F. (1987). TEAM: An experiment in the design of
transportable natural language interfaces. Artificial Intelligence, 82, 173-244.

Halasz, F., & Moran, T. P. (1983). Analogy considered harmful. In A. Janda (Ed.), Proceedings of the
CIII '88 Conference on Human Factors in Computing Systems (pp. 45-49). Boston: Association
for Computing Machinery.

Hayes, P. J., Szekely, P. A., & Lerner, R. A. (1985). Design alternatives for user interface management
systems based on experience with COUSIN. In L. Borman & B. Curtis (Eds.), Proceeding. of the
CHI '85 Conference on Human Factors in Computing Systems (pp. 169-175). San Francisco:
Association for Computing Machinery.

Henderson, D. A., Jr. (1986). The Trillium user interface design environment. In M. Mantei &
P. Orbeton (Eds.), Proceedings of the CHI '86 Conference on Human Factors in Computing
Systems (pp. 221-227). Boston: Association for Computing Machinery.

Hendrix, G. G. (1979). The LIFER manual: A guide to building practical natural language interfaces
(Tech. Note 138). Palo Alto: SRI International Al Center.

Hendrix, G. G., & Lewis, W. H. (1981). Transportable natural-language interfaces to databases. In
Proceedings of the 19th Annual Meeting of the Association for Computational Linguistics (pp.
159-165). New York: Association for Computing Machinery.

Hertzog, B. (1985). Three-dimensional computer graphics for CAD/CAM. Presentation at the MCC
Symposium on Computer Graphics and Human Interfaces: MCC, Austin, TX.

Hollan, J. D., Hutchins, E. L., & Weitzman, L. (1984). Steamer: An interactive inspectable simulation-
based training system. Al Magazine, 5, 15-27.

Horowitz, M. W., & Newman, J. B. (1964). Spoken and written expression: An experimental analysis.
Journal of Abnormal and Social Psychology, 68, 640-647.

Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1986). Direct manipulation interfaces. In
D. A. Norman & S. W. Draper (Eds.), User centered system design (pp. 87-124). Hillsdale, NJ:
Erlbaum.

Johnson, W. B. (1987). Development and evaluation of simulation-oriented computer-based instruction
for diagnostic training. In W. B. Rouse (Ed.), Advances in man-machine systems research (Vol.
3, pp. 99-127). Greenwich, Conecticut: JAI Press.

Lambert, S., & Ropiequet, S. (Eds.). (1986). CD ROM. The new papyrus Redmond, WA: Microsoft
Press.

Laurel, B. K. (1986). Interface as mimesis. In D. A. Norman & S. W. Draper (Eds.), User centered
system design (pp. 67-86). Hiilsdale, NJ: Erlbaum.

Lewis, C., & Mack, R. (1981). Learning to use a text processing system: Evidence from *thinking aloud"
protocols. In Proceedings of the First Conference on Human Factors in Computing Systems (pp.
387-392). Gaithersburg, MD: Association for Computing Machinery.

Litman, D. J. (1986). Linguistic coherence: A plan-based alternative. In Proceedings of the 24th Annual
Meeting of the Association for Computational Linguistics (pp. 215-223). New York: Association
for Computing Machinery.

Mackinlay, J. (1986). Automatic design of graphical presentations. Unpublished doctoral dissertation,
Stanford University, Palo Alto.

Mackinlay, J. (1987). Automating the design of graphical presentations of relktional information. A(VA
Transactions on Graphics, 5, 110-141.

168

Malone, T. W. (1981). Towards a theory of intrinsically motivating instruction. Cognitive Science, 4,
333-370.

Marcus, A. (1985). Screen design for iconic interfaces. In CHI '85 Conference on Human Factors in
Computing Systems. San Francisco: Association for Computing Machinery.

Martin, P., Appelt, D., & Pereira, F. (1983). Transportability and generality in a natural language
interface system. In Proceedings of the Eighth International Joint Conference on Artificial
Intelligence (Vol. 1, pp. 574-581). Los Altos, CA: Morgan Kaufmam.

Miller, J. R. (1982). System-initiated user assistance: Afore than just a luxury (Tech. Rep.). Dallas,
Texas: Texas Instruments Artificial Intelligence Laboratory.

Miller, J. R., & Blumenthal, B. (1985). An architecture for generalized intelligent user assistance
systems (Tech. Rep. 11-085-85). Austin: Microelectronics and Computer Technology Corporation.

Moran, T. P. (1983). Getting into a system: External-internal task mapping analysis. In A. Janda (Ed.),
Proceedings of the CHI '83 Conference on Human Factors in Computing Systems (pp. 45-49).
Boston: Association for Computing Machinery.

Myers, B. A., & Buxton, W. (1986). Creating highly interactive and graphical user interfaces by
demonstration. In Computer Graphics: Proceedings of ACM SIGGRAPH '86 (pp. 249-258).
Dallas: Association for Computing Machinery.

Nakatani, L.H., Egan, D.E., Rnedisueli, L.W., Hawley, P.M., & Lewart, D.K. (1986). TNI: A talk-
ing tutor n' trainer for teaching the use of interactive computer systems. In M.
Mantei & P. Orbeton (Eds.), Proceedings of the CHI '86 Conference on l1umn Factors in
Computing Systems (pp. 29-34). Boston, MA: Association for Computing Machinery.

Norman, D. A. (1981). The trouble with Unix. Datamation, 27, 139-150.

Norman, D. A. (1986). Cognitive engineering. In D. A. Norman & S. W. Draper (Eds.), User centered
system design (pp. 31-61). Hillsdale, NJ: Erlbaum.

Payne, S. J., & Green, T. G. R. (1986). Task-action grammars: A model of the mental representation of
task languages. Human-Computer Interaction, 2, 93-134.

Poison, P. G., & Kieras, D. E. (1985). A quantitative model of the learning and performance of text
editing knowledge. In L. Borman & B. Curtis (Eds.), Proceedings of the CHI '85 Conference on
Human Factors in Computing Systems (pp. 207-212). San Francisco: Association for Computing
Machinery.

Reiser, B. J., Anderson, J. R., & Farrell, R. G. (1985). Dynamic student modeling in an intelligent tutor
for Lisp programming. In A. Joshi (Ed.), Proceedings of the Ninth International Joint
Conference on Artificial Intclligcnce (Vol. 1, pp. 8-13). Los Altos, CA: Morgan Kaufmann.

Richer, M. II., & Clancey, W. J. (1985). GUIDON-WATCII: a graphic interface for viewing a

knowledge-based system. IEEE Computer Graphics and Applications, 5, 51-64.

Savage, R. E., Habinek, J. K., & Barnhart, T. W. (1981). The design, simulation, and evaluation of a

menu-driven interface. In Proceedings of the First Conference on Human Factors in Computing

Systems (pp. 36-40). Gaithersburg, MD: Association for Computing Machinery.

chmandt, C., & Hulteen, E. A. (1981). The intelligent voice-interactive interface. In Proceedings of the

First Conference on Human Factors in Computing Systems (pp. 363-366). Gaithersburg, MD:

Association for Computing Machinery.

Schulert, A. . , Rogers, G. T., & Hamilton, .1. A. (1985). ADM: A dialog manager. In L. Borman &
D. Curtis (Eds.), Proceedings of the Cttl '85 Conference on Human Factors in Computing

Systems (pp. 177-184). San Francisco: Association for Computing Machinery.

169

Shneiderman, B. (1986). Designing the user interface. Reading, MA: Addison-Wesley.

Shrager, J., & Finin, T. (1982). An expert. system that volunteers advice. In Proceedings o the
National Conference on Artificial Intelligence (pp. 74-78). Los Altos, CA: Morgan Kaufmann.

Sibert, J. L., Hurley, W. D., & Bleser, T. W. (1986). An object-oriented user interface management
system. In Computer Graphics: Proceedings of ACM SIGGRAPH '86 (pp. 259-268). Dallas:
Association for Computing Machinery.

Smith, D. C., Irby, C. Kimball, R., Verplank, W., & Hlarslem, E. (1982). Designing the Star user
interface. Byte, 7, 242-282.

Soloway, E., & VanLehn, K. (1985). Tutorial notes for Al applications for education. International
Joint Conference on Artificial Intelligcnce, Los Angeles, CA.

Stevens, A. L.. & Collins, A. (1977). The goal structure of a socratic tutor (Tech. Rep. 3518).
Cambridge, MA: Bolt Beranek and Newman.

Teitelman, \V. (1984). A display-oriented programmer's assistant. In D. R. Barstow, H. E. Shrobe, &
E. Sandewall (Eds.), Interactive programming environments. (pp. 240-287). New York: McGraw-
Hill.

Teitelman, W. (1984). A tour through Cedar. In Proceedings of the Seventh International Conference
on Software Engineering (pp. 181-195). Orlando, FL: IEEE.

Tennant, H. (1979). Experience with the evaluation of natural language question answerers. In
Proceedings of the Sixth International Joint Conference on Artificial Intelligence (Vol. 1, pp.
8-13). Tokyo: Morgan Kaufinarwi.

Tennant, H. R., Ross, K. M., Saenz, R. M., Thompson, C. W., & Miller, J. R. (1983). Menu-based
natural language understanding. In Proceeding.q of the 21th Annual Meeting of the Association
for Computational Linguistics (pp. 151-158). New York: Association for Computing Machinery.

Thacker, C., McCreight, E., Lampson, B., Sproull, R., & Boggs, D. (1979). Alto: A personal computer
(Tech. Rep. CSL-79-11). Palo Alto: Xerox Palo Alto Research Center.

Tufte, E. R. (1983). The visual display of quantitative information. Cheshire, Connecticut: Graphics
Press.

Weitzman, L. (1986). Designer: A knowledge-based graphic design assistant (Tech. Rep. 138).
University of California, San Diego: UCSD Institute for Cognitive Science.

Wong, P. C. S., & Reid, E. R. (1982). FLAIR: User interface dialog design tool. Computer Graphics,
16, 87-98.

Zimmerman, T. G., Lanier, J., Blanchard, C., Bryson, S., & Harvill, Y. (1987). A hand gesture interface
device. In J. M. Carroll & P. Tanner (Eds.), Proceedings of the CHI '87 Conference on Human
Factors in Computing Systems and Graphics Interface (pp. 189-192). Toronto: Association for
Computing Machinery.

Zissis, A. Y., & Witten, I. H. (1985). User modeling for a computer coach: a case study. International
Journal of Man--Machine Studies, 23, 729-750.

170

DISCUSSION

The Role of Human-Computer Interaction
in Intelligent Tutoring Systems

Kathleen M. Swigger
Associate Professor of Computer Science

North Texas State University
Denton, Texas

I will briefly go over what Miller said and try to highlight the important
points. Then I will try to elaborate on some interface issues and offer some further
suggestions in this area.

First, and most important, Miller stated that we should all remember that
intelligent tutoring systems are really communication systems (see Figure 6.7). This
one feature probably makes building interfaces for intelligent tutoring systems much

1. ITS is communication

2. A system needs:
--Conceptual model of itself
--Internal-external task mapping
--Style of Interface

*First person vs. third person

3. Interface semantics
--Constraints in the interface
--Reason and explain constraints
--Task constraints
--User constraints
--Instructional constraints
--Physical constraints
--Tutorial constraints
--Implementation constraints

4. Research questions
--Make domain semantics visible
--First/third-person dichotomy
--Educational/psychology utility of interface
--Design aids
--Knowledge acquisition tools

Figure 6.7. Summary of Miller's Main Points.

171

different than building interfaces for other types of systems. Next, Miller said that a
good ITS interface needs a conceptual model of itself, some internal-external mapping
of the task, and a specific style. Miller elaborated on the different interface styles and
categorized them into first- and third-person interfaces. These two major distinctions
provide a nice classification system that we can all remember. Classification systems
arc always nice to have.

Miller also talked about interface semantics and why this is one of the most
important things that he considers when constructing an interface. In order to
determine the appropriate interface, you must look at the context of the problem and
define its constraints. Once the constraints have been determined, then you can look
at how the interface can satisfy these constraints. You should, in short, use an expert-
building approach when designing the human-computer interface.

Some of the research issues that Miller proposed for the Branch were: make
domain semantics visible, explore the dichotomy between first and third person,
investigate the education and psychological utility of interface technologies, and look
at available design aids and knowledge acquisition tools.

Having stated all of these points, I think I can now make the observation that we
simply do not have much real science going on in the area of human-computer interfaces. I
think it's probably safe to admit that "technology has overtaken our potential for utilizing it
effectively." We simply have too many computer toys out there to pretend that we are
making an impact on their development. As a matter of fact, Miller failed to mention the
newest computer toy, CD ROM, which allows you to store both music and video on a small
disk that can be played back through your computer. We are being overwhelmed by the
marketplace and are being forced to "respond to" rather than direct the interface questions.
A few stories should help illustrate this point even more clearly.

Recently, I was part of a development team that built an expert system that (a)
classifies noxious weeds that grow in ponds and then (b) determines which chemical
should be used to eliminate the weed. Initially, we had 15-20 rules in ',he system to
help the client identify the specific weed. A new technology came on the market that
allowed us to digitize a picture of the weed and store this image in a database that
could then be accessed by the expert system. It was obvious to us that it was much
simpler to show a picture of various weeds and have the client pick out the
appropriate picture than to have him or her select appropriate words describing the
weed. Using the new system, we eliminated 15 rules and made everyone much happier.

The second story concerns a mouse and my 7-year-old child. Recently, I
bought a mouse and installed it on my home computer system. My 7-year-old was
curious about the mouse, and so I showed him how to use it as a pointing device. He
looked at the mouse for a very long time, squinted his eyes, and said, "But Mommy,
why do not they make it so you can just use your finger?' Seven-year-olds can really
put things into perspective.

How do these two stories relate to research on human-computer interfaces? I
repeat, we arc probably unable to address all the design issues for a rapidly emerging

172

technology. So what do we do in the area of rcsearch if the technology is so far
ahead of us'? Where do we go? Do we do anything at all? I suppose we could take
the conventional approach and look at the individual lessons in an intelligent tutoring
system, look at all the different interfaces that are available, think of all the variables
that might be interesting, and then test which interface can be used to teach which
lesson for each variable. I think we would soon discover that this conventional
methodology of parameter plotting is simply not a viable option. You end up trying
to assess performances at every possible combination of points in this N-dimensional
hyperspace. A more realistic view is to admit that there is a class of interfaces that
are appropriate for any particular problem. The selection process is not really a
selection of one, but rather from many. I seem to remember from my Introduction to
Design course that there were a number of authors who described various taxonomic
systems for media selection as task-media matrices. In most cases, the cells in the
matrices were all filled, with the exception of one or two boxes per row. In other
words, characterizing what will NOT work effectively may in some instances be
rather easier than specifying what will. One factor is the growing appreciation that in
many information design contexts there is a broad bandwidth of acceptable solutions.
I think the same thing is true of interface selection--the occurrence of cognitive
mappings among which the instructional designer is free to choose.

It is also important to remember, as Miller stated, the context of the problem.
The context for the interface problem represented by the participants at this forum is
the training world of the U.S. Air Force. If we look around, I think we can say that
the majority of the people at this forum are concerned with the development of
instructional systems. These instructional systems do two things - they teach and they
train. Even more specifically, these instructional systems are designed to teach or
train the adult learner in an adult learning environment. Furthermore, the teaching,
as defined in an academic sense, is actually fairly minimal in these systems. The
majority of the instructional systems for the Air Force are designed to train.

In response to the training mission of the Air Force and the objectives of this
forum, we need to formulate research questions that have generalizable answers. At
the moment, the ITS world seems to be locked into a preparadigm state. Evidence for
this statement is the recurring theme, expressed by most of our speakers, that the
major research objective for intelligent tutoring systems is to design and implement
more systems. In a preparadigm state, we are forced to create without design
principles or theory. However, I think it may be time to formulate some questions
that will allow us to determine whether the systems we build are effective and
whether they contribute to the field of artificial intelligence and education.

Where do we begin? Perhaps a first step for researchers interested in the
human-computer interface problem is to examine the individual tasks involved in the
instructional and tra'iing process. That is, we might want to break down the
cognitive task involved in interaction with the instructional computer into discrete
steps. An example of this type of analysis was done by Card, Moran, and Newell
(1983) ;. their study of different text editors. They analyzed the various tasks within
the text-editing process, built a model describing these tasks, and then used this model
to evaluate several text editors. The model helped the authors determine whether the
specific tasks within the text-editing process correspond to preestablished norms.

173

Evaluation of human-computer interfaces for intelligent tutoring systems
might be done in a similar manner. First, we might propose a minimal intelligent
tutoring system that consists of reading a question and answering it. These two tasks
can be broken down into a number of subtasks such as understanding the question,
implementing the appropriate answering procedure, interpreting the feedback, and
accepting consequences. Once the minimal system is broken down into its individual
components, you can test the model and use it to evaluate the effectiveness of the
instructional interface. For example, if the interface interferes with the student's
ability to answer a question, then the student will spend more time trying to perform
this particular subtask. Similarly, if the student is having difficulty understanding thc
feedback, then he or she will spend an unusual amc mt of tia~i ::ying to do this
subtask. This type of study should help answer questions that can then be used to
formulate theories about the instructional process.

SCognitive Processes

Facts:
" finding what are the facts * Attention, perception,

reading, inference

" memorizing the facts * memory strategies
* retrieving facts * memory, recall, recognition
" retrieving facts from data 9 perception, search, problem

base solving

Concepts:
" finding constitutents of 9 attention nerception,

concepts reading
" relating concepts to prior 0 memory

knowledge
" using concepts generatively 9 inference, decision making

Procedures:
" noting when procedures apply 0 perception, reading
" place-keeping during sequence 0 memory, perception
* monitoring the outcoming * attention, inference

steps

Figure 6.A Instructional Taxonomy (Wright, 1981).

A second investigation might explore general instructional objectives and how
they relate to the human-computer interface. Figure 6.8 shows an instructional taxon-
omy that was provided by Patricia Wright (1981) and appeared as a list of objectives
for traditional CAI. However, I think the list works equally as well for ITS. Once
these objectives have been specified, we can look at the existing interface to see how

174

it can promote or increase this type of behavior. For example, how can the interface
help the students find facts? I recently developed an expert system that is used at the
JFK Airport to help workers assign incoming planes to appropriate gates. The
individuals who perform this task work in a room full of chaos. One of our problems
was to create an interface that would jog our user's memory and attract his or her
attention to key elements displayed on the scrcen. The end result was to provide a job
aid that would help a worker perform more efficiently and effectively.

Another side to the memory question is, how can the interface prevent
students from forgetting? In my experience as a teacher of computer science, I am
often confronted with students who continually report the same bug. Why do
students "forget" that they made the same mistake the previous day? Does the context
of the problem change? Do they forget why they made the mistake? How can our
interfaces prevent students from forgetting?

Retrieving facts from memory is another subgoal under the Facts label (see
Figure 6.8). What types of interfaces help students retrieve facts? We know, for
example, that menus help users recall facts and that natural language interfaces force
users to reconstruct facts. We also know from the reading comprehension literature
that underlining can affect a person's ability to retrieve facts. What other techniques
can be used to help people retrieve facts?

Many of these issues may go away as the Air Force continues to explore the
embedded training world. Embedded training systems allow designers to use the
weapon, vehicle, etc., itself as a training delivery system. This has obvious advantages.
Among them is the fact that it allows you to reduce the amount of time that it takes
to produce the simulator. If we can reduce this effort, then it will allow us to
concentrate more on questions of cognitive overload, diagnosis of student errors, etc.

Returning to Figure 6.8, we find that under the procedures level are listed such
tasks as noting when procedures apply, place-keeping during the sequence, and moni-
toring the outcome of steps taken. All of these objectives can be measured by
providing students with a simulation of the task. The interface issues that are
applicable to this area become questions such as how effective is the simulation? How
does the simulator map into the task? Does the graph display address memory issues?
How can you create symbolic representations of the task?

If we can concentrate on this list of instructiona! objectives and look at how
each of these objectives maps onto the cognitive tasks required in the minimal
instructional system, then we can formulate the appropriate questions that we should
be asking of ITS. Again, I would venture to say that at least 50 percent of this
audience is engaged in instructional design issues. To tell you that the major research
issue in ITS is to create more systems is not sufficient. To tell you that you must
build robust instructional systems that have effective interfaces is again not sufficient.
I do not think that any of us intentionally build bad systems. I think all of us want
guidelines, directions, and information about the correct research issues in intelligent
tutoring systems.

Finally, I would like to propose some additional research areas that
complement some of the items that I have just mentioned. Because of the nature of
the interface that we are concerned with-i.e., an interface for an intelligent tutoring

175

system-there are a number of specific research issues that can be examined. An
Intelligent Tutoring System is different from other types of systems because it is
concerned with teaching. Contained within these systems is knowledge about the
domain and knowledge about the student. A teaching system also contains knowledge
about the objectives of a lesson and how these objectives can be achieved. A major
way that we achieve these objectives is by asking questions and then analyzing the
answers to these questions (our minimal system). As a result, one of the major
research issues for people interested in instructional systems should be how can the
interface guide the questioning of the student and the direction of the instruction?
Unfortunately, very little has been done in the area of teachers' questions. We simply
do not know what types of questions tend to stimulate students' inquiry skills or what
types of questions direct students' conversations. Questions tend to dominate the
classroom environment, yet we know very little about how to frame questions to
affect this environment.

Even less is known about students' questioning behavior and how an interface
can provide an environment that will promote students' questioning behavior.
Students tend to ask very few questions in a classroom. Can we do better with
computers? Can we give students the tools that will allow them to explore domains
and not be afraid to pursue goals?

A second area of research should be directed toward the examination of appro-
priate sequencing techniques. How do menus, natural language interfaces, etc, help
focus the student's attention on the goals that need to be accomplished? There are a
wide variety of interfaces that seem to direct students' attention to appropriate areas
of the screen. All of these may affect the student's performance-or they may not.

The more ambitious the range of instructional sequences being catered for, the
more complex the instructional system. This is one of the more positive aspects of
ITS. One of the major differences between ITS and CAI is that ITS allows the
designer to think about processing large chunks of information about students.
Armed with powerful Al tools, we are able to achieve cognitively compatible
programming techniques. Rather than designing S-R -like systems, instructional
designers can now focus on processing students' strategies (both good and bad). This
is the process that Miller referred to as designing for a semantic environment.

Examples of how the interface can affect the sequencing of instruction were
given by Beverly Woolf in her explanation of her system. Students were presented
with a series of pipes, dials, etc, in which they observed information and reacted to
prompts. The way the dials were positioned on the screen and the ability of the
student to manipulate specific dials affected both the instructional process and the
internal knowledge representation in the system.

Knowing how the sequence of instruction relates to other types of tools is
another powerful idea. In a recent demonstration, one of my students built an ITS to
teach people how to use IBM DOS. He aimed his instruction at a group of bankers in
a business environment. One of the things that he noticed with this particular group
of students was that they did not use advanced commands because they were afraid of
the consequences of their actions. As a result, he built a small simulator that would
allow them to try out the commands before they used them on the real system. This
had a major impact on how the users interacted with both DOS and the tutor for

176

DOS. They used the tutor much less, played with commands much more, and used
much more sophisticated command strategies.

