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Abstract

Characteristics of different analog bandpass filter banks generating

power spectra with a logarithmically uniform frequency resolution and a

constant relative analysis bandwidth are discussed. Equivalent digital

filters are derived for use with digital spectrum analyzers. As an

example of application, an algorithm for digital third octave band

analysis is demonstrated and used for evaluation of fluctuation power

spectra characterizing the real part of impedance of standard RC circuits.
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1. Introduction

In the study of stochastic signals as e.g. noise from different

sources, it is often necessary to determine the power spectrum over a

broad frequency range, rather than in narrow intervals or at special

discrete frequencies. In such cases the analysis may involve frequencies

being by orders of magnitude apart from each other, and consequently,

the spectrum must be represented by using a logarithmic frequency

scale. As common examples involving such broad range (logarithmic)

spectra, the analysis of acoustical signals (Miller 1982) or of membrane

noise (deFelice 1981) may be mentioned. The use of a logarithmic scale

(often in both frequency and amplitude) may facilitate the analysis of

basic features and of the origin of the signal. This can be illustrated by

considering the real component of the electric impedance of an

electrochemical cell. When both the reactance and frequency are

represented on a logarithmic scale, equivalent circuit elements (such as,

e.g., one corresponding to a charge transfer process or another being

equivalent with a diffusional impedance) are easy to recognize, and to

characterize in a quantitative manner (Bard and Faulkner 1980). The

reactance versus frequency relationship can be derived, e.g., from the

power spectrum of the spontaneous thermal noise of the cell

constituents on the basis of the formula (Bezegh and Janata 1987)

ZRe(f) = U2(f)/(4kTB) = S(f)/(4kT) (I)
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where f is frequency, ZRe is the real component of impedance of the cell,

U 2 (f) is the power spectrum and S(f) is the spectral density of the

voltage fluctuations derived from the cell impedance, and B is (absolute)

bandwidth of the spectrum analyzer at frequency f.

Certain analog spectrum analyzers are able to generate a

logarithmically uniform frequency scan and such filter bandwidths

which vary proportionally with the frequency. Thus, the relative

bandwidth (bandwidth/frequency) is nearly constant over the entire

analyzed range. There are accepted standards recommending sets of

frequencies and bandwidths for such analyzers (Acoustical Society of

America 1986). One of the most common version, the third octave band

analysis, is characterized ideally by a bank of rectangular filters, the

center frequency of each of them being located at the frequency 21/3

times its lower neighbor, and having a nominal bandwidth of (21/3-1)

times the center frequency. This mode of operation can be simulated

algorithmically so that any digital spectrum analyzer may perform

finally a very similar task, even though its operation is always based on

a linearly uniform frequency distribution and a constant bandwidth in

any span. A bank of such numerical filters not only yields a spectrum

with nearly logarithmic final frequency distribution, but also eliminates

the large abrupt changes in bandwidth, occurring at the boundaries

between the adjacent frequency spans.



4

Common solutions to this problem (Hewlett-Packard 1978, Carnal

and Rochelle 1984) exhibit, however, certain drawbacks. In one case

(Hewlett-Packard 1978) the synthesized numerical filters unnecessarily

mimic the non-idealities of the corresponding analog ones in that their

bandedges are rounded. Another inconvenience of this algorithm is that

it is instrument-specific, a consequence of which is the limited accessible

frequency range (about 16 - 20,000 Hz). The filter passbands are not

symmetrical with respect to their center frequencies on a logarithmic

scale, rather they are systematically shifted towards lower frequencies

that is a characteristic feature of other approaches (Carnal and Rochelle

1984) as well.

In this work a more general treatment of, and a solution to the

problem of power spectrum determination with logarithmically uniform

frequency resolution and a constant relative bandwidth are described.