The construction of intelligent tutoring systems raises a number of issues for
researchcrs that have no counterparts in other fields. It allows designers to explore
the many different communication possibilities such as graphics and powerful
processors, but it also imposes limitations such as available screen space and the
requirement of simpler learner control facilities. As the technology increases, we are
forced to expand our design tools. Unfortunately, we are hindered by the fact that we
know relatively little about the teaching process, the nature of the learning process,
and individual differences among students. In response to such challenges, human
factors rcsearchers now need to sharpen their conceptual tools and create more
powerful links between their research and its educational application.

177

REFERENCES

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of winan-conputer
interaction. Hillsdale, NJ: Lawrence Erlbaurm Associates.

Wright, P. (1981) luman factors and CAI. Paper presented at the Special Workshop on
Issues of CAl, University of Delaware, Newark, Delaware.

178

CHAPTER 7

PRAGMATIC CONSIDERATIONS IN RESEARCH, DEVELOPMENT, AND
IMPLEMENTATION OF INTELLIGENT TUTORING SYSTEMS*

William B. Johnson
Senior Scientist

Search Technology, Inc.

I. INTRODUCTION

The previous chapters in this volume have elaborated on various aspects of intelligent tutoring systems
(ITSs). Topics discussed thus far include expert and student modules, design of curriculum, hardware interfaces,
and programming environments. The substantive issues and state of the art have been discussed for each of
these topics. As the basic research issues are addressed and the applied technical and engineering issues evolve
toward solution, ITSs have the potential of affecting training in business, industry, schools, and the military.
However, good science and technology do not in themselves guarantee that ITSs will be successfully integrated
into training environments. There are many people-oriented and organizational issues that interact with science
and technology. These issues affect whether innovations like ITSs result in successful applications.

ITSs potentially have a wide range of applications across a multitude of disciplines and subject areas.
Training related to tactical planning, business decision making, and interpersonal communications are only a few
examples of candidates for ITSs. This chapter focuses on technical training for system maintainers and
operators. The pragmatic issues related to development and implementation of ITSs are also considered. This
chapter complements the previous chapters with a straightforward and practical discussion of the personnel who
will develop, implement, and evaluate ITSs.

To examine the real world issues of ITSs, this chapter first considers the users and developers of ITSs by
answering the question, who are ITSs for? Second, the chapter addresses the question of what each of these
users can expect from ITSs. The expectations scction considers not only the formal environments of school and
training but also other applications of ITSs. After discussing what ITS can do and for whom, the chapter takes
up the next question, how ITSs can be effectively developed and implemented. Implementation issues
discussed include not only scientific issues but also organizational considerations and constraints.

*This chapter is complemented by Johnson, W. B. (1987a). Developing expert system knowledge bases

in technical training environments. In J. Psokta, D. Massey, & S. Mutter (Eds.), Intelligent tutoring systems:
Lcssons learned. Hillsdale, NJ: Lawrence Erlbaum Associates.

179

Experience with ITS Development

This chapter is based on over a decade of experience with the development, implementation, and
evaluation of computer-based training systems (Johnson, 1987a, 1987b), including Framework for Aiding the
Understanding of Logical Troubleshooting (FAULT) and Troubleshooting by Application of Structural
Knowledge (TASK). During that 10-year period, the developments were in such domains as automotive and
aviation mechanics, communication electronics, and nuclear safety systems. These research efforts, conducted
by W. B. Johnson, W. B. Rouse, and R. M. Hunt, involved extensive interactions with curriculum developers and
instructors, students, and managers in the Army, Navy, electric utility industry, and post secondary technical
training environments. The work ran the gamut from basic research on human problem solving (Johnson, 1981;
Rouse & Hunt, 1984) to training applications in an operational environment (Maddox, Johnson, & Frey, 1986).
The work involved transfer of training evaluations and early experimentation with intelligent computer-based
instruction (Johnson, 1981, 1987b). These varied experiences with computer-based instruction projects permit
this author to discuss the pragmatic issues associated with the development and implementation of ITSs.

Researchers and developers of ITSs must consider a host of practical issues. These issues include:

1. obtaining funding for research and development,

2. obtaining support across multiple organizational levels,

3. winning the cooperation of subject-matter experts,

4. conceptualizing and developing usable software within time and budget constraints,

5. integrating instructional software into the existing curriculum,

6. evaluating software in the operational training environment.

An incident that exemplifies these real issues is an experience that this author had early in a project on
instructional software development for the military. During the kickoff meeting the commanding officer, a two-
star general, commented that computer-based instruction was "high priority" for his post and that we could
expect full cooperation from him. On the same day, the subject-matter experts and instructors said that they
were opposed to computer-based instruclion and were reluctant to cooperate. The cooperation of the experts
was far more critical than the enthusiasm of the general. Although the general opened the door, the experts and
instructors were the key to the development of effective instructional software. Therefore, as that project began,
it was an organizational issue, rather than one of science or technology, that threatened the development effort.

II. EXISTING INTELLIGENT SYSTEMS FOR TRAINING

Artificial intelligence research has been around for over 20 years (Newell, Shaw, & Simon, 1960) and
has been followed more recently by research with expert systems. The applications of the technology have
influenced such fields as medicine (e.g., INTERNIST/CADUCEUS, MYCIN, PUFF), chemistry (e.g.,
DENDRAL), biology (MOLGEN), geology (PROSPECTOR, DRILLING ADVISOR), communications
diagnosis (ACE), and locomotive repair (DELTA/CATSI). These examples of systems in development and
evaluation were designed not primarily as instructional or intelligent tutoring systems but as job decision aids
that try to bring an expert to any job site, laboratory, or clinic.

180

As Anderson explains in this volume, when users attempted to validate these expert systems, they
wanted to know how the system made dccisions. Users who could not obtain and understand the expert system's
path to a decision had difficulty accepting the decision. Although expert systems do typically have an exploration
facility, this feature is closely tied to the knowledge base and the way it has captured expertise. Often, as was the
case with MYCIN, expertise was captured in a highly refined, compiled state. The knowledge was immediately
meaningful to experts but obscure or meaningless to novices. Because the structure of the knowledge base could
not be easily demonstrated to the user, it was not suitable as a basis for training (Clancey, 1982).

Developers who attempted to improve the explanation of the system's expert decisions began to
understand that more than an expert model was needed. It became clear that knowledge had to be represented
in an organized way that made explicit the important relations and principles of the content discipline. The
system also needed to understand the user (which required a student model) and to know when and how to offer
explanation (which required on instructor-curriculum model). Researchers from instructional disciplines became
involved with the specification of additional system characteristics for ITSs.

Although there are a number of new ITSs in development today, for example, IMTS, the Navy's
Intelligent Maintenance Training System (Towne, 1987), the expert systems that have been developed to provide
instruction are relatively few. Further, many of the new systems are proprietary or simply have not yet been
extensively described in the available literature. A table of the systems discussed in this volume is given in
Appendix A. For the most part, the systems were developed as laboratory tools to test various hypotheses related
to specific aspects of learning via ITSs. These early research efforts were constrained by the limits of existing
hardware and software. Since then computational capability has dramatically increased, and the trend is
continuing. The impact of these early efforts can be seen in the software and hardware that exist today (Burton,
this volume).

Limitations of Laboratory ITSs

ITS research conducted in the controlled confines of the laboratory is basic research that paves the way
for the development efforts ultimately carried out in the real world. While one laboratory project concentrates
solely on student modeling, another project may be devoted to understanding expert diagnostic performance.
Other projects may be focusing on processor and interface issues. Ultimately, the fragmented portions of basic
research and development must be integrated and tested in real-world applications.

Developmental expert systems are generally not commercially feasible as real-world applications. The
system designers, knowledge engineers, and usually the programmers, have advanced degrees and are the
brightest professionals in their fields. The content experts are also an elite group chosen for their extensive
experience in the technical domain. The resulting program usually has limited application. It runs on a hybrid
machine that is not likely to be commonly found in actual instructional environments. Further, a glance at the
bottom line also shows that the high cost of development precludes replicating the effort for a real-world
application.

These remarks may sound critical of laboratory research on ITSs, but they are not meant to be. Early
development efforts must take place in the research centers of the universities, industry, and the military. But
these efforts have been underway since the sixties, and tie time has come to concentrate more effort on
developing real applications for ITSs. The findings of basic research should be tested against the constraints and
unpredictable problems of real training environments. These projects can begin with laboratory prototypes of
ITSs; but they must be developed, implemented, and tested in operational training centers. The following
sections of this chapter provide guidance for proceeding with real applications.

181

111. DESIGNING THE SYSTEM TO MEET USER NEEDS

The term tutorin implies that learning will take place. It follows that the user of an ITS is the student
in a classroom; and the studert in a classroom is definitely the principal ITS user. However, users also include
instructors, curriculum developers, designers, job incumbents, and managers. These groups and iheir special
needs must be considered as ITS research and development continues.

When a system is designed, the needs of the various users must be at the forefront of the designer's
attention. In reality, these needs are not necessarily aligned. For example, if the ITS knowledge base is
designed to be very easy for the instructor or content expert to develop, the result may be a training system that
is not robust enough to meet students' needs or expectations. If the ITS is made to run on an inexpensive, off-
the-shelf personal computer, the resulting system may be too slow to meet minimum requirements for multitask
processing or response time. On the other hand, when the requirements for the system are a very robust
response, sophisticatcd graphics, fast response, and an interactive knowledge base editor for the expert, the ITS
may be so expensive that development is not practical or even possible with present technology. Therefore,
successful development and implementation of ITSs depend on setting priorities among users' needs and
integrating their requirements. This section considers the requirements of each group of users.

ITSs for Adult Learners

There is likely to be extensive variance within the user population of any ITS. This is particularly true
for adult learners in industry and in technical training situations in the military. ITSs must be capable of
addressing these conflicting characteristics. For example, some adult learners are impatient with too much
review; others are upset with too little review. Some like the "nice to know" facts; others want only the pertinent
information. Some are embarrassed to ask questions, and others waste time by asking too many questions.
Adults are often outspoken about the time spent reviewing or the time spent teaching theory rather than
practice. For example, adults in technical training will question the value of studying an equation for calculating
engine thrust when the prime objective is to learn to troubleshoot the fuel control system of a particular jet
engine. It is incumbent upon ITS developers to explain to learners why something must be learned.

In a classroom of adult learners, the same people inevitably ask all the questions and thereby place
,nreasonable demands on both the group's and the instructor's time and resources. A well-dcsigned ITS should

be able to cater to the inquisitive learner and permit others to learn at a pace more in tune with thr'-" cognitive
and learning style.

Adult learners have additional characteristics that ITS designers should take into account. Adult
learners want to perceive immediate transfer of training to the demands of their job. They want reasonable
control over the instruction delivered. They are motivated to learn but are occasionally preoccupied with other
problems. Furthermore, they learn best by integrating past experience and new knowledge with practice
problem solving.

The adult learner in the military may be a new airman learning basic electronic principles or a senior
officer practicing decision making in a war simulation. In either case, the training system should be able to adapt
to the student first, then monitor and model the student's performance, and finally provide feedback and
correction accordingly.

182

Design Necds for the Technical Training Environment

Anderson (this volume) classifies knowledge that can be tutored into three categories: procedural,
declarative, and qualitative or causal. For technical training, which usually includes troubleshooting, the ITS
must provide tutoring in all of the categories of knowledge. It must do more than the mundane variety of
computcr-based instruction that merely provides drill and practice or limited tutorial with simplistic branching.

In addition to tutoring all these categories of knowledge, training for a technical system should permit
guided exploratory learning. The student should be able to explore how the system works overall and how
various components operate or fail to operate. The ITS should permit the user to learn the procedures for
operating the system. On a communication system, for example, the student should be able to manipulate
controls and observe the effects. That is, the student should be able to try out the system and understand the
effect of improper as well as proper operation. In the case of war games, the learner should be permitted to try
the "what if" moves and should receive an operationally oriented explanation of how the outcome was derived.
As with the technical simulation, such capabilities will enable the learner to understand the consequences of an
action. Finally, the ITS should be designed to provide the student with the opportunity to troubleshoot the
system, and it should provide tutoring as appropriate.

ITSs must permit errors, but they must also provide appropriate feedback based on the kind of actions
the learner chooses. Moreover, this feedback must be provided at the right time. Constant intrusive feedback
and advice may be detrimental to instruction (Munro, Fehling, & Towne, 1985). Feedback that is unclear or too
narrow in focus may also adversely affect learning (Rouse, Rouse, & Pellegrino, 1980).

The type of feedback that an ITS provides must also be carefully considered. In addition to correcting
errors and explaining why an action was an error, ITSs should allow the user to ask, "How am I doing?" The
answer can be based on a comparison of the student with either other students, a human expert, an information-
theoretic model, predetermined criteria, or merely a calculated total of time, actions, and errors. A performance
summary that integrates the student's monthly, weekly, or daily progress could also be made available.

Effective integration of ITSs also depends on the quality of the interface between the training device and
the users, including instructors and students. The system must be designed so that it is easy to learn and
compatible v"ith users' expectations, abilities, and limitations. The issues of learner friendliness, or cognitive
ergonomics, are a substantive topic in themselves and are addressed by Miller (this volume).

Design Considerations for Job Site Training

Learning is not limited to the classroom or to the technical training laboratories of industry or the
n. iary. In fact, more one-on-one tutoring takes place on the job than in the schools. Therefore, as ITS
research continues, considerable attention should be focused on the job site.

ITSs are likely to find their way into the job site as intelligent aids for operations and maintenance
personnel. These job aids have taken such names as Intelligent Maintenance Advisors (Richardson & Jackson,
1986) and Maintainer's Associates (National Research Council, 1986, p. 74). The Integrated Maintenance
Information System (IMIS), a U.S. Air Force project, has the potential of providing intelligent job aiding and,
eventually, intelligent tutoring. The U.S. Army counterpart to IMIS is called PEAM, the Personalized
Electronic Aid for Maintenance.

In the operations area, the Pilot's Associate program, sponsored by the Defense Advanced Research
Projects Agency (DARPA). is a notable example of job aiding in the. cockpit. A nrojert of the Air Force
Armstrong Aerospace Medical Research Laboratory, called the Designer's Associate, is using expert system

183

technology to provide scientific, technical, and regulatory advice to personnel involved in the specification,
design, and acquisition of aircrew training systems. The Designer's Associate project has an additional goal of
providing the user with available information in the area of human performance. Other expert systems
applications in maintenance are discussed by Richardson, Maxion, and Poison (1985).

Intelligent job aids, such as stand alone devices or those embedded in prime systems, have the potential
to provide system instruction, procedural advice on diagnosis and repair, and simulation-based training in the
field. As ITS research proceeds, it is imperative that training researchers work closely with job-aiding and
logistics researchers. If intelligent job aids and ITSs are developed independently, it is likely that functions will
be lost or duplicated when the two systems are integrated.

The integration of training and job aiding in one intelligent device has enormous potential. It could
serve to redefine the concept of apprenticeship training. At present, the computer is by no means equal to a
human master. However, a well-designed knowledge base and efficient human-computer interface could
provide the novice technician with an ever-present, patient, and intelligent mentor. The intelligent mainteiance
advisor could adapt to the competence level of the user and possibly even enhance the knowledge base from uscr
input.

Meeting the Needs of the Instructor and the Subject-Matter Expert

The development of ITSs requires major contributions from the instructors who provide expertise in the
subject matter and, often, in technical pedagogy. The importance and role of technical instructors is discussed
elsewhere (Johnson, 1987a).

If ITSs are to be effective in technical training environments, the instructors will also have to take a
leadership role in development. To make their participation possible, tools must be developed to permit
technical experts to create a knowledge base without the help of knowledge engineers or artificial intelligence
experts. The davelopment of such tools was one of the goals of the Steamer project (Hollan, Hutchins, &
Weitzman, 1984) and continues to be a primary goal of Intelligent Maintenance Trainer System (Towne, 1987;
Burton, this volume). Another project that is developing tools for ITSs is Knowledge Acquisition/Intelligent
Authoring Aides (KA/IAA). This tri-service project will develop ITS authoring tools and demonstration
systems Wn the domains of satellite control, explosive ordnance disposal, and electronic troubleshooting. A
primary goal of this project is to develop tools that subject-matter experts who know little about computers can
use to develop ITSs.

The development and field use of ITS authoring tools should be a high priority over the next 5 years.
An ITS authoring system should be used by content experts and instructors, working first with artificial
intelligence researchers and then by themselves. Practical applications will permit researchers to identify
problems and new development needs. These field tests of existing technology will permit ITS authoring .,ystems
to evolve along with the basic research on ITSs in the laboratory.

IV. ISSUES IN IMPLEMENTING ITS

Thus far, this chapter has briefly mentioned a few examples of existing ITSs and attempted to identify
the design requirements for meeting the needs and expectations of ITS users. It has also described
characteristics of ITSs in the classroom and on the job. This final section will address pragmatic issues related to
the implementation of ITSs.

184

Identifying Candidates for ITS Application

The identification of likely candidates for the application of ITSs may look like the search for a
"problem to the solution (the ITS)." That is not the case. Advances in computer technology, in both hardware
and software, combined with successful efforts to understand how humans learn, have put researchers and
training system developers in a position to improve instruction with technology. Although ITSs are still in their
infancy, the time has come to make the transition from the laboratory to the field. It is time to use existing
authoring systems and various commercial expert system shells to attempt to build ITSs and try them out.

Candidate application areas for ITSs should be evaluated according to several constraints, or pragmatic
considerations, which are discussed in this section. These constraints are formidable, but they can I- controlled
if handled correctly. The first consideration is that ITSs will require programming tools and hardware that may
or may not exist when the project begins. lowcver, this problem may not be insurmountable.

The second consideration is that the programming environments and hardware capabilities are in a
constant state of flux. The particular programming language with which the development of an ITS begins is
likely to undergo numerous modifications before the project delivers a product. The hardware is continually
changing and offering improvements in memory, storage, and processing speed. Although such changes often
cause a minor rewrite of software, they are also likely to increase user capability, thus raising the potential ITS
payoffs.

A third consideration is that for now and the foreseeable future, the development of ITSs is labor
intensive. It requires an extensive commitment of time from scientists and engineers, computer programmers,
knowledge engineers, and subjcct-mattcr experts. A few ITS authoring environments are emerging, but they will
need constant support and improvement from the artificial intelligence experts in universities, industry, and
military laboratories. Basic research in cognitive science and various areas of psychology and human engineering
will continue to yield new findings that must be incorporated into the development of ITSs. Applications-
oriented researchers now must take the existing technology into classrooms and training centers. Subject-matter
experts should participate in ITS development to evaluate the tools and products of those tools.

The fourth consideration is that thorough formative and summative evaluation of ITSs will in itself
require substantial resources.

Characteristics of Candidate Application Areas

The following characteristics describe areas that are suitable for traditional computer-assisted
instruction. These characteristics are particularly relevant to ITSs candidate application areas for ITSs because
the level of resources necessary for their development is so high.

1. High flow of students
2. Expensive real equipment
3. Unavailable real equipment
4. Unsafe real equipment
5. Critical skill and knowledge must be developed
6. Low availability of instructors
7. Training conducted at remote sites
8. High public visibility
9. Need for high volume of recurrent training

185

To maximize the effective use of resources and to achieve high cost effectiveness, ITSs should be used
for instructional areas that have a high annual flow of students. A high volume of students will also be attained if
it is expected that the ITS will be used for many years. Principles of electricity and electronics, turbine engine
operation and diagnosis, radar operation and repair, satellite communications operations, and digital computcr
operation are only a few examples of courses with a high flow of students. Many of these courses traditionally
have been the focus of educational technology research and development.

High student flow is not the only way of justifying the cost of ITS development. Prime equipment is
often not available or not practical as an instructional device other than for on-the-job-training. This
characteristic applies to such examples as training for nuclear fuel-loading equipment, nuclear power plant
operations, explosive ordnance disposal, and system troubleshooting on the launch processing system for the
space shuttle. These examples also represent tasks where performance must be both error-frec and timely.

Technical training is often delivered at numerous remote sites where there may be very few students.
Many remote sites do not have an instructor, training equipment, or space designated for training. Also, the
demands of the job may not provide a scheduled time for necessary training. In these cases, personnel may be
required to perform a critical task that they learned in a technical class 5 years before. A ship, submarine,
remote airbase, or orbiting space station are examples of remote locations where needed training might best be
delivered with ITSs. The ITS does not have to be a stand-alone, dedicated training device. Instructional
software can be embedded in the prime system, which can then be used to provide training. This embedded
training can be as basic as using a word processor to teach a user to operate the word-processing system or as
complex as permitting a fighter pilot to fly simulated battles with training software embedded into the aircraft's
avionics and weapon systems.

The unavailability of competent instructional personnel may also drive the decision to develop ITSs in a
given area. When this is the case, the expertise of the limited number of instructors can be incorporated into an
ITS.

A combination of characteristics such as high student flow, complex or unavailable prime systems, and a
low number of available instructors is a reasonable justification for the development and use of an ITS. These
characteristics, however, do not necessarily mean that an ITS can be developed. Other questions must be asked
about the prime system and organizational resources to determine whether an ITS is feasible:

1. Does human expertise exist in this area?

2. Can human experts communicate their knowledge?

3. Can the area for expertise be clearly defined?

4. Do an ITS authoring system and approach fit the needs of the training
system?

5. Do human and computer resources exist to develop, implement,
evaluate, and support the ITS?

Given present ITS development tools and strategies, humans must supply a substantial amount of
subject-matter expertise. In the future, particularly for technical training, it may be possible to extract this
expertise from computer-aided design and manufacturing data.

The area of expertise must be clearly defined. For example, an ITS cannot be expected to train a person
to be an all-round troubleshooter on all electronic equipment. The work on the TASK and FAULT systems
showed that training must be context-specific to maximize transfer to real equipment. An example of a clearly

186

defined area of development is the Intelligent Maintenance Trainer System project at Behavioral Technology
Laboratory. The first ITS system developed for that project deals with the rotary blade system of a specific Navy
helicopter. However, this specific knowledge base is a by-product of a larger effort to develop generic tools for
ITS authoring.

The availability of ITS authoring tools should also be considered. The complcxity of writing an ITS
from the ground up in LISP, PROLOG, or another artificial intelligence language would far surpass the effort
using an ITS development system. But there are two problems. First, ITS designers would be limited to the ITS
design constraints imposed by the developers of the authoring system. Second, there are currently no such
complete ITS development packages available. The best compromise at this time is an "open" system that would
provide authoring tools and also permit the combined use, as needed, of a programming language for artificial
intelligence.

Finally, the feasibility of an ITS also depends on the human and computer resources needed to develop,
implement, evaluate, and maintain the system. The answer to this question has, of course, a very broad range
depending on how ambitious the project is. This author is familiar with estimates of the time it takes to develop
simulation-oriented, computer-based instruction that range from 200 to 400 hours of development for 1 hour of
instruction. Anderson (this volume) estimates that development of an expert module may require "hundreds" of
development hours per instructional hour. Building the student module and the instructor module are also
sizable tasks that may have ratios of 100 to 200 hours of development per student hour. Using these rough
numbers and assuming that much of the work will be done by senior level researchers means that the early
single-copy ITSs are likely to he exremely expensive. The hope is, of couise, that the research needed for these
early systems will develop concepts and tools that will ultimately be widely used and eventually justify the initial
expenditures.

V. ITS APPLICATIONS AND RESEARCH

This volume has described the scientific, technological, and organizational issues related to ITSs. The
previous chapters, for the most part, have described basic research issues and suggested priorities for continued
basic research. This chapter has complemented the others by addressing the pragmatic and applied issues
related to ITSs. Therefore, this chapter ends with recommendations for research related to ITS applications.

Research Directions for the Application of ITSs

Near-term research should capitalize on the interim results of research and development in progress
and on findings from projects that have recently been completed. The goals of near-term research and
development should be the following:

1. Refine existing tools by developing ITSs,
2. Explore the development and delivery of ITSs on microcomputers,
3. Use existing expert system shells for ITSs,
4. Study the cognitive aspects of user interfaces,
5. Commit to evaluation, and
6. Integrate intelligent job aiding with intelligent training.

The first recommendation is to move forward from the laboratories to real-world applications. Such
efforts will permit researchers and curricula developers to identify software and hardware limitations. Further,
these efforts will refine the tools and practices of ITS development. The Navy has funded the Steamer project
and, most recently, the Intelligent Maintenance Training System (IMTS). The IMTS project has produced its

187

first demonstration system, a helicopter maintenance and troubleshooting system. The second effort of that
project will more closely involve Navy technical personnel in the knowledge development phase. While the
second development is underway, the first system will be evaluated in an operational training squadron.
Simultaneous development and use will accelerate maturation of the IMTS and other such ITSs.

The Knowledge Acquisition/Intelligent Authoring Aids (KA/IAA) is another example of research in
progress that will result in tools for ITS development. This project will demonstrate an ITS system first in a U.S.
Army training environment, although the work is sponsored by the Army, Navy, and Air Force.

In the short term, the efforts of the KA/IAA and IMTS projects can be expanded. If a variety of
research and development teams are permitted to use and modify the ITS authoring tools, the results arc likely
to be improved ITS development systems within 3 to 5 years. In that same time frame, hardware capabilities will
improve, thus improving the ITS.

Not all of ITS development and delivery has to be done on dedicated Al workstations. A near-term
effort might compare expert system development capabilities of off-the-shelf microcomputers and Al
workstations. Such comparison must consider not only capabilities but also costs. The cost tradeoffs must
incorporate in particular the expected time needed to develop ITS software based on the capabilities of the
respective machines and programming environments.

Near-term research should explore the use of personal computers for ITS delivery. When the ITS must
be delivered on an Al workstation, its acceptance is hampered because the user organization is not likely to have
a reasonable number of such stations in each training center. The abundance and low cost of personal
computers make them likely candidates for ITS delivery.

If microcomputers are used as development systems, it may be possible to capitalize on existing expert
system shells that are readily available. The off-the-shelf frameworks for expert system development are most
likely to provide the expert module as described by Anderson (this volume). However, other portions of the ITS
system, such as the student module, will have to be developed and integrated with the existing software.

An Air Force example of a small-scale effort implemented on an IBM PC/XT is described by White
and Cross (1986). They combined an instructional program written in PASCAL with the M.1 expert system shell
by Teknowledge, Inc. to build a small ITS for a war game called TEMPO. Their project selected the low cost,
off-the-shelf hardware to make their ITS available in numerous Air Force locations. Their program can be
modified for real-world applications and provides an intelligent computer adversary as a gaming partner. It
includes an instructor-expert module to provide advice and a performance critique.

Another near-term research effort should be the integration of ITSs with existing and proven computer-
based training systems. This type of project can capitalize on the computer systems already in place as well as on
the organizational support for those systems.

Ongoing evaluation is an important near-term research goal (see Littman & Soloway, this volume).
Evaluation should focus on existing ITS development tools. It should also assess the value of ITSs over
conventional computer-based instruction and over conventional instruction. These evaluations could determine
whether the ITS is instructionally sound and cost effective. Further, evaluations will help to identify the strengths
and weaknesses of current ITSs and provide direction for future research and development. In the near term,
research might broaden the scope of evaluation to include new measures that are reflective of the reality of the
work place. In a frenzy to develop new systems the tendency is often to de-emphasize evaluation. Ideally, ITS
research and development should avoid that temptation.

ITS development must place adequate emphasis on the user interface (see Miller, this volume). ITSs
must be developed to be easy to use. Research should focus on the learnability of intelligent instructional
software. A research effort of this type might focus on "cognitive ergonomics," which refers not to typical

188

human factors considerations likc character size, color, and contrast but to the extent that the user can easily
understand and learn from the system. The result might be a set of guidelines to be used not only by ITS
designers but by all personnel involved with the design of prime or training systems.

A previous section discussed the job incumbent and issues related to intelligent job aids and embedded
training in real equipment systems. This author believes that researchers in the fields of intelligent job aiding
and ITSs should develop a close working relationship. Lack of cooperation among these research communities
will result in redundant efforts and difficulties with integrating their work at a later date.

The near-term research and development efforts will support long-term goals as well as defiMe new
ones. This chapter has concentrated on the use of ITSs in technical training and has not addressed such areas as
tactical decision making, business management, interpersonal communications, or public education.

The near-term recommendations imply that the depth of ITS research can be increased by building and
evaluating tools and application systems in various technical domains. Long-term research should emphasize the
breadth rather than the depth of ITS development. This research should investigate whether the tools and
trchniques of ITSs for technical subject matter will transfer to other instructional areas.

Summary

This chapter has answered the following questions: Who will use ITS? What can each user expect from
ITSs? How can ITSs be developed? It has emphasized real-world, pragmatic issues related to ITS development.

The field of ITSs is in its infancy, and development efforts are likely to be labor intensive. However,
now is the time to develop and test ITSs in a variety of training applications. The science and technology,
although not fully matured, are ready to undergo preliminary application.

189

REFERENCES

Anderson (this volume).

Burton (this volume).

Clancey, W. J. (1982). Tutoring rules for guiding a case method dialog. In D. Sleeman and J. S. Brown (Eds.),
Intelligent tutoring systems (pp. 201-225). New York: Academic Press.

Dallman, B. (1986). Intelligent tutorial systems research. In Proceedings of the Air Force Conference on
Technology in Training and Education, (pp. 1-30 - 1-60). Montgomery, AL: Air Univcrsity, U.S. Air Forcc
Academy.

Feigenbaum, E. A., & McCorduck, P. (1983). The fifth generation: Artificial intelligence and Japan's computer
challenge to the world. Reading, MA: Addison-Wesley.

Hollan, J.,D., Hutchins, E. L., & Weitzman, L. (1984). Steamer: An interactive inspectable simulation-based
training system. The Al Magazine, 5, 15-27.

Johnson, W. B. (1981). Computer simulations (or fault diagnosis training: An empirical study of learning from
simulation to live system performance. (Doctoral Dissertation, University of Illinois, 1980) Dissertation
Abstracts International, 41, 4625-A.

Johnson, W. B. (1987a). Developing expert system knowledge bases in technical training environments. In J.
Psokta, D. Massey, & S. Mutter (Eds.), Intelligent tutorin, systems: Lessons learned. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Johnson, W. B. (1987b). Development and evaluation of simulation-oriented computer-based instruction for
diagnostic training. In W. B. Rouse (Ed.), Advances in man-machine systems research: Vol. 3. Greenwich, CT:
JAI Press.

Littman & Soloway (this volume).

Maddox, M. E., Johnson, W. B., & Frey, P. R. (1986). Diagnostic training for nuclear power plant personnel:
Volume 2. Implementation and evaluation, (EPRI NP-3829), Palo Alto, CA: Electric Power Research Institute.

Miller (this volume).

Munro, A., Fehling, M. R., & Towne, D. M. (1985). Instruction intrusiveness in dynamic simulation training.
Journal of Computer-Based Instruction, 12, 50-53.

National Research Council. (1986). Isolation of faults in Air Force weapons and support systems. Washington,
DC: National Academy Press.

Newell, A., Shaw, J. C., & Simon, H. A. (1960). A variety of intelligent learning in a general problem-solver. In
M. C. Yovits & S. Cameron (Eds.), Self-organizing systems (pp. 153-189). New York: Pergamon.

Reitman, W., Weischcdel, R. M., Boff, K. R., Jones, M. E., & Martino, J. P. (1985). Automated information
management technology (AIM-TECH): Considerations for a technology investment strategv (Report No.
AFAMRL-TR-85-042). Wright-Patterson Air Force Base, OH: Air Force Armstrong Aerospace Medical
Research Laboratory.

190

Richardson, J. J., & Jackson, T. E. (1986). Developing the technology for intelligent maintenance advisors.
Journal of Computer-Based Instruction, 13, 47-51.

Richardson, J. J., Maxion, R. A., Poison, P. G., & De Jong, K. A. (1985). Artificial intelligence in maintenance:
Synthesis of technical issues (AFHIRL-TR-85-7). Brooks Air Force Base, TX: Air Force Human Resources
Laboratory.

Rouse, W. B., & Hunt, R. M. (1984). Human problem solving in fault diagnosis tasks. In W. B. Rouse (Ed.),
Advances in Man-Machine Systems Research: Vol. 1, 195-222. Greenwich, CT: JAI Press.

Rouse, W. B., Rouse, S. H., & Pellegrino, S. J. (1980). A rule-based model of human problem solving
performance in fault diagnosis tasks. IEEE Transactions on Systems, Man. and Cybernetics, SMC-1 (7), 366-
376.

Towne, D. M. (1987). The generalized maintenance trainer: Evolution and revolution. In W. B. Rouse (Ed.),
Advances in Man-Machine Systems Research: Vol. 3. Greenwich, CT: JAI Press.

White, G. B., & Cross, S. E. (1986). TEMPO-Al: Using artificial intelligence concepts in war gaming and
professional military education. In Proceedings of the Air Force Conference on Technology in Training and
Education (pp. V-98 - V-117). Montgomery, AL: Air University, U.S. Air Force Academy.

191

DISCUSSION

Pragmatic Considerations in Research, Development,
and Implementation of Intelligent Tutoring Systems

Pamela K. Fink
Research Scientist

Southwest Research Institute
San Antonio, Texas

One of the problems with pragmatic issucs is that when you look at a list of
things you should do, it all seems pretty obvious. Since I did not want to simply re-
hash what already looked obvious, I tried to figure out exactly where these lists we
generate come from. I realized, then, that the items on these lists all come from
experience. I decided that this would be the point of my talk: we have to learn from
experience because the pragmatic issues really do come from hearing war stories told
by other people in addition to our own. And, in a sense, this is the real issue of ITS in
general. Teaching concerns passing on experience so that we are not reinventing the
wheel every time we attempt to solve a problem. So, I tried to think of what
experiences--lessons learned--exist that ITS could learn from.

One of the obvious responses is that ITS is computer software, and there are
plenty of war stories to learn from in computer software development. I started to
make a list of some of the things we could learn from in developing conventional
computer software (see Figure 7.1). As Richardson implied, we at Southwest Research
Institute were involved with a project for General Motors in developing a system that
at one point supported 55 different programmers and engineers. The system tests the
electronics in many of the top-of-the-line Buicks and Cadillacs. Some of these cars
have as many as 16 microprocessors. So there are plenty of war stories just at
Southwest Research Institute.

Of course, this list of stories and lessons-learned could go on and on, but one of
the first lessons that comes to mind is to make sure you get the users involved from
the beginning, because they are the ones that arc going to use the system. Involving
the users is critical to whether or not the system you are developing is going to be
used, regardless of whether it actually solves the problem you set out for it to solve.
You also have to think about the user interface. If the user cannot deal with the user
interface, then the system is not going to be used.

Also, you have to make sure that the hardware and software are appropriate so
that when you are building this system, you are not constantly fighting the
environment that you are trying to build it in. You should make sure that they do
indeed fit the problem you are trying to solve. You should also make sure that you
understand the problem before you start designing and coding. Going back later
when you suddenly realize you misunderstood something can be very expensive. Of
course, this is something that Al has helped with. And whenever you are weighing
trade-offs-bccause there are bound to be some when you are coding--again, make sure
you take the user into consideration.

And then, of course, there is the ever-present documentation. You must
document so that if you are not the one who is maintaining the system, or even if you

193

are, there is some more human description of what the code is supposed to do. These
are just some of the typical things that come up when you are developing
conventional software.

Then I went on to think, ITS also involves a lot of artificial intelligence, and,
in some sense, it uses expert systems. So what are some of the war stories wc know

WHAT ITS CAN LEARN FROM

CONVENTIONAL SOFTWARE DEVELOPMENT:

" User involvement from the start

" User interface is paramount

* Select appropriate hardware/software

" Understand what problem is to be solved
before starting to design and code

* Keep needs and objectives in mind when performing
trade-offs during design and implementation

* Documentation

Figure 7.1. Lessons to Be Learned
from Computer Software Development.

from expert systems? Again, you have probably seen the list in Figure 7.2 a million
times-it's common sense. First, the expertise has to exist if you are going to build an
expert system. You cannot build an expert system for expertise that does not exist.
Second, the source of expertise--and this is another key issue-must be nonhostile. I do
not even ask that the experts be enthusiastic about the system. What I have usually
found is that as long as they are not hostile to start with, they become enthusiastic
after a period of time. It is all a matter of how you handle it. Another point is that
an expert system has available to it only the knowledge you put into it. This often
comes as a surprise to the people I work with who are the domain experts. They
sometimes believe that somehow, miraculously, even though you know nothing much
about their domain, you can put all this knowledge into the expert system and have it
work as well as, if not better than, the original source. Also, the area of expertise
must be well-defined. That is just a limitation on current technology, but it may bc a

194

limitation for a long time to come. We must have a well-defincd area in which to
work. Another point is that the area of expertise must be of interest. There is no
point in building an expert system that no one is going to care about, and this is also
true if we are going to develop an ITS.

WHAT ITS CAN LEARN FROM
EXPERT SYSTEM DEVELOPMENT:

* Expertise must exist

* Source of expertise must be non-hostile

* An expert system only has available
to it the knowledge put in it

" Area of expertise must be well-defined

* Area of expertise must be of interest

Figure 7.2. Lessons to Be Learncd
from Expert Systems.

So, what is the moral of this story? Usually, when software systems are being
developed, the programmers arc all busy following bugs and trying to get a certain
piece of software to work. And they are so busy looking at the tree that they lose
sight of the forest; that is, the system as a whole. We must keep people looking at the
forest when designing these systems in order to be sure that when we are done, we
have met the user's needs.

Now, when I looked at these lists, I thought my presentation was about finished, and
I set about to wrap up my talk. Then I realized that I had done exactly what I was trying to
make sure we did not do. There are other forests we need to deal with; ITS is
multidisciplinary. I realized that I was addressing only the software issues here, which is the
area I know the most about. But I was not addressing all of the other issues involved with

195

developing an ITS. I was busy looking at one forest, the software issues, when there arc
other forests that must be considered as well. Let me illustrate what must be considered
when developing an ITS. Figure 7.3 shows how I now imagine ITS.

Conventional
Software

E-S
Development CAI Human

Factors

Education

Psychology

Figur, 7.3. Illustration of ITS Development.

We must bring in pragmatic issues from all of these areas for ITS. This is a
river. It starts up here at the top, and it has some winding curves in it. All these other
areas (expert systems, conventional computer-aided instruction, the edticational field,
psychology, issues in human factors) arc going to contribute to this river that will pro-
duce an intelligent tutoring system. Along the way, you are going to have to make
sure that you stay in the mainstream and take into account all of these tributaries or
you will end up getting stuck in a little whirlpool and running around in little circles
or going down a deadend branch. There mai be some rapids on the way, but you
have to be sure that those rapids arc in the mainstream. They may be rough, but they
will take you to the end eventually. So, this is really my main message- the key
pragmatic issue is that wc must remember to learn from experience. It is something
that we don't always do.

In a sense, Figure 7.4 lists my recommendations. We should be--and I hope I
am not missing any areas that should be contributing to ITS-exploring all of these
areas. Of course, in exploring all of these areas, the problem is that no one person can
possibly understand all of the issues involved in all of these areas. We must, in some
way, create a network of researchers who arc experts in all of these different areas

196

and who communicate with each other. And this need opcns another set of pragmatic
issues that I have been involved with: trying to communicate with people who do
indeed speak English but who work in other areas of expertise. Still another problem
is communicating the rcal issues of any particular field to someone who does not
know much about the field.

RECOMMENDATION: BASE NEAR-TERM, 'PRACTICAL'
EFFORTS ON WHAT WE ALREADY
'KNOW'

" Explore expert system technology

" Explore CAI

" Explore psychology

" Explore education

" Explore conventional software

" Explore human factors

Figure 7.4. Recommendations.

197

CHAPTER 8

EVALUATING ITSs:
THE COGNITIVE SCIENCE PERSPECTIVE

David Littman and Elliot Soloway
Cognition and Programming Project
Department of Computer Science

Yale University
New Haven, CT

I. INRODUCTION: WHAT THIS CHAPTER IS ABOUT

There can be no doubt that evaluating Intelligent Tutoring Systems (ITSs) is costly,
frustrating, and time-consuming. In fact, in our own work to build PROUST,
one component of an ITS for introductory programming students, evaluation has
consumed nearly as much effort as the design of PROUST itself. If evaluation of
ITSs is so costly, why do it at all? Wouldn't it be better just to finish one ITS and
then build the next one, perhaps letting the marketplace determine survival? On
the contrary: our experience with PROUST has taught us that, far from being a
useless burden, evaluation pays off by helping to answer two evaluation questions
that are central to cognitive science, Artificial Intelligence (AI), and education:

1. Evaluation Question 1: What is the educational impact of an ITS on students?

2. Evaluation Question 2: What is the relationship between the architecture of
an ITS and its behavior?

Our attempts to evaluate PROUST with the two evaluation questions in mind have
proved to be very beneficial. VvWe have learned a great deal that we might not other-
wise have learned about how novices learn to program, how to teach programming,
and how to build ITSs to actually do the teaching.

As we have gained experience evaluating PROUST, we have found that ad-
dressing the two evaluation questions leads to a somewhat different perspective on
evaluation from that of traditional educational evaluation. Traditional educational
evaluation consists of two main categories, formative and summnative evaluation.
Designers of educational technology use formative evaluation to define and refine
their goals and methods during the design process. They use summative evaluation
to determine whether a finished educational product is effective after it has been
built. Because building ITSs is still somewhat an art, and because there are few ITSs

199

that can be called "finished," designers of ITSs are currently more concerned with
usefully guiding the development of their systems than with determining whether
they are effective educational end products. At least for the time being, then, the
idea of formative evaluation seems more appropriate for designers of ITSs than does
the idea of sunmative evaluation. Hence, we have formulated Evaluation Question
I and Evaluation Question 2 to be much more focused on the development, of ITSs
than on determining whether they are effective educational end l)roducts.

Unfortunately, there is no standard set of evaluation methods for addressing the
two evaluation questions - the field of ITSs is too young. However, as a result of our
ongoing evaluation of PROUST, we have begun to define two classes of evaluation
methods that are useful for this purpose. One class consists of methods based on
recent progress in student modeling. From them, researchers can learn how an ITS
affects students and changes their knowledge and problem-solving skills. Methods
in this class can be used for extcrnal evaluation, so called because this kind of
evaluation assesses an effect external to the ITS, namely the student's learning.
External evaluation therefore addresses Evaluation Qucstion 1.

The second class of evaluation methods, adapted from knowledge engineering
techniques developed for AI, can be used to construct an accurate picture of the
relationship between the architecture of an ITS and its actual behavior. These
methods are the basis of internal evaluation, which is concerned with the inner
workings of an ITS. Internal evaluation therefore addresses Evaluation Question 2.

In this chapter we explore external and internal evaluation and demonstrate how
the two classes of methods we have developed have helped us to address the two
evaluation questions. In particular, we show how using the methods to evaluate
PROUST has made it possible for us to (a) isolate specific aspects of PROUST
that have particular effects on students' learning and (b) understand more clearly
how the design and implementation of PROUST lead to its behavior. One of the
major benefits of external and internal evaluation is that they have greatly enhanced
our ability to improve and modify PROUST in a controlled, goal-directed manner
as we design and redesign subsequent versions; this is, we argue, a primary goal of
current work in ITSs.

Even though our methods of evaluation have been productive, we are aware that
we tread new, potentially controversial ground. We are equally aware that, at this
time, we rannot present a fully formed theory of external and internal evaluation.
Nonetheless, the potential usefulness of the directions and techniques for evaluation
identified in this chapter warrant their presentation to the ITS community.

The remainder of this chapter explores the possibility of evaluating ITSs from
the perspective of external and internal evaluation. First, in Section II, we look
more closely at external evaluation to see how recent advances in cognitive science
have made it possible to perform fine-grained analyses of the impact of an ITS
on a student's underst. ,ding. These methods are illustrated with examnples of
evaluations of PROUST, our ITS for novice programming. Next, in Section III, we
describe some of the knowledge engineering methods of internal evaluation we have

200

used to gain insight into the relationship between the architecture of an ITS and
its behavior. These methods are also illtstrated with examples from our own work
with PROUST. In Section IV we show how me'thods similar to those of external and
internal evaluation have been used to evaluate several well-known ITS s. Finally,
in Section V, we inldicate several issues for ftiture research that are iml)lied by our
analysis of evaluation.

II. EXTERNAL EVALUATION: TIE COGNITIVE PERSPECTIVE

Recent progress in cognitive science and Al has provided the field of computer-based
instruction with new and powerful tools - namely process-based student models
(see VanLehn, this volume) - for representing students' knowledge and problem-
solving skills. Because these tools were not, available to researchers who developed
Computer Aided Instruction (CAI), they made the reasonable and pragmatic as-
sumption that students' answers to test questions adequately reflected their mental
processes. The goal of evaluating CAI, therefore, has been primarily to deter-
mine whether students can correctly respond to test questions. With the advent
of process-based student models, however, the goal of evaluating ITSs ought to be
much more ambitious. That goal should be to determine how well the ITS teaches
students the knowledge and skills that support the cognitive processes required for
solving problems in the content domain of the ITS.

This cognitive perspective on external evaluation, made possible by student mod-
eling, is the topic of this section. We first define student models and discuss their
potential role in evaluation. We then report on our external evaluation of PROUST;
finally we address some anticipated criticisms of applying the cognitive perspective
to external evaluation.

Student Models and Their Use in Evaluation

As an ITS interacts with a student, it builds up an understanding of the student's
knowledge and skills which it uses to interpret the student's behavior and, in part, to
guide its own actions. The common name for the ITS's understanding of the student
is "student model". In order for an ITS to build a student model its designers must
provide it with methods of reasoning about students' problem-solving in the ITS's
domain of instruction. There are many kinds of student modeling methods (see
VanLehn, this volume) but two major types are those that are based on process
models of problem solving and those that are not.

Student modeling techniques based on process models solve problems in a suppos-
edly humanlike way. For example, the student modeling component in Anderson's
LISP tutor is based on a process model of how students write simple LISP programs
and is embodied in their GRAPES simulator (Anderson, Farrell, & Sauers, 1984).
The LISP tutor uses the GRAPES simulator to simulate the problem solving of

201

novice LISP programmers when they write simple LISP programs. The student
model is thus represented in terms of what the GRAPES process model did to solve
the problem.

Student models that are not based on comprehensive process modeling do not
solve problems as hunans do. For example, WUSO1?, the tutor for the discovery
game WIIMPUS built by Carr and Goldstein (Goldstein, 1982), has a check list
of skills required for playing W(JNIPUS. The student model simply consists of the
skills that have been checked off in WUSOR's representation of the skills. WUSOR
does not try to play WUMPIIS as a student would in order to build its student
model and, hence, (toes not use process models.