The digital version of the derived continuous bandpass filter

characteristics is also discussed. As an example, third octave fluctuation

analysis of a model RC circuit is performed.
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2. The problem to be solved

Digital spectrum analyzers determine spectra with uniform

(equidistant) frequency distribution and a constant absolute bandwidth

in any frequency span. The frequency increment between individual

spectrum points (called bins), and the analysis bandwidth are

proportional to the frequency span actually used. In order to transform

such spectra to one with a logarithmically uniform frequency resolution,

it is necessary to select individual spectrum bins (or averages of groups

involving bins of a given number) from several partly overlapping spans

so that the resultant frequency distribution is close to a logarithmically

uniform one. The bandwidth of the analysis then changes abruptly at

the span boundaries within the same final spectrum. The magnitude of

this change depends on the change in span, and may be of one order of

magnitude or even more at each boundary where switching from one

span to another takes place. The change of the relative bandwidth

(bandwidth/frequency) is then also abrupt and large. In addition, its

value is not even constant within the interval corresponding to one span,

as it jumps up at the first point, and then decays hyperbolically to the

last point. This hyperbolic relationship appears as an exponential decay

on a log frequency axis (Fig 1, curve a).

To avoid this problem, a set of digital filters must be derived, which

are characterized by a logarithmically uniform distribution of their
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center frequencies, and, in addition, by a constant relative (or

logarithmic) bandwidth over the entire analyzed frequency range. First,

the equivalent continuous (analog) filter set is considered.

3. Ideal characteristics of a bank of logarithmically distributed

continuous bandpass filters

A bank of bandpass filters of logarithmically uniform frequency

distribution and of a constant relative bandwidth is characterized by the

equations

fi+l= q fi (2)

Afi = fi,H - fi,L = b fi (3)

where Af is (absolute) bandwidth, q>l and b are constants, subscript i

refers to the i-th filter the center frequency of which is fi. Subscripts H

and L refer to the higher and lower stopband frequencies (bandedges).

For octave, half octave and third octave band analyses (Acoustical

Society of America 1986) q = 2, 21/2 and 21/3, respectively.

In order to avoid any loss of energy of the signal, the bandedges of

adjacent passbands must coincide. In this case b cannot be independent

of q, and hence, equation 3 must be replaced by
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fi,H = fi+1,L = q fi,L (4)

On the other hand, for any passband symmetry

Afi = (q-1) fi,L (5)

If any passband is symmetrical with respect to its center frequency

on a linear frequency scale then

f- fi,L = fi,H - fi = q fi,L - f

Thus,

fi,L = fi 2/(q+1) and fi,H = fi 2q/(q+1) (6 a)

and with equation 2

Ai= fi 2(q- 1)/(q+ 1) (6 b)

The same symmetry prescibed on -a logarithmic scale implies

log 1'1 - log fi,L = log fi,H - log fi or: fi / fi,L = fi,H / fi

Finally, with eq 4

fi,L = fi 1i4Fq and fi,H = fi Nr (7 a)

and with equation 2

A f = f1 (4Fqj - 1/4-) (7 b)
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Thus, at a linear symmetry b = 2(q-1)/(q+l) while in the case of a

logarithmic ,assband symmetry b = -Ifq - i/-q.

Bandpass filters with characteristics, Hi(f), transform the original

power spectrum as follows:

f1 ,H

S^(fi) = Ai J S(f) Hi(f) df (8)
fi,L

where SA means the estimated spectrum obtained with the filter bank

and Ai is the inverse norm of the i-th filter characteristics (i.e. the

inverse of the integral of Hi(f) over the passband). The equivalent of

Hi(f) on a logarithmic scale is Hi*(u) where u = log(f), with the

normalizing factor, Ai*. For rectangular filters with linearly symmetrical

p.sandse. g.,

Hi = 1 and Ai = 1 /Afi = (q+l) / 2(q-l) fi (9)

The two discussed symmetries are illustrated in Fig 2 for octave

band analysis, when, as a special case, Afi = fi,L at any symmetry. The

asymmetrical position of the center frequency on the logarithmic axis at

linearly symmetrical passbands (curves a2) corresponds to higher

"densities" of spectrum points at higher frequencies, due to the

logarithmic representation. This means that a filter, rectangular on a

linear frequency scale, can be considered to exhibit an increasing
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exponential cha-acter on a logarithmic scale, because the "density" of the

original spectrum points, s, increases exponentially along the logarithmic

frequency axis, u:

s = df / d log(f) = f In(a) = ln(a) au (10)

where a is the logarithm base (In means natural logarithm). Thus,

equations 6 with rectangular filters (equations 9) define, in fact, a bank

of logarithmic bandpass filters of asymmetrical and curved "sawtooth"

type characteristics, with

Hi*(u) = a(U-Ui) and Ai* = (q+l) ln(a) / 2(q-1) (11)