Whether or not student models actually have process models that simulate stu-
dents' behavior, they can be used to assess how well the ITS teaches students skills
and knowledge for solving problems that are like the problems encountered during
learning. First, student modeling techniques can guide the construction of new
problems for testing the student. Because these techniques use explicit representa-
tions of problem solving knowledge and skills, and possibly the actual processes of
problem solving, they can be used to predict how well the student will perform on
the new problems and thus which problems should lead to effective problem solving
and which to ineffective problem solving.

Because student modeling techniques capture how students solve problems and
not merely that they can solve the problems, they can be used to identify problems
that the student should be able to solve. Student modeling techniques that are not
based on process models can be used to predict some of the knowledge and skills
the student will use to solve problenis. Process-based techniques can be used to
predict the actual process the student will go through to solve problems. Thus, the
evaluation of ITSs can be substantially different from the evaluation of CAI. The
latter focuses primarily on correct and incorrect answers; the former assesses the
reasons that students give correct and incorrect answers.

In the foregoing discussion, we have purposely glossed over an important issue:
the degree of completeness, or comprehensiveness,of the process model underlying
the ITS. For example, Repair Theory (Drown & VanLehn, 1980) is a relatively
comprehensive process model of how people carry out subtraction. In contrast,
the process model underlying PROUST, our system that diagnoses students' buggy
programs, is considerably less comprehensive. Although comprehensiveness is desir-
able, it is not always possible, and it is not even necessary for evaluation. In fact, a
student model such as the checklist of skills used in WUMPUS and WEST can still
provide insight into the microstructure of the skills and concepts students use when
they solve problems. In an external evaluation of an ITS the criterion is not how
many of the students' answers are correct but rather the underlying, fine-grained
skills that have been learned. To measure these skills during the development of
an ITS, it is important to be able to perform external evaluation with models that
are not complete. In the next section, we address the problem of external evalua-
tion with incomplete process models by showing how we were able to evaluate the

202

impact of PROUST on a circumscribed aspect of students' programming.

An Example of External Evaluation: PROUST

This section presents our initial attempts to perform an external evaluation of
PROUST. First, we describe PROUST and how it works; then we discuss our
approach to the problem of external evaluation.

Our external evaluation of PROUST was based on a process model of novice
PASCAL programming. We reasoned about the process model to identify skills
we thought PROUST should help students learn. Of course, our process model of
novice programming is incomplete. Thus, one implication of our successful eval-
uation of PROUST is that it is not necessary to have a complete process model
in order to perform an external evaluation from the cognitive perspective. This
result is encouraging because the development and evaluation of ITSs must be done
concurrently, and because of the unavoidable necessity of making evaluations with incom-
plete process models.

A Description of PROUST

PROUST is a large Lisp program written by Lewis Johnson (1986) that finds the
nonsyntactic bugs in students' PASCAL programs. PROUST is especially expert
at finding bugs in programs that students write for the rainfall assignment, shown
in Figure 8.1. The assignment, which is usually given during the fifth week of class,
is to write an enhanced "averaging program" that calculates from an input stream
of rainfall values the average, the maximum rainfall on any day in the period, the

number of rainy days, and so forth. The program also prints out several summary
values.

A correct solution to the rainfall assignment is shown in Figure 8.2. Figure
8.3 shows part of a buggy solution that contains three extremely common bugs;
Figure 8.4 shows what a student sees as a result of asking PROUST to identify the
bugs in the program in Figure 8.3. Notice especially that the output of PROUST is
essentially an identification of the student's bugs, sometimes accompanied by a brief
statement of how the bug violates the specifications of the assignment. In addition,
PROUST makes an effort to tell the student which bugs it thinks are important
for various parts of the program (e.g., the OUTPUT part). Thus, the first bug that
PROUST reports is very common: Students often neglect to consider the case in
which the user does not enter any valid data. If no data are entered, a runtime

divisiu by-zero error occurs and can cause the program to discontinue its run.

203

The Noah Problem: Noah needs to kep track of the rainfall iii tile New Haven area
o determine wheni to laiicli his ark. Write a program so lie call (o this. Yokir

program should readl thc rainfall for each (lay, stopping when Noah types "99999",
which is niot a data value, hut a seni jel irldicating lithe Ci1(l of input. If thle user types
ini a negative valtie, the program shiouldr relerct it, sinice nlegative rainlfall is not
possible. Youir program should prin oit lithe iiumuil of valid days typed in, thre
iiumhcr of rainiy (lays, tilhe average raiiifall pwi idiy over thle periodl, anld thle limAsinuui
amount of rainfall that fell oil amy one (lay.

Figurc 8.1. The Rainfall Assignment.

Program fanalipto~pt
Var DailyRainifall,TotlalRatinfall,Maxlaiiifall ,Averaige: Real;-

RainylaysTotalDays : Integer;
Begin

RainyDays:= 0, TotalDays:= 0; Maxl~ainfall::-- 0; Totalllainfall:= 0;
Writeln ('Please Enter Amount of Rainfall');
Readln(Daily Rainfall),
While (DailyRainfall <> 99999) bo

Begin
If DailyRinifall > =0 Theii

Begini
If DailyRainfall > 0 Theni RainyDays :=RainiyDays +I 1;
TotalRainifall :=TotaiRaitifall + DailyRainfall;
If Daily Rainfall > MaxRaiinfall

Theni Maxilainfall := DailyRainfall;
TotalDays :=TotalDiys I1- 1

Ends
Else Writeln ('Rainfall Must Be Greater Thani 0'),

Readl(Daily Rair fall)
Etid,

If Total Days Coumner > 0 Then Begin
Average : = TotalRainfall/ TotalDays;
Writeln('Average is: ', Average: 0:2);-
Writelln(' Maxismin, is: ', Maxilaiall: 0:2);
Writeln('Total Ntimber of Days is: ', TotalDays);
Writeln('Total Number of Rainy Days is: ', RainyDays)

Einr;
Else Writeln('No Valid Days Etered.');

End.

Figure 8.2. Sample of a Correct Rainfall Program.

204

01 Program Rainfall (input,output);

02 Var DailyRainfall,TotaiRainfall,MaxRainfall,Average : Real;
03 RainyDaysTotalDays : Integer;

04 Begin
05 RainyDays:- 0; TotalDays:= 0; MaxRainfall:= 0; TotalRainfall:= 0;
06 While (DailyRainfall <> 99999) Do

07 Begin

33 End;

BUG 1: Missing Divide-By-Zero Guard
34 Average := TotalRainfall/TotalDays;

BUG 2: Missing Output Guard On Average
35 Writeln('Average is: ', Average: 0:2);

JUG 3: Missing Output Guard On Maximum
36 Writeln('Maximum is: ', MaxRainfall: 0:2);

End.

Figure 8.3. Sample of an Incorrect Rainfall Program.

To analyze a student's program, PROUST attents to see how the student's
program has attempted to meet the specifications of a problem statement. PROUST
understands problem specifications in terms of goals that must be achieved and uses
a knowledge base of plans that students know and that can achieve those goals.

PROUST's main analytic task is to locate in the student's code the plans for each

of the goals in the problem specification. For example, in the rainfall assignment,

the main goal is to calculate the average of a series of rainfall values entered by the

user. PROUST recognizes that to achieve the averaging goal, an iterative looping

plan is required to achieve the subgoals of the main goal. The loop must collect the

rainfall values, sum them to calculate the running total, and count the number of

days. After the running total and counter have been calculated, the running total

must be divided by the counter to obtain the average. PROUST thus sets up an

205

agenda of goals and subgoals and attempts to match each of them to the student's
code by using tcchniques for finding buggy implementations of plans. When all
the goals on the agenda have been successfully matched to the student's code, a
process that sometimes invokes the techniques for finding buggy plans, PROUST
has understood the student's program because it knows how the student achieved,
or failed to achieve, each of the goals ini the specification. Each of the failures is
understood by PROUST as a bug.

Starting Bug Analysis, please wait...
NOW BEGINNING BUG REPORT:

Now Reporting CRITICAL Bugs in the OUTPUT part of your program:

Bug 1: You need a test to check that at least one valid data point has been input before
line 34 is executed. The Average will bomb when there is no input.

Now Reporting MINOR Bugs in the OUTPUT part of your program:

Bug 2: The maximum is undefined if there is no input. But line 35 outputs it anyway.
You should output the average only when there is something to compute
the average of.

Bug 3: The maximum is undefined if there is no input. But line 35 outputs it anyway.

You should output the maximum only when there is a need to compute

the maximum of.

BUG REPORT NOW COMPLETE.

Figure 8.4. PROUST Output for Program in Figure 8.3.

External Evaluation of PROUST

Johnson's (1986) analyses show that PROUST is able to understand between 70%
and 80% of all programs written by novices trying to solve the rainfall assignment;
other evaluations of PROUST's ability to find bugs have been reported as well (cf.
Sack et al., 1986). This discussion will not repeat the results covered in other papers.
It focuses instead on whether a program that simply identifies nonsyntactic bugs for
novice programmers and provides only mninimial, noninteractive, tutorial advice can

206

positively affect their programming skills. This evaluation is based on our process

model of novice programming. As noted before, although the model is incomplete

and somewhat idealized, it nonetheless makes some interesting statements about
bugs that should cause novices difficulty.

Boundary condition bugs are in this category. A boundary condition bug occurs

when the programmer neglects to guard some aspect of the program, such as an
arithmetic calculation, against an unexpected value. Examples of boundary con-

dition bugs are shown in Figure 8.5. In BUG I the student has overlooked the
boundary condition in which the user does not enter any valid data. The calcula-

tion of the average results in division by zero, which causes the program to crash.

The other bugs arise in the same boundary condition and result not in the crash of

the program but in the illegal output of a value. For example, BUG 2 permits the

average to be printed out even if it was never calculated.

Program Rainfall(input,output),
Var DailyRainfall,TotalRainfal,MaxRainfal,Average : Real;

RainyDays : TotalDays : Integer;
Begin

RainyDays:= 0; TotalDays:= 0; MaxRainfall:= 0; TotalRainfall:= 0;

Writeln ('Please Enter Amount of Rainfall');
Readln(DailyRainfall);
While (DailyRainfall <> 99999) Do

Begin
If (DailyRainfall > 0) Then

Read(DailyRainfall)
End;

BUG 1: Divide-By-Zero-Guard Missing
Average := TotalRainfall/TotalDayss

BUG 2: No Guard for Undefined Average
Writeln('Average is: ', Average: 0:2);

BUG 3: No Guard for Undefined Maximum
Writeln('Maximum is: ', MaxRainfall: 0:2);

Writeln('Total Number of Days is: ', TotalDays);

BUG 4: No Guard for Undefined Rairydays
Writeln('Total Number of Rainy Days is: ', RainyDays)

End.

Figure 8.5. Some Boundary Condition Bugs.

207

Very generally, the process model of program generation posits that a program-
mer reads a problem statement, identifies from it goals to attain, and then selects
and implements plans to achieve the goals. The model predicts that errors involv-
ing boundary condition bugs are easy to make but hard to find because goals for
handling boundary conditions do not typically arise directly from the statement
of the problem. A programmer must infer that boundary conditions are necessary
from knowledge about negative instances; for example, users who do not enter any
valid data. The programmer must then create a safeguard to insure that legal
values have been entered. According to the process model, novices arc deficient
in generalized programming knowledge and therefore do not identify goals such as
safeguarding boundary conditions; moreover, they typically do not have plans for
achieving the boundary condition goal even if they identify it. Thus, they frequently
make boundary condition bugs.

The process model predicts both how easy it is to make bugs and how hard it is
to find them. The bug of failing to include an update for the counter for the divisor
in an averaging program is both easy to make and easy to find because its effects
are apparent as soon as the program attempts to calculate an average. Boundary
condition bugs are easy to make but hard to find because they show up only under
specific input conditions. If students do not generate sufficient test data for their
programs, they will rarely find their boundary condition bugs. Because effective
testing of programs requires extensive generalized programming knowledge, most
novices are poor program testers. (J. Spohrer's 119861 elaboration of the process
model is based on extensive empirical data about students' buggy programs and
more fully accounts for the prevalence of boundary condition bugs.)

We focused our initial evaluation of PROUST on how well it could help students
manage boundary condition bugs for three reasons. First, boundary condition bugs
are some of the most common bugs students make. Second, our process model
offers a reasonable account of why they are easy to make and hard to find. Third,
PROUST is very good at identifying them so they are prime candidates for an
evaluation of how well a bug identification program can help students. In addition to
evaluating boundary condition bugs we also assessed PROUST's impact on students'
ability to manage other types of bugs but we do not present those results here.

A Guide to External Evaluation

The goal of an external evaluation of an ITS is to identify properties of the ITS
that affect students' problem-solving processes in positive and negative ways. From
our experiences in performing external evaluations of PROUST, we have abstracted
a pattern of activities that characterizes our approach to the analysis. Figure 8.6
illustrates our approach to assessing the effectiveness of PROUST and, by extension,
any ITS. The top portion of the figure, labeled THEORY, shows the four theoretical
components of an external evaluation. The bottom portion of the figure, labeled
PRACTICE, shows the way in which these components were combined in practice in
an evaluatioiL of PROUST. Thus, ;s the figure shows, construction of an evaluation
of an ITS typically follows a well-defined plan. The following description discusses

208

I TIfEORY I

Cognitive Model I- What's Hard I Lcarning Model I low to Test Extenal Evaluation
I I
I I
I I
I I

I PRACTICE I
I I

Goals/Plans Easy--to-Make: Weak Explanation Measures of Problem
I Itard--to-Ficid of Impact of Solvilng Process

PROUST

\ I

Boundary Condition Final and Repair
Bugs Buts

Cr eate Midterm Examt

Figure 8.6. Externial Evaluation of PROUST.

209

each component of external evaluation in terms of the underlying concept and its
application to the external evaluation of PROUST.

1. Cognitive Model:
Concept: Determine which aspects of the cognitive model are relevant to eval-
uating the effects of the ITS on students' programming skills.

Application: In the present case we focused on goals that are implicit in prob-
lem statements and on the plans that are required to achieve these goals.

2. What's Hard:
Concept: Identify a class of problems that arise from a task that students have
trouble doing.

Application: In the present case we reasoned that (a) boundary condition bugs
are easy for students to make because they call for specialized knowledge to
identify and plan for them and (b) they are hard to find because most students
do not know how to generate effective test cases that would detect them.

3. Learning Model:
Concept: Determine which functional aspects of the ITS should affect students'
ability to avoid or correct the target problems.

Application: i the present case we concluded that PROUST's identification
of bugs for students would teach them about the existence of the class of bugs
that arise at boundary conditions.

4. How to Test:
Concept: Identify classes of behaviors that students should demonstrate when
the ITS is having a positive or a negative impact.

Application: In the present evaluation we used students' ability to find and
repair boundary condition bugs as measures of PROUST's impact.

5. External Evaluation:
Concept: Analyze the students' behaviors both individually and in groups. The
groups of students are defined either according to (a) some attribute, derived
from the process model, that is common to the program generation processes
of all students or (b) some response the ITS makes to all the students in the
group.

Application: In the present case the performance of groups of students who
had access to PROUST was compared with that of groups of students who did
not have access to PROUST. In addition, to control for PROUST's ability to
identify bugs, we assessed the effect of the accuracy of PROUST's identification
of bugs for students.

210

To measure the effect of PROUST's identification of bugs for students, we defined
two performance tests that reflect our process theory of programming. From these
tests we inferred students' underlying problem-solving processes. One test was the
pattern of boundary condition bugs in students' versions of the rainfall assignment.
When students do the rainfall assignment, they typically generate 15 versions before
submitting one for grading. As noted, we l)redicted from our process model that
students would have difficulty with boundary conditions because they are easy to
make and hard to find. We also predicted that if PROUST identified boundary
condition bugs for students, they would be less likely either to make as many of the
boundary bugs in the first place or to leave the bugs in their final versions.

The second test was students' scores on the midterm examination. We reasoned
that because PROUST could help students isolate boundary condition bugs, stu-
dents would be better able to find such bugs in programs written by other program-
mers. Therefore, the students' task on the midterm examination was to identify,
describe, and fix bugs that had been seeded in programs similar to the ones the
students had been writing in their assignments. Boundary condition bugs, as well
as other types, such as performing the wrong arithmetic calculation, were seeded
in the midterm. Thus, even though both measures of improvement in students'
ability to identify bugs essentially count numbers of correct answers, we arrived at
these measures by reasoning explicitly about our process model, and we used the
measures to make inferences about the effects of PROUST on students' knowledge
and skills.

Briefly, the tests supported the claim that PROUST helps students repair and
avoid boundary bugs when they are writing programs to solve the rainfall assign-
ment. Access to PROUST also appears to improve by approximately 16% students'
ability to identifi seeded boundary condition bugs in programs they did not write.
(See Sack et al. (19861 for a full report of these evaluation results.)

In summary, the evaluation of the educational effectiveness of one aspect of
PROUST's performance was based on the perspective of cognitive science. The eval-
uation began with a process model that explains novice buggy programming. We
used the model to identify the management of boundary cases as a task in program-
ming that students typically find troublesome. Then we predicted how PROUST's
bug identification strategy would affect students' ability to handle boundary cases.
We also used the process model to interpret the finding that PROUST is only
somewhat helpful for teaching students to find and repair bugs.

Because simply identifying bugs for students is not enough to achieve radically
improved performance, the next version of PROUST will have to include stronger
tutorial capabilities to help students learn debugging skills. The evaluation also
indicates that some aspects of the process model must be changed. We had predicted
that if students knew about a certain kind of bug, they would not make them. The
process model requires a more complex mechanism to account for students' failure
to eliminate boundary condition bugs after a one-trial learning experience - that
is, after these bugs were identified for them. The mechanism that is needed to

211

account for this phenomenon is still somewhat unclear, but evidently it will have
to specify the conditions under which students can identify and achieve goals that
are not explicitly called for in the problem assignment and that involve specialized
programming knowledge.

Lessons Learned from External Evaluation of PROUST

The initial external evaluation of PROUST taught us three important lessons.
First, PROUST has some positive educational effects. Second, we learned some
important principles for formulating and executing external evaluations of ITSs.
Third, and perhaps most important, we were successful in evaluating PROUST
with an incomplete process model and then identifying insufficiencies in that model.
It is thus quite reasonable to expect that the process of developing an ITS can be
integrated with assessing its educational effectiveness. This suggests that by per-
forming evaluations based on student models during development, we can facilitate
the development of ITSs.

Possible Objections to the Cognitive Perspective

The foregoing description of the external evaluation of PROUST may seem too
clean, and several objections can be raised about both the practicality of and jus-
tification for performing such evaluations. Three major criticisms of the cognitive
science approach are discussed here.

It Is too hard. There is no doubt that detailed evaluations of students' cognitive
processes will be extremely time consuming and that in many cases, designers will
want to build ITSs before they have student models sufficiently powerful for doing
definitive evaluations.

However, a central promise of ITSs is that they will make use of the best that
cognitive science has to offer. ITSs are most decidedly not just CAI with an expert
system or two thrown in to generate problem solutions. Rather, ITSs are intended
to understand students in a fundamental sense; and one of the goals of the field
of ITSs is to produce systems that are as good as the very best human tutors. Of
course, once we have achieved that goal, we will want to make ITSs that are better
than human tutors. For these reasons the development of effective, cognitively
based evaluation strategies must proceed hand in hand with researchers' growing
expertise in the field. Thus, although fully realized evaluations axe too hard to make
now, they are still both a goal to achieve and a measure of our own progress toward
truly intelligent tutoring systems.

We might use the wrong student models in our evaluations. The ability
to perform valid evaluations clearly depends on having powerful student models. If
the evaluation suggests that a particular student failed to acquire the skills that the
ITS was intended to teach, and if the evaluation was based on an incorrect student
model, researchers may conclude that the ITS was not performing effectively.

212

Avoiding this mistake requires that researchers Ie sensitive to different ways of
representing knowledge and skills. A single model of student knowledge may not be
sufficient for evaluation. In fact, it seeis naive to expect, that a single model would
capture all the different ways that student.;s might ui(lerst wid a domain. Researchers
therefore shoul(1 investigate alternative ways thatt students ('an adaptively represent
knowledge and skills. In addition, they must distinguish between assessing the
ability of the ITS to teach students how to solve problems and its ability to teach
students a l)articular way of representing prol)lein-solving skills. In either case,
identifying correct student process models for an evaluation is crucial for the field;
the problem of identifying the correct student model for any tutoring situation is
certainly no easier and just as important. It appears that progress in evaluation will
go hand in hand with progress in diagnosing students and identifying appropriate
student models.

Students' internal representations are irrelevant to education. Propo-
nents of the microworlds al)proach to intelligent tutoring argue that an educator
s.1oul not so much teach as provide tools that make it possible to learn. One
implication of this view is that student models, and hence process models, are su-
perfluous if not entirely counterproductive. Such models may be used to assess a
student's progress or failure, 1)ut that is not the business of education.

Our own view is that educational philosophy should be divorced from the phi-
losophy of assessment. Regardless of the advisability of directive tutoring in educa-
tion, evaluating the effectiveness of intelligent tools for facilitating learning requires
having process models of stu(ens' problem solving. Building such models in a
microworlds context may be difficult because mnicroworlds environments are uncon-
strained; for just this reason model building promises to be extremely productive.

Thus, although there are several objections to the cognitive approach to evalua-
tion, three of the most interesting can be seen ais practical rather than fundamental.
Indeed, work on the problems of cognitivcly based evaluations of ITSs may possibly
make significant contributions to the theory of ITSs itself.

III. INTERNAL EVALUATION: THE ARCHITECTURE PERSPECTIVE

The goal of internal evaluation is to provide a clear picture of the relationship
between the architecture of an ITS and its behavior. To clarify this relationship it
is necessary to characterize the ITS in terms of answers to three key questions.

1. What does the ITS know? It is important to answer this question whenever
a revision of the ITS is proposed. Any changes in the requirements of the
ITS should be based on a clear understanding of the effort it will take to equip
the program with the knowledge necessary for achie "ng the new requirements.
The question is addressed by ain analysis of what the ITS can possibly do based
on what it knows.

2. How does the ITS do what it does? Answering this question assesses whether
the program performs in the way the designers intended. It requires analyzing

213

the ITS to determine how the algorithms use available knowledge to produce
the observed behavior of the ITS.

3. What should the ITS do? This question should be asked when a revision of the
ITS is proposed, particularly when it seems desirable to increase the teaching
ability of the ITS in one area or reduce it in another. This question is answered
by clarifying the areas of the tutoring domain, such as programming, that the
ITS is responsible for teaching.

Though we cannot provide a complete plan for answering these questions defini-
tively, we think that they are the right. ones to ask.

This section discusses three methods adapted from knowledge engineering that
can help to characterize all components of an ITS, including the student model, the
curriculum content, the instructional component, the expert problem solver, and the
interface. We have found these methods useful for addressing the three questions
central to internal evaluation of ITSs. In what follows we describe the methods and
show how we have used them to perform internal evaluations of PROUST.

1. Knowledge Level Analysis attempts to characterize the knowledge in the
ITS and thus answers the first question, What does the ITS know? This ques-
tion is important to ask between versions of an ITS because any changes of the
requirements should be made with an understanding of how much effort would
be required to give the program the knowledge to achieve the new requirements.

2. Program Process Analysis uses focused simulations of the ITS to answer the
second question, How does the ITS do what it does? This method is intended
to provide information about whether the ITS does what it does in the way
the designers intended.

3. Tutorial Domain Analysis provides a methodology for iteratively adding
and subtracting requirements of the ITS and therefore answers the third ques-
tion, What should the ITS do?

Why should all this effort be required to understand an ITS? We often find ourselves
saying to each other, "But it's obvious! Why did we have to go through all this
analysis to see that?" The answer is that ITSs are so complex that it is impossible
to know everything abot. them. We have spent years discovering new, important
facts about PROUST. Since each individual finding is obvious once brought to light,
it is easy to fall prey to an attitude of 20-20 hindsight. The cure for this is to ponder
all the things about PROUST that we do not know that are just waiting to trip
us up! Because ITSs are so complex, and therefore hard to understand, designing
them is a cyclical process in which a version is built, weaknesses and strengths are
identified using the techniques we discuss here, a new version is built, and so on.
We hope extended exampl(,s from our work with PPROUST demonstrate the value
of these techniques.

214

Knowledge Level Analysis: What does the ITS know?

Knowledge level analysis provides useful information about whether the program
knows enough to perform its intended tasks. It is concerned not with how the
program accomplishes the tasks but with what the program can conceivably do and
with whether the program has the competence to perform certain tasks. In essence,
knowledge level analysis focuses on whether the program has enough of the right
kinds of knowledge to meet the requirements that were set for it.

We have carefully analyzed the knowledge PROUST contains. By using these
analyses and deriving explicit descriptions of types of knowledge in PROUST, we
have discovered certain weaknesses in its representation. Figure 8.7 shows a frag-
ment of a rainfall program that PROUST cannot completely analyze. To us, it is
clear that the student intended the variable MaxRain to hold the maximum amount
of rainfall entered and intended the code MaxRain : = DailyRainfall to serve as
the plan to calculate the maximum. We can infer this because we know what the
variable name MaxRain probably means. However, PROUST does not know that
certain kinds of variable names mean certain things; that is, PROUST lacks lexi-
cal and semantic knowledge. It cannot completely understand this student's code
and gives the incorrect tutorial advice that the student has failed to include in the
program a plan to calculate the maximum amount of rainfall.

As a result of discovering several programs that PROUST could not understand
completely because it lacked lexical knowledge, we altered the specifications for the
subsequent version of PROUST to require that PROUST be able to reason about
intended meanings of variables based on their names.

Program Process Analysis: How does the ITS do what it does?

Program process analysis consists of evaluating whether the program does what
it does in the right way. In contrast to knowledge level analysis, which asks whether
the program is able to perform certain input-output tasks, program process analysis
looks at just how a program uses its knowledge in the process of going from input
to output.

For example, we have expended considerable effort understanding traces of
PROUST to determine exactly how it uses its knowledge. This process analysis has led
us to redesign PROUST's overall control structure. Extensive process tracing showed us
exactly what kinds of cases PROUST could not understand because of its rigid top-down
method of analyzing student's programs.

Figure 8.8 shows a program that we can understand very easily. The reason
PROUST fails to understand it completely is quite interesting. The student has
incorrectly typed the sentinel value that controls execution of the main loop. In-
stead of five 9s, the student has typed only three 9s. One of the consequences of
PROUST's strict top-down control structure is that it must anchor its analysis on

215

Program Rainfall(iiiput,output);
Var DailyRaiiifalI,TotalRainfall,MaxRaitifalI,Average : Real; llainyDays,TotalDays :Iiteger;

Begin

Readin (DailyRainfall);

While (DailyRainfall <> 999) Do BUG 1. Should Be "99999"

Begin

If DailyRainfall >= 0 Then

MaxRain := DailyRainfall BUG 2: Umcondilional Assignmcne

Read (Daily Rainfall)
End;

End.

Figure 8.7. An Example of PROUST's Need for Lexical Knowledge.

216

Program Raiifall(input,output)
Var DailyRainfallTotalRain fall,MaxRaiiulall,Average : Real;

RainyDays,TotalDays : Integer;
LBegien

RainyDays:= 0; TotalDays:= 0; MaxRaiifall:=: 0 TotalRaitifall:= 0;
Writcli ('Please Enter Amount of Rainfall');
Rea(lin (Daily Rain fall);

While (DailyRainfall <> 999) Do BUG: 5/holri be "99999"

Begin

If DailyRain fall >= 0 Thci

Begin
If DailyRainfall > 0 Thei RainyDays :. Ral.jyDays - 1;
TotalRainfall := TotalRainfall -+ DailyRainfall;
If DailyRainfall > Maxlainfall

Then MaxRainfall : = DailyRainfall;
TotalDays : TotalDays A- 1

End;

Else Writeln ('Rainfall Must Be Greater Than 0');

Read (Daily Rainfall)

End;

If TotalDaysCounter > 0 Then Begin

Average := TotalRain fall/TotalDays;

Writeln('Average is: ', Average: 0:2);

Writeln('Maxinium is: ', MaxRainfall: 0:2);

Writeln('Total Number of Days is: ', TotalDays);
Writeln('Total Number of Rainy Days is: ', RainyDays)

EndJ;

Else Writeln('No Valid Days Entered.');

End.

Figure 8.8. An Example of PROUST's Need for Bottoin-up Analysis.

217

the main loop in order to proceed with the analysis; that is, it must find the main
loop or it cannot find any of the other main pieces of the program. One of tile
tasks it must carry out to anchor on the main loop is to find the sentinel value
that controls the loop execution. It turns out that PROUST can recognize a range
of sequences of 9s; but the range extends only from four 9s to six 9s. Obviously,
PROUST could be made to work in this case by extending the range of sentinel val-
ues it can detect to any number of 9s, but this solution is bad because it is specific
to this bug. The program process analyses of PROUST led to a far more general
alternative.

Notice that, aside from the 999 bug, the program is perfect. Especially notice
that th contunts of the loop do exactly what they should do; the counters are
updated correctly, the maximum is calculated, a new value for rainfall is obtained,
and so on. The cn "rectness of the contents of the loop help us to understand the

program: because the loop with the three 9s as the sentinel contains everything
that a correct loop should contain, we conclude that this loop is the main loop.
But PROUST cannot even see that the correct functions are in the loop because
it must identify the main loop before it can find the contents of the loop. Once
we understood how PROUST performed its analysis, and more importantly why it
overlooked the contents of the loop, we were led to the general solution of combining
top-down analysis with bottom-up analysis. This solution seems obvious in retro-
spect; however, it was not until we had extensivcly analyzed how PROUST behaved
in this case and similar cases that we felt confident enough to commit ourselves to
fundamentally rework PROUST's control structure.

Tutorial Domain Analysis: What should the ITS do?

Tutorial domain analysis is a reasoned approach to adding new tutorial capa-
bilities to an ITS. Initial descriptions of the domain to be tutored serve as part of
the design specifications for an ITS. Although these descriptions may be generally
appropriate, the aspects of the domain that the designers wish to tutor may shift
as the program takes shape and as the process of tutoring in the domain becomes
better understood. For this reason, ongoing evaluation of the appropriate domain
of tutoring can help maintain a clear view of the goals of the ITS.

In our work with PROUST, for example, our notions of what we wanted PROUST
to be capable of teaching have slowly evolved over the years. At first, we simply
wanted it to identify bugs. Then we felt that it might be possible to augment
PROUST just a little so that it could give students some advice about the kinds of
test data might be helpful for tracking down the bugs that it located. We looked
at the test-data problem and rejected several solutions because they seemed far
beyond the then-current capabilities of PROUST. Finally, we decided to broaden
PROUST's domain of tutorial expertise.

When we observed PROUST in action, we saw that we could build naturally on
PROUST to provide the student with a wider range of skills than we had originally

218

intended. This ongoing domain analysis has an additional positive impact on the
cyclical design process. It prevents us from adding capabilities to PROUST without
understanding how such new additions fit with the general requirements and theory
for tutoring the domain. Thus, internal evaluation has led to a more coherent ITS
than we might otherwise have developed.

Lessons Learned

In summary it is important, yet difficult, to understand the relationship between
an ITS's architecture and its behavior. Three questions - what an ITS knows,
how an ITS does what it does, and what an ITS should be doing - seem relevant
to internal evaluation, and three knowledge engineering techniques can be used to
explore them. We recognize that our treatment of internal evaluation is preliminary.
Nonetheless we have had success with these methods, and we feel that it is useful
to begin exploring how they, and others, might be used for internal evaluation of
ITSs.

IV. EXISTING EVALUATIONS INTERPRETED

This section of the chapter describes some of the evaluations of ITSs that have
been reported in the literature. These evaluations are discussed in terms of the
categories of external and internal evaluation that we have used in our own work.
The evaluations other researchers have performed do not perfectly coincide with our
categories; but at this point external and internal evaluation are only ideals or goals.
No one we know, including ourselves, has yet carried out such evaluations in an
elegant, comprehensive way. Nonetheless, this analysis of other research strategies
clearly shows that efforts to perform external and internal evaluation are worthwhile.

This section begins with two case studies of ITS evaluation. The first focuses
on evaluations of WEST that are like what we have called external evaluation.
We have selected WEST as an example because it is widely known and because
the evaluations of WEST show how evaluators have begun to grapple with the
problem of basing evaluations on process models. The second case study illustrates
how William Clancey and his colleagues, using several methods akin to what we
call internal evaluation methods, redesigned the rule base of MYCIN to create
NEOMYCIN, a tutorial system that teaches strategies for medical diagnosis.

External Evaluation: WEST

WEST (Burton & Brown, 1982) is a computer coach that helps students learn
how to play the two-person adversary boardgame "How the West Was Won" (HTW3).

219

The goal of HTW3 is to beat an opponent to the end of a 70-space board. A student
determines each move by combining three arithmetic operands, provided by a ran-
dom device, with arithmetic operators to compute a number of spaces to move. For
example, a student might construct the expression "(4/2) + 3" to move five spaces
forward on the board. Special moves, such as bumps, introduce the fun into HTW3.
For example, a player can construct an arithmetic expression that lands him or
her exactly on the opponent's Square, theln the I)layer can bump the opponent and
make him or her move backwards two towns, which appear every ten squares on
the board. Thus, the goal of playing IITW3 is to use the operators and operands
not to construct the largest nuinl)er but the number yielding the greatest strategic
advantage.

WEST is called a coach because of the tutorial principles it incorporates. The tutor in

WEST strongly avoids overadvising the student. It sits in the background looking over

the student's shoulder, until it is clear that the student needs some help and the student

would benefit from the help that WEST could give. Then, by making a few suggestions,

WEST attempts to help the student improve his or her skills.

WEST's general approach to student modeling is of identifying the student's
use of skills for constructing arithmetic expressions that achieve optimal moves in
HTW3. WEST does not attempt to model the process of the student's construction
of arithmetic expressions. Instead, it represents whether the student can apply
strategies when they are called for. WEST does this by recognizing which strategies
a student used to construct a move. Thus, WEST's student model can be seen as a
checklist of skills the student can and cannot use correctly. This type of issue-based
tutoring is also discussed by Anderson and by VanLehn (both in this volume).

In 1978, J. S. Brown and his colleagues performed some initial evaluations of
WEST. These evaluations assessed the extent to which students learned to use
different move patterns depending on whether or not they were coached by the
WEST tutor as they played the game (Burton & Brown, 1982). In essence, the use
of move patterns defines the student model of WEST. Theinitial findings suggested
that WEST's student model captured some of the important features of students'
strategic arithmetic problem solving. Coached students used a wider variety of
optimal moves than uncoached students and also made more effective use of the
special moves than uncoached students did. Thus, there is evidence not only that
the WEST tutor effectively coached students in skills for strategically constructing
arithmetic expressions, but also that WEST's student model was powerful enough
to capture some interesting aspects of the process by which students solve tasks
such as selecting correct moves.

In 1985, Baker reported a more extensive evaluation of WEST. As Burton and
Brown had done, Baker)erformed a controlled experiment; but her experiment
included both (a) extensive assessments of the arithmetic skills of students prior
to and following experience with WEST and (b) pretraining for students on skills
that might be useful for playing ITW3. The general findings of Baker's study

220

were somewhat equivocal. No large effects were found for pregame math training
on game performance, and using WEST appeared to have no major effects on the
posttests of math skills.

Even though she did not find large general effects, Baker's evaluation was formu-
lated in order to test the impact of WEST on specific skills that WEST is designed
to help students learn. The posttest assessment included a measure of students'
ability to select or construct appropriate moves in the WEST gaming environment.
For example, one question in the posttest presented to students the values of the
operands generated by the random process and a target value for an expression
combining the operands. Students were asked either to construct the target value
or to indicate that it could not be calculated with the given operands. Though the
effects of WEST on students' ability to select or construct appropriate moves were
not statisticaly significant as measured by the post-test, the attempt to measure
specific strategies shows a concern with the cognitive processes underlying such
problem solving.

The major point of the WEST examples is that even though neither group of
evaluators explicitly described a method of basing evaluations on process models,
both groups appear to have used such a method. That is, the evaluations assessed
specific skills that WEST was designed to teach. Both studies used measures other
than the number of correct answers to assess the impact of WEST on the pattern
of use of the skills. Because the same skill might have resulted in either a correct
or an incorrect answer, just counting correct and incorrect answers is not a good
indication of WEST's impact on the student's knowledge. The conclusions of the
evaluations do not fully clarify the effect of WEST on students' strategic arithmetic
skills. However, it is important to keep in mind that the student model underlying
WEST is not intended to be a powerful process model. The conclusions that can be
drawn from these evaluations must be seen in the light of the process considerations
on which they were based.

In summary, both evaluations of WEST contained measures of students' learning
that were cast directly in terms of the skills that WEST monitors during the game of
HTW3. Rather than focusing exclusively on aggregate effects of WEST on students'
arithmetic skills, both evaluations sought to study the effect of WEST on specific
skills that it was designed to teach. Because both evaluations attempted to relate
students' performance directly to WEST's model of the skills that are important
for HTW3, they can be categorized as external evaluations.

Internal Evaluation: MYCIN/NEOMYCIN

Clancey and his colleagues have the goal of using the MYCIN diagnostic system
to teach general skills of medical diagnosis (Hasling, Clancey, & Rennels, 1984).
One of the major tasks in teaching diagnosis is to explain why certain hypothe-
ses are being pursued at certain times and how to pursue hypotheses when they
are appropriate. Unfortunately, MYCIN's knowledge base, which is simply a net-

221

work of rules linking symptoms and bacteriological diseases, makes its explanations
unsatisfactory for this task of tutoring.

When MYCIN consults with a user on a diagnosis, it exhaustively chains back-
wards through its rule base until it finds a connection between a disease and the
observed symptoms. MYCIN's explanatory capability is based conpletely on the
goal chains it generates during diagnosis. Thus, if the user asks MYCIN to explain
why it is performing a certain action at a certain time, all MYCIN can do is describe
its goal stack. For example, sUlpose MYCIN has just asked a user whether the pa-
tient has frequent headaches. Now suppose that the user requests that MYCIN
explain why it has asked this question. MYCIN replies by identifying the specific
goal it is trying tu achinve with the (qiestion about headaches; this goal is to deter-
mine whether the patient has meningitis. The problem is that for someone trying to
learn diagnosis, this reply is far too specific. Tie novice needs to be told something
more general about why the possibility of meningitis should be pursued at this time
and why it should be pursued before some other possibility. Thus, the goal of a
tutor in diagnosis should be to explicitly teach the process of diagnosis. How to
diagnose bacteremias in particular is not useful information when the student is
still struggling with the difficult task of learning general diagnostic principles.

Clancey and his coworkers set out to learn how to reshape MYCIN so that it could
explicitly teach diagnostic skills. In studying MYCIN's rule base, using methods
akin to internal evaluation methods, Clancey and his coworkers discovered that
much of the strategic knowledge that controls MYCIN's diagnosis is implicit in the
structure of the rules. For example, the order in which MYCIN pursues alternative
hypotheses is determined by the ordering of clauses in rules that identify which
hypotheses to pursue in the presence of specific evidence. Thus, the real reason
that MYCIN asked about headaches was that the meningitis hypothesis was next
on its list, not that it was the most likely. The meningitis hypothesis was next
on MYCIN's list because the designer of the rule base knew that meningitis was
the most likely candidate and that it therefore should be pursued. Thus, Clancey's
work has been to identify the kinds of diagnostic knowledge the tutorial version of

MYCIN should teach, to understand wihy MYCIN's knowledge base fails to make
this knowledge available for tutoring, and then to express this knowledge as explicit
tutorial rules. So, for example, NEOMYCIN, a tutorial version of MYCIN, might
have a rule that causes it to respond to the student's query about headaches with
a statement of diagnostic strategy. NEOMYCIN could reply that it is pursuing
meningitis because (a) it is the most likely hypothesis and (b) if meningitis can be
supported as a possible diagnosis then the largest set of alternatives is automatically
ruled out. This is just the kind of information a student of diagnosis needs in order
to learn diagnostic skills, and it is the kind of knowledge Clancey and his group
have been umcovering with their evaluations of MYCIN.

In summary, Clance and his colleagues have spent several years analyzing in
detail why the internal structure of MYCIN leads it to behave as it does. On the
basis of these analyses, they have augmented and reconfigured the knowledge base
in MYCIN so th,-t it can support tutorial reasoning al)out teaching diagnosis.

222

A Sampling of Evaluations

Figure 8.9 briefly describes a few of the more readily accessible ITS evaluations
reported in the literature. The evaluations are identified as Internal Evaluation
and External Evaluation. For example, the first row of the figure, corresponding
to the WEST tutor, contains brief descriptions of Baker's and J. S. Brown's find-
ings. The ordering of the tutors is not completely arbitrary. The first two tutors
are "coaches," the second two are programming tutors, and the last tutor teaches
medical students.

Summary

The categorization of evaluation into external and internal strategies appears
to be applicable to many of the evaluations reported by designers of ITSs. The
case studies of WEST and MYCIN and the other evaluations referred to in Figure
8.9 support what we have found in our own experience with PROUST and now
beijeve is quite general. Current techniques of external evaluation cannot determine
conclusively whether an ITS is effective. More finegrained analyses of the effects
of ITSs on students are probably required at this point in the development of
evaluation methodologies for ITSs. On the other hand, internal evaluations of ITSs,
even if they are not as intensive as Clancey's analyses of MYCIN, can produce
valuable insights into the causes of behavior of ITSs. Thus, although only a few

examples of evaluations have been published, and although the process of evaluation
is only now beginning to be formalized, basic concepts of external and internal
evaluation appear to correspond quite closely with the work already done by several
designers and evaluators of ITSs.

223

INTERNAL EXTERNAL

EVALUATION EVALUATION

WEST Extensive aialysis or Comparison of effects

tutorial strategies of using WEST of bat-

and how to iniplc-- tcry of tests of strate-
ment them (Brown & gic use of arithmetic
Burton, 1978) skills(Baker et a1., 1985;

Brown S Burton, 1978)

WUSOR Analysis of No for-nal evalition

WUSOR's understand-

ig of differential
difficulties of

skills in playing
WUMPUS

PROUST Analysis of which Comparison of test

aspects of PROUST scores of students
diagnose various with PROUST to scores

types of bugs of students without
(Johnson, 1986) PROUST (Baker et al.,

1985; Sack et al., 1986)

LISP Extensive analysis of Controller experiment to
TUTOR tutorial principles evaluate LISP Tutor's

embodied in tutors ability to teach recursion
(Anderson, Boyle, (Pirolli, 1987)
Farrell, & Reiser,

1984)

NEOMYCIN Evaluations of what No formal evaluation

knowledge in a diag-
nostic systen needs

to be made explicil
to teach diagnosis
(Clancey, 1983;
Ilasling et al., 1984)

Figure 8.9. How Current, ITSs Have Been Evaluated.

224

V. DIRECTIONS FOR FUTURE WORK

The evaluation of ITSs is not a new idea, but it has been underemphasized in the
past. Because evaluation of ITSs is ail issue for both the present and the future, it
is appropriate to identify some problems that could lead to progress for the field.
Some issues need to be addressed quite soon if credible evaluation methodologies
for ITSs are to be developed; resolving these issues seems within reach of current
methods. Other issues, which need to be addressed over the long term, concern the
possibilities and problems of automating the evaluation and revision of ITSs.

Near Term Lssues

Four main issues pertaining to the evaluation of ITSs can probably be resolved
and should be addressed in the near future. These issues and some potential di-
rections for exploring them are briefly described in this section. The issues are
presented in order of difficulty, but each implies additional, equally difficult prob-
lens.

More Examples Of Evaluations Are Needed

Perhaps 20 evaluations of ITSs have been reported in the literature. Several of
these evaluations are of the same systems (e.g., WEST), and most of them are fairly
informal. Many more evaluations are necessary to generate useful abstractions that
can guide evaluation efforts. Educational evaluators and designers of ITSs need to
work closely together (cf. Baker et al., 1985) to generate intensive, well-founded
analyses of ITSs that can be used as models for evaluation. This collaboration
should be a major priority for research in the immediate future. The work of

designers of ITSs will benefit both from more good examples of evaluations and
from the experiences of researchers in education and evaluation.

Analytic Methods for Evaluation

When the field of ITSs has matured, standard techniques should be sufficient
for designing educational studies to evaluate the effectiveness of ITSs. In addition,
techniques of meta-analysis, which are intended to identify patterns of positive and
negative effects across several ITSs (cf. Kulik, 1985), are becoming reasonably well
worked out. Currently, because many ITSs are incomplete, evaluation relies on
standard statistical analyses, and the problem is simply to appropriately qualify
the conclusions from evaluations to reflect the incomplete nature of an ITS.

When statistical methods are not applicable, a much more qualitative approach
to summarizing results is necessary. Developing guidelines for summarizing such

225

qualitative results would l)e a valuable enterprise. One approach is to start with
those chapters in this volume that concern a particular dimension of ITSs. If the
analyses given in the cha)tcrs were viewed as the structure of the dimension, then
perhaps informative qualitative evaluations of ITSs could be cast in terms of those
dimensions (cf. VanLchn's analysis of the dimensions of student models in this
volume). Meta-analyses can also b l)prformed to compare different ITSs on the
relevant dimensions.

At some point, it may be possible to define statistical inference procedures based
on these dimensions, for example by giving an ITS a positive score for each of the
positive attributes of each dimension it embodies and a negative score for each of
the negative attributes. Then, using procedures such as exact randomization tests,
sampling distributions could be generated for the 1)atterns of positive and negative
scores. This statistical approach should lot be taken too seriously, however. Once
two or more ITSs have been well characterized in terms of the dimensions, an
evaluation should probably be based on the meaning of the pattern of attributes
that characterize each ITS rather than ol some inferential statistic derived from
the pattern of attributes. This kind of evaluation would help designers decide
how to change ITSs that do not fare as well as ITSs with more salutary patterns of
attributes. Thus, it seems possible to develop useful concepts of qualitative analysis
that can be used even when ITSs are still in the developmental phase.