The spectrum values at the center frequencies are not modified by these

filters: Hi*(ui)=l (ui = log(fi), see Fig 2-a2). Ai* is the inverse integral of

Hi*(u) over the interval defined by equations 6a, and is independent of i

because the logarithmic bandwidth is constant. For similar reasons, the

shapes of the filter characteristics are also identical in any passband (Fig

2-a2).

In order to obtain filters with symmetrical center frequency

positions and rectangular characteristics on a logarithmic scale,

equations 7 must be fulfilled. However, a proper weighting is then

necessary on the linear frequency scale, to compensate for the required

asymmetry of the linear scale passband. The weight must be inversely

proportional to the spectrum density on the logarithmic scale (equation

10):
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Hi= k/fin(a)

As its value should be unity at the actual center frequency, k = fi ln(a)

and so,

Hi(f) = fi/ f and Ai = 1 / fi In(q) (12)

The normalizing factor is the inverse integral of the weighting function

over the interval as defined by equations 7a. The filter characteristics,

understandably, do not depend on the base of the logarithm, a. For the

sake of completeness, the corresponding filters on a logarithmic scale are

given also, as follows:

Hi*(u) = 1 and Ai* = 1 / log(q) (13)

For both types of the derived filters (equations 9 and 12), and also

for the corresponding logarithmic ones (equations 11 and 13), the

spectrum to the "left" of the center frequency have equal weight with

the "right" side within the same passband. For the linear scale filters,

e.g.,

fi fi,H

f Hi(f) df = f Hi(f) df (14)
fi,L fi

This type of requirement is trivially fulfilled for the filters of equations

9 and 13 because of symmetry considerations. For logarithmically

symmetrical filters on the linear scale, e.g, after insertion of equations

7a and 12 and after integration
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ln(fi) - ln(fi/'Fq) = ln(fi f-q) - ln(fi)

which is an algebraic identity. The proof for the logarithmical version of

linearly symmetrical filters (equations 11) can be done similarly.

It is often easier to realize exponential filter characteristics than

hyperbolic ones. At relatively narrow passbands, the filters of equation

12 can be approximated properly by

Hi(f) = exp[-wi (f-fi)]

with w>O constants. By inserting this equation into equation 14, and

using the symmetry relationships (equations 7a)

1 - exp[-wi fi (1//-q-l)] = exp[-wi fi (\Fq-1)] - 1

and consequently,

x 4 q-1 + xl/ 4q-1 = 2 (15)

where x = exp(-wi fi). Over the trivial solution to this equation (x=l, or

wi=O that is not a solution to this problem) a constant x can be

determined for wi > 0 from equation 15 for any constant q in the

interval 0<x<l. Thus, -wi fi = c is constant and independent of i, as it

depends only on q. Consequently,

Hi = exp[c(f/fi - 1)] (16a)

Ai = c /{ exp[c('fq-l)] - exp[c(l/;q-1)] } fi (16b)
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The most important equations for both the linearly and

logarithmically symmetrical filters are summarized in Table 1. For

different selected values of q, the corresponding c constants, together

with other data (bandwidth and stopband frequencies, the values of the

weight function at the two stopbands, and the normalizing factors) are

given in Table 2. As a consequence of equation 15, the "excess" of the

exponential (approximate) weight function with respect to 1 at the lower

bandedge is equal to its "shortage" at the higher stopband (see

deviations from 1 in % in Table 2). This is not true for the theoretical

(hyperbolic) characteristics. The value of c is approaching -1 as the

analysis bandwidth decreases (at the limit when q=l then c= -1). At

third octave and half octave band analyses, the exponential filters

approximate very closely the hyperbolic ones, as it is proven by the

relative deviations of the two kinds of weight functions from I at the

stopband frequencies in Table 2. At octave analysis the deviation of the

approximate filter from the theoretical one is already more stressed, as

it is seen in Fig 2-bl.

When no energy loss is allowed, then equations 2, 6, 8 and 9

define a filter set with logarithmic frequency distribution, constant

relative (logarithmic) bandwidth and symmetrical passband on a linear

scale, even though these filters are neither rectangular nor symmetrical

on a logarithmic scale. In turn, the filters defined by equations 2, 7, 8

and 12 fulfill all these conditions, but they have curved "sawtooth"

shape on a linear scale. So, both discussed filter banks have their
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advantages and disadvantages. At narrow passbands, instead of

equation 12, exponential filters (equations 16) can also be used.

An analogous treatment would be possible if energy loss were

permitted (less compact filter bank) except that equation 3 should then

be used in the derivations instead of equations 4, 5. Third octave band

analysis as defined by the standard (Acoustical Society of America

1986) is only an approximation of a true energy-conserving scheme. At

q-21/3, according to Table 2, Afi -- 0.2300 fi at linearly symmetrical

passbands and Afi = 0.2316 fi in the case of a logarithmic symmetry,

contrary to Afi = (21/3-1) fi = 0.2599 fi that is recommended by the

standard (Acoustical Society of America 1986). A contradiction to

equation 5 is easy to recognize here.

4. Equivalent digital filters

To derive equivalent digital filters, the lower and higher stopband

frequencies belonging to each center frequency in question must be

calculated (equations 6 or 7, respectively), and then, the integral in

equation 8 must be computed. No weighting should be applied in the

case of linearly symmetric passbands (equations 9), while the filters
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according to equations 12 must be used in the logarithmically

symmetrical case.

To select the bins of a given passband, half of the "original"

instrument specific bandwidth, B, must also be taken into account at

both bandedges when B is wide (when, e.g., using "flat top" shape

window functions with the HP 3582A). The integration itself can be

performed either by a simple summation for the bins belonging to the

passband in question, or by more sophisticated integration schemes

(Korn and Korn 1961). In the first case the normalizing factor, Ai, can be

the inverse number of bins involved by the linearly symmetrical

passband, while it is determined by summing all values of Hi for the

given logarithmically symmetrical passband and inverting the sum. To

reduce the errors of discretization, it is generaly better to compute the

norms numerically instead of using equations 9 or 12.

The selection of the span from where the bins are used for

calculation is quite trivial when the actual passband involves higher bins

of the span, because then, many bins will add up to form one passband,

providing a good approximation of the ideal (continuous) filter. However,

at the lower end of any frequency span caution must be exercised

because fewer bins are available there (as it is illustrated by the dotted

lines in Fig 2-a2). This causes a poorer approximation because of the

poorer digital resolution. This effect is even more stressed if the half-

bandwidth inherent to the instrument, B, is also taken into account at
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both band-dges when the bins for a given passband are selected. In

addition, the DC part of the signal tends to bias and deform the low

frequency end of any spectra in any span. For these reasons, it is better

to switch to a lower span to reach lower frequencies rather than to use a

very small number of the low bins of a higher span.

5. Testing the filters

5.1. Equipment used

The voltage fluctuations derived from the analyzed RC circuit were

amplified by a gain of 1000 and then fed into an HP 3582A digital

spectrum analyzer, that computed the raw spectra with linearly uniform

frequency resolution. Its control via an HP-IB was performed by an HP-

86B personal computer that computed the final spectrum with

logarithmically uniform frequency resolution as well. Other

experimental details are described elsewhere (Marecek et al 1988).
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5.2. Digital third octave fluctuation analysis of standard RC