Partial Process Models

One of the pervasive problems of evaluating ITSs is that external evaluations
must often be performed with only partial models of the student and incomplete
ITSs. One solution may be to integrate the design and evaluation of the ITS
with elaboration of the process model. If work on the process model and the ITS
were guided by the requirements of evaluation, then attention would be directed
toward identifying and elaborating subcomponents of the process model that can
be used to assess the effectiveness of corresponding subcomponents of the ITS.
For example, in our evaluation cf PROUST, we identified a fairly narrow subset
of skills related to managing boundary condition bugs, and we then focused on
evaluating a corresponding feature of PROUST, its bug identification strategy. The
potential danger of this approach is, of course, failing to construct a system because
of too much attention to individual components. However, if designers of ITSs keep
in mind the near certainty of having only an incomplete process model and an
incomplete ITS, then perhaps they can increase the correspondence between the
more complete aspects of both.

Developing a Metric for Hard and Easy Bugs

One of the benefits of the cognitive perspective on ITSs is that it has enriched our
concept of bugs. Because, in the cognitive view, bugs are attributable to)roblems in
the student's knowledge and skills, trivial bugs and hard bugs can be distinguished

226

according to the complexity of the student's misunderstanding or knowledge deficit
(Brown & Burton, 1978). For example, a cognitive theory of the difficulty of bugs
predicts that boundary condition bugs arc simple because 11o deep misunderstanding
is likely to be responsible for them. On the other hand, a student who omits a
Readin statement in the loop for the rainfall assignment, on the assumption that the
new value of rainfall is read in automatically by the loop, has a serious bug because
the cause is related to a deep misunderstanding of how the PASCAL interpreter
operates.

To take advantage of possible similarities in causes of bugs across domains, it may
be useful to base a theory of bug difficulty on abstract properties of process mod-
els. For example, there may be similar patterns of bugs in different domains and,
therefore, similar causes for trivial and hard bugs. It may be that all design tasks
have analogues of the final-subgoal-dropout bugs discussed in Section II. Identifying
such similar patterns could provide the basis for more general, domain-independent,
process models for bug generation.

Long-Term Issues

The discussion of long-term issues is not wide ranging. It focuses on one problem,
the automation of the process of building and revising ITSs. Automating this
process is important because it could lead to useful insights into theories of learning
and teaching. These insights are possible because of the three tasks that must be
accomplished to achieve automation. First, the impact of the ITS on the student's
knowledge and skills must be assessed. This requires being able to reason in great
detail about how students learn. Second, the results of the evaluations must be
interpreted. This requires determining what aspects of the ITS produce changes
in students. Third, the ITS must be revised to produce the desired changes in the
student based on the interpretation of the evaluation. This requires understanding
exactly what the ITS must do to produce specific changes in the student.

Thus, in order to automate the cycle of evaluation, interpretation, and revision,
it will be necessary to automate reasoning about how ITSs cause educational change
in students. This section therefore discusses the three steps to automating the eval-
uation process and briefly indicates how successful automation could help designers
understand more clearly the relationship between teaching and learning.

Generating the Evaluation Automatically

As suggested in Section II, human evaluators can use process models to design
problems for evaluating the impact of the ITS on students. By using process model
techniques to reason about the state of students' knowledge and skills, evaluators
should be able to predict which of these problems students should be able to solve
and which they should not be able to solve. Because the process model is the basis

227

for generating the problenis for the external evaluation, it seems possible to write
"evaluation generator programs" to con.struct them.

To produce such evaluation generator programs, designers must understand how
humans generate evaluation problems. For examl)le, when we designed the midterm
examination to evaluate the impact of PROUST's bug identification strategy, we
constructed programs that were seeded with bugs, some of which were boundary
condition bugs that we exl)ecte(l students to find if they had used PROUST. In
deciding to use seeded bugs in this examination, we actually solved three problems.
First., we constructed an apI)rol)riate context (the midterm) in which to evaluate
PROUST's effectiveness. Second, we identified a task for assessing students' ability
to manage boundary cases, namely identification and repair of bugs in seeded pro-
grains. Third, we constructed the actual bugs to seed into the programs. We can
identify only three of the tasks we)erformed to devise our evaluation because we
are just beginning to understand the process of external evaluation.

A potential starting point for automating the generation of evaluations may be
both expert human diagnosticians and the theories of automated tutorial diagnosis
that have been built from studies of hunman experts. Much of tutorial diagnosis
involves reasoninig about (a) how student,, should answer particular questions and
(b) how to determine whether a student has some particular knowledge or skill,
both of which are the basis for constructing evaluations of ITSs. Thus, insight into
the problem of automatically generating evaluations may come from exploring the
relationship between diagnostic tutorial reasoning to identify causes of bugs and the
design of assessment problems for evaluations of ITSs.

Interpreting the Evaluation Automatically

It may be possible not only to generate evaluations automatically but also to
interpret the results automatically. A point of departure for the automatic inter-
pretation effort is, again, human designers of ITSs. For example, when we decided
that PROUST's bug identification strategy is insufficient for teaching the kinds of
skills for handling boundary conditions that we wanted our students to learn, we
concluded that PROUST needs tutorial capabilities for explicitly teaching bug iden-
tification skills. That is, we assigned the blame for the students' poor performance
to a specific lack of tutorial expertise in PROUST. The point here is not whether
the assignment of blame was correct, but hov we reasoned about it. Designers need
to understand such inference processes more clearly in order to write programs that
can reason about the results of evaluations.

Automatically Revising the ITS Based on the Evaluation

If evaluations can be automatically generated and interpreted, then it may at
least be possible to attempt to automate the revision of ITSs. To continue our
example of the evaluation of PROUST, after concluding that PROUST lacked nec-
essary instructional strategies, we had to reason about how to modify PROUST to
include the strategies.

228

There appear to be three main cases to consider in reasoning about how to
provide an ITS with appropriate knowledge and tutorial strategies. First, the ITS
has an appropriate strategy, but it needs to be modified. Second, the ITS may

have a class of tutorial strategies in which the new strategy should be placed, and
the change to the ITS is an addition of a strategy rather than a modification of an
existing strategy. Third, the needed tutorial strategy may be the first exemplar of a
new class of strategies. Obviously, these three modifications involve various degrees
of difficulty. The first is probably within reach of current methods of artificial
intelligence and the third will have to await further progress.

Once again, a promising way to begin investigating the automatic revision of
ITSs is to study human designers of ITSs. For example, it could be extremely
useful to attempt to codify the ways in which John Anderson's group at Carnegie-
Mellon University, or William Clancey's group at Stanford, reason about changing
their ITSs. Although it may seem an ambitious undertaking, automating the cycle
of generating evaluations of ITSs, interpreting the results, and revising the ITSs
could reveal useful abstractions about ITS architectures and the assumptions about
human thought on which they are based. Even if this effort does not entirely succeed
it will give designers a clearer view of how to construct ITSs and may improve their
ability to teach students to build ITSs.

Develop a Causal Explanation of Learning

One outcome of the effort to write computer programs that can generate evalu-
ations of ITSs, interpret the results of the evaluations, and then modify the ITSs
appropriately is what amounts to a causal explanation of learning. A causal ex-
planation of learning specifies the exact features of the learning environment (the
cause) that lead to precisely specified changes in the student's knowledge and skills

(the effect). If designers can automatically generate problems to use in evaluation,
then they have begun to describe the student's knowledge and skills precisely enough
to characterize the effect side of the causal explanation. If they can automatically
determine what aspects of the ITS are responsible for the changes in the student,
then they have begun to precisely describe the cause side of the causal explanation
of learning. For example, if we can automatically generate the evaluation problems
for PROUST's students to solve, and if we can automatically interpret the results
of the evaluation in terms of precise actions of PROUST toward the students, then
we will have begun to explain the instructional relationship between students and

PROUST in causal terms. Thus, although the task of automating the entire cycle
of evaluation, interpretation, and redesign is extremely challenging, progress toward
achieving it could have strong implications for theories of learning.

Summary

In summary, this section has raised several issues that impinge on the evaluation
of ITSs. Several near-term issues seem both tractable and relevant to progress in

229

the immediate future. The long-term issues seem less immediately tractable, but
they appear to have important implications for the theory of ITSs. This treatment
of future directions for research is not exhaustive. Nonetheless, it shows that future
research in evaluation will be just as exciting as research in any other area of
cognitive science.

CONCLUSIONS

This chapter has identified two important questions for evaluators of ITSs. Eval-
uation efforts so far have shown that evaluators need to take very seriously the
problem of assessing incomplete systems. We suggested that external evaluation,
or assessing the impact of the ITS on users, should be guided by process models of
problem solving in the instructional domain of the ITS. In addition, we suggested
that evaluation and development of ITSs should proceed in tandem, and we demon-
strated that it is both possible and beneficial to use incomplete process models as
a foundation for evaluation. The need for methods of internal evaluation arises
because ITSs are so complex; a major problem for designers is just understanding
why ITSs behave as they do and how they can be changed so that they behave
as desired. We acknowledged the iterative nature of the ITS design process and
illustrated several internal evaluation methods that, by providing designers of ITS
with information about the ITS and their own goals, could help them productively
guide the design process.

We conclude from these initial forays into the evaluation of ITSs that evaluation
is challenging, useful, and wide open. In the future, we plan to continue both our
current evaluation activities and our efforts to identify the questions and methods
that are appropriate for evaluating one of the most exciting possibilities for our
culture, namely ITSs. We realize that our approach may be controversial, and if
readers have found this chapter intriguing or provocative, then we will have achieved
one of our major goals in writing it.

ACKNOWLEDGEMENTS

We would especially like to thank Eva Baker, who was a main mover behind our
evaluation of PROUST. Conversations with and comments from Richard Burton,
John Seely Brown, Jeff Richardson, .John Anderson, and Lt. Charles Capps were
also very helpful in shaping our thoughts on evaluation in general, and their pre-
sentation in this chapter in particular.

230

REFERENCES

Anderson, J. (This Volume.) The Expert Module.

Anderson, J., Boyle, C., Farrell, R., & Reiser, B. (1984). Cognitive principles in the
design of computer tutors. In Proceedings of Sixth Cognitive Science Conference (pp.
2-10), Institute for Cognitive Science, University of Colorado, Boulder, CO.

Anderson, J, Farrell, R., & Sauers, R. (1984). Learning to program in LISP. Cognitive
Scicnce, 8, 87-129.

Baker, E., Feifer, R., Aschbacher, P, Bradley, C., & Herman, J. (1985). Intelligent
computer-assisted instruction (ICAI) study. Los Angeles, CA: Center for the Study
of Evaluation, University of California.

Brown, J. S., & Burton, R. (1978). Diagnostic models for procedural bugs in basic
mathematical skills. Cognitive Science, 2, 155-192.

Brown, J. S., & VanLehn, K. (1980). Repair theory: A generative theory of bugs in
procedural skill. Cognitive Science, 4, 379-426.

Burton, R., & Brown, J. S. (1982). An investigation of computer coaching. In D.
Sleeman & J. S. Brown (Eds.), Intelligent tutoring systems. New York: Academic
Press.

Clancey, W. (1983). The epistemology of a rule-based expert system: A framework for
explanation. Artificial Intelligence, 20, 215-251.

Goldstein, 1. (1982). The genetic graph. In D. Slceman & J. S. Brown (Eds.), Intelligent
tutoring systems. New York: Academic Press.

Hasling, D., Clancey, W., & Renncls, G. (1984). Strategic explanations for a diagnostic
consultation system. International Journal of Man-Machine Studies, 20, 3-19.

Johnson, L. (1986). Intention-based diagnosis of errors in novice programs. Palo Alto, CA:
Morgan-Kaufmann, Publishers, Inc.

Kulik, J. (1985). Consistencies in findings on coin puter-based instruction. Paper presented at
the annual meeting of the American Educational Research Association,
Chicago, IL.

Pirolli, P. (1987). A cognitive model and computer tutor for programming
recursion. Human-Computer Interaction.

Sack, W., Littman, D., Spohrer, J, Liles, A., Fertig, S., Hughes, L., Johnson, L, &
Soloway, E. (1986). Empirical evaluation of the educational effectiveness of PROUST.
Working paper, Yale University, New Haven, Connecticut.

Spohrer, J. (1986). A generative theory of novice programming errors. Doctoral dissertation
in preparation, Yale University, New Haven, Connecticut.

VanLehn, K. (This Volume.) Student modeling in intelligent tutoring systems.

231

DISCUSSION

Evaluating ITSs: The Cognitive Science Perspective

Beverly P. Woolf
Research Scientist

Department of Computer Science
University of Massachusetts

Amherst, Massachusetts

I am very interested in the view Soloway has of evaluation. I know that it is
time to evaluate these systems. I am very glad that he did not make the mistake of
going to some formative way of evaluation and that he did not look at the classroom
because it would be bizarre for us to look at the classroom now and make our distinc-
tions about these systems.

I would like to make a small improvement in what he said, however. He said
that there is the person and there is the machine, and we are trying to evaluate them.
What he was looking at was external and internal evaluation. I would like to raise the
possibility that what this means is that he has seen an interface between the two, but
he is focusing attention on the machine when it should be focused on the student. By
using these words, I mean only a syntactic criticism. Focusing on inuernal and
referring to the machine implies that we should be focusing on that machine; and,
obviously, we should not. We should be focusing on what is happening to the student.
I would just like to change the terminology he used. Then I would like to ask what
internal evaluation is, and where it is? And what is the external evaluation?
Although he told us how to do it, Soloway is talking about knowledge and process
models. He did not tell us why we should do it. I am going to try to talk about why
we should make these evaluations.

Another reason to use the word internal is to avoid cognitive dissonance. It
turns out that when we say iniernal, we almost always refer to processes internal to the
person, right? We talk about internal processes and internal mental models; so I think
we have to keep the word internal with the human.

Anyway, we look at the knowledge and skills of the student. I think that these
are easy to identify and certainly difficult to test. You can say the student got the
problem right, but as VanLehn showed us, you get bugs that migrate and bugs that
appeared yesterday and disappear tomorrow. We are not really going to be able to
test these things, and we are not going to be able to know whether the student still has
that bug or the student's mental model has changed or improved.

On the other hand, the external evaluation that Soloway suggested requires
looking at the architecture and the behavior of our systems. These are rather easy to
test. You have a screen that is wonderful, or you have icons that move, things like
that. But it is difficult to identify whether a component of the architecture led to the
behavior of the system, and if so, which one. Soloway also talked about looking at the
possible worlds that this machine could create, given the environment and the student
model. What are the possible manifestations of the system we are not going to be
able to figure out?

233

So Soloway's question, then, is how to evaluate the ITS. He did not say, why
bother. What I would like to suggest is that as a result of computer scientists,
cognitive scientists, educators, and instructional designers collaborating, we should be
able, with these systems, to know more about human learning and expertise. We
should be able to understand qualitative processes. We should know more about tile
stability of bugs that VanLehn mentioned. We should understand mental models, and
we should be able to teach propaedeutic principles as suggested by Halff. I think the
idea is good.

We should not figure out whether the student can learn geometry and whether
the student can learn sixth-grade arithmetic with these systems. I put forth the
conjecture that ultimately the student will learn it with these systems. Our goal has to
be the other things mentioned here. Thus, in terms of internal evaluation, what is
going on in the student's head? And externally, what are we looking for? We need to
have, and we are looking to develop, new technology. At that point we get the grain
size and start making the measurements that Soloway is suggesting. Are we going to
be sure that we have developed new technologies in service to pedagogy? Have we
identified what the student actually did? I think the end result of this test is to make
sure that the student model is capable of figuring out what the student did, what the
student intended to do, and what the student was motivated to do-all the things we
have been looking at before. Have we developed environments that aid in translation,
etc.? In other words, some of the goals that were set out earlier here ought to be the
goals of the evaluation.

Just to reemphasize, if anyone is not sure about it, evaluation should not be
made in comparison to the current classroom activities. I recall that Anderson
suggested putting up a system and recognizing or saying that one of the goals was to
make sure there was no difference in behavior between the student doing geometry on
his system and the student doing geometry with a textbook. And he was asked, "Is
there a problem with weaning a student from the machineT' I think these are local
problems that definitely demonstrate the wrong attitude. I know if you are going to
put the system in the Pittsburgh classroom, you are going to have to deal with a
textbook that has been in place for twenty years. We cannot do anything about this,
and locally we have to test this way. But I do not think the goal should be to have
these systems do what the geometry textbook does, to remove the system and be able
to go back to the geometry textbook. The goal is to move way beyond that.

Let us redefine geometry, not teach it. I have heard the statement from
Andrew Molnar at NSF that there is a summer program where they teach all of high-
school math in one summer to really fast-moving students. It was a research project.
I do not think you have to teach geometry the way it has been taught. Should we
redesign our systems so that it takes 2 years for us to do geometry? Can we eliminate
calculus for instance?

My thought is that designing systems and evaluating them in comparison with
the classroom is like-I do not know why this analogy came up-preparing for a safari.
You get all this skill together, all this money together, all this training together, to go
into Africa, and you find the game animals have all been shot and all you have to do
is carry them home. I do not think I have to tell people about the state of education
in this room. What I hear from Molnar is that there is actually a 63 percent increase
in college remedial classes, which means that high schools are not teaching math,
English, etc. One-fourth of all the college freshmen take remedial math classes.
What are they learning in high school? Why should we emulate what they arc
learning in high school? There is another story. The average Japanese scores 100

234

percent better on science tests than the best American students do. You take the best
American students, give them a quiz, they get a certain score-the average Japanese
scores a 100 percent better on that quiz. And only 75 percent of the teachers in
America are qualified to teach the course they are teaching. They have trained in
gym and they are teaching math, or something like that. And (from Molnar again) we
expect to be one million teachers short in 4 years. So the classroom is definitely not
the place we should be emulating.

What we have got to look at is how we can teach where others have not. This
is a statement from Papart. It is not that we should teach the high school material, it
is that we should teach things that have not been taught before. Perhaps it is the
enhancement of both the quantity and quality of human knowledge to make humans
more intelligent, not equally as intelligent. What I mean by that statement is, for
instance, the experiment that Burton talked about of the spiral tube and a ball falling
through it. Students at MIT who had had 2 years of physics said that the ball would
continue to rotate after it left the tube. Obviously these people, if they are at MIT
and remain 2 years in the physics program, probably had all their answers right; they
received a lot of good grades on their tests, and they could do the quantitative
problems at the end of their book as he mentioned. Could they do the qualitative
reasoning that goes with physics?

So again to quote Greeno and other people at this conference: if you know
what you want to teach, you can do a traditional evaluation. You can teach Ohm's
Law and Kirchhoff's Rule and you can test it using problem solving. But if you want
to teach qualitative reasoning, if you want students to understand it-this is actually
another example-instead of using calculus to solve physics problems, let us show the
closed form. Calculus was invented because people could not see what was happening
in the velocity, in the acceleration of particles from one time to another. So they
would set up this formula to show movement or velocity from this point to that point
as time goes to zero. Well, time does not go to zero. The thing is, now we have
simulations and we can show that; so why do not we now eliminate calculus and show
the real form of what is happening underneath?

What Greeno said is really appropriate here: (to paraphrase) If what you want
to teach is more than what you have taught before, it will take a little longer. What I
claim is, we do not know what it is we are teaching, and Soloway's methods are
perfect for what I am saying. We just now have to expand our ideas even more. We
have to look internally at the cognitive models and the process models of the people,
and externally at the systems, but we have to head towards this goal. Obviously, the
systems should be built with knowledge that they will be rebuilt, and we want
strategies that are explicit.

I would like to show you examples from a system that I have built and that is
out in the world being evaluated. I think that is what Soloway was asking for and
that this is what we have to do. The system is called the Recovery Boiler Tutor, but
we need a better name for many reasons. In this case there were no classroom
standards, no controls; you could make no tests on this tutor and what it was doing.
The goal was to change behavior, and let me just tell you what it was about. It deals
with a problem in the American paper and pulp industries concerning a very
expensive boiler that was involved in many accidents. The boiler costs about $70
million to build and is about 14 stories high. Human operators run this boiler, and
through human error many devastating accidents have occurred. The insurance
company claimed they would cut the insurance by the end of this next year if we did

235

not get a system in place that would tutor the operators. These operators have a high-
school education, and that means they read at the sixth- or seventh-grade level. And
so the manuals that were written were put in file drawers and never read. There were
classes given, and still there was no change at all in the number of accidents.

We need to know what the operator's mental models are that did not allow him
to operate the system before and whether we changed those mental models to allow
him to operate it afterwards. There is no test we can give. We just have to make sure
there are no more accidents. This is a case of on-site training. We are using adult
students, and the process model is unknown.

RECOVERY
BOILER -FLUE GAS-
TUTOR

SAFETY 1

TRS 02

STEAM
EMISSIONS 755 1015

t 64.7(7
MpPh

OF psi

E F F IC I EN CY -FEEDWATER

liquor oiI
RELIABILITY

gpm 6.0 qpm

Figure &10. Recovery Boiler Tutor, Example 1.

Figure &10 is a screen from our system. We give the student a series of screens
from which he is able to select problems. We provided a system that knows about 40
or 50 emergency situations for this particular boiler. The student is able to look at the
abstract meters (left side of Figure &10) that do not exist in the system. What we have
done is to synthesize about 10 parameters in terms of safety emissions, efficiency, and
reliability so that the student can possibly make abstractions that he was not capable
of making before. We have also given the student all the meters he typically uses.

Additionally, we have allowed the student to look at the recovery boiler shown
in Figure &11 and to focus in at various points.

There are 5 or 10 views that the student can focus on, and he can look at dif-
ferent things. For example, in Figure &12 the student can look at the fire bed. The
burning bed gets larger, gets darker, or gets smaller. The student can rcview the
animation of water and steam on every slide. So it is a pretty sophisticated piece of
graphics. The student can open up this panel board (Figure &11) and actually see the

236

RECOVERY STEAM FLUE GAS
BOILER Drum 1007 FEEDWATER Furnace
TUTOR I 9 Mpph 480.3 85 1.B

SAFETY psi OF 300 -. 5 66 6Lm !,
S 464.1 psig 1208 Pressure CO TRS SOz 02
• Mpph oltemp 1.9 ppm ppm ppm %

DCE Dilution Flue Gas Temperature

0 7559pm 0ID Fan
EMISSIONS Level 0 gpm 0QIDan67Soolblower 670

7I F Mpph 36.0 rpm Bank Econ DCE

COMBUSTION AIR
Split Press Temp LIQUOR MAKE-UP

EFFICIENCY W/ .("wg) (OF) Mpph 194.1

prim 55 1.9 300 gpm 291
0 F 240 Sallcoke

sec 44 5.0 300 %Sol 65.8 lb/hr 0

DISSOLVING TANK slm/liq 3.68
Level(%) Density(% Flow(gpm) psi 0 pm 0
86 96 463

Figurc 8.11. Rccovcry Boilcr Tutor, Example 2.

RECOVERY
BOILER -FLUE GAS-
TUTOR

SAFETY I 2.7

TRS Oz
ppm %

-STEAM

EMISSIONS 751 651

EFFICIENCY FEEDWATER;-

U 0 a U 0.. 384.1

-FUEL-
RELIABILITY -liquor gas

250 F/sol .0
i-- gprnJm _ cm

Figure 8.12. Recovery Boiler Tutor, Example 3.