circuits

The algorithm in (Hewlett-Packard 1978) used with the HP 3582A

spectrum analyzer generates an approximate third octave band analysis

with center frequencies recommended by the standard (Acoustical

Society of America 1986) (Table 3, column 1). It is characterized by

linearly symmetrical passbands, even though they do not correspond

accurately to equations 6, and so, energy conservation is not strictly

fulfilled (different passbands often overlap, see column 3). Thus, the

algorithm realizes a bank of filters that are neither symmetrical nor

rectangular on a logarithmic scale. In addition, the weighting functions

as applied are not even rectangular on a linear scale (they are

characterized by sloping bandedges), that means that such filters try to

mimic even those typical non-idealities of the equivalent analog filters

that are avoidable by digital processing. The span selection (column 2) in

some cases enforces the use of very low bins (e.g. at 251.2 Hz) that is not

the case of the filter bank realized with equations 7a and 12 in this

work (columns 4, 5). These latter filters are rectangular and symmetrical

on a logarithmic scale. fulfilling also energy conservation. The variance

of the relative bandwidths is also smaller when using this algorithm, due

to more favorable span selection (compare curves b and c in Fig 1). The

determination of the stopbands and of the weighting function is fully

algorithmic, and so, no restriction upon frequency range or instrument is

imposed, contrary to the algorithm in (Hewlett-Packard 1978) that uses
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numerically given weights and passband boundaries, which allows to

access only the range of 16-20000 Hz.

As an example, fluctuation analysis of standard RC circuits have

been performed. In order to apply correctly equation 1, first the original

instrument bandwidths, B, of the different spans had to be used to

determine properly scaled spectral densities, and, finally, reactances

from the power spectra. Then, the transform to logarithmic scaling could

be performed by the digital filters discussed. A result is shown in Fig 1,

curve d which proves that, in spite of the extremely low energy of the

fluctuation signal, already a few averages may provide a log reactance -

log frequency plot, in which the scatter of the points is acceptable.

6. Conclusion

By using the equations given in this work, both the linearly and

logarithmically symmetrical filters can be easily realized, with third

octave, half octave, octave, or any other desired frequency resolution,

without restrictions concerning frequency range or instrument, and

whether an analog or digital spectrum analyzer has to be designed

(though the digital version has many practical advantages). Both energy
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conserving schemes and incontiguous filters with energy loss can be

designed.

With an analogous treatment filters generating spectra with a

logarithmically uniform wavenumber resolution can also be derived.

Such spectra are not relevant for ordinary electrical noise

measurements, but have significance e.g. in acoustical applications

where the wavenumber representation is more commonly used.
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Table 1. Basic Equations for Logarithmically Uniform Filter
Banks

passband symmetry

linear logarithmic

fi,L fi 2/(q+ 1) fi /Jq

fi,H fi 2q/(q+l) fi

Afi fi 2(q-1)/(q+l) f i (-Iq - 1/,F-

Hi(f) 1 fi /f

Ai (q+l) / 2(q-1) fi 1 /fi In(q)

Hi*(u) a(U'Ui) 1

Ai* (q+l) ln(a) / 2(q-1) 1 / log(q)

1) In means natural logarithm while log is the actual logarithmic
function used for the definition of the logarithmic frequency axis (its
base, a, may be 2, e, 10, or any other positive constant)

2) u = log(f)

3) For exponential approximation of the logarithmically symmetrical
filters see equations 16.
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Table 2. Characteristics of Octave, Half Octave and Third
Octave Band Analysis as Derived in This Work

name of q symmetry Afi fi,L fi,H c°  d*

analysis of
passband (*fi) (*fi) (*fi)

5 lin. 1.3333 0.3333 1.6667 - 0.75
log. 1.7889 0.4472 2.2361 - 0.6213

+124, -55 %+
log., exponential approximation: -0.9504 0.6876

±69 %

octave 2 lin. 0.6667 0.6667 1.3333 - 1.5
log. 0.7071 0.7071 1.4142 - 1.4427

+41,-29 %
log., exponential approximation: -0.9901 1.4716

j34%

1/2 octave 2 1 /2 lin. 0.3431 0.8284 1.1716 - 2.9142
log. 0.3483 0.8409 1.1892 - 2.8854

+19, -16 %
log., exponential approximation: -0.9975 2.8998

±17%

1/3 octave 2 1/3 lin. 0.2300 0.8850 1.1150 - 4.3473
log. 0.2316 0.8909 1.1225 - 4.3281

+12, -11 %
log., exponential approximation: -0.9989 4.3377

-12%

o The values of c have been determined by solving numerically equation
15

* The factor d has been computed with the following definition:

Ai =d/fi

+ Relative deviations of the weighting function at the two stopbands,
H(fi,L) and H(fi,H), from unity. For octave analysis see also Fig 2b.
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Table 3. Center Frequencies, Spans and Bins of Passbands of
Third Octave Band Analysis

nonalgorithmic algorithmic

as in (HP) (equations 7a)

symmetry

linear [ logarithmic
2 3 4 5

fi (Hz)a span (Hz) binsb span (Hz) binsb,c

15.85 15 - 19 - 25 142- 177
19.95 18 - 24 1178 - 223
25.12 23 - 30 / 23 - 28
31.62 29 - 37 29 - 35
39.81 0 - 36 46 36 -44
50.12 - 250 45 - 58 45 - 56
63.1 57 - 72 0 - 57 - 70
79.43 71 -91 - 250 71 - 89

100 89- 114 90 - 112
125.9 112 - 143 113 - 141
158.5 142 180 142- 177
199.5 178 - 226 178 - 223
251.2 12 - 15 23 - 28
316.2 15 - 19 29 - 35
398.1 18 - 24 36 - 44
501.2 23 - 30 45 - 56
631 29 - 37 0 - 57 - 70
794.3 0 - 36- 46 - 2500 "' 71 - 89

1000 - 5000 45 - 58 90 - 112
1259 56 - 72 113- 141
1585 71 -91 142- 177
1995 89 - 114 178 - 223
2512 112 - 143 23 - 28
3162 141 - 179 29 35
3981 178 - 225 36 - 44
5012 r 45- 58 45 - 56
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6310 57 - 72 0 - 57 - 70
7943 0 - 71 - 91 - 25000 71 - 89

10000 - 25000 89 - 114 90 - 112
12590 112 - 143 113 - 141
15850 142 - 179 142- 177
19950 179 - 225 .178 - 223

(HP): (Hewlett-Packard 1978)

a Nominal frequencies of the third octave band analysis, as defined in
the standard (Acoustical Society of America 1986), being close, but not
equal, to those corresponding to equation 2 (in average, the value of q is
by about 0.1 % smaller according to the standard than its theoretical
value of 21/3).

b Bins belonging to the passband in question.

c Bins were selected with equations 7a and by rounding the obtained bin
indices towards the actual center frequency. The original instrument
bandwidth, B, was then added to calculate the bandwidths for curve c in
Fig 1, to account for two half-bandwidths at both bandedges.
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LEGENDS TO THE FIGURES

Figure 1

Relative bandwidth (bandwidth/frequency) versus log frequency
(curves a-c) and result of fluctuation analysis (dots, d) with an HP
3582A spectrum analyzer. Any calculated bandwidth involves the
frequency range covered by the bins belonging to the particular
passband. In addition, in case c, 1/2 original instrument specific
bandwidth, B, proper to the scan, at both "left" to the lowest and "right"
to the highest bin of any passband, are added to the former value
(B=0.006*SPAN for Hanning passband shape). In case b this has not been
done, in order to account for the sloping bandedges. Ideal third octave
relative bandwidths are marked as horizontal lines in a-c. Boundaries of
adjacent frequency scans are shown by vertical lines.

(a) Relative bandwidths of moving average with 9 bin passbands.

(b) Relative bandwidths with linearly symmetrical third octave band
analysis as in (Hewlett-Packard 1978).

(c) Relative bandwidths with logarithmically symmetrical third octave
band analysis as derived in this work.

(d) Experimental result of fluctuation analysis of a parallel RC (R =1.8
G, C =1 pF) with 4 averages.

Figure 2 Passband symmetries in case of an octave band analysis.

(a) Linearly symmetrical passbands on a linear (al) and on a
logarithmic (a2) frequency axis. Dots belong to frequencies spaced
equidistantly on a linear axis, with increments of 1/20 times the
first center frequency. Natural logarithm (In) was used for the
logarithmic representation.

(b) Logarithmically symmetrical passbands on a linear (bl) and on a
logarithmic (b2) frequency axis.
hyp: calculated with the correct hyperbolic formula (equations 12)
exp: calculated with the approximate exponential formula

(equat6,cns 16)
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