237

hundred parameters that he is supposed to be in charge of. The student can look at
various parts of the mill and see if things are moving the way they should. For
example, the student can look at a smelts spout, which sometimes gets plugged. If it
gets plugged up, he can see that it is not moving anymore. The student can change
about 40 of the 100 parameters in the simulation. This is an emergency board. If
things are going badly, he can see what is going on. For example, the student can see
that 02 is high or low and that the drum level or outlet temp is beyond threshold.
Other things the student can move--as I said, about forty of these parameters-is the
liquor flow, or the liquor solids, or the liquor solids again, or the temperature. The
student does this with a mouse. And he can ask to see at any time what is going on in
different parts of the mill. This is a complete real-time simulation. The student can
ask for the liquor chemistry, for example (see Figure &13).

RECOVERY
BOILER -FLUE GAS
TUTOR

SAFETY 1 2.7

I TRS 02

HHV of LiQUOR(Btu/Ib): ppm %
FROM EVAPS 5900 STEAMEMISSIONS 751 648
AFTER MAKE-UP 5900 370.7
AS FIRED 5736 Ml LUpm *F psi

LIQUOR SOLIDS(%):Mp
EFFICIENCY -ADFEEDWATER'

W.L. SULFIDITY(%) 25.5 383.7
REDUCTION EFF' Y(%) 92.2 Mpph

-FUEL
RELIABILITY liquor goS

250 ~I.0
gpm ~ Mcfm

Figure 813. Recovery Boiler Tutor, Example 4.

Meanwhile, during an emergency, these arrows actually will go down into the
red. If they go down into the red, the student should try to correlate that with some
of the things he is seeing on these charts. And this is what the student can do. He
can look at the boiler and select reports. You might be surprised to see this system on
an IBM AT, but we have used enhanced graphics, etc. It is very powerful.

The system has a knowledge representation of what the student has to know.
It has a student model, and it has teaching strategies that I will talk about a little. Our
goal here was to make sure that this student, who is working with this system, is able
to change some of his mental models. The way that we do that is to enter into
dialogues with the student. Figure &14 illustrates how the tutor will work with the
student. When the tutor says, "Your actions are correct. However, at this time,
rodding alone is not effective," it means that if the student had done this action
earlier, it might have worked. It does not work now because the student let the boiler
go too long. This goes on in the regular system. In some cases, the thing would have
exploded by now, and we animate that process, tco.4.

238

AN ALARM SOUNDS

Student: Check smelt spout cooling water.
[Student's action does not result
in a change in the boiler.]

Tutor: It looks as though the liquor isn't burning...

STUDENT REQUESTS HELP

Student: Help. What is going on?

Tutor: A partial blackout is occurring and this
causes TRS, CO, SO 2 and 02 to increase. Steam
flow and steam temperature are dropping.

I think part of the bed Is not burning.

GRAIN OF TRUTH CORRECTION

Student: Rod the primary air ports.

Tutor: Your action is correct; however, at this time
rodding alone Is not effective...

Student: Raise the liquor temperature.

Tutor: Rodding the air port apparently was not enough
to undo the blackout.

[No improvement.
New alarm sounds]

CONFIRMATION

Student: Increase the oil fuel supply.
[Emergency is now reversed.]

Tutor: That solved the problem all right.
Good thinking.

Figure &14. Interaction of Tutor with a Student

239

After the dialogue, the tutor produces an analysis of the emergency. The dia-
logue monitors what the studcnt is doing and gives him advice. It never gives the stu-
dent the right answer because we want him to recognize from the rcsults on the
machine what his actions arc. This is quite different from the geometry and LISP
tutors built by Anderson. In operation control, we do not have to show him the
problem. All the student has to do is look at the machine and see that something is
going wrong, and this is just what we want to train him in. We want him to recognize
for himself. We do not want anyone to tell him.

RECOVERY
BOILER -FLUE GAS
TUTOR

SAFETY

TRS 02
M ippm %

--N STEAM
EMISSIONS 722 647

___g ~15 90

F psi

EFFICIENCY -FEEDWATER-
164.6

Mpph
,__....__,_.__FUEL

RELIABILITY ,_liquor gos

Liquor flow Air flow Feedwoter flow 250 0/501 .0
Steam flow Dr low Steam pressure gpm 650 Mc2Drum level 0 TRS gm_ Mcfm

Figure &15. Recovery Boiler Tutor, Example 5.

Another thing we provide to change the mental models is what we call
trending. Figure 8.15 illustrates how the student can select parameters and measure
them against time and against each other. The goal is for the person to start to
recognize that when oxygen goes up then maybe air flow goes down. If this happens
again here and with a certain result, you ought to associate these two things. Since
this system is being used in industry--there are 20 of them being evaluated under
formal evaluation now-we can see if the system can solve an emergency.

What I want to do is see if Soloway's framework helps us at all. He says we
are trying to measure understanding. He says, What is internally-again this is my
definition of what I think is internal-what is hard in the recovery boiler program?
What is the cognitive model? I cannot tell and we are trying to find out. What we
know is that, if there are fewer accidents, probably we have arrived at some of the
cognitive models. People tell war stores while using this machine. A group of people
will sit around this machine, just as they did at Xerox, and they say, "Oh, well, in 1945 I
had a case where this happened," and they will recreate the emergency on the system.
This is pedagogically useful; good things are happening and good discussions. The
questions are: Can we count the process steps? Can we look at the microbehavior?

240

Again, I do not know whether the granularity is appropriate for us to do these things
yet.

As for external cvaluation, we had to represent an environment in terms of the
machine. We had to create an environment that would change mental models, so wc
created these abstract meters that I showed you, the animation, dialogue, and the
trends.

In summary for that system, what we recognize in terms of evaluation is one
thing that Soloway did not mention. That is the need for in-house expertise. In this
particular system, we had about 30 years of chemical engineering expertise; because
the programmer was a chemical engineer, as was his boss and his boss. They knew the
emergencies very well, and they knew how to train for them. We also have to clarify
our teaching strategies. In this system, in order to subordinate teaching to learning--in
other words, to keep the tutor quiet and to allow the student to do things and
implement changes so that he can learn from his own work-we had to really program
out what the machine could do. We thought silence in itself would be a recognition of
the learner's role in the training process. And we are beginning to see that it can
work for multiple students. I am really happy about that because one-on-one tutoring
may be wonderful, but it may not be the only way to learn. So we find three or four
people, even experts and novices, getting to work with the system.

The proposed evaluation parameters look promising. We need elaboration and
refinement. That is, we need more case examples in which we can test this
framework. We need many more systems out there, both in the classroom and on the
job site before we can evaluate these things.

REFERENCES

Woolf, B., Blegen, D, Jansen, J. H., & Verloop, A. (1986). Teaching a complex indus-
trial process. In Proceedings of AAAI, 5th National Conference on Artificial
Intelligence, Vol. 2. Engineering (pp. 722-728). Philadelphia, PA. Los Altos,
CA: Morgan Kaufmann Publishers, Inc.

241

CHAPTER 9

DIRECTIONS FOR RESEARCH AND APPLICATIONS

J. Jeffrey Richardson
Executive Director

Center for Applied Artificial Intelligence
University of Colorado at Boulder

This chapter presents a synthesis of the recommendations presented in foregoing
chapters for the future development of ITSs. The recommendations are organized under two
broad categories, research and applications. The distinction made between research and
applications is that research is concerned with the additional knowledge and understanding
necessary to build ITSs; applications are concerned with building, with the available
knowledge, ITSs that can meet the instructional requirements of individuals and
organizations.

The information in this chapter should be of use to directors of research programs,
faculty and scientists interested in pursuing research in ITSs, students curious about future
directions for the field, and consumers of training. For the practitioner, the applications
suggestions provide examples of ITS projects that are feasible and practical solutions to
training needs. At the same time, the research suggestions involve some risk and uncertainty,
and projects designed to meet practical instructional needs should not be structured aroun-J
these approaches.

I. RECOMMENDED RESEARCH

Meta-Theory of Expert Knowledge

State of the Art

The subjects taught by ITSs can be divided into two broad categories: those that deal
with declarative knowledge (general knowledge about a topic, its vocabulary, relations, and
methods) and procedural knowledge (specific knowledge about how to achieve a goal by
applying and eventually automatizing general knowledge). An additional type of knowledge
and knowledge representation is so new to artificial intelligence that ITSs for this type have
not even been implemented; namely, causal knowledge (reasoning from first principles). The
ITSs in the literature teach specifically either declarative or procedural knowledge and do not
take into consideration whether or how these types of knowledge might interrelate (see
Anderson, Chapter 2).

Opportunity

Common sense suggests that any intellectual endeavor involves both knowing about
things and knowing how to do things. We know about numbers and their symt-ols, notation
schemes, and kinds of operations on numbers, but we also know how to calculate.
Educational psychology has for 50 years argued that rote memorization of procedures is an

243

inferior instructional approach to teaching with meaning. Cognitive psychology has found
distinct mixes of declarative and procedural knowledge and associated problcm-solving
strategies in contrasting expert and novice performance. Early ITSs faced trough challcnges,
and research efforts had to focus on manageable objectives, such as the declarative aspect of
a task only, or the procedural aspect only, but not both. Now that modest successes have
been achieved, and now that a considerable body of experience and technique has developed,
the field should address intellectual activity in a more comprehensive manner.

Basic Research

Further basic research is needed in building a meta-theory of expert knowledge that
shows how declarative, procedural, and causal knowledgcs rclatc. Pieces of this research have
been conducted, such as Anderson's ACT* theory (Anderson, 1983) or studies of differences
between experts and novices (Larkin, 1980); but further work is needed to establish a solid
foundation in knowledge representation for ITSs to build upon.

Applicd Research

While a comprehensive theoretical foundation is being built for a meta-theory of
expert knowledge, there is absolutely no reason why sonic initial effort cannot be made in
developing ITSs that formally represent and teach both the declarative and procedural
aspects of a domain. One approach would be to take an existing ITS that is procedural and
augment it with declarative knowledge.

Causal Reasoning and Qualitative Simulation

State of the Art

Only recently has there developed a significant body of artificial intelligence
literature on the subject of causal reasoning and qualitative simulation. One of the classic
works in causal reasoning is SOPHIE III, the third and last of the SOPHIE systems (Brown,
Burton, & de Kleer, 1982) for electronic troubleshooting. The knowledge representation issues
were so challenging that SOPHIE III focused on them solely, leaving as future work the job
of completing the student modeling and tutor modules of an ITS for this form of knowledge.

Opportunity

No ITS has been developed explicitly to investigate tutoring through the use of
qualitative simulation. SCHOLAR had i declarative knowledge representation for rainfall in
the form of a semantic net, but it was not a simulation. Because one of the most important
training domains is maintenance, where qualitative simulation is the principal form of
reasoning, there is a great opportunity here to move the ITS field forward, both in the
theoretical and practical senses.

Basic Research

Although there is a good artificial intelligence research base in qualitative simulation
(Bobrow, 1984), no single representation in artificial intelligence has predominated for this
type of reasoning. Qualitative simulation is an active field of research in artificial

244

intelligence, and its furtherance would serve ITSs. Cognitive thcories of qualitative
simulation are in a similar situation. Descriptive work has been published in the
troubleshooting literature (Keller, 1985), and a theoretical foundation for mental models exists
(Card, Moran, & Newell, 1983; Gentner & Stevens, 1983). However, further studies need to
focus specifically on explicating how people reason with menrtal models.

Applied Research

While basic research is underway in the cognition of causal reasoning, ITSs can be
built using artificial intelligence techniques for qualitative simulation in the expert module .
The direct cognitive validity of these techniques will not yet have been established, but they
will serve as an approximation and afford the opportunity to build ITSs with a representation
for expert knowledge that has yet to be utilized.

Natural Language and Tutorial Discourse

State of the Art

Teaching is an act of communication that allows the transmission of culture from
generation to generation. We use language for many purposes, but clearly one of the most
important uses is teaching. What there is to know about how people use language to teach
must therefore be great indeed. However, the educational literature says much more about
classroom interaction, questioning strategies, and teaching methods in formal instructional
situations than about tutoring.

Opportunity

Builders of ITSs need a knowledge of tutoring that is prescriptive in nature, not
descriptive. TI-at is, they need a computational form of the rules of tutorial discourse. Some
work in this area has been conducted by Collins and Stevens in SCHOLAR (Collins, 1976)
and by Clancey in GUIDON (Clancey & Letsinger, 1981). But these few first attempts merely
scratch the surface of this field.

Basic Research

A theoretical approach needs to be developed for investigating the linguistic character
of tutorial discourse. Empirical, descriptive studies of classroom or tutoring situations need
unifying concepts to direct the search for data. Clearly, the vast educational literature should
be incorporated from the start in a basic research effort to develop computational
models of tutorial discourse, but researchers need to develop an overall strategic approach to
this problem. The investigation, as far as ITSs are concerned, should focus on tutorial
interactions (one-on-one teaching situations) in preference to classroom situations. A
research question of interest is the domain independence (or dependence) of tutorial
strategies, as suggested by Halff (Chapter 4).

245

Applied Research

Because the goal of the basic research effort is a computational theory, it will be
necessary to express this theory as running ITSs and to test this theory by using the ITSs to
teach students. This work has begun, notably with Woolfe's Meno-Tutor (Woolf &
McDonald, 1985), and should be continued and expanded. Researchers should continue to
elaborate on the curriculum and instruction part of ITSs, in particular with computational
schemes implementing what we already know about tutoring.

Realistic Student Modeling

State of the Art

Realistic student modeling in ITSs requires the modeling of the student's cognitive
development throughout the course of acquiring expert-level competence in a domain. It
must track, in Piaget's terms, the changes that occur as incremental assimilation triggers
accommodations in the way the student views the domain. It should faithfully track and
monitor the changes that occur as a novice becomes an expert. That is, it should be able to
predict and note when the novice's means-ends, backward reasoning, which is dependent on
surface structure, shifts to the expert's pattern recognition and forward reasoning, which is
dependent on deep structure.

Opportunity

Student modeling techniques are just beginning to acquire this capability, notably
through the use of bug libraries and bug part libraries (VanLehn, Chapter 3). Researchers
have little theoretical understanding of the developmental course of knowledge that is
prescriptive and procedural rather than descriptive. They can model novice and expert
performance in physics, and can even model a few intermediate points; but fully articulated
developmental models suitable for ITSs do not exist in physics or in any other domain. The
standard student modeling techniques represent student knowledge as a proper subset of
expert knowledge (the overlay method) or augment this representation with a library of bugs
or bug parts (VanLehn, Chapter 3). The beginnings of a developmental theory for the source
of these bugs is evident in repair theory (Brown & VanLehn, 1980), but this theory has bccn
worked out only in simple domains such as subtraction.

Basic Research

There is a big potential research agenda in modeling the acquisition of expert-level
skill. This research would ask what developmental changes occur in the representations and
processes used in reasoning about specific domains as expertise is acquired. It would also
investigate how these changes occur. One clue to the answer to this last question is that,
somehow, qualitative simulation or causal reasoning helps learners convert more and morc of
their declarative knowledge into procedural knowledge, and that this process somehow causes
changes in the way the declarative knowledgc is represented.

246

Applied Research

Current techniques for student modeling need to be broadened to account for learning
and the changes in representation and process that learning engenders. Some procedural
studies have bceii done, for example in the balance beam (Klahr & Siegler, 1977), suggesting
that for a suitably chosen domain some progress could be made in enhancing the way ITSs
model students. Physics, perhaps orbital mechanics, might be a good place to start because of
the prior work on distinctions between experts and novices in physics.

II. RECOMMENDED APPLICATIONS

Design Issues

In order to apply what researchers have learned about ITSs, it is necessary to make
the design of ITSs somewhat systematic. That is, practitioners will benefit from guidance
regarding how their instructional or training requirements map onto ITS design alternatives
or architectures. As each preceding chapter has discussed, a number of design alternatives
are available within each ITS module. For the expertise module, there are three principal
knowledge representations: declarative, procedural, and qualitative simulation. The choice of
knowledge representation affects the selection of an appropriate student modeling technique.
Instructional environments may vary from microworlds, which support open-ended discovery
learning, to tightly controlled simulations, in which immediate, corrective feedback is
provided for any deviation from optimal behavior.

This book has made explicit, for the first time, the interplay between the various
modules of an ITS and the range of design options available within each module. The
information in this book could lead to developing a more prcscriptive decision guide for
practitioners to use in developing ITSs. Examples of some of the considerations from this
volume that are of assistance in ITS design are discussed in this section.

Matching Instructional Objectives to Knowledge Representation.

A key to making decisions about the appropriate ITS configuration or design lies in
the instructional or training requirements. The answer to the question, "What form of
knowledge must the student learn?" determines the basic knowledge representation for use in
the expert module. If the objective is knowledge of facts, concepts, and relations, a
declarative knowledge representation is appropriate. If the objective is knowledge of how to
execute specific procedures quickly and accurately, then a procedural knowledge
representation is appropriate.

Matching Student Model to Knowledge Representation.

The chapter on student modeling (Chapter 3) maps out a three-dimensional space of
alternatives for ITS student models. One of these dimensions is knowledge type, and hence
thc choice of knowledge representation will reduce the space of student modeling options to
two rather than three dimensions. The instructional or training practitioner will need to
make a selection in each of the two remaining dimensions: bandwidth and student-expert
differences. Having selected the appropriate type of student model, the practitioner must
then determine the diagnostic technique (model tracing, plan recognition, etc.) with which to
implement the model.

247

Matching Instructional Objectives to Tutorial Strategy and Environment.

The chapters on curriculum and instruction and on instructive environments outline
an array of options the practitioner has in deciding how the ITS is going to interact with the
learner. One dimension discussed by Burton (Chapter 5) is the degree of abstraction. The
literature on ITSs offers at least five examples of troubleshooting simulations, each at a
different level of abstraction, from use of actual equipment, to block diagrams faithful to
specific equipment, to randomly generated network diagrams representing no specific piece
of equipment at all. The selection of an alternative along this dimension depends to a great
extent on the instructional objective, and on its place in the curriculum of objectives.

ITS Design Summary

It is impossible to assign to one of the modules of an ITS-expert, student modeling,
curriculum and instruction, or instructional environment-the principal design constraint. The
interactions between modules are just too numerous and subtle. For example, the choice of
instructional environment determines the character of human-computer interaction, which in
turn sets the bandwidth available to the student model. Or, as VanLehn states in his chapter,
the level of refinement in diagnosis and tutoring should be the same; and thus choices about
instructional environment or instruction affect the student model, and vice versa. The best
approach to designing an ITS might be to list, for a given domain and instructional
application, the range of possibilities available for each of the modules. Then, with the
maximum set of possibilities in clear view, the process of eliminating alternativcs can be
based on the expected interactions among modules. This approach may not be superior to a
purely "artistic" one, but it does provide a background against which to judge the merit of
each facet of a design.

ITSs for Algorithmically Tractable Domains

ITSs can now be developed for algorithmically tractable domains, or domains that can
be reduced to fairly straightforward procedures. The procedures can be more complex than a
recipe or checklist, and indeed may need to be represented as a production system. For a
domain to be tractable, the goals must be explicit and well defined, the start state must be
known, and all operators and the conditions of their applicability must be known for all
states in the problem search space. Topics from elementary and secondary education
involving procedural knowledge, such aL subtraction, algebra, and geometry, are
algorithmically tractable; and examples of ITSs for these domains are given throughout this
book. Other examples from the training arena include the use of navigational tools and the
maintenance of equipment.

Issue-Recognizer Student Models for Off-the-Shelf Expert System

If the issue-recognizer method of student modeling is used, ITSs can be built from
existing expert systems, as discussed in Chapter 2, and it should be possible to augment off-
the-shelf expert system shells to serve as ITS development shells. VanLehn (Chapter 3) does
caution that the more satisfactory approach to the expert module in an ITS will always be
the one that has greater fidelity and correspondence to the sequence of mental states people
use in reasoning.

248

Simulation Kits

A simulation kit is an ITS building tool for instructional objectives dealing with
reasoning about systems (for cxamplc, troubleshooting). Dcvelopment of this form of
application is already underway with the Navy's Intelligent Maintenance Training System
(Burton, Chapter 5). If this project is successful, the application of ITSs to simulation-bascd
training objectives will have been proved feasible, and software tools for doing this type of
work will have been developed.

Medium-Scale Evaluation And Empirical Testing

In the chapter on evaluating ITSs, Littman and Soloway make the case for internal and
external evaluation of ITSs during their development. They argue that if the final ITS is to
be as good as possible, it must bc formally evaluated as it is being built from the perspectives
of its effect on its users and of its internal functionality. That is, formative evaluation of an
ITS is a required, integral part of system development.

However, in the applications setting, summative evaluation and empirical testing are
of paramount importance in justifying the costs of using an ITS for instruction. To date,
most ITS evaluations have focused on supporting the development of a particular ITS
research prototype. For ITSs to become viable instructional applications, more summative
evaluations need to be done. A pioneering effort in this regard is the medium-scale
evaluation of Anderson's geometry tutor now underway in the Pittsburgh public schools. As
we develop ITSs for application, as opposed to research, summative evaluation will need to be
a part of the overall approach.

Applicability to Traditional Instruction

Spinoffs from ITS research have enriched several other fields. One of the most
important spinoffs is the application of the concepts and philosophies, if not the methods, of
ITSs to traditional instruction. Richard Burton characterizes in his chapter the new
educational philosophy that the ITS field embraces: the concepts of constructivism, the
importance of conceptual understanding, the role of preconceptions, the need to connect in-
school and out-of-school learning, the importance of self-monitoring and self-management
techniques, and the vision of lifelong learning.

The set of ITS modules, and the concepts and approaches each module embodies,
suggest ways to improve the development of instruction in any setting, mode, or media. As
one example, the basis for all ITS instruction is a coherent, performance-based model of what
is to be learned; that is, the expert module. As a second example, instruction should not be
delivered unless its effect on the student (i.e., the student model), particularly the way it
interacts with students' misconceptions, is understood.

ITSs Outside the Classroom-The Master and the Apprentice

Outside the classroom, education often becomes training. Industrial, business, and
commercial training accounts for about half of the total educational expenditure in the
United States. In this context, ITSs can play a much greater role than that of classroom
tutor--they can become the master in the master-apprentice paradigm of on-the-job training.

249

When the apprentice joins the guild, he or she knows little and must be told much; but
eventually, through the oversight and mentoring of the master, the apprentice becomes a
master in his or her own right. By virtue of its expert module, the ITS, as the master, can tell
the apprentice what to do or how to accomplish a task. This is the typical mode of
functioning of an expert system. But augmentation of an expert system with the other
architectural components of an ITS can produce a much more powerful system that is
capable not only of telling its user what to do, but of systematically increasing the
competence of its user to perform unaided. This capacity to transform the apprentice into a
master is what IFSs bring to the field of job aiding and expert systems. The material
consequence of ITS technology will extend beyond the classroom.

250

REFERENCES

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.

Bobrow, D. B. (Ed.) (1984). Qualitative reasoning about physical systems. Cambridge, MA: MIT
Press.

Brown, J. S., Burton, R. R, & de Klecr, J. (1982). Pedagogical, natural language, and knowledge
engineering techniques in SOPHIE I, II, and Ill. In D. Sleeman & J. S. Brown (Eds.),
Intelligent tutoring systems (pp. 227-282). London: Academic Press.

Brown, J. S., & VanLehn, K. (1980). Repair theory: A generative theory of bugs in procedural
skills. Cognitive Science, 1, 379-426.

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction.
Iillsdale, NJ- Lawrence Erlbaum Associates.

Clancey, W. J., & Letsinger, R. (1981). NEGv1YCIN: Reconfiguring a rule-based expert system
tor application to teaching. In Proceedings of the Seventh IJCAI, Vol II (pp. 829-836). Los
Altos, CA: William Kaufmann, Inc.

Collins, A. M. (1976). Processes in acquiring knowledge. In R. C. Anderson, R. Spiro, & W. E.
Montague (Eds.), Schooling and the acquisition of knowledge (pp. 339-363). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Gentner, D, & Stevens, A. L. (Eds.) (1983). Mental models. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Keller, R. A. (1985). Human troubleshooting in electronics: Implications for intelligent maintenance aids
(AFHRL-TP-85-34). Brooks Air Force Base, TX: Air Force Human Resources
Laboratory.

Klahr, D., & Siegler, R. S. (1977). The representation of children's knowledge. In H. Reese &
L. P. Lipsitt (Eds.), Advances in child developnent:, Vol. 12 (pp. 61-116) New York:
Academic Press.

Larkin, J. H. (1980). Expert and novice performance in solving physics problems. Science, 208,
1335-1342.

Woolf, B., & McDonald, D. D. (1985). Building a computer tutor: Design issues. AEDS
Monitor, 23, 10-1.

251

Appendix A

SELECTED INTELLIGENT TUTORING SYSTEMS

This appendix gives a brief description and overview of selected ITSs discussed in
this volume. Abbreviated references are followed by the number of the chapter in which
those references are first cited in full.

ACM: Automated Cognitive Modeling
DPF: Diagnostic Path Finder

The ACM system is an approach to automating the construction of cognitive process
models. Two underlying psychological assumptions are made: (a) cognition can be modeled
as a production system and (b) cognitive behavior involves a search through a problem
space. The system starts with a set of overly general condition-action rules, adds
appropriate conditions to each of these rules, and then recombines the more specific rules
into a final model. By inferring a solution path through the problem space, the system
produces a set of productions that model the cognitive behavior.

DPF was developed to improve the path-finding capabilities of the original ACM
system. The domain knowledge for testing both systems was subtraction errors.

Chapter 3

Algebraland

Algebraland is a tutoring system that can be used to study the acquisition of problem-
solving skills in algebra. The system provides a set of algebraic operators (e.g., combined-
terms, distribute) that can be successively applied to an equation until it is solved. As these
operators are applied, a search tree is dynamically created and displayed, thereby providing
a trace of the problem-solving steps taken to find a solution. This problem-solving trace
can be used by students, both during problem solving to keep track of their progress, and
afterward, to study the consequences of their errors and to make comparisons with optimal
solution paths.

Chapters 2, and 5

BIP, BIP II: Basic Instructional Program

BIP applied knowledge-based planning techniques for dynamically sequencing
problem exercises in a stand-alone, online programming course. Knowledge about the
exercises curriculum is represented in a Curriculum Information Network (CIN) that links
exercises to underlying coding skills. In BIP II the coding skills are represented in a
semantic network that describes their interrelations. Student learning is modelled by
mapping performance on exercises onto the skills. Exercises are selected dynamically by
applying teaching heuristics to the student model to identify skills to teach and then to
determine an exercise that best involve those skills. The system was used and evaluated in
several introductory programming classes.

Chapters 2, and 4

253

Bite-sized Tutor

This ITS authoring system, still being developed at the Learning Research and
Development Center at the University of Pittsburgh, is based on a three-layered
hierarchical architecture. The lowest layer, the Knowledge Layer, contains mixed
declarative and procedural knowledge represented in grouped nets of concepts connected by
predicators. Above the Knowledge Layer is the Curriculum Layer which contains the
knowledge about the sequencing of the curriculum in terms of prerequisite knowledge. The
Aptitude Layer or Metacognitive Layer, the uppermost layer, is concerned with
individualizing the instruction to suit different students capabilities. The architecture is
based on an object-oriented programming language.

Chapters 5, and 6

BUGGY
DEBUGGY
IDEBUGGY

These systems are some of the most frequently cited examples of using "bug"
libraries to diagnose student errors. BUGGY is a model proposed by Burton and Brown as a
framework for diagnosing misconceptions underlying procedural errors in arithmetic.
Students' errors are conceived as the products of "bugs" or errors in an otherwise correct
set of procedures. DEBUGGY is an off-line version of a diagnostic system based on the
BUGGY framework. The knowledge base in DEBUGGY contains a library of both primitive and
common compound bugs. DEBUGGY uses the pattern of errors from a set of problems to
construct a hypothesis concerning the simple or compound bugs that have generated the
errors. IDEBUGGY is an interactive version of the system that generates problems to
successively narrow the set of hypotheses under consideration.

Chapters 2, 3, and 5

Geometry Tutor
LISP Tutor

These tutors are two of a series of tutors from John Anderson's laboratory. The
tutors are based on either the ACT' (Adaptative Control of Thought-star) production
system or its successor PUPS (Penultimate Production System). The systems consist of a
tutorial component, an interface, and a set of ideal and buggy rules. Using the expert rules,
the expert module is capable of solving the problems being tutored. Students' errors are
diagnosed by means of the buggy rules.

A notable feature of the Geometry Tutor is the use of the proof graph to
communicate to the student the logical structure of the problem-solving process by which a
proof is generated.

The LISP Tutor has the seldom-used name of GREATERP (Goal-Restricted
Environment for Tutoring and Educational Research in Programming). The ideal model of
LISP programming in the LISP Tutor is implemented in GRAPES (Goal-Restricted

254

Production System). A salient feature of the LISP tutor is its immediate correction of
errors. As soon as the student makes an error, the system attempts a diagnosis and gives a
hint as to the correct solution.

Chapters 1-6

GUIDON
GUIDON-2
IMAGE

GUIDON, an ITS for medical diagnosis, is an example of a tutoring system that was
built to interface with an existing expert system. GUIDON is based on MYCIN, a rule-based
expert system for diagnosing certain infectious diseases such as meningitis. MYCIN was
reconfigured to consist of two separate parts: EMYCIN, a domain-independent shell for
inferencing, etc., and the medical knowledge base. GUIDON was constructed to interface with
EMYCIN and to interactively present the rules in the knowledge base to a student.

Because the rules in MYCIN often combined diagnostic rules and medical facts in such
a manner that the reasoning process was not clear, MYCIN was reconfigured in a system
called NEOMYCIN, in which diagnostic strategy was separated from medical facts. HERACLES
is the domain-independent shell for NEOMYCIN. These systems became the basis of the tutor
GUIDON-2. Image is the student modeler subcomponent of GUIDON-2. GUIDON-WATCH
is the graphic interface for all these components and is the mechanism for interacting with
the system for instruction, running consultations, and editing the knowledge base.

Chapters 1-9

IMTS: Intelligent Maintenance Training System

IMTS was developed by the University of Southern California in cooperation with
Search Technology, Inc. It consists of simulation-based software tools that can infer system
behaviors from a deep model of the system. IMTS, designed for use in training
troubleshooting skills and for conducting research in intelligent tutoring, contains a
generalized model of an expert diagnostician and domain-independent editing tools to
construct graphic simulations of equipment systems. The initial application was for a Navy
SH-3 helicopter rotor head braking and folding diagnostic training system. IMTS operates
on a XEROX 1186 Al Workstation.

Chapters 5, 7, and 9

Kimball's Calculus Tutor

This ITS was developed for the domain of symbolic integration. The goal of symbolic
integration is to find a set of transformations that will transform a given symbolic
expression into an expression for which the integration is "known" and automatic. The tutor
can either pose problems or use problems submitted by the student. The student then
indicates an approach for solution such as substitution, integration by parts. When queried,

255

the tutor responds with its estimate of the best approach. The estimate is based on a
prioritized test of choices among approaches, not on the known solution to the problem. The
expert module is not actually capable of solving the problems being tutored. The student
diagnostic module maintains a knowledge base of approaches known to the student to guide
suggestions for approaches. The knowledge base is updated as successive problems are
solved.

Chapters 2-4

LMS: LEEDS MODELING SYSTEM
PIXIE

The LEEDS MODELING SYSTEM (LMS) is a diagnostic model for determining
sources of error in algebra problem solving. Errors are assumed to be due to incorrect
procedural rules or "mal-rules." The underlying concept is similar to the "buggy" rules
for arithmetic in BUGGY. The LMS system is not designed for remedial teaching, only for
diagnosis of the incorrect rules. PIXIE is an on-line ITS and is based on the LMS system.

Chapters 2, and 3

MACSYMA Adviso,

MACSYMA Advisor is an automated consultant for MACSYMA, an interactive system
designed to help professionals perform symbolic manipulation of mathematical expressions.
The MACSYMA Advisor uses plan recognition as its underlying methodology for diagnosis of
misconceptions that are causing errors when students attempt to use MACSYMA. The Advisor
accepts a description of violated expectations from its user, tries to reconstruct the user's
plan, and if successful, generates advice tailored to the user's needs.

Chapters 2, and 5

Mono-tutor

This domain-independent tutoring shell is designed to manage tutorial discourse. The
system contains (a) a tutoring component, which contains knowledge bases and reasoning
mechanisms for planning the text, and (b) a surface-level language generator, which
produces the syntactically correct utterances. Meno-Tutor was implemented with two
different knowledge bases, one concerning rainfall and one concerning Pascal programming.

Chapters 1, 4, and 9

PROUST

This ITS, which Is a system for diagnosing nonsyntactic student errors in Pascal
programs, is an example of an off-line tutor that has access only to a final product or state
on which to base its diagnosis of student errors. The completed student programs are
submitted to PROUST, which provides a printout of the diagnosis. This system is discussed
in some detail in Chapter 8.

Chapters 1, 3, and 8

256

SCHOLAR

One of the earliest ITSs, SCHOLAR is a mixed-initiative system for tutoring
declarative knowledge. The original system was developed with a knowledge base about South
American geography. The knowledge base is represented as a semantic net of objects or
concepts. It uses a Socratic style of tutoring, first attempting to diagnose the underlying
misconception in the student's knowledge, then posing a problem that will force the student
to discover the errors.

Chapters 1-4, 6, and 9

SOPHIE I, SOPHIE II, SOPHIE III

The three SOPHIE (Sophisticated Instructional Environment) systems are successive
generations of a syrtem for tutoring electronic troubleshooting. For Sophie I, the
underlying "expert" or simulation of the device (a regulated power supply) is implemented
with a general purpose electronic simulator called SPICE (Simulation Program with
Integrated Circuit Emphasis). Faults can be inserted in this simulation, and the student then
diagnoses them. In addition to the simulation, the system contains a natural language
interface which permits students to pose questions. SOPHIE 11 extends the basic
environment of SOPHIE I with the addition of an articulate expert based on a prestored
decision tree for troubleshooting the power supply and annotated with schema for producing
explanations. SOPHIE III contains three modules, the electronic expert, the
troubleshooter, and the coach. SOPHIE III is a radical departure from SOPHIE I in that the
underlying expert is based on a causal model rather than a mathematical simulation
produced by SPICE.

Chapters 1-6, and 9

SPADE

The tutoring environment of SPADE is designed to teach higher level concepts, such
as styles, strategies, and organization techniques, that underlie efficient planning and
debugging of computer programs. Implemented for the programming language LOGO, the
system contains a model of the design process which it uses on-line to communicate with the
student during the construction and debugging of programs. Based on the expert planning
module, the system suggests alternative designs to the student by means of menus.

Chapters 2, and 3

Steamer

This simulation of a steam propulsion plant consists of a graphical interface to a
mathematical model of the plant. The interface allows a user to select from a library of
views of the propulsion system and to interact with a selected view to change the state of the
underlying simulation model. Several levels of detail of the propulsion plant can be depicted
in different views. The level of detail can vary from gauges and dials to schematic diagrams.
One instructional advantage of Steamer is the ability to show global views of systems that
are physically dispersed in a real power plant.

Chapters 1, 2, and 5-7

257

WEST

A: example of an ITS with issue-based tutoring, WEST provides on-line coaching for
a mathematics game first developed on the PLATO computer-assisted instructional system.
The object of the game is to move a player across an electronic gameboard by a number of
moves equal to the value of an algebraic expression that the student formulates. The coach
suggests alternative equations or strategies that would have given better performance.

Chapters 2-5, and 8

WHY

This system is another example of a tutor for declarative knowledge. WHY tutors not
just factual knowledge but the principles of rainfall as well, correcting students'
misconceptions concerning the causal models underlying rainfall. A follow-up of the
Scholar system, it also uses mixed-initiative dialogue and a Socratic tutoring heuristic.
Based on an extensive analysis of tutorial dialogue, an effort was made to characterize the
global strategies used by human tutors to guide the dialogue.

Chapters 2, 3, and 6

WUSOR

WUSOR I, II, and III are coaches developed for the electronic game WUMPUS. The
object of the game is to locate and destroy the WUMPUS without being entrapped by the many
dangers that lurk in the maze of caves surrounding the hidden lair. WUSOR has a rule-
based expert representation and uses plan recognition for diagnosis.

Chapters 2, 3, 5, and 8

258

Appendix B

GLOSSARY OF ITS TERMS

Advancement. The use of a student model to determine whether to advance the
student to the next curriculum topic.

Authoring system. A domain independent component of an ITS that allows the
developer to enter specific domain knowledge into the tutor's knowledge base.

Bandwidth. The amount of the student's activity available to the diagnostic model.
The three categories of bandwidth in ITSs, from narrow to broad, are: final states,
intermediate states, and mental states.

Black box expert system. A procedure that generates correct behavior over a range of
tasks in the domain, but whose mechanism is inaccessible to the ITS. (See glass box
expert system.)

Bug catalog. See bug part Iibrary.

Bug library technique. A student-expert difference model that represents
misconceptions. It augments an expert model with a list of bugs.

Bug part library . A studcnt-expert difference model that generates bugs from
fragments of valid rules.

Bugs. Student misconceptions in declarative or procedural knowledge.

Coarse-grained student model. A student model that does not describe cognitive
processes at a detailed level.

Cognitive fidelity. The measure of correlation between the cognitive model and actual
human problem solving strategy.

Cognitive model. A representation of human cognitive processes in a particular
domain.

Condition induction. A diagnostic technique used in the student model for constructing
buggy rules for bug part libraries, a student-expert difference model. (See bug part
library.)

Constructivism. A pedagogical philosophy that views learning as constructing
knowledge, rather than absorbing it.

Curriculum module. The component of an ITS which selects and orders the material
to be presented to the student.

Curriculum selection techniques. Techniques that deal with selecting problems to
exercise those areas in the curriculum where the student is weak.

259

Decision tree technique. A diagnostic technique used in the student model that creates
a trec of paths. Each diagnosis corresponds to a path from the root to some leaf.

Declarative knowledge. A type of knowledge where the basic principles and facts of a
domain are understood; knowing how to use the facts (as in procedural knowledge) is
not of concern.

Deep-level tutoring. Tutoring which can provide explanation of the internal reasoning
of its expert module.

Diagnostic module. The component (a process) of an ITS which infers and manipulates
the student model. The selection of a diagnostic algorithm is dependent on the
bandwidth of the system.

Direct manipulation interface. See first person interface.

Divergence principle. A curriculum principle that states that there should be a broad
representative sampling of exercises and examples in curricula for procedural tutors.

Enabling objectives. An instructional objective's immediate prerequisite.

Environment. The component of an ITS that specifies or supports the activities that
the student does and the methods available to accomplish those activities.

Expert module. The module of an ITS that provides the domain expertise, i.e, the
knowledge that the ITS is trying to teach.

Expert system. A computer program which uses a knowledge base and inference
procedures to act as an expert in a specific domain. It is able to reach conclusions
very similar to those reached by a human expert.

Expository tutor. A tutor that is concerned with declarative knowledge. Usually
interactive dialogue is the instructional tool used in this type of tutor.

External evaluation. Evaluation of an ITS that focuses on the impact of the ITS on
students' knowledge and problem solving.

External-internal task mapping problem. A problem in the human-computcr interaction
component of an ITS. It is a gap between what the user wants, the goal of the
interaction, and the actions the user must make to achieve the goal.

Felicity conditions. Principles of instruction which facilitate case of learning, such as
presenting only one new step in a procedure per lesson.

Fidelity. A measure of how closely the simulated environment in an ITS matches the
real world. There are four kinds of fidelity: physical, display, mechanistic and
conceptual.

Fine-grained student model. A student model that describes cognitive processes at a
high level of detail.

First-person interface. A type of user interface where the actions and objects relevant
to the task and domain map directly to actions and objects in the interface. With this

260

interface the user has a feeling of working directly with the domain. An example of
this type of interface is the icon.

Flat procedural knowledge. Procedural knowlcdgc that is not organized by subgoals; i.e.,
an undifferentiated set of production rules.

Generate and test. A diagnostic technique used in the student model that generates
bug combinations (sets of bugs) dynamically and tests these for validity against
student performance.

Glass box expert system. An expert system that contains human-like representation of
knowledge. This type of expert system is more amenable to tutoring than a black box
expert system because it can explain its reasoning.

Goal-factored production system. A rule based system that makes explicit references to
goals in the conditional part of its rules.

Grain-size of diagnosis. The level of detail used by the diagnostic technique for

processing student models. Closely related to bandwidth.

Hierarchical procedural knowledge. Procedural knowledge with subgoals.

Increasingly Complex Microworld (ICM) frpmework. A view of the student as being
exposed to a sequence of increasingly complex microworlds that provide intermediate
experiences such that within each microworld the student can see a challenging but
attainable goal.

Individualization. A curiculum principle that states that exercises and examples
should be chosen to fit the pattern of skills and weaknesses that characterize the
student at the time the exercise or example is chosen.

Instruction. Actual presentation of curriculum material to the student.

Instructional Environment. See environment.

Instructional Systems Develolmnt (ISD). A system engineering approach to the analysis,
design, development, delivery and evaluation of instruction. -

Intelligent Computer -Assisted Instruction (ICAI). Synonym for Intelligent Tutoring
System.

Intelligent Tutoring System (ITS). A computer program that (a) is capable of competent
problem solving in a domain, (b) can infer a learner's approximation of competence,
and (c) is able to reduce the difference between its competence and the student's
through application of various tutoring strategies.

Interactive diagnosis. A diagnostic technique used in the student model which-does not
use a fixed list of text items.

Internal evaluation. Evaluation of an ITS that focuses on the relationship between the
architecture of the ITS and its actual behavior.

Issue-oriented methodology. A methodology for building an ITS which relies on access
to intermediate states of cognitive processing. These intermediate states are used to

261

identify instructionally useful issues characteristic of differences between expert and
student performance.

Issue-oriented recognizers. Methods which note in student behavior the presence or
absence of issues or characteristic traits of expert performance.

Issue-oriented tutoring. A type of tutoring that bases instruction on patterns of
differences in the intermediate cognitive processes underlying student and expert
behavior.

'Issue tracing. A diagnostic technique used to construct a student model. A variant of
model tracing that relies on access to intermediate states of student performance
rather than on access to a highly detailed cognitive process model.

Knowledge level analysis. An internal evaluation method; it attempts to characterize
the knowledge in the ITS and thus answers the question: what does the ITS know?

Manageability. A curriculum principle that states that every exercise should be
workable and every example should be comprehensible to students who have
completed previous parts of the curriculum. Manageability applies to procedural
tutors.

Matching principle. A curriculum principle that states that both positive and negative
instances of concepts, procedures or principles should be presented.

Misconception. An item of knowledge that the student has and the expert does not
have. A type of student-expert difference. A bug.

Missing conception. An item of knowledge that the expert has and the student does
not have. A type of student-expert difference. See overlay model.

Mixed Initiative Dialog. An ITS environment which accepts and responds in natural
language to both solicited and unsolicited natural language input from the student.

Model-tracing. An diagnostic technique used to build a student model. It uses the
student's surface behavior to infer the sequence of rules fired in a rule-based model of
performance; i.e., the student's actions traced a path through the rule base. A major
advantage of model tracing is the almost immediate feedback on student errors as
they occur.

Overlay model A student-expert difference model that represents missing conceptions;
usually implemented as either an expert model annotated for those items that are
missing, or an expert model with weights assigned to each element in the expert
knowledge base.

Path finding. A diagnostic technique used by the student model to find a path from
one state to the next, which is a chain of rule applications. This is a way of
representing the student's mental state sequence. The path is given to the model
tracer.

Plan recognition. A diagnostic technique used in the student model to represent
hierarchical procedural knowledge. It is similar to path finding in that it is a front
end to model tracing.

262

IL m , m ,, m m n n qiu m m aa llU I a

Procedural knowledge. Domain dependent knowledge about how to perform a specific
task.

Procedure tutor. A type of tutor that teachcs procedural knowledge; i.e., skills and
procedures. Usually exercises and examples are used by procedure tutors.

Process model. A model which reveals the mechanism behind behavior.

Production rule. A rule of the form condition(s) imply actions(s), used in modeling
cognitive behavior. A set of production rules and an interpreter for processing them
is termed a ,)roduction system.

Program process analysis. An internal evaluation method; it attempts to answer the
question: how does the ITS do what it does?

Propaedeutics. Knowledge that is needed for learning but not for proficient
performance.

Qualitative process model. A type of cognitive model, concerned with reasoning about
the causal structure of the world; the simulation of dynamic processes in the mind. It
is an important facet of troubleshooting behavipr.

Repair theory. A generative theory of bugs; a method of deriving bug libraries directly
from correct procedures, reducing the need to collect bugs through empirical
observation.

Rule-based model. An expert module of an ITS that is implemented with a rule-based
(production) system. (Also called a production model.)

Second-person interface. A type of user interface where the user gives commands to a
second party. Examples of this type of interface are command languages, menus, and
(limited) natural language interfaces.

Step theory. A theory that states that curriculum should be divided into discrete
lessons, each of which adds a single decision point or step in the procedure to be
learned. See felicity conditions.

Structural transparency. A curriculum principle that states that the sequence of
exercise and examples should reflect the structure of the procedure being taught and
should thereby help the student induce the target procedure.

Student model. The component (a data structure) of an ITS that represents the
student's cu, cent state of knowledge (mastery) of the domain, i.e., a detailed model of
student cognition.

Student-expert differences. The difference between the expert's knowledge and the
student's knowledge. There arc two basic types of student-expert differences: missing
conceptions and misconceptions. The three models used to represent student-expert
differences are: overlay model, bug library technique and library of bug parts.

Surface-level tutoring. Tutoring which can be implemented with issue-oriented
recognizers. Access to the internal reasoning of the expert module is not available.

263

Target knowledge type. The type of knowledge that is represented in the expert and
student model modules. Knowledge representation can be categorized into three types:
procedural (both flat and hierarchical), declarative, and qualitative process model.

Tutorial domain analysis. An internal evaluation method for iteratively adding and
subtracting requirements of the ITS design.

User Interface Management System (UIMS). A strategy that attempts to separate the
interface component of an application program from the computational part.

Web teaching. A curriculum approach where selection of materials is guided by two
principles: relatedness (priority is given to concepts that are closely related to existing
knowledge), and generality (discuss generalities bcfore specifics. Web teaching
applies to expository tutors.

Wizard-of-Oz system. Semi-automated tutors where a human tutor replaces some or all
of the instructional functions of an automated tutor. Used in research and
development of ITSs.

264